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ABSTRACT

In this paper, we explore the gravitomagnetic interaction of a black hole (BH) with a misaligned
accretion disc to study BH spin precession and alignment jointly with BH mass Mgy and spin
parameter a evolution, under the assumption that the disc is continually fed, in its outer
region, by matter with angular momentum fixed on a given direction J disc.out- We develop an
iterative scheme based on the adiabatic approximation to study the BH—disc co-evolution: in
this approach, the accretion disc transits through a sequence of quasi-steady warped states
(Bardeen—Petterson effect) and interacts with the BH until the spin Jgy aligns with J disc,out-
For a BH aligning with a corotating disc, the fractional increase in mass is typically less than a
few per cent, while the spin modulus can increase up to a few tens of per cent. The alignment
time-scale t; oc a®/”M~32/35 is of ~10°-10° yr for a maximally rotating BH accreting at
the Eddington rate. BH—disc alignment from an initially counter-rotating disc tends to be
more efficient compared to the specular corotating case due to the asymmetry seeded in the
Kerr metric: counter-rotating matter carries a larger and opposite angular momentum when
crossing the innermost stable orbit, so that the spin modulus decreases faster and so the relative
inclination angle.

Key words: accretion, accretion discs — black hole physics — galaxies: active — galaxies:
evolution — quasars: general.

1 INTRODUCTION

Astrophysical black holes (BHs) are Kerr BHs fully characterized
by their mass Mgy and spin J gy, customarily expressed in terms of
the dimensionless spin parameter a (< 1), and unit vector Jpgy:

2
Jeu =GGAZBH Jen. (H
The spin and mass of BHs residing in galaxy nuclei do not remain
constant, close to their birth values, but change sizeably through
cosmic time, in response to major accretion events. In current cos-
mological scenarios for the evolution of galaxies, repeated inter-
actions among gas-rich haloes play a key role not only in shaping
galaxies, but also in triggering quasar activity (White & Rees 1978;
Di Matteo, Springel & Hernquist 2005). Massive gaseous nuclear
discs that form in the aftermath of major galaxy mergers (Mihos
& Hernquist 1996; Mayer et al. 2007) may provide enough fuel to
feed, on sub-parsec scales, the BH through a Keplerian accretion
disc (Dotti et al. 2007, 2009). If these episodes repeat recursively
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and/or at random phases (King & Pringle 2006), the BH spin Jgu
is expected, initially, to be misaligned relative to the direction of
the angular momentum of the disc J disc.out at its unperturbed, outer
edge Roy. In this configuration, the gas elements inside the disc
undergo Lense—Thirring precession (see e.g. Wilkins 1972). In the
fluid, the action of viscosity on to the differentially precessing disc
ensures that the inner portion of the accretion disc aligns (or anti-
aligns) its orbital angular momentum with the BH spin Jgy, outto a
transition radius Ry, beyond which the disc remains aligned to the
outer disc, as first shown by Bardeen & Petterson (1975) (see also
Armitage & Natarajan 1999; Nelson & Papaloizou 2000; Fragile
& Anninos 2005; Fragile et al. 2007). Warping of the inner disc
at distance R from the BH is communicated through the fluid ele-
ments on a time-scale gp(R) related to the vertical shear viscosity
of the accretion disc. Therefore, the inner regions of the disc align
(or counteralign if the disc is counter rotating) with the BH spin on
the scale #gp(Rwarp) When the viscous time for vertical propagation
of disturbances equals the Lense—Thirring precession time. On a
longer time-scale, the joint evolution of BH+disc system restores
full axisymmetry, with the BH spin direction aligned relative to
the total angular momentum of the composite system (Rees 1978;
Thorne, Price & MacDonald 1986; King et al. 2005). The change in
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Jsu 1s a consequence of angular momentum conservation: since the
BH acts on the disc with a torque that warps the disc then an equal
and opposite gravitomagnetic torque acts on the BH that modifies
its direction only.

BH spin alignment has been studied in two main contexts. In the
first, explored by King et al. (2005) and Lodato & Pringle (2006),
the focus is on an closed system where the accretion disc has a finite
mass and radial extent. Here, the total angular momentum Jy =
Jeu +Jaisc 1s well-defined vector, and the BH eventually aligns
it spin vector to the direction of Jy. In the second, explored by
Scheuer & Feiler (1996), Natarajan & Armitage (1999) and Martin,
Pringle & Tout (2007), the focus is on an open system, where the
accretion disc has infinite extension and it is continually fed at
its outer edge by matter whose angular momentum has constant
direction J dise.out- 10 this second case, the BH aligns its spin to the
outer disc direction J disc,ont ON @ time-scale 7, that exceeds 7gp by
a few orders of magnitude (Scheuer & Feiler 1996; Martin et al.
2007).

In this paper, we progress on the study of BH alignment including
the contemporary change in mass and spin modulus due to accretion
of matter, neglected in previous works. During BH precession and
alignment, matter flows inwards and accretes carrying the energy
and the specific angular momentum of the innermost stable circular
orbit (ISO). This study thus provides estimates of the fractional in-
crease of mass AMpyu/Mpn o and spin Aa/a, during BH alignment
(the subscript O refers to initial conditions), together with a sensible
expression for the alignment time 7,. In our context, we assume
a continuous and coherent feeding of the accretion disc around
the BH, at least for a time as long as the alignment time-scale ;.
Thus, we consider an open system and we fix the orbital angular
momentum direction J disc,out at the outer edge of the disc.

In Section 2, we introduce key parameters and highlight our
model assumptions. Section 3 surveys properties of steady-state
warped discs and key scales associated to the Bardeen—Petterson
effect; disc models with constant and power-law viscosity profile are
explored for completeness. In Section 4, we describe the equations
for the BH mass and spin evolution, and introduce the adiabatic
approximation to solve these equations. In the same section, we
also revisit the expression for the BH alignment time. Results are
illustrated in Section 5; there we also explore the tendency to align
in initially counter-rotating warped discs. Section 6 contains the
discussion of the results and our conclusions.

2 INITIAL ASSUMPTIONS AND MAIN
PARAMETERS

We consider a BH with spin Jpy, surrounded by a geometrically
thin, standard Shakura—Sunyaev «-disc (e.g. Shakura & Syunyaev
1973; Frank, King & Raine 2002). The «-disc is initially misaligned
relative to Jpy, i.e. the angular momentum unit vector of the disc
at the outer edge is jdisc_ou[ #* jBH; the relative inclination angle
between the two unit vectors is 6.

Following Pringle (1992), we assume that the accretion disc has a
high viscosity (¢ > H /R, where H is the disc vertical scaleheight) so
that perturbations propagate diffusively. We introduce two viscosity
parameters, v and v,: v, is the standard radial shear viscosity while
v, is the vertical share viscosity associated to the diffusion of vertical
warps through the disc, due to Lense-Thirring precession. For vy,
we adopt the o prescription

vy =aHc,, 2

Table 1. Table of the
coefficients o and f,,,.

o fvz
0.18 1.00
0.15 0.85
0.09 0.60
0.05 0.38

where ¢, is the sound speed inside the accretion disc. It is still poorly
understood which is the relation between the radial and the vertical
viscosity, in particular, if v ~ v, or v; < v,. In order to simplify
our discussion, we refer to the recent analysis of Lodato & Pringle
(2007), and for v, we take

vi Sy
v 2%

3

where f,, (given in Table 1) is a coefficient determined in numerical
simulations that accounts for non-linear effects.

The disc model is defined after specifying five free parameters
(subscript 0 will be introduced to indicate initial values when mass
and spin evolution is considered).

(1) The BH mass, Mpy; we explore a mass range between 10° <
Mgy < 107 M. For the BH mass, we introduce the dimensionless
parameter Mg as My = M x 10° M.

(2) The spin modulus, in terms of the dimensionless spin pa-
rameter a, which varies between 0 < a < 0.95. We do not use the
theoretical limit a = 1 because, if accretion is driven by magneto-
rotational instabilities in a relativistic MHD disc, the final equilib-
rium spin due to continuous accretion is a ~ 0.95 (Gammie, Shapiro
& McKinney 2004).

(3) The relative inclination angle 0, between the spin versor
J pu and the orbital angular momentum versor at the external edge
of the accretion disc, J disc.out- 1his angle varies isotropically from O
to 7t. In the following, however, we will confine this interval to (0,
~ 71/6) in order to satisfy the used approximations.

(4) The viscosity parameter o which is assumed to vary between
1072 < o < 107! to bracket uncertainties (King, Pringle & Livio
2007). For our purposes, we selected values of & according to Lodato
& Pringle (2007), as in Table 1. In this study, « is considered as a
constant inside the disc.

