
EFFICIENT MODULAR IMPLEMENTATION
OF BRANCH-AND-BOUND AIGORITHMS*

Roger V. Johnson
School of Business Administration, University of Michigan, Ann Arbor, MI 48109-1234

ABSTRACT

This paper demonstrates how branchandbound algorithms can be modularized to ob-
tain implementation efficiencies. For the manager, this advantage can be used to obtain
faster implementation of algorithm results; for the scientist. it allows efficiencies in the con-
struction of similar algorithms with different search and addressing structures for the pur-
pose of testing to find a peferred algorithm. The demonstration in part is achiwed by showing
how the computer code of a central module of logic can be transported between different
algorithms that have the same search strategy. Modularizations of three common searches
(the best-bound search and two variants of the last-in-firstaut search) with two addressing
methods are detailed and contrasted. Using four assembly line balancing algorithms as uam-
pla. modularization is demonstrated and the search and addressing methods are contrasted.
The application potential of modularization is broad and includes linear programming-
based integer programming. Benefits and disadvantages of modularization are discussed.
Computational results demonstrate the viability of the method.

Subject A m DLFenlc Pmgmmming, Line Balancing. Mathematical Progmmm&tg,
and Search Theoru

INTRODUCTION

In order to modularize branch-and-branch algorithms, the algorithms in this
paper consist of three components: data blocks that represent the state of the algo-
rithm computations at each node as that node is formed; data update logic that
is required to update or create these data blocks as each new node is formed (the
specifics of these two components are unique for each algorithm and are grouped
in n b l e 1); and the cenrml module of logic, common, right down to the computer
implementation level, to all algorithms that have the same search strategy. The third
component links the data blocks and the data update logic to guarantee that candi-
date problem selection converges to optimality in the manner of the search type
being used. I t also ensures correct data addressing, bound comparison, and incum-
bent (best-found) solution management, often the most difficult parts of an algo-
rithm to code and validate In a later section, flow charts of the centml modules
are provided for each of the three search methods: the best-bound search and two
variants of the last-in-first-out (LIFO) search (in this paper referred to as the deep-
sea-troll search and the laser search).

*Thanks to my University of Michigan colleague F. Brian Talbot, James H. Patterson (Indiana
University) and Michael Magazine (University of Waterloo) for permission to use their codes Thanks
also to the anonymous rcferea and to my former colleagues at UCLA, Elwood S Buffa and Rosser
T. Nelson, for their helpful comments on earlier versions of this paper.

17

18 Decision Sciences [VOL 19

Table 1: Required data blocks and data update logic

Data Blocks Available to Update Logic
(forming node n from node m)

Bat - LIFO LIFO
Required Required Data Bound DcepSea-Troll Laser

Data Blocks Update Logic Search Search Search --

P (problem data)

NNm
(data add&
by node
number m)

CP
(data add&
as candidate
problem)

B , (objective
bnctbn bound)

T, (terminal
node indicator)

Y, (objective
function value)

Pointer (indicates
extension or
backtracking)

I (incumbent
solution and its
addrcsses)

Read data

At source node
Initialize NNQ

Fonn new node:
Define N N ,

At source node:
Initialize CP

Form ncw node:
Update CP

Backtrack:
Recreate old CP

Compute bound

Set indicator:
0: tnminal node
1: otherwise

Compute value

Reset pointer to - I
if a new node
cannot be
formed during
Form New Node

Update incumbent
solution: Copy
N 4 - m nods)

and CP to I

Print incumbent

-

P

Not used

CP and node
addresses

I

P

After backtrack,
the address of
the pmious
candidate
problem

CP and node
addresses

solution addresses

BENEFl'B AND DISADVANTAGES OF MODULARlZATlON

The decision to modularize a branch-and-bound algorithm involves trade-offs.
The central module includes a difficult part of the algorithm to code and verify.

I

19881 Johnson 19

However, it requires development and coding only once for all algorithms having
the same search strategy. Therefore, substantial development time is saved when
second and subsequent algorithms need to be coded. Since modularization requires
that structured programming techniques be applied to the entire algorithm, fur-
ther reductions in implementation time should be derived from increased code clarity
and localization of code checking and validation.

The gains of modularization are greater for best-bound searches since these
require that many more nodes be stored at any point in the computations than LIFO
searches. They also require jumptracking, causing node addressing to be more com-
plicated. The advantages of modularization also are greater for nonbinary trees
since these generally are more difficult to code than binary trees.

Offsetting these gains, some loss of computational speed occurs if the original
coding of the central module constrains the choice of data structures for a subse-
quent algorithm. This loss would be of a linear order only since no change occurs
in the portion of the tree that needs to be explored explicitly or in the number of
iterations required through the use of nonoptimal data structures. If this loss exists
at all, it is not likely to be serious since even binary representation of data (see
[5] for how this can be done) remains possible. A second disadvantage is that to
gain the full benefits of modularization, the logic of the central module should
be coded for the “general” case. This requires a deeper level of conceptual under-
standing of algorithmic structure than is needed for any specific algorithm.

TWO ADDRESSING METHODS

In all branch-and-bound searches, a new node‘s data are a function of its im-
mediate ancestor node‘s data and the data update logic used to move from the
ancestor to the new node. prepare for modularization. we separate the data block
that defines each node into two parts according to whether the data are addressed
by node number or by virtue of the node being the candidate problem. Data items
formed but not used after the formation of the current node are temporary variables.
They are not significant in this paper. Addressing by node number is standard in
best-bound (breadth-first) searches since the candidate problem jumps from branch
to branch in the partial tree of enumerated solutions. Complete data for each node
in the candidate list therefore must be stored simultaneously.

In LIFO (depth-first) searches, node data need exist only when the node is
the candidate problem, which itself provides a convenient address point. This is
possible because the candidate problem always moves from a node to a descending
node or, during backtracking, returns to a node from a descending node. Com-
pared with node number addressing, this eliminates multiple node-storage require-
ments; it requires additional data update logic for backtracking to return the candi-
date problem to a node from its descending node.

Since addressing by node number can sometimes be employed usefully by LIFO
searches, this paper considers that possibility. Further differences between the three
search strategies, many of which are well known, are summarized in Thble 2.

