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The proliferation of DNA sequence data has generated
a concern about the effects of “noise” on phylogeny
reconstruction. This concern has led to various recom-
mendations for weighting schemes and for separating
data types prior to analysis. A new technique is explored
to examine directly how noise influences the stability of
parsimony reconstruction. By appending purely random
characters onto a matrix of pure signal, or by replacing
characters in a matrix of signal by random states, one
can measure the degree to which a matrix is robust
against noise. Reconstructions were sensitive to tree
topology and clade size when noise was added, but were
less so when character states were replaced with noise.
When a signal matrix is complemented with a noise
matrix of equal size, parsimony will trace the original
signal about half the time when there is only one synapo-
morphy per node, and about 90% of the time when there
are three synapomorphies per node. Similar results
obtain when 20% of a matrix is replaced by noise. Succes-
sive weighting does not improve performance. Adding
noise to only some taxa is more damaging, but replacing
characters in only some taxa is less so. The bootstrap
and g1 (tree skewness) statistics are shown to be uninter-
pretable measures of noise or departures from ran-
domness. Empirical data sets illustrate that commonly
recommended schemes of differential weighting (e.g.,
downweighting third positions) are not well supported
from the point of view of reducing the influence of noise
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nor are more noisy data sets likely to degrade signal

found in less noisy data sets. © 1999 The willi Hennig Society

INTRODUCTION

For the purpose of this paper, “noise” is random data.
Although this noise may form a pattern by chance, such
a pattern is not due to phylogeny or to systematic error.
Cracraft and Helm-Bychowski (1991:208) equated large
amounts of noise with homoplasy, but the relationship
is not so simple. Homoplasy can emerge as reversal or
convergence on a cladogram and is analogous to noise
in the present sense if there is no particular bias in
how such homoplasy occurs. In contrast, as a bias
grows, say, by convergent changes in limb, ear, and
body shape accompanying increasingly aquatic habit,
homoplasy will be less noisy in the present sense and
become an adaptive signal in its own right. In a molecu-
lar framework, bias caused by base composition, codon
usage, or transition—transversion ratios also confers
structure on the data and is not random. Thus, there
exists a spectrum between homoplasy that is noisy and
homoplasy that is structured. Whether such structure
is problematic (e.g., Collins et al., 1994; Lockhart et al.,
1994) or should be seen as additional and legitimate
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historical information (see also Eyre-Walker, 1991) is
outside the scope of this investigation. The present
paper deals only with the end of the spectrum at which
a pattern disagrees with historical ancestry by chance
alone. This focus does not diminish the force of our
findings because noise is frequently cited as a threat
(below), but it seems to be very little studied in compar-
ison to the issue of conflicting signals.

There is a general concern that random base changes
(noise) can be a problem. One reasonable origin for
this view would be that silent substitutions at the third
position of a codon may not be part of any historical
signal. For example, Avise (1994:34) reports “many mo-
lecular data, even those in the form of qualitative char-
acter states such as protein electromorphs or DNA
sequences, are not particularly well suited for strict
Hennigian cladistic analysis, in part because of the
high risk of homoplasy at the level of individual elec-
tromorph or nucleotide character states.” In a similar
vein, Hillis (1991:278) states “In order to use these data
... itis critical to distinguish sequences that are satu-
rated by change from those that are phylogenetically
informative.” This importance of noise seems to be a
given (see also Felsentstein, 1988b; Simon et al., 1994),
such that weighting schemes are often validated as
being “an essential step in extraction of the phyloge-
netic signal from a background of random noise in
DNA sequence change” (Knight and Mindell, 1993:18).
Down-weighting or eliminating third positions is com-
mon as a way to account for saturation, that is, noise
(e.g., Mindell et al., 1995; Naylor and Brown, 1997).
Sidow and Wilson (1992:53) discarded all transitions
so that “historically relevant information can be in-
dentified and distinguished from noise.” Similarly,
Naylor and Brown (1997) reinforce this view by offer-
ing “a way to select objectively for data with maximum
‘signal-to-noise’ potential.” Yet, even as the problem
grows in status, there is little to demonstrate whether
it is only one of many small thorns or a crippling flaw
that requires drastic surgery. It is rare to find helpful
statements as to when noise is or is not a problem for
phylogeny reconstruction, and the few that exist are
closely tied to specific empirical examples. Friedlander
etal. (1994) stated that a sequence divergence threshold
of 20% marks the limit of reliable reconstruction; Eer-
nisse and Kluge (1993) found that 0.2% error in re-
cording the primary data can change results 12% of
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the time. Yet, for all of its apparent rarity, such work
regarding the various ways in which noise can be intro-
duced to an analysis and its effects would seem to be
a necessary foundation for the perception that noise
generally is bad.

