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Chemokines are a set of structurally related peptides that were first characterized as
chemoattractants and have subsequently been shown to have many functions in
homeostasis and pathophysiology. Diversity and redundancy of chemokine function
is imparted by both selectivity and overlap in the specificity of chemokine receptors
for their ligands. Chemokines have roles impacting transfusion medicine in haemat-
opoiesis, haematologic malignancies, transfusion reactions, graft-versus-host disease,
and viral infections. In haematopoietic cell transplantation, chemokines are active in
mobilization and homing of progenitor cells, as well as mediating T-cell recruitment
in graft-versus-host disease. Platelets are rich source of chemokines that recruit and
activate leucocytes during thrombosis. Important transfusion-transmissible viruses such
as cytomegalovirus and human immunodeficiency virus exploit chemokine receptors
to evade host immunity. Chemokines may also have roles in the pathophysiology of
haemolytic and non-haemolytic transfusion reactions.
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General characteristics of chemokines

 

Chemokines are small, secreted proteins in the range of 8–
10 kDa that have numerous functions in normal physiology
and pathology. The term derives from the words chemotactic
cytokines, reflecting their important role in leucocyte chem-
oattraction. However, it is clear from an accumulating body
of evidence that chemokines have many other functions in
intercellular communication, cellular activation, and cell cycle
regulation. The transcription of most chemokine genes is
inducible and occurs in response to specific cellular stimuli.
These have been classified as pro-inflammatory chemokines,
as they have major roles in regulating immune and inflam-
matory responses, although inflammation is certainly not the
only setting in which these mediators are produced. A few
chemokines are produced at tonic levels physiologically, par-
ticularly in maintenance for normal bone marrow and lym-
phoid tissue, and are classified as homeostatic chemokines.

This classification is not completely definite, as under some
conditions homeostatic chemokines are inducible.

Most chemokines were originally named for their first
identified biological activity, such as monocyte chemoattractant
protein. This led to many chemokines having several synonyms
before their molecular identities were established. Once it
became clear that there are marked structural similarities
among chemokines, a rational systematic nomenclature was
established by The Chemokine Nomenclature Subcommittee
of the Nomenclature Committee of the International Union
of Immunological Societies [1].

Chemokines have been grouped according to structural
similarities and contain characteristic conserved cysteine
residues. The largest classes are CC chemokines, in which the
first two of four cysteines are adjoining and CXC chemokines
that have one intervening amino acid between the first two
of four cysteines (Tables 1 and 2). CXC chemokines are further
subdivided based on the presence or absence of Glu-Leu-Arg
(ELR) motif near the amino terminus, designated ELR

 

+

 

 and
ELR

 

–

 

 chemokines, respectively. Two minor classes are C
chemokines that retain only one cysteine at the amino terminus,
and CX3C chemokines with three intervening amino acids.
At present, only two C and one CX3C chemokines have been
identified. In systematic nomenclature, each chemokine is
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Table 1

 

Nomenclature of human CC chemokines

 

Systematic name Common names

Inflammatory 
(induced)/homeostatic 
(constitutive)/mixed function References

 

CCL1 I-309 I 88
P-500
TCA-3

CCL2 MCAF I 89
TDCF
MCP-1

CCL3 MIP-1

 

α

 

I 90,91
LD78

 

α

 

CCL4 MIP-1

 

β

 

I 91
CCL5 RANTES I 92
CCL7 MCP-3 I 93
CCL8 MCP-2 I 94
CCL11 Eotaxin-1 I 95
CCL13 MCP-4 I 96
CCL14 CK

 

β

 

1 H 97
HCC-1
MCIF

CCL15 HCC-2 M 98,99
Lkn-1
MIP-5
MCP-1

 

γ

 

CCL16 HCC-4 M 100,101
LEC
LCC-1

CCL17 TARC M 102
CCL18 DC-CK1 H 103

PARC
AMAC-1

CCL19 EBI-1-Ligand H 104,105
ELC
MIP-3

 

β

 

ck

 

β

 

11
CCL20 LARC M 104,106

MIP-3

 

α

 

CCL21 6CKine M 107
SLC
TCA-4
ck

 

β

 

9
CCL22 MDC M 108

STCP-1
abck-1
dc/

 

