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ABSTRACT 
 

Natural reproduction of Chinook salmon now supplies half of all recruits to the 

Lake Michigan sport fishery but may vary greatly due to environmental variability and 

biotic interactions in tributary nursery areas.  From 2004 to 2007, I evaluated the relative 

effect of predation by stocked sport fish species on Chinook salmon recruitment 

variability in the Muskegon River, a large Lake Michigan tributary.  Together, walleye 

and brown trout annually consumed from 17 to 47% of available Chinook salmon parr.  

Although brown trout consumed large quantities of Chinook parr, I found that hatchery 

trout dominated walleye diets.  Walleye were size-selective for small hatchery trout but 

prey size was independent of predator size.  In general, walleye showed neutral selection 

for prey species although they positively selected for rainbow trout and selected against 

Chinook parr in some years.  Brown trout consumed smaller-than-average Chinook 

salmon parr although prey size was also independent of predator size.  Chinook parr were 

positively selected as prey by brown trout but only in April when parr were < 40 mm in 

length.  The presence of alternate prey significantly influenced walleye predation on 

Chinook salmon parr while brown trout appeared to be limited by Chinook size.  I 

developed a functional response model using a Type-II curve for walleyes and a Type-I 

curve for brown trout to varying abundances of prey.  Brown trout had the greatest 

impact on Chinook salmon recruitment based on their feeding behavior and consumption 

rates.  Management efforts to reduce brown trout abundance via stocking could increase 
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short-term survival of Chinook salmon parr by up to 31%.  To assess long-term predation 

effects on Chinook recruitment from the Muskegon River, I used a stage-based matrix 

model (RAMAS Stage) parameterized with empirically-derived estimates of Chinook 

salmon growth, survival, abundance and fecundity.  I simulated variable fry-to-smolt 

survival rates using 26 theoretical predator regimes and compared the results to baseline 

(i.e., observed) values.  Only scenarios that involved removal of brown trout significantly 

increased long-term Chinook salmon recruitment.  Based on the results of my dissertation 

research, I recommend elimination of brown trout stocking in all tributaries that produce 

Chinook salmon parr. 
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Chapter I 

Introduction 

Until recently, it was common for fisheries managers to promote single species 

viability in a particular system.  However, exclusive management for a single species can 

lead to overexploitation, altered species interactions, asymmetric predation rates and 

reduced recruitment of non-target species.  For these and other reasons, conventional 

single-species management often fails (Hilborn 2004).  The case histories of Chesapeake 

Bay striped bass (Morone saxatilis) and bluefish (Pomatomus saltatrix) provide prime 

examples of single-species management failure.  The Chesapeake Bay striped bass stock 

was thought to be the most productive of the entire Atlantic coast (Merriman 1941).  

However, year classes continually failed and striped bass abundance significantly 

declined in the 1970s and early 1980s (Boreman and Austin; 1985; Goodyear et al. 1985; 

Richards and Rago 1999).  The bluefish was the most harvested species in the U.S. 

Atlantic coast recreational fishery in the 1980s, but by the late 1990s, landings were only 

20% of previous levels (Conover et al. 2003).  The underlying problem in each case study 

was the lack of a comprehensive management plan.  Failure to account for size-at-

maturity, age-specific migrations, variability in recruitment, species interactions (i.e., 

predation and competition, spatial/temporal overlap), and habitat degradation (i.e., 
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nutrition, toxins) led to reduced recruitment and subsequent overfishing of both species 

(Richards and Rago 1999; Conover et al. 2003).   

Ecosystem-based fisheries management, including biotic and abiotic processes, 

may provide greater stability and therefore more sustainable ecosystem services than 

single-species management (Pikitch et al. 2004).  Effective management must emphasize 

the interactions between target species and their predators, competitors, prey and humans.  

