Mon. Not. R. Astron. Soc. 396, 2379-2398 (2009)

doi:10.1111/j.1365-2966.2009.14908.x

Estimating the redshift distribution of photometric galaxy samples — II.
Applications and tests of a new method

Carlos E. Cunha,!?3* Marcos Lima,>*> Hiroaki Oyaizu,"? Joshua Frieman"

and Huan Lin®

2,6

' Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA
2Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
3Department of Physics, University of Michigan, 450 Church St., Ann Arbor, MI 48109, USA
4Department of Physics, University of Chicago, Chicago, IL 60637, USA

3 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
S Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

Accepted 2009 April 14. Received 2009 April 14; in original form 2008 October 16

ABSTRACT

In Lima et al. we presented a new method for estimating the redshift distribution, N(z), of
a photometric galaxy sample, using photometric observables and weighted sampling from a
spectroscopic subsample of the data. In this paper, we extend this method and explore various
applications of it, using both simulations and real data from the Sloan Digital Sky Survey
(SDSS). In addition to estimating the redshift distribution for an entire sample, the weighting
method enables accurate estimates of the redshift probability distribution, p(z), for each
galaxy in a photometric sample. Use of p(z) in cosmological analyses can substantially reduce
biases associated with traditional photometric redshifts, in which a single redshift estimate is
associated with each galaxy. The weighting procedure also naturally indicates which galaxies
in the photometric sample are expected to have accurate redshift estimates, namely those that
lie in regions of photometric-observable space that are well sampled by the spectroscopic
subsample. In addition to providing a method that has some advantages over standard photo-z
estimates, the weights method can also be used in conjunction with photo-z estimates e.g. by
providing improved estimation of N(z) via deconvolution of N (zpne) and improved estimates
of photo-z scatter and bias. We present a publicly available p(z) catalogue for ~78 million
SDSS DR7 galaxies.

Key words: galaxies: distances and redshifts — galaxies: statistics — distance scale — large-
scale structure of Universe.

can be determined (Huterer et al. 2004, 2006; Ma, Hu & Huterer

1 INTRODUCTION

Optical and near-infrared (NIR) wide-area surveys planned for the
next decade will increase the size of photometric galaxy samples
by an order of magnitude, delivering measurements of billions of
galaxies. Much of the utility of these samples for astronomical and
cosmological studies will rest on knowledge of the redshift distri-
butions of the galaxies they contain. For example, surveys aimed at
probing dark energy via clusters, weak lensing and baryon acoustic
oscillations (BAO) will rely on the ability to coarsely bin galaxies
by redshift, enabling approximate distance-redshift measurements
as well as study of the growth of density perturbations. The power of
these surveys to constrain cosmological parameters will be limited
in part by the accuracy with which the galaxy redshift distributions
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2006; Zhan 2006; Zhan & Knox 2006; Lima & Hu 2007).

Photometric redshifts — approximate estimates of galaxy redshifts
based on their broad-band photometric observables e.g. magnitudes
or colours — offer one set of techniques for approaching this problem.
However, photo-z estimators are typically biased to some degree,
and they can suffer from catastrophic failures in certain regimes.
These problems motivate the development of potentially more ro-
bust methods.

In Lima et al. (2008) we presented a new, empirical technique
aimed not at estimating individual galaxy redshifts but instead at
estimating the redshift distribution, N(z), for an entire photomet-
ric galaxy sample or suitably selected subsample. The method is
based upon matching the distributions of photometric observables
(e.g. magnitudes, colours etc.) of a spectroscopic subsample to those
of the photometric sample. The method assigns weights to galax-
ies in the spectroscopic subsample (hereafter denoted the training
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set, in analogy with machine-learning methods of photo-z estima-
tion), such that the weighted distributions of observables for these
galaxies match those of the photometric sample. The weight for
each training-set galaxy is computed by comparing the local ‘den-
sity’ of training-set galaxies in the multidimensional space of pho-
tometric observables to the density of the photometric sample in
the same region. We estimate the densities using a nearest neigh-
bour approach that ensures that the density estimates are both local
and stable in sparsely occupied regions of the space. The use of
the nearest neighbours ensures optimal binning of the data, which
minimizes the requisite size of the spectroscopic subsample. After
the training-set galaxy weights are derived, we sum them in red-
shift bins to estimate the redshift distribution for the photometric
sample.

As Lima et al. (2008) show, this weighting method provides a
precise and nearly unbiased estimate of the underlying redshift dis-
tribution for a photometric sample without recourse to photo-z esti-
mates for individual galaxies. Moreover, the spectroscopic training
set does not have to be representative of the photometric sample, in
its distributions of magnitudes, colours or redshift, for the method
to work. (By contrast, the performance of training-set-based photo-
z estimators generally degrades as the training set becomes less
representative of the photometric sample.) The only requirement is
that the spectroscopic training set covers, even sparsely, the range of
photometric observables spanned by the photometric sample. The
weighting method can be applied to different combinations of pho-
tometric observables that correlate with redshift — here, we confine
our analysis to magnitudes and colours.

In this paper we present additional applications of the weighting
method, test its performance on simulated data sets and show results
of those applications using data from the Sloan Digital Sky Survey
(SDSS). The applications of the weighting method naturally fall
into two categories, those that enhance photo-z estimators and those
that (potentially) replace photo-z estimation. In the first category,
we show that the weighting method can be used to improve esti-
mates of the scatter and bias of training-set-based photo-z estimates
as functions of (true) spectroscopic redshift. Knowledge of such
errors are very important, since uncertainties in photo-z bias and
scatter are nuisance parameters that significantly degrade the power
of cosmological probes (e.g. Huterer et al. 2004; Ma et al. 2006;
Lima & Hu 2007). We also show that the weights can be used to
obtain improved estimates of the error distribution of the photo-zs,
P (Zphot|Zspec), and thereby improve the deconvolution procedure
used to infer the underlying redshift distribution, N(z), from the
distribution of photo-zs (Padmanabhan et al. 2005).

In the second category of applications, we consider the weight-
ing technique on its own, independently of ‘traditional’ photo-z
estimates. The accuracy of the weighting method in directly recon-
structing N(z) is affected by photometric errors and by sparse or
incomplete coverage by the training set of the space of photometric
observables spanned by the photometric data. We develop and test
a bootstrap technique to estimate random errors in the weighted
N(z) estimate and present a technique for detecting systematic er-
rors in it as well. We also discuss the effects of training-set non-
representativeness on the N(z) estimate. Perhaps most importantly,
we show that the weighting procedure can be used to estimate not
only the redshift distribution for the (entire) photometric sample,
N(z), but also aredshift probability distribution, p(z), for each galaxy
in the photometric sample. Such a distribution contains much more
information than a discrete photo-z estimate, Zpho. Use of p(z) in-
stead of zpn in cosmological analyses can potentially greatly reduce
the biases arising from photo-zs.

The paper is organized as follows. In Section 2 we review and
extend the weighting method for estimating the redshift distribution
and the redshift probability distribution, focusing in particular on
sources and estimates of errors in the method. In Section 3 we de-
scribe the actual and simulated SDSS galaxy catalogues that we use
to test the weighting method and its alternatives. We demonstrate
how the weighting method improves upon photometric-redshift es-
timates in the mock catalogue in Section 4, and we demonstrate its
effectiveness in estimating N(z), in comparison with photo-z-based
methods, in Section 5. We apply the new methods to the real SDSS
Data Release (DR6) in Section 6. We present our conclusions in
Section 7 and include some technical details of the analysis in the
appendices.

2 THE WEIGHTING METHOD

In this section, we briefly review and extend the weighting method
introduced in Lima et al. (2008). We define the weight, w, of a
galaxy in the spectroscopic training set as the normalized ratio of
the density of galaxies in the photometric sample to the density
of training-set galaxies around the given galaxy. These densities
are calculated in a local neighbourhood in the space of photomet-
ric observables e.g. multiband magnitudes. More formally, given a
training-set galaxy, we define its weight by

L
Np ot o1 ’

= (D
where Np ., is the total number of galaxies in the photometric
sample, and pp and pr are the local number densities in the space
of observables for the photometric and training sets,

PpT = Vorr > (2
where Np(r) is the number of photometric (training) set galaxies
within volume Vp(r).

We adopt a nearest neighbour approach to estimating the density
of galaxies in magnitude space, because it enables control of statis-
tical errors (shot noise) while also ensuring adequate ‘locality’ of
the volume in magnitude space. We define the distance d,g in mag-
nitude space between the oth and Sth galaxies in a (photometric or
spectroscopic) sample using a Euclidean metric,

Nm
(dop) = (my —mp)* = (my —m2)”, 3)
a=1

where N,, denotes the number of magnitudes (i.e. different pass-
bands) measured for each galaxy. We use this distance to find the set
of nearest neighbours to the ath object, i.e. the set of galaxies with
the smallest d,z4. For a fixed number of nearest neighbours N, if
we order the neighbours by their distance from the a'th galaxy, then
we can define the hypervolume in terms of the distance from galaxy
o to the N, nearest neighbour, indexed by v, i.e. V,, = (du, ).

Estimating the local density in the spectroscopic training set using
a fixed value for N(m,)r = N, ensures that the density estimate
is positive-definite and that the resulting weight is well defined. To
estimate the corresponding density in the photometric sample, we
simply count the number of galaxies in the photometric sample,
N (m,)p, that occupy the same hypervolume V,, around the point
m,. Since the densities are estimated in the spectroscopic and pho-
tometric sets using the same hypervolume, the ratio of the densities
in equation (1) is simply the ratio of the corresponding numbers of
objects within the volume, and the weight for the ath training-set
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galaxy is therefore given by

1 N(ma)P
Wy = .
Np ot N(mg)r

C)

Nyei can be chosen to balance locality, which favours small V,,,
against statistical errors, which favour large N;.

2.1 Weights and the redshift distribution N(z)p

As shown in Lima et al. (2008), by construction the weighted spec-
troscopic training set has essentially identical distributions of multi-
band magnitudes and colours as the photometric sample from which
it is drawn, even though the spectroscopic set is in general not rep-
resentative of the photometric sample. The weighting procedure in
effect corrects for that non-representativeness, provided the train-
ing set adequately spans the range of the photometric-observable
space covered by the photometric sample. Since the weighted train-
ing set has identical distributions of photometric observables as the
photometric sample, it is reasonable to assume that the former also
provides an accurate estimate of the binned redshift distribution of
the photometric sample,

NT,tot

Nowi=N@ <z<zlp=Y wN@ <z <2 6
B=1

where the weighted sum is over all galaxies in the training set.
Lima et al. (2008) show that this indeed provides a nearly unbi-
ased estimate of the redshift distribution of the photometric sample,
N(z)p, under suitable conditions. Examples of this application will
be discussed in Section 5.1.