One common view is that larger data sets may over-
whelm smaller ones even if the smaller of the two
contains more phylogenetic information. This concern
is raised particularly when large molecular data sets
are to be combined with smaller morphological ones
(Miyamoto, 1985; Hillis, 1987; Hedges and Maxson,
1996). The root of this opinion is that the greater volume
of the molecular data can include sufficient random
noise to contravene phylogenetic signal in the morpho-
logical data. Yet, there is an important distinction be-
tween great qualitative morphological change and
great quantitative molecular change insofar as it relates
to the methodology of phylogeny reconstruction. Mor-
phologists rightly code qualitatively different parts as
different characters. Both a bird and a rhinocerous have
three functional digits, but these are coded differently
because one animal has a wing and the other a foot.
Morphological data tend toward more characters and
fewer states—in the extreme, binary data for all charac-
ters. In contrast, DNA sequence data generally do not
expand the number of possible states as the taxa in-
crease. Consequently, there are more possibilities to
introduce noise into molecular data. However, largely
unrecognized is the fact that because there are so many
ways to arrange four states among taxa, the chance of
assembling DNA data by random to controvert legiti-
mate signal also is lower. Thus, although the chance
for noise may be higher in molecular data, the chance
of noisy data forming a pattern is lower. The degree
to which these opposite tendencies balance has never
been addressed.

This paper offers a direct examination of the effects
of noise on hierarchical signal. Noise can be introduced
either as a result of more (unstructured) characters
added to an initial data set or by replacing data with
unstructured changes as is argued to occur with long
branches. We examine the effects on contrived and
empirical data sets. Our direct measures of stability
against noise are compared to several other measures
that have been promoted to guard against poorly sup-
ported phylogenetic hypotheses and are found to have
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general implications regarding combinability and the
necessity of sanitizing data prior to analysis.

MATERIALS AND METHODS

We considered two fundamental ways in which noise
could be investigated: addition of noise or replacement
with noise. With the addition of noise, the original data
are left undisturbed and a percentage of the original
number of characters are added to the matrix as supple-
mental random characters; if, for example, there were
100 characters in the original matrix and 100% noise
is “added,” the new matrix would have 200 characters,
half of which are random noise. The original data are
left undisturbed. In this case, for each additional char-
acter added, each taxon is assigned one of four possible
states chosen at random. This, then, emulates the addi-
tion of nucleotide characters that are meaningless in
their entirety, not unlike the supposition that, say, third
positions in codons might be wholly meaningless (e.g.,
Knight and Mindell, 1993; Mindell et al., 1995, 1996;
Mindell and Thacker, 1996; but see Cummings et al.,
1995). The replacement method, in contrast, confounds
otherwise meaningful information in the original ma-
trix by replacing a portion of the character states in
that matrix with random states. Here, the original ma-
trix and the perturbed matrix each have the same num-
ber of characters, but some of the original information
content is replaced. If, for example, there are 20 taxa
and 100 characters in the original matrix, and 10%
replacement is specified, then each character state for
each taxon in the original matrix is visited with the
possibility of replacement with a random character
state. For each cell in the matrix, an integer between
0 and 99 is chosen at random, if this number is less
than the specified percentage (e.g., 10), then that char-
acter state is replaced with one of four character states
chosen at random. Thus, no individual character neces-
sarily is completely informative nor necessarily com-
pletely uninformative.

It has been suggested that trees of differing topolog-
ies might be differentially stable (Rholf et al., 1990;
Guyer and Slowinski, 1991; Mooers et al., 1995) due
to differences in information content. To examine this
directly, we assessed the effects of noise on a perfectly
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imbalanced (pectinate) topology of eight ingroup taxa,
(@b (C (D EF G MHUN), and on a perfectly
balanced topology of eight ingroup taxa, (a b (((C D)
(E F)((G H) (117)))). Also, to assess the effect that noise
has in relation to support, for both topologies we began
with matrices having identical support for each clade
and ranging from one uncontroverted synapomorphy
per clade through five uncontroverted synapomor-
phies per clade.

For each of these topologies and each of these levels
of preexisting support, we assessed the frequency of
recovery of each clade defined by the unperturbed data
in 1000 perturbations of each of 100, 200, 300, 400, 500,
600, 700, 800, 900, and 1000% addition of noise, and
1000 perturbations of each of 10, 20, 30, 40, 50, 60, 70,
80, 90, and 100% replacement with noise.

