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ABSTRACT 

This paper demonstrates how branchandbound algorithms can be modularized to ob- 
tain implementation efficiencies. For the manager, this advantage can be used to obtain 
faster implementation of algorithm results; for the scientist. it allows efficiencies in the con- 
struction of similar algorithms with different search and addressing structures for the pur- 
pose of testing to find a peferred algorithm. The demonstration in part is achiwed by showing 
how the computer code of a central module of logic can be transported between different 
algorithms that have the same search strategy. Modularizations of three common searches 
(the best-bound search and two variants of the last-in-firstaut search) with two addressing 
methods are detailed and contrasted. Using four assembly line balancing algorithms as uam- 
pla. modularization is demonstrated and the search and addressing methods are contrasted. 
The application potential of modularization is broad and includes linear programming- 
based integer programming. Benefits and disadvantages of modularization are discussed. 
Computational results demonstrate the viability of the method. 

Subject A m  DLFenlc Pmgmmming, Line Balancing. Mathematical Progmmm&tg, 
and Search Theoru 

INTRODUCTION 

In order to modularize branch-and-branch algorithms, the algorithms in this 
paper consist of three components: data blocks that represent the state of the algo- 
rithm computations at each node as that node is formed; data update logic that 
is required to update or create these data blocks as each new node is formed (the 
specifics of these two components are unique for each algorithm and are grouped 
in n b l e  1); and the cenrml module of logic, common, right down to the computer 
implementation level, to all algorithms that have the same search strategy. The third 
component links the data blocks and the data update logic to guarantee that candi- 
date problem selection converges to optimality in the manner of the search type 
being used. I t  also ensures correct data addressing, bound comparison, and incum- 
bent (best-found) solution management, often the most difficult parts of an  algo- 
rithm to code and validate In a later section, flow charts of the centml modules 
are provided for each of the three search methods: the best-bound search and two 
variants of the last-in-first-out (LIFO) search (in this paper referred to as the deep- 
sea-troll search and the laser search). 

*Thanks to my University of Michigan colleague F. Brian Talbot, James H. Patterson (Indiana 
University) and Michael Magazine (University of Waterloo) for permission to use their codes Thanks 
also to the anonymous rcferea and to my former colleagues at UCLA, Elwood S Buffa and Rosser 
T. Nelson, for their helpful comments on earlier versions of this paper. 
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Table 1: Required data blocks and data update logic 

Data Blocks Available to Update Logic 
(forming node n from node m) 

Bat -  LIFO LIFO 
Required Required Data Bound DcepSea-Troll Laser 

Data Blocks Update Logic Search Search Search -- 

P (problem data) 

NNm 
(data add& 
by node 
number m) 

CP 
(data add& 
as candidate 
problem) 

B ,  (objective 
bnctbn bound) 

T, (terminal 
node indicator) 

Y, (objective 
function value) 

Pointer (indicates 
extension or 
backtracking) 

I (incumbent 
solution and its 
addrcsses) 

Read data 

At source node 
Initialize NNQ 

Fonn new node: 
Define N N ,  

At source node: 
Initialize CP 

Form ncw node: 
Update CP 

Backtrack: 
Recreate old CP 

Compute bound 

Set indicator: 
0: tnminal node 
1: otherwise 

Compute value 

Reset pointer to - I  
if a new node 
cannot be 
formed during 
Form New Node 

Update incumbent 
solution: Copy 
N 4 - m  nods) 

and CP to I 

Print incumbent 

- 

P 

Not used 

CP and node 
addresses 

I 

P 

After backtrack, 
the address of 
the pmious 
candidate 
problem 

CP and node 
addresses 

solution addresses 

BENEFl'B AND DISADVANTAGES OF MODULARlZATlON 

The decision to modularize a branch-and-bound algorithm involves trade-offs. 
The central module includes a difficult part of the algorithm to code and verify. 

I 
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However, it requires development and coding only once for all algorithms having 
the same search strategy. Therefore, substantial development time is saved when 
second and subsequent algorithms need to be coded. Since modularization requires 
that structured programming techniques be applied to the entire algorithm, fur- 
ther reductions in implementation time should be derived from increased code clarity 
and localization of code checking and validation. 

The gains of modularization are greater for best-bound searches since these 
require that many more nodes be stored at any point in the computations than LIFO 
searches. They also require jumptracking, causing node addressing to be more com- 
plicated. The advantages of modularization also are greater for nonbinary trees 
since these generally are more difficult to code than binary trees. 

Offsetting these gains, some loss of computational speed occurs if the original 
coding of the central module constrains the choice of data structures for a subse- 
quent algorithm. This loss would be of a linear order only since no change occurs 
in the portion of the tree that needs to be explored explicitly or in the number of 
iterations required through the use of nonoptimal data structures. If this loss exists 
at all, it is not likely to be serious since even binary representation of data (see 
[ 5 ]  for how this can be done) remains possible. A second disadvantage is that to 
gain the full benefits of modularization, the logic of the central module should 
be coded for the “general” case. This requires a deeper level of conceptual under- 
standing of algorithmic structure than is needed for any specific algorithm. 