(5) The accretion rate on to the BH, M, is expressed in terms of
the Eddington ratio fgyq = L/Lggq and of the accretion efficiency
1 (where Lggq is the Eddington luminosity): M = fggaLgaa/(nc?).
We consider values of fgqq in the interval 107* < fgq < 1 and
compute 7 as a function of the BH spin modulus.

If the disc, warped in its innermost parts, is described to first
order by the Shakura—Sunyaev a-model, both v, and v, follow a
power law. If viscosities satisfy relation (3) and « is assumed to be
constant, their exponent are equal:

v = A, R and v, =A,,R". 4)

Following standard Shakura—Sunyaev disc solutions for external
regions of an accretion disc (Frank et al. 2002), we have g = 3/4
and

Feaa \
A, =9.14x 106a3{]5M3/20 (ﬂ) em®* 57!,
7o.1
1%} )
A, = (v—l> A, =50f,051A,,. )
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In equation (5), «g; and ny; are the o coefficient and the BH
radiative efficiency in unit of 0.1. f,, is tabulated in Table 1 (Lodato
& Pringle 2007).

3 WARPED ACCRETION DISC

3.1 The angular momentum content of discs: extended versus
truncated discs

The dynamics of a fluid element in a misaligned disc around a
spinning BH is given by the combination of three different motions:
the Keplerian rotation around the BH; the radial drift, due to radial
shear viscosity, and finally the Lense-Thirring precession, due to
the gravitomagnetic field H o, generated by Jgy (see e.g. Weinberg
1972; Thorne et al. 1986). In response to Lense—Thirring induced
precession, viscous stresses in the disc acts rapidly to produce in the
vicinity of the BH an axisymmetric configuration whereby adjacent
fluid elements rotate in the equatorial plane of the spinning BH.
The disc thus warps and the warp disturbance propagates diffusely
(Papaloizou & Pringle 1983) in the disc.

As the Bardeen—Petterson effect modifies the inclination of the
orbital plane of consecutive infinitesimal rings then the warped
profile of the accretion disc can be described by the specific angular
momentum density, L, expressed as

L =Li=3xQR, (6)

where [ (R)is aunit vector indicating the local direction of the orbital
angular momentum, L is the modulus, X is the surface density of
the disc and Qg the local Keplerian angular velocity. The angle
describing the tilted disc is defined as

O(R) = cos '[I(R) - Jgul, )

so that § (R) carries information of the warped structure of the ac-
cretion disc. The angular momentum of the accretion disc within
radius R is given by

R
Jase(R) = / 2 L(x)dx, ®)
R

1SO

where the integration domain extends from the innermost stable
orbit Riso out to R. In order to calculate the fotal disc angular
momentum, we define an outermost radius, R,,. For an extended
disc with Ry, — oo, the disc angular momentum J g always
dominates over Jgy.

Real discs are likely to be truncated by their own self-gravity that
becomes important at distances where the disc mass M gis.(R) ~
(H/R)Mpgy (see e.g. Pringle 1981; Frank et al. 2002; Lodato 2007).
Outside the truncation radius, gas can be either turned into stars
or expelled by winds from stars which do form (King & Pringle
2007; Levin 2007). Thus, we are led to define a disc outer edge
as the distance where the Toomre parameter for stability, Q =
ke /(MGX) [where k? = R(dQ2/dR) + 4Q2], becomes less than
unity, and the cooling time-scale of the clumping gas is less than
its dynamical time-scale. When the Toomre parameter drops to-
wards unity, the disc becomes unstable on a length-scale A =
c2/(GZ) (Polyachenko, Polyachenko & Strel’Nikov 1997; Levine
et al. 2008); for a nearly Keplerian, Shakura—Sunyaev «-disc, this
scale is much smaller than the disc radial dimension, and the cooling
time of the associated perturbation is less or of the same order of its
orbital period. Then, as long as the accretion disc can be described

as a Shakura—Sunyaev disc,' the external radius can be defined from
the condition Q(R,,) = 1, so that

—22/45

Row = 1.21 x 10°ag/ ¥ M > ( %) Rs, ©
0.1

where Rs = 2GMgy/c? is the Schwarschild radius. At the outer

edge of the disc, [(Rou) = Jdisc.ou and O(Rou) = Oout.

Definitions (6) and (8) for L and J 4;(R) hold for any disc profile.
At first order, we can neglect details about the warped disc structure
around Ry, assuming I~ (0,0, 1), and estimate the modulus
of the orbital angular momentum within radius R, Jgs.(R), using
Shakura—Sunyaev solutions for a flat disc. In this approximation, the
surface density is g, =~ M/(37'cv1) (see e.g. Pringle 1981; Frank
et al. 2002) and

M /GMpmR. (10)

37'[\)1
Using equations (8) and (10), and expression (4) for v; in the case
of B = 3/4, the modulus of the disc angular momentum within R
reads:

L(R) ~

8 M/GM

Jase(R) = — =225 R4, (11)
21 A,

If expression (11) is estimated at the outer radius (9), the resulting

dimensionless ratio between the disc and BH angular momenta is

Jisc Rou - o
dis ( l) — 7.30[(1)?1/45M6 37/45 (fEdd> a—l. (12)
Jeu 0.1

3.2 Time-scales and warp radius

The time-dependent evolution of the disc is described by the conti-
nuity equation
0x 0

R§+ﬁ(vRER)=O, (13)
where vy is the radial component of the velocity vector, and by the
equation of conservation of angular momentum. In presence of a
gravitomagnetic field, for a geometrically thin disc characterized by
the two viscosities v, and v,, the equation reads (Pringle 1992):

OL _ 10 oy 10 (o sd2;
or = RORU ™ TR\ 4r
19 (1 of 2G Jgu x L
L (Y et e 22 Eall)
T ROR (2”2 aR> ta TR (14)

The last term is the Lense—Thirring precession term and the associ-
ated angular velocity is
2G Jeu
2 R
The time-dependent equation (14) describes the radial drift of matter
and the diffusion of warping disturbances across the high-viscosity
disc.

This equation introduces several key scales.

Qr(R) = 15)

U This condition is fulfilled only for (M¢ fEdd)/(0.1 N0.1) 2 4.3, If this
condition is not satisfied, the gas temperature drops below ~10* K, in the
external region of the disc where Q is still greater than unity. The change
in the opacity likely modifies the structure of the outer disc, and we cannot
explicitly use (9). In this paper, we assume that the outer region is sufficiently
extended to provide matter and angular momentum to the inner regions and
use self-consistently the Shakura—Sunyaev model to describe the disc in
regions where the gravitomagnetic interaction takes place.

© 2009 The Authors. Journal compilation © 2009 RAS, MNRAS 399, 2249-2263
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(i) The viscous/accretion time-scale for radial drift, related to
the angular momentum transport parallel to J gisc.out> facc(R). It can
be seen as the time it takes for a fluid element at R to accrete on to the
BH (see e.g. Pringle 1981). Considering equation (14), the balance
between the advection term and the viscous term proportional to vy
(both on the right-hand side of equation 14) leads to an estimate of
the accretion time:

tacc(R) ~ Rz/vl' (16)

According to equation (16), we can introduce the disc consump-
tion time-scale #4, @ concept useful when considering transient,
truncated discs, as the accretion time-scale at the outer radius:

Tdisc ™ tacc(Ruul)

/4 11745  Jead s

= 171 x 10°q," " M "! <— ) r.

R Y a7

(i) The time-scale for warp propagation, related to the radial

diffusion of gravitomagnetic perturbations that transport the com-

ponent of the disc angular momentum lying in the plane of the

disc; this scale is inferred from equation (14) considering the term
proportional to v,,

R2 Vi
tgp(R) ~ P v face(R). (18)

The physical interpretation of this time-scale has been recently
investigated by solving numerically equation (14) for a thin disc
(Lodato & Pringle 2006): starting at # = 0 with a flat disc misaligned
relative to the fixed BH spin, ¢ & tgp(R) indicates the time it takes
for the radial diffusion of the warp to reach radius R; on longer
time-scale, the disc approaches a steady warped state.