All perturbations were accomplished with MooToo
(Siddall and Wenzel, 1997) coded in C and compiled
for the MS-DOS operating system environment. The
mojo option generates the perturbed data sets and
spawns Hennig86 (Farris, 1988) as a daughter pro-
cess—once to determine the clades in the most parsi-
monious tree(s) from the unperturbed data, and then to
determine the clades found from each of the perturbed
data sets. The frequency with which a clade is deter-
mined to be recovered is like that described by
Felsenstein (1985; see also Siddall, 1995). Because some
have argued in favor of weighting strategies as a suit-
able approach to reduce the confounding effects of
noise, we repeated each of the foregoing analyses but
with additional successive approximations commands
included (three rounds of “xs w” and branch breaking).

In addition to the foregoing contrived data sets, we
applied the same procedure to empirical data, includ-
ing Carmean and Crespi’s (1995) 18S rDNA data for
holometabolous insect orders, Wheeler et al.’s (1993)
arthropod data, and Hayasaka et al.’s (1988) mtDNA
data for primates. For each data set, we calculated
the frequency of recovery of clades found in the most
parsimonious tree(s) in 100 replicates of 20% noise re-
placement. Also, g1 (skew) statistics were calculated
(sensu Hillis, 1991) for each of these data sets with 100
replicates of 10, 20, 30, 40, and 50% replacement with
random noise. For comparative purposes, bootstrap
support (BS) values were calculated for each clade in
each analysis.



54

RESULTS

Figures 1 and 2 illustrate, by way of shaded spline
contour plots, the mojo values found for each combina-
tion of parameters investigated. The ordinate is ex-
pressed as a percentage of the original data matrix size
and the abscissa is expressed in terms of the number
of taxa in each clade. Darker shading indicates poorer
recovery of clades defined by the unperturbed data.

Preliminary perturbations in which noise was sup-
plemented to the original data (i.e., “added”) at less
than 100% of the original matrix size were so stable
that we did not fully investigate these levels. Instead,
we restricted analyses to increments of the size of the
full matrix (i.e., 100, 200, ... 1000%). These revealed
both a noticeable effect of tree shape and an expectedly
strong relationship to the number of synapomorphies
per clade (Fig. 1). The pectinate topology was more
stable to the addition of noise than was the balanced
tree, with the former requiring approximately twice
the percentage of added noise to obtain a similar sup-
pression of signal. There also was a noticeable effect
of clade size, with intermediate sizes being more sus-
ceptible to loss than either the two-taxon or the eight-
taxon clade. Irrespective of clade size or tree shape,
one uncontroverted synapomorphy was sufficient to
ensure a better than even (>50%) chance of recovering
clades when only half of the data matrix was signal
(i.e., additional 100% noise). The presence of three un-
controverted synapomorphies was sufficient to achieve
90% at this level of noise. Doubling the number of
synapomorphies for a clade was accompanied by an
approximate doubling of the amount of noise required
to suppress the signal.

The ability to recover a clade when a portion of the
existing signal is replaced with noise was less suscepti-
ble to clade size or shape (Fig. 2). All clades, regardless
of number of included taxa, were recovered with ap-
proximately equal frequency in the presence of the
same amount of noise replacement wherein the amount
replaced was less than 60% of the matrix size. At more
severe levels of replacement, a clade-size effect was
noticed. Also, clades in the pectinate tree were only
marginally more stable than those in the balanced tree.
Generally, replacement of between 20 and 40% of the
character states in these matrices was well tolerated
depending on the number of synapomorphies per
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clade. With even only a single synapomorphy, at least
one-fifth of the character states must be noise for there
to be a less-than-even chance of recovery. With three
synapomorphies, 20% overwrite with noise yields ap-
proximately 90% recovery, and roughly one-third of
the matrix had to be replaced with noise to reduce
recovery rates to less than 50%. Additional synapomor-
phies (>3) did not confer proportionally increased sta-
bility against noise replacement.

The application of successive approximations did not
appreciably counter nor enhance the deleterious effects
of having added noise to matrices or of replacing por-
tions of the matrices with noise. A slight benefit was
conferred on matrices to which random data had been
added, but values were essentially identical irrespec-
tive of weighting in matrices that had a portion of their
states overwritten with noise.