TWO ADDRESSING METHODS 

In all branch-and-bound searches, a new node‘s data are a function of its im- 
mediate ancestor node‘s data and the data update logic used to move from the 
ancestor to the new node. prepare for modularization. we separate the data block 
that defines each node into two parts according to whether the data are addressed 
by node number or by virtue of the node being the candidate problem. Data items 
formed but not used after the formation of the current node are temporary variables. 
They are not significant in this paper. Addressing by node number is standard in 
best-bound (breadth-first) searches since the candidate problem jumps from branch 
to branch in the partial tree of enumerated solutions. Complete data for each node 
in the candidate list therefore must be stored simultaneously. 

In LIFO (depth-first) searches, node data need exist only when the node is 
the candidate problem, which itself provides a convenient address point. This is 
possible because the candidate problem always moves from a node to a descending 
node or, during backtracking, returns to a node from a descending node. Com- 
pared with node number addressing, this eliminates multiple node-storage require- 
ments; it requires additional data update logic for backtracking to return the candi- 
date problem to a node from its descending node. 

Since addressing by node number can sometimes be employed usefully by LIFO 
searches, this paper considers that possibility. Further differences between the three 
search strategies, many of which are well known, are summarized in Thble 2. 
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Table 2: Principle differences between the three searches 

Criterion or Search Method 
C haracteristic Best-Bound LIFO D~epSea-Tr~ll  LIFO Laser 

Total core 
requirements 

'I).pically requires a 
large, unpredictable 
area 

Modcrate area maled. 
Area for node- needed 
addressed data 

Small predictable area 

usuany unppmdictable 

Early feasibility 

Data addressed by 
node number 

Sometimes Usually Almost always 

Required for partial Optional not often 
data of bounds and used 
to define nodes 

Only available ad- 
dressing method 

Data addressed as 
candidate problem 

Cannot be used Usual method, saves memory by avoiding 
multiple data sets 

Required for data addressed by candidate 
problem 

Backtracking Not used 

Number of nodes in 
the candidate list 

Liable to be very large Moderate but usually One 
unpredictabk 

Core requirements 
per node in the 
candidate list 

Complete node data 
must be kept for 
each node in the 
candidate list 

All data addmssed by node number must be 
kept  for each node in the candidate list. 
However, only one set of data addressed by 
candidate problem is kept; total core require- 
ments are minimized by maximizing use of 
candidate problem addressing 

Computation time 
per node 

Slowest (complete 
ncw data set must 
be defined for each 
new node) 

Slow only for data addressed by node number 
(often few elements). Data addressed by can- 
didate problem computed very quickly if few 
items are updated for each new node; 
however, time for backtracking is required 
for candidate pmbkmaddressed data 

Number of nodes 
formed 

Lowest (except in 
unusual cases 
identified in 141) 

More than best- More nodes (inferior 
bound search node selection). In 

case of many tied 
bounds savings 
can be achieved 

Total computation 
time 

No method dominates for all cases 

MODULARIZATION OF ALGORITHMS 

To allow modularization, the central module's computer code must be able to 
operate on data from different algorithms that use the same search strategy. This is 
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Table 3: Data block accessibility by data update logic and central module. 

Access by Algorithm-Specific 
Data Blocks Required Access by Central Module Data Update Logic 

f (problem data) Not accessed Form defined and used 

NN (data addressed by Address provided Form defined and used 
node number) 

CP (data addressed by 
candidate problem) 

Not accessed Form defined and used 

B (objective function bound) Address provided; saved Defined 

T (terminal node Ttueor-false result saved Defined 

V (node objective function) Saved and compared Defined 

Pointer (laser search only) Defined and used Defined and used 

I (incumbent solution) 

and used 

identification) and used 

Address provided for data k r  best-bound search: defined 
in NN arrays, printed using 
address provided by central 

addressed by node 
number; candidate 
problem-addressed data module 
not accessed For node-addressed data in 

LIFO searches: copied to I 
using address provided by 
central module and printed 

addressed data: copied from 
Cf and printed 

k r  candidate problem- 

possible when data accessibility between the central module and the algorithmspecific 
data update logic is as shown in nb le  3. 

The form and accessibility of each data block now is discussed. Neither the 
problem data nor data addressed as the candidate problem are addressed or ac- 
cessed by the central module; their forms are unconstrained by the central module. 

The central module does not operate on data addressed by node number, but 
it does provide the node‘s address. Therefore, the user can select any form of data 
that can use a scalar address. At the coding level, this can be any combination of 
scalars and arrays stored in a vector or an array of one greater dimension than 
is needed for data at one node. The additional dimension provides for addressing 
the data of multiple nodes. The central module also provides the candidate prob- 
lem’s predecessor’s address. As an example, using FORTRAN, suppose a portion of 
the data consists of a scalar (SCALAR) and a twodimensional array (TWODIM). If  
the value of the scalar and the (i,j)th entry of the array are to be one less than 
at the predecessor node, a FORTRAN implementation would be: 

SCALAR( NEWNOD)= SCALAR(N0DPRE)-1 
TWODIM(NEWNOD,I,J)=TWODIM(NODPRE,I,J)-1 
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where NEWNOD and NODPRE are the addresses of the new node and its immediate 
predecessor supplied by the central module and I and J are addressing variables 
defined by the data update logic of the specific algorithm. 