20 Decision Sciences [Vol 19

Table 2: Principle differences between the three searches

Criterion or Search Method
C haracteristic Best-Bound LIFO D~epSea-Tr~ll LIFO Laser

Total core
requirements

'I).pically requires a
large, unpredictable
area

Modcrate area maled.
Area for node- needed
addressed data

Small predictable area

usuany unppmdictable

Early feasibility

Data addressed by
node number

Sometimes Usually Almost always

Required for partial Optional not often
data of bounds and used
to define nodes

Only available ad-
dressing method

Data addressed as
candidate problem

Cannot be used Usual method, saves memory by avoiding
multiple data sets

Required for data addressed by candidate
problem

Backtracking Not used

Number of nodes in
the candidate list

Liable to be very large Moderate but usually One
unpredictabk

Core requirements
per node in the
candidate list

Complete node data
must be kept for
each node in the
candidate list

All data addmssed by node number must be
kept for each node in the candidate list.
However, only one set of data addressed by
candidate problem is kept; total core require-
ments are minimized by maximizing use of
candidate problem addressing

Computation time
per node

Slowest (complete
ncw data set must
be defined for each
new node)

Slow only for data addressed by node number
(often few elements). Data addressed by can-
didate problem computed very quickly if few
items are updated for each new node;
however, time for backtracking is required
for candidate pmbkmaddressed data

Number of nodes
formed

Lowest (except in
unusual cases
identified in 141)

More than best- More nodes (inferior
bound search node selection). In

case of many tied
bounds savings
can be achieved

Total computation
time

No method dominates for all cases

MODULARIZATION OF ALGORITHMS

To allow modularization, the central module's computer code must be able to
operate on data from different algorithms that use the same search strategy. This is

19881 Johnson 21

Table 3: Data block accessibility by data update logic and central module.

Access by Algorithm-Specific
Data Blocks Required Access by Central Module Data Update Logic

f (problem data) Not accessed Form defined and used

NN (data addressed by Address provided Form defined and used
node number)

CP (data addressed by
candidate problem)

Not accessed Form defined and used

B (objective function bound) Address provided; saved Defined

T (terminal node Ttueor-false result saved Defined

V (node objective function) Saved and compared Defined

Pointer (laser search only) Defined and used Defined and used

I (incumbent solution)

and used

identification) and used

Address provided for data k r best-bound search: defined
in NN arrays, printed using
address provided by central

addressed by node
number; candidate
problem-addressed data module
not accessed For node-addressed data in

LIFO searches: copied to I
using address provided by
central module and printed

addressed data: copied from
Cf and printed

k r candidate problem-

possible when data accessibility between the central module and the algorithmspecific
data update logic is as shown in nb le 3.

The form and accessibility of each data block now is discussed. Neither the
problem data nor data addressed as the candidate problem are addressed or ac-
cessed by the central module; their forms are unconstrained by the central module.

The central module does not operate on data addressed by node number, but
it does provide the node‘s address. Therefore, the user can select any form of data
that can use a scalar address. At the coding level, this can be any combination of
scalars and arrays stored in a vector or an array of one greater dimension than
is needed for data at one node. The additional dimension provides for addressing
the data of multiple nodes. The central module also provides the candidate prob-
lem’s predecessor’s address. As an example, using FORTRAN, suppose a portion of
the data consists of a scalar (SCALAR) and a twodimensional array (TWODIM). If
the value of the scalar and the (i,j)th entry of the array are to be one less than
at the predecessor node, a FORTRAN implementation would be:

SCALAR(NEWNOD)= SCALAR(N0DPRE)-1
TWODIM(NEWNOD,I,J)=TWODIM(NODPRE,I,J)-1

22 Deckion Sciences [VoL 19

where NEWNOD and NODPRE are the addresses of the new node and its immediate
predecessor supplied by the central module and I and J are addressing variables
defined by the data update logic of the specific algorithm.

The objective function and bounds associated with the node use the node ad-
dress. Further, the objective function and bounds are operated on by the central
module and compared to the incumbent solution's objective function. These are
scalar comparison operations and are valid so long as the same units (dollars, cal-
ories, etc) are used consistently throughout the computations. As a result, the code
for these comparisons remains independent of the algorithm for which the compar-
ison is performed. Likewise, terminal node identification requires a true- false speci-
fication by data update logic of the specific algorithm; the manner in which the
central module operates on the result is independent of the specific algorithm. (In
fact, the objective function value and terminal node indicator are not used again
after the subsequent candidate problem is selected. They could be viewed instead
as temporary variables accessible by the central module)

A "pointer" feature is required for the laser LIFO search. It is controlled, ex-
cept in one circumstance, by the central module. The value of the pointer depends
on the position of the search in the tree of solutions. A new node descending from
a candidate problem can be formed immediately after the candidate problem itself
has been formed or immediately after a backtrack to the candidate problem. In
the former case, the pointer is set to 0 by the central module to signal that the
node being formed is the first to descend from the candidate problem. In the latter
case, the central module sets the pointer to the node address of the candidate prob
lem immediately before the backtrack (always a positive integer). This allows the
data update logic to access that node's data and to correctly form the next node
descending from the candidate problem. In this case, the address of the new node
will be identical to the one it replaced, a fact that sometimes can be used to advan-
tage in obtaining faster code. If the data update logic is unsuccessful in forming
a new node (which will occur when no further nodes descending from the candi-
date problem need to be formed), the data update logic must signal this to the cen-
tral module by setting the pointer to -1.

The maintenance method of the incumbent solution depends on the search
method. Since backtracking does not occur in the best-bound search, data are kept
intact and it is sufficient to save only the addresses. This is done by the central
module. Code must be written to print the incumbent solution, given these ad-
dresses, when optimality is reached. In LIFO searches, data of the incumbent solu-
tion usually are destroyed. Therefore, data must first be copied into the incumbent
solution data area and saved. Code must be written both for this copying and for
printing the final incumbent solution.

