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Overview of the immune system

The immune system is a complex network of cells and
organs that has developed to protect the body against
pathogens. This complex system employs multiple
specialized cell types working and communicating
together through cytokines and cellular interactions.
The immune system is a powerful system that requires
delicate regulation in order to prevent autoimmune
complications from occurring. Proper regulation and
control of immune responses are necessary in differ-
entiating against foreign pathogens and the self.

The immune system is composed of two branches,
the innate immune system and the adaptive immune
system. The innate immune system works as the first
line of defense against pathogens, working to recog-
nize common recognition components of pathogens so
that further immune responses can be signaled in the
presence of foreign pathogens. The adaptive immune
system is an antigen-specific system that generates
immunological memory and antibody responses,
specific to pathogens or infected cells. The innate
and adaptive immune systems work as one unified
system with the goal to protect the body.
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Although the immune system has evolved to protect
the host, it also possesses the power to damage the host.
Overactive immune responses that fail to differentiate
between the self and the non-self can give rise to auto-
immune disorders. This article seeks to provide current
information on components of both the innate and
adaptive immune systems and illustrate how they effect
the development and pathogenesis of autoimmune
disease, specifically thatof type 1diabetes (T1D).Under-
standing how the immune system is failing to regulate
and control immune responses are vital in under-
standing how to control these autoimmune disorders.

Autoimmunity in T1D

T1D is an autoimmune disease in which pathogenic
T cells specifically target the destruction of insulin-
producing cells within the pancreas. Without the hor-
mone insulin, the body is unable to maintain normal
blood glucose levels. Therefore, individuals suffering
from T1D must inject insulin multiple times daily to
survive.
Genome-wide association studies in T1D have

identified over 20 putative loci of statistical signifi-
cance, but thus far, only linkage to human leukocyte
antigen (HLA) seems incontestable (1). The search for
non-HLA susceptibility genes has received great at-
tention in recent years, and a region on chromosome
16p13, identified as KIAA0350, appears to be as
a novel locus associated with T1D (2).
T1D is a complex polygenic disease (3) for which

there is a small number of genes with large effects (i.e.,
HLA) and a large number of genes with small effects
(1). Risk of T1D progression is conferred by specific
HLA DR/DQ alleles [e.g., DRB1*03-DQB1*0201
(DR3) or DRB1*04-DQB1*0302 (DR4)] (4, 5). The
genotype associated with the highest risk for T1D is
the DR3/4-DQ8 (DQ8 is DQA1*0301, DQB1*0302)
heterozygous genotype. In addition, HLA genotypes
such as DQB1*0602 confer dominant protection from
T1D in multiple populations. There is a different
disease risk for each major histocompatibility complex
(MHC) genotype, and although it is possible that only
a single peptide epitope will relate to disease with
multiple MHC genotypes, this controversy remains to
be evaluated experimentally.
A recent report provided evidence that risk for islet

autoimmunity dramatically increased in DR3/4-DQ8
siblings who shared both HLA haplotypes with their
diabetic proband sibling (63% by age 7 and 85% by
age 15) as compared with siblings who did not share
both HLA haplotypes with their diabetic proband
sibling (6). These data suggest that HLA genotyp-
ing at birth may identify individuals at high risk of
developing T1D before the occurrence of clear signs of
islet autoimmunity.

The onset of T1D has been well characterized and
occurs in a two-step manner of first asymptomatic
inflammation of the pancreatic islets and second by
a distinctive autoimmune process that leads to
a decline in the pancreatic b-cell function and mass.
Cells from both the innate and adaptive immune sys-
tems can be found within an insulitis lesion includ-
ing T lymphocytes, B lymphocytes, macrophages
(MF), and natural killer (NK) cells (7–11). The
autoimmune destruction of the pancreatic b cells
takes place in a cell-mediated, organ-specific manner
and requires both CD41 and CD81 T cells (8, 12, 13)
as well as MF, which might be the first immune
system cells present in the islets (12–17).
Activated MF present in the islets are able to secrete