β

 

-ck
CCL23 MPIF-3 I 109

CK

 

β

 

8–1
CCL24 MPIF-2 I 109

Eotaxin-2
CCL25 TECK H 110
CCL26 MIP-4

 

α

 

I 111
PTEC
Eotaxin-3

CCL27 CTAK H 112
ILC

CCL28 MEC I 113

Gaps between numbers occur because human analogues of some chemokines identified in the mouse have not been recognized.
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designated by its class, followed by the letter L (for ligand)
and a number based on the chronological order in which it
was identified (Tables 1 and 2). Chemokine receptors are
similarly indicated by the class to which it binds, the letter R,
and a number (Table 3).

The sequence homologies among chemokines results in
similarities in tertiary structure. Both CC and CXC chemokines
have a basic structure with three anti-parallel 

 

β

 

-sheets with
the amino terminus held in relative orientation by disulphide
bonds [2–7]. Characteristically, chemokines spontaneously
associate into homodimers. The manner in which these dimers
associate can be strikingly different between chemokines,
despite the similarities in tertiary structure. CCL5 forms
dimers in which the amino termini are closely associated
and anti-parallel [8]. CXCL8, on the other hand, associates
between the first 

 

β

 

-sheet of the monomers, leaving the amino
termini externally exposed [9]. Furthermore, heterodimers
between chemokines of the same class and even between
chemokines of different classes are possible. The combinations
of CXCL1/CXCL7, CXCL4/CXCL8, CCL2/CCL5, CCL2/CCL8,
CXCL4/CCL5, CXCL4/CCL2, and CXCL8/CCL2 have been

demonstrated [10]. The biological significance of such mixed
dimers has yet to be defined.

 

Chemokine receptors

 

Chemokine receptors belong to the G-protein coupled receptor
superfamily of molecules containing seven transmembrane
domains. Structural commonalities are an extracellular por-
tion consisting of three peptide loops and an amino terminus,
and an intracellular portion with three peptide loops and a
serine/threonine-rich carboxy terminus. Chemokines receptors
transduce signals through G-protein coupling. Chemokine
receptors contain a conserved asp-arg-tyr (DRY) motif that is
common to virtually all G-protein coupled receptors.

In the language of chemokine communication, the message,
that is, the end result on cellular function, depends on the
ligand, the receptor, and the target cell. Thus, there are
synonyms, homonyms, antonyms and even nonsense words
in this vocabulary. For example, CXCL6 and CXCL8 are
synonymous in the sense that both induce chemotaxis of
neutrophils through CXCR2, although they differ in potency,

Systematic name Common names

Inflammatory 
(induced)/homeostatic 
(constitutive)/mixed function References

CXCL1 GROα I 114,115

MGSA-α
MIP-2

CXCL2 GROβ I 115,116

MGSA-β
MIP-2α

CXCL3 GROγ I 115,117

MGSA-γ
MIP-2β

CXCL4 PF4 H 118

CXCL5 ENA-78 M 119

CXCL6 GCP-2 I 120

CXCL7 PPBP (Protolytic 

cleavage yields CTAP-III, 

β-thromboglobulin, NAP-2)

H 121,122

CXCL8 IL-8 I 123

MDNCF

CXCL9 MIG I 124

CXCL10 CRG-2 I 125

IP-10

CXCL11 I-TAC I 126

IP9

CXCL12 SDF-1α H 127

SDF-1β
CXCL13 BLC H 128

BCA-1

CXCL14 BRAK I 129

CXCL16 SR-PSOX I 130

Table 2 Nomenclature of CXC chemokines
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Table 3

 

Ligands and cellular distribution of CXC and CC chemokine receptors

 

CXC ligands Receptor CC ligands
Principle leucocyte 
receptor distribution References

 

