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Unobservable variables in econometrics are represented in one of three ways: 
by variables contaminated by measurement errors, by proxy variables, or by 
various manifest indicators and/or causes. This paper contains a discussion of 
models involving each of these representations, and highlights certain interest- 
ing implications that have been ‘insufficiently emphasized or completely 
unrecognized in the literature. 
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1. INTRODUCTION 

To the best of the author’s knowledge the term “latent variables”, as distinct 
from “observed variables”, was first used in the econometric literature by 
KOOPMANS (1949) in reference to the stochastic disturbances in a standard 
simultaneous equation model of supply and demand.’ 
Although strictly speaking such disturbances are indeed aiways unobservable, 
they have not been labeled as “latent” in the subsequent econometric litera- 
ture. Instead, the term “latent” has been reserved for unobservable variables 
other than stochastic disturbances. There are, in general, three main classes of 
such variables that may enter econometric models: (1) variables for which 
exact measurements are not available and which are represented by error- 
contaminated substitutes; (2) unobservable variables that can be represented 
only through closely related substitutes called “proxies”; and (3) variables that 
are intrinsically not measurable (and frequently not even properly defined) such 
as “permanent income” or “intelligence”, but that are related to a number of 
measurable (manifest) variables such as age, educational attainment, etc. The 
term “latent” has been used by various authors to refer to all of the three 
above types of unobservable variables (see, e.g., AIGNER et al. 1984, or AIGNER 
and DEISTLER. 1989), while other authors have used this term only in reference 
to the intrinsically unmeasurable variables (see, e g ,  GRILICHES, ( 1974), 
KMENTA, 1986, or GREENE, 1990). 
* Work on this paper was supported by the Netherlands Institute for Advanced Study. 
1. This reference was pointed out to the author by L.L. Wegge. 
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There are some important conceptual as well as practical differences between 
the three types of unobservable variables. The unobservable variables of the 
first type are typically well defined but imperfectly measured. The errors of 
measurement involved could, at least in principle, be reduced if not entirely 
eliminated if more resources were devoted to the task. For instance, it is gen- 
erally recognized that the U.S. national income data are now considerably 
more precise than they were years ago. And while errors of measurement can 
afRict both the dependent (endogenous) variables as well as the explanatory 
(exogenous) variables, econometrically interesting cases are only those involv- 
ing the explanatory variables. For the standard classical regression model, the 
well-known consequences of the presence of error-ridden explanatory variables 
are biasedness and inconsistency of the least-squares coefficient estimators. 

The situation with the second type of unobservable variables represented by 
proxies is different from the error of measurement case in that there are no 
measurements at all available for the variables in question, but we have obser- 
vations on closely related variables that can be used as surrogates. The most 
popular proxy variable in econometrics is a time trend, which is frequently 
taken to represent “technical progress” or other similar unobserved factors. 
Typically even if the unobservable variable is well defined, it could not be 
measured no matter how good the measurement instruments are. A good 
example of such a variable is capital stock as an input in a production func- 
tion, which is typically represented by its monetary value. Proxy variables nor- 
mally make their appearance as surrogates for explanatory variables, only 
rarely for dependent variables. The consequences of using proxy variables in 
place of their unobservable counterparts in a regression model are the same as 
in the case of measurement errors. 

Finally, unobservable variables of the third type denoted as instrinsically 
latent represent concepts that are typically well understood but rarely 
rigorously defined such as “intelligence” or “ability”. In econometrics they can 

,appear as either dependent or explanatory variables. However, unlike in the 
case of the first two types, there are no single measurable counterparts for 
them. Their presence in econometric (and other) models can be handled by 
characterizing each latent variable by a number of observable (manifest) indi- 
cators, such as scores on intelligence tests, school grades, etc., or by a number 
of observable causes, such parents’ IQ, schooling, etc. The best known latent 
variable in econometrics is probably “permanent income”, which can never be 
exactly measured but which is determined by a number of measurable factors 
such as current income, age, etc. Unlike in the case of proxy variables, a latent 
variable is never represented by just one measurable factor. 