2.2 Weights and the redshift probability distribution p(z)

Although knowledge of the redshift distribution for a photomet-
ric sample, N(z)p, is sufficient for many applications, there are of
course instances in which one would like redshift information about
individual galaxies in the sample. As noted in the Introduction,
photo-z estimators provide one approach to this problem. However,
photo-z estimates are limited by the fundamental assumption that
there is a functional relationship between the photometric observ-
ables and redshift. In fact, galaxies occupying a small cell in the
space of photometric observables will have a range of redshifts.
One can therefore associate that cell with a redshift probability dis-
tribution function (PDF), p(z|observables). The shape of the PDF
is determined by the choice of observables, the size of the cell, the
photometric errors and the range of spectral energy distributions
(SEDs) of the galaxies. If the PDF is narrowly peaked, photo-z esti-
mates can be both precise (small scatter) and accurate (small bias).
However, if the distribution is broad, skewed or multiply peaked,
then photo-z estimates will suffer large scatter, bias and potentially
catastrophic failures. The ubiquitous positive bias of photo-z esti-
mates for low-redshift galaxies and negative bias for high-redshift
galaxies are consequences of this fundamental assumption. Low-
and high-redshift objects can in some cases occupy the same cell
of magnitude space, but photo-z estimators will assign them all
essentially the same redshift.

To overcome these problems and avoid the biases intrinsic to
photo-z estimates, it is preferable to use the full redshift PDF for the
galaxies in a small cell in the space of photometric observables, p(z)
= p(z|observables). This PDF encodes all the information available
about the redshift of an individual galaxy in a photometric sample.
One can choose to extract a single redshift estimate from the PDF,
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e.g. its mean, median or mode, but often that is not necessary in
applications.

The weighting method described above can be straightforwardly
applied to estimate p(z) using a spectroscopic training set. The
estimator p(z) for a galaxy in the photometric sample is given by
the weighted redshift distribution of its N,; nearest neighbours in
the training set, using the metric of equation (3),

Nnei

P = wpdlz —zp), (6)
B=1

where, as before, N, can be determined from simulations by mini-
mizing the sum of the shot-noise and ‘non-locality’ errors. In prac-
tice, we estimate p(z) in redshift bins. This estimate for p(z) was used
in a study of galaxy—galaxy lensing by Mandelbaum et al. (2008)
and was shown to yield significantly smaller lensing calibration bias
than use of photo-z estimates.

We can also construct a new estimator for N (z)p by summing the
D(z) distributions for all galaxies in the photometric sample,

Np ot

New =Y P2 ©)

i=1

This estimator is similar but not identical to that of equation (5). We
will see in Section 5.1.3 that these two are comparable in recovering
the true redshift distribution of a photometric sample.

2.3 Sources of errors in the weighting method

The errors arising in the weights method can be considered the errors
in estimating p(z| observables) for a galaxy in the photometric
sample from the information in the training set. Any differential
selection effect between the spectroscopic and photometric samples
will lead to errors in p(z). There are several kinds of selection
effects: (1) statistical effects, (2) large-scale structure (LSS), (3)
spectroscopic failures in the training set, (4) survey selection in the
photometric observables, (5) survey selection in non-photometric
observables and (6) non-locality of the weights.

Statistical errors arise because the training set is just a subsample
of the photometric survey and is subject to statistical fluctuations.
These fluctuations can be significant in regions of magnitude space
where the training set is very sparse. In such regions, the shot-noise
errors in p(z) will either be large or else the nearest neighbour
volume must be made large, leading to increased non-locality (see
below). Statistical errors can be estimated by bootstrap resampling
the training and photometric sets. If the magnitude errors are well
known, one can further Monte Carlo resample the magnitudes. We
present results of bootstrap error estimation in Section 5.1.4.

Errors due to LSS can be significant if certain regions of the
space of photometric observables are only represented in the train-
ing set by a spectroscopic survey that covers a small solid an-
gle, in which one or a few large structures dominate. In this case,
p(z|observables) for the training set will comprise one or a few red-
shift spikes rather than a smooth distribution. If these effects occur
in regions of magnitude space where the true redshift PDF is broad
or multiply peaked, they can potentially cause systematic errors in
the estimates of p(z) or N(z) for the photometric sample. The result-
ing errors may be large if the linear size of the training-set volume
is not large compared to the galaxy clustering correlation length.
The errors from LSS can in principle be estimated by constructing
mock training-set volumes using N-body simulations of structure
formation.
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Spectroscopic failures, i.e. targeted objects in the training set for
which redshifts could not be obtained, can also lead to systematic
errors in p(z) if the failures happen systematically, for instance, if
they occur preferentially for a particular galaxy spectral type and if
that type has a different redshift PDF from other galaxy types in the
same region of magnitude space. Since such spectroscopic failures
will tend to occur in specific and identifiable regions of magnitude
space, however, one can at minimum excise or down-weight those
regions in estimating quantities for the photometric sample (see
Section 2.4), at the cost of incompleteness.

The severity of these systematic errors is regulated by the width
of the redshift PDF. In the limit of a large number of photometric
observables with very small measurement errors and a large spec-
troscopic training set, the redshift PDF in a small cell in magnitude
space approaches a § function. In this regime, the effects of LSS and
of spectroscopic failures would be simply to increase the statistical
errors in certain regions of observable space, an effect accounted for
in the bootstrap error estimate. As one moves away from this ideal
limit, the systematic errors grow, in the sense that one can no longer
reliably estimate p(z| observables) for a galaxy in the photometric
sample from its training-set neighbours. That effect is not captured
by the bootstrap and must be estimated by other means e.g. using
simulations. The mock SDSS DR6 catalogue we have constructed
for this paper (see Section 3.2) does not simulate LSS or spectro-
scopic failures; we plan to study such effects in the future. Some
of the surveys that comprise the training set for the real DR6 data
are individually affected by LSS effects. Having a combination of
them helps to alleviate the problem, though more testing is required
to quantify the possible systematics.

LSS and spectroscopic failures lead to unavoidable differences
in the selection functions for the photometric and spectroscopic
samples. In addition, there are differential selection effects that are
built in by those designing the spectroscopic survey. For example,
one typically makes magnitude and colour cuts in selecting spec-
troscopic targets from a photometric sample. In this case, where the
selection is made explicitly in the photometric observables, there
will be regions of observable space where the weights cannot be
used to reliably estimate redshift distributions. Again, such regions
are known from the target selection cuts and can be safely excised
from the photometric sample (see Section 2.4). If, on the other
hand, there are differences in spectroscopic and photometric selec-
tion based on non-photometric observables, then systematic errors
in p(z) can occur.

A variant of this problem arises when the training set is selected
using photometric observables that are different from the ones mea-
sured in the photometric sample. For example, for the SDSS DR6
photometric catalogue, the spectroscopic target selection for the
Deep Extragalactic Evolutionary Probe 2 (DEEP2) sample in the
training set used a different magnitude system (coming from differ-
ent photometric samples) from the SDSS. Similarly, the selection
of the 2dF-SDSS Luminous Red Galaxy (LRG) and QSO (2SLAQ)
spectroscopic catalogue made use of photometric observables that
were not used in the photo-z estimation. Whether such cuts will
cause systematic errors depends on how well the selection in those
systems can be approximated using the SDSS ugriz filters.

Finally, the non-locality of the weights solution is a source of
systematic error. Here, non-locality refers to the fact that, in the
nearest neighbour approach, we are using information from a fi-
nite volume to estimate the density at a point in observable space,
and the density varies over the space. This procedure corresponds
to applying a smoothing kernel to the density field. Non-locality
becomes a problem if the volume occupied by the neighbours (or

the scale of the smoothing kernel) becomes comparable to or larger
than the scale over which the density changes appreciably. In this
limit, the shape of the volume used to select the nearest neighbours
may be important. Non-locality errors are reduced by choosing a
smaller neighbour volume for the density estimate, but at the cost
of increasing the shot-noise errors. Ultimately, the combined er-
rors can be reduced by increasing the density of the training set
in a particular region of observable space, i.e. by measuring more
spectra.

2.4 Selecting the ‘recoverable’ part of a photometric sample

One of the necessary conditions for the weights procedure to work
is that the spectroscopic training set covers the same region of
photometric observables as the photometric sample. That is, the
weights can only recover the redshift PDF of a galaxy in the
photometric sample if it lies in the region of intersection of the
redshift—observables hypersurfaces of the training and photometric
sets. Defining this region of intersection is not always trivial, espe-
cially given the high number of dimensions that may be involved.
To do so, we count how many times a galaxy in the photomet-
ric sample is used in the weights calculation for all members of
the training set. By definition, photometric galaxies that are never
counted in the weights procedure are not in the region of intersec-
tion, hence the redshift distribution of those galaxies will not be
accurately recovered by the weighting procedure. We make use of
this criterion below. If one does not require the photometric sample
to be complete, one can choose to excise such galaxies from con-
sideration. Using several real and mock catalogues, we have found
empirically that using ~five nearest neighbours in the weights cal-
culation is optimal for determining the intersection region for the
mock catalogue.

As examples, consider the mock and real SDSS DR6 catalogues
of Section 3. From Figs 1(b), 2(b) and 3(b), one might expect that the
combined training set covers the same region of observables as the
photometric sample. However, using the definition of the previous
paragraph, more than ~43 per cent of the mock photometric-sample
galaxies are not used in the weights calculation, i.e. they are not
well represented in the training set. Fortunately, in the real SDSS
DR6 catalogue, by the same criterion we find that ~98 per cent of
photometric-sample galaxies with r < 22 are well represented in
the training set. It is important to apply such a recoverability test
whenever a training-set method is used.