CXCL6 CXCR1 N, Ba, Plt 131–135

CXCL8

CXCL1 CXCR2 N, Ba 131,132,134,136

CXCL2

CXCL3

CXCL5

CXCL6

CXCL7

CXCL8

CXCL9 CXCR3 CCL5 PDC, BC, TH1, NK 137–144

CXCL10 CCL7

CXCL11 CCL13

CCL19

CCL20

CXCL12 CXCR4 N, BC, IDC, M, MDC, 

TH1, TH2, Ba, NK, PDC, 

HPC, PC, Plt

134,28,145–150

CXCL13 CXCR5 BC, NT 128,151

CXCL16 CXCR6 MT, NK, PC 139,150,152

CCR1 CCL3 IDC, M, BC, Ba, NK, Plt 134,146,147,153–161

CCL5

CCL7

CCL13

CCL14

CCL15

CCL16

CCL23

CCR2 CCL2 IDC, M, B, Ba, PDC, TH1, TH2 134,140,146,161–164

CCL7

CCL8

CCL13

CCL16

CCR3 CCL5 Eo, TH2, Ba, IDC, PC, Plt 146,147,150,158, 163,165–168

CCL7

CCL11

CCL15

CCL24

CCL26

CCR4 CCL17 Eo, TR, TH2, Ba, BC, Plt 143,146,147,161,169

CCL22

CCR5 CCL3 IDC, M, Ba, TH1, NK 140,143,146,170–172

CCL4

CCL5

CCL8

CCR6 CCL20 BC, IDC, M, N, NK 173–176

CCR7 CCL19 MDC, TH1, NT 148,177–179

CCL21

CCR8 CCL1 TR, TH2 148,180

CCR9 CCL25 MT 181,182

CCR10 CCL27 MT, PC 113,150,183–185

CCL28

Strong DARC Strong RBC, Endo 21
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CXCL5 CCL2

CXCL6 CCL5

CXCL8 CCL7

CXCL11 CCL11

Weak CCL13

CXCL9 CCL14

CXCL10 CCL17

CXCL13 Weak

CCL1

CCL8

CCL18

CCL16

D6 CCL2 Endo 25,186

CCL3

CCL4

CCL5

CCL7

CCL8

CCL11

CCL13

CCl14

CCX-CKR CCL19 Unknown 26

CCL21

CCL25

Ba, basophil; BC, B-cell; Endo, endothelial cell; Eo, eosinophil; HPC, haemaopoietic progenitor cell; IDC, immature dendritic cell; M, monocyte; MDC, mature 

dendiritic cell; MT, memory T-cell; N, neutrophil; NK, NK cell; NT, naïve T-cell; PC, plasma cell; PDC, plasmacytoid dendritic cell; Plt, platelet; TH1, T

 

H

 

1/T

 

C

 

1 T-cell; 

TH2, T

 

H

 

2/T

 

C

 

2 T-cell; RBC, red blood cell.

 

CXC ligands Receptor CC ligands
Principle leucocyte 
receptor distribution References

Table 3

 

Continued

 

lending subtle nuance to the language. CXCL8 signalling
through CXCR1 in neutrophils contributes to the inflammatory
response, while in endothelial cells this receptor/ligand
combination stimulates angiogenesis, and so can be thought
of as homonyms. CCL7 acts as an antagonist of CCL4 binding
and signalling through CCR5, so these two chemokines are in
a sense antonyms. Non-signalling receptors, such as Duffy
antigen receptor for chemokines (DARC), cause no cellular
response, so binding of ligands to this receptor can be thought
of as non-sense communication. The place of heterodimers
in the chemokine vocabulary is uncertain, but raises the
possibility of complex neologisms.

In addition to functional receptors, there are several silent,
non-functional receptors that bind many chemokines. These
silent receptors facilitate localization, transport, and metabo-
lism of chemokines. Glycosaminoglycans (GAG) on the luminal
surface of endothelial cells bind all classes of chemokines in
an orientation that facilitates presentation to leucocyte
receptors [11]. The common tertiary structure of chemokines
allows for the binding of these molecules to GAGs in an
orientation that presents the chemokine receptor binding

site to circulating leucocytes. As leucocytes roll along the
endothelial surface, they encounter GAG-bound chemokines.
Leucocyte signalling through chemokine receptors then
rapidly stimulates intergrin-mediated adhesion. Such activated
leucocytes can then transmigrate into the extravascular
space. GAGs in the intercellular matrix also bind chemokines,
which allows for a concentration gradient to be established
and maintained in tissue. Leucocytes can then travel up this
stabilized gradient, a process that has been termed ‘haptotaxis’.
There are considerable differences between chemokines with
respect to where the GAG binding domains reside. In CCL5,
the binding motif is located within the 40s loop between the
second and third 

 

β

 

-sheets [12]. In CXCL8, the GAG binding
domain is located at the carboxy terminus [13].