The 18S rDNA data set for holometabolous insects
resolved five clades in a strict consensus of 27 equally
parsimonious trees when (and in accordance with Car-
mean and Crespi’s analysis) sites having at least one
missing or ambiguous state were excluded (Fig. 3a).
The inclusion of these sites resolved one most parsimo-
nious tree (Fig. 3b). With or without missing and am-
biguous sites, the clade delimiting all ingroup taxa was
equally stable to 20% overwrite (i.e., replacement) with
noise (mojo = 100) as was the dipteran clade (mojo =
100) and the clade consisting of flea and scorpionfly
(mojo = 61). The neuropteran clade was more stable
with missing and ambiguous data excluded (mojo =
73) than it was when these data were included
(mojo = 53), whereas the halterian clade [= Strep-
siptera + Diptera (see Whiting et al., 1997)] was more
stable with all sites included (mojo = 97) than without
(mojo = 91).

The arthropod data set resolved a single optimal tree
(Fig. 4) when all data were included from morphologi-
cal characters, 18S rDNA sites, and ubiquitin charac-
ters. Not all of the clades found in the total evidence
solution were found by the individual data set parti-
tions. In any case, the frequency of recovery of clades
in 100 replicates of 20% noise replacement (Table 1)
indicates that the combined analysis generally was
more stable to these perturbations than could be ac-
counted for by any one of the individual data sets.
Twenty of 23 clades were more stable in the combined
analysis, and 12 of these were more stable than the
sum of mojo values found in the parts. Three clades
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FIG. 1. Effect of adding supplemental noise to contrived matrices in 1000 perturbations for each of 10 different percentages added (%) for
the fully balanced (B) and the fully pectinate (P) eight-taxon topology, and for different numbers of uncontroverted synapomorphies per

clade (ns).
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FIG. 2. Effect of replacing character states in contrived matrices with noise in 1000 perturbations for each of 10 different percentages replaced
(%) for the fully balanced (B) and the fully pectinate (P) eight-taxon topology, and for different numbers of uncontroverted synapomorphies
per clade (ns).
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FIG. 3. Strict consensus of 27 equally parsimonious trees (a) re-
sulting from parsimony analysis of Carmean and Crespi’s (1995; see
also Huelsenbeck, 1997) molecular data for holometabolous insects
in which sites with missing and ambiguous states were excluded,
and single most parsimonious tree (b) resulting when these sites
are included. Values at nodes are mojo values obtained from 100
replicates of replacing 20% of the matrix with noise.

in particular are notable. The arachnid clade of Mastigo-
proctus, Peucetia, and Nephila was not recovered in any
of the individual data set analyses and yet had a better-
than-even chance of recovery in the combined data set
(mojo = 53). Similarly, two of these taxa (Peucetia and
Nephila), although unstable to noise in the 185 rDNA
data analysis (mojo = 28), were considerably more
stable to noise in the combined analysis (mojo = 70),
even though the shortest trees for the other two data
sets did not support this clade. Similar results were
found for the grouping of Drosophila and Papilio.
Figure 5a illustrates a plot of pairwise taxonomic
determinations of transitions and transversions versus
total divergence for the third position of codons in
the primate mtDNA data set. As divergence increases,
numbers of transversions increase monotonically, but
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FIG. 4. Single optimal tree resulting from parsimony analysis of
the combined morphological, 185 rDNA, and ubiquitin characters
in the arthropod data set (see Wheeler et al., 1993). Numbers at nodes
correspond to clade numbers in Table 1.

TABLE 1

Frequency of Recovery of Clades in the Arthropod Data Set in
100 Replicates of Replacing 20% of the Original Matrix

with Noise

Clade Morph 18S Ubiquitin All data
1 75 — — 84
2 72 — — 86
3 78 65 — 95
4 74 27 — 85
5 95 — 12 100
6 74 — — 85
7 36 — — 25
8 64 30 — 68
9 61 28 — 79

10 74 1 — 90
1 — — — 53
12 — 28 — 70
13 31 — — 24
14 65 18 — 78
15 48 — — 66
16 30 30 71 85
17 71 25 — 81
18 — — — 36
19 — 13 — 39
20 — — — 6
21 — — — 27
22 — 94 — 92
23 — 43 — 87
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FIG. 5. The primate data set of Hayasaka et al. (1988) yielded a
typical saturation curve for third-position transitions relative to

transversions versus total divergence (a). Numbers at nodes (b) cor-
respond to clades in Table 2.

numbers of transitions quickly reach a maximum and
even begin to fall slightly at the highest divergence
levels. Table 2 details the frequency of recovery of
clades found in 100 replicates of 20% overwrite with
noise for various partitions of the codon serial homol-
ogy in the primate mtDNA data set. When first posi-
tions are considered alone, one clade was more stable
to noise than it was when either second positions or
third positions were considered alone. Second posi-
tions considered alone revealed five clades that were
more stable than in the other two positions. Three
clades were more stable to noise considering only third
positions than in the foregoing two partitions. Consid-
ering only third positions, two of these clades also
were more stable to noise than when first and second
positions were combined. All clades were maximally
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TABLE 2