THREE CLASSES OF BRANCH-AND-BOUND SEARCH

Since ga iq from modularization are derived from similarity in search strategies,
common logic was sought and found in t h e frequently used search strategies. There
was little difficulty in finding the common logic in best-bound searches, so named

19881 Johnson 23

because the node possessing the best bound always is selected as the new candidate
problem. But two variants of LIFO searches were found that differed in how they
timed the formation of new nodes. These differences are pronounced when signifi-
cant time or memory is required to define all the nodes descending from a candi-
date problem; in binary searches, in which nodes are defined easily, these differ-
ences are not important. Since these two search procedures are not yet identified
as two distinct procedures in the literature, in this paper they are referred to as the
deep-sea-fro11 search and the laser search The choice of these names is related to
those portions of the tree of enumerated solutions that each procedure stores in
the computer at the time a terminal node is discovered In the deepsea-troll search,
a string of arcs through the tree, forming a path from the source node to the ter-
minal node, plus all unfathomed single arcs leading from that path are stored The
string of arcs represents a deep-sea-troll line; the single arcs leading from that string
represent fish hooks attached to the line in clusters. These hooks lead to the por-
tion of the tree not yet created. In the laser search, only one path through the tree
is stored at any one time Single arcs leading from the path are not stored. This
direct path can be viewed as a laser beam, since the search gets to a specific ter-
minal node via a single path, mimicking the laser beam

In order to highlight the principal differences between these three search pro-
cedures, the sequences in which nodes are formed are shown below for the exam-
ple in Figure 1. In this contrived example, all nodes in the tree are formed during
each search. In Figure I , the nodes are numbered arbitrarily, and the computed
lower bound of the objective function is noted for each node

Figure 1: Sample problem in tree form.

911 45

1011 40
/31130

' 8,155

Note: x/y indicates that node x has an objective function bound or value of y. Nodes 0 through
4 represent incomplete or infeasible solutions N o d e 5 through 12 rcpmmt feasible solutions

24 Decision Sciences [Vol. 19

The sequences of node creation for each search are as follows (parentheses

Best-bound: (1,2), (3.43). (6,7,8), (11,121, (9,101
Deepsea-troll: (1,2), (3,4,5), (11,12), (9,10), (6,7,8)
Laser: 1 , 3 , 9 , 1 0 , 4 , 1 1 , 1 2 , 5 , 2 , 6 , 7 , 8

indicate simultaneous node creation):

The Best-Bound h r c h

In a best-bound search, all nodes descending from the candidate problem are
created at the same time and join the candidate list simultaneously. The node in
this list with the lowest bound becomes the next candidate problem, at which time
the previous (old) candidate problem is removed from the candidate list. If a candi-
date problem at a terminal node is found to have an objective function value less
than or equal to the best bound of any node in the candidate list, it is optimal
and computation ceases. The logic common to best-bound searches is contained
in the flowchart of the best-bound-search central module in Figure 2.

Examples of best-bound seaKhes include the ”principle” m i o n of Little, Murty,
Sweeney, and Karel’s [l 11 traveling salesman algorithm, the (original) Land-Doig [lo]
mixed integer-programming algorithm, and the “branch-and-bound” version of
Greenberg and Hegerich’s [6] knapsack algorithm.

The Deep4ea-hU h r c h

The deep-sea-troll LIFO search is distinguished by how it times the formation
of arcs descending from any active node. When one node descending from the can-
didate problem is formed, all nodes descending from it are formed before any other
node in the tree is formed. Further, after these nodes are formed, the next set of
nodes formed will descend from one of these newly created nodes. When a termi-
nal node is reached, its objective function value is compared with that of the incum-
bent solution. The new solution becomes the incumbent if it is superior. The search
then backtracks along the path to the nearest node that has a descending node
which has not been extended. The partial solution that has been backtracked over
is discarded. If this descending node’s bound is superior to the objective function
value of the incumbent solution, it becomes the candidate problem and nodes
descending from it are formed and bounds calculated. If the bound is inferior to
the incumbent solution’s objective function value, the node is discarded and the
closest unexplored node becomes the candidate problem. The logic of the deep-sea-
troll-search central module computations is provided in the flowchart in Figure 3.

In most deep-sea-troll searches, at least some of the data associated with each
node must be addressed by node number. These data provide “hooks” to that por-
tion of the tree yet to be explored. The remaining data can be addressed by node
number or as candidate problems. The allocation of data between these two address-
ing methods should depend on the resulting efficiencies of required storage area
and computation time Further, since bounds of the new nodes are computed prior
to selection of the new candidate problem, these bounds must be based on the data

19881 Johnson 25

addressed by the old candidate problem and the data addressed by the new node
number. Sufficient data therefore should be placed in node-addressed data to com-
pute the strongest possible bound for the node.

Examples of deep-sea-troll LIFO searches include the “throw away the tree”
variation of Little et al.3 traveling salesman algorithm (11, pp. 983-9841 and
Johnson’s [7] [8] assembly line balancing algorithms. Greenberg and Hegerich’s
[a] branchsearch version of their algorithm is a LIFO search, but whether it is
a deep-sea-troll or a laser search depends on the particular implementation.

Figure 2: Flowchart of the central module for the minimizing best-bound search.

?t Candidate Problem Address, C 0;
4LL INITIALIZE SOURCE PROBLEM to initialize NN(C);
st BIGNUMBER 9999999999;
?t initial incumbent solution objective function W BIGNUMBER;

Candidate Problem:
CALL FORM NEW NODE to define “(I) for each new node,
CALL COMPUTE BOUND to compute B(i) for each new node

I

Select node in CLIST with
OBJECTIVE FUNCTION

optimal: Retrieve node
numbers of optimal path

CALL PRINT
INCUMBENT SOLUTION.

in tree; yes

No feasible solution exists.

26

c

'

Deckion Sciences

Add 1 to SETNUMBER;
Form all new nodes branching directly from the Candidate Problem:

CALL FORM NEW NODE: DEFINE NN(m) for each new node,
CALL COMPUTE BOUND to compute B(m) for each new node;

The addresses of the new nodes for which B(m) c W form SET(SETNUMBER);
Abandon those NN(m) and B(m) for which B(m) 2 W.

[Vol. 19

Select the node in SET(SETNUMBER) with the lowest '
bound B(m) to become the next Candidate Problem, C;
Set CHOICE(SETNUMBER) = m.

Figure 3: Flowchart of the central module for the minimizing deep-sea-troll LIFO
search.

CALL READ DATA to read P. Problem Data;
Set BIGNUMBER = 9999999999;
Initialize incumbent solution objective function, W = BIGNUMBER;
Initialize Candidate Problem address, C 0;
CALL lNlTIALlZE SOURCE NODE to initialize NN(C) and CP;
Initialize SNUMBER = 0. SETISElNUMBERI = C. CHOICEISNUMBER) = C

19881 Johnson 27

The Laser LIFO Serrmh

The laser search is similar to the deepsea-troll search. However, in a laser search
there never is more than one node in the candidate list. Thus if two or more nodes
descend from a candidate problem, only one is formed initially. The remaining
node(s) is not formed until the subtree descending from the formed node, which
becomes the next candidate problem, has been fathomed completely. The selec-
tion and creation of the new candidate problem therefore must be based solely on
the data of the previous candidate problem (addressed either way). Thus the new
candidate problem must be formed without the benefit (derived in the deep-sea-
troll search) of first computing the bounds of all nodes that descend from the old
candidate problem. Therefore, node selection is apt to be weaker under a laser search.
Further, in order to provide information about which arcs have been formed, a
pointer (as described earlier) is provided. In some searches, the pointer is disguis-
ed. For example, in a 0-1 search of the Balas [l] type, the 0-1 variable itself pro-
vides sufficient information to serve as the pointer if the first selection of 0 or 1
a t each node is made consistently. A flowchart of the central module for the laser
search is contained in Figure 4.