(iii) The characteristic extension of the warp Ry, defined
as the distance at which the Bardeen—Petterson time-scale tgp(R)
equals the Lense~Thirring precession time-scale €2

4G Jgy
vt

Ryarp = 19

For power-law viscosity model, equations (1), (5) and (19) give

—6/35
Ryarp = 47600 £, 47 M (@) a*"Rs. 20)
7Mo.1

The warp radius represents the division between the outer region for
R > Ry, where the disc keeps its original inclination, given by
J disc.out» and the inner region for R < Ryagp, where the disc aligns
(or anti-aligns) its orbital angular momentum with the BH spin,
[\ Jeu. The warp radius fixes also the magnitude of the relevant
Bardeen—Petterson time-scale, which reads

Sedd I8
top(Ruarp) = 335007 £, 2 Mg % (n—) @ yr. (1)
0.1

If we define the function

VR = (22)
and Rgp the radius where the disc is maximally deformed

W = ¥ (Rpp) = max (¥), (23)
we expect that

Rgp = nBPRwarp (24)

with ngp of the order of unity. Rgp has two important properties:
first, if it is the radius where the disc is maximally warped, i.e.
where the diffusive propagation of vertical perturbations is more

significant; secondly, it provides a reliable estimate of the distance
from the BH where the gravitomagnetic interaction is stronger. From
equation (14), this interaction is proportional to (L x Jgg)/R>: this
term vanishes in the inner part of the disc (R < Rgp) since the
Bardeen—Petterson effect aligns L with Jgy, and also in the outer
regions (R >> Rgp), due to the rapid decline with R. Accordingly, the
region near Rgp (or equivalently Ry,q) is the only one significantly
misaligned with Jgy.

3.3 Analytical solutions

In this section, we summarize the properties of the steady warped
disc structure used to compute the joint evolution of the disc and
the BH.

Following previous studies, we assume that the viscosity profiles
are power laws with exponent g, as in equation (4), and explore
two possible cases. In the first, we formally extend the Shakura—
Sunyaev solution everywhere in the disc, i.e. v; « R? with g8 =
3/4, and v, given by equation (3) (Martin et al. 2007). In the second
case, we assume the viscosities to remain approximately constant
everywhere in the disc (Scheuer & Feiler 1996). In order to compare
the two models (cf. Martin et al. 2007), we impose the continuity
of the viscosities at Rgp where the gravitomagnetic torque is most
important.

Before solving equations (13) and (14), we introduce two appro-
priate reference frames. The first is the inertial reference frame Oxyz
referred to the outer disc; we can always rotate it so that its z-axis
is parallel to the direction of J disc.out- The second reference frame
is the not-inertial frame O’x’y’z’ referred to the BH spin, which is
always centred to the BH and whose 7'-axis is parallel to the BH
time varying spin Jpp. If we use the adiabatic approximation then
frame O’x’y’z’ can be approximated, with time ¢, as a sequence of
frames, one for every quasi-stationary state of the system. The shape
of the warped accretion disc is studied in the O’ x" y’ 7’ frames and
the Cartesian components of any vector v are there indicated as v’,
v}, v.; Oxyz is the natural frame to study the temporal evolution
of the BH spin and here the Cartesian components of the previous
vector are denoted as vy, vy, V..

For a stationary state, continuity equation (13) can be easily inte-
grated introducing the accretion rate M as constant of integration:

M
REUR :_ﬁ’ (25)

while the projection of equation (14) along I reads:

3 dL MJGM 1 di
Sy - ENTIER 4 Ry L|—| =0. (26)
2 'dR 4R 2 dR

In the small deformation approximation (Scheuer & Feiler 1996),
the warp is gradual and we can neglect the non-linear term, propor-
tional to |01/9 R|?. Using the boundary condition % (Ryso) = 0, the
integral of (26) is

M Riso
L(R)= ——/GMggR (1 —1/—|. 27
37TV| R

This means that, in this approximation scheme, the modulus of the
angular momentum density for a warped accretion disc far from the
horizon is the same as for a flat disc (equation 10).

Following Scheuer & Feiler (1996), we study the disc profile of
the steady disc introducing the complex variable W’ = I + ii(,
and considering the case 64, < 7/2. Using power-law viscosities
according to (4), analytic solutions of equation (14) in the small

© 2009 The Authors. Journal compilation © 2009 RAS, MNRAS 399, 2249-2263
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deformation approximation have been found by Martin et al. (2007):

R )i
Rwarp

ﬁ(l—i)( R )'3
T+8) \ Ruup ’

where B is a complex constant of integration, depending on the
boundary condition at the external edge, the subscript ‘PL’ is a
reminder of the power-law viscosities and K | 2(1+p)) is the modified
Bessel function of the order of 1/[2(1 4+ B)]. In the particular case
where we consider constant viscosities, i.e. 8 = 0, the solution can
be written as

W, = Aexp [—fz(l - (RR >_2] ,
warp

where A is a complex constant of integration and the subscript
‘C’ is areminder of the constant viscosity model (Scheuer & Feiler
1996). In this latter case, ngp is calculated self-consistently, using the
definition (24) and the prescription for constant viscosity evaluation
at Rgp; we find that, for every possible parameter set, ngp &~ 0.42.
We note that W’ (and so also 1) depends on the radius R through
the dimensionless ratio R/ Ry (Martin et al. 200]).

In Fig. 1, we plot the modulus of the gradient of [, ¥/ (R), which is
alocal measure of the deformation degree of the disc, for a particular
set of parameters and for three different angles, 0, = 7t/3, 7t/30,
71/300. The shape of ¢ is similar for the two different disc profiles
and for all the angles: there is a well-defined maximum near Ry,
where we expect the disc to be more deformed. At radii smaller than
Ryarp and far from Ry, the disc is almost flat (note that the graph
is logarithmic in both axes). For the constant viscosity (power-
law) profile, the peak is at Rgp ~ 0.42Ryap (Rep ~ 0.38Ryarp).
In Fig. 1, we also see that a constant viscosity disc is less warped
(since the maximum deformation is the smaller) than the power-law
viscosity disc. The ratio between the maximum deformations in the

WI/’LZB(

x Kippaqp) (28)

(29)

2253

power law versus constant viscosity is roughly a factor of 2, and it
does not depend on the inclination angle (except for a scalefactor,
approximately equal to the ratio between the corresponding angles).

3.4 Validity of the approximation

We calculated the warped disc profile under the small deformation
approximation. We neglected second-order terms in equation (26)
and found an analytic solution for L; in order to verify the consis-
tence of this approximation, we define x 4 as the ratio between the
neglected term and the first term into the round brackets of (26),
assuming to have a Keplerian disc with power-law viscosity profile
with exponent $, like in equation (4). Considering equations (27)
for L, we have dL/dR ~ (1/2 + B)(L/R) and then x 4 reads

2

a?
R*. (30)

dR

_z »
3B+ 1) v

Once we know the explicit solutions, the consistence of this approx-
imation can be tested a posteriori calculating x 4: the approximation
is well satisfied if x 3 <« 1. From equation (30), x g can be expressed
also as a function of R/ R, and v:

2 Y2 o (R>2w2<R)
Xﬁ - 3(ﬁ+ l) Vi wap Rwarp Rwarp '

Fig. 2 shows the function yg—o for constant viscosity profiles
(dashed lines) and the function x g—3,4 for power-law viscosity pro-
files (solid lines), for the same parameters as in Fig. 1.

The function x4 exhibits a maximum, (X g)max, around Ryqrp.
Far from Ry, the accuracy of the approximation increases, albeit
slowly. The function yx g is most sensitive to the inclination angle,
as expected (note that Fig. 2 uses logarithmic axes).

In Fig. 3, we test the validity of the small deformation approxi-
mation plotting, in the BH mass versus 6, plane, the colour coded
values of () g=0)max, for different values of the viscosity parame-
ter o (Table 1), using the constant viscosity profile model (we fix

xs(R) =

€2y}

0.1

0.01

0.001

¥ (10-*cm-1)

0.0001

10-°

1086

/I
/”//
i

I
Il
I

0.1

1
R/R

10 100

‘warp

—_
T T 1T

0.1

0.01

. 0.001
0.0001
10-

10-8

10-7

/// i
I \H]\{\M/

0.1

1

R/R

10 100

warp

Figure 1. 1 as function of R/Rwyarp, for W, (solid line) and W1, (dashed
line) for different inclination angles: black lines correspond to 6oy = 71/3,
blue lines to 7t/30, red lines to 7t/300. The vertical black dotted line repre-
sents Rpp/ Rwarp = 0.42, the Bardeen—Petterson radius for constant viscosity
profiles. The parameter set for the BH and the disc is given by Mgyo =
10°Mp, a = 0.5, fraa = 0.1, & = 0.09.