nitrogen and oxygen free radicals as well as various
proinflammatory cytokines into their environment in-
cluding: interleukin-1b (IL-1b), interleukin-12 (IL-12),
interleukin-8, and tumor necrosis factor a (TNFa)
(18). Nitrogen and oxygen free radicals can directly
penetrate cells causing intracellular damage to DNA,
lipids, and proteins. The cytokines secreted from the
activated MF can also invoke a response that initiates
cellular damage in addition to free radical damage.
Research has indicated that TNFa and IL-1b, pro-
duced by MF, along with interferon (IFN)g, produced
by neighboring T cells, have a toxic effect on b cells
(19). It has also been demonstrated that a lack of
IL-12, because of MF depletion experiments, actually
prevents the differentiation of b-cell cytotoxic T cells
in non-obese diabetic (NOD) mice (20–22). Returning
MF into the above-mentioned MF-depleted environ-
ment returns the ability of the immune system to
generate active b-cell cytotoxic T cells in the NOD
mouse (20–22). These results indicate that cytokines
not only can directly damage b cells but also can lead
to indirect b-cell damage by activating other cell types.
Once the innate immune system has been activated

within the pancreas, an adaptive immune response is
subsequently triggered, generating autoreactive T cells,
B cells, and antibodies. As T1D progresses in severity,
so does the number of autoantigens targeted by T cells
and autoantibodies being produced by B cells (23). As
pancreatic material is destroyed, T cells can be trig-
gered to become autoreactive, wherein they present
increased amounts of self-antigens from the damaged
tissue. T cells that become autoreactive can activate
B cells and signal generation of autoantibodies. This
phenomena, known as epitope spreading, is illustrated
once autoreactive T cells and B cells are fully capable
of generating autoantibodies directed against numer-
ous islet self-antigens including insulin, glutamic acid
decarboxylase, 65-kDa isoform, islet cell antibody
(ICA512)/islet antigen-2 (IA-2), and IA-2b (23). Re-
searchers are currently focusing on the study of the
innate immune system to understand and determine
its role in autoimmune disorders, such as T1D.
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Adaptive immune system

The immune system is comprised of two branches: the
adaptive immune system and the innate immune
system. The adaptive immune system functions to
establish immunological memory and adapts to elim-
inate reoccurring pathogens more effectively and
efficiently upon repeat exposure from a given patho-
gen. The adaptive immune system is an antigen-specific
system that detects non-self molecules through the
recognition of peptide antigens utilizing receptor in-
teractions between T cells and antigen-presenting cells
(APCs). Adaptive immunity establishes long-term
immunological memory responses that trigger clonal
expansion of T lymphocytes, which in turn work to
signal B cells to produce antigen-specific antibodies
(24). T lymphocytes are somatically generated within
the thymus, each with a structurally diverse and unique
T cell receptor (TCR). The TCR functions to recognize
processed peptides presented in the context of MHCs.
Peptides presented through MHC Class-I structures
interact with CD81 T cells, while those peptides pre-
sented through MHC Class-II structures interact with
CD41 T cells. Once a processed peptide is recog-
nized through a MHC–TCR interaction, a cascade of
signaling events occurs, dependent upon the class of
MHC structure recognized and the T cell type that is
activated. Once activated, CD41 T cells promote T cell
activation and differentiation, along with the ability
to signal B cells to generate an antibody response.
CD81 T cells when activated produce inflammatory
mediators and can directly target the destruction of
specific peptide-presenting cells.
The adaptive immune system has been well studied

in the context of T1D development in both humans
and the NOD mouse model system. Both T and B
lymphocytes accumulate within the islet lesions, where
they are triggered to initiate a full-blown immune
response toward self-antigens. MF and monocytes
first cause inflammation in the islets, followed by T
and B cell infiltration. At this point, an individual still
has the capability to synthesize insulin at a normal
level. In an islet lesion, APCs present self-peptides to
T cells. Once activated against self-peptides, T cells
can go on to promote an autoimmune response and
signal B cells to produce antibodies against self-
antigens. During the development of diabetes, MHC
Class-I restricted T cells are critical for disease
pathogenesis in both humans and the NOD mouse
(25, 26). Autoreactive CD81 T cells appear to target
self-antigens including insulin (27) and the islet-
specific glucose 6-phosphatase catalytic subunit-
related protein (28). Once cell types of the adaptive
immune system become fully activated against self-
antigens, the destruction of the b cells ultimately
occurs. Although this process is well understood,
attempts to control and prevent this destructive signal

from occurring have failed to yield efficacious pro-
tection from disease onset.