Algorithms employing a laser LIFO search include Balas’s [l] 0-1 integer pro-
gramming algorithm, Dakin’s [3] modification of the Land-Doig [lo] algorithm,
Talbot’s [131 project-scheduling algorithm, Thlbot and Patterson’s [15] assembly line
balancing algorithm, and Johnson’s [9] assembly line balancing algorithm.

AN EXAMPLE ASSEMBLY LINE BALANCING

I n this section, four algorithms are outlined that “balance” assembly lines of
the simple formulation originally described by Salverson [12]. One algorithm
employs a best-bound search, two employ a deep-sea-troll search but use different
addressing methods, and the fourth employs a laser search. The problem solved
is: A set of tasks, each with a given performance time, is to be allocated to work
stations so that the number of work stations is minimized, subject to the constraints
that the time to perform the tasks allocated to each station does not exceed a given
cycle time and that task precedent specifications are preserved.

In all four algorithms, each arc in the enumeration tree represents the alloca-
tion of a task to a station. Stations are filled in their physical sequence on the
assembly line, so the first allocated task necessarily has no required precedents.
When a subsequent task is allocated, all of its precedent tasks must already be
allocated. A lower bound on the required number of stations is computed assum-
ing that an allocation of tasks to incomplete stations exists in which these stations
are filled to capacity. The bound computation of the remaining stations is the
smallest integer not less than the total of task times less the free time at the current
station, divided by the cycle time

The variables that permit the four searches are defined in Thble 4. The se-
quence and details of computations are described in the following subsections and
in a b l e 5 .

Decision Sciences

L

CALL READ DATA to read P, problem data;
CALL INITlAUZf SOURCE NODE to initialize NN(O), B(O), and CP;
Set BIGNUMBER = 9999999999; Set L N E L = 0; Set POINTER 0;
Set initial incumbent solution objective function W = BIGNUMBER.

[Vol. 19 28

FiguFe 4 Flowchart of the central module for the minimizing laser LIFO search.

CALL SET TERMINAL
NODE INDICATOR,

\I

Set POINTER LEVEL^
4 ,

yes no

FUNCTION to find WLEVEL).

recreate CP(LEVEL-1);
Decrease LEVEL by 1.

copy "(0 through LEVEL) and CP into I;
Let W = V(LEVEL) to update incumbent

I, is optimal. CALL PRINT
INCUMBENT SOLUTION.

19881 Johnson 29

Best-Bound Search

This best-bound search is a simplification of the algorithm proposed by
Charlton and Death [2]. Computation begins with no task allocated. Then one
arc is formed descending from the source for each task with no required predecessor
tasks. The node with the least bound is selected, from which the next set of new
arcs is formed. This process is repeated: the node with the lowest objective func-
tion bound always is selected for the generation of the next set of descending arcs.
Ties are broken naively in favor of the lowest-numbered tasks.

Table 4 Variable definitions, source node initializations, and addressing methods
of assembly line algorithms

Addmsing Source Node __-
Ddinition Initialization BB T1 T2 L -- Variable -

PI
P2

P3
P4
P5

DIn
D2n
D3n.i

D4n
D5n
D6i

D 7i

Bn

Tn

Vn

-
-

-
-
-

0
I

0, all i

0
0

computed

computed

[P5/P3] +

false

not
comouted

-
-

-
-
-

NN
N N
N N

N N
N N
-

-

NN

NN

N N

-
-

-
-
-

NN
NN
NN

NN
N N
-

-

NN

NN

NN

- -
- -

- -
- -
- -

N N N N
N N N N
CP CP

NN N N
CP CP
- CP

- CP

N N N N

NN N N

N N N N

P (Problem Data)
number of tasks
matrix of precedent

requirements:
P2,,i=I if task j must precede

task i;
= 0 otherwise

cycle time
P4, = performance time of task i
sum of all task times

Variables in node data block
task allocated at node n
station number being built
station at which task i is allocated;

0 means not allocated
time used at station n
sum of allocated task times
number of tasks not allocated that

must precede task i
lowest numbered task r i that is not

allocated and is availabk

Objective Function Bound
lower bound of the required

number of work stations

Terminal node indicator

Objective function

true if all tasks assigned

value of objective function
(computed only if Tn is true)

Notes: BB =best-bound search implementation; TI =first deep-sea-troll search implementation;
T2=sccond deep-sea-troll search implementation; L = k r search implementation; NN =data add&
by node number; CP=data addressed by candidate problem. The subscript n is not used when data
are addressed as candidate problem data.

30 Decbion Sciences [Vol 19

Table 5: Assembly line algorithm computations for bounds, terminal node identi-
fication, and objective function.

Variable Computational Formula
Lower bound of objective function.
Best-bound search D2,+ [(f S - D S , - (f 3 - D 4 ,)) / f 3 1 ~

First deep-sea-troll search: D2n+I(fS-DS,- (f3-D4,))/P31+

Second deep-sea-troll search D2,+ [(fS-(D50,d+f4(DI,))- (f3 -D4 ,)) / f3]+

Laser search D2, + [(P5 - DS,, - (f 3 - D4,)) / f3] +

Definition: [XI' = smallcst integer z x .

Terminal Node Identification. true only if sum of allocated task times equals
total of task times

Best-bound and first deepsea-troll search: when D5,=f5

Second deep-sea-troll search: when DSOld+ P4(DIn)=PS
Laser search: when DS,,,=fS

Objecfiwe function. 0 2 , (computed only if T, is true)

Each task that can fit into the partially formed station of the predecessor node
p will form a separate arc. To fit at a station, task i must not have been already allo-
cated (D3Bi=0), must not cause the work content at the station to exceed the cycle
time (P4i+D4p4P3X and must satisfy the task-precedent constraints (D3B,=1 for
all j for which P2j,i= 1). Further, to ensure that only combinations and not per-
mutations of tasks are created at a particular station, the task number of a task
allocated to a particular station must be greater than that of the previous task
allocated to the same station (i>DZ). For each of the m tasks i that satisfy these
conditions at node p, an arc descenxing from node p is formed by defining DZ, = i
where n = l , 2, . . ., m.

