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Summary. We propose new model-based methods for unit non-response in two-stage survey
samples. A commonly used design-based adjustment weights respondents by the inverse of
the estimated response rate in each cluster (method WT). This approach is consistent if the
response probabilities are constant within clusters but is potentially inefficient when the esti-
mated cluster response rates are very variable. Clusters can be collapsed to increase precision,
but this may introduce bias.We consider here the model-based approach to survey inference that
treats the clusters as random effects. We note that, from a model-based perspective, a missing
data mechanism that assumes that the response rate varies across clusters is non-ignorable,
and we propose the term cluster-specific non-ignorable (CSNI) non-response to describe this
mechanism. We show that the standard random-effects model estimator RE of the population
mean is biased under CSNI non-response, and we propose two modifications of RE to cor-
rect this bias. One approach includes the observed response rate as a cluster level covariate
(method RERR), and the other is based on a probit model for response (method NI1).The RERR
approach is simpler than NI1 but approximate, in that uncertainty in estimating the response
rates is not taken into account. In addition, a simple method that corrects the bias of RE by
reweighting (method RWRE) is also discussed. We show by simulations that estimators from
RERR and NI1 can correct the bias of RE under CSNI non-response and have comparable
or lower root-mean-squared error than WT in a variety of simulation settings, and RWRE has
similar performance to WT. We also consider another non-ignorable response model estimate
of the population mean (NI2) that removes the bias of WT, RWRE, RERR and NI1 under an
outcome-specific non-ignorable response mechanism where non-response depends directly
on the individual level survey outcomes. However, that estimate is not robust to model mis-
specification. The various methods are compared on a data set from the Detroit Dental Health
Project.

Keywords: Cluster sampling; Non-ignorable non-response; Random-effects model; Unit
non-response

1. Introduction

Statistical adjustments for non-response are increasingly important, given declining response
rates in many surveys (De Heer, 1999; Groves and Couper, 1998). This paper concerns unit
non-response adjustments in the context of two-stage cluster sampling. Consider a population
of size M consisting of N clusters with Mi elements in the ith cluster. Let Yij denote the value
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of a survey outcome Y for unit j in cluster i, for i=1, . . . , N, j =1, . . . , Mi, and let

T =
N∑

i=1

Mi∑
j=1

Yij

and Ȳ =T=M denote the population total and mean respectively. At the first stage, a sample of
n of the N clusters (primary sampling units (PSUs)) is selected. At the second stage, mi of the
Mi units (secondary sampling units (SSUs)) are selected in the ith sampled cluster, but only ri

of the mi sampled units respond. We consider estimates of the finite population mean Ȳ or total
T. To focus on non-response adjustment, we assume that survey sampling is non-informative in
the sense that the selection probability of a unit does not depend on its value of Y. A commonly
used design-based approach is to discard the non-respondents and to weight the respondents
in the ith cluster by the design weight multiplied by the inverse of its response rate ri=mi in the
cluster. This weighting approach is simple, and design consistent if response probabilities are
constant within clusters. A weakness of this weighting estimate is that it may have large variance
if the weights mi=ri are highly variable; it is not even defined if ri =0 for one or more clusters i.
In addition, it is well known that the weighting adjustment yields a biased estimate of Ȳ if the
response probability of the jth subject in the ith cluster depends on the survey outcome yij.

An alternative approach is to apply a random-effects model to the respondent data, such as
the model for two-stage samples that was proposed by Scott and Smith (1969). This approach
addresses the potential inefficiency of the weighting estimate by borrowing strength across clus-
ters. Unfortunately, we show below that this approach requires that the missing data are missing
completely at random, and in particular it does not in general yield a consistent estimate of the
population mean if the non-response rates vary across the clusters. This fact motivates exten-
sions of the Scott and Smith (1969) model that allow the outcome mean to depend on the
non-response rate in each cluster. A simulation study is described that compares the estimates
and inferences from these models with existing approaches.

Rubin (1976) and Little and Rubin (2002) classified non-response mechanisms into three
types: missingness completely at random (MCAR), when the probability of the non-response
does not depend on the clusters or survey variables; missingness at random (MAR), when
the probability of response depends only on the observed values; non-ignorable non-response,
when the probability of the non-response depends on the unobserved values. In the context of
two-stage samples, three non-response mechanisms that are of particular interest are

(a) MCAR non-response,
(b) cluster-specific non-response, where the probability of response depends on cluster char-

acteristics but not on survey outcomes within clusters, and
(c) outcome-specific non-response that depends directly on the value of missing survey out-

comes.

It is clear that outcome-specific non-response is non-ignorable. More surprisingly, we point out
that cluster-specific non-response is also non-ignorable in the context of the random-effects
models that are considered here.

Section 2 describes the design-based weighting method, the estimator of the population mean
that results from a standard application of the Scott and Smith model and our proposed exten-
sions. Section 3 describes a simulation study to compare the estimators. Section 4 compares
various methods on data from the Detroit Dental Health Project. Section 5 discusses our find-
ings and gives directions for future work.
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2. Weighting and model-based methods

2.1. Weighting methods
A standard estimate of Ȳ for two-stage samples with complete response is the Horvitz–Thomp-
son (Horvitz and Thompson, 1952) estimator, which weights cases by the inverse of their
probability of selection. With non-response, a naïve approach is to apply this estimator to
the respondents, yielding

ȳHT =
n∑

i=1

ri∑
j=1

π−1
ij yij

/ n∑
i=1

ri∑
j=1

π−1
ij , .1/

where πij is the selection probability of unit j in cluster i, which is determined by the sur-
vey design. This approach generally requires the missing data mechanism to be MCAR to be
consistent. A popular modification for unit non-response multiplies the sampling weight for
respondents by a response weight given by the inverse of the estimated response rate within a
weighting class, which is often chosen as the cluster for two-stage cluster samples. Respondent
j in cluster i then receives a weight

wij = .πijφ̂i/
−1 .2/

where φ̂i = ri=mi is the observed response rate in cluster i. We assume here that the sampling
weight is constant within clusters, i.e. πij =πi for all j; for a discussion of the case where the
sampling weight varies within clusters, see Little and Vartivarian (2002). The weighting estimate
WT of Ȳ is then