The objective function and bounds associated with the node use the node ad- 
dress. Further, the objective function and bounds are operated on by the central 
module and compared to the incumbent solution's objective function. These are 
scalar comparison operations and are valid so long as the same units (dollars, cal- 
ories, etc) are used consistently throughout the computations. As a result, the code 
for these comparisons remains independent of the algorithm for which the compar- 
ison is performed. Likewise, terminal node identification requires a true- false speci- 
fication by data update logic of the specific algorithm; the manner in which the 
central module operates on the result is independent of the specific algorithm. (In 
fact, the objective function value and terminal node indicator are not used again 
after the subsequent candidate problem is selected. They could be viewed instead 
as temporary variables accessible by the central module) 

A "pointer" feature is required for the laser LIFO search. It is controlled, ex- 
cept in one circumstance, by the central module. The value of the pointer depends 
on the position of the search in the tree of solutions. A new node descending from 
a candidate problem can be formed immediately after the candidate problem itself 
has been formed or immediately after a backtrack to the candidate problem. In 
the former case, the pointer is set to 0 by the central module to signal that the 
node being formed is the first to descend from the candidate problem. In the latter 
case, the central module sets the pointer to the node address of the candidate prob  
lem immediately before the backtrack (always a positive integer). This allows the 
data update logic to access that node's data and to correctly form the next node 
descending from the candidate problem. In this case, the address of the new node 
will be identical to the one it replaced, a fact that sometimes can be used to advan- 
tage in obtaining faster code. If the data update logic is unsuccessful in forming 
a new node (which will occur when no further nodes descending from the candi- 
date problem need to be formed), the data update logic must signal this to the cen- 
tral module by setting the pointer to -1. 

The maintenance method of the incumbent solution depends on the search 
method. Since backtracking does not occur in the best-bound search, data are kept 
intact and it is sufficient to save only the addresses. This is done by the central 
module. Code must be written to print the incumbent solution, given these ad- 
dresses, when optimality is reached. In LIFO searches, data of the incumbent solu- 
tion usually are destroyed. Therefore, data must first be copied into the incumbent 
solution data area and saved. Code must be written both for this copying and for 
printing the final incumbent solution. 

THREE CLASSES OF BRANCH-AND-BOUND SEARCH 

Since ga iq  from modularization are derived from similarity in search strategies, 
common logic was sought and found in t h e  frequently used search strategies. There 
was little difficulty in finding the common logic in best-bound searches, so named 
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because the node possessing the best bound always is selected as the new candidate 
problem. But two variants of LIFO searches were found that differed in how they 
timed the formation of new nodes. These differences are pronounced when signifi- 
cant time or memory is required to define all the nodes descending from a candi- 
date problem; in binary searches, in which nodes are defined easily, these differ- 
ences are not important. Since these two search procedures are not yet identified 
as two distinct procedures in the literature, in this paper they are referred to as the 
deep-sea-fro11 search and the laser search The choice of these names is related to 
those portions of the tree of enumerated solutions that each procedure stores in 
the computer at the time a terminal node is discovered In the deepsea-troll search, 
a string of arcs through the tree, forming a path from the source node to the ter- 
minal node, plus all unfathomed single arcs leading from that path are stored The 
string of arcs represents a deep-sea-troll line; the single arcs leading from that string 
represent fish hooks attached to the line in clusters. These hooks lead to the por- 
tion of the tree not yet created. In the laser search, only one path through the tree 
is stored at any one time Single arcs leading from the path are not stored. This 
direct path can be viewed as a laser beam, since the search gets to a specific ter- 
minal node via a single path, mimicking the laser beam 

In order to highlight the principal differences between these three search pro- 
cedures, the sequences in which nodes are formed are shown below for the exam- 
ple in Figure 1. In this contrived example, all nodes in the tree are formed during 
each search. In Figure I ,  the nodes are numbered arbitrarily, and the computed 
lower bound of the objective function is noted for each node 

Figure 1: Sample problem in tree form. 

911 45 

1011 40 
/31130 

' 8,155 

Note: x/y indicates that node x has an objective function bound or value of y.  Nodes 0 through 
4 represent incomplete or infeasible solutions N o d e  5 through 12 rcpmmt feasible solutions 
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The sequences of node creation for each search are as follows (parentheses 

Best-bound: (1,2), (3.43). (6,7,8), (11,121, (9,101 
Deepsea-troll: (1,2), (3,4,5), (11,12), (9,10), (6,7,8) 
Laser: 1 , 3 , 9 , 1 0 , 4 , 1 1 , 1 2 , 5 , 2 , 6 , 7 , 8  

indicate simultaneous node creation): 

The Best-Bound h r c h  

In a best-bound search, all nodes descending from the candidate problem are 
created at  the same time and join the candidate list simultaneously. The node in 
this list with the lowest bound becomes the next candidate problem, at which time 
the previous (old) candidate problem is removed from the candidate list. If a candi- 
date problem at  a terminal node is found to have an objective function value less 
than or equal to the best bound of any node in the candidate list, it is optimal 
and computation ceases. The logic common to best-bound searches is contained 
in the flowchart of the best-bound-search central module in Figure 2. 