Frequency of Recovery of Clades in the Primate Data Set in 100
Replicates of Replacing Portions of the Original Matrix

with Noise

All positions
Codon positions included? included
land 1+ 2+
Clade 1 2 3 2 3TV 20%°  40%° 50%°
1 48 98 87 99 100 99 84 73
2 63 76 T2 85 97 93 89 67
3 98 100 99 100 100 100 100 93
4 45 65 96 81 71 99 70 53
5 23 31 94 80 76 97 56 53
6 61 78 61 96 100 97 64 48
7 26 80 56 68 78 84 59 49
b 31 — — — — — — —
8 100 61 67 99 100 100 87 51
9a 60 31 78 — — 53 50 28
9b 3% 39 — 54 39 40 27 31

& All with 20% replacement with noise.
® Amount of replacement with noise for complete dataset.

stable to the addition of noise when all sites and all
transformation types were included, and six clades
were more stable than when third positions were
excluded.

Skewness statistics (g1) obtained from tree length
distributions of random trees (Fig. 6) showed a general
positive relationship with increasing proportions of
data matrices replaced with random noise. However,
this increase was not proportional to the increase in
noise. That is, for the arthropod and primate data sets,
the increase appeared to be sigmoidal, with the greatest
increase being between 30 and 40% replacement. Al-
though the holometabolan data set had the most nodes
unstable to addition of noise (see above), followed by
the arthropod and primate data sets, respectively, g1
statistics for these data sets did not follow a similar
arrangement.

DISCUSSION

Our findings suggest that, in most cladistic applica-
tions, noise may not be a general problem. The pertur-
bations in which we “added” noisy characters as a
proportion of the original informative matrix size were
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FIG. 6. Values of g1 obtained for the three empirical data sets with
increasing amounts of noise overwriting the respective matrices.

intended to emulate expectations of a class of charac-
ters being wholly unstructured (e.g., third positions or
gapped sites), and yet we have shown that fully one-
half of the characters in an analysis must be devoid of
phylogenetic signal prior to having a greater than even
chance of obliterating a single uncontroverted synapo-
morphy (Fig. 1). We suspect that most systematists
would shy away from choosing a gene with this magni-
tude of random nucleotide sites and would have great
difficulty even coding morphological data of this sort.
In particular, the concern that one-third of a matrix
(third positions) might be composed only of noise can
no longer serve as justification for avoiding these
genes, nor necessarily for eliminating these sites be-
cause this is far less than what is required for noisy
characters to contravene even one synapomorphy. The
simulations that replaced (or overwrote) the character
states in the original contrived matrices were intended
to simulate the problem of multiple substitutions that
might prevent the recovery of ancestral states. Again,
parsimony analyses are seen to be remarkably stable.
If the historical information in even 20% of the original
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matrix has been obliterated by random point muta-
tions, the presence of one uncontroverted synapomor-
phy still yields a better-than-even chance of the signal
being recovered. If there are three such synapomor-
phies (i.e., Bremer support (Bremer, 1988, 1994) or b =
3), the stability that the data have against the confound-
ing effects of noise is impressive.

Neither of these forms of investigating noise are new
ideas. Farris (1969) added wholly random characters
to matrices to determine whether successive approxi-
mations character weighting would apply lower
weights to characters with random phylogenetic mean-
ing (i.e., noise). They did, and our results further cor-
roborate this notion in that we found that slightly
higher levels of added noise were required to confound
successively weighted data sets. However, if matrices
containing signal are converted into matrices con-
taining characters composed partly of signal and partly
of noise, as in the character state replacement simula-
tions, there seems to be no effect of weighting. This is
perhaps not surprising insofar as any weighting strat-
egy must be applied to a character across all taxa
equally, and yet the confounding effects of noise may
well be restricted to only some taxa or some clades in
an analysis. The matrix replacement method of over-
writing character states also has been investigated pre-
viously (Eernisse and Kluge, 1993) in relation to the
possible deleterious effects that reverse transcriptase
sequencing errors can hold for phylogeny reconstruc-
tion. In light of the marked stability we have found
here in the presence of 20% of the matrix being over-
written, the problems found by Eernisse and Kluge
(1993) in the presence of only 0.2% replacement render
the Haematothermia conclusions of Hedges et al. (1990)
even more questionable than was previously thought.