 

Duffy antigens and interceptors

 

Duffy (Fy) antigens bind both CC and CXC chemokines, a
phenomenon termed the DARC. The Fy protein lacks the DRY
motif necessary for G-protein signalling. While absence of Fy
antigens on erythrocytes is common in some populations,
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DARC expression on endothelial cells of postcapillary venules
of skin, kidney, lung, spleen and high endothelial venules of
lymph nodes is nearly universal [14–16]. DARC expression
can be induced by inflammation in giant cell arteritis, rheu-
matoid arthritis, nephritis, and renal transplant rejection [17–20].
Proinflammatory chemokines bind preferentially to DARC,
while this receptor has low affinity for homeostatic chemo-
kines [21]. The angiogenic ELR

 

+

 

 chemokines CXCL1, CXCL3,
CXCL5, CXCL6 and CXCL8 bind to DARC while the angiostatic
chemokines CXCL9 and CXCL10 do not. Although DARC
does not appear to be a signalling receptor, ligation of DARC
can result in pinocytosis and transport of the internalized
vesicles across endothelial cells to the opposite membrane
[22]. Because of this activity, DARC has been termed an
‘interceptor’, for internalizing receptor. Thus, DARC can present
proinflammatory chemokines to circulating leucocytes at sites
of inflammation and promote neoangiogenesis. An alternative
explanation of DARC function has recently been proposed.
DARC constitutively forms oligiomers on the cell surface and
is capable of forming hetero-oligomers with CCR5 [23]. Such
hybrid receptors have impaired signalling, but are internalized
normally. While it has been suggested that lack of Fy antigens
on red blood cells (RBCs) may be a contributing factor to poor
renal allograft survival in Fy-negative individuals, more
recent data call this into question [24]. At the present time,
there is no definitive evidence that RBC Fy non-expression
has any significant physiologic or pathologic effect.

The chemokine interceptor D6 binds at least nine proin-
flammatory chemokines, and like DARC in non-signalling.
D6 mediates rapid internalization of chemokines, which are
then degraded rather than transported across the cell [25].
The interceptor is recycled to the cell surface so that exposed
membrane levels of D6 are not affected by internalization. A
third chemokine interceptor is CCX-CKR. Like DARC and D6,
CCX-CKR is non-signalling. It is more selective than the
other silent receptors in that it binds CCL19, CCL21 and
CCL25 [26]. CCX-CKR mediates rapid internalization and
degradation of CCL19 [27]. While CCR7 becomes refractory
to CCL19 uptake with continuous exposure to the chemokine,
the sequestration activity of CCX-CKR actually increases.

 

Haematopoietic progenitor cells

 

Chemokines play a role in mobilization of haematopoietic
progenitor cells (HPCs) for transplantation and the homing
of transplanted HPCs. CXCR4 is expressed by CD34+ HPCs,
and its ligand CXCL12 is constitutively expressed by osteo-
blasts and bone marrow endothelial cells [28,29]. Blockade of
CXCR4 prevents human HPC engraftment and repopulation
of the bone marrow of NOD/SCID mice [30]. GCSF mobiliza-
tion of HPCs results in reduced surface expression of CXCR4,
as well as other adhesion molecules such as VLA-4, most
likely through enzymatic cleavage [31]. Similarly, GCSF

stimulation results in enzymatic degradation of CXCL12. A
competitive inhibitor of CXCR4, AMD3100, has been devel-
oped and tested in HPC mobilization. Early studies showed
that a single dose of AMD3100 increased circulation CD34+
HPC more than 10-fold [32]. AMD3100 in combination with
GCSF has been compared to GCSF alone in autologous
transplantation of patients with multiple myeloma and
non-Hodgkin’s lymphoma [33]. Nine of 25 patients in this
trial failed to achieve collection of 2 

 

×

 

 10

 

6

 

 CD34+ cells/kg by
GCSF alone, but were all successfully mobilized with the
combination of GCSF and AMD3100. A median 21-fold increase
in HPCs collected was observed with AMD3100 and GCSF,
compared to GCSF alone. All patients transplanted with the
AMD3100 and GCSF mobilized product engrafted (median day
10–11). No late graft failures were seen. There were no signif-
icant adverse effects attributed to the study drug in this trial.