ȳWT =
n∑

i=1
yÅ

i:

/
n∑

i=1
πÅ

i: .3/

where yÅ
i: = .πiφ̂i/

−1
riȳi, πÅ

i: = ri.πiφ̂i/
−1

and ȳi is the respondent mean in cluster i.
The variance of ȳWT is approximated by

V.ȳWT/= 1(
n∑

i=1
πÅ

i:

)2

{
V

(
n∑

i=1
yÅ

i:

)
+ ȳ2

WT V

(
n∑

i=1
πÅ

i:

)
−2ȳWT cov

(
n∑

i=1
yÅ

i: ,
n∑

i=1
πÅ

i:

)}
: .4/

A consistent estimate of V.ȳWT/ is obtained by replacing the variances and covariances in
equation (4) with sample estimates.

The methods that are described here apply to any two-stage sampling scheme, but in our
simulations we confine attention to the common design that selects PSUs with probabil-
ity proportional to PSU size, and SSUs with probability inversely proportional to PSU size (the
PPS–inverse PPS design), yielding a design with constant inclusion probabilities πij =π for all
i and j (Kish, 1965). The estimate (1) for this design simplifies to the unweighted mean UW,

ȳUW =
n∑

i=1
riȳi

/
n∑

i=1
ri,

and the weighting estimate (3) is

ȳWT =n−1
n∑

i=1
ȳi:

WT is simple and corrects the bias of equation (1) when the response probabilities are con-
stant within clusters, but it has some drawbacks. First, WT tends to have a large variance if
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the sample response rates are very variable. In the extreme, WT is undefined when one or more
clusters do not have any respondent. Ways around this difficulty are to compute WT by using
only clusters with respondents, or to combine clusters with no respondents with other clusters,
but both approaches may lead to bias. A second limitation of WT is that it is biased if the
response probability of the ijth population member depends on the value of yij. In the next
section we describe model-based methods for addressing these limitations.

2.2. Random-effects models
An alternative to WT is to discard non-respondents and to base estimates on predictions from a
random-effects model fitted to respondents. A natural model for two-stage samples is that first
proposed by Scott and Smith (1969) (method RE), namely

[yij|μi, σ2]=N.μi, σ2/,

[μi|μ, τ2]=N.μ, τ2/,
.5/

where N.·/ denotes a normal distribution. RE resolves the potential inefficiency of WT, and the
lack of definition of WT when there are clusters with no respondents, by borrowing strength
across clusters. Let σ̂2 and τ̂2 denote estimates of the fixed parameters, computed for example by
restricted maximum likelihood. For the PPS–inverse PPS design that we consider, larger PSUs
are overrepresented in the sample, and valid application of this model requires the assumption
that the cluster means are unrelated to size (Sverchkov and Pfeffermann, 2004). To focus on the
non-response issue, we make that assumption here and comment on the case where this does
not hold in the concluding section. For purposes of prediction under model (5), units of the
population fall into three groups. The first group consists of the respondent values, say yobs,
which are known and do not require estimation. The second group consists of the units in clus-
ters that are not sampled; these are predicted by the estimate of μ, which is a weighted mean:

ȳW =
n∑

i=1
κiȳi

/
n∑

i=1
κi,

κi = τ̂2

τ̂2 + σ̂2=ri
: .6/

The third group consists of the non-respondents and non-sampled units in the sampled clusters;
these are estimated by

E.μi|yobs/=κiȳi + .1−κi/ȳW:

Combining these predictions, Ȳ is estimated by

ȳRE =E.Ȳ |yobs/

= 1
M

[
n∑

i=1

ri∑
j=1

yij +
n∑

i=1
.Mi − ri/{κiȳi + .1−κi/ȳW}+

N∑
i=n+1

MiȳW

]
:

The estimated variance of ȳRE is given by Scott and Smith (1969).
If the non-response mechanism is MCAR, ȳRE has similar properties to the RE estimator

without non-response, i.e. ȳRE is consistent and is the best linear unbiased predictor of Ȳ if
the model is correctly specified (Scott and Smith, 1969). If the non-response probability of yij

depends on cluster characteristics, and in particular the cluster means μi, we might think that
the data are missing at random since cluster membership is observed for non-respondents. How-
ever, the missing data mechanism is in fact not MAR, since the cluster means are unobserved



Model-based Estimates of the Finite Population Mean 83

random effects; we propose the term cluster-specific non-ignorable (CSNI) non-response to
describe this mechanism, to distinguish it from other forms of non-ignorable non-response. A
consequence of the non-ignorability is that RE leads to biased estimates in this case (Little and
Rubin (2002), example 6.24). The bias comes from two sources. First, ȳW is a biased estimate
of μ. To see this, we rewrite ȳW as

ȳW =
n∑

i=1

τ̂2

τ̂2 + .σ̂2=mi/.1=φ̂i/
ȳi

/
n∑

i=1

τ̂2

τ̂2 + .σ̂2=mi/.1=φ̂i/
:

Since the non-response probability of yij depends only on the underlying cluster means μi,
respondents in cluster i are a random sample of elements in this cluster. Thus, ȳi is a consistent
estimate of μi, and the correct weight associated with ȳi is

κi = τ̂2

τ̂2 + σ̂2=mi
: .7/

However, the weight κi here is distorted by the different cluster response rate φ̂i, so ȳW is biased.
The larger is the variation of φ̂i, the larger the bias. Second, the predictor of non-respondents
and non-sampled elements, κiȳi + .1 − κi/ȳW, adjusts the cluster sample mean towards this
biased estimate of μ. The extent of the adjustment is determined by σ̂2=τ̂2 and ri. If ri is very
large, κi ≈1, and there is very little adjustment. If ri is small, large σ̂2=τ̂2 causes more adjustment,
and hence more bias. These facts motivate a simple approach to correct the bias by modifying
κi to reflect the correct weight. Specifically, we change κi in equation (6) to that in equation
(7). This reweighted random-effects model based approach (method RWRE) yields a consistent
estimate of Ȳ when non-response depends on cluster means, given that each sampled cluster has
at least one respondent. However, if some sampled clusters do not have any respondent, RWRE
yields biased estimates, since it ignores these clusters.