The data update logic for forming the remainder of the data block that forms
a new node n from its predecessor node p , where DZ, is allocated to the station
containing DIP, is

0 2 , =D2p
D3,i = 0 2 , for i=DZ,
D3,i = D3ni for i# DZ, : other task allocations are not changed
0 4 , =D4p+P4(D1,J
D5, =D5,,+P4(DZn)
I f no task fits at the current station, a new station must be started. A new

node, say node n, will be formed for each task i: DZ,=i for which i is not already
allocated (D3,,.=0) and for which all task i's predecessors are allocated (DjW.=1

: the station number is not changed
: task i is allocated to station D2,

: the station time used is updated
: the sum of allocated task times is increased

19881 Johnson 31

for aUj for which P2j,i= 1). The computation of variables 03,i and 05 , is as above,
but 02, and 0 4 , are computed as follows:

02,=02,+I : a new station is formed
0 4 , = P4(DZ,): station time used is the performance time of the task

allocated at this station

The best-bound search to balance assembly lines is described completely by
the above data update logic, the variable definitions and source node initialha-
tions of a b l e 4; the central module of the best-bound search of Figure 2; and the
logic of the bound computation, terminal node recognition, and objective func-
tion computation defined in Table 5 . The linkages among these components are
invoked by the CALL items shown in the flowchart of the central module in Figure 2.

For a problem with n tasks, n+7 memory locations are required for each node
in the candidate list including bound, objective function, and terminal node recogni-
tion variables For the data blocks selected, it is not necessary to retain informa-
tion about nodes that already have served as the candidate problem. Therefore,
an upper bound of the number of nodes in the candidate list is n! and a maximum
of (n +7)(n!) memory locations is required.

First Deep-Sea-Troll LIFO Search

The first deepsea-troll search utilizes addressing by node number only. It uses
the same data blocks and data update logic as the best-bound search described
in the previous section. Most differences between these two algorithms occur in
their respective central modules which dictate the sequence in which nodes are
created. Therefore, the central module shown in Figure 3 is used instead of that
in Figure 2. Additionally, a copy of the current incumbent solution is kept.

In this LIFO search, the maximum number of nodes in the candidate list is
n+(n-1)+ . . . +l=n(n+l) /2 where there are n tasks in the problem. Since n+7
memory locations are required for each node in the candidate list, a maximum
of (n + 7)(n)(n + 1)/2 memory locations is needed.

Second Deep-Sea-hII !%!arch

The second deepsea-troll search differs from the first in just one respect the
variables that comprise 0 3 and 0 5 are addressed to the candidate problem rather
than by node number. As a result, data update logic to move the candidate prob-
lem from a node to its descendant node are the same as for the first deepsea-troll
search except the node subscripts on 03 and D5 are not used and, of the n variables
in 03 for an n-task problem, only the task being allocated needs to be updated.
The timing of the computations differs according to addressing method.

Also, backtracking data-update logic must be defined for data addressed to
the candidate problem, which is

32 Decision Sciences [Vol. 19

D3(D1,)=0
D5

: task Dl, is no longer allocated
= DSold-P4(DI,): the sum of allocated task times is decreased

The bound computations must be modified in this search since the variables
addressed as the candidate problem (0 3 and D5) are not updated when the bound
is computed. This is reflected in the formula in lhble 5 .

When a terminal node is identified as the best found, both the node addressed and
the candidate problem-addressed data are saved in the incumbent solution data block.

These changes considerably reduce the computation time at each node since,
as the candidate problem moves to a descendant node or backtracks, only two of
the (n+1) variables contained in 0 3 and D5 (rather than all (n+ 1)) are modified.
The total number of variables computed per node created, including backtracking
and the six node-addressed variables, is reduced from n+7 (using only node ad-
dressing) to 10 (= 6 + 2x 2) using this search mode's addressing. Further, some nodes
in the candidate list never become the candidate problem, in which case candidate
problem-addressed variables are not computed at all.

Since the maximum number of active arcs is n(n+ 1)/2, the maximum number
of memory locations required can be computed as 3n2+4n+1, derived from
6(n(n + 1)/2) locations for node-addressed data and (n+ 1) locations for candidate
problem-addressed data.

Laser LIFO Search

In moving the candidate problem to one of its descending nodes, the logic
of the laser LIFO search will depend on whether the arc is the first to descend
from that node (pointer =0) or not (pointer >O). I f the pointer, which is set by the
central module, is 0, the arc will be the same as the first arc formed by either deep-
sea-troll search (i e . the minimum-numbered available task, i); the bound computa-
tion can use the newly created candidate problem data, as indicated in Bb le 5 .

I f (pointer>O), the arc is a second or subsequent arc formed from the candi-
date problem at node n and the pointer gives the address of the arc prwiously formed
from the same node The computations depend on whether a new work station
was formed for the previous arc descending from the candidate problem, recognized
by (D2wi,,ef>D2p), or at an existing work station (D2p0i,ter=D2p). In either case,
the lowest-numbered task i> Dlwi,,,ef that satisfies the conditions appropriate in the
second deep-sea-troll search is selected as the new arc here: Dl,=i If no such task
exists, the pointer is set to - 1 to indicate that further backtracking is appropriate.
The same backtracking computations are performed as in the second deepsea-
troll search.

EXPERIENCE

The advantage of the modular approach can be appreciated by considering
that, with a coded central module for the best-bound search and the deep-sea-troll

19881 Johnson 33

search, the first two assembly line balancing algorithms described in this paper
were implemented using only 38 additional FORTRAN statements. (The same state-
ments were used for each algorithm) A knapsack algorithm was coded using 40
additional statements A bicriteria network cost-minimization algorithm was coded
with 25 additional FORTRAN statements. (These numbers exclude statements re-
quired to input data and print the results.)