Larger clinical trials with AMD3100 are in progress,
including patients who have failed other mobilization
regimens. This drug appears to have considerable potential
for improving HPC collection, simplifying the collection of
autologous donors, and avoiding cytotoxic agents. A potential
concerned in the autologous transplantation setting is possible
mobilization of malignant cells, but to date this does not
appear to be a problem. A potential additional advantage to
using ADM3100 with GCSF is the higher level of CXCR4
expression on collected CD34+ HPCs that may facilitate homing
to bone marrow and earlier engraftment.

 

Graft-versus-host disease

 

There is emerging evidence that chemokines have fundamental
roles in the pathophysiology of graft-versus-host disease (GvHD).
To date, our knowledge of chemokines in GvHD comes from
experimental models. Shortly after HPC transplantation donor
T-cells traffic to host lymphoid tissue where they encounter
host histocompatibility antigens [34]. After several days of
maturation, the engrafted donor T-cells traffic to non-
lymphoid organs, including the typical targets of GvHD, such
as skin, gut and liver, and non-classical organs such as
kidney and brain. This orderly sequence is orchestrated by
chemokines. Soon after transplantation, CXCL9, CXCL10, and
CXCL11 are expressed in lymphoid tissue followed shortly by
CCL2, CCL3, CCL4 and CCL5 [35]. On the donor T-cells, CCR5
expression plays an essential role in localization to lymphoid
tissue. In the liver, CCL2, CCL3, CCL4, CCL5, CXCL9, CXCL10
and CXCL11 are expressed during experimental GvHD [35–37].
Elimination of CCL3 results in reduced liver pathology. In skin,
CCL2, CCL6, CCL7, CCL9, CCL11 and CXCL1 are expressed
early after transplantation [38]. CCL17 and CCL27 have been
shown to be involved in recruitment of memory T-cells to
skin during GvHD, suggesting that these chemokines may
participate in tissue-specific migration of alloreactive T-cells
during GvHD.
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Chemokines expressed in lung after allogeneic transplan-
tation include CXCL9, CXCL10, CXCL11, CCL2, CCL3, CCL4,
CCL5 and CCL11 [35,37,39]. CXCR3 on transplanted lym-
phocytes has been shown to be critical for T-cell recruitment
to the lung. The function of these chemokines networks is
dependent at least in part on pre-transplant conditioning. In
the non-conditioned model, elimination of CCR5 from trans-
planted T-cells results in less accumulation in liver and lung,
and less pathology. However, after myeloablative condition-
ing, CCR5 knock-out CD4+ and CD8+ T-cell are more abun-
dant in liver and lung, and there is greater tissue injury.
CXCL9 and CXCL10 mediate recruitment of donor T-cells to
the lung in allogeneic transplantation. Blockade of CXCL9
and CXCL10, as well as elimination of CXCR3 on donor T-
cells, significantly reduces cellular infiltration and pathology
in idiopathic pulmonary syndrome [40]. Donor T-cells them-
selves participate in the recruitment of alloreactive T-cells to
the lung. Elimination of CCL5 expression by donor T-cells
significantly reduces pulmonary infiltration and pathology
in idiopathic pulmonary syndrome [41].

 

Multiple myeloma

 

Chemokines have pathologic roles in multiple myeloma (MM)
[42]. Similar to HPC, MM cells circulate in peripheral blood,
home to marrow, and express CXCR4 [43]. Approximately one
quarter of MM cells in bone marrow express surface CXCR4,
while about 60% of peripheral blood MM cells express the
receptor. MM cells migrate along a gradient of CXCL12,
and the ligand induces CXCR4 internalization as well as
cytoskelatal reorganization. Similar to CD34+ HPCs, in MM
cells CXCL12/CXCR4 binding promotes localization on
marrow endothelium with up-regulation of VLA-4/VCAM-1
mediated attachment allowing for trafficking into the bone
marrow microenvironment. While it may seem paradoxical
that MM cells in marrow have lower levels of CXCR4, this
may be explained by receptor internalization or down-
regulation in an environment where the ligand is abundant.
Also similar to HPCs, CXCL12/CXCR4 facilitates binding to
MM cells to osteoblasts and marrow stromal cells. Based on
these data, it is not surprising that AMD3100 inhibits homing
of MM cells to bone marrow niches. CCL2, which is also
expressed by marrow stromal cells in myeloma, is similarly a
chemotactic factor for MM cells through CCR2. CCL3 and
CCL4 are constitutively secreted by MM cells and induce the
development of osteolytic bone lesions through stimulation
of oseoclasts. Systemic levels of CCL3 increase in most patients
with MM, and correlate with worse prognosis [44].