The bias of RE when data are not missing completely at random motivates extensions of the
RE model for CSNI mechanisms. An informal approach is to modify the RE model to allow
the cluster mean to depend on the estimated cluster response rate. Assuming for simplicity a
linear relationship yields the approximate model

[yij|αi, φ̂i, σ2]=N.αi +βφ̂i, σ2/,

[αi|α, τ2]=N.α, τ2/,

which is easily fitted by including the estimated response rate in each cluster as a covariate
in the RE model. We label estimates for this model RERR, for the random-effects model with
response rate as covariate. This approach is approximate in that the sampling error in estimating
the response rate is not taken into account. A more rigorous extension of RE is to model the
missing data mechanism directly by the following non-ignorable probit model (NI1):

[yij|αi, χi, β, σ2]=N.αi +βχi, σ2/,

[zij|yij, αi, χi]=N.χi, 1/,

rij =
{

1 if zij > 0,
0 if zij < 0,

[αi|χi, α, τ2]=N.α, τ2/,

[χi|χ, ω2]=N.χ, ω2/,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.8/



84 Y.Yuan and R. J. A. Little

where rij is the response indicator. rij =1 for respondents and rij =0 for non-respondents. The
normal latent variable zij determines the response status of the subject j in the cluster i. If the
value of zij is greater than the threshold 0, the subject responds; otherwise, the subject does
not respond. The variance of zij is set to 1 since the scale of this latent variable is arbitrary and
not identifiable. Integrating over the latent {zij} is easily seen to yield a probit model for the
missing data process. The latent variable interpretation of the probit model has been discussed
by Albert and Chib (1993).

These models assume a CSNI mechanism where rij and yij are unrelated within clusters. An
outcome-specific non-ignorable (OSNI) response mechanism assumes that missingness of yij

depends directly on the value of yij. Such a mechanism is modelled by changing NI1 so that yij

has a linear regression on zij rather than its mean χi, i.e.

[yij|αi, zij, β, σ2]=N.αi +βzij, σ2/,

[zij|αi, χi]=N.χi, 1/,

rij =
{

1 if zij > 0,
0 if zij < 0,

[αi|χi, α, τ2]=N.α, τ2/,

[χi|χ, ω2]=N.χ, ω2/:

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.9/

We label this model NI2. This model can be viewed as an extension of the Tobit model
(Amemiya, 1984), which is commonly used in econometrics, with random effects to account
for the correlation of values of survey outcomes of participants in the same cluster. As in many
non-ignorable response models, such as Heckman-type selection models (Heckman, 1976), the
estimation of β here is heavily driven by the normality assumption of the latent variable and
linear relationship between yij and zij. Since these assumptions are untestable on the basis of
the observed data, subject-matter knowledge or external information may be required to justify
the assumptions.

Models (8) and (9) are special cases of the more general model

[yij|zij, αi, β, σ2]=N{αi +λβ.zij −χi/+βχi, σ2},

[zij|χi]=N.χi, 1/,

rij =
{

1 if zij > 0,
0 if zij < 0,

[αi|χi, α, τ2]=N.α, τ2/,

[χi|χ, ω2]=N.χ, ω2/,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.10/

which yields model (8) when λ=0 and model (9) when λ=1. It is tempting to try to fit model
(10) to the data, but in practice the parameter λ is at best weakly identified. This model might
form the basis of a sensitivity analysis with a range of fixed values of λ, and it is used to generate
data for the simulation study in Section 3.

2.3. Fitting the random-effects models
We could fit the models that are described in Section 2.2 by maximum likelihood. However, a
convenient alternative approach that also provides estimates of precision is to add non-infor-
mative priors for the fixed parameters, and to simulate draws from the posterior distribution of
the parameters. For reviews of the Bayesian approach to sample surveys, see for example Little
(2003, 2004). The Bayesian estimate that is discussed here is asymptotically equivalent to the
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maximum likelihood estimate (Gelman et al., 2004). Estimates for the RE and RERR models
are obtained by the Gibbs sampler (Gelfand et al., 1990). The Gibbs sampler for RE is easily
modified for RWRE by applying the modified weights. For example, for RE, μi is drawn from

[μi|yij, μ, σ2, τ2]=N

(
τ2

τ2 +σ2=ri
ȳi +

σ2=ri

τ2 +σ2=ri
μ,

τ2σ2

riτ2 +σ2

)
:

In contrast, for RWRE, μi is drawn from

[μi|yij, μ, σ2, τ2]=N

(
τ2

τ2 +σ2=mi
ȳi +

σ2=mi

τ2 +σ2=mi
μ,

τ2σ2

miτ2 +σ2

)
:

We use non-informative priors for μ in RE, or α and β in RERR, and diffuse inverse gamma
priors for σ2 and τ2. In particular for RERR