Figure 2. xp—o(R) (solid line) and x g—3/4 (dashed lines) as functions of
R/ Ryarp for different inclination angles. Black lines correspond to 6oy =
7t/3, blue ones to 7t/30, red ones to 7t/300; the vertical black dotted line
represents Rpp/Rwap = 0.42, the Bardeen—Petterson radius for constant
viscosity profiles. The parameter set for the BH and the disc is given by
Mgno=105M@,a = 0.5, fgaa = 0.1, 0 = 0.09.
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(Xﬁ=0)max
a=0.09

a=0.05

1 L 2 e e

T

eout
eout

M,,,/108 M,

a=0.18
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1
M,,,/108 M,

1
Mg,,/108 M,
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Figure 3. Colour-coded plot of (X g)max in the 6oy versus Mpy plane, for
four different & parameters: « = 0.05 — top left-hand panel; « = 0.09 — top
right-hand panel; & = 0.15 — bottom left-hand panel; @ = 0.18 — bottom
right-hand panel. The disc has constant viscosity profiles, i.e. 8 = 0. The
accretion rate is fgqq = 0.1 and the spin parameter is a = 0.9.

fraa = 0.1 and a = 0.9). White zones represent the regions where
(X p=0)max > 1, i.e. where the small deformation approximation
becomes invalid. () g=0)max Shows mainly a strong dependence on
inclination angle 8, but also a weaker dependence on the BH mass
which reveals that the small deformation approximation is less ac-
curate for Mgy 2> 10° M and increasing BH mass. Comparing
different « values, the approximation is better satisfied for large
viscosities parameters (i.e. « = 0.18). We repeated the analysis for
the power-law viscosity model that shows no significant differences
in the parameters’ dependence.

In Fig. 4, using the same colour conventions, we explored (X g)max
in the 6, versus a (left-hand panels) and fgqq versus 0, (right-hand
panels) planes, once we have fixed the viscosity parameter (¢ =
0.09), the BH mass (Mpu = 10° M) and fraa = 0.1 for the left-
hand panels and a = 0.9 for the right-hand panels. For both constant
(B = 0) and power-law (8 = 3/4) models, the relative inclination
angle is again the leading parameter gauging the goodness of the fit
as the approximation depends very weakly on a and fgyq.

4 BLACK HOLE EVOLUTION

4.1 Basic equations

In this section, we explore the equations for the BH evolution. The
BH is accreting and its mass increases, from an initial value Mgy o,
according to

dMgy _ ME(RISO)7
dr c?

where E(Rjso) is the energy per unit mass of a test particle at the
innermost stable orbit. E(Ris0)/c> = 1 — n(a) is related to the

(32)

(Xﬁ)max
B=0 B=0

P R I I I PR AL L B

0.8 0.9 0.9
5 086
o
B
0.4
0.2
0
0O 02 04 06 08 1 0.001 0.01 0.1 1
a foaa
B=3/4 B=3/4
1 1
0.8 0.8
5 06 306
N @
0.4 0.4
0.2 0.2
0
0 02 04 06 08 1 0.001 0.01 0.1 1
a foaa
. I
01 02 03 04 05 05 07 08 03 :

Figure 4. Left-hand panels: colour-coded plot of (X g)max in the a versus
Oout plane, for & = 0.09, Mgy = 10° Mg and fgaq = 0.1. Right-hand
panels: colour-coded plot of (X g)max in the fEqa versus 6oy plane, for a =
0.09, Mgy = 10° Mg and a = 0.9. Top panels refer to constant viscosity
profiles, bottom panels to power-law viscosity profiles.

efficiency n(a) that depends only on the spin parameter (Bardeen
1970; Bardeen, Press & Teukolsky 1972). Equation (32) introduces
a natural time-scale for BH mass growth, known as Salpeter time
ts:

fs =45 x 10—

—yI.
Seaa(L — 1)

As argued by Rees (1978) and shown by Thorne et al. (1986),
there is a coupling between the BH spin and the angular momentum
of the disc. Even though the disc is much less massive that the BH,
the moving fluid elements perturb the Kerr metric and interact with
the BH spin, causing spin precession and, if viscous dissipation is
present, alignment. For an infinitesimal ring of inviscid matter with
total angular momentum J sy, the BH spin precesses, following the
equation

dJBH E Jring

(33)

ar = 2 R x JBH, (34)
with a precession frequency
i Jrin
Q]P;[':[CBSSIOH — QLT J g . (35)
BH

Equation (34) can be extended to the case of an accretion disc to
yield

dﬁfH = MA(Riso)l(Riso) + 4%(; . %d
The first contribution is due to accretion of matter at Rigo where
A(Ris0) indicates the orbital angular momentum per unit mass
carried by matter at ISO; the Bardeen—Petterson effect ensures that
the direction of I(Riso) is parallel or antiparallel to J gy, so that the
accretion modifies only the spin modulus. As shown by Bardeen
(1970), a variation of mass AMpy = «/EMBH,O is necessary to

R.  (36)
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Figure 5. In this figure, we draw modulus of gravitomagnetic interaction
term, /, as a function of radius normalized to warp radius, R/Ryarp. Disc
profiles are obtained by BH with Mgy = 10° Mg and a = 0.5, and accretion
disc with fgqq = 0.1 and o = 0.09. Solid (dashed) lines refer to constant
(power-law) viscosity profiles; black lines to 6, = 7t/3, blue lines to Oy =
7t/30, red lines to 0oy = 7t/300.

pass from a Schwarzschild BH (a = 0) to an extreme Kerr BH
(a = 1), while spin flip of 7, due only to accretion on an initially
extreme Kerr BH, needs AMpy = 3 Mgp,. So, the spin accretion
time-scale for the spin modulus is of the same order of the mass
accretion time-scale ts. The second term in equation (36) describes
the gravitomagnetic interaction between the rotating viscous disc
and the BH spin vector. This term modifies only the spin direction
of the BH in order to conserve the total angular momentum of the
system. Under the working hypothesis that the disc is continually
fed by matter carrying the same angular momentum (see Section 6
for a critical discussion), the BH aligns its spin Jgy in the direction
of J gise.out- Alignment implies that 8o, (1) = cos ™' [Jpu(t) - J disc.ou]
goes to 0 with time. Fig. 5 shows the function / defined as the
modulus of the integral kernel of equation (36)

41tG L(R)Jgu sin[0(R)]

c? R?
as a function of R/Ry.rp, for different value of 6, = 7/3, /30,
/300, where (R) is computed along the profile of the steady
warped disc of equations (28) and (29). The function /, similarly to
¥ (defined in equation 22), peaks near R,,. Contrary to v/, power-
law viscosity profiles have lower peaks, compared with constant
viscosity profiles. This figure indicates also that the BH—disc grav-
itomagnetic interaction is spread over a relatively small region of
the disc around the warp radius; the characteristic spreading length,
which is slightly larger for constant viscosity profiles, is usually of
a few warp radii.

I(R) = (37)

4.2 Alignment time

In this section, we want to give simple estimations for the alignment
and the precession time-scales, starting from equation (36).
Assuming BH mass and spin modulus variations due to accretion
to be small compared with gravitomagnetic effects during the align-
ment, we neglect the term proportional to A(Risp) in (36); if BH

spin aligns and precesses, left-hand side of (36) can be estimated
introducing a characteristic gravitomagnetic time-scale 74y, as

dJu
dt

_1ATBu| e Sin oo

)

Tom Tom
and the integral on the right-hand side as

4nG / L(R) x Jgu dR‘ 47tG L(Ryarp)Jai Sin Ooyq
disc R2 Cz Rwarp

c?

since the bulk of the gravitomagnetic interaction occurs around
Ryarp- Equating these two expressions and using equation (27) for
the specific angular momentum density modulus, we obtain

3 RWHI" Rwar
Tgm ~ ,M P (38)
4 GM Rg

Using equations (19) and (11) which imply M /G Mgy /v, (Ryarp) =
(21/8) Jaise(Rwarp) Rv’vfr{f, the gravitomagnetic scale 7, can be writ-
ten in terms of the Bardeen—Petterson warp time-scale (equa-

tion 18):
42  Jsn
7 Jdisc(Rwarp)

and also in term of the accretion time-scale (equation 16)

4\/§ Vi JBH
7 V2 Jdisc(Rwarp)

where J gisc(Ryarp) is the disc angular momentum modulus within
the warp radius, estimated by (11). Finally, considering equations
(11) and (16) for t,.. together with the expression for the spin
modulus and Schwarzschild radius, 74y, of expression (40) can be
rearranged as

[BP(Rwarp) (39)

Tam

Tgm ™~

taCC(RWﬂl"P)S (40)