3 CATALOGUES

To test the performance of the weighting method and compare it
with standard photo-z estimates, we employ two kinds of catalogues.
The first is drawn from the SDSS DR6 (Adelman-McCarthy et al.
2008) photometric sample and various spectroscopic subsamples of
it and allows us to display results of the weighting method on real
data. The second is a mock catalogue constructed to have properties
similar to the SDSS DR6 photometric and spectroscopic samples.
The goal of the mock catalogue is not to precisely reproduce all
features of the SDSS catalogue but to have a sample with realis-
tic spectroscopic and photometric features and for which we have
ground truth (i.e. redshifts and galaxy types) for all galaxies. In
this section, we describe the relevant features of the real and mock
catalogues, relegating the details to Appendix A.
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3.1 SDSS DR6 data

The SDSS DR6 photometric and spectroscopic data samples are
drawn from those used by Oyaizu et al. (2008a) to produce a neural
network photo-z catalogue.

3.1.1 Photometric sample

We use a random 1 per cent subset of the galaxies in the SDSS
DR6 Photoz2 catalogue described in Oyaizu et al. (2008a) as our
photometric sample. This subset contains approximately 769 582
galaxies with r < 22. The catalogue is approximately flux limited
at this magnitude limit. For details of the parent sample, see Appen-
dix A and Oyaizu et al. (2008a). The r magnitude, g — r and r —
i colour distributions are shown in the bottom right-hand panel of
Fig. 1(a) and the bottom panels of Fig. 2(a).

3.1.2 Spectroscopic training set

The spectroscopic training sample we use for SDSS DR6 is drawn
from a number of spectroscopic galaxy catalogues that overlap with
SDSS DR6 imaging. We impose a magnitude limit of » < 23 on
the spectroscopic samples as well as additional cuts based on the
quality of the spectroscopic redshifts reported by the different sur-
veys (see Appendix A). The SDSS spectroscopic sample provides
531594 redshifts, principally from the MAIN and LRG samples.
The remaining redshifts are 20 381 from the Canadian Network for
Observational Cosmology (CNOC) Field Galaxy Survey (CNOC2;
Yee et al. 2000), 1531 from the Canada—France Redshift Survey
(CFRS; Lilly et al. 1995), 11040 from the DEEP (Davis et al.
2001) and DEEP2 (Weiner et al. 2005), 654 from the Team Keck
Redshift Survey (TKRS; Wirth et al. 2004) and 52 762 LRGs from
the 2SLAQ Survey (Cannon et al. 2006).

The r magnitude and colour (g — r and r — i) distributions
for the spectroscopic samples are shown in Figs 1(a) and 2(a).
Although the magnitude and colour distributions of the combined
spectroscopic sample are not identical to those of the photometric
sample, the spectroscopic sample does span the ranges of apparent
magnitude and colours of the photometric sample. Fig. 3(a) gives the
spectroscopic redshift distribution for the combined spectroscopic
sample.

3.2 SDSS DR6: mock catalogue

Using spectral template libraries and observational data on the
redshift-dependent luminosity functions of galaxies of different
types, we have constructed mock photometric and spectroscopic
samples that reproduce the main features of the real SDSS DR6
samples. We describe these briefly below.

3.2.1 Mock photometric sample

The simulated SDSS catalogue contains 107 galaxies with red-
shift z < 2.0 and magnitude 14 < r < 22. We use the
LF_MOCK_SCHECHTER code from the KCORRECT package (Blanton
et al. 2003) to generate redshift, type and i—magnitude relations.
The inputs to the code are the redshift range, Schechter luminos-
ity function parameters and the ranges of absolute and apparent
r magnitudes. The code outputs a list of redshifts and apparent
r magnitudes. We set the range of absolute i-band magnitudes
to (=24, —14). Using data from the VIMOS VLT Deep Survey
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Figure 1. Normalized r magnitude distributions for the catalogues com-
prising the real SDSS DR6 (top: figure a) and the mock SDSS DR6 (bottom:
figure b) catalogues. In each figure, the top four panels indicate the distribu-
tions for the different spectroscopic subsamples (see text), bottom left-hand
panels indicate flux distributions for the combined spectroscopic samples
and bottom right-hand panels indicate distributions for the photometric sam-
ples. In each panel, Ny denotes the total number of galaxy measurements
used in each sample.

(VVDS), Zucca et al. (2006) estimated galaxy luminosity func-
tions and Schechter-function fits thereto for different galaxy types
in redshift bins of size Az = 0.2 from zpj, = 0.2 t0 Zmax = 1.5.
We fit simple polynomial functions to the Schechter parameters of
Zucca et al. (2006) to derive a continuous relationship between the
Schechter parameters M*, «, ¢*, redshift z and galaxy type 7', using
the centroid of each redshift bin for the fit. To regularize the fits, we
visually extrapolated the results of Zucca et al. (2006) to the z = (0,
0.2) bin and, where needed (for certain galaxy types), for the (1.2,
1.5) bin. The detailed fits are given in Appendix B.

Galaxy colours are generated using the four Coleman, Wu, &
Weedman spectral templates (Coleman, Wu & Weedman 1980)
— E, Sbc, Scd, Im - extended to ultraviolet (UV) and NIR
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Figure 2. Distributions of g — r and r — i colours for the catalogues com-
prising spectroscopic training and photometric sets for the real SDSS DR6
(top: figure a) and the mock SDSS DR6 (bottom: figure b). Top rows give
distributions for the SDSS spectroscopic sample, middle rows the distribu-
tions for the other spectroscopic samples and bottom rows the distributions
for the photometric samples. The real and mock SDSS spectroscopic colour
distributions differ primarily because the latter does not include LRGs.

wavelengths using synthetic templates from Bruzual & Charlot
(1993). These templates are mapped to galaxy SED type T (used by
Zucca et al. 2006) as (E, Sbc, Scd, Im) — T = (1, 2, 3, 4). To im-
prove the sampling and coverage of colour space, we have created
additional templates by interpolating between adjacent templates.
The redshift, » magnitude and type relations are first generated with-
out photometric errors; errors are then added to produce observed
magnitudes. Magnitude errors are modelled as sky-background-
dominated errors approximated as Gaussians that are uncorrelated
between the different SDSS filters.

The resulting magnitude and colour distributions for the mock
photometric sample are shown in the lower right-hand panel of
Fig. 1(b) and the bottom panels of Fig. 2(b). The redshift distribution
for the sample is shown as the dark grey region in Fig. 3(b). The
r magnitude distribution of the mock photometric sample peaks at
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Figure 3. Top, figure a: spectroscopic redshift distribution for the combined
SDSS DR6 spectroscopic training set. Bottom, figure b: spectroscopic red-
shift distributions for the mock SDSS DR6 training and photometric sets.

slightly brighter magnitude than for the actual DR6 photometric
sample, and the » — i distribution is slightly less peaked than that
of the real data, but overall the real and mock distributions are quite
similar in their photometric properties. As noted above, the goal of
the mocks is not to exactly reproduce the real data distributions.

3.2.2 Mock spectroscopic training set

We construct the mock spectroscopic training set by piecing to-
gether a variety of different catalogues with different selection
functions, each meant to qualitatively represent one of the spec-
troscopic training samples described above in Section 3.1.2. We
obtain each component catalogue of the training set by generat-
ing an independent realization of the mock photometric sample
and applying the selection cuts of the spectroscopic catalogue to
the realization. The selection cuts we use for each component
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Table 1. Mock spectroscopic training set properties: number of galaxies and photometric selection cuts

applied.
Catalogue Unique objects  All objects Selection cuts

mockSDSS 531672 531672 r<18.0

mockDEEP+DEEP2 2419 31716 g—r <2350 —i)—045,
g—r<19511<r—i<?2,
r<22

mockTKRS+CFRS+CNOC2 1827 23681 u<23g<23,
r<22,i<22

mock2SLAQ 11082 51251 ((r—i)—(g—r))/8=>0.55,
07(g —r)+12(r —i —0.18) > 1.6,
175 <i <1938,

05<g—-r<3r—i<?2

spectroscopic catalogue are given in Table 1. As discussed in
Appendix A2, many of the real training set galaxies are located
in the southern celestial stripe, which was imaged repeatedly by the
SDSS. In the real training set, multiple photometric measurements
of the same galaxy were treated as independent. We have simulated
this effect in the mock training set by regenerating the magnitudes
of each galaxy in the mock training sets as needed. The number of
unique mock galaxies and total number of galaxies (counting all
realizations of the same galaxy as different objects) are shown in
the second and third columns of Table 1. For comparison, we have
also generated spectroscopic catalogues with the same total number
of objects but using only unique objects. We found no discernible
differences in the resulting photo-zs or weights.

The r magnitude, colour (g — r and r — i) and spectroscopic
redshift distributions of the spectroscopic samples for the mock
SDSS DR6 data are shown in Figs 1, 2 and 3. As is evident from
comparison of the a and b components of Figs 1 and 2, there are
some noteworthy differences between the selection cuts used for
the mock training set and the actual target selection cuts applied in
constructing the spectroscopic surveys described in Section 3.1.2
and Appendix A2. For example, for the SDSS spectroscopic cata-
logue, the mock sample is flux limited at r = 18, while the actual
spectroscopic catalogue comprises the MAIN sample, with a flux
limit of » = 17.7, and the LRG sample, with red colours and a flux
distribution that peaks around r ~ 19. For the other spectroscopic
surveys, the actual photometric selection cuts were typically made
in non-SDSS passbands, while our mock data and selection cuts
were generated using the SDSS ugriz bands. Therefore, the mock
photometric cuts do not exactly match the actual cuts used. As a
result of this mismatch, e.g. the peak of the r magnitude distribution
of the mock 2SLAQ sample is about one magnitude fainter than the
corresponding peak in the real data, as shown in the upper left-hand
panels of Figs 1(a) and (b).

4 APPLICATIONS OF THE WEIGHTING
METHOD I: IMPROVING PHOTOMETRIC
REDSHIFT MEASURES

With the mock and real galaxy catalogues in hand, we can now test
the performance of the weighting method in different applications.
In this section, we describe the utility of the weighting method in
improving the performance of traditional photo-z estimates. In the
next section, we use the weighting method to directly estimate N(z)
and compare the results with photo-z-based estimates.

4.1 Estimating photo-z bias and scatter

We have applied an artificial neural network (ANN) photo-z esti-
mator, described in Appendix C and in more detail in Oyaizu et al.
(2008a), to the SDSS DR6 mock catalogue of Section 3.2. Despite
the fancy name, an ANN is simply a function which relates redshifts
to photometric observables. The training set is used to determine
the best-fitting value for the free parameters of the ANN. The best-
fitting parameters are found by minimizing the overall scatter (see
definition below) of the photo-zs determined for the training set
galaxies. The ANN configurations are not unique in the sense that
different sets of parameters can result in the same overall scatter. The
best-fitting parameters found after minimizing the scatter depend on
where in parameter space the optimization run begins. Hereafter we
refer to an ANN function using a given set of best-fitting parameters
as a neural network solution. The network is trained on the mock
spectroscopic training set described in Section 3.2.2 and used to es-
timate redshifts for the mock photometric sample of Section 3.2.1.
We have also trained and applied the network using the real DR6
data described in Section 3.1.