Examples of best-bound seaKhes include the ”principle” m i o n  of Little, Murty, 
Sweeney, and Karel’s [l 11 traveling salesman algorithm, the (original) Land-Doig [lo] 
mixed integer-programming algorithm, and the “branch-and-bound” version of 
Greenberg and Hegerich’s [6] knapsack algorithm. 

The Deep4ea-hU h r c h  

The deep-sea-troll LIFO search is distinguished by how it times the formation 
of arcs descending from any active node. When one node descending from the can- 
didate problem is formed, all nodes descending from it are formed before any other 
node in the tree is formed. Further, after these nodes are formed, the next set of 
nodes formed will descend from one of these newly created nodes. When a termi- 
nal node is reached, its objective function value is compared with that of the incum- 
bent solution. The new solution becomes the incumbent if it is superior. The search 
then backtracks along the path to the nearest node that has a descending node 
which has not been extended. The partial solution that has been backtracked over 
is discarded. If this descending node’s bound is superior to the objective function 
value of the incumbent solution, it becomes the candidate problem and nodes 
descending from it are formed and bounds calculated. If the bound is inferior to 
the incumbent solution’s objective function value, the node is discarded and the 
closest unexplored node becomes the candidate problem. The logic of the deep-sea- 
troll-search central module computations is provided in the flowchart in Figure 3. 

In most deep-sea-troll searches, at least some of the data associated with each 
node must be addressed by node number. These data provide “hooks” to that por- 
tion of the tree yet to be explored. The remaining data can be addressed by node 
number or as candidate problems. The allocation of data between these two address- 
ing methods should depend on the resulting efficiencies of required storage area 
and computation time Further, since bounds of the new nodes are computed prior 
to selection of the new candidate problem, these bounds must be based on the data 
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addressed by the old candidate problem and the data addressed by the new node 
number. Sufficient data therefore should be placed in node-addressed data to com- 
pute the strongest possible bound for the node. 

Examples of deep-sea-troll LIFO searches include the “throw away the tree” 
variation of Little et al.3 traveling salesman algorithm (11, pp. 983-9841 and 
Johnson’s [7] [8] assembly line balancing algorithms. Greenberg and Hegerich’s 
[a] branchsearch version of their algorithm is a LIFO search, but whether it is 
a deep-sea-troll or a laser search depends on the particular implementation. 

Figure 2: Flowchart of the central module for the minimizing best-bound search. 

?t Candidate Problem Address, C 0; 
4LL INITIALIZE SOURCE PROBLEM to initialize NN(C); 
st BIGNUMBER 9999999999; 
?t initial incumbent solution objective function W BIGNUMBER; 

Candidate Problem: 
CALL FORM NEW NODE to define “(I) for each new node, 
CALL COMPUTE BOUND to compute B(i) for each new node 

I 

Select node in CLIST with 
OBJECTIVE FUNCTION 

optimal: Retrieve node 
numbers of optimal path 

CALL PRINT 
INCUMBENT SOLUTION. 

in tree; yes 

No feasible solution exists. 
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Add 1 to SETNUMBER; 
Form all new nodes branching directly from the Candidate Problem: 

CALL FORM NEW NODE: DEFINE NN(m) for each new node, 
CALL COMPUTE BOUND to compute B(m) for each new node; 

The addresses of the new nodes for which B(m) c W form SET(SETNUMBER); 
Abandon those NN(m) and B(m) for which B(m) 2 W. 

[Vol. 19 

Select the node in SET(SETNUMBER) with the lowest ' 
bound B(m) to become the next Candidate Problem, C; 
Set CHOICE(SETNUMBER) = m. 

Figure 3: Flowchart of the central module for the minimizing deep-sea-troll LIFO 
search. 

CALL READ DATA to read P. Problem Data; 
Set BIGNUMBER = 9999999999; 
Initialize incumbent solution objective function, W = BIGNUMBER; 
Initialize Candidate Problem address, C 0; 
CALL lNlTIALlZE SOURCE NODE to initialize NN(C) and CP; 
Initialize SNUMBER = 0. SETISElNUMBERI = C. CHOICEISNUMBER) = C 
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The Laser LIFO Serrmh 

The laser search is similar to the deepsea-troll search. However, in a laser search 
there never is more than one node in the candidate list. Thus if two or more nodes 
descend from a candidate problem, only one is formed initially. The remaining 
node(s) is not formed until the subtree descending from the formed node, which 
becomes the next candidate problem, has been fathomed completely. The selec- 
tion and creation of the new candidate problem therefore must be based solely on 
the data of the previous candidate problem (addressed either way). Thus the new 
candidate problem must be formed without the benefit (derived in the deep-sea- 
troll search) of first computing the bounds of all nodes that descend from the old 
candidate problem. Therefore, node selection is apt to be weaker under a laser search. 
Further, in order to provide information about which arcs have been formed, a 
pointer (as described earlier) is provided. In some searches, the pointer is disguis- 
ed. For example, in a 0-1 search of the Balas [l]  type, the 0-1 variable itself pro- 
vides sufficient information to serve as the pointer if the first selection of 0 or 1 
a t  each node is made consistently. A flowchart of the central module for the laser 
search is contained in Figure 4. 