3 vy Mgu Rs

~ —

T, 0 .
gm
2 v M Ryarp

(41

Since the disc carries very little angular momentum at the warp
radius, from equation (39) 7, > pp, always. The gravitomagnetic
BH-disc interaction causes BH spin precession and alignment at
the same time, and then introduces two scales related with 74y, the
precession and the alignment time-scales, t,. and z,;, respectively.
We separate their relative importance following Martin et al. (2007)
results, and define the parameter u, so that
ta = i’ Tprec = réi 42)

cos i sin (o

The exact value of © depends on the viscosity profile, and can be
estimated either analytically (Martin et al. 2007) or numerically as
in this paper. Initially, we assume alignment and precession to have
the same time-scale, cos 4 = sinu = ﬁ/Z according to Scheuer
& Feiler (1996). Substituting expressions (5) for the viscosities,
(20) for the warp radius, and (38) for 74, in (42), the alignment
time reads

—32/35
ta = 113 x 10%agy > £,3 Mg (@) ayr. (43)
To.1
The time-scale #, increases with a, indicating that a rapidly rotating
Kerr BH offers some resistance before changing its direction. In-
terestingly, the alignment time-scale does not depend on the initial
inclination 6, since a more inclined configuration implies more
pronounced disc deformations and stronger mutual gravitomagnetic
interactions (as also shown in Figs 1 and 5). #,; has a weak depen-
dence on the BH mass and scales nearly as M ~': a higher accretion
rate implies a higher angular momentum density L(R) and thus a
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stronger gravitomagnetic coupling. We also note that, apart from
numerical factors of order unity, this time-scale is consistent with
the alignment scales found by Scheuer & Feiler (1996), Natarajan
& Pringle (1998), Natarajan & Armitage (1999) and Martin et al.
(2007).

4.3 The adiabatic approximation

In Sections 3.2 and 4.1, we described the equations governing the
evolution of a warped accretion disc around a fixed BH, and the
evolution of an accreting Kerr BH in gravitomagnetic interaction
with its accretion disc. The BH and the accretion disc evolve con-
temporary and their evolution is coupled, so that we can solve
simultaneously equations (13) and (14) for a Keplerian disc and
(32) and (36) for the accreting and precessing BH.

In this paper, we solve these coupled equations using the adi-
abatic approximation that separates the rapid temporal evolution
of the warped disc from the longer temporal evolution of the BH.
Equations are integrated starting from given initial conditions: at =
0, the BH spin Jen is inclined with respect to J disc.out by an angle
Oou,0 and the warped disc profile is described by a quasi-stationary
profile L (R, t = 0); Mgu, and Jpu o are the initial BH mass and
spin.

In order to justify this approximation scheme, we survey the BH
and disc time-scales, as functions of Mgy and frqq, for two selected
values of the viscosity and spin parameter: « = 0.15 and a = 0.9.
In Figs 6 and 7, we draw in the Mpgy— fgqq plane lines of constant
tgp(R,,)/t, and tg/t, ratios. The comparison between the different
time-scales lead to the following hierarchy of time-scales:

[BP(Rwarp) LIy L 1s. (44)

Then, in the adiabatic approximation, the disc transits through a
sequence of warped states over the shortest time-scale 7gp(Ryarp)
while, on the longer time-scale ¢,, the BH aligns its spin to J disc.outs
and modifies a little its spin modulus and mass due to accretion.
Considering one of these disc quasi-steady-states, initially at time
1, after a time gap 8¢ ~ tgp(Ryarp) the BH mass and spin Jgy are

tBP(R’Warp> /tal

1 & T TN T T T
= 1073 E
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Figure 6. In the Mgy versus fgqq plane, we draw lines of constant
tBP(Rwarp)/tal ratio for a BH with @ = 0.9 and an accretion disc with
a = 0.09.
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Figure 7. In the Mpy versus fgqq plane, we draw lines of constant rg /7,
ratio for a BH with ¢ = 0.9 and an accretion disc with & = 0.09.

updated according to

{ Mgult + t8p(Ryarp)] = Mpu(t) + S Mpn 45)
Jeult + tgp(Ryarp)] = Jau(?) + 8Ju
and these variations produce a new quasi-stationary warped state at
t+ tBP(Rwarp)v L[R’ t+ tBP(Rwarp)]-

For the BH mass variation § M gy, we integrate equation (32) from
rtot + tBP(RBP):

. E(R
SMy ~ M (Riso)

2 tgp(Rpp), (46)

where Riso is the last innermost stable orbit associated with the
current value of a(t).

For the spin variation, we need to integrate equation (36) that
includes the two different and coupled contributions due to accretion
and gravitomagnetic interaction; if § Mgy and § J gy are small on the
time-scale rgp(Rpp), to first order the two contributions decouple
and they can be integrated separately:

(8JBH)acc ¥ M A(Ris0)t8p(Rep), @7
4G L(R,t) x Jgu(t
(8 JBr)gm =~ TtBP(RBP) %dlz, (48)
disc

where (8Jpn)ac 1S due to accretion and changes only the spin
modulus while (8 Jgn)gm is due to gravitomagnetic interaction and
changes only the spin direction. After the interval zgp(Rpp), the
angular momentum of (45) is updated according to this rule:

Jeult + tep(Ryarp)] = [JBH(I) + ((SJBH)gm]
« Jeu(t) + (8 JBH) acc (49)
Jeu(t)
This procedure can be repeated iteratively on a time-scale 7, to

study the coupled evolution of L(R, t), Jpy and Mgy during the
alignment process.

5 SPIN ALIGNMENT

5.1 Setup

In this section, we study the coupled evolution of the BH and warped
accretion disc using the approximation scheme described in the
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previous section, in order to infer the evolution of My and Jgy as
a function of time, in response to the gravitomagnetic interaction
and matter accretion.

Att = 0, the outer disc, extending up to a radius R, defines the
fixed reference frame Oxyz. In this frame, the external edge of the
disc lies in the x, y plane and the orbital angular momentum at R,
is
[Lx(Rnut)v Ly(Rout)s Lz(Roul)] = L(Rout)(os 07 1) (50)

while the BH spin is initially inclined of 6, ¢ with respect to the
Z-axis:

(JBH.x> JBH,y, Jeh,2) = Jeu(sin Ooy,0, 0, COS Oour,0)- (€29)]

If at t # 0 we know the components of Jgy in the fixed reference
frame Oxyz there is always a rotated reference frame Ox'y’z’ where
J sy is along the new 7'-axis (see also the discussion about reference
frames of Section 3.3). The two reference frames are related by a
rotation R, which depends only on the components Jgy x, JBH,y»
Jgn,; of Jeu(?) in the fixed reference frame. If R;; is the matrix
associated with this rotation, we can easily find the components of
Jeu(t) and L (R, t) in the rotated frame:

Jpn,i (1) = Rij Jon j (1) = Jgu(1) = [0, 0, Jpu(0)],
Li(Rout, 1) = Rij L j(Rou, 1)- (52)
As shown by Scheuer & Feiler (1996) for the constant viscosity
profile and Martin et al. (2007) for the power-law viscosity profile,
in this special rotated frame of reference it is possible to calculate
analytically the expression of the gravitomagnetic torque, using
equation (48):
(8T + 105y )em
AG Jpu(t) L(R,1))W'(R, )
= —1 dR
c? disc R?

tBP(Rwarp)v
(53)

where L(R, t) is given by (27) and W'(R, t) by (29) or (28). The
analytic expressions of the gravitomagnetic torques for the two
viscosity profiles are reported in the Appendix. From the torques,
it is possible to find the values of the spin variations (8J gy «)ems
(8J BH,y)em and (8J g ;)gm in this rotated reference frame. Finally,
in order to know their expressions in our fixed reference frame Oxyz,
we have to rotate them back, using the inverse rotation R

(SJBH,i)gm = (Ril)ij(‘s-]é]-],j)gm- (54)

Once we know the spin variations due to gravitomagnetic coupling,
the modulus variation can be calculated from equation (47) and the
global spin variation from equation (49).