[α, β, σ2, τ2]∝ .σ2/−.a1+1/ exp.−b1=σ2/.τ2/−.a2+1/ exp.−b2=τ2/,

with a1 = b1 = a2 = b2 = 0:1, a value that is sufficiently small that the information in the data
strongly dominates the information in the prior distribution. The variance estimator based on
the RERR model might fail since RERR is an approximate model. We hence consider a boot-
strap variance estimator for RERR, which is less reliant on the model and more consistent
with design-based perspectives. For the models NI1 and NI2 we assume priors for the fixed
parameters of the form

[β, σ2]∝ .σ2/−.a1+1/ exp.−b1=σ2/,

[α, τ2]∝ .τ2/−.a2+1/ exp.−b2=τ2/,

[χ, ω2]∝ .ω2/−.a3+1/ exp.−b3=ω2/,

with a1 = b1 = a2 = b2 = a3 = b3 = 0:1, again so that the information in the data strongly dom-
inates the information in the prior distribution. Computation via the Gibbs sampler is again
straightforward, provided that the latent values {zij} are included as missing data. Details of fit-
ting NI2 are given in Appendix A. We monitored convergence of the Gibbs chains by graphical
inspection, and by the methods of Gelman and Rubin (1992) and Johnson (1996).

3. Simulation study

3.1. Description of study
Eight populations of M =ΣN

i=1 Mi =398886 values of a variable Y were constructed in 800 clus-
ters. Clusters sizes {Mi} were randomly generated from a uniform distribution with a minimum
size of 50 and a maximum size of 1000. The populations were then constructed by using model
(10). The parameter β determines the degree of non-ignorability of the missing data mechanism.
If β =0, the missing data mechanism is MCAR, and larger values of β correspond to stronger
degrees of non-ignorability. We simulated populations with two values of β, β = 0 and β = 10.
The parameter λ determines the extent to which the missing data mechanism depends on the
cluster mean χi and the value of yij itself. If λ= 1, the missingness of yij depends entirely on
yij, and we have OSNI non-response; if λ= 0, the missingness of yij only depends on χi, and
we have CSNI non-response. If 0 <λ< 1, the missingness mechanism is a mixture of CSNI and
OSNI non-response. We simulated data with three values of λ : λ=0, 0.5, 1. The correlation of
the outcomes within a cluster is an important characteristic that determines the shrinkage of the
random-effects models. We set .τ2 +β2ω2/=σ2 equal to 1/5 and 5 to generate a low intracluster
correlation of 0.17 and a high intracluster correlation of 0.84 for the outcome values. Since
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Table 1. Empirical bias, RMSE, change in RMSE relative to BD, average estimate of standard error
ESTSE and non-coverage rate of 95% confidence intervals (nominally, target = 25) for seven methods
under the (80, 10) design†

Simulation Method Summary outcomes
parameters

Bias (× 100) RMSE (× 100) RRMSE (%) ESTSE (× 100) Non-coverage
β λ CORR‡ rate

0 0 H BD −1 58 0 59 23
UW 3 67 14 67 29
WT 1 64 10 64 30
RE −3 64 9 61 32
RWRE 2 64 10 62 29
RERR 2 66 13 69 (65) 24 (30)
NI1 3 66 13 64 28
NI2 2 120 106 120 27

0 0 L BD 1 102 0 105 22
UW −5 127 25 129 23
WT 8 140 37 148 18
RE −6 128 26 121 28
RWRE 8 142 39 145 18
RERR 5 147 44 142 (152) 35 (21)
NI1 9 141 38 151 20
NI2 48 328 221 314 31

10 0 H BD 3 122 0 123 27
UW 415 431 253 119 467
WT 81 145 19 122 49
RE 110 161 32 114 88
RWRE 83 146 20 116 58
RERR −1 124 2 90 (123) 68 (29)
NI1 −5 126 3 127 29
NI2 −180 227 86 123 154

10 0 L BD 7 146 0 154 21
UW 455 483 230 165 396
WT 92 203 38 185 43
RE 326 365 149 164 257
RWRE 94 207 41 182 47
RERR −5 183 25 161 (186) 44 (29)
NI1 15 183 25 187 21
NI2 −851 914 525 332 364

10 0.5 H BD −3 123 0 128 23
UW 680 688 458 108 500
WT 411 423 243 104 491
RE 454 464 277 99 500
RWRE 413 425 245 100 493
RERR 343 358 190 86 (104) 479 (455)
NI1 339 355 188 106 444
NI2 −23 138 12 125 40

10 0.5 L BD 2 159 0 155 26
UW 688 706 344 155 496
WT 427 457 188 171 352
RE 613 632 298 151 489
RWRE 431 462 191 169 359
RERR 340 378 138 160 (173) 280 (251)
NI1 353 391 146 176 268
NI2 −383 512 222 333 98

(continued)
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Table 1 (continued )

Simulation Method Summary outcomes
parameters

Bias (× 100) RMSE (× 100) RRMSE (%) ESTSE (× 100) Non-coverage
β λ CORR‡ rate

10 1 H BD 2 141 0 131 32
UW 907 912 548 99 500
WT 728 734 421 92 500
RE 787 793 463 89 500
RWRE 731 737 423 89 500
RERR 676 683 385 89 (91) 500 (500)
NI1 671 678 381 97 500
NI2 31 156 11 147 30

10 1 L BD 3 157 0 157 23
UW 913 925 490 149 500
WT 734 751 379 165 492
RE 873 886 465 144 500
RWRE 737 755 382 163 493
RERR 668 688 339 158 (166) 488 (487)
NI1 674 693 342 170 486
NI2 57 358 129 346 28

†Values in parentheses are the corresponding quantities from the bootstrap.
‡H , high; L, low.

the scale of latent variable zij is unidentifiable and arbitrarily set as 1, to obtain differential
response rates across clusters, we set χ=1:4 and ω2 =1. Note that a large value of ω2 leads to
many clusters that are either all respondents or no respondents, which may not be of interest in
practice. The parameter τ2 is the variance of the random intercept αi. We simply set it arbitrarily
at 4 since what is of importance is to control the within-cluster correlation as above. The other
parameters in model (10) were chosen so that the superpopulation mean is 40 and the overall
response rate is 60%.