Algorithms employing a laser LIFO search include Balas’s [ l ]  0-1 integer pro- 
gramming algorithm, Dakin’s [3] modification of the Land-Doig [lo] algorithm, 
Talbot’s [ 131 project-scheduling algorithm, Thlbot and Patterson’s [15] assembly line 
balancing algorithm, and Johnson’s [9] assembly line balancing algorithm. 

AN EXAMPLE ASSEMBLY LINE BALANCING 

I n  this section, four algorithms are outlined that “balance” assembly lines of 
the simple formulation originally described by Salverson [12]. One algorithm 
employs a best-bound search, two employ a deep-sea-troll search but use different 
addressing methods, and the fourth employs a laser search. The problem solved 
is: A set of tasks, each with a given performance time, is to be allocated to work 
stations so that the number of work stations is minimized, subject to the constraints 
that the time to perform the tasks allocated to each station does not exceed a given 
cycle time and that task precedent specifications are preserved. 

In all four algorithms, each arc in the enumeration tree represents the alloca- 
tion of a task to a station. Stations are filled in their physical sequence on the 
assembly line, so the first allocated task necessarily has no required precedents. 
When a subsequent task is allocated, all of its precedent tasks must already be 
allocated. A lower bound on the required number of stations is computed assum- 
ing that an allocation of tasks to incomplete stations exists in which these stations 
are filled to capacity. The bound computation of the remaining stations is the 
smallest integer not less than the total of task times less the free time at the current 
station, divided by the cycle time 

The variables that permit the four searches are defined in Thble 4. The se- 
quence and details of computations are described in the following subsections and 
in a b l e  5 .  
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CALL READ DATA to read P, problem data; 
CALL INITlAUZf SOURCE NODE to initialize NN(O), B(O), and CP; 
Set BIGNUMBER = 9999999999; Set L N E L  = 0; Set POINTER 0; 
Set initial incumbent solution objective function W = BIGNUMBER. 

[Vol. 19 28 

FiguFe 4 Flowchart of the central module for the minimizing laser LIFO search. 

CALL SET TERMINAL 
NODE INDICATOR, 

\I 

Set POINTER  LEVEL^ 
4 ,  

yes no 

FUNCTION to find WLEVEL). 

recreate CP(LEVEL-1); 
Decrease LEVEL by 1. 

copy "(0 through LEVEL) and CP into I; 
Let W = V(LEVEL) to update incumbent 

I,  is optimal. CALL PRINT 
INCUMBENT SOLUTION. 
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Best-Bound Search 

This best-bound search is a simplification of the algorithm proposed by 
Charlton and Death [2]. Computation begins with no task allocated. Then one 
arc is formed descending from the source for each task with no required predecessor 
tasks. The node with the least bound is selected, from which the next set of new 
arcs is formed. This process is repeated: the node with the lowest objective func- 
tion bound always is selected for the generation of the next set of descending arcs. 
Ties are broken naively in favor of the lowest-numbered tasks. 

Table 4 Variable definitions, source node initializations, and addressing methods 
of assembly line algorithms 

Addmsing Source Node __- 
Ddinition Initialization BB T1 T2 L -- Variable - 

PI 
P2 

P3 
P4 
P5 

DIn 
D2n 
D3n.i 

D4n 
D5n 
D6i 

D 7i 

Bn 

Tn 

Vn 

- 
- 

- 
- 
- 

0 
I 

0, all i 

0 
0 

computed 

computed 

[ P5/P3] + 

false 

not 
comouted 

- 
- 

- 
- 
- 

NN 
N N  
N N  

N N  
N N  
- 

- 

NN 

NN 

N N  

- 
- 

- 
- 
- 

NN 
NN 
NN 

NN 
N N  
- 

- 

NN 

NN 

NN 

- -  
- -  

- -  
- -  
- -  

N N  N N  
N N  N N  
CP CP 

NN N N  
CP CP 
- CP 

- CP 

N N  N N  

NN N N  

N N  N N  

P (Problem Data) 
number of tasks 
matrix of precedent 

requirements: 
P2,,i=I if task j must precede 

task i; 
= 0 otherwise 

cycle time 
P4, = performance time of task i 
sum of all task times 

Variables in node data block 
task allocated at node n 
station number being built 
station at which task i is allocated; 

0 means not allocated 
time used at station n 
sum of allocated task times 
number of tasks not allocated that 

must precede task i 
lowest numbered task r i  that is not 

allocated and is availabk 

Objective Function Bound 
lower bound of the required 

number of work stations 

Terminal node indicator 

Objective function 

true if all tasks assigned 

value of objective function 
(computed only if Tn is true) 

Notes: BB =best-bound search implementation; TI =first deep-sea-troll search implementation; 
T2=sccond deep-sea-troll search implementation; L = k r  search implementation; NN =data add& 
by node number; CP=data addressed by candidate problem. The subscript n is not used when data 
are addressed as candidate problem data. 
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Table 5: Assembly line algorithm computations for bounds, terminal node identi- 
fication, and objective function. 