Regulatory T cells

Regulatory T cells (T regs) are a specific population
of T cells that are CD41 CD251 that generally ex-
press the forkhead transcription factor, forkhead box
P3 (29–31). T regs have been characterized because
of their ability to suppress proliferation of effector
T cells by shutting down interleukin-2 (IL-2) (32).
Researchers have currently been focusing on the use
of T regs in the prevention of T1D and other auto-
immune diseases. Autoimmunity can develop because
of a lack of T cell homeostasis, resulting from an
inability to control or prevent chronic T cell activation
from occurring. T regs possess the ability to control
and prevent T cell activation and the signaling of
chronic inflammatory responses (33, 34). Unregulated
effector T cells can become overactive and run the risk
of becoming autoreactive if T regs are not able to
regulate a proper immune response from occurring.
Therefore, utilizing T regs to modulate effector T cells
responses in an effort to prevent autoimmunity has
become a strong area of research.
T regs are thought to control every aspect of

autoimmune pathogenesis from expansion of T cell
populations and T cell differentiation for influencing
effector T cell function (35). Although individuals
with T1D have relatively equal numbers of T regs
present compared with healthy controls (36–38),
T regs isolated from patients with T1D displayed
decreased suppressive activity in vitro, which suggests
a defect in T reg function in individuals with T1D (36,
37). Adoptive transfer experiments utilizing T regs in
NOD mice show that T regs have the capability to
cause distinct protective effects on T1D disease
incidence and progression (39). Adoptive transfer of
T regs can be carried out with either a polyclonal
T reg population or a more antigen-specific popula-
tion of T regs. Experiments utilizing adoptive trans-
fer of T regs into NOD mice illustrate that an islet
antigen-specific population of T regs are 50 times
more effective at preventing diabetes than a polyclonal
population of T regs (35). Researchers observed that
effective prevention of diabetes onset is directly
correlated with the ability of the T regs to become
activated in the pancreatic lymph node (40). T regs
possess the ability to control immune responses in
both the lympoid organs and the periphery at the site
of an inflammatory response (35). The possibility to
utilize T regs therapeutically to prevent T1D in
humans still needs more focused research, although
preemptive trials utilizing adoptive transfer of T regs
in graft-vs.-host disease therapy are currently taking
place (35).
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Natural killer T cells

Natural killer T (NKT) cells are another subtype of
T cells that has been identified as an important regulator
of autoimmunity and T1D. NKT cells are a unique
cell type that share common characteristics with both
NK cells and T cells. NKT cells are capable of causing
direct cell lysis because of Fas–ligand interactions
along with the ability to induce cytotoxic effects on
cells because of the production of IFNg (41–43). A
subset of NKT cells, which are biased toward TCR
usage, recognize glycolipid antigens and express high
levels of interleukin 4 (IL-4) (41–43). Upon activation
through a-galactosylceramide, a specific glycolipid -
ligand, these TCR-biased NKT cells produce type 2
helper T cell response (Th2-type) responses mediated
through IL-4 and interleukin-10, which inhibit type 1
helper T cell response (Th1) responses (44, 45). NKT
cells are numerically and functionally deficient in the
thymus of diabetes-prone NODmice (46, 47). Humans
suffering from T1D display a reduction in the fre-
quency of total NKT cells along with a diminished
capacity of NKT cells to secrete IL-4 (48). Adoptive
transfer experiments utilizing NKT cells afford pro-
tection against the development of diabetes in NOD
mice (49). Thymus-derived NKT cells afford greater
protection against T1D development than splenic-
derived NKT cells in NOD mice (50). Continued re-
search is necessary to fully determine how to utilize
this unique subset of NKT cells to afford disease pro-
tection against T1D and autoimmunity in humans.

Innate immune system

The innate immune system functions as the first line
of defense against microbes and infection. Unlike the
adaptive immune system, the innate immune system
does not generate long-term immunological memory.
The innate immune system, once thought to be very
non-specific, illustrates a much greater degree of
specificity than previously thought (12). This system
employs multiple cell types including MF, dendritic
cells (DCs), NK cells, neutrophils, and epithelial
cells, each of which has its own specific function in
an innate response from phagocytosis of infectious
pathogens to direct targeted lysis of infected host
cells.
In order to initiate an innate immune response, the

host system first interacts with common surface
molecules, expressed by an infectious organism. These
common microbial surface molecules originally termed
pathogen-associated molecular patterns (PAMPs) were
predicted to interact with pattern recognition receptors
(PRRs) found on the surface of cells. In contrast to
adaptive immune system receptors, PRRs are not clonal
receptors and lack the ability for clonal expansion (51–
53). The once hypothesized PRRs are now known to

exist. One of the most commonly recognized groups of
PRRs is the Toll-like receptors (TLRs) (51, 53, 54).