 

Platelets

 

CXCL4 and CXCL7 were identified in platelets as PF4 and
NAP-2, respectively, well before the first leucocyte derived

chemokine, IL-8, was described. Subsequently, platelets were
found to contain CCL3, CCL5, CCL7, CCL17, CXCL1, CXCL5
and CXCL8 [45]. These chemokines are contained within 

 

α

 

granules and are secreted upon activation, making platelets
a rich source of chemokines during response to injury or
in thrombosis. CXCL4 is an ELR

 

– 

 

chemokine, and lacks
neutrophil chemotactic activity. However, CXCL4 potentiates
degranulation of neutrophils primed by tumour necrosis
factor-

 

α

 

 (TNF-

 

α

 

) and promotes their adhesion to endothelium.
CXCL4 has better defined roles in coagulation. CXCL4 bind-
ing to heparin is immunogenic, and antibodies to the complex
may cause heparin-induced thrombocytopenia. CXCL4 inhibits
heparin-dependent acceleration of thrombin inactivation by
antithrombin III and potentiates platelet aggregation in the
presence of suboptimal concentrations of agonists. As is
common with other chemokines, CXCL4 binds to endothelial
GAGs. Under normal conditions a substantial amount of CXCL4
is associated with GAGs. Intravenous injection of heparin
results in an immediate 15–30-fold increase in plasma con-
centrations of CXCL4 without affecting platelet-associated
CXCL4 [46]. CXCL4 also promotes the uptake of oxidized low
density lipoprotein by endothelial cells, which may play a
role in atherosclerosis [47]. CXCL7 is derived from platelet
basic protein by proteolytic cleavage of the 24 aminoterminal
amino acids. CXCL7 induces neutrophil degranualtion and
reactive oxygen products, though it is approximately 100-fold
less potent a neutrophil chemoattractant than CXCL8.

Platelets have also been shown to possess the receptors
CCR1, CCR3, CCR4, CXCR1 and CXCR4. In general, it appears
that chemokines that signal through these receptors are weak
platelet agonists. However, in the presence of adenosine
diphosphate at low levels, CXC12, CCL17 and CCL22 have
been shown to induce near maximal platelet aggregation
[48]. There is some question as to whether sufficient concen-
trations of chemokines occur 

 

in vivo

 

 to activate platelets, but
it is likely that such conditions can exist locally at sites of
inflammation or thrombosis. Because CXCR4 is a cofactor for
human immunodeficiency virus (HIV) entry into cells, this
receptor may also contribute to HIV-associated thrombocy-
topenia by facilitating infection of megakaryocytes.

 

Transfusion-transmissible diseases

 

A number of pathogens have evolved mechanisms of exploit-
ing chemokine receptors to attack host cells or to evade the
immune response. The use of Fy antigens by Plasmodium to
enter RBCs was discovered before the identity of Fy and
DARC was known. HIV exploits chemokine receptors to
infect T-cells. After binding of viral gp120 to CD4, CCR5 or
CXCR4 is engaged [49]. This allows the gp41 subunit to
become firmly attached to the cell and fusion between the
viral capsule and cell membrane to take place. Individuals
who are homozygous for a 32 basepair deletion within the
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coding region of the CCR5 gene have a high degree of pro-
tection from HIV infection [50].

The human cytomegalovirus genome encodes for a
chemokine decoy receptor, US28, with the characteristic seven
transmembrane domain structure of native chemokine recep-
tors [51]. US28 is expressed on infected cells and binds most
CC chemokines. It prevents leucocyte recruitment by degrading
chemokines through internalization and receptor recycling.
Cytomegalovirus also encodes for a secreted chemokine
receptor, pUL21·5. This glycoprotein shares no structural
similarities with native chemokine receptors. It binds CCL5,
but not other proinflammatory CC chemokines, such as CCL2
and CCL3. Thus, pUL21·5 is a high affinity and relatively
specific chemokine decoy receptor [52].