The Mismeasure of Noise

Because clade size and tree balance biases were ap-
parent in the simulations in which we added noisy
characters, and not when we replaced (overwrote) sig-
nal with noise, we considered the latter procedure to
be more appropriate as an index of the stability of
clades to the problems that noise might pose for real
empirical data sets. The mojo index of 20% noise over-
write was chosen because one uncontroverted synapo-
morphy preserved the clade in more than half of the
pseudoreplicates, and three or more synapomorphies
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yielded values exceeding 90% recovery (numbers
which are perceived, by some, to be desirable).

Mooers et al. (1995) indicated that many published
trees had less balance than would be expected from a
Markovian null distribution and concluded that this
was an indication that many hypotheses had been con-
founded by the effects of noise. Our findings support
their view that pectinate trees are more stable to wholly
noisy characters than are balanced topologies (Fig. 1);
however, we doubt that half of the characters in very
many data sets are composed only of noise. Mooers et
al. (1995) did not acknowledge that even if there are
many topologies with more balance than the one ob-
tained, the one obtained still is a legitimate solution
in every case they examined. Given a series of four
tosses of a coin in which “heads” lands face up each
time and the knowledge that there are more ways (i.e.,
15) a series of four tosses will yield at least one result
of “tails” face up does not deny that a series of four
“heads” face up is possible and, in fact, was observed
(Stoppard, 1967).

There have been attempts to discover specifics of
signal and noise content in data sets. Cracraft and
Helm-Bychowski (1991:209; see also Swofford, 1991)
stated that constructing a majority rule consensus of
the top percentile of shortest trees “permits a detailed
description of the phylogenetic signal contained in the
data.” However, a clade not found in a tree only one
step longer than the most parsimonious may yet ap-
pear in much longer trees, and there is no biological
(or even mathematical) rationale for choosing the first
percentile as opposed to the tenth, for example. Cra-
craft and Helm-Bychowski (1991, see also Helm-
Bychowski and Cracraft, 1993) also advocated use of
BS values as a measure of signal to noise ratios, al-
though not in a statistical framework (contra
Felsenstein, 1985). However, for bootstrapping to be
relevant to noise, that noise must be distributed identi-
cally across all taxa and characters, otherwise there is
no justification for the sampling routine (Felsenstein,
1985; Noreen, 1989; Carpenter, 1992). In contrast, be-
cause mojo values are obtained from applying noise
across a matrix evenly, this will enhance the effects
of noise (or overwhelm inadequate signal) in certain
clades over others where this preexists differentially.
By way of example, a 70% BS value is considered to
be sufficient to represent “a true clade” (Lafay et al.,
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1995) or to be “reliable” and “significantly” well sup-
ported (Hillis and Bull, 1993; Felsenstein and Kishino,
1993), but in the arthropod data set, two clades with
approximately equal BS values (72 and 73, respec-
tively) have markedly different susceptibilities to noise
(mojo = 53 and 78, respectively).

Unlike the nodal values determined by mojo (or even
BS and majority rule consensus), Hillis (1991) proposed
the use of g1 (skew) statistics derived from the distribu-
tions of lengths of all possible, or randomly generated,
tree topologies (for like treatments published else-
where, see Huelsenbeck, 1991, as well as Hillis and
Huelsenbeck, 1992) as a whole-tree measure of noise,
and others (e.g., Lafay et al., 1995; Swofford, 1991) have
used this as a reliable indicator of signal strength. This
idea (e.g., Fitch, 1979; Goodman et al., 1979) is driven
by the premise that a “good” phylogeny will have
many steps between the shortest tree and the next
shortest trees. The results from the empirical data sets
(Fig. 6) demonstrate that although gl is related to
amount of noise (that is, as more noise is introduced
to a particular data set, the gl values are of lower
magnitude for that data set), the change in gl is not
proportional to change in amount of noise, and it is
not comparative across data sets. For two of the data
sets, gl values did not change after replacement of
more than 40% of the matrix with noise. If g1 was a
reasonable measure of the amount of noise in these
data sets, it would suggest that this level (40%) should
be sufficient to completely randomize the signal. How-
ever, it is clear (Table 2) that this is not the case. If
40% replacement with noise is sufficient to maximally
reduce the magnitude of gl (Fig. 6), it is nonetheless
insufficient to prevent the recovery of most clades in
the primate data set. All clades that were recovered
at a frequency of greater than 50% with a 20% noise
overwrite still had a better-than-even chance of recov-
ery with the replacement of 40% of the matrix with
noise, as did all but three with 50% replacement. More
dramatically, even with 50% replacement with noise,
the monkey clade still was recovered remarkably fre-
quently (mojo = 93). Therefore, g1 cannot be consid-
ered a reliable indicator of the amount of noise present
in a matrix in general, nor is it in any way indicative
of the relative effects of noise on the various clades
that comprise the most parsimonious tree(s).