TLRs

TLRs are an evolutionarily conserved class of re-
ceptors, consisting of 13 identified members in mam-
mals (51, 53, 54). TLRs share common structural
features of a type I integral membrane glycoprotein,
consisting of leucine-rich repeats in an extracellu-
lar domain and having a Toll/interleukin-1 receptor
(IL-1R) (TIR) cytoplasmic domain (51, 53). TLRs are
PRRs and, as hypothesized, recognize many PAMPs
including microbial membrane-derived molecules
through TLR-2 and TLR-4, bacterial flagellin through
TLR-5, as well as DNA and RNA from bacteria and
viruses through TLRs 3, 7, 8, and 9 (51, 53, 54).
Although the majority of TLRs (TLRs 1, 2, 4, 5, and 6)
are found externally on the cell surface, some (TLRs 3,
7, 8, and 9) are found within the intracellular com-
partments (54). TLRs also possess the ability to
recognize a number of self-molecules expressed by the
mammalian host (55), particularly molecules that are
indicators of stress and disease (56) or molecules that
are modified by a disease process. Oxidation (57) and
the breakdown of extracellular matrix components (58)
at the site of stress and inflammation are processes that
convert self-molecules into ligands of TLRs.
Ligand binding to a specific TLR initiates a cascade

of cell signaling and cellular activation. TLR signaling
utilizes similar molecules to those used through IL-1R
signaling (54). Although each TLR has its own unique
set of ligands, most TLRs utilize the adaptor protein
myeloid differentiation factor 88 (MyD88) to inter-
nalize cell signaling; however, multiple internal acti-
vation pathways exist for TLRs (54). TLR-activated
cells respond by upregulating the production of num-
erous proinflammatory cytokines, chemokines, and
costimulatory molecules to heighten innate immune
cell sensitivity and to promote activation of the
adaptive immune system (50, 51, 59–61).
A general model of TLR signaling and activation is

presented in Fig. 1. TLRs (TLRs 1, 2, 4, 5, 6, 7, 8, 9,
and 11) can promote cell activation through the
MyD88-dependent pathway, but some of these TLRs
can also carry out TLR activation in a MyD88-
independent manner as well. TLRs and MyD88 asso-
ciation elicits the interleukin-1 receptor-associated
kinase (IRAK) family. The IRAKs serve to activate
tumor necrosis factor receptor-associated factor 6,
which then signals activation of the transforming
growth factor-b–protein kinase 1 (TAK1) complex.
TAK1 ineracts with TAK1-binding proteins (TABs)
to form the TAK1/TABs complex and when activated
signals both the nuclear factor-kB (NF-kB) essential
modulator (NEMO)/inhibitory kappa kinases (IKKs)
complex and the mitogen-activated protein kinases
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(MAPKs). Activation of the NEMO/IKKs complex
results in inhibitory kappa B kinase (IkB) catalysis,
which leads to activation of free NF-kB. Activation of
the MAPKs leads to the phosphorylation of activating
protein-1 (AP-1).
TLR-3 activation occurs through the TIR domain-

containing adapter-inducing IFNb (Trif) pathway. Ac-
tivated Trif signals through the tank-binding kinase-1
(TBK-1)/inducible IkB kinase (IKKi) complex. The
TBK-1/IKKi complex mediates the phosphorylation of
interferon regulatory factor-3 (IRF3), which then
dimerizes. Free activated IRF3, AP-1, and NF-kB
can translocate into the nucleus from the cytoplasm
where they influence gene expression of various in-
flammatory cytokines and costimulatory molecules (61).
Figure 1 represents only a general view of TLR signal-
ing pathways (61).
Recent data implicate signal transduction through