The results of the ANN photo-z estimator are displayed in Fig. 4,
which shows the inferred redshift zh versus true redshift zgpec.
Panel (b) shows the results for the mock spectroscopic training set,
while panel (c) shows the results for the mock photometric sample.
For comparison, panel (a) shows results for the real SDSS DR6
training set data. As was seen in Fig. 3(b), the redshift distribution
of the mock photometric sample is considerably deeper than that
of the mock training set. Not surprisingly, the photo-z errors as a
function of redshift for the mock photometric sample are somewhat
larger than one would estimate based on the training set (compare
the 68 and 95 per cent contours in panels b and c). This is a problem
since, for real (as opposed to mock) galaxy catalogues, one does
not have the information necessary to make panel (c), i.e. one can
only estimate photo-z performance using the training set. Since the
training set is, as in this mock example, usually not representative
of the photometric sample, the statistics of photo-z quality for the
training set are not accurate indicators of photo-z quality for the
photometric sample.

To make this point more quantitative, we consider two standard
statistical measures of photo-z quality, the scatter and bias as func-
tions of spectroscopic redshift:

Nj
o%(2)) = (/N D |zphoui — Zupeesil’s ®)

i=1
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Figure 4. zphor versus Zgpee for (from left to right): (a) the real SDSS DR®6 training set, (b) the mock SDSS training set, (c) the full mock photometric set and
(d) the recoverable mock photometric set, i.e. the part of the mock photometric set that is well represented in the training set. The dashed and dotted curves
enclose 68 and 95 per cent of the points in each zgpec bin. In the lower right of each panel, o is the rms photo-z scatter averaged over all objects in the catalogue,

and o g is the range containing 68 per cent of the objects in the distribution of zphot—2spec-

Nj
b(z)) = (1/N)) D Zphori — Zspec.i)s ©)
i=1
where N; is the number of objects in the jth zge. bin, i.e. with
true redshifts in the interval z; &= Az. Fig. 5 shows these measures
for the mock training sample (left-hand panels) and photometric
sample (right-hand panels) for five different neural network so-
lutions. These five solutions come from networks with the same

structure (same number of layers and nodes per layer, see Appendix

C) but with different initial values for the network weights wjg.
The left-hand panels of Fig. 5 show that the different solutions
yield essentially identical results for the scatter and bias for the
training set, but the right-hand panels show a dispersion of quality
measures for the photometric sample. We can address this issue
by working with the average of the five photo-z solutions for each
galaxy. The solid (black) curve in the top right-hand panel of Fig. 5
shows that the average photo-z solution results in a b(z) that is the
average of the biases of the individual neural net solutions, as may

0.1
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Figure 5. Upper panels: photo-z bias b versus zspec for the five neural network photo-z solutions for the mock SDSS sample: (top left) training set (unweighted)
and (top right) photometric set. Lower panels: photo-z scatter o versus Zspec for the five neural network photo-z solutions of the (bottom left) training set and

(bottom right) photometric set.
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Figure 6. (Left) photo-z bias versus zspec and (right) scatter versus zgpec for the weighted and unweighted mock SDSS training set as well as for the mock
photometric set and the recoverable photometric set. The weighted training set results more accurately match those for the photometric set and very accurately

match those for the recoverable photometric set.

be expected. The bottom right-hand panel of Fig. 5 shows a more
interesting result, that the scatter of the average photo-z solution is
considerably smaller than the average scatter of the individual neu-
ral net solutions.

Even if one uses the average photo-z solution, comparison
of the left- and right-hand panels of Fig. 5 demonstrates the
qualitative point made above, that the scatter and bias versus redshift
for the training set are not accurate estimators of the scatter and bias
over the full redshift range for the photometric sample. As shown
more explicitly in Fig. 6, the training set scatter and bias tend to
underestimate those measures for the photometric sample, particu-
larly at redshifts zge. < 0.3. This is simply because the training-set
objects are generally brighter than those in the photometric set at
similar redshift, which implies that the training-set galaxies have
smaller photometric errors and consequently smaller photo-z errors.

The weighting procedure provides a straightforward avenue for
addressing this problem of estimating the photo-z scatter and bias
for the photometric sample. Since the weighted training set has,
by construction, magnitude distributions similar to those of the
photometric set, we can instead use weighted versions of o (z) and
b(z) for the training set as estimates of the scatter and bias for the
photometric set, i.e.

Nj

Gv%(z_j) = (I/Nj) Z w; |th0[,i - Zspec‘i |27 (10)
i=1
Nj

bu(z)) = (1/N)) D wi(Zphovi — Zspec.): (11

i=1
where the weights w; are given by equation (1) and the sums are over
all objects in the training set. Fig. 6 shows the scatter and bias for
the training set, the weighted training set and the full photometric
set, where the average photo-z of the five neural network solutions
has been used. We see that the weighted training set yields estimates
of scatter and bias that are much closer to those of the photometric
set over the entire redshift range. Moreover, as noted in Section 2.4,
we expect the weighting method to work best for the recoverable
portion of the photometric sample. Fig. 6 also shows the scatter
and bias versus redshift for the recoverable photometric sample,
showing that the weighted training-set estimates are very accurate
in this case.

Since the weights can be used to improve the estimates of photo-
z scatter and bias for the photometric set, one might hope that the

weights could also be used to improve the photo-z solution itself.
However, because of the large number of degrees of freedom of the
ANN, most of the information for the photo-z solution comes from
small regions in the space of photometric observables around each
training-set object. The weights do not vary strongly over those
small regions, and therefore the photo-z solution does not change
significantly between the unweighted and weighted cases.

4.2 Estimating photo-z errors

As demonstrated above, the weighting procedure improves the esti-
mates of photo-z scatter and bias for a photometric sample but does
not improve the photo-z accuracy itself. Another issue, which we
now discuss, is the accuracy of photo-z error estimates.

We estimate photo-z errors for objects in the photometric cata-
logue using the nearest neighbour error (NNE) estimator (Oyaizu
et al. 2008b). The NNE method is training-set based and associates
photo-z errors to photometric objects by considering the errors for
objects with similar multiband magnitudes in a spectroscopic sam-
ple, hereafter termed the ‘validation set’. The validation setis chosen
to be independent of the training set in order to avoid the issue of
overfitting, i.e. so that the ANN is not trained to fit the statistical
fluctuations of the training set, which would result in NNE under-
estimating the photo-z errors.

The NNE procedure to estimate the redshift error onng for a
galaxy in the photometric sample is as follows. Using the distance
measure of equation (3), we find the validation-set nearest neigh-
bours in magnitude space to the galaxy of interest. Since the selected
nearest neighbours are in the spectroscopic sample, we know their
photo-z errors, 8z = Zphot — Zspec> Where zpno has been estimated
using the neural network method. We calculate the 68 per cent
width of the 6z distribution for the neighbours and assign that num-
ber as the photo-z error estimate for the photometric galaxy. Here
we select the nearest 100 neighbours of each object to estimate its
photo-z error. In studies of photo-z error estimators applied to mock
and real galaxy catalogues, we found that NNE accurately predicts
the photo-z error when the training set is representative of the pho-
tometric sample (Oyaizu et al. 2008b). Here we investigate what
happens when the training set is not representative, and we also
consider the impact of weighting the neighbours using equation (4)
in computing the NNE estimate.
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Figure 7. Distributions of (zphot—Zspec)/0NNE for the (top left) training set, (top right) photometric set (using unweighted validation set), (bottom left)
photometric set (using weighted validation set) and (bottom right) recoverable photometric set (using weighted validation set).

Fig. 7 shows the distributions of (Zphot — Zspec)/O NNE, 1.€. the
photo-z error distribution normalized by the NNE error estimate
o NNEs for the training set (upper left), for the photometric set using
unweighted (upper right) and weighted (lower left) validation-set
objects and for the recoverable photometric set (lower right) using
the weighted validation set. The dashed curves in these panels show
Gaussian fits to the error distributions; we also indicate the best-
fitting Gaussian means ({4gass) and standard deviations (o gauss),
as well as the o¢ widths (about zero) of the distributions (not of
the fits). The Gaussian fits give equal weight to each bin of the
distributions and ignore objects for which oxng = 0. We see that
the overall normalized error distributions are close to Gaussian for
all the catalogues and that there is little difference among the four
cases. We conclude that the NNE error estimate is robust even
when the training set is not representative and that the weights do
not significantly affect the NNE estimator. In retrospect the latter is
not too surprising since the NNE estimate is derived from a typically
small nearest neighbour region, over which the weights do not vary
strongly.

4.3 Deconvolving the photo-z distribution

The photometric redshift distribution is the convolution of the true
redshift distribution N(zge.) With the distribution of photometric

redshift errors. For discrete distributions we can express this as

N(thot)i = Z P(thot|Zspec)ijN(Zspec)j7 (12)
J

where the indices i and j refer to bins of zpp and zZgpc, respectively,
and P(Zphot |Zspec)ij 1S the probability that a galaxy has photo-z in
bin i given that its spectroscopic redshift is in bin j.

As noted in Padmanabhan et al. (2005), we can solve equa-
tion (12) for N(Zgpec) by inverting P (Zphot|Zspec)ij- However, the in-
version problem is ill-conditioned for two reasons. First, the con-
volution is a smoothing operation, and some of the information in
N (zspec); 1s irretrievably lost in that process. Second, small errors in
P(Zphot |Zspec)ij are magnified by the matrix inversion.

Both problems can be alleviated by using prior information to
regularize the inversion and restore some of the lost information.
Following Padmanabhan et al. (2005), we use a forward difference
operator, defined as

Npin—1
S= Y AIN@Iu — IN@I), (13)

=0

as a prior on the smoothness of the reconstruction. To incorporate
the prior information into the deconvolution procedure, we must
represent the deconvolution as a minimization problem. If we define

2
EO = Z ‘Pil(zphodzspec)ij [N(Zspec)]j - [N(thol)]i ) (14)
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then the deconvolution can be stated as the problem of minimizing
E\ with respect to N(z). To incorporate the prior, we define

E = Ey+AS, (15)

and the regularized deconvolution is achieved by minimizing E. The
parameter A sets how much importance is given to the smoothing
and is often chosen ad hoc. Here, following Press et al. (1992), we
set

Tr |:PT(thot|Zspec) P(thol|zspec):|

A=
Tr(BT B)

, (16)

where B is the (N, — 1) (Nyy) first difference matrix given by
B = 611y, — &;;. This choice of A gives comparable weight to both
parts of the minimization.