5.2 Results

We computed, within the adiabatic approximation, the joint evolu-
tion of the BH mass and spin during the process of alignment under
the assumption that matter is corotating with the BH. We iterated
equations (46) and (49), from the initial conditions (50) and (51),
recording the updated values of Mgy, a and of the relative inclina-
tion angle 6, every snapshot of time 8¢ ~ fgp(Ryarp). We initially
choose a spinning BH with Mpy = 10°M@ and a = 0.5, and an
accretion disc with M = 0.1 Mgqq, « = 0.09; both power-law and
constant viscosity profiles are considered. Three initial relative in-
clination angles of 6,0 = 71/3, 71/6, 7t/30 have been tested. Fig. 8
shows as a function of time the inclination angle 6,,(#) and the
two components of the BH spin unit vector in the plane Oxy; red
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Figure 8. Results for precession and alignment processes. Black lines refer
to our result while red lines refer to results published by Martin et al. (2007);
solid lines (dashed lines) refer to constant (power-law) viscosity profile. Top
left-hand panel represents temporal evolution of relative inclination angle
60 out While top right shows evolution of JgH,x/JBH against Jgn,y/JBH, both
for an initial BH with Mgy o = 10° M@, ap = 0.5 and an accretion disc with
fEdd = 0.1 and @ = 0.09, with 64y,0 = 7t/6. Blue dashed line represents
the evolution of the spin components for a pure precession motion around
J disc,out || Z. In bottom left-hand (right-hand) panel, we represent evolution
of JgH,x/JBH against JpH,y/JBH for an initial relative inclination angle
Bout,0 = 7/30 (Bour,0 = 71/3), for an initial BH with Mpn,0 = 105 Mg,
ap = 0.5 and an accretion disc with fgqg = 0.1 and & = 0.09.

lines refer to the analytic solutions given by Martin et al. (2007).
As shown in top left-hand panel of Fig. 8, the relative inclination
angle 6, decreases exponentially with time on the scale 7, and the
decrease is more rapid for the constant viscosity disc (solid line).

The BH spin aligns with the external disc and precesses, as il-
lustrated in the top-right panel, where we compare also the ac-
tual evolution of the spin versor with a pure precessional motion
(blue dashed line). Our results are only qualitatively consistent with
Martin’s results; in our calculations, the alignment process appears
to be less efficient and the spin precession more pronounced. The
difference between our results and Martin’s analytical solutions
arises from three facts: (i) we included mass and spin modulus evo-
lution; (ii) Martin et al. neglected to carry out the rotation connecting
the BH reference frame O’x’y’z’ to the disc frame Oxyz; (iii) for
constant viscosity profile, we evaluate v, and v, from equation (5) at
the Bardeen—Petterson radius, Rgp A 0.4 R, while Martin et al.
evaluate them at the warp radius, Ry.p. For an initially not very
inclined BH spin, the difference tends to disappear, because the
rotation matrix nears the identity matrix. However, for large 6oy
the discrepancy becomes more important (see e.g. bottom panels of
Fig. 8).

Fig. 9 shows the evolution of 0, and a as functions of time
and of the increasing BH mass, for an initial BH with Mgy =
109 M@, Oou0 = 71/6 and spin parameter ag = 0.5, and for fgy =
1, 0.1 and 0.01. Both constant and power-law viscosity profiles are
explored, always with viscosity parameter o = 0.09. Alignment is
a process that shows a strong dependence on the accretion rate:
for the constant (power-law) viscosity model, the time necessary
to reduce the relative inclination angle by a factor of 100 varies
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Figure 9. Coupled evolution of the relative inclination angle 6., BH mass
Mgy and spin parameter a. Solid (dashed) lines refer to constant (power-
law) viscosity profile. Black lines to fgqqg = 1, red lines to fggqa = 0.1,
blue lines to fgqqa = 0.01. Dotted horizontal lines which appear in top
panels represent angles 6 oy /6 out,0 = 10~ 11072, 1073. Initial configuration:
Mg, = 105M@, ap = 0.5, frsa = 0.1 and & = 0.09, with Oou,0 = 71/6.

from 3.0 x 10°yr (5.3 x 10°yr) for fgy = 1 to 1.86 x 107 yr
(3.63 x 107 yr) for frgs = 0.01. During this alignment time, the
BH has increased its mass by a small fraction, between 0.74 per
cent (1.30 per cent) for g = 1 and 0.46 per cent (0.89 per cent)

for fraa = 0.01. The spin parameter a increases due to accretion,
but only by a small amount, between 3.13 per cent (5.47 per cent)
for fraqa = 1 and 1.96 per cent (3.79 per cent) for fgq = 0.01.

In Table 2, we summarize the results of Fig. 9. There, we compare
also the time Ar necessary to decrease the initial inclination angle by
a given amount, with 7,; estimated from equation (43): the values of
the time At are consistent with the interpretation of 7, as e-folding
time. For constant viscosity profiles, a closer match of ¢, with the
numerical outcomes requires (cos )¢ ~ 0.78 instead of V2 /2, and
(cos w)pL ~ 0.41 for power-law viscosity profiles (subscripts C and
PL simply remind that for different viscosity prescriptions we found
different cos p values). Then, the ratios between the precession and
the alignment time-scales are (Zprec/fa)c = 0.81 and (fprec/ta)pL =
2.2. These results are still qualitatively consistent with Martin et al.
(2007), who have shown that both #,; and ../t increase with the
exponent S of the viscosity profile; small quantitative differences
are due to different assumptions and different calculations methods.
Finally, we note that the scaling of At with fgqq is in good agreement
with estimation (43).

5.3 Exploring the parameter space

Here, we explore more systematically how the fractional increases
of My and a, and the alignment time vary with initial mass Mgy o,
spin ag, frqe and «, for both constant and power-law viscosity
profiles, fixing 04,0 = 7t/6. The evolution is followed until 6y
has decreased by a factor of 100; we define as Aty,_.g,,100 the cor-
responding ‘alignment’ time, computed self-consistently. We also
infer from the numerical model the relative growths of BH mass
AMgu/Mpzn, and spin parameter Aa/ag during Afg,—.q,/100-

Figs 10 and 11 show the weak dependence of the alignment
time Aty,_.g,/100 on the initial BH mass Mgy o, and of the relative

Table 2. Summary of our parameters and results for the corotating case; we consider
viscosity coefficient @ = 0.09 and initial inclination angle 04,0 = 71/6, both for constant

(C) and power-law (PL) viscosity profiles (VP).

VP fEaa  Oout/Oour0 At At/ta AMpu/MBgH,0 Aa/ag
(106 yr) (in units of 1072)  (in units of 1072)
107! 0.15 22 0.67 1.57
1 1072 0.30 4.4 0.74 3.13
1073 0.45 6.6 1.11 4.69
107! 1.12 2.0 0.29 1.24
c ol 1072 2.33 42 0.58 246
1073 3.52 6.3 0.87 3.68
10°! 9.28 2.0 0.23 0.99
0.01 1072 18.6 4.1 0.46 1.96
1073 27.9 6.1 0.68 2.94
10°! 0.26 3.8 0.65 277
1 1072 0.53 7.8 1.30 5.49
1073 0.81 11.9 1.98 8.20
107! 2.18 3.9 0.54 2.30
PL 0.1 1072 4.39 7.9 1.08 4.57
1073 6.64 11.9 1.64 6.84
107! 18.1 3.9 0.45 1.91
0.01 1072 36.3 7.9 0.89 3.79
1073 54.7 11.9 1.35 5.67

Note. The initial BH has Mpn,0 = 100 M@ and ag = 0.5. Accretion rate fgqq varies over
three orders of magnitude and we record times needed to decrease the relative inclination
angle of a factor of 10, 100 or 1000, comparing it with estimated alignment time-scale
(equation 43); we also report mass and spin relative variations.
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Figure 10. Alignment time (defined as the time needed for the relative
inclination angle to reduce of two orders of magnitude, going from 7t/6 to
7t/600), as a function of the initial BH mass, Mgy, for constant viscosity
profile. The black lines refer to fgqg = 1 and the red ones to fggq = 0.001;
the solid lines are for initial spin parameter ag = 0.9 while the dashed ones
aop = 0.1; finally, the thin lines represent ¢ = 0.09 and the thick ones o« =
0.18.
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Figure 11. Mass and spin relative increase during the alignment time (de-
fined as the time needed for the relative inclination angle to reduce of two
orders of magnitude, going from 7t/6 to 7t/600) as a function of the initial
BH mass, for constant viscosity profile. Black (red) lines refer to frqq = 1
(fEda = 0.001). Solid (dashed) lines are for ag = 0.9 (ag = 0.1); finally, the
thin (thick) lines represent @ = 0.09 (o« = 0.18).

mass and spin parameter increases, for eight different sets of the
other parameters. Comparing numerical scaling factors for Mg in
Atgy—g,/100 With that of expression (43), we note again a good
agreement, in particular for fg4q not too close to the Eddington limit
and MBH,O 5 106 M@

By contrast, the alignment process is more sensitive on fgaq, do
and «. Colour-coded maps of Aty _.q,/100 (Fig. 12), of AM /Mgy o
(Fig. 13) and of Aa/a, (Fig. 14) are constructed in the a, versus
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Figure 12. Colour-coded map of the alignment time (defined as the time
necessary for the relative inclination angle to go from 6 ou,0 = 7t/6 t0 Oy =
7t/600) for a BH of M, = 100 Mg, as a function of the accretion rate
expressed through the Eddington factor fgqq and of the initial BH spin
parameter ag. The colour scale represents #, in years. Top (bottom) panels
refer to the constant (power-law) viscosity profile. Left-hand (right-hand)
panels refer to o = 0.09 (o = 0.18).

frda plane, varying the coefficient o and the viscosity law inside the
accretion disc.