Variable Computational Formula 
Lower bound of objective function. 
Best-bound search D2,+ [ ( f S - D S , - ( f 3 - D 4 , ) ) / f 3 1 ~  

First deep-sea-troll search: D2n+I(fS-DS,- (f3-D4,))/P31+ 

Second deep-sea-troll search D2,+ [(fS-(D50,d+f4(DI,))- ( f3 -D4 , ) ) / f3 ]+  

Laser search D2, + [(P5 - DS,, - ( f 3  - D4,) ) / f3]  + 

Definition: [XI' = smallcst integer z x .  

Terminal Node Identification. true only if sum of allocated task times equals 
total of task times 

Best-bound and first deepsea-troll search: when D5,=f5  

Second deep-sea-troll search: when DSOld+ P4(DIn)=PS 
Laser search: when DS,,,=fS 

Objecfiwe function. 0 2 ,  (computed only if T, is true) 

Each task that can fit into the partially formed station of the predecessor node 
p will form a separate arc. To fit at a station, task i must not have been already allo- 
cated (D3Bi=0), must not cause the work content at the station to exceed the cycle 
time (P4i+D4p4P3X and must satisfy the task-precedent constraints (D3B,=1 for 
all j for which P2j,i= 1). Further, to ensure that only combinations and not per- 
mutations of tasks are created at a particular station, the task number of a task 
allocated to a particular station must be greater than that of the previous task 
allocated to the same station (i>DZ ). For each of the m tasks i that satisfy these 
conditions at node p, an arc descenxing from node p is formed by defining DZ, = i 
where n = l ,  2, . . ., m. 

The data update logic for forming the remainder of the data block that forms 
a new node n from its predecessor node p ,  where DZ, is allocated to the station 
containing DIP, is 

0 2 ,  =D2p 
D3,i = 0 2 ,  for i=DZ, 
D3,i = D3ni for i# DZ, : other task allocations are not changed 
0 4 ,  =D4p+P4(D1,J 
D5, =D5,,+P4(DZn) 
I f  no task fits at the current station, a new station must be started. A new 

node, say node n, will be formed for each task i: DZ,=i for which i is not already 
allocated (D3,,.=0) and for which all task i's predecessors are allocated (DjW.=1 

: the station number is not changed 
: task i is allocated to station D2, 

: the station time used is updated 
: the sum of allocated task times is increased 
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for aUj for which P2j,i= 1). The computation of variables 03,i and 05 ,  is as above, 
but 02, and 0 4 ,  are computed as follows: 

02,=02,+I  : a new station is formed 
0 4 ,  = P4(DZ,): station time used is the performance time of the task 

allocated at this station 

The best-bound search to balance assembly lines is described completely by 
the above data update logic, the variable definitions and source node initialha- 
tions of a b l e  4; the central module of the best-bound search of Figure 2; and the 
logic of the bound computation, terminal node recognition, and objective func- 
tion computation defined in Table 5 .  The linkages among these components are 
invoked by the CALL items shown in the flowchart of the central module in Figure 2. 

For a problem with n tasks, n+7 memory locations are required for each node 
in the candidate list including bound, objective function, and terminal node recogni- 
tion variables For the data blocks selected, it is not necessary to retain informa- 
tion about nodes that already have served as the candidate problem. Therefore, 
an  upper bound of the number of nodes in the candidate list is n! and a maximum 
of (n +7)(n!)  memory locations is required. 

First Deep-Sea-Troll LIFO Search 

The first deepsea-troll search utilizes addressing by node number only. It uses 
the same data blocks and data update logic as the best-bound search described 
in the previous section. Most differences between these two algorithms occur in 
their respective central modules which dictate the sequence in which nodes are 
created. Therefore, the central module shown in Figure 3 is used instead of that 
in Figure 2. Additionally, a copy of the current incumbent solution is kept. 

In this LIFO search, the maximum number of nodes in the candidate list is 
n+(n-1)+ . . . +l=n(n+l) /2  where there are n tasks in the problem. Since n+7 
memory locations are required for each node in the candidate list, a maximum 
of (n + 7)(n)(n + 1)/2 memory locations is needed. 