The preceding discussion summarizes the ‘standard’ photo-z de-
convolution method for estimating the redshift distribution. The
weighting method can provide a better estimate of P (Zphot|Zspec)ij
for the photometric sample, reducing the need for regularization
and thereby improving the deconvolution estimate of N (Zgpec). We
can incorporate the weights into the estimation of P (Zphot|Zspec)ij bY
calculating, for each zg. bin, the zpp, distribution for the weighted
training-set galaxies.

We postpone discussion of the performance of the deconvolution
and weighted deconvolution methods to the next section, where we
compare them with direct application of the weighting method to
estimation of N (Zgpec).

5 APPLICATIONS OF THE WEIGHTING
METHOD II: ESTIMATES OF N(z) AND p(z)
IN MOCK PHOTOMETRIC SAMPLES

5.1 The redshift distribution N(z)

‘We now have at hand a number of methods for estimating the true
redshift distribution N(z) for a photometric galaxy sample. Using
photo-zs, one can simply use the photo-z distribution itself, N (zphot),
as an estimator, or the deconvolved photo-z distribution described
in Section 4.3 or the weighted, deconvolved photo-z distribution
mentioned at the end of Section 4.3. Alternatively, one can use
the weighted spectroscopic redshift distribution of the training-set
galaxies to directly estimate N(z), i.e. equation (5), without recourse
to photo-zs. Finally, we can sum the redshift probability distributions
p(z) for each galaxy in the photometric sample (again estimated from
the weighted training set) to estimate N(z), using equation (6). In
this section, we compare results of these different estimates of N(z)
using the mock SDSS DR6 sample. The results are summarized in
Tables 2 and 3 and the best results for each method are shown in
Figs 8-10.

5.1.1 Measures of reconstruction quality

To compare the different methods, we need a statistical measure of
the quality of the reconstruction of the estimated redshift distribu-
tion. We use two. The first is a x statistic (per degree of freedom
and per galaxy), defined here as

Nbin i\X i P12
1 N(Z')® — N(Zgec
= Z[ @) }ES'”)]. (17)
Npin — 1 = N (2 ) Az
Here Ny, is the number of redshift bins used, Az is the width of the
bins and N(z')% is equal to N(z’ ) . if the weighting procedure is

*spec/ wei
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Table 2. Redshift distribution reconstruction statistics — 30 bins.

Full photometric set x? KS parameter
Photo-z 0.107 0.0848
Photo-z deconvolution (no weights)  0.577 0.124
Photo-z deconvolution (100 nb) 0.521 0.0989
Weights (100 nb) 0.0341 0.0456

Recoverable photometric set

Photo-z 0.105 0.0674
Photo-z deconvolution (no weights)  0.499 0.140

Photo-z deconvolution (2 nb) 0.0682 0.0295
Photo-z deconvolution (5 nb) 0.0648 0.0266
Photo-z deconvolution (100 nb) 0.102 0.0351
Weights (2 nb) 0.00624  0.0129
Weights (5 nb) 0.00571  0.0145
Weights (100 nb) 0.00643  0.0246
p(z) (2nb) 0.00540 0.0219
p(z) (5nb) 0.00493  0.0201

p(z) (100 nb) 0.00534  0.0241

Note. nb — neighbours.

Table 3. Redshift distribution reconstruction statistics — 20 bins.

Recoverable photometric set X2 KS parameter
Photo-z 0.105 0.0674
Photo-z deconvolution (no weights)  0.404 0.125
Photo-z deconvolution (2 nb) 0.0509 0.0235
Photo-z deconvolution (5 nb) 0.0566 0.0232
Photo-z deconvolution (100 nb) 0.0971 0.0290
Weights (2 nb) 0.00484  0.0129
Weights (5 nb) 0.00467 0.01327
Weights (100 nb) 0.00547  0.0232

Note. nb — neighbours.

used or to N(zj,,,)" if the redshift distribution is instead estimated
using photo-zs. The usual definition of x? uses the numbers of
objects in given bins instead of the normalized probability N(z');
multiplying our x? by Np.. Az gives the usual definition. We
chose the above statistic so that it is independent of the number of
galaxies and the number of redshift bins, allowing us to more fairly
compare reconstruction quality across different data sets. Since the
probabilities are normalized, the number of degrees of freedom is
Nyin — 1.

The second measure we employ is a binned version of the
Kolmogorov—Smirnov (KS) statistic, defined as the maximum dif-
ference between the two cumulative redshift distributions being
compared, for example, the cumulative distributions corresponding
t0 N(z{pec)vei and N(zl..)*. The KS statistic is more sensitive to
differences in the medians of the two distributions being compared,
whereas the y? statistic tends to stress the regions of the distribution
that are least well sampled, i.e. regions where N(z') is small. In our
implementation, we use binned cumulative distributions instead of
unbinned cumulative distributions, so this statistic is not strictly the
KS statistic.

Note that we do not use the absolute values of these statistics
as formal goodness-of-fit measures. Rather, we use their relative
values for the different estimators to compare the quality of the
different reconstructions — see Table 2.
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Figure 8. True spectroscopic redshift distribution (solid grey) of the mock
SDSS photometric sample, and estimates of the redshift distribution us-
ing the photo-z distribution (hatched) and deconvolved photo-z distribution
(black line).
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line).

5.1.2 Photo-z estimates of N(z)

The photo-z estimate N(Zpho) Of the true redshift distribution for
the mock SDSS photometric sample is shown in Fig. 8 (hatched
histogram). We can see that N(zpho) underestimates the true dis-
tribution, N (zspec) (grey histogram), at both low and high redshifts
and overestimates it at intermediate redshifts, 0.4 < zgpe. < 0.8. In
addition, the peak of N(zpno) is biased with respect to the peak of
N (Zspec). Comparing the two distributions, we find that x%=0.107
and KS = 0.0848. The photo-z and true redshift distributions for the
recoverable photometric sample are shown in Fig. 9 (hatched and
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Figure 10. True spectroscopic redshift distribution (solid grey) of the recov-
erable mock photometric sample, and estimates of the redshift distribution
using the weights (hatched) and p(z) (line) methods.

grey histograms). Again, N(Zpne) underestimates N (Zgpec) at low
and high redshifts and overestimates it in between. The reconstruc-
tion statistics are similar to those for the full photometric sample,
x2 = 0.105 and KS = 0.0674. This indicates that the faithfulness
of N(zZpnot) as an estimate of the true redshift distribution is not
very sensitive to whether the training set is representative of the
photometric sample: the errors in the recovered redshift distribu-
tion are dominated by a systematic effect. The fact that N (zpne) is
more sharply peaked than N (zgp.) is a common feature of training-
set-based photo-z estimates and results from the breakdown of the
fundamental photo-z assumption that a single zpn,; can represent a
full redshift distribution.! For the full photometric sample the peak
in N(Zpnot) is not as pronounced as it is for the recoverable pho-
tometric sample, because the larger photo-z scatter in regions not
covered by the training set smoothes out the peak.

We have also tested the photo-z deconvolution method of Sec-
tion 4.3 as an estimate of the redshift distribution. The standard
(unweighted) deconvolution was not successful at recovering N(z),
with x2 = 0.577, KS = 0.124 for the full photometric sample and
x2 = 0.499, KS = 0.140 for the recoverable photometric sam-
ple. The result for the weighted deconvolution method, where the
weights have been estimated using the five nearest neighbours, is
shown by the black line in Fig. 8; it is also not very effective for
the full photometric sample, with x? = 0.521 and KS = 0.989.
Although the peak of the deconvolved redshift distribution is at
the correct redshift, the distribution shows an oscillatory behaviour
with redshift. However, as shown in Fig. 9 (black line versus grey
histogram), the weighted deconvolution performs much better for
the recoverable photometric sample, with x> = 0.0648 and KS =
0.0266.

The deconvolution estimate of the redshift distribution oscillates
about the true distribution. This kind of behaviour is typical of the

! Maximum-likelihood template-fitting photo-z methods suffer from a sim-
ilar problem but with opposite consequences. Because of the different way
in which p(z|observables) is estimated in those cases, N (Zphot) tends to be
flatter than the true redshift distribution (Brodwin et al. 2006).
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inversion techniques used to perform the deconvolution. It can be
alleviated by either increasing the training-set size, decreasing the
number of redshift bins, or using prior knowledge to improve the
estimate of P(Zpnot|Zspec)- We briefly investigate the second of these
possibilities. As Table 3 shows, using only 20 as opposed to 30 red-
shift bins improves the deconvolution estimate, x2 = 0.0509 and
KS = 0.0235 (here with weights calculated using the two nearest
neighbours). However, fewer bins means coarser redshift informa-
tion, so it would be preferable to find a method that can accom-
modate a large number of redshift bins. Table 3 also shows that
the other methods are not as sensitive to the number of bins. The
deconvolution can also be improved by Monte Carlo resampling
the training set (Padmanabhan et al. 2005). Ideally, the resampling
should be done in the space of observables used to calculate the
photo-zs. However, this approach is prohibitively time consuming
for large data sets, and it requires accurate knowledge of the mag-
nitude errors — which may be hard to obtain.

5.1.3 Weighting method estimates of N(z)

The direct estimate of the redshift distribution for the photomet-
ric sample using the weighting method of equation (5), N(2)wei,
is shown by the hatched region in Fig. 10. By construction, this
estimate is the same for both the full and the recoverable photo-
metric samples, that is, the weighting method in practice provides
an estimate of the redshift distribution for the recoverable photo-
metric sample. Comparison with the true redshift distribution of the
recoverable sample (solid grey histogram in Fig. 10) shows that the
weighting method provides the best redshift distribution estimate
of any of the methods under consideration here. For the full photo-
metric sample, x> = 0.0341 and KS = 0.0456 (using 100 nearest
neighbours), and for the recoverable sample, x> = 0.00571 and
KS = 0.0145 (with five nearest neighbours). As shown in Table 2,
N (2)wei 1s relatively insensitive to the number of neighbours used
in the calculation.