TLRs in the development of T1D in the NOD mouse.
Knocking out expression ofMyD88, the adapter protein
responsible for most TLR signal transduction, protects
NOD mice against the development of diabetes (62).
Loss of TLR-4 expression in the NODmouse, however,
leads to a higher incidence of diabetes compared with
that of non-deficient TLR-4 littermates, whereas loss of
TLRs 2, 3, or 9 has no effect on the development of

diabetes (62). Signaling through MyD88 appears to be
important in T1D development, but the exact mech-
anistic details and specific TLR involvement remain
to be elucidated.
Activation of the innate immune system acts as a

prerequisite for the induction of an acquired immune
response, particularly those of a T helper 1 cell re-
sponse (52, 57, 58). It has been suggested that TLRs
are responsible for priming the adaptive immune
system to become autoreactive toward self-antigens,
thus ultimately controlling the progression of auto-
immunity in diseases such as T1D, systemic lupus
erythematosus (SLE), rheumatoid arthritis, Crohn’s
disease (63), and heart failure (64). TLRs triggered
through self-ligands could promote an unwarranted
immune response, which in turn could non-specifically
activate T cells because of cytokine and inflammatory
signals.

Non-TLR PRRs

TLRs are one part of the innate immune system that
has been extensively researched since their initial dis-
covery in Drosophila in the late 1990s (51, 53). Numer-
ous non-TLR-associated innate immune receptors have
recently been receiving attention including nod-like
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Fig. 1. Toll-like receptor (TLR)-mediated cell activation and signaling, general model. TLRs (TLRs 1, 2, 4, 5, 6, 7, 8, 9, and 11) promote cell
activation through the myeloid differentiation factor 88 (MyD88)-dependent pathway. MyD88 signals interleukin-1 receptor-associated kinase
(IRAK), which lead to tumor necrosis factor receptor-associated factor 6 (TRAF6) recruitment. TRAF6 mediates activation of the
transforming growth factor-b–protein kinase 1/TAK1-binding proteins (TAK1/TABs) complex. The TAK1 complex signals both the nuclear
factor-kB (NF-kB) essential modulator (NEMO)/IKK complex, which results in IkB catalysis, leading to the activation of the NF-kB and the
mitogen-activated protein kinases (MAPKs), which phosphorylate activating protein-1 (AP-1), leading to AP-1 activation. TLR-3 signaling
utilizes the Toll/interleukin-1 receptor domain-containing adapter-inducing IFNb (Trif)-dependent pathway. Trif activation mediates signaling
through the tank-binding kinase-1 (TBK-1)/IKKi complex. TBK/IKKi complex mediates the phosphorylation of interferon regulatory factor-
3 (IRF3). Phosphorylated IRF3 dimerizes and is free to translocate into the nucleus. Free activated IRF3, AP-1, and NF-kB can translocate
into the nucleus, where they influences expression of various inflammatory cytokines and costimulatory molecules. IFN, interferon; IL,
interleukin; NO, nitric oxide; TNFa, tumor necrosis factor a.
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receptors (NLRs) (65), triggering receptors expressed
on myeloid cells (TREMs) (66), and C-type lectin
receptors (CLRs) (67); although these receptors have
not been directly linked to T1D or autoimmunity, they
represent a novel area for future exploration. TLRs
are localized either at the cell surface or intracellular
within compartments, such as endosomes (54). NLRs
are the cytoplasmic equivalent of TLRs (65). NLRs
are a family of PRRs capable of detecting pathogens
within the cell cytosol (54, 65). NLRs, although
poorly understood, have been illustrated to induce
inflammatory responses upon activation within the
cytosol (65). NLRs and TLRs work together to survey
the entire cell against pathogens, but the exact details
and specific signaling pathways are still unknown.
TREMs function mainly as immune modulators,
participating in numerous cell processes from regu-
lating differentiation and function of MF and DCs for
actively amplifying the effects of inflammation (66).
Defective TREMs have the potential to promote
activation or amplify inflammation, leading to unnec-
essary innate and adaptive immune system activation.
CLRs mediate host defense by binding PAMPs and
function to activate and inhibit innate immune re-
sponses to pathogens or self (67). Malfunctions in
CLRs may promote inflammation because of a possi-
ble inability to properly signal the end of an innate
immune response. The distinct relationship between
non-TLR and TLR PRRs is not well understood, but
the possibility of synergy or cross talk between these
unique innate systems definitely possesses the poten-
tial to perpetuate and induce an adaptive immune
response. Malfunctions in any of these innate systems
or receptors, especially those responsible for amplify-
ing or regulating an inflammatory response, could
potentially trigger adverse and possibly detrimental
immune responses, which may lead to a break in
tolerance.