Surely if one is interested in how much noise exists
in a data set, and the effect that it might have on a
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topology, the appropriate course of action is to use
noise directly as opposed to indirect measures like BS,
PTP, g1, or amajority rule consensus tree of an arbitrary
portion of near-optimal trees. Although we do not ad-
vocate interpretation of mojo values with an arbitrarily
chosen cutoff level as an indicator of “truth,” it is clear
that they can give areasonable and comparative indica-
tion of the magnitude of sensitivity to noise in different
clades. A marked sensitivity to noise, however, is just
that. It is not a rationale for rejection of clades any
more than highly variable bivariate data are reason to
reject the least-squares line as the best estimate of the
parametric regression line (see also Farris, 1983). It can,
however, provide an indication of which clades might
be expected to be most unstable to the addition of more
data or which clades may not justify bold biological
statements (cf. Huelsenbeck, 1997).

Combining Data Sets

The results reported here have strong and simple
implications for the question of whether it is better to
combine two data sets for phylogeny reconstruction.
For noise to overwhelm signal, some character states
must conspire by chance to contravene those that mark
phylogeny. Our results show that signal is additive
across different matrices, but that noise is averaged.
Consider two data sets of equal size with s support
and n% noise. Their combination will produce 2s sup-
port, but still only n% noise. This can be expected to
decrease the problem of noise by half (Fig. 1), even
though the analysis now includes twice as many noisy
characters. This is the basis for the results obtained by
Barrett et al. (1991), who showed that a signal too weak
to determine the tree in either of two data sets can
emerge to dominate in a combined analysis (see also
Chippindale and Weins, 1994; Bremer, 1996; Sullivan,
1996; DeSalle and Brower, 1997). Because the probabil-
ity of recovering signal increases with raw number
of synapomorphies, combining a few synapomorphies
from a bad data set with the few from a good data set
will go a very long way to obviating concerns about
noise from the bad data set. Therefore, our recommen-
dation is to combine data sets always (see also Wen-
zel, 1997).

Despite all we present here, some readers still may be
concerned that a small volume of good morphological
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data could be corrupted by a larger volume of molecu-
lar data. The arthropod data (Table 1) are instructive.
With a total of twice as many informative characters
contributed from the molecular data sets (200) as from
the morphological data set (97). Mojo values show that,
for 46 clade-by-clade comparisons between the mor-
phological data set and either of the molecular data
sets, the morphological data set is less stable to noise
in only five cases (11%). This suggests that the molecu-
lar data form a substantially less coherent pattern. Yet,
when all three data sets are combined, only 2 of 23
clades (clades 7 and 13) have lower mojo values than
they do according to morphology alone. Thus, even
though the molecular data were noisier, or have con-
flicting signals, hierarchical grouping was improved
in 21 of 23 cases by including them (and both of the
remaining 2 clades have rather low mojo values from
morphology alone to begin with).

Some have argued that morphology is not worth
including because molecules are more reliable (Hedges
and Maxson, 1996; Givnish and Sytsma, 1997; but see
Albertetal., 1994; and Eyre-Walker, 1991, for discussion
of molecular functional constraints). However, large
and reliable data sets will not be compromised by a
smaller set on the basis of noise alone (Fig. 1).

Saturation and Disinformation

Mindell and Honeycutt (1990) argued that the elimi-
nation of characters or taxa wherein multiple substitu-
tions have occurred “will reduce the amount of phylo-
genetically uninformative, or misleading, nucleotide
character change.” Graybeal (1994) advocated the
avoidance of genes showing more than 20% divergence
between some taxa. Hillis and Dixon (1991) chose 30%
divergence as an appropriate cutoff, whereas Fried-
lander et al. (1994) equivocated between these two val-
ues. Hillis and Dixon (1991), citing Swofford and Olsen
(1990), concluded that “it is best to delete from analyses
any regions where the alignment is questionable.”
Huelsenbeck (1997) followed this rubric in his attempt
to refute the halterian clade by eliminating more than
two-thirds of the data set, as did Carmean and Crespi
(1995). Others have taken the approach of investigating
the effects of alignment parameters more rigorously
(e.g., Wheeler, 1995; Whiting et al., 1997) rather than run
the risk of arbitrarily defining “questionable.” Often,
concern is restricted to the behavior of third positions,
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which “tend to become saturated with change” (Min-
dell et al., 1996). Nanney et al. (1989) argued that only
those sites that have changed once (i.e., ditypic) should
be included. Sidow and Wilson (1992), in their modifi-
cation of Lake’s (1987) method of invariants, suggested
that by confining their “analysis to transversional dif-
ferences only, the historically relevant information can
be distinguished from noise.” Knight and Mindell
(1993) stated that “a level of Tls near 50% indicates
that this class of change is saturated with multiple
changes and is therefore not an indicator of phylogeny
butis largely ‘noise’ ” (see also Mindell and Honeycutt,
1990). In some cases (e.g., Mindell et al., 1995) all
gapped regions in alignments as well as third position
transitions are eliminated, even though using all of the
data can refute the principle findings of such a study
(Siddall, 1997).