Finally, using the sum of the p(z) estimates for each galaxy in
the photometric sample is almost identical to using the weights to
estimate N(z). The estimate N[> p(z)] of the redshift distribution
is shown by the solid black line in Fig. 10, using five nearest neigh-
bours to estimate p(z). For this case, from Table 2 we have x2 =
0.004 93, KS = 0.0241 for the recoverable photometric set, quite
close to the values for the N(z).; estimate. Table 2 also shows that
using fewer nearest neighbours slightly improves the KS statistic
but not the x 2 statistic. Moreover, by using fewer neighbours, one is
unable to accurately characterize p(z), so we caution against using
fewer than 100 neighbours in the weighted estimate of p(z).

5.1.4 Error estimate for N(Zyei)

From equations (1) and (2), the errors in the weights depend upon
the uncertainties in determining the volumes of the training-set and
photometric-set regions around an object and upon the uncertain-
ties in the number of nearest neighbours for both the training and
photometric sets. All of these quantities are correlated, making er-
ror estimation for the weighting method a challenge. Instead, we
apply a bootstrap resampling procedure to directly estimate the er-
rors in the quantity of interest, in this case the weighted estimate of
the redshift distribution, N (z)w.i- We sample with replacement from
the training and photometric sets to generate resampled training and
photometric sets of the same sizes as the originals. Then, for each
pair of resampled training and photometric sets, we calculate the
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Figure 11. True spectroscopic redshift distribution (solid grey) of the recov-
erable photometric set, the estimated redshift distribution using the weight-
ing method (hatched region) and the mean of the bootstrap samples for the
weighting method (black line). The error bars are given by the square root
of the diagonal terms of the covariance matrix calculated from the bootstrap
samples.

weights using equation (4) and generate N (Z)y.; using equation (5).
We repeat this procedure 10 000 times and estimate the covariance
matrix by

1
C(za,28) = ﬁ
x> [Ni(za) = (N)Ni(25) — (N (zp))], (18)

i=1

where ny is the number of bootstrap samples, Ni(z) is the weighted
estimate of the redshift distribution in the ith bootstrap sample and
(N(2)) is the mean of the bootstrap estimates. The correlation matrix
is defined in the usual way by p(2q, 28) = C(2a, 28)/0(20)0 (2p).

Fig. 11 shows N(z)we (hatched), the mean of the bootstrap es-
timates (solid black) and error bars given by the square root of
the diagonal elements of the covariance matrix. There are small
anticorrelations between nearby redshift bins, of at most —0.2. Cor-
relations between non-adjacent bins are smaller by at least an order
of magnitude.

5.1.5 Correcting systematic errors in the N(z) estimate

From Fig. 10, we note that the N (z.;) distribution is slightly flatter
than N(zge.), a feature that also shows up in other catalogues (see
e.g. Lima et al. 2008). This smoothing of the redshift distribution
is a consequence of using non-negligibly small regions in magni-
tude space around the training-set galaxies to estimate the weights.
This is especially problematic for regions where the training set
is sparse, for then the ‘neighbour volume’ used to calculate the
weights may be large compared to the typical scale of change of
the redshift/observable hypersurface. The problem is compounded
when photometry errors are large, because large errors broaden
the redshift distribution in a bin of observables. Broader distribu-
tions require a larger number of training-set objects in order to be
well characterized, but increasing the number of training-set nearest
neighbours in the weights calculation increases the non-locality of
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Figure 12. Bias in the weighting method estimate of the redshift distribu-
tion for the recoverable photometric set. Solid line shows the bias in the true
redshift distribution. Dotted line shows the bias in the weighted photo-z dis-
tribution, also for the recoverable photometric set. Since they approximately
match, we can use the bias in the weighted photo-z distribution, which is an
observable, to estimate the bias in the weighted true redshift distribution.

the estimate. The ideal solution would be to increase the total num-
ber of training-set objects in the sample, or at least the number in
sparsely covered regions, but that is not always an option. The poor
man’s alternative is to develop ways to characterize and correct for
the systematic errors.

An empirical approach we have developed makes use of the
photometric redshifts in the following way. Starting with the train-
ing set, compute the photo-z distribution of the weighted training
set, N(Zphot)wei> 1.€. Use equation (5) but with z replaced by Zpho
everywhere. The difference between N (Zpno)wei and the photo-z
distribution for the photometric sample, N(Zpnot), is shown by the
dotted line in Fig. 12. The bias we are actually interested in is
N (Zgpec)wei — N(Zspee)> shown by the solid line in Fig. 12. We see
that these two differences have similar behaviour with redshift, pre-
sumably due to similar non-locality of the weight solution in regions
where the training set is sparse. We can therefore use N (Zphot)wei —
N (Zphot), the bias in the weighted photo-z distribution and which is
an observable for the photometric sample, to estimate N (Zpec)wei —
N (Zgpec)» the systematic error in the weighted estimate of the true
redshift distribution. The redshift distribution estimate can then be
approximately corrected for this bias.

To reduce the effect of random errors in the estimation of the
bias, we smooth N (Zphot)wei — N (Zphot) USiNg a ‘moving window’
method. Each redshift window has width greater than half of the
separation between window centroids. The smoothing factor is the
ratio of the window size to the redshift bin size when no smoothing
is used. We have used smoothing factors of 1, 2, 3 and 5 to calculate
N (Zphot)wei — N (Zphot). A smoothing factor of 1 corresponds to a
window size of 0.0367 in redshift. We picked the other smoothing
factors based on the natural scales set by the o and o¢g of the
photo-zs in the training and photometric sets.

Table 4 shows the recovery statistics for the distributions cor-
rected for systematics in this way, and Fig. 13 shows the improve-
ment in the N(z) estimate when the correction with smoothing fac-

Table 4. Redshift distribution reconstruction statistics — correction of
systematics.

Recoverable photometric set — 5 neighbours — 0 < z < 1.1

Smoothing factor x2 KS parameter
No correction 0.00571 0.0145
Unsmoothed 0.004 87 0.0151
2 0.00351 0.0127
3 0.003 49 0.0134
5 0.003 55 0.0131
Bootstrap mean (no correction) 0.006 00 0.0189
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Figure 13. True spectroscopic redshift distribution (solid grey) of the re-
coverable photometric set, and the estimated redshift distribution using the
weighting method, showing both the uncorrected results (hatched) and re-
sults corrected for systematic errors (black line) as described in the text.

tor of 2 is applied. While these results are suggestive, more testing
should be done before adopting this method as a correction for
systematic errors in practice.

5.2 The probability distribution p(z)

In this section we examine the effectiveness of the weighted training
set in estimating the redshift probability distribution p(z) for indi-
vidual galaxies, and the relation between p(z), Zphot and Zgpec. For
this study, we have increased the size of the mock photometric set
to 9000 000 galaxies in order to improve the statistics. As before,
we calculate the training-set estimate of p(z), hereafter p(zui), for
a training-set galaxy by selecting its 100 nearest neighbours in the
training set. The spectroscopic redshift distribution of these objects
i p(zuwain). We then select all the galaxies in the photometric sam-
ple that are closer to the given galaxy in magnitude space than
its 100th-nearest training-set neighbour. The spectroscopic redshift
distribution of the selected photometric galaxies is, barring sta-
tistical fluctuations and non-locality, the true redshift distribution,
hereafter p(zue), of the region of observable space centred about
the selected galaxy.

In Fig. 14 we show the redshift distributions for three galaxies. In
each panel, p(zye) is shown as a grey histogram with 60 bins, and
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Figure 14. Distributions of p(zye) (solid grey histograms) and p(ziain) (hatched histograms) for three training-set galaxies in the mock SDSS sample. The
vertical solid (dashed) lines indicate zspec (Zphot) for each galaxy. Left: an early-type galaxy at z = 0.48; middle: a late-type galaxy at z = 0.56; right: a faint,

early-type galaxy at z = 0.31.

P(Zuain) 1s shown as the hatched histogram with 20 bins. We have
rescaled the histograms by multiplying each by the width of the
histogram bin for easier comparison of the distributions. The solid
vertical line indicates the true redshift of the galaxy and the dashed
vertical line indicates its ANN zpp, estimate. The left-hand panel
of the figure is for an early-type (T = 1.5) galaxy with r magnitude
of 20.67 and z,.. = 0.48. This galaxy has 4006 neighbours in the
photometric sample, i.e. that many photometric objects are as close
to it in magnitude space as its 100 nearest training-set neighbours.
In this example, the true redshift distribution of this region of ob-
servable space is narrow, p(Zuin) iS @ quite accurate estimate of
P(Zirue)s Zphot 18 VEry near zg,e. and both are at the peak of the p(z)
distributions.

The middle panel shows the distributions for a late-type (T = 3.1)
galaxy withr =21.1 and zep.. = 0.56. There were 14 606 neighbours
to this galaxy in the photometric sample. With the exception of
the extreme tails of the distribution, p(zy.in) provides an accurate
estimate of p(zZyye). The redshift PDF p(zyy.) for this galaxy is much
broader than that for the galaxy in the left panel, in part because
the magnitudes of late-type galaxies do not correlate with redshift
as well as those of early types. The neural network photo-z is 0.39
for this object, higher than the peak of p(zy.y,) at z = 0.3 or its
median at z = 0.34. The true redshift of this object, zgpee = 0.56,
is far removed from the peak of its redshift distribution. However,
the photo-z error, Zpno — Zspee = 0.16, is comparable to the photo-z
scatter at this redshift, o' (Zspec = 0.56) ~ 0.13 (see bottom right-hand
plot of Fig. 5), which shows that this example is not atypical. The
broader p(zine) is, the more likely it is that zg,e. will be far from the
peak of the distribution. In that case, the photo-z estimator cannot
zero in on the correct redshift, and a single-point zyn, €stimate will
be a poor redshift estimate for a large fraction of the objects in this
region of observable space.

The right-hand panel of Fig. 14 shows the distributions for an-
other early-type (T = 1.4) galaxy with r = 21.8 and zge. = 0.31,
with 18366 neighbours in the photometric set. This is the most
pathological of the three examples. The large width of p(zyy.) for
this galaxy is due to its faintness, which results in large magnitude
errors. The peaks of p(Ziwin) and p(zuye) are offset by ~0.1-0.2, and
P(Zuain) Shows a spurious second peak at z ~ 1. Such fluctuations
are not uncommon when one uses 100 galaxies to estimate p(z).
The true redshift of this galaxy is at the low-redshift tail of p(Zyye),
and zpno for this object is catastrophically wrong even though it is
near the peak of p(zuy). The catastrophic error results from using a
single number to represent a very broad distribution, and in this case
the galaxy in question is quite different from most of its neighbours
in magnitude space. For a photometric survey, the redshift distribu-

tion is typically broad near the photometric limit of the survey. To
avoid catastrophic errors and biases, one should work with the full
redshift probability distribution per object.