Two sampling designs were applied to these populations. In the first, which is denoted the
(80, 10) design, a first-stage sample of n = 80 PSUs (or clusters) was chosen by probability
proportional to size sampling, and a second-stage sample of m = 10 SSUs (or elements) was
selected from each sampled PSU, yielding a total sample size of 800. In the second design,
which is denoted (20, 40), n=20 PSUs and m=40 SSUs were selected in a similar manner. Each
sampling scheme was repeated 500 times for each population and the estimate of the finite popu-
lation mean from each method (UW, WT, RE, RWRE, RERR, NI1 and NI2) was com-
puted. The unweighted mean before deletion of the missing values (method BD) was also
computed as a bench-mark, although of course this method would not be available in
practice.

3.2. Results
Table 1 shows various summary statistics under each model over the 500 samples for the (80,
10) design, including empirical bias, which is the deviation of the average estimate over the 500
samples from the true finite population mean, the root-mean-squared error RMSE, which is
the square root of the average squared deviation of the estimate from the true population mean
over the 500 samples, the increase in the root-mean-squared error relative to the BD estimator
(RRMSE), which is defined as
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Table 2. Empirical bias, RMSE, change in RMSE relative to BD, average estimate of standard error ESTSE
and non-coverage rate of 95% confidence intervals (nominally, target = 25) for seven methods under the
(20, 40) design†

Simulation Method Summary outcomes
parameters

Bias (× 100) RMSE (× 100) RRMSE (%) ESTSE (× 100) Non-coverage
β λ CORR‡ rate

0 0 H BD 11 111 0 114 32
UW 3 122 10 124 31
WT 13 116 5 117 32
RE 11 115 4 124 30
RWRE 13 116 5 125 26
RERR 12 116 5 126 (121) 27 (30)
NI1 12 116 5 134 20
NI2 16 149 34 179 18

0 0 L BD 1 146 0 140 31
UW −17 171 17 165 30
WT −1 182 25 181 29
RE −13 167 14 170 27
RWRE 1 185 27 192 25
RERR 0 174 19 175 (174) 32 (32)
NI1 −5 171 18 176 29
NI2 18 345 137 358 22

10 0 H BD 4 235 0 233 23
UW 443 500 112 233 243
WT 31 248 5 246 31
RE 42 246 4 260 27
RWRE 31 248 5 261 28
RERR 12 247 5 146 (240) 122 (32)
NI1 3 244 3 244 27
NI2 −110 292 24 271 39

10 0 L BD 7 276 0 263 21
UW 440 513 86 259 197
WT 26 298 8 286 32
RE 175 318 15 278 56
RWRE 26 302 10 307 22
RERR 8 283 3 198 (272) 98 (32)
NI1 9 281 2 291 22
NI2 −857 992 260 490 186

10 0.5 H BD 10 247 0 249 26
UW 675 705 185 202 466
WT 371 420 70 201 232
RE 390 435 76 211 233
RWRE 371 420 70 214 209
RERR 357 407 64 143 (195) 332 (223)
NI1 351 403 63 225 170
NI2 28 253 2 234 42

10 0.5 L BD 19 267 0 263 22
UW 680 719 170 230 417
WT 375 450 69 250 183
RE 506 553 108 241 270
RWRE 378 454 70 267 163
RERR 352 426 60 196 (236) 224 (177)
NI1 351 427 60 271 133
NI2 −406 589 121 466 33

(continued)
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Table 2 (continued )

Simulation Method Summary outcomes
parameters

Bias (× 100) RMSE (× 100) RRMSE (%) ESTSE (× 100) Non-coverage
β λ CORR‡ rate

10 1 H BD 8 266 0 251 26
UW 907 926 249 177 500
WT 710 731 175 164 492
RE 739 758 185 173 497
RWRE 710 732 175 176 490
RERR 693 715 169 143 (160) 496 (491)
NI1 688 710 167 188 477
NI2 28 273 3 280 25

10 1 L BD 13 273 0 267 24
UW 919 944 246 213 493
WT 716 753 176 221 432
RE 814 841 208 217 475
RWRE 719 757 177 235 415
RERR 689 724 165 195 (209) 444 (440)
NI1 685 720 164 245 407
NI2 49 458 68 457 33

†Values in parentheses are the corresponding quantities from the bootstrap.
‡H , high; L, low.

RRMSE=100{RMSE(estimator)−RMSE(BD)}=RMSE(BD),
the average estimated standard error ESTSE, which is the average of the estimated standard
errors over the 500 samples, and 95% confidence interval non-coverage rate (nominally, we
expect 25). Table 2 shows the results for the (20, 40) design.

3.2.1. Missingness completely at random (β =0)
All methods are consistent when the non-response mechanism is MCAR. RE has the smallest
RMSE, reflecting gains in efficiency from shrinkage. UW, WT, RWRE, RERR and NI1 are
comparable in terms of RMSE and coverage. NI2 has satisfactory coverage but is less efficient
than the other methods.

3.2.2. Cluster-specific non-ignorable non-response (β =10, λ=0)
The missingness of yij depends only on the cluster mean χi in this CSNI non-response case.
UW has large bias and RMSE because of the lack of a non-response adjustment. WT has a
slight bias and undercoverage for the (80, 10) design, which comes from dropping clusters with
no respondents. RE has a substantial bias and poor coverage in this case since the missing
data mechanism is not MCAR as discussed in Section 2.2. The bias of RE is larger when
the within-cluster correlation is low and the number of SSUs is small. RWRE corrects or
nearly corrects the bias of RE and has very similar performance to WT. It also has a slight
bias and undercoverage for the (80, 10) design, since RWRE drops clusters with no respon-
dents.