Further, management must consider effects of the environment and habitat on species 

interactions.  Recent trends have moved toward multi-species, ecosystem-based 

approaches in forestry, agriculture and fisheries management (Matsuda and Katsukawa 

2002; Latour et al. 2003) with the goal of maintaining ecosystem quality (Brodziak and 

Link 2002).  In fisheries, the call for ecosystem-based management is generally directed 

towards marine environments (Hanna 1998; Chuenpagdee et al. 2006).  This approach 

has proven beneficial, especially in the successful story of Chesapeake Bay striped bass 

(Field 1997; Richards and Rago 1999).  Due to changes in management approach, it 

seems likely that bluefish may also be on the path to recovery (Conover et al. 2003; 

Lucena and O’Brien 2005).   

The Laurentian Great Lakes provide some of the world’s most important and 

unique freshwater resources.  These lakes, along with associated tributaries and inland 

lakes would benefit from an ecosystem-based management approach.  The Great Lakes 

contain numerous important fishes that provide the foundation for valuable sport and 

commercial fisheries.  Fishery managers must therefore implement sustainable practices 

to protect vulnerable life stages and thereby promote long-term species viability.  In 

many cases, management for one species may be detrimental to another.  In Lake Huron, 
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for example, an over-stocked piscivore population and a burgeoning dreissenid mussel 

population resulted in a population crash of important alewife (Alosa pseudoharengus) 

prey (Dobiesz et al. 2005; Johnson et al. 2005).  Reductions in forage fish abundance 

commonly lead to declining catch and size of targeted sport fishes (e.g., Johnson et al. 

2005; Claramunt et al. 2009), which generally depend on a broad forage base.  Further, 

forage fishes may facilitate coexistence among sport fishes by buffering competition and 

predation effects thereby allowing for a diverse sport fish assemblage.  An effective 

management approach therefore requires a thorough understanding of species interactions 

between and among target and non-target species in the Great Lakes. 

Chinook salmon (Oncorhynchus tshawytscha) is the primary target of the Great 

Lakes recreational fishery and a key predator in the pelagic food web.  In 1966, fisheries 

managers began stocking salmon and trout to support recreational fisheries and consume 

non-native alewife, a nuisance competitor and predator of native fishes.  Management 

control of the trophic interactions between salmonid predators and their prey (Stewart et 

al. 1981, Stewart and Ibarra 1991) has been disrupted as Chinook salmon now reproduce 

naturally, comprise approximately 50% of the adult salmon harvest in Lake Michigan, 

and their annual recruitments may vary by up to 4-fold (Seelbach 1985, Zafft 1992).  

Variable reproductive success of Chinook salmon can be influenced by biotic and abiotic 

factors.   

Chinook salmon recruitment is dependent on several abiotic factors such as river 

temperature and discharge (Carl 1982, 1984; Seelbach 1985; Zafft 1992).  River 

temperature affects the growth of young Chinook salmon and therefore influences the 

duration they are vulnerable to predation by gape-limited predators.  Higher river 
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temperatures can lead to higher Chinook parr growth rates (Connor and Burge 2003), 

reducing the time that parr may be vulnerable to predation by gape-limited predators.  

Still, higher temperature also influences predator evacuation rates, thereby increasing 

consumption rates (Swenson and Smith 1973; Wahl and Nielsen 1985; He and 

Wurtsbaugh 1993).  Large predators may therefore become a greater threat to Chinook 

salmon parr in warm years.   

River discharge also may influence recruitment success.  Extremely high river 

flows may erode salmon redds or wash fry out of favorable nursery areas (May et al. 

2009) while low flows may increase siltation of spawning beds (Carl 1982).  Bradford 

(1994) and Unwin (1997) reported that survival of Chinook salmon parr is positively 

correlated with river discharge.  Elevated river flow may curb predation efficiency due to 

higher turbidity and the likelihood that prey will form aggregations (Petersen and 

DeAngelis 1992; Jager and Rose 2003).  As river discharge increases, Chinook parr may 

be prematurely swept downstream, which reduces interactions with stream predators, 

thereby increasing survival in riverine habitats (Berggren and Filardo 1993).  Effective 

dam regulations may influence Chinook parr survival through manipulation of abiotic 

factors (e.g., Jager et al. 1997; Jager and Rose 2003), but they also represent another 

source of mortality.  In many Pacific Coast river systems, hydropower dams are a major 

determinant of Chinook smolt survival (Beamesderfer et al. 1990; Rieman and 

Beamesderfer 1990; Shively et al. 1996).  Although abiotic factors can greatly influence 