Historically, the different types of unobservable variables appeared in 
econometrics in the same order in which they are listed above. In fact, models 
with variables tainted by measurement errors - the so-called “errors-in- 
variables” models - preceded models with correctly measured variables but 
confounded by the presence of a stochastic disturbance, the so-called “errors- 
in-equation” models. The development of the latter, begun by TINBERGEN 
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(1939) and the researchers affiliated with the Cowles Commission in the 1940’s 
and early 1950’s (see e.g., EPSTEIN, 1987), has pushed aside but never com- 
pletely eliminated the concern of econometricians with errors of measurement. 
Models involving errors in variables were given a great boost in econometrics 
by the introduction of the “permanent income hypothesis” model of consump- 
tion by FRIEDMAN (1957), in which the difference between the current income 
and the “permanent” part of it (the so-called “transitory” income) can be for- 
mally treated as an error of measurement. Models involving proxy variables in 
econometrics have also been around for a long time, but the associated prob- 
lem of biased estimation was largely ignored until the early 1970’s when 
MCCALLUM (1972) and WICKENS (1972) raised the issue of the “proxy variable 
dilemma”. The dilemma concerns a choice between including a proxy. variable 
and committing an error of mismeasurement, or excluding it and committing 
an error of specification. Finally, models involving intrinsically latent variables 
have not been seriously considered in econometrics until the path-breaking 
papers of ZELLNER (1970) and GOLDBERGER (1972). In these papers the 
authors addressed the problem of representing permanent income in a consid- 
erably more fundamental way than by a simple analogy to the errors-in- 
variables models. 

The purpose of this paper is to provide a broader perspective of models with 
unobservable variables from an econometric point of view, and to highlight 
certain implications that have been insufficiently emphasized or not at all dis- 
cussed in the literature. There is no intention to provide a complete survey of 
the field, which has already been done by AIGNER et al. (1984), or to single out 
a few problems for thorough attention. The organization of the paper follows 
the classification of unobservable variables discussed above. Section 2 deals 
with models whose estimation involves variables measured with error, and con- 
tains some suggestions for a new approach to the problem of hypothesis test- 
ing. Models with proxy variables are discussed in Section 3, which also 
includes a new proposal for dealing with the “proxy variable dilemma”. Sec- 
tion 4 contains some observations concerning models with intrinsically latent 
variables. 

2. ERRORS OF MEASUREMENT 

The standard representation of the measurement error problem in regression 
model with a single explanatory variable involves the relationship 

(1) 
where c, - N(O,$), E(c,cj)=O for all i # j ,  and x is an unobservable non- 
stochastic variable with a finite mean a finite variance for any sample size. 
However, instead of x we only observe XI defined as 

Y, = a + &I”, + c, (i = 1, 2, ..., a )  

XI = x; + w, (2) 
where w, represents the error of measurement. It is assumed that 
w, - N(o ,o$) ,  E(w,w,)=O for all i#j. and c, and w, are independent for all 
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i, j = 1,2 ,..., n. Substituting ( 2 )  into (l), we obtain 

Y, = a + px, + u, (3) 
where ui = E, - pwi . 

Since Xi and ui are correlated, the least squares estimators of a and p are 
biased and inconsistent. In particular, according to the well +own textbook 
result concerning the least squares estimation of P (denoted by p), 

= P - p e  (4) 

where o? is the limiting value (as n+m) of the sample ‘variance of X’ and 
e =a$/(o? +a$). 4 considerably less well known result concerns the asymp- 
totic variance of p which, according to SCHNEEWEISS and MITTAG (1986), is 
given as follows: 

As. Var [ &(b-plim i)] = e, -P2e2(3-4e 4- 2e2) ( 5 )  
A 

where ,e, =(a2 +pa:)/(o: +a:). The asymptotic distribution of p i: normal. 
Thus p is asymptotically biased towards zero. As a: + 00, both p and it; 
asymptotic variance approach zero, so that the asymptotic distribution of p 
tends to collapse at zero. When a’,=O, the asymptotic bias disappears and the 
asymptotic variance reduces to the standard expression a2/a:. The same result 
is obtained when p=O, the only time when the presence of measurement errors 
does not have a detrimental effect on the properties of the least squares estima- 
tors. When a’, < o?, the asymptotic variance of p can be approximated as fol- 
lows: 

AS. Var[A(j-pl im j)] NN e,-3p2e2. (6) 

This approximation appears to be quite satisfactory for most practical pur- 
poses. 