An important issue in using the modular approach is whether the modular
code will be competitive with code that is fully tailored to a particular algorithm
To explore this question, the performances of seven assembly line balancing algo-
rithms were compared Wee and Magazine‘s [161 and lhlbot and Patterson’s [14)
codes were selected to represent two algorithms that were not coded using modular
methods described in this paper. (These codes appeared to be the best algorithms
examined in Talbot, Patterson and Gehrlein’s [151 comparative investigation of
assembly line heuristics.) The two algorithms were compared with five algorithms
that were coded using modular principles. Four were defined in the previous sec-
tion; the fifth is Johnson’s [9] algorithm The first three described in the previous
section were designed for simplicity, not computational speed. The literature set
selected by Talbot et a1 [IS] was used. The results are shown in Rble 6.

From Table 6, it can be seen that only Johnson’s [9] laser search solved all
problems to proven optimality, showing that any disadvantage that the modular
implementation might have was not serious. More likely, the modular implemen-
tation helped. Recalling that Wee and Magazine’s, Talbot and Patterson’s, and
Johnson’s algorithms were designed primarily for speed (the latter two algorithms,
being laser LIFO searches, also require small and predictable core space), we find
no predictable evidence that using modular coding slows computation times. Dif-
ferences in the algorithms themselves are a much more likely explanation for any
computational time differences.

In comparing the four algorithms developed for this research paper, we find
the algorithm employing the laser LIFO search clearly is best It would be dangerous
to atrapolate the success reported here to other problem classes The assembly line
balancing problem is characterized by many alternate optimal solutions, lessening
the importance of the arc selection phase-something the laser search inherently
is comparatively weak in performing. In other problem classes, node selection may
be comparatively more important., indicating that if a deep-sea-troll search could
extract and better utilize tighter bounds, it might lead to a better algorithm.

EXTENSIONS OF THE ASSUMPTIONS

Modularization of Other Branch-and-Bound Algorithms

Most branch-and-bound algorithms come close to the structure of the three
search types detailed in this paper. However, some legitimate variations occur. For
example, in the laser LIFO search, node-addressed data alwy are updated before
candidate problem-addressed data of the same node Since this might not always
be convenient., slight changes to the central module to allow deviations might be
beneficial in some instances.

w

P

Ta
bl

e
6

C
om

pu
ta

tio
n

co
m

pa
ri

so
ns

 o
f a

ss
em

bl
y

lin
e

al
go

ri
th

m
s:

 C
om

pu
ta

tio
n

tim
es

 (C
PU

 se
co

nd
s)

 to
 s

ol
ve

 li
te

ra
tu

re
 p

ro
bl

em
s

to
 p

ro
ve

n
op

tim
al

ity
 (

on
 a

n
IB
M

30
90

 u
sin

g
th

e
IB
M

H
 c

om
pi

le
r)

. Be
st

-
Fi

rs
t

Se
co

nd

Jo
hn

so
n

B
ou

nd

D
ee

p-
Se

a-
nu

ll
kp

-S
ea

-T
ro

ll
la

se
r

La
w

1

M
er

te
n

6
6

.oo

.oo

.0
9

.0
5

.0
3

.oo

.0
1

O
pt

im
al

Ta

lb
ot

 &

*&

Pr
ob

le
m

Nu

m
be

r
of

Cy

cle

Pa
tte

rs
on

M

ag
m

ne

N
am

e
[I
61

St
at

io
ns

Ti

m
e

11
51

11
71

Se
ar

ch

Se
ar

ch

Se
ar

ch

Se
ar

ch

Se
ar

ch
[9

]

5
7

Bo
w

m
an

Ja

es
ch

ke

Ja
ck

so
n

D
ar

-E
l

M
itc

he
ll

H
ak

ia

8 10

5

I5

3 2 2
18

5
20

8

6
7

7 8 10

6 4 3
18

8
7

6
9

5
10

4
13

4
14

3

21
4

48

3
62

2
94

8
14

I5

8 5
21

5

26
3

35

3
39

8
I3
8

5
20
5

5
21
6

4
25
6

4
32

4
3

34
2

.oo

.oo

.oo

.oo

.oo

.0
1 .oo

.oo

.oo

.oo

.oo

.oo

.oo

.a
,

.oo

.oo

.oo

.oo

.oo

.oo

.oo

.oo

.oo

.oo

.oo

.oo

.oo

.oo

.oo

.oo

.oo

.3
4

.oo

.0
1

.O
O .oo

.0
1 .oo

.oo

.oo

.oo

.oo

.
W

.oo

.oo

.oo

.oo

.0
3 .oo

.oo

.0
1 .oo

.oo

.o
I .oo

.oo

.o I

.oo

.oo

.oo

.cQ

.o
I .oo

.oo

.I
0

.0
9

.0
9

.0
9

.0
9

.I
0 .I
0

.0
9

.I
0

.0
9

.I
0

.I
7

.2
2

.I
3

.I
5

.I
6

.I
3

.I
2

.I
2

.I
2

3.

(4
0

3.

(d
.0

3.

(d
.0

3.

(4
0

3.

(d
.0

3.

(d
.0

3.

(4

9

3.

(d
.0

3.

(4

9

3.

(d
.0

3.

(d
.9

3.

(d
.0

.0
5

.0
3

.oo

.oo

.0
5

.0
3

.o I

.oo

.0
5

.0
5

.(H

.0
5

.0
5 .0
5

.0
5

.O
J

,0
5

.0
6

.0
6 .0
5

.0
5

.0
5 .os

.0
5

.0
6 .0
5 .a

.0
7

.0
6 .0
5

.0
6 .0
5

.2
8

.0
7

.I
4

.0
5

.0
6

3.

(c
fl

.0
3

.0
3

.0
3

.0
3

.0
3

.0
3

.0
3

.0
3

.0
3

.0
3

.0
3

.0
3

.0
3

.0
3

.0
3

.0
3

.0
3

.0
3

.0
4 .0
3

.0
3

.0
3

.0
3

.0
3

.I
4

.0
3

.0
7

.0
3

.0
5

3.
cc

n

.w

.oo

.oo

.o I

.oo

.oo

.oo

.o I

.oo

.oo

.oo

.oo

.oo

.oo

.0
1

.O
O .oo

.oo

.0
1 .oo

.o I

.oo

.0
1

.0
1

.0
1 .oo

.oo

.o I

.oo

.0
2

.oo

.0
1

.0
1 .oo

.oo

b 5.