Second Deep-Sea-hII !%!arch 

The second deepsea-troll search differs from the first in just one respect the 
variables that comprise 0 3  and 0 5  are addressed to the candidate problem rather 
than by node number. As a result, data update logic to move the candidate prob- 
lem from a node to its descendant node are the same as for the first deepsea-troll 
search except the node subscripts on 03 and D5 are not used and, of the n variables 
in 03 for an n-task problem, only the task being allocated needs to be updated. 
The timing of the computations differs according to addressing method. 

Also, backtracking data-update logic must be defined for data addressed to 
the candidate problem, which is 
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D3(D1,)=0 
D5 

: task Dl, is no longer allocated 
= DSold-P4(DI,): the sum of allocated task times is decreased 

The bound computations must be modified in this search since the variables 
addressed as the candidate problem ( 0 3  and D5) are not updated when the bound 
is computed. This is reflected in the formula in lhble 5 .  

When a terminal node is identified as the best found, both the node addressed and 
the candidate problem-addressed data are saved in the incumbent solution data block. 

These changes considerably reduce the computation time at each node since, 
as the candidate problem moves to a descendant node or backtracks, only two of 
the (n+1) variables contained in 0 3  and D5 (rather than all (n+ 1)) are modified. 
The total number of variables computed per node created, including backtracking 
and the six node-addressed variables, is reduced from n+7  (using only node ad- 
dressing) to 10 ( = 6 +  2x 2) using this search mode's addressing. Further, some nodes 
in the candidate list never become the candidate problem, in which case candidate 
problem-addressed variables are not computed at all. 

Since the maximum number of active arcs is n(n+ 1)/2, the maximum number 
of memory locations required can be computed as 3n2+4n+1, derived from 
6(n(n + 1 )/2) locations for node-addressed data and (n+ 1) locations for candidate 
problem-addressed data. 

Laser LIFO Search 

In moving the candidate problem to one of its descending nodes, the logic 
of the laser LIFO search will depend on whether the arc is the first to descend 
from that node (pointer =0) or not (pointer >O).  I f  the pointer, which is set by the 
central module, is 0, the arc will be the same as the first arc formed by either deep- 
sea-troll search ( i e .  the minimum-numbered available task, i); the bound computa- 
tion can use the newly created candidate problem data, as indicated in Bb le  5 .  

I f  (pointer>O), the arc is a second or subsequent arc formed from the candi- 
date problem at node n and the pointer gives the address of the arc prwiously formed 
from the same node The computations depend on whether a new work station 
was formed for the previous arc descending from the candidate problem, recognized 
by (D2wi,,ef>D2p), or at an existing work station (D2p0i,ter=D2p). In either case, 
the lowest-numbered task i>  Dlwi,,,ef that satisfies the conditions appropriate in the 
second deep-sea-troll search is selected as the new arc here: Dl,=i If no such task 
exists, the pointer is set to - 1 to indicate that further backtracking is appropriate. 
The same backtracking computations are performed as in the second deepsea- 
troll search. 

EXPERIENCE 

The advantage of the modular approach can be appreciated by considering 
that, with a coded central module for the best-bound search and the deep-sea-troll 
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search, the first two assembly line balancing algorithms described in this paper 
were implemented using only 38 additional FORTRAN statements. (The same state- 
ments were used for each algorithm) A knapsack algorithm was coded using 40 
additional statements A bicriteria network cost-minimization algorithm was coded 
with 25 additional FORTRAN statements. (These numbers exclude statements re- 
quired to input data and print the results.) 

An important issue in using the modular approach is whether the modular 
code will be competitive with code that is fully tailored to a particular algorithm 
To explore this question, the performances of seven assembly line balancing algo- 
rithms were compared Wee and Magazine‘s [ 161 and lhlbot and Patterson’s [ 14) 
codes were selected to represent two algorithms that were not coded using modular 
methods described in this paper. (These codes appeared to be the best algorithms 
examined in Talbot, Patterson and Gehrlein’s [ 151 comparative investigation of 
assembly line heuristics.) The two algorithms were compared with five algorithms 
that were coded using modular principles. Four were defined in the previous sec- 
tion; the fifth is Johnson’s [9] algorithm The first three described in the previous 
section were designed for simplicity, not computational speed. The literature set 
selected by Talbot et a1  [IS] was used. The results are shown in Rble  6. 

From Table 6, it can be seen that only Johnson’s [9] laser search solved all 
problems to proven optimality, showing that any disadvantage that the modular 
implementation might have was not serious. More likely, the modular implemen- 
tation helped. Recalling that Wee and Magazine’s, Talbot and Patterson’s, and 
Johnson’s algorithms were designed primarily for speed (the latter two algorithms, 
being laser LIFO searches, also require small and predictable core space), we find 
no predictable evidence that using modular coding slows computation times. Dif- 
ferences in the algorithms themselves are a much more likely explanation for any 
computational time differences. 

In  comparing the four algorithms developed for this research paper, we find 
the algorithm employing the laser LIFO search clearly is best It would be dangerous 
to atrapolate the success reported here to other problem classes The assembly line 
balancing problem is characterized by many alternate optimal solutions, lessening 
the importance of the arc selection phase-something the laser search inherently 
is comparatively weak in performing. In other problem classes, node selection may 
be comparatively more important., indicating that if a deep-sea-troll search could 
extract and better utilize tighter bounds, it might lead to a better algorithm. 