 

Transfusion reactions

 

There is emerging evidence for a role of chemokines in the
pathophysiology of transfusion reactions. Haemolytic trans-
fusion reactions are analogous to the systemic inflammatory
response syndrome. Red blood cells coated with immunoglob-
ulin G (IgG), and/or complement, stimulate phagocytes to
produce inflammatory mediators. In models of ABO incom-
patibility both CXC and CC chemokines are produced at
high levels [53,54]. In haemolytic reactions, RBC membrane
bound IgG and complement interact with receptors on mono-
nuclear phagocytes stimulating the production of mediators
including proinflammatory cytokines TNF-

 

α

 

, IL-1

 

β

 

, CCL2
and CXCL8. Temporally, proinflammatory is produced first.
CCL2 and CXCL8 production is partially, but not completely,
inhibited by neutralization of TNF-

 

α

 

. In models of IgG-
mediated RBC incompatibility, CCL2 and CXCL8 are also
produced, though at lower levels [53,55].

In the setting of a non-haemolytic transfusion reaction
with fever, chills, pain and dyspnoea that was associated with
transfusion of plasma containing human leucocyte antigen
DR antibodies reactive with recipient specificities, CXCL1
and CXCL8 have been implicated [56]. 

 

In vitro

 

 incubation of
antigen positive peripheral blood mononuclear cells resulted
in chemokine expression, as well as production of TNF-

 

α

 

, IL-
1

 

β

 

 and IL-6. Chemokine production was substantially reduced
by blockade of the IgG receptors CD16 (Fc

 

γ

 

RIII) and CD32
(Fc

 

γ

 

RII), although not CD64 (Fc

 

γ

 

RI). While the roles of chem-
okines in such reactions are incompletely understood, it is
likely that CXC ligands participate in neutrophils activation,
which in turn contributes to the capillary leakage phenome-
non of transfusion-related acute lung injury.

 

Intravenous immunoglobulin and anti-D

 

Intravenous immunoglobulin (IVIG) is well-known to have
complex immunomodulatory effects. Little is known about
the impact of IVIG on chemokines that may mediate inflam-

matory or autoimmune diseases. Gene expression profiling
of peripheral blood cells from healthy subjects given a single
dose of IVIG showed up-regulation of all chemokine genes
examined: CCL2, CCL3, CCL4, CCL7, CCL8, CXCL9, CXCL10,
CXCL11, CXCL12 and CL1 [57]. In patients with chronic
inflammatory demyelinating polyneuropathy treated with
IVIG serum levels of CCL2 decreased, whereas in patients with
Kowasaki disease serum levels of CXCL8 were unaffected
[58,59]. In a study of patients with congestive heart failure
randomized to receive IVIG or placebo monthly for 5 months,
there was a decrease in serum levels of CCL3, CCL4 and
CXCL8 [60]. Peripheral blood mononuclear cell mRNA levels
decreased after IVIG treatment for CCL3, CCL4, CCR1, CCR5
and CXCR1, but not for CXCL8. IVIG has been shown to
contain antibodies to CCR5 capable of blocking CCL5 bind-
ing and HIV infection of lymphocytes and monocytes 

 

in vitro

 

[61]. In patients with common variable immunodeficiency,
serum levels of CXCL8 have been shown to increase after a
single infusion of IVIG [62,63]. In contrast, a study of patients
with immune-mediated neuropathies receiving IVIG found
no effect on T-cell or monocyte expression of CCR1, CCR2,
CCR4, CCR5, CCR6 or CXCR3 [64].

Similarly, there are spare data on the effects of anti-D
administration of chemokine expression. In children with
chronic immune thromobocytopenic purpura, infusion of
anti-D caused a rapid reduction in serum CXCL8, as well as
several other inflammatory cytokines [65]. In two other
studies, a transient increase in serum CCL2 and CCL3 levels
was observed after anti-D administration [66,67]. It is not
clear at this time whether these changes are directly causes
by IVIG or anti-D, or are secondary to the underlying disease
process.