Chinook survival and recruitment, they are also closely associated with biotic factors 

such as predation and feeding. 
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Biotic factors such as predation may be an even more significant source of 

variability for Chinook salmon recruitment compared to previously mentioned sources 

(Shively et al. 1996; Johnson et al. 2007).  Predation from northern pikeminnow 

(Ptychocheilus oregonensis) and smallmouth bass (Micropterus dolomieu) can lead to 

high mortality rates on Chinook salmon smolts (Poe et al. 1991; Vigg et al. 1991; Tabor 

et al. 1993; Fritts and Pearsons 2004) which may significantly reduce their recruitment 

from Pacific Coast tributaries.   

Several Lake Michigan tributaries support populations of naturally reproducing 

Chinook salmon, but the Muskegon River is the largest source of natural recruits into 

Lake Michigan (Carl 1982; Johnson et al. 2005).  The Muskegon River has experienced 

natural reproduction of Chinook salmon since the late 1970s (Carl 1982) though stocking 

efforts were not curtailed until 2005 (Rich O’Neal Michigan Department of Natural 

Resources personal communication).  It is the second largest tributary (352 km; mean 

discharge = 62.3 m ● s-1) to Lake Michigan and is a model system in which to study 

species interactions that may influence Chinook salmon recruitment variability.   

Walleyes (Sander vitreus), brown trout (Salmo trutta), rainbow trout (O. mykiss) 

(steelhead and resident strain) and Chinook salmon are the most highly sought-after 

species in the Muskegon River (O’Neal 1997) and all utilize the Muskegon River as a 

nursery for their early life stages.  Walleyes and brown trout are the most significant 

piscivores in the Muskegon River by size and abundance, respectively (O’Neal 1997).  

While brown trout are thought to prey primarily upon Chinook salmon parr, walleyes 

likely prey on brown trout and rainbow trout, in addition to parr (Diana 2006).  Rainbow 

trout are approximately three times more numerous than brown trout so despite their 
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apparent preference for invertebrate prey, their abundance suggests they may contribute 

to predation mortality on Chinook salmon parr.  Since walleye, brown trout and rainbow 

trout populations are all maintained through stocking efforts, interactions between these 

fishes and Chinook salmon parr may be dictated by fishery management actions.  Species 

interactions are therefore important to quantify as they may have large implications for 

sport fish survival, recruitment and potential harvest. 

Management actions have been shown to increase salmonid survival in west coast 

tributaries.  Removal of northern pikeminnow in the Columbia River resulted in a large 

reduction in predation mortality during the smolt-to-adult stages of Coho and Chinook 

salmon (Rieman et al. 1991), an expected trend in heavily modified habitats (Fresh et al. 

2003).  Despite the increase in survival of salmon following predator removal, studies 

show that northern pikeminnow predation alone did not considerably reduce overall 

smolt-to-adult survival rates of Chinook salmon (Fresh et al. 2003).  However, other 

species such as smallmouth bass, walleye and Caspian terns (Sterna caspia) added further 

mortality (Roby et al. 2003; Fritts and Pearsons 2004).  In the Muskegon River, predation 

on smolts by walleye and brown trout appears to be higher and likely more significant 

than in west coast systems.  Further, there are multiple species such as hatchery brown 

and rainbow trout, basses and northern pike (Esox lucius) that may influence Chinook 

recruitment through predation.  Manipulation of piscivore populations has the ability to 

control Chinook recruitment levels through food web interactions (e.g., Beamesderfer et 

al. 1996; Krueger and Hrabik 2005).  Therefore, it is imperative to determine the strength 

of various food web interactions that result from management actions on sport fisheries.  

The timing, location and strength of these interactions may determine the efficacy of 
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management in promoting future productivity of the valuable sport fisheries in the 

Muskegon River and other Lake Michigan tributaries.   