The small sample properties of the LSE of p have been derived by 
RICHARDSON and Wu (1970). If the terms of orter n - 2  in the degree of small- 
ness are dropped, the mean and the variance of p are 

~ ( $ 1  = p- be[ I - 2(e * / n ) l  

Var($) = [eC+p2a?a:(e? + e * > l / ( n  - 2 )  

(7) 

(8) 

and 

where e,=02/ (a?+a~)  and e, =a?/ (a?+a~) .  
For sample sizes greater than 18 the approximation is accurate to within 

one-tenth of one percent. From (7) it is clear that the bias increases as sample 
size increases, and it is largest - at its asymgtotic value given by (4) - when 
n + co. On the other hand, the variance of p decreases with increases in-Sam: 
ple size. I t  can also be shown that when a: < a?/3, the mean square error of p 
decreases as n increases. When p=O, the bias disappears and the variance 
reverts to its standard formula (except vor a small adjustment in sample size). 
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RICHARDSON and Wu (1970) also show that /3 has a noncentral t-distribution. 
The above findings suggest that the use of least squares estimators may be 

quite appropriate for the purpose of testing for the existence of a relationship 
between Y and X’ when the sample size is moderately large. This is so because 
under the null hypothesis that B=O, the LSE of /3 is unbiased and consistent, 
and its variance is given by the conventional formula. Further, when the size 
of the sample is moderately large, the distributions of the LSE of /3 should not 
be f? from normal. In order to carry out the test, we need an estimate of 
Var(/3). Let us consider 

Est.Var[&(j-/3)] = (Z;f/n)/(zx’f/n) 

where il =y,’-jx,’, and the primes indicate deviations from the respective 
sample means. Now 

plim ( 2 i f l n )  = plim Z[ - (j-/3)x,’+ U,’f 

= plim [ ( z u 1 ’ 2 / n ) - ( ~ - ~ 2 ( X x , ’ 2 / n ) I  

= (OZ + /32ai> - plim var (j) (a: + a:) 

when /3= 0. Further, 

plim(Zx,”/n) = a?+ai .  

p l i m ~ s t . ~ a r [ G ( j - / 3 ) 1  = OZ/(ut+ai) 

Thus 

so that the variance of p, when /3=0, can be consistently estimated by 

b t .  Var& = ( ~ i f / n ) / ( ~ x , ” ) .  

Therefore the presence of measurement errors poses no serious problems in 
testing the hypothesis that p=O against / 3 #  0 in the conventional way. It can 
be shown that this conclusion also holds when the regression model (3) is 
extended by including additional explanatory variables that are correctly meas- 
ured. 

When /3 # 0, consistent estimation becomes a problem. Its solution in the 
literature has typically been facilitated by the introduction of additional infor- 
mation, consisting of either specifying the value of a; (or &a?) apriori, or by 
postulating a relationship between X and some specified instrumental variable 
Z. Without additional information, the problem of consistent estimation of /3 
seems insolvable. The situation with respect to hypothesis testing looks some- 
what brighter. Specifically, let us consider testing the hypothesis that two 
regression equations have the same slope, i.e., H o : &  =B2, and let us replace 
the assumptions that X’ is nonstochastic by the assumption that X‘ is nor- 
mally distributed with variance at. In this case our Ho is equivalent to 

Ho: /3,ot/(o:+a2,) = /3*0?/(at+o$) 
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or 

Ho: Pi=P;. 
The parameters Pi and are consistently estimated by the LSE’s of PI and 
P2, respectively, and the only problem is to estimate their variances. The 
difficulty with the latter is that the formulas for the relevant asymptotic or 
finite sample variance given by (5), (6),  or (8) involve /? and not p’. However, 
by reference to (6) we can see that when a$ <a? - yhich is P e l y  in most 
practical situations - the upper limit of Var[ &(/3-plim@)] equals e, 
defined as (a’ +pai) l (a? +a$). 
The latter can be consistently estimated by 

e, = [ ~ f / n  I/[z(x, - %2/n  I. 
,. ,. 

Also, as noted earlier, in large samples PI and p2 are approximately normal. 
Using these results, we can carry out a conservative test (i.e., a test that will 
reject H o  less often than the nominal size of the test indicates) of the 
hypothesis of equal slopes in two separate regression equations. 

3. PROXY VARIABLES 

Let us consider the following classical regression model: 

X2P2 + u (9) Y = xlpl + 

Y +(nXl ) ,X1-+(nXK 

where 

and 

U - + ( n X l ) .  