Innate influences over adaptive immunity

Although the innate and adaptive immune systems
are discussed as two separate entities, both systems
interact and communicate with one another. Each
system has its own unique responsibilities that are
beneficial for the health of the individual. The two
immune systems communicate through physical cell
surface recognition molecules and chemically through
the release or uptake of various cytokines. Auto-
immunity, uncontrolled inflammation, and chronic
immune responses turn the most influential defense
mechanism of the body into a ticking time bomb with
the potential to cause serious damage.
TLRs can recognize and bind both non-self and self-

antigens (51, 53, 56, 58). It has been proposed that
PRRs that can interact with self-antigens have the
ability to break central tolerance and signal an adap-

tive immune response, leading to the development of
autoimmunity (64). Ligand binding to a specific TLR
initiates a specific cytokine production pattern. In
general, TLR activation leads to the production of
proinflammatory cytokines and mediators. In an un-
balanced or compromised immune setting, an overt
proinflammatory response may result in autoimmune
diseases (68).
Specific studies on Crohn’s disease suggest that

innate immune responses to bacterial flagella through
TLR5–flagellin binding may actually promote an
adjuvant-like effect on the adaptive immune system,
thus prompting uncontrolled inflammatory responses
in the adaptive immune system that promotes auto-
immunity (63). In SLE, TLR interactions with self-
DNA, self-RNA, or self-nucleotide complexes through
interactions with TLRs 3, 7, 8, and 9, all of which bind
nucleotide molecules, have been proposed as an
initiating trigger for the development of autoimmu-
nity, termed the toll hypothesis (64). Although the
main function of PRRs is to bind bacterial and viral
components, binding of self-nucleotide particles may
lead to the stimulation of an innate immune response
that elicits an autoimmune adaptive response, thus
perpetuating the potential for the development of
autoimmunity.
It is known that MF are the first cell type present

within an islet lesion and are required for T1D disease
progression (12–17). MF function mainly as phago-
cytic cells but also act as APCs, and once activated,
produce multiple inflammatory cytokines and free
radicals, capable of damaging b cells (13). MF infil-
trate first into a lesion, and then, an adaptive auto-
immune response is triggered activating CD41 and
CD81 T cells to become autoreactive (8, 12, 13). MF
have been thought to be the initiating cell type of T1D
disease progression because of the protective nature
on disease onset in MF depletion experiments and
their ability to produce cytokines, which are respon-
sible for the activation of both innate and adaptive
immune responses (20–22). Once activated, MF in an
inflammatory lesion could easily target and present
self-peptides to the incoming T cells. Once these T
cells become autoreactive or effector in function,
downregulating the immune response becomes diffi-
cult because of a lack of T reg function, previously
mentioned in individuals predisposed and those suf-
fering from T1D.
Several viruses have also been implicated as poten-

tial triggers of T1D including adenovirus, Coxsackie B
virus, cytomegalovirus, hepatitis C virus, mumps
virus, and rubella virus (69–72). As TLR-3 is known
to recognize viral intermediate double-stranded RNA
(dsRNA) and its mimic poly(I)poly(C) (51, 53, 54), it
has been receiving much attention as a possible link
in the development of T1D and autoimmunity. TLR-3
activation leads to the production of IFNs, which
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serve to stimulate APCs and the adaptive immune
system (61). It has been demonstrated that bone
marrow-derived MF from diabetic NOD mice express
significantly higher basal levels of TLR-3 than that of
prediabetic NOD mice and control strains (73). Fur-
thermore, stimulating these MF with poly(I)poly(C)
elicits a nine-fold increase in production of type 1
IFNs in diabetic animals compared with non-diabetic
controls (73). It is not yet known what exact con-
tribution this elevated TLR-3 expression has on T1D
disease progression or onset, although one group has
illustrated that TLR-3 expression in islets may be
partially responsible for diabetes development in rat
insulin promoter-B7.1 mice on a BALB/c genetic
background when diabetes is precipitated with poly(I)
poly(C) and insulin B9-23 peptide (74).
A recent report indicated that loss of TLR-3 expres-