Numerous studies have attempted to discern a more holistic approach to address 

the reproductive success of a target species, as well as the structure and function of the 

ecosystem, which includes all species present.  Establishment of marine protected areas, 

habitat restoration and habitat creation have become popular ecosystem-based 

management tools for improving survival and recruitment of many riverine, lacustrine, 

coral reef and oceanic fishes (e.g., Martell et al. 2005; Cabaitan et al. 2008; Zeug and 

Winemiller 2008; Honea et al. 2009).  Flow control (i.e., damming regulations) in 

important tributaries can be used as a means of increasing useable habitat, improving 

water quality and reaching desired temperatures for various fishes (e.g., Jager et al. 2003; 

Kiffney et al. 2009).  Further, management actions that call for manipulation of fish 

species may lead to desired consequences for a particular fish community.  These 

manipulations can be attempted for zooplanktivorous fishes (Søndergaard and Jeppesen 

2007) or predatory fishes via changes in stocking practices (Johnson et al. 1992; Fayram 

et al. 2005) and changes in fishery regulations (e.g., Harvey and Kareiva 2005; Krueger 

and Hrabik 2005; Claramunt et al. 2009).  Depending on the system, however, one 

approach may be more appropriate than the others. 

In this dissertation, I investigated whether management actions (i.e., stocking 

efforts) to manipulate predator abundance could significantly impact Chinook salmon 

survival and recruitment.  In doing so, I conducted empirical and modeling studies to 

quantify the effects of species interactions between Chinook salmon parr and their 

predators on Chinook salmon recruitment and population dynamics in the Muskegon 
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River, Michigan.  In Chapter II, I described field surveys and diet analyses to evaluate the 

impact of predation by stocked sport fish species on recruitment variability of Chinook 

salmon in the Muskegon River.  I also estimated annual abundance of Chinook salmon 

parr and out-migrating Chinook salmon smolts.  In Chapter III, I described the feeding 

behavior of walleye and brown trout on variable abundances of primary and alternate 

forage.  I further determined prey preference and/or size selection of piscivorous walleyes 

and brown trout and the subsequent impact on Chinook salmon recruitment in the 

Muskegon River.  Using my estimated functional response for walleyes and brown trout, 

I forecasted the outcome of potential predator-prey interactions that resulted from various 

management manipulations.  In Chapter IV, I utilized a stage-based matrix model, 

parameterized to approximate survival, fecundity and abundance of Chinook salmon in 

the Muskegon River and Lake Michigan, to model the effects of various predator-prey 

interaction regimes on long-term recruitment and population growth of Chinook salmon 

in the Muskegon River.  Finally, in Chapter V, I synthesized the results of the empirical 

and modeling chapters and highlighted the importance of Chinook salmon recruits from 

the Muskegon River to the Lake Michigan adult stock. 

Elucidating predator-prey interactions among important fishes may provide 

insight concerning management activities that are most successful in protecting and 

perpetuating valuable Great Lakes sport fisheries.  Several important variables influence 

these interactions and may therefore determine the efficacy of management practices in 

promoting future productivity of the valuable sport fisheries in the Muskegon River and 

other Lake Michigan tributaries.  The results of my dissertation research may therefore 
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provide a template for regional management of Great Lakes tributaries and similar 

tributaries in other regions (e.g., Pacific Northwest).  
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Chapter II 

Influence of Predation Mortality on Chinook 
Salmon Recruitment in a Lake Michigan Tributary 

 

Abstract 

Natural reproduction of Chinook salmon (Oncorhynchus tshawytscha) now supplies half 

of all recruits to the Lake Michigan sport fishery but may vary greatly due to 

environmental variability and biotic interactions in tributary nursery areas.  From 2004 to 

2007, I evaluated the relative effect of predation by stocked sport fish species on Chinook 

salmon recruitment variability in the Muskegon River, a large Lake Michigan tributary.  