As expected, NI1 has the best performance in terms of RMSE and coverage in this situ-
ation, since it is correctly specified. RERR has a very similar performance to NI1 in terms
of RMSE, suggesting that it is a useful approximate method when non-response depends on
clusters. RERR not only corrects the bias of RE but also has smaller RMSE than WT. However,
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the model-based estimate of variance of RERR leads to confidence intervals that undercover
the population mean. The bootstrap variance estimate leads to coverages that are closer to the
nominal rate, suggesting that the bootstrap variance estimate is robust to the model misspecifi-
cation that is caused by the approximation. NI2 has large bias and RMSE, especially when the
within-cluster correlation is low, suggesting the sensitivity of this method to the misspecification
of the missingness mechanism.

3.2.3. Outcome-specific non-ignorable non-response (β =10, λ=1)
In this OSNI non-response situation, non-response is related to individual outcomes within
clusters, and NI2 is the only method that correctly specifies the OSNI mechanism. As a
result, NI2 is the best method in term of RMSE and coverage, and the other methods all
perform poorly, although RERR and NI1 outperform WT, RE and RWRE in terms of bias
and RMSE.

3.2.4. Mixed cluster-specific and outcome-specific non-ignorable non-response (β =10, λ=0.5)
This mixed CSNI and OSNI non-ignorable missingness mechanism is somewhere between the
above two extreme cases with λ=0 and λ=1. None of the methods are satisfactory, although
NI2 does relatively well in the case of high within-cluster correlation. Thus there is no single
method that dominates the others consistently over all simulation conditions.

4. Application

The Detroit Research Center on Oral Health Disparities at the University of Michigan School
of Dentistry (also known as the Detroit Dental Health Project) is a multidisciplinary project
that seeks to understand how the broader social context in which families live affects their
oral health and well-being, and to design interventions that can have a positive effect within
these contexts. The principal theme of the project is to investigate why some African-American
children and their main care givers have better oral health than others who live in the same
community.

A two-stage equal probability sample was drawn from the 392000 census tracts within Wayne
County, Michigan, with the highest proportion of African-American households with income
less than twice the poverty threshold. Blocks within each targeted tract were listed by tract
and block number and a probability proportional to size selection method was implemented to
select blocks for listing. A total of 118 blocks were selected across the 39 tracts. At the second
stage, housing units within segments were selected by simple random sampling with the selec-
tion probabilities such that each housing unit has equal probability of selection, resulting in
12655 housing units selected for screening. The two main eligibility criteria were

(a) the household had at least one African-American child under the age of 6 years living in
the household and

(b) the family’s income is below 250% of the poverty level.

Of 12655 selected households, 1386 households were eligible and were invited to participate
in the study. The families who agreed to participate in the study were then asked to schedule
an appointment to come to the Dental Assessment Center, where they completed an interview
questionnaire and clinical dental examination. During this process, unit non-response occurred
either when households refused to participate in the study or when households who agreed to
participate missed their appointment at the Dental Assessment Center. The unit non-response
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Fig. 1. Sample cluster mean of log(BMI) against estimated cluster response rate

rate was about 40%. Item non-response arose when households failed to answer some questions
in the questionnaire but, for most questions, the item non-response rate was less than 5%.

We are interested in estimating the finite population mean of the body mass index BMI. The
estimated cluster response rates for BMI range from 0% to 100%, and the overall sample response
rate is 56.2%. To assess the relationship between cluster response rates and cluster means, we
plot cluster sample response rates against cluster sample means of log(BMI). Fig. 1 displays a
slightly linear trend with correlation coefficient 0.32, suggesting that the non-response mecha-
nism is not MCAR, and a CSNI or OSNI mechanism is indicated. This motivates us to apply
our methods to estimate the finite population mean of BMI. The logarithm transformation is
used to improve the normality of BMI data. Table 3 gives estimates of the finite population
mean of log(BMI) and associated standard errors for various methods. All methods except NI2
yield similar results, and the UW and RE methods do not appear seriously biased in this exam-
ple. RERR and WT appear somewhat less precise than other methods. The NI2 method has
considerably higher standard error than the other methods. In this study, non-respondents are
households who refused to participate in the study, or households who agreed to participate
but missed their appointment at the Dental Assessment Center. We do not have any data for
these non-respondents. From a statistical point of view, we cannot distinguish a CSNI or OSNI
missing data mechanism on the basis of observed data. In this case, the comparison between
NI1 and NI2 provides a form of sensitivity analysis for the CSNI and OSNI mechanisms of
non-response. The estimates of mean BMI from NI1 and NI2 are 29.8 and 20.6 respectively.
Instead of presenting a point estimate, we may report this range as the estimate. Unfortunately,
for this particular study, this is unsatisfactory since, according to the criteria of the Centers for
Disease Control and Prevention, a BMI of 20.6 belongs to the healthy category whereas a BMI
of 29.8 belongs to the overweight category.
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Table 3. Estimates of the finite population mean of log(BMI) by various methods for the
oral health disparities data†

Estimate Results for the following methods:

UW WT RE RWRE RERR NI1 NI2

ˆ̄Y 3.404 3.392 3.403 3.394 3.390 3.394 3.024
ESTSE( ˆ̄Y ) 0.0079 0.0103 0.0076 0.0078 0.0125 (0.0128) 0.0100 0.0265

† ˆ̄Y is the estimate of the population mean of log(BMI), and ESTSE( ˆ̄Y ) is the estimate of the
associated standard error. The value in parentheses is the corresponding quantity from the
bootstrap.