.0
1

$.
.oo

.oo

.oo

.oo

.oo

.oo

.oo

.oo

.oo

.0

1
.0

1 .oo

.0
1

.0
1 .oo

.0
1 .oo

.oo

.oo

.oo

.0
1

- 3
 cn
 3. 2 2

.oo

<

.0
1

e -
.0

1
\o

Sa
w

ye
r

K
ilb

rid
ge

 &
 W

es
te

r

A
rc

us
83

A
rc

us
-l

II

14

13

I2

10
 8 7 5 10
 7 6 6 4 3 21

10
 9 8 7 16

14

I2

II

10
 9 8 18

16

15

14
 9 n

25
 n 30 36

41

54

75

57

79

92

I1
0

I3
8

18
4

17
6

36
4

41
0

46
8

52
7

50
48

58
53

68

42

75
71

84

12

88
98

10

81
6

57
55

88

47

I0
02

7
I0

74
3

I I
37

8
I7

06
7

3.

(h
0

3.

(s
f)

3.

(b

.0

3.

(b
-0

3.

(b
.0

.oo

.oo

.oo

3.

(G

O
3.

(c

0

.oo

.0
2 .oo

.0
1 .o I

.oo

.oo

.0

8 .o
I

.0
2

.0
1

.I
4 .oo

.0
3

.0
5

.0
2

2.
71

2.

42

.oo

.oo

3.

(b
0

To
ta

l
tim

e
(C

PU
 se

cs
.)

29
.8

8

.07

.0
3

I .
W

a.
d)

.I

3
.0

1 . I4
a.

b)

.oo

.oo

.0
3(

a)

.O
W

.oo

.I

I(
a)

.m

a)

.6
%

a.
b)

.oo

.oo

.oo

.oo

.0

2 .oo

.oo

.oo

.0
3 .oo

.oo

.oo

.oo

.oo

.I
0 .oo

.oo

2.5
1

.
-
-

~~

~
~~

.

~
~~

~.

N
um

be
r
of
 p

ro
bl

em
s

so
lv

ed
 in

 v
ar

io
us

 c
ar

eg
or

ic

Pr
ov

en
 o

pt
im

al
ity

 r
ea

ch
ed

 b
y

al
go

rit
hm

56

57

Pr

ov
en

 o
pt

im
al

ity
 r

ea
ch

ed
 b

y
he

ur
ist

ic

O
pt

im
al

ity
 f

ou
nd

 b
ut

 n
ot

 p
ro

ve
n

5
2

O
pt

im
al

ity
 n

ot
 r

ea
ch

ed

3

4
-

-
 I

Fe
as

ib
ili

tv
 n

ot
 r

ea
ch

ed

-

13
1.

45

21

-

-

-

d
l

.87

.1
5

3.

(h
0

3.
(b

.0

3.
(h

0

3.
(c

0

.0
7

.0
6

.I
9

.l
I

.0
7

.0
9 .
M

.2
6

.I
8

.I
4

.I
S

3.

(G
f)

3.
(G

O
3.

(G

O
3.

(G

O

3.
(
G
O

3.

(G

O
3.

(G

O
3.

(G

O
3.

(G

O
I .

02

.2
4

48
.8

0

50
 3 II
 .I
5

.I
6

.I
8

-
-

-

-

.4
2

.3
9

3.

(h
0

I .
66

.0
3

I .
67

.0
4

3.

(G
O

.0

9
.0

6
.0

6
.0

3
.0

3

.I
3

.I
I

.I
 I

.I
I

3.

(G

O
I .

72

3.

(
G
O

.0
8 .I
0

2.
22

.0

8

3.

(
G
O

3.

(
G
O

3.
(
G
O

3.

(
G
O

I S
O

3
5

.I

6
39

.4
9

55
 I 8 -

-

.2
2

.0
8

.7
 I .0
2

.7
0 .oo

3.

(h
0

.0
1

.I
8

.0
2

.0
2

.0
4

.0
2

I .
73

.o I

.0

3
.0

2 .oo

.0
4

.0
3

.0
2 .oo

.0
3

.0
3

.0
3

.0
7

.0
3

.0
3

.0
4

.0
3

.0
4

7.
35

63
 I -

-

.0
3

.0
1

.2
4

.0
8

.0
1

.1
0

.0
1

.0
1

.1
3 .oo

.0
2

.0
5

.0
1

I .5
8

.0
3

.0
3

.0
2 .oo

.0
4

.0
4
.
@

I

.0
4

.0
2

.0
3

.0
2

.2
2

.0
6

.0
6

.0
6 .oo

.0
5

3.
16

,
~~

~

-
-

-

-~

~
~~

~~
~~

~

N
ot

?
(a

)
D

im
en

si
on

ed
 to

 U
K
 1

,4O
O,

,oo
O

by
te

s
th

e
co

de
 c

on
ve

rte
d

to
 a

 h
eu

ris
tic

 to
 k

ee
p

w
ith

in
 a

va
ila

bl
e C

O
T

(b
) O

pt
im

al
 so

lu
tio

n
fo

un
d,

 b
ut

 o
pt

im
al

ity
 n

ot
 p

ro
vm

; (
c)

 O
p-

tim

al
 s

ol
ut

io
n

no
t

fo
un

d;
 (

d)
 F

ea
sib

le
 so

lu
tio

n
no

t
fo

un
d;

 (e
)

O
ne

 ta
sk

 a
cc

ed
ed

 th
e

cy
cl

e
tim

e
of

 1
76

 a
nd

 w
as

 d
u

d
 to
 1

43
 in

 a
ll

th
e

m
m

pu
ta

ti
on

x
(0

 A
llo

ca
te

d
ac

cu
ti

on
 ti

m
e

(3
 C
PU

 x
co

nd
s)

 e
xp

ire
d

36 Deckion Sciences [VoL 19

Linear Programming-Based Methods

I t is possible to use the proposed modular methods to implement integer pro-
gramming algorithms based on linear programming methods A summary is now
given as an example of how this could be done for Dakin’s modification of the
Land-Doig procedure The implementation is straightforward if a linear program-
ming algorithm code that can accept (and remove) additional constraints and a
coded LIFO central module are available

A binary tree will be formed for this application. The source node will be in-
itialized to contain the optimal solution to the linear (noninteger) problem. Node
selection includes the process of selecting a noninteger variable in the optimized
tableau. The two new nodes branching from the candidate problem will represent
subproblems on each side of the noninteger portion of the feasible region For ex-
ample, for an integer variable x=4.4 in the optimized tableau of the candidate prob-
lem, the two new nodes will represent the candidate problem plus one of the addi-
tional constraints, x s 4 and x z 5 . %king the x s 4 node further, we see node-
addressed data will consist of variable x, 4, and I. If this node becomes the new
candidate problem, then the tableau (which is candidate problem-addressed to avoid
tableau duplication) is reoptimized to include the new constraint. The bound is
simply the objective function of the optimized tableau. Backtracking consists of
reoptimuig after the node-addressed data (the constraint) have been removed from
the tableau. The terminal node identification check will consist of verifying that
all variables required to be integer do have integer values in the reoptimized tableau.
The data kept in the incumbent solution will consist of the optimal solution of
the problem at the appropriate node and, additionally, can include a copy of the
tableau if required. The deep-sea-troll search central module should be used.