In April to June of each year, I conducted electrofishing surveys and diet analysis to 

estimate abundance and total consumption of Chinook salmon parr by walleyes (Sander 

vitreus), brown trout (Salmo trutta) and rainbow trout (O. mykiss).  Fish abundance was 

estimated from pass depletion methods and change in catch per unit effort while total 

predator consumption was quantified using a meal turnover approach.  Walleye and 

brown trout consumed large quantities of hatchery trout and Chinook salmon, 

respectively.  Together, these piscivores annually consumed from 18 to 49% of available 

Chinook salmon parr.  Brown trout predation on Chinook salmon parr was largely 

dependent on Chinook size while walleye predation on Chinook salmon parr was largely 

buffered by availability of rainbow and brown trout.  Therefore, vulnerability of Chinook 
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salmon parr to predation was likely controlled by parr growth rates and implementation 

of effective stocking practices for brown trout.  Based on my results, fishery regulations 

to manipulate piscivore abundance may lead to higher survival and lower variability in 

naturalized Chinook salmon recruitment. 
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Introduction  

Pacific salmon (Oncorhynchus spp.) were introduced into the Great Lakes in the 1960s to 

control overabundant alewife (Alosa pseudoharengus) populations and to create a sport 

fishery.  Overall, the introduction was a success and the sport fishery now supports a 

multi-billion dollar annual economy (Stewart et al. 1981; Talhelm 1988).  Historically, 

stocking hatchery-reared salmonids was essential to control alewife populations and 

provide a put-and-take fishery.  High stocking rates and increased natural reproduction of 

Chinook salmon (O. tshawytscha) in Great Lakes tributaries, however, led to increased 

adult abundance, especially in Lake Michigan.  The resultant increase in consumption by 

Chinook caused alewife to decline in abundance (Kitchell and Crowder 1986).  Currently, 

half of all Chinook salmon recruits are naturally reproduced (Johnson et al. 2005).  

Hence, Chinook salmon recruitment directly influences food web dynamics in the Great 

Lakes themselves (Kitchell and Crowder 1986). 

The Muskegon River contains one of the most productive nursery areas for wild 

Chinook salmon recruits in the Lake Michigan basin (Carl 1982).  Average annual 

production of wild Chinook salmon smolts in the river nursery area is estimated near 

350,000 individuals and may range from 70,000 to 700,000 (Rutherford et al. in prep) but 

smolt numbers entering the lake fishery are unknown.  Combined with funding cuts, the 

large number of naturally produced Chinook recruits prompted fishery managers to 

discontinue stocking of hatchery Chinook smolts in the Muskegon River after 2005.  

Nonetheless, natural recruitment from the Muskegon River and other Lake Michigan 

tributaries remains highly variable and unpredictable (Clapp et al. 1998).  While the 

relative magnitude of natural reproduction is generally known, there is uncertainty 
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regarding the factors that control production or the numbers of Chinook smolts that 

actually enter Lake Michigan. 

Little is known regarding factors that influence the survival of juvenile Chinook 

salmon in river nursery habitats and during the spring out-migration in Lake Michigan 

tributaries.  The life-history of Chinook salmon in Lake Michigan is similar to that of its 

oceanic source population from the Green River, Oregon (Carl 1982); spawning occurs 

from mid-September to early November, eggs hatch in late March and smolts out-migrate 

from May through June.  In west coast tributaries, hydroelectric dams are responsible for 

smolt mortality rates of 10 - 45% per dam and predators may consume an additional 15% 

of salmonids (Beamesderfer et al. 1990; Rieman and Beamesderfer 1990; Shively et al. 

1996).  Excluding dams, predation may regulate the number of Chinook recruits 

emerging from the Muskegon River to Lake Michigan (e.g., Shively et al. 1996; Johnson 

et al. 2007), although temperature, photoperiod, and river flow are also important 

determinants of smoltification and out-migration timing (Carl 1982, 1984; Seelbach 

1985).   

The Michigan Department of Natural Resources (MDNR) discontinued Chinook 

salmon plantings into the Muskegon River after 2005 but continue to stock other 

important sport fishes that may be predators of Chinook salmon.  Walleyes (Sander 

vitreus), brown trout (Salmo trutta) and rainbow trout (O. mykiss) (steelhead and resident 

strains) are stocked into Muskegon River nursery habitats to create a put-and-take 

fishery.  During this time, walleyes may consume large numbers of Chinook salmon parr 

(e.g., Johnson et al. 2007).  Walleye predation on out-migrating smolts also may depend 

on abundance of alternate prey including hatchery brown and rainbow trout, as well as 
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alewives.  Thus, fishery management activities, especially stocking in the Muskegon 

River and Muskegon Lake, are likely to have direct effects on species interactions and 

wild Chinook recruitment.   