Novice phylogeneticists (and even perhaps the well
versed) surely must be frustrated with such a bewilder-
ing array of imperatives for ignoring their hard-won
data points. Martin (1995) was explicit in his preference
for a transversion-only solution of 10 trees over a total-
evidence single tree because of “the disturbing features
of [a] sister taxa relationship between Prionace and Gal-
deocerdo.” Graur (1985) too disbelieved his parsimony
analyses because they gave solutions that conflicted
with his preconceived notions of relationships. If in-
cluding all of the data results in a tree that coincides
with conventional wisdom, would proponents of data
triage still advocate the downweighting or elimination
of whole portions of data, even if doing so results in
a radically unconventional hypothesis? The argument
that third positions always are uninformative, or that
transitions are, has been so soundly refuted (e.g., Eyre-
Walker, 1991; Albert et al., 1994; Cummings et al., 1995;
Sullivan, 1996; Arias and Sheppard, 1996) that we can-
not understand the persistence of these ideas (e.g., Min-
dell and Thacker, 1996).

In the very worst case, truly saturated data will not
necessarily be misinformative. They might be misin-
formative, uninformative, or even informative. The pri-
mate data set reveals that the average sequence diver-
gence between Lemur and the other taxa is 30.5%, which
exceeds all of the cutoff values suggested above (Hillis
and Dixon, 1991; Friedlander et al., 1994; Graybeal,
1994) and this data set should be thought to be con-
founded by saturating noise across all sites. With re-
spect to third positions alone, the average divergence
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across all taxa was 31.5%, which would appear to ne-
cessitate at least the elimination of this portion of the
data. The data plotted in Fig. 5a show a classic satura-
tion of transitions in the third position of codons in
the primate data set. On the whole then, we should
expect that analyses of these data should be very unsta-
ble and readily confounded by the imposition of even
more noise. They are not. All three positions indepen-
dently find all of the clades found in the combined
data set. In many cases (Table 2) third positions alone
find clades with greater stability than do either first or
second positions alone. Moreover, in most cases, the
elimination of only transitions in the third position
actually reduced the stability of clades to the confound-
ing effects of noise relative to that found when third
position transitions are included. Thus, saturation
curves or percentage divergences cannot be anything
but misleading indications of whether one should in-
clude or exclude data. The reason for this is obvious.
The absolute divergence or relative number of transi-
tions between Lemur and Homo indicates little of sub-
stance in an analysis in which Homo groups with Pan
and not with Lemur. It is precisely because transitions
or third positions are going to be more informative than
transversions in recent divergences that they should be
left in an analysis.

Huelsenbeck’s (1997; see also Mindell et al., 1995)
assertion that elimination of all sites with gaps some-
how lessens the effects of alignment ambiguity also is
readily refuted in Fig. 3. His premise for avoiding these
sites was to reduce the effects of contributing noise
due to alignment. That premise is seen to be empty
because including those sites actually improves stabil-
ity to noise.

Weighting or eliminating portions of data is done to
reduce the putative effects of noise. It cannot be in-
tended to reduce the contribution a conflicting signal
might hold. With multiple signals one cannot presume
to know which is the “correct” one. Phylogeneticists,
even compartmentalists like Miyamoto and Fitch
(1995), are interested in understanding or uncovering
conflicting signals, not in eliminating or ameliorating
them (contra Bull et al.,, 1993 and Chippindale and
Wiens, 1994). Nor can weighting be intended to achieve
a more palatable hypothesis lest systematics be ren-
dered unempirical [or worse, self-fulfilling (Naylor and
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Brown, 1997)]. If one knows in advance what the rela-
tionships should be, there is not much point in looking
for them.
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