EXTENSIONS OF THE ASSUMPTIONS 

Modularization of Other Branch-and-Bound Algorithms 

Most branch-and-bound algorithms come close to the structure of the three 
search types detailed in this paper. However, some legitimate variations occur. For 
example, in the laser LIFO search, node-addressed data alwy are updated before 
candidate problem-addressed data of the same node Since this might not always 
be convenient., slight changes to the central module to allow deviations might be 
beneficial in some instances. 
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Linear Programming-Based Methods 

I t  is possible to use the proposed modular methods to implement integer pro- 
gramming algorithms based on linear programming methods A summary is now 
given as an  example of how this could be done for Dakin’s modification of the 
Land-Doig procedure The implementation is straightforward if a linear program- 
ming algorithm code that can accept (and remove) additional constraints and a 
coded LIFO central module are available 

A binary tree will be formed for this application. The source node will be in- 
itialized to contain the optimal solution to the linear (noninteger) problem. Node 
selection includes the process of selecting a noninteger variable in the optimized 
tableau. The two new nodes branching from the candidate problem will represent 
subproblems on each side of the noninteger portion of the feasible region For ex- 
ample, for an integer variable x=4.4 in the optimized tableau of the candidate prob- 
lem, the two new nodes will represent the candidate problem plus one of the addi- 
tional constraints, x s 4  and x z 5 .  %king the x s 4  node further, we see node- 
addressed data will consist of variable x, 4, and I. If this node becomes the new 
candidate problem, then the tableau (which is candidate problem-addressed to avoid 
tableau duplication) is reoptimized to include the new constraint. The bound is 
simply the objective function of the optimized tableau. Backtracking consists of 
reoptimuig after the node-addressed data (the constraint) have been removed from 
the tableau. The terminal node identification check will consist of verifying that 
all variables required to be integer do have integer values in the reoptimized tableau. 
The data kept in the incumbent solution will consist of the optimal solution of 
the problem at the appropriate node and, additionally, can include a copy of the 
tableau if required. The deep-sea-troll search central module should be used. 

Other Search Approaches 

The concept of modularization can be extended to provide for a variety of 
search methods including heuristic searches, hybrid branch-and-bound and dynamic 
programming searches, searches which learn as the search progresses, and searches 
which evaluate each nth-level node in a more rigorous manner than at other nodes. 
A central module with solution method options also may be provided. For exam- 
ple, the first assembly line deep-sea-troll search (which does not use the candidate 
problem-addressing concept) used the same code for data blocks and data update 
logic as the best-bound search. 

The central module used offers a choice between these two searches by in- 
itializing a single flag. This entailed a more complex addressing method within the 
central module than either single-search central module required. 

AIGORITHM IMPLEMENTATION STEPS 

A logical set of steps to develop an algorithm is: 
1. Generate the list of variables to define each node and the data update 

functions necessary to compute the variables. The size of the tree can be 
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kept to a minimum by appropriate definition of nodes and/or by local 
or global properties (such as theorems or dominance arguments) that elim- 
inate the need to consider parts of the tree. These factors (the strength of 
the bound arguments, the structure of the tree of solutions that need to 
be enumerated, and the arc selection process) which are external to the 
modularization approach advocated in this paper determine the power 
of an algorithm. 
Examine the variables and data update logic. Compare the computational 
burden and memory requirements necessary for each node. Select or 
develop a central module logic to match the search strategy that will achieve 
the algorithm power defined in 1 (above). 'lly to gain node-by-node effi- 
ciencies by developing an optimal or efficient data structure (with op- 
timal data split between the two addressing methods, in the case of LIFO 
searches). 
Code the central module if a code is not already available. Code modularity 
allows the code to be validated using the variables and data update logic 
of completely different algorithms. Fbr example, the central module used 
for an implementation of Land-Doig mixed integer-programming code 
can be validated using assembly line balancing logic presented earlier in 
this paper. 
Code the specifics of the algorithm: read data, initialize source node, form 
new arc(s) (with appropriate addressing choice), compute bound, iden- 
tify terminal node, compute objective function, backtrack for candidate 
problem-addressed data, copy incumbent solution in LIFO searches, and 
print the incumbent solution. 

Use the code to solve real problems. 

2. 

3. 

4. 

5 .  Validate the complete code. 
6.  

CONCLUSION 

The main conclusion is that modularization, as proposed in this paper, can 
significantly ease the burden of time required to construct branch-and-bound a lge  
rithms and thus can contribute to the timeliness of decisions that require branch- 
and-bound development andlor implementation. Modularization also pennits the 
implementor to test different algorithm alternatives Theoretically the computa- 
tion time of code developed using modularization might sometimes be a little slower 
than tailored code; however, this was not detected in the computational comparisons 
made [Received: July 29, 1985. Accepted: September 15, 1986.1 
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