 

Accumulation of chemokines during blood 
component storage

 

Chemokines may accumulate in the supernatant of blood
components during storage, either from platelet degranula-
tion or from activation of leucocytes. The platelet-derived
chemokines found in blood components include CCL5, CXCL4
and CXCL7. CXCL8 is the principle leucocyte-derived chem-
okine that has been identified in the supernatant of blood
components. CCL5 may also be leucocyte-derived, but in
blood components, the contribution from platelets appears to
greatly out weigh that on leucocytes.

Most work to date has focused on platelet concentrates.
In non-leucocyte-reduced platelets, whether prepared from
whole blood, by the buffy-coat method, or by apheresis, there
is progressive accumulation of CXCL4, CXCL7, CCL5 and
CXCL8 [68–73]. CXCL8 can reach particularly high levels in
non-leucoreduced platelets by the end of the storage period.
Pre-storage leucocyte reduction can prevent the accumula-
tion of leucocyte-derived CXCL8, but not platelet-derived
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chemokines [68,69,71,73–76]. Photochemical pathogen reduc-
tion treatment or ultraviolet B irradiation prevents accumu-
lation of leucocyte-derived chemokines, but 

 

γ

 

-irradiation
does not [70,77,78]. 

 

γ

 

-Irradiation does not prevent release of
platelet-derived CCL5 [79]. Platelet additive solutions appear
to be little effect on the accumulation of chemokines, although
one solution containing magnesium and potassium reduces
release of CCL5, CXCL4 and CXCL7 [76,80,81].

Both leucocyte-derived and platelet-derived chemokines
progressively accumulate in RBC during storage [82–85].
Pre-storage leucocyte reduction eliminates chemokine
accumulation in RBCs [82,83,85]. This is seen with both
leucocyte- and platelet-derived chemokines, most likely
because leucocyte reduction filters designed for RBC also
remove platelets. Not surprisingly, peripheral blood HPC
components can contain significant levels of CCL7 [86].

Some leucocyte reduction filters that have a net negative
surface charge are capable of removing CXCL8 and CCL5
from blood components [87,70,71]. In contrast, positively
charged filters have no effect, most likely because these
chemokines have a net positive charge at physiologic pH [70].

 

Clinical implication for transfusion medicine

 

It is probable that chemokine agonists and antagonists will
have a major impact on HPC transplantation, similar to the
influence of recombinant haematopoietic growth factors
over the past decade. The most immediate impact will likely
be in improvement of HPC mobilization by AMD3100 or
similar CXCR4 blockers. Alternatively, strategies to increase
CXCR4 expression on marrow stromal cells may facilitate
HPC engraftment. Antagonists of CCR5 may be good candi-
dates for drugs to reduce GvHD in allogeneic transplantation.
However, we still have much to learn about the complexities
of chemokine networks in GvHD.

The recent discoveries of chemokine decoy receptors encoded
by several diverse human viral pathogens open new oppor-
tunities for antiviral therapies. The development of drug that
specifically targets viral chemokine receptors could enhance
the immune response to viral infections. Alternatively, recom-
binant viral decoy receptors have the potential use as drug to
modulate chemokines in other diseases, such as autoimmune
diseases. Such antichemokines would have the potential
advantage over humanized monoclonal antibodies of binding
multiple related chemokines.

Efforts to improve blood component storage to reduce the
accumulation of chemokines would likely have a beneficial
impact on transfusion reactions and on transfusion-related
immune modulation. Pre-storage leucocyte reduction has
clearly been shown to virtually eliminate the generation of
leucocyte-derived chemokines, as well as other cytokines, in
stored platelets and RBCs. The next major challenge will be
to find ways to prevent the degranulation of platelets during

storage, without negatively affecting their post-transfusion
function.

There are many opportunities for future research into the
roles of chemokines in transfusion medicine. However, we
need to be careful in interpreting studies of chemokines in
transfusion medicine. As we have noted, there is considerable
redundancy and overlap in the biological function of indi-
vidual chemokines, as well as chemokine receptors. Chemo-
kines are only a part of a much larger and even more complex
network of cytokines and other effort molecules of the immune
and inflammatory systems. 
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