6 APPLICATION TO SDSS DR6 DATA

Now that we have tested the weighting method on mock SDSS pho-
tometric samples, we apply it to the actual SDSS DR6 photometric
sample.

6.1 Bias and scatter in SDSS photo-zs

Oyaizu et al. (2008a) estimated photo-zs for the SDSS DR6 photo-
metric sample using an ANN (see Appendix C) and several differ-
ent combinations of photometric observables. One version, denoted
there by D1, used as input observables the five magnitudes ugriz
and five concentration indices, also splitting the training set and the
photometric sample into five bins of  magnitude and performing
separate ANN fits in each bin. Version CC2 used as inputs the four
coloursu — g, g —r,r —i,i — z, plus the concentration indices
in g, r and i. Here, as in Section 4.1, we use the weighting method
to obtain improved estimates of the bias and scatter of these photo-
z estimates. Fig. 15 shows the weighted and unweighted b(z) and
o (z) estimates derived from the training set, along with third-order
polynomial fits to the weighted estimates. The polynomial fit coef-
ficients are given in Table 5. The differences between the weighted
and unweighted b(z) and o (z) curves are qualitatively consistent
with the results on the mock sample (Fig. 6), but the real data have
larger scatter and bias than the mocks.

6.2 The SDSS redshift distribution

Fig. 16 shows the weighting method estimate, N (z)ye;, for the red-
shift distribution of the SDSS DR6 photometric sample with » <
22. The error bars on N(z)ye; are given by the square root of the di-
agonal elements of the covariance matrix obtained by the bootstrap
resampling procedure described in Section 5.1.4.

The coarse-grained structure of the redshift distribution is similar
to that of the mock SDSS sample (Fig. 3). However, the fine-grained
structure shows peaks and dips that the study of Section 5.1.5
suggests are indications of systematic error. As noted there, large
photometric errors, combined with sparseness of the training set, can
lead to distortions of the inferred redshift distribution. This effect
is likely present in the weighted estimate of the SDSS DR6 redshift
distribution for galaxies with r < 22. The bump in N(z)ye around
z = 0.75 is the result of the magnification of the sampling errors in
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Figure 15. Left panels: estimated photo-z bias versus redshift for the weighted and unweighted training set of the SDSS DR6 catalogue for four cases: (top
left) D1 photo-zs with r < 21, (top right) D1 photo-zs with r < 22, (bottom left) CC2 photo-zs with r < 21 and (bottom right) CC2 photo-zs with r < 22.
Right-hand panels: estimated photo-z scatter versus redshift for the weighted and unweighted training set of the SDSS DR6 catalogue for the same cases
depicted in the left-hand panels. In each plot the dashed line corresponds to the unweighted result, the solid dark line to the weighted result and the solid red
line is a third-order polynomial fit to the weighted result. The fit coefficients are given in Table 5.

Table 5. Fit coefficients to the weighted estimates of photo-z bias and scatter versus redshift for SDSS DR6

catalogue.

r<21

r<22

D1 photo-zs

b(z)  [0.0900269, —0.293 255, 0.262 842, —0.523 857]

o(z) [0.167949, —0.82395, 1.698 19, —0.484 006]

[0.16574, —0.350 82, 0.192 806, —0.355 683]
[0.273 305, —0.788 055, 0.951 591, —0.042 6683]

CC2 photo-zs

b(z)  [0.0884344, —0.0574277, —0.607 687, 0.279 678]

o(z) 10217213, -0.77692, 1.360 55, —0.406 967]

[0.193711, —0.527 042, 0.421 479, —0.408 717]
[0.329747, —1.0009, 1.316 67, —0.262 655]

Note. All fits are third-order polynomials of the form a; + a2z + a3z® + asz’.
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Figure 16. Estimated redshift distribution for the SDSS DR6 sample (with
r < 22), computed using the weighting method (hatched) and the mean of
the bootstrap samples (solid line). The error bars are the diagonal bootstrap
errors.

the training set caused by the lack of redshift information in the
photometry of faint galaxies, combined with the lack of training-set
coverage in that redshift range.

When we impose more stringent 7-magnitude cuts, Fig. 17 (left)
shows that the feature disappears. In Fig. 17 (right) we show the N(z)
distribution estimated using p(z) using two different training sets.
In one case we use the full training set to estimate the p(z)s while in
the other we remove all galaxies from DEEP/DEEP2 and 2SLAQ
(totalling 84 568 galaxies) from the training set and we add 6069
from two approximately flux-limited samples, DEEP2-EGS (Davis
et al. 2007) and zCOSMOS (Lilly et al. 2007), which we describe
in further detail in Section 6.3. The bump at z = 0.75 disappears
when DEEP/DEEP2 is not included, showing that the selection
in DEEP/DEEP2, which was done to target z ~ 0.7 galaxies and
in a different photometric system from SDSS is responsible for the
bump. The effects of 2SLAQ are much less pronounced, and consist
in a small overall shift of the distribution. 2SL.AQ has morphology
cuts (in addition to the SDSS ugriz magnitude cuts) which could
have yielded some systematic biases. As mentioned previously, the
selection effects are amplified by the photometry errors, so that the
systematics are reduced if one imposes more stringent magnitude
cuts. If one is primarily interested in the overall redshift distribu-
tion, the N(z) estimate using the training set without DEEP/DEEP2
or 2SLAQ is more reliable. However, if one requires redshift
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Figure 17. Left: weighted estimates of the redshift distribution for the SDSS DR6 photometric sample, with r < 21.5, r < 21.8 and r < 22. Right: p(z)
estimates of redshift distribution for SDSS DR7 photometric sample using the full training set as well as a training set without the DEEP2 (the non-EGS part)

and without 2SLAQ.

information for individual galaxies, the estimate using the full train-
ing set is still preferable. Without DEEP/DEEP2 and 2SLAQ, the
training set is too sparse at faint magnitudes. As a result, the indi-
vidual p(z) estimates are derived using training-set objects spread
out over a large region of observable space, which makes the p(z)s
poor representations of the local redshift distributions around the
corresponding galaxies. Given the training sets available, the best
way to reduce the effects of selection issues while having reliable
p(z) estimates is to perform magnitude cuts.

We see another feature in N(z)ye; in the range 0.2 < z < 0.4
that does not go away with tighter r-magnitude cuts (see Fig. 17).
Similar features can be seen in the zZCOSMOS+DEEP2/EGS red-
shift distribution used by Mandelbaum et al. (2008) (see the bottom
right-hand panel of fig. 4 of Mandelbaum et al. 2008), in the CNOC2
distribution used in our training set (see fig. 2 in Lima et al. 2008)
and in the full CNOC2 sample shown in Lin et al. (1999). The fea-
ture in the DEEP2 data appears to be caused, at least partially, by
spectroscopic failures affecting both early- and late-type galaxies
in that redshift range (J. Newman, private communication), and it
is possible that this is affecting the weighted estimate. In general,
one should not expect that the redshift distribution of a sample flux
limited in one filter will be smooth, due to k-correction-like effects.
The complex shape of the SEDs of galaxies implies that a flux limit
based on a single filter will preferentially select certain galaxy types
at certain redshifts. We do not see such a feature in the mock SDSS
catalogue, because the mock was created with a smooth r magni-
tude distribution and redshift distribution, and we only applied a cut
in the r band.

6.3 A p(z) catalogue for SDSS DR7

We calculated p(z)s for the full SDSS DR7 sample satisfying the
selection cuts of the Photoz2 photometric redshift table described
in Appendix Al and in Oyaizu et al. (2008a) — a total of 78 135961
galaxies. We added a sample of 4241 galaxies with spectra from
zCOSMOS with quality flags 2.5, 3.4, 3.5, 44, 45,9.3,94, 9.5
(Lilly et al. 2007) and 1828 galaxies from DEEP2-EGS (Davis
et al. 2007) with zquaiy > 3 to the training set. We do not use the
ubercalibrated magnitudes (Padmanabhan et al. 2008) available for
DR?7 because these were not available for most of our training set
galaxies. The catalogue is available from the SDSS DR7 value-

added catalogues website.> There are 240 files, ordered by RA,
one for every 0.1h of RA from O to 23h Thus, the file named
pofz.ral2h3.dat has photo-zs and p(z)s for objects with 12.3 < RA
< 12.4 h, and so forth. The p(z) values are tabulated for 100 redshift
bins, centred at z = 0.03 to 1.47, with redshift spacing dz = 1.44/99.
To reduce effects of Poisson noise we adopt a 'moving window’
smoothing technique. Each entry for a given p(z) is calculated based
on a bin of width 4 dz. As discussed in Section 6.2, the quality of the
estimates degrades rapidly for r > 21.5. We therefore recommend
a cut in brightness of at least r < 21.8.

7 DISCUSSION AND FUTURE WORK

We have extended and applied the weighting technique of estimating
redshift distributions (Lima et al. 2008). The weighting procedure
allows one to use a spectroscopic training set to accurately esti-
mate the bias and scatter of photo-zs as a function of redshift. In
addition, the weighting method provides a natural, robust way to
select galaxies in the photometric sample that are well represented
in the training set. Moreover, we have shown that the weighting
technique provides a precise estimate of the redshift distribution
of a photometric sample in the region of observable space where
the training set and the photometric sample intersect. The esti-
mate N(z)ye; more accurately estimates the redshift distribution for
a photometric sample than methods based on photo-zs. We have
also extended the weighting method to estimate the redshift PDF
for individual galaxies, p(z). Use of this PDF can substantially re-
duce biases associated with the use of single-point photo-zs, and
we recommend its use in the analysis of future photometric galaxy
surveys.

We have outlined the potential different sources of error of the
weights technique and we have demonstrated how to use informa-
tion from the photo-z distribution to reduce systematic errors in the
weights. We have shown that for the SDSS DR?7, selection effects in
the training set are the dominant source of error in the estimation of
N(z), and that this systematic increases sharply with » magnitude.
In particular, we have found that the selection of the DEEP2 survey,
which uses a different set of filters from the SDSS, is the dominant
source of systematic errors.