Although we cannot distinguish CSNI and OSNI statistically, we may understand the missing
data mechanism from behavioural origins of non-response. In this particular study, the survey
design requires fieldworkers to try to ask for the reason of refusal when eligible households
refuse to participate in the study. Although only part of these households give the reason for
refusal, we note that one major reason that eligible households refused to participate in the study
is that they had jobs providing dental insurance. Since higher education is associated with lower
BMI, and households with higher education are more likely to have a job with dental insurance,
we might expect a positive relationship between BMI and response rate. Because education is
an individual characteristic, we speculate that non-response is more likely to be related to an
outcome variable, and non-response is OSNI non-response. If we have to choose a single model
to report, we may favour the NI2 model.

Since this example did not give much indication of bias, we also ran a simulation under the
CSNI mechanism that yielded a correlation between the outcome and the response rate which
was comparable with that in this data set, and we compared the NI1 and UW estimates over 500
repeated samples. The UW method exhibited bias and undercoverage overall, but the estimates
for the two methods were similar for a substantial fraction of the data sets as shown by Fig. 2,
illustrating that properties cannot be inferred from the results of a single data set.
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Fig. 2. UW estimates against NI1 estimates for 500 samples from the population with CSNI non-response
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5. Conclusion

This paper proposes several model-based estimates of the finite population mean for two-stage
samples with unit non-response and compares them with existing methods by a simulation
study. When the non-response mechanism is MCAR, all methods are consistent, but RE has
the smallest RMSE owing to gains in efficiency from shrinkage. When non-response depends
on cluster means, UW and RE are subject to bias. WT is consistent but can be inefficient if
cluster response rates are variable. RWRE is a simple method to correct the bias of RE when
non-response depends on clusters, but, like WT, it may fail in the presence of clusters with-
out respondents. RWRE and WT have similar performances since the reweighting procedure
in RWRE is to adjust weights of responses to reflect the correct weights, following the same
reasoning as for WT. This similarity is especially pronounced in equal selection probability
designs as in our simulation studies. In this case, the estimate of population mean in equation
(6) is the same as WT since the adjusted κi in equation (7) is constant across clusters. RERR
is an approximate method to correct the bias of RE when non-response depends on clusters.
It overcomes the drawback of RWRE and also gives a solution to the potentially low ineffi-
ciency of WT by borrowing strength across clusters in this case. In our simulations, RERR
has a smaller RMSE than RE, RWRE and WT. A more rigorous extension of RE when non-
response depends on clusters is NI1, which yields estimates that are similar to those from RERR.
If the non-response depends on survey outcome, UW, WT, RE, RWRE, RERR and NI1 all
have large bias and large RMSE. NI2 addresses this problem and yields consistent estimates.
Although non-ignorable response models like NI1 and NI2 are attractive, we should be cautious
in applying them because they are sensitive to the misspecification of the missing data mech-
anism, the normality assumption of the latent variable and the functional form between the
outcome variable and the latent variable. Since these assumptions are untestable on the basis of
the observed data, subject-matter knowledge or external information may be required to justify
the assumptions.

A natural and important question given these findings is whether we can determine whether
the non-response mechanism is MCAR, CSNI or OSNI, and which model should be used.
A plot of cluster sample response rates against cluster sample means is useful for helping to
understand the relationship between cluster response rates and cluster means. More formally,
we can fit a linear regression model or nonparametric smooths and can test the relationship
between cluster response rates and cluster means. If there is no significant relationship between
cluster response rates and cluster means, RE may be justified. If the relationship is linear, then
RERR may be used to reflect this relationship. If the relationship is non-linear, we may consider
modelling it by using polynomial or spline techniques. Unfortunately, we cannot distinguish
non-response depending on cluster means from non-response depending on outcomes from the
plot. However, if auxiliary variables for non-respondents and respondents are available, e.g. from
census data, then we could compare the distribution of auxiliary variables of non-respondents
with that of respondents within a cluster. If there is no systematic difference, we might assume
that non-response is more likely to depend on cluster means and apply WT, RWRE, RERR
or NI1; otherwise, we may consider NI2. Since we do not have enough information to distin-
guish between alternative non-ignorable missingness mechanisms, it may be more appropriate
to apply more than one method and to compare results.

Given the fact that alternative non-ignorable missing data mechanisms like CSNI and OSNI
cannot be distinguished solely on the basis of observed data, the cognitive and social psy-
chological theory of survey participation provides an important way to understand the non-
ignorable non-response mechanism (Groves and Couper, 1998; Krosnick, 1991). Non-ignorable
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non-response can arise if the cause of the non-response is the value of the survey variable itself
or when causes of non-response are also causes of survey variables. The former case is most
likely in self-administered questionnaire surveys. With this survey design, the householders have
the opportunity to review the entire questionnaire before making the decision to participate.
If the underlying cause of refusal to participate is the psychological threat that is posed by
the topic in the survey, then the resulting non-response is most likely to be OSNI since the
sample subjects’ attributes on the survey variable are determining their probability of partici-
pating. In contrast, non-response in many interview-administrated surveys may be less directly
related to the survey variables because the respondent has only a general idea about the topic
of the survey. Nevertheless, as Groves and Couper (1998) noted, survey-specific characteristics
may cause interview-administrated surveys to be specifically subject to OSNI non-response. For
example, time use surveys measuring how people spend their time would be highly susceptible
to non-contact non-response. Individuals who are away from home most of the time are more
likely to be non-respondents through non-contact and are systematically different from others in
‘away-from-home’ activities, i.e. non-response directly depends on survey variables themselves.