Other Search Approaches

The concept of modularization can be extended to provide for a variety of
search methods including heuristic searches, hybrid branch-and-bound and dynamic
programming searches, searches which learn as the search progresses, and searches
which evaluate each nth-level node in a more rigorous manner than at other nodes.
A central module with solution method options also may be provided. For exam-
ple, the first assembly line deep-sea-troll search (which does not use the candidate
problem-addressing concept) used the same code for data blocks and data update
logic as the best-bound search.

The central module used offers a choice between these two searches by in-
itializing a single flag. This entailed a more complex addressing method within the
central module than either single-search central module required.

AIGORITHM IMPLEMENTATION STEPS

A logical set of steps to develop an algorithm is:
1. Generate the list of variables to define each node and the data update

functions necessary to compute the variables. The size of the tree can be

19881 Johnson 37

kept to a minimum by appropriate definition of nodes and/or by local
or global properties (such as theorems or dominance arguments) that elim-
inate the need to consider parts of the tree. These factors (the strength of
the bound arguments, the structure of the tree of solutions that need to
be enumerated, and the arc selection process) which are external to the
modularization approach advocated in this paper determine the power
of an algorithm.
Examine the variables and data update logic. Compare the computational
burden and memory requirements necessary for each node. Select or
develop a central module logic to match the search strategy that will achieve
the algorithm power defined in 1 (above). 'lly to gain node-by-node effi-
ciencies by developing an optimal or efficient data structure (with op-
timal data split between the two addressing methods, in the case of LIFO
searches).
Code the central module if a code is not already available. Code modularity
allows the code to be validated using the variables and data update logic
of completely different algorithms. Fbr example, the central module used
for an implementation of Land-Doig mixed integer-programming code
can be validated using assembly line balancing logic presented earlier in
this paper.
Code the specifics of the algorithm: read data, initialize source node, form
new arc(s) (with appropriate addressing choice), compute bound, iden-
tify terminal node, compute objective function, backtrack for candidate
problem-addressed data, copy incumbent solution in LIFO searches, and
print the incumbent solution.

Use the code to solve real problems.

2.

3.

4.

5 . Validate the complete code.
6.

CONCLUSION

The main conclusion is that modularization, as proposed in this paper, can
significantly ease the burden of time required to construct branch-and-bound a lge
rithms and thus can contribute to the timeliness of decisions that require branch-
and-bound development andlor implementation. Modularization also pennits the
implementor to test different algorithm alternatives Theoretically the computa-
tion time of code developed using modularization might sometimes be a little slower
than tailored code; however, this was not detected in the computational comparisons
made [Received: July 29, 1985. Accepted: September 15, 1986.1

REFERENCES

[I]

[2]

[3]

Balas, E. An additive algorithm for solving linear programs with z c m n e variabks Opemlions
Reseatch, 1965. 13, 517-546.
Charlton, J. M., &Death, C. C. A general method for machine scheduling. fnlernalional Jour-
nal of Production Researrh, 1969, 7(3). 207-217.
Dakin, R. J. A treesearch algorithm for mixed integer programming problems The Cornpuler
Journal, 1965, 8(3X 250-255.

38 Decision Sciences [Vol. 19

k x , R L.. Lenstra, J. K.. Rinnooy Kan. A. H. G, & Schrage. L. E. Branching from the largest
upper bound: klklore and facts. Europmn Journul of OpeMtionaI Reseurh, 1978, 2. 191-194.
Graves, J. S. On the storage and handling of binary data using FORTRAN with applications to
integer programming. O p e m t i o n s Reseurrh, 1979, 27, 534-547.
Gmn.Derg, H., & Hgerich, R. L. A branch search algorithm for the knapsack problem. Munuge-
ment Science, 1970, 16, 327-332.
Johnson, R. V. Assembly line balancing algorithms: Computational comparisons. Infernufionul
Journul of Production Rereurh, 1981, Ip(3). 277-287.
Johnson. R. V. A branch and bound algorithm for assembly line balancing problems with for-
mulation irregularities. Munugemenf Science, 1983. 29. 1309- 1324.
Johnson, R. V. Balancing large assembly l ine with FABLE. Munugement Science, in press.
Land, A. H, & Doi, A. G. An automatic method of solving discrrte programming problems.
Ecunomefrica, 1960, 28.497-520.
Little, J. D. C., Murty, K. G, Swaney, D. W.. & Karel C. An algorithm for the traveling salesman
problem. OjXMtiOm Reaeorch. 1966, 11, 972-989.
Salverson. M. E. The assembly line balancing problem. Journul of Industriul Engineering 1955.

Wbot. E R Rsou~~constrained project xheduting with t i m e i t s o m badeoffs: The nonprwmptiw
case. Munugement Science, 1982, 28, 1197-1210.
Dlbot, F. R, & Patterson, J. H. An integer progtamming algorithm with network cuts for solving
the assembly line balancing probkm. Munugemenf Science, 1984. 30. 85-99.
Wbot, F. B., Fattenon, J. H.. & Gehrlein. W. V. A comparative evaluation of heuristic line balanc-
ing techniques. Munugemenr Science, 1986.32, 430-454.
\hk. T. S.. & Magazing M. J. An ef/icient bmnch and bound algorithm-firt I: Minimize the
number of work slotions (Working Paper N a 151). Unpublished manuscript, University of Waterloq
1981.

6(3), 18-25.

Roger V. Johnson is Assistant Professor of Operations Management in the School of Business Ad-
ministration at the University of Michigan. He earned his PhD. in operations management at the Uni-
versity of California-Los Angeles. He has served as Dcan of the Faculty of Commerce of Otago Univer-
sity in New Zealand and as Visiting Associate Professor at UCLA. Dr. Johnson has published in Munuge-
menf Science and Internotional Journal of Pnniuction Reseclrch. He is a member of Decision
Sciences lnstitutz TIM$ ORSA. and the New Zealand OR Society His research interests are in assembly
line balancing and management, plant and offce layout methods project management, and discrete
optimization