In Fig. 12, we infer the interval of the alignment time Afy,_4,/100
(as inferred from the numerical model) of interest for the study
of BH evolution. The alignment time can vary by many orders of
magnitude from ~10° to ~10'" yr, and it reveals strong dependen-
cies both on the accretion rate and on the initial spin parameter.
In addition, smaller viscosities (¢ = 0.09) give shorter time-scales
compared to higher viscosities (¢ = 0.18). A simple comparison
between alignment times Atg,_.g,/100 for different initial spin pa-
rameters, but identical fgqq, reveals that the scaling factors for a
and 1 (a) in equation (43) are in good agreement with numerical
results.

Fig. 13 shows that the relative amount of mass accreted during
the alignment process is small, compared to the initial BH mass.
It varies between ~107 and ~ 1072 for the constant viscosity
profile, and between ~2.5 x 1073 and ~3 x 1072 for the power-law
viscosity profile. Even if the accretion rate varies over four orders
of magnitude, there are no comparable variations for the relative
BH mass growth, in fact a larger frqg means a larger accretion
rate, but it also reduces the alignment time. The relative increase
of the spin parameter a is shown in Fig. 14. The evolution of a is
the combination of different, and sometime opposite, tendencies: a
highly spinning BH requires a longer time to align, but the particles
at its innermost stable orbit carry on the BH a smaller angular
momentum. The spin modulus increases significantly during the
alignment for initially slowly rotating BHs and high accretion rates,
typically with 5 x 107 < Aa/ay < 8 x 1072 for a constant
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Figure 13. Colour-coded map of the relative increase of mass during the
alignment time (defined as the time necessary for the relative inclination
angle to go from Ooy,0 = 71/6 to Oy = 71/600) for a BH of My, =
100 M@, as a function of the accretion rate expressed through the Edding-
ton factor frqq and of the initial BH spin parameter ap. The colour scale
represents AMpn/MgHh,o. Top (bottom) panels refer to the constant (power-
law) viscosity profile. Left-hand (right-hand) panels refer to @ = 0.09 (o =
0.18).

viscosity profile and 1072 < Aa/ay < 2 x 107! for a power-law
profile.

5.4 Counter-rotating case

In this section, we investigate the counter-rotating configuration for
a BH and its misaligned accretion disc, for initial values of 8,0
close to 7.

As shown by Scheuer & Feiler (1996) and Martin et al. (2007),
on the time-scale t, the BH spin again aligns with the outer regions
of the accretion disc, if this disc is regularly and coherently fed.
Due to the Bardeen—Petterson effect, we expect the innermost part
of the disc (approximately within Ry,q) to orbit in a plane which
is perpendicular to J gy, with orbital angular momentum density L
counteraligned with respect to the BH spin. In this BH-disc config-
uration, one of the major changes is in the radius of the innermost
stable orbit, which increases due to the asymmetry seeded in the
geodetic motion of particles in Kerr metrics. As a consequence, the
energy and the orbital angular momentum of particles at Rjso in-
crease, while the BH radiative efficiency decreases (see e.g. Wilkins
1972; Bardeen et al. 1972). The Bardeen—Petterson time-scale (18)
and the warp radius (19) have the same values as in the corotating
case. Since 7pp K 1,1, the adiabatic approximation holds again, but
the small deformation approximation” has a limited validity, requir-

2 The functions ¥ and y, defined in equations (22) and (30), are invariant
under the transformation 6oy — (7T — Oour)-

Figure 14. Colour-coded map of the relative increase of spin parameter
during the alignment time (defined as the time necessary for the relative
inclination angle to go from Ooy,0 = 71/6 to Oy = 7t/600) for a BH of
Mgn,o0 = 100 Mg, as a function of the accretion rate expressed through the
Eddington factor fgqq and of the initial BH spin parameter ag. The colour
scale represents Aa/ag. Top (bottom) panels refer to the constant (power-
law) viscosity profile. Left-hand (right-hand) panels refer to o = 0.09 (o =
0.18).

ing Oy, ~ 7. In order to remain consistent with the approximation
scheme, we trace the alignment process, from 7t to (7t — 7t/6), only.

In the couter-rotating case and small deformation approxima-
tion (i.e. O, ~ 70), the disc profile can be solved analytically. We
choose a reference frame O”x"y"z” where Jen = (0,0, —1) and
we solved equation (14) for 1 in it. For constant viscosities, the
function W”(R/Ryap) = I/ +i i;/ describing the warp is

1
R \ 2
wm:cm>ﬂﬁum<R )}, (55)
warp
while for a power-law viscosity profile
1
" R o
WeLen = D (ﬁmp)
1+8
V20+i) (R 7
X Kipap) | o < ) . (56)
A+8) \ Rup

‘We then apply the adiabatic approximation to study the coupled evo-
lutions of the system BH-disc. The jointed evolutions of 6 oy, Mpu
and a are presented in Fig. 15 and Table 3, for different accretion
rates and viscosity profiles. The shorter time-scales in the counter-
rotating configuration stem from the dependence of the alignment
time-scale on the spin modulus, t, o a*”. Counter-rotating matter
carries larger and opposite angular momentum, reducing the spin
modulus and the alignment time-scale in the process.
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Figure 15. Couplecf@(!ﬁlution of the relative inclinatioﬂ”nﬂé%s@ﬂ — Bout),
BH mass Mpy and spin parameter a for a counter-rotating disc. Solid
(dashed) lines refer to constant (power-law) viscosity profile. Black lines
to fgad = 1, red lines to fgqq = 0.1, blue lines to fggq = 0.01. Dotted
horizontal lines which appear in top panels represent angles 6 out/6out,0 =
10, 102, 10%. Initial configuration: M0 = 10° M@, ag = 0.5, fEaa = 0.1
and o = 0.09, with 71 — Oyt 0 = 71/600.

6 DISCUSSION AND CONCLUSIONS

In this paper, we followed the joint evolution of the mass Mgy and
spin Jgy of a BH inside a geometrically thin, extended accretion
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disc. The BH spin is initially misaligned with the angular momen-
tum of the disc in its outer regions. On the short Bardeen—Petterson
time-scale, the disc responds to the Lense—Thirring precession, im-
posed by the BH spin, and propagates a warp that is maximum
around Ry.p; within this radius, matter orbits around the BH in a
plane which is perpendicular to the BH spin. According to angu-
lar momentum conservation, the warped disc interacts with the BH
spin and, on the longer alignment time-scale the BH aligns its spin
to J disc.out- 1D its outer regions, the disc is assumed to be fed by
matter that flows along a plane that keeps its coherence in direction
J disc,one TOr a sufficiently long time-scale to allow for the gravito-
magnetic interaction to complete BH—disc alignment. While doing
so the BH is accreting matter and angular momentum from the in-
ner portion of the disc, which is aligned or anti-aligned to the BH
spin. Given the mismatch between the time-scale for warp propa-
gation and the alignment time (Scheuer & Feiler 1996; Natarajan
& Pringle 1998), we devised a method that enabled us to follow,
in the small-deformation approximation, the co-evolution of the
BH mass and spin in a self-consistent manner, carrying out a large
survey of the parameter space and a critical review of the used
approximations.

It is found that, considering an initial small relative inclination
angle (Oou0 < 7/6, small deformation approximation), matter in
the inner part of the accretion disc has orbital angular momentum
density parallel to J . The gravitomagnetic interaction of the BH
with this warped accretion disc and their coupled evolution bring the
BH into alignment with the outer regions of the disc, i.e. O, () —
0. The time-scale t,; of equation (43) gives a good estimate of the
BH-disc alignment time for an e-folding reduction of the angle of
misalignment, in very good agreement with numerical results. For
a maximally rotating Kerr BH accreting at the Eddington rate, #,; ~
10°~ yr, depending on the viscosity parameter o and on the

Table 3. Summary of our parameters and results for the counter-rotating case; we consider
viscosity coefficient « = 0.09 and initial inclination angle €oyt,0 = 7t(1 — 1/6000), both for
constant (C) and power-law (PL) viscosity profiles (VP).