It is probably more common that the survey variables that are measured do not cause non-
response, but, instead, non-reponse and survey variables share a common possible unobserved
cause. In these circumstances, CSNI non-response arises when the common cause is a cluster
level characteristic (or covariate). If the common cause is an individual level characteristic (or
covariate), OSNI non-response results. An example of this might be a two-stage cluster sam-
ple with schools as PSUs and students as SSUs. If non-response of students is deemed to be
related to school level variables (e.g. school location, financial situation or goodness of admin-
istration) that are also associated with survey variables of interest, then the non-response is
CSNI. However, if the non-response of students depends on individual characteristics such as
a student’s personality or academic performance, which also affect the survey variables, then
the non-response is OSNI. Of course, if the common cause variable is known for both respon-
dents and non-respondents, by conditioning on it, the non-ignorability of non-response can
be largely removed. When designing and implementing surveys, it is important to anticipate
systematic relationships between attributes of the survey request, the participant’s decision to
participate and the survey variable of interest, both for reduction of non-response and post-sur-
vey non-response adjustment (Groves and Couper, 1998). Understanding these relationships
greatly helps us to identify CSNI and OSNI non-response and to choose appropriate models
like NI1 or NI2 to achieve valid inference.

This paper focuses on two-stage cluster samples, but our models can be readily extended to
accommodate multistage cluster samples. To reflect the design feature of multistage cluster sam-
pling, we can use multilevel hierarchical models where different level within-cluster correlations
are modelled by different level random effects. In this case, CNSI and OSNI non-response arise
when non-response depends on clusters’ characteristics or survey outcomes respectively. It is
straightforward to adjust for OSNI non-response. The same latent variable approach as NI2
can be used to model the OSNI missing data mechanism. For CSNI non-response, the situation
is a little complex. In the context of multilevel hierarchical models, CSNI non-response can
associate with underlying cluster characteristics at different levels. In principle, we could extend
the NI1 model to allow the mean of outcome variable to depend on random effects of all levels.
However, since substantial within-cluster correlation may occur in only certain levels and also
for the convenience of estimation, it may be adequate just to model the relationship between
outcome variables and random effects of these levels.

In our simulation, the gains in efficiency of RE or RERR are modest. To focus on unit
non-response adjustments in this paper, our simulations adopted an equal selection probability
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design and the weights are solely attributable to non-response. However, from equation (2), it
is clear that if there are sampling weights, as in many survey designs, WT will be more variable;
then the RE and RERR methods have greater potential for gains in efficiency. For simplicity,
we have considered random-effects models that condition on cluster response rates alone, since
this relationship is particularly important from the point of view of a consistent estimate of the
population mean (Little and An, 2004). Other cluster level characteristics could be added to
our models as covariates if available. In particular, we have assumed here that the size variable
determining the first-stage selection probability is unrelated to the outcome. This assumption
can be relaxed by including the size variable as a covariate in the random-effects model.
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Appendix A: Gibbs sampler

Let yobs and ymis denote values of the survey outcome Y for respondents and non-respondents, and
z ={zij}, i= 1, . . . , n, j = 1, . . . , mi, denote values of the latent variable. Consider the kth iteration of the
Gibbs sampler. For non-ignorable response model NI2, the first step of the iteration is ‘data augmenta-
tion’ (Tanner and Wong, 1987), in which the missing yij and latent variable zij are generated from their full
conditional distributions. When rij = 1, i.e. yij is observed, zij is drawn from the following left-truncated
normal distribution TN:

[zij|yobs, rij =1, αi, β, χi, σ2]=TN[zij>0]

{
χi + β

β2 +σ2
.yij −αi −βχi/,

σ2

β2 +σ2

}
:

When rij =0, .yij , zij/ are drawn from the conditional distributions

[zij|yobs, rij =0, αi, β, χi, σ2]=TN[zij<0].χi, 1/,
[yij|yobs, z, rij =0, αi, β, σ2]=N.αi +βzij , σ2/:

Now, with augmented complete data .yobs, ymis, z/, parameters are drawn alternately.
α={αi}, i=1, . . . , n, is drawn from the conditional distribution

[αi|yobs, ymis, z, α, β, σ2, τ 2]=N

{
miτ

2.ȳi −βz̄i/+σ2α

miτ 2 +σ2
,

σ2τ 2

miτ 2 +σ2

}

where

ȳi =
1
mi

mi∑
j=1

yij

and

z̄i = 1
mi

mi∑
j=1

zij:

χ={χi}, i=1, . . . , n, is drawn from the conditional distribution

[χi|yobs, ymis, z, χ, ω2]=N

(
miω

2z̄i +χ

miω2 +1
,

ω2

miω2 +1

)
:

.β, σ2/ are drawn from the conditional distributions
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[σ2|yobs, ymis, z, α]= IG

{
a1 + 1

2

(
n∑

i=1
mi −1

)
, b1 + 1

2

n∑
i=1

mi∑
j=1

.yij −αi − β̂zij/
2

}
,

[β|yobs, ymis, z, α, σ2]=N

⎧⎨
⎩β̂,

(
n∑

i=1

mi∑
j=1

z2
ij

)−1

σ2

⎫⎬
⎭

where

β̂ =
n∑

i=1

mi∑
j=1

zij.yij −αi/

/
n∑

i=1

mi∑
j=1

z2
ij ,

and IG(·) denotes an inverse gamma distribution.
.α, τ 2/ are drawn from the conditional distributions

[τ 2|yobs, ymis, z, α]= IG
{

a2 + 1
2

.n−1/, b2 + 1
2

n∑
i=1

.αi − ᾱ/2

}
,

[α|yobs, ymis, z, α, τ 2]=N

(
ᾱ,

τ 2

n

)

where

ᾱ= 1
n

n∑
i=1

αi:

.χ, ω2/ are drawn from the conditional distributions

[ω2|yobs, ymis, z, χ]=IG
{

a3 + 1
2

.n−1/, b3 + 1
2

n∑
i=1

.χi − χ̄/2

}
,

[χ|yobs, ymis, z, χ, ω2]=N

(
χ̄,

ω2

n

)

where

χ̄= 1
n

n∑
i=1

χi:
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