2 http://www.sdss.org/dr7/products/value_added/index.html
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We have made public a catalogue of p(z) for ~78 million SDSS
DR7 galaxies. We have also provided fitting functions for the
weights-based estimates of the bias and scatter of photo-zs as a
function of redshift for the D1 and CC2 photo-zs of the SDSS DR6.

For the future, investigations of the weighting method should
include study of optimizing the weights estimation, e.g. with a vari-
able number of nearest neighbours in different regions of observable
space, and inclusion of systematic effects, e.g. associated with LSS
and spectroscopic failures, in the mock catalogues.
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APPENDIX A: SDSS DR6 DATA SAMPLE

A1l Photometric set

The SDSS comprises a large-area imaging survey of the north
Galactic cap, a multi-epoch imaging survey of an equatorial stripe
in the south Galactic cap and a spectroscopic survey of roughly
10° galaxies and 10° quasars (York et al. 2000). The survey used a
dedicated, wide-field, 2.5-m telescope (Gunn et al. 2006) at Apache
Point Observatory, New Mexico. Imaging was carried out in drift-
scan mode using a 142 mega-pixel camera (Gunn et al. 2006) that
gathers data in five broad-bands, ugriz, spanning the range from
3000 to 10000 A (Fukugita et al. 1996), with an effective exposure
time of 54.1 sband™!. The images were processed using specialized
software (Lupton et al. 2001; Stoughton et al. 2002) and were astro-
metrically (Pier et al. 2003) and photometrically (Hogg et al. 2001;
Tucker et al. 2006) calibrated using observations of a set of pri-
mary standard stars (Smith et al. 2002) observed on a neighbouring
20-inch telescope.

The imaging in the SDSS DR6 (Adelman-McCarthy et al. 2008)
covers a nearly contiguous region of the north Galactic cap. In any
region where imaging runs overlap, one run was declared primary?
and was used for spectroscopic target selection; other runs were
declared secondary. The area covered by the DR6 primary imag-
ing survey, including the southern stripes, is 8520 deg?, but DR6

3For the precise definition of primary objects see http://cas.sdss.org/
dr6/en/help/docs/glossary.asp
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includes both the primary and secondary observations of each area
and source (Adelman-McCarthy et al. 2008).

In this paper, we use a random 1 per cent subset of the SDSS
DR6 Photoz2 catalogue described in Oyaizu et al. (2008a) as our
photometric sample. The Photoz2 catalogue contains all primary
objects from DR6 (drawn from the SDSS CasJobs website*) that
have the TYPE flag equal to 3 (the type for galaxy) and that do not
have any of the flags BRIGHT, SATURATED, SATUR_CENTER
or NOPETRO_BIG set. For the definitions of these flags we refer
the reader to the PHOTO flags entry at the SDSS website.” The full
Photoz2 photometric sample comprises 77418 767 galaxies. The r
magnitude, g — r and r — i colour distributions are shown in the
bottom panels of Figs 1(a) and 2(a).

A2 Spectroscopic training samples

As noted in the text, the spectroscopic training sample we use
for SDSS DR6 is drawn from a number of spectroscopic galaxy
catalogues that overlap with SDSS imaging. Each survey providing
spectroscopic redshifts defines a redshift quality indicator; we refer
the reader to the respective publications listed below for their precise
definitions. For each survey, we chose a redshift quality cut roughly
corresponding to 90 per cent redshift confidence or greater. The
SDSS spectroscopic sample provides 531 672 redshifts, principally
from the MAIN and LRG samples, with confidence level z.onr >
0.9. The remaining redshifts are 21 123 from the CNOC2 (Yee et al.
2000), 1830 from the CFRS (Lilly et al. 1995) with class >131716
from the DEEP (Davis et al. 2001) with g, = A or B and from
DEEP2 (Weiner et al. 2005)® with Zguuiy > 3728 from the TKRS
(Wirth et al. 2004) with zquaiy > —1, and 52842 LRGs from the
2SLAQ Survey (Cannon et al. 2006)” with Zop = 3.

We positionally matched the galaxies with spectroscopic red-
shifts against photometric data in the SDSS BestRuns CAS data
base, which allowed us to match with photometric measurements
in different SDSS imaging runs. The above numbers for galaxies
with redshifts count independent photometric measurements of the
same objects due to multiple SDSS imaging of the same region; in
particular SDSS Stripe 82 has been imaged a number of times. The
numbers of unique galaxies used from these surveys are 1435 from
CNOC2, 272 from CFRS, 6049 from DEEP and DEEP2, 389 from
TKRS and 11426 from 2SLAQ. The SDSS spectroscopic samples
were drawn from the SDSS primary galaxy sample and therefore
are all unique.

APPENDIX B: SDSS DR6 MOCK CATALOGUE

Using spectral template libraries and observational data on the
redshift-dependent luminosity functions of galaxies of different
types, we have constructed mock photometric and spectroscopic
samples that reproduce the main features of the real SDSS DR6
samples. In particular, we fit simple polynomial functions to the
Schechter parameters of Zucca et al. (2006) to derive a continuous
relationship between the Schechter parameters M*, «, ¢*, redshift z
and galaxy type T, using the centroid of each redshift bin for the fit.
To regularize the fits, we visually extrapolate the results of Zucca

4 http://casjobs.sdss.org/casjobs/

3 http://cas.sdss.org/dr6/en/help/browser/browser.asp
6 http://deep.berkeley.edu/DR2/

7 http://Irg.physics.uq.edu.au/New_dataset2/

Estimating the redshift distribution Il ~ 2397

Table B1. Schechter luminosity function parameters (Zucca et al. 2006)
used to derive polynomial fits to the relationships between the Schechter
luminosity function parameters, redshift and galaxy spectral type. The pa-
rameters in Zucca et al. (2006) were derived using the B band of the VVDS;
here we use them to generate the r-band magnitude distributions, using the
appropriate k-corrections by galaxy type (Blake & Bridle 2005).

Type  zbin a My — Slog(h)  ¢* (1073 3 Mpc—3)
1 0002 -0I5T3  —20.00103 6.151070
1 02-04 —0047038  —202710% 515105
1 0406 0407030  —2049%0] 3.127930
1 0608 —0228017 20224009 353702
1 0810 —00175%  —2073%01) 2361018
1 10-12  -123%03% 205370 23917022
1 12-15  —1307540  —20.501039 231030
2 0002 0607930  —20.007529 7.6010-00
2 02-04 —0677013 —2013753 6.5010:3
2 0406 —050701  —19.97751 435104
2 0608 —0577013 2039759 4.5810.26
2 0810 —0.607920 20557519 3.5410-22
2 1012 —07693 20777512 3.0110%
2 1215 —1577%8  _20.827013 2.19+022
30002 —0807930  —19.00755 10.0+0:60
3 02-04 —0847010  —19.147502 9.821034
3 0406 1077010 —20.047011 6.3110:30
30608 —0797013  —20.1070% 7111028
3 0810 —0877013  —2033750% 6.271027
3 10-12  —1397926 038510 5.57+0.3
30 12-15 186703 —20.817013 3.6775027
4 0002 —155T030  —19.601040 2.6010:40
4 0204 159701 -19.73%0% 2.597013
4 0406 —153T0% 19381001 4101013
4 0608 —135T013 —19.95%012 4.07+018
4 0810 —1.687020 20101012 4724020
4 1.0-12  —-1.9970F 20191012 6.95+0:3
4 12-15 2507032 20531012 4.34102

et al. (2006) to the z = (0, 0.2) bin and, where needed, for the (1.2,
1.5) bin.
The Schecter luminosity function is defined as
2, (2/5)(M*—M)] ¢ +]
o(M)dM = §¢> (In10) [10 ]
X exp [_10<2/5><M*—M>] am, (BD

where ¢(M) dM is the number of galaxies with absolute magnitudes
between M and M + dM.

The Schechter parameters we use are shown in Table B1. The
polynomials we derive are

o = b T? + by T7 + byz + bsz® + bs, (B2)

M* =ClT2+CQTZ+C3Z+C4ZZ+CSs (83)
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¢ =d\T* +dry Tz + dsz + dsz* + ds
+dgT?z + d7T3. (B4)
We find the best-fitting coefficients to be
b = [-0.087, 0.050, 0.998, —1.143, —0.383],
¢ = [0.068, —0.202, —0.806, 0.227, —19.86],
d =[2.04, —5.20, —0.636, 0.910, 4.181, 1.417, —0.536].

APPENDIX C: ARTIFICIAL NEURAL
NETWORK PHOTO-zs

For comparison with the weighting method, we use an ANN method
to estimate photometric redshifts (Collister & Lahav 2004; Oyaizu
et al. 2008a). We use a particular type of ANN called a feed for-
ward multilayer perceptron (FFMP), which consists of several nodes
arranged in layers through which signals propagate sequentially.
The first layer, called the input layer, receives the input photo-
metric observables (magnitudes, colours etc.). The next layers,
denoted hidden layers, propagate signals until the output layer,
whose outputs are the desired quantities, in this case the photo-z
estimate. Following the notation of Collister & Lahav (2004), we
denote a network with k£ layers and N; nodes in the ith layer as
Ni:Njy:---: Ng.

A given node can be specified by the layer it belongs to and the
position it occupies in the layer. Consider a node in layer i and

position o withw = 1, 2, ..., N;. This node, denoted P,,, receives
a total input /,, and fires an output O, given by
Oio = F(li), (ChH

where F(x) is the activation function. The photometric observables
are the inputs [/, to the first layer nodes, which produce outputs
O1,. The outputs O, in layer i are propagated to nodes in the next
layer (i + 1), denoted P iy1yp, with B = 1,2, ..., Ni;,. The total
input ;) is a weighted sum of the outputs Oj,:

Ni
I(i+1)/3 = Z Wiap Oiq, (2)

a=1
where w;,g is the weight that connects nodes P, and P ;4. Iterat-
ing the process in layer i + 1, signals propagate from hidden layer to
hidden layer until the output layer. There are various choices for the
activation function F(x) such as a sigmoid, a hyperbolic tangent,
a step function, a linear function etc. The choice of the activation
function typically has no important effect on the final photo-zs, and
different activation functions can be used in different layers. In our
implementation, we use a network configuration N,,:15:15:15:1,
which receives N,, magnitudes and outputs a photo-z. We use hy-
perbolic tangent activation functions in the hidden layers and a
linear activation function for the output layer.
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