We assume that U - iV(O,In),  and that XI and X2 are nonstochastic. (If X I  
and X2 are stochastic, then our results are conditional on their sample values). 
Suppose that X 2  is not observable but can be replaced by a set of proxy vari- 
ables 2 that are related to X2 and orthogonal to U. We then have a choice of 
using either a truncated model 

Y = X l P l  + UI 

Y = XI& + z y +  Uz 

(10) 

(1 1) 
where Z is the same dimension as X2 and y is a vector of constants. If we 
choose to estimate using (lo), we are facing an error of specification, 
whereas if we use (1 l), we face the problem of mismeasuring X2. The LSE of 
P I  based on (10) will be biased unless XI and X 2  are orthogonal; and the LSE 
of PI based on (1 1) will be biased unless Z is a perfect proxy for X2 (i.e., 
unless Z = X 2 A  for some A) .  Both, orthogonality of XI and X2 and perfect 
proxies, are rare in empirical econometric research. MCCALLUM (1972) and 

or a proxied model 
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WICKENS (1972) have compared the asymptotic biases of the two least squares 
estimators of and concluded that using the proxied model is preferable to 
using the truncated model. However, using a mean square error criterion, 
AIGNER (1974), FROST (1979), KINAL and LAHIRI (1983), and TERASVIRTA 
(1987) found that under certain conditions it would be preferable to use the 
truncated model. 

In this section we propose a criterion for deciding between the truncated 
and the proxied model that is different from that of asymptotic bias or mean 
square erro?. It is well known that biased estimation distorts the test statistic 
involved in testing hypotheses about P1 by turning the relevant central F dis- 
tribution into a noncentral F distribution, characterized by two noncentrality 
parameters. It then seems reasonable to suppose that the larger the 'magnitude 
of the noncentrality parameters, the greater the difference between the model 
in question and the true model (9). Our suggestion is to estimate the two non- 
centrality parameters involved and to use these estimates in deciding between 
(10) and (11). Our point of departure is a test of the null hypothesis 
Ho:P1 against HA :B1 # Pi, which we consider for each of the two com- 
peting models in turn. 

In the case of the truncated model, the F statistic appropriate for the test is 

where 

bl = Y-XIjl = MI Y, 
When Ho is true, it is straightforward to show that F ,  has a doubly noncen- 
tral F distribution with noncentrality parameters 
[&X;(Z - M 1 ) X 2 B 2 ,  B;X&IX2B2] and degrees of freedom [ K l , n  -K1]. 
Similarly, for the proxied model the appropriate test statistic is 

= (X;XI)-'X; Y, and M i  = l-X1(XiXi)-lXi. 

where 

u2 = Y-xIjI -zy ,  jl = (x;MzxI)-'x;MzY, 7 = (Z 'MIZ) -yZ 'MI  Y), 
and Mz = I - Z ( Z ' Z ) - ' Z ' .  

Again, it can be shown that F2 has a doubly noncentral F distribution with 
noncentrality parameters [B;X;M X2& &X2 (Mz -M) Xd321 and degrees of 
freedom [ K 1 ,  n - K 1  - K 2 ] ,  where 

M = Mzx,(x;Mzx,)-'x;Mz. 

2 The following analysis relies heavily on Sections 2 and 3 of BWITACHARYYA and KMENTA 
( 1989). 
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The specification of the noncentrality parameters involves X2p2 which is 
unknown and has to be estimated. 

The estimation of X2p2 can proceed as follows. First, we obtain the LSEs 
of Dl and y using the proxied model (11). Next, we form the following 
‘pseudo’ residuals: 

i. = Y-X1jl  (14) 

PI = (X;MZXl)-’X;MZY 

where 

as before. 
Substituting for Y from (9) into (14) we find 

= N(X2P2) + N U  

where 

N = I-XI(X;MzXI)-’X;Mz. 

Thus we have 

E(?) = N X 2 p 2 .  

Under the standard assumptions of the classical regression model, N + I as 
n += M. The LSE of ( X 2 p 2 )  can be obtained from (15) since N is observable. 
However, since N is singular, we have to minimize II V -  N(X2&)11 with respect 
to ( X 2 p 2 )  by using a generalized inverse procedure. If the resulting estimate is 
denoted by Q, and if a l l  and aI2 are the noncentrality parameters of the 
respective numerator and denominator of FI in (12), and L321 and 622 are the 
noncentrality parameters of the respective numerator and denominator of F2 
in (1 3), then we have the following ,. 

61 I : Q’<I - M I  )Q 
612: Q’MI Q 
62 I : Q’MQ 

622: Q’(Mz-M)Q 

A 

1 

A 

The above results can be used in choosing between the truncated and the prox- 
ied model. If we find that 

ill <i21 and iI2 <i22 
then, for the given set of data, the truncated model is closer to the true model 
than the proxied model. If the inequalities are reversed, the opposite conclu- 
sion holds. In other cases we can use the distance from the origin, i.e., 

and choose the model with a lower A value. 