sion has no effect on the development of diabetes in
the NOD mouse (62). However, following viral in-
fection, dsRNA intermediates or double-stranded
DNA in the cytosol can trigger signal transduction
leading to the production of type 1 IFNs by binding
intracellular PRRs, retinoic-acid-inducible gene-1
(RIG-1), or melanoma-differentiation-associated gene-
5 (MDA-5), thus bypassing TLR-3 (75). Involvement
of RIG-1 and MDA-5 in the context of diabetes
development has not been assessed.
TLR activation could lead to chronic inflammatory

responses, which may potentially steer the immune
system down a path toward autoimmunity instead of
host defense. Humans recently diagnosed with T1D
display significantly higher levels of TNFa, IL-2, and
other proinflammatory cytokines in their peripheral
blood (76). It has also been shown that the presence of
high blood glucose concentrations has the ability to
induce the expression of proinflammatory molecules
in monocytes (77). In a system where it is key to
control T cell activation, excessive IL-2 along with the
induction and production of proinflammatory cyto-
kines makes T cell homeostatic control even more
difficult for patients with T1D.
Studies utilizing NOD mice have revealed that new-

onset diabetic NOD mice have the potential to
generate bone marrow-derived MF, which exhibit
altered basal expression patterns of TLRs, that is, Th1
biased and upon activation produces heightened cyto-
kine production compared with normal mice (73).
These bone marrow-derived MF have increased TLR
expression, TLR signaling responses, and heightened
cytokine expression and production (73). Although
these MF are generated in vitro, it is likely that the
precursor cells in vivo may give rise to tissue MF with
similar altered characteristics. Hypersensitive proin-
flammatory MF may promote a chronic inflam-
matory state, which could induce uncontrolled T cell
activation and shift the immune system toward auto-
immune responses.

Even though TLRs are thought of as being solely
involved in the innate immune system, research has
indicated that TLRs are expressed in cells of the
adaptive immune system as well (78). TLRs are
expressed by T cells and possess the ability to modify
T cell activities (78). T cells from human peripheral
blood samples show expression of TLRs 1, 2, 3, 4, 5,
7, and 9, although individual expression levels for
each TLR vary (79–81). TLR expression is regulated
through concomitant TCR-dependent stimulation,
but costimulation of TLRs and the TCR can influence
T cell function and proliferation (78). Although this
topic is relatively new, certain TLRs (TLRs 2, 3, 5,
and 9) have been categorized as being able to modify
and enhance T cell proliferation and cytokine pro-
duction of TCR-stimulated T cells (78). Additional
studies on T regs have illustrated that activation of
TLRs 2, 5, and/or 8 has the ability to suppress T reg
activity (78).
One could hypothesize a bacterial infection that

elicits TLR-2 and TLR-4 activation. TLR activation
may lead to the enhancement of effecter T cells not
only from cytokine signals produced through cells of
the innate immune system but also from direct TLR-
2 recognition by T cells themselves. Diabetic indi-
viduals or those progressing toward T1D may have T
regs that lack proper homeostatic function. Add to
this bone marrow precursor cells that when differ-
entiated generate proinflammatory cell types and you
have an immune system that is primed to generate
inflammatory responses with an inability to stop or
regulate them. This type of system could easily steer
unregulated, chronically activated cell types toward
autoimmunity. More in-depth research into this topic
needs to be generated, but one could envision how an
inflammatory biased system could be triggered upon
a simple bacterial infection.

Conclusion

The immune system as a whole has developed to
prevent damage and sustain the health of the host.
The once overshadowed innate immune system has
a vital role in host defense and the signaling of an
adaptive immune response. Malfunctions in either
immune system have the potential to lead to auto-
immune complications, but recently, the roles of the
innate immune system in perpetuating autoimmunity
has become an interesting area of research focus,
especially in T1D. The innate system primes the entire
immune system to signal a full-blown adaptive im-
mune response in the face of an infection. T1D is an
autoimmune disease that requires cell types from both
the innate and adaptive immune system for disease
progression. Although the exact trigger to initiate the
adaptive immune response responsible for signaling
the destruction of the b cells in the pancreas is not
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fully understood, looking toward malfunctions and or
signaling through the innate system is necessary to
fully understand the development of autoimmunity in
T1D. Effectively manipulating TLR signaling may
help to elucidate the underlying mechanisms of
T1D development. Discovering novel potential can-
didate receptors or molecules capable of affording
protection against T1D is necessary in order to design
therapeutic strategies in an effort to find a cure for
T1D.
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