VP fEdd (T[ - 90ul)/(7-[ - 90ul,0) At AA’WBH/ZWBH,O Aa/aO
(10 yr)  (in units of 1072)  (in units of 1072)

10 0.085 0.40 —3.99

1 102 0.17 0.78 —7.81

103 0.25 1.16 —115

10 0.66 0.31 —3.12

c ol 102 1.31 0.61 —6.15

103 1.96 0.91 —9.11

10 5.29 0.25 —2.49

0.01 102 10.5 0.49 —4.92

103 15.7 0.73 —7.31

10 0.15 0.68 —6.79

1 102 0.29 1.33 —13.1

103 0.42 1.95 —19.1

10 1.21 0.57 —5.68

PL 0.1 102 238 1.11 —11.0

103 3.52 1.64 —16.2

10 10.1 0.47 —4.73

0.01 102 19.9 0.93 —9.24

103 29.5 1.37 —13.6

Note. The initial BH has Mpy,0 = 10° M@ and ag = 0.5. Accretion rate fgqq varies over three
orders of magnitude and we record times needed to (7t — 64y, 0) of a factor 10, 100 or 1000;
we also report mass and spin relative variations.
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viscosity profile model, in agreement with early findings by Natara-
jan & Pringle (1998). On the other hand, environments where the
accretion rate is extremely low imply longer alignment time-scales,
as ty o« M~32/35 In the explored BH mass range, the alignment time
displays a weak dependence on Mgy : fixed all the other parame-
ters, alignment of a 107 M@ BH occurs, on average, at the same pace
of a 10° M BH. The BH mass and spin modulus increase during
alignment, but their fractional increases are modest. After survey-
ing a wide parameter space, we find that 0.1 < AMgy/Mpuo S
3 per cent while the spin parameter increases by 0.5 < Aa/a ¢ <
20 per cent.

Starting with an almost antiparallel BH-disc configuration
(Bou0 = T), the orbital angular momentum density of the inner
part of the disc is initially counter-aligned with respect to the BH
spin. Nevertheless, the BH still tends to reduce the degree of mis-
alignment [i.e. 0,,(¢) decreases], because of the nature of the gravit-
omagnetic interaction (see also Scheuer & Feiler 1996; Martin et al.
2007). The accretion of matter with opposite angular momentum at
Riso decreases Jpy and a with higher rates, compared with their
growths in the specular corotating case. Since ¢, o a¥’, the align-
ment process is then more efficient, i.e. the angle reduction speed
is higher. Comparing decreases of the relative inclination angle 6
symmetric with respect to 7t/2, we find that the fractional decrease
of the spin parameter in the counter-rotating case is, in modulus,
higher than in the specular corotating case while the mass relative
increase is slightly lower. BH spin flip, due to 8, reduction below
7t/2, will occur in this extended disc when a will reach its mini-
mum value. At that time the jet of relativistic particles (if present)
will cross the warped disc, likely affecting the subsequent BH-disc
evolution and the BH feeding. This process deserves a separate
investigation.

It is still poorly known whether a spinning BH in an active galac-
tic nucleus (AGN) is fed through a disc that maintains its angu-
lar momentum direction stable over a Salpeter time-scale zs. Two
opposite, still plausible scenarios, have been proposed and dis-
cussed. Natarajan & Pringle (1998) speculated that the stability of
jets in radio-loud AGN requires a long-lived phase of stable accre-
tion capable to maintain spatial coherence, i.e. a fixed direction of
J disc.ou» TOr a time as long as 10® yr. By contrast, King & Pringle
(2006, 2007) and King, Pringle & Hofmann (2008) speculated re-
cently that AGN activity, triggered by gas-rich major mergers, is
chaotic in nature even within a single merger event, i.e. occurring
through a sequence of uncorrelated short-lived accretion episodes.
In their picture, the corresponding discs, truncated by their own-
self gravity, continuously change their inclination and feed the BH
on their consumption time-scale. Under these circumstances, the
BH spin modulus is seen to either increase or decrease at random
clustering around small average values a ~ 0.1-0.3. This model
would simultaneously explain the relatively low radiative efficiency
of the quasar population as inferred from the background light
(e.g. Merloni 2004; Merloni & Heinz 2008), and the possibility of
growing BH as massive as 10° M from small BH seeds already at
redshift z ~ 6 (King & Pringle 2006).

Isolated discs, truncated by their own self-gravity, carry a well-
defined disc angular momentum and are accreted by the BH on a
finite time-scale. Starting with a misaligned BH—disc configuration,
the BH spin changes direction significantly only if (i) the alignment
time is shorter than the disc consumption time, ¢, < ?gisc, and (ii) the
magnitude of the disc angular momentum is comparable to the BH
spin magnitude, i.e. J 4. = Jpu. The first condition is verified for
the whole parameter range explored in this paper. The estimate J gisc
2 Jgu depends instead sensitively upon R,,. Equation (12) estab-

lishes that isolated discs around large BHs truncate at R, such that
Jgise < Jpn. Condition (ii) is satisfied for BH masses <3 x 107 Mg.
We note here that since we model our discs using the Shakura—
Sunyaev solution for Kramer’s opacity, we cannot rigorously esti-
mate Rou, and Jgis, for BHs with mass <10°-10° M. An extension
of disc solutions to different, self-consistent opacities is non-trivial
(Hure et al. 1994a,b) and we postpone a detailed analysis to future
work.

BHs with masses <3 x 107 align efficiently in discs truncated
by their own self-gravity, implying alignment also in the case of
stochastically fed AGN,? where not only a fluctuates with time,
but also the direction of the BH spin continually changes due to
the rapidity of the alignment process. By contrast, rapidly spinning
(a ~ 1) heavier BHs with Mgy > 10° M have truncated discs
that carry little angular momentum compared with Jgy. In this case,
alignment is uneffective and the orientation of the BH spin is not
influenced significantly by the surrounding short-lived disc.

In light of these findings, the vector J gy appears to carry precious
information on the orientation of the plane through which the BH
has been fed, and on whether accretion has been long-lived and
coherent or short-lived and random.

The method developed in the paper is sufficiently versatile that it
will be implemented in numerical simulations describing the pro-
cess of pairing of dual BHs in circumnuclear discs during their
on-fly accretion (Dotti et al., in preparation) to improve upon the
speculation (Bogdanovi¢, Reynolds & Miller 2007) that, in gas-rich
galaxy mergers, binary BHs have time to align their spin orthogo-
nally to their orbital plane, as discussed in Escala et al. (2005), Dotti,
Colpi & Haardt (2006), Mayer et al. (2007), Dotti et al. (2007, 2009)
and Colpi & Dotti (2009). The spin—orbit configuration is relevant
to study the impact of BH recoils, that occur after two BHs have co-
alesced (see e.g. Pretorius 2008). Detection of gravitational waves,
emitted by coalescing BHs, with the Laser Interferometer Space
Antenna (Bender et al. 1994; Hils & Bender 1995) will be able to
constrain the moduli and the directions of the coalescing BHs spins
(Vecchio 2004; Lang & Hughes 2006).
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APPENDIX A: EXPLICIT EXPRESSIONS
OF THE GRAVITOMAGNETIC TORQUE

Constant viscosity: for the constant viscosity model, the disc profile
is described by (29) and the equation (53) becomes

8("BH,X + l.JBH,y)gm
224 GM Jgy
=(1-1i) v/ G Mgy WfBP(Rwarp)

3 vy €7 Kwarp

RO\ 12
X exp [—ﬁ(l—i)(R ) :|
warp

Power-law viscosity: for the power-law case (4) with exponent S,
the disc profile is given by Wy, defined as (28). In this case, equa-
tion (53) was integrated by Martin et al. (2007):

Rout

(AD)

Riso

8G M Jgu/GM,
S(JBH,X + i]BH,y)gm = _ZLZBH
3(14+pB)A, ¢
_ Axlwg
2 2(1+p8) —(p 1
x B V2 (1—i) Rwa(rp+2>
1+ 8
Zout  gg 4|
X tBP(Rwarp)/ Zz(liﬂ) Kﬁ(Z) dz, (A2)
where z is a new complex variable, defined as
1+8
V2 R \ =
z= (I—=19) ( ) . (A3)
1+ /3 Rwarp

Assuming that

Zout gp4 (=ioo 54
/ 7+ K (z)dZ%/ ZZIFHK 1 (2)dz
. 0

Zin

2AT+p)

UEY))
1+28
wip
we can rewrite the infinitesimal gravitomagnetic spin variation as

B(JBH.x + iJBH,y)gm [BP(Rwarp)

=2‘2(++mr[

= ,"4(1]+m , (A5)
JpH TrL
where
. _2p+1
po1 _ AGMYGMyy (V2 ) T
LT 34,2 1+ 8
(g4l
“ Rwa(rf 1) - {ﬂ} . (A6)
2(14+p)
Martin et al. (2007) estimate the alignment time-scale as
T;
fa =~ (A7)
cos {m]
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