Srarisrica Neerhlandica 45 (199 I ) ,  nr.2 81 

4. INTRINSICALLY LATENT VARIABLES 

Econometric models may contain variables which are intrinsically not measur- 
able but which may be characterized by various manifest indicators and/or 
causes. Such models have not been given much attention until the appearance 
of the seminal papers by ZELLNER (1970) and GOLDBERGER (1972). Both 
papers deal with the same problem of estimating a model of consumption with 
“permanent income” as a latent explanatory variable. The model, formulated 
as a “multiple cause model,” can be represented as follows: 

y =  x ’ p  + c, (164 

x * =  zn, ( 16b) 

x =  x *  + u, ( W  
where y, x * ,  x ,  E ,  and u are (n  X 1) vectors, p is a scalar, Z + (n X K ) ,  and 
n + (KX 1). The variable Y stands for consumption and X ’  represents per- 
manent income, which is unobservable but can be expressed as a linear combi- 
nation of observable characteristics Z. The stochastic disturbance c and the 
error term u satisfy all classical assum tions and are mutually independent. 
Their variance-covariance matrices are ci Z and citZ respectively. 

Both Zellner and Goldberger approaced the problem of estimating the 
unknown parameters of the model by forming the reduced form equations 

P 

y = zrp + c, 

x = Z n + l L  

Zellner roposed a two-stage procedure, starting with the estimation of u2 and 
ut by s and si which are defined as follows: P 

s2 = (n  -K)- ’0 ,  -Zi.)’(y -Zi.), 

s; = (n - K)- ’ ( x  - Z.;r)‘(X - ZG). 

where $ and 
obtained by applying the LS method to 

are the least squares estimators of the respective parameters 

y = zy + c, 

x = Zn + u. 

The second stage involves minimizing 

s = s -20,  - zn#3>lv - zap) + s,2(x - Z?r)’(Z - Zn) (17) 
with respect to #3 and n. Goldberger, on the other hand, proposed estimating 
u2, ui. p, and r simultaneously by maximizing the following log-likelihood 
function: 

L = constant - ( n / 2 )  logu2 -(2u2)-’ O, - Z T ~ ) I Q  - zrp) 
- ( n  /2)logui -(2u;)- ‘ ( x  - Zn)’(x - Zn). (18) 
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AIGNER at al. (1984, p. 1361) dismiss Zellner’s procedure because it is 
presumably based on ‘limited information” whereas Goldberger’s method is 
based on “full information.” However, the fact of the matter is that both pro- 
cedures lead to estimators with the same asymptotic properties, and Zellner’s 
method is computationally easier. The asymptotic equality of the two estima- 
tors could be expected by analogy with the two-stage Aitken and maximum 
likelihood estimation of seemingly unrelated regressions, see LAHIRI 
(197311974). If one were to adopt the approach of Zellner but would iterate 
instead of stopping with the second stage, the procedure would convergence to 
the MLE‘s of Goldberger, see OBERHOFER and KMXNTA (1974). If the values of 
a’ and at were known a priori, the two methods would yield identical esti- 
mates, as can easily be seen by comparing (17) and (18). 

The maximum likelihood estimators proposed by Goldberger are computa- 
tionally difficult. Their calculation could be considerably simplified by rewrit- 
ing (1 6) as 

y = x p  + Y, 
x = Zn + u, 

(194 

(19b) 
where v=c-uf l ,  and recognizing that (19a) and (19b) form a triangular sys- 
tem. For such systems LAHIRI and SCHMIDT (1978) proved that when the 
variance-covariance matrix of the disturbances is known or is efficiently 
estimated, the standard generalized least squares estimator is identical to the 
full information maximum likelihood estimator. Their suggestion is to treat 
(19) as a system of seemingly unrelated regressions and to use the iterative 
procedure IZEF proposed by KMENTA and GILBERT (1968). 

The introduction of the multiple cause model by Zellner and Goldberger 
was soon followed by more complicated models such as MIMIC and LISREL. 
These models are described in recent econometrics texts, and are thoroughly 
discussed in specialized volumes such as BOLLEN (1 989). However, as a perusal 
of applied econometric literature clearly shows, models with latent variables 
have not gained a great degree of popularity among empirical researchers. The 
reasons for this are not clear, since concepts for which there are no directly 
observable variables are quite common in economics. The warning concerning 
the inaccuracy of economic measurements issued by MORGENSTERN (1950) in 
the early days of econometrics has apparently gone largely unheeded to this 
day. 
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