I hypothesized that predation mortality is the most important source of variability 

in Chinook salmon recruitment in the Muskegon River.  I further postulated that food 

web effects, resulting from management actions, have the ability to control Chinook 

recruitment levels through manipulation of piscivore populations (e.g., Beamesderfer et 

al. 1996; Krueger and Hrabik 2005).  Thus, my objectives were to 1) estimate relative 

piscivore abundances in Muskegon River habitats; 2) determine abundance, growth and 

mortality of wild Chinook parr in the Muskegon River; and 3) quantify prey consumption 

by piscivores in the Muskegon River.  I addressed these objectives using empirical data 

collected from 2004-2007.  While other sources of mortality on Chinook salmon parr 

may be equal to or more important than predation, I focused on the effect of predation 

mortality alone because stocking of potential predators is a direct management activity 

that can be controlled.   

Study site 

The Muskegon River Estuary System (MRES) is a drowned river mouth tributary system 

to Lake Michigan and is located in western Michigan, USA (Figure 2.1).  The MRES is 

composed of the Muskegon River, its associated wetlands, Muskegon Lake, and the 

channel connecting Muskegon Lake to Lake Michigan.  The Muskegon River extends 

352 km from Houghton Lake in north-central Michigan to Muskegon where it discharges 

into Lake Michigan.  I focused my sampling on an area of Muskegon River downstream 

of Croton Dam, the lowermost dam on the river.  Further references to the Muskegon 
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Figure 2.1. The location of the Muskegon River and Muskegon Lake, Michigan.  Stars 
indicate barge electrofishing reference sites used to estimate population abundance of 
Chinook salmon parr. 
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River allude only to this stretch of the river.  Muskegon Lake is a 1,680 hectare lake that 

connects to southeastern Lake Michigan via a navigation channel (Muskegon Channel).  

Muskegon Lake is relatively shallow and mesotrophic, with an average depth of 7.1 m 

(maximum 21 m) (Carter et al. 2006).   

Methods 

Environmental Variables 

Mean daily water temperature and river discharge measurements for the upper Muskegon 

River were acquired from the U.S. Geological Survey station # 04121970 in Croton, 

Michigan.  Water temperature is an important determinant of parr growth and piscivore 

consumption rates, while river discharge may influence feeding success, location of parr 

in the river and timing of smolt out-migration to Lake Michigan (Carl 1982, Seelbach 

1985, Rutherford et al. in prep). 

Fish Abundance 

Chinook salmon parr 

Relative abundance of Chinook salmon parr and smolts was estimated using traps and 

electrofishing surveys in Muskegon River from 2004 - 2007 and seines in Muskegon 

Lake in 2006.  In 2004, I used a 2.4 m diameter auger-style smolt trap to capture out-

migrating Chinook salmon parr from May 6 to June 29.  Each day, Chinook salmon parr 

were identified, counted, weighed (nearest 0.1g) and measured (mm total length (TL)).  

Debris occasionally halted operations for a number of days (May 9-12, 14, 16-18, 22-26) 

so I linearly interpolated parr abundance from observed catches on surrounding dates.  

Using an average capture efficiency estimate of 3% (Rutherford et al. in prep), I 

extrapolated parr (≥ 50 mm TL) catches in the auger trap to total abundance.  At 50 mm 
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TL, Chinook parr begin to emigrate from the Muskegon River and approach the average 

size at which small potential piscivores, such as hatchery raised brown and rainbow trout, 

are gape limited (e.g., Damsgård 1995).  In 6 – 7 May 2004, 19 April – 15 June 2005,  20 

April – 7 June 2006, and 8 May – 6 June 2007, I employed a barge-style electrofishing 

unit (3 Amps, 240V) to sample Chinook salmon parr along 100 m shoreline transects at 

five established reference sites (Carl 1982) (Figure 2.1).  I used a three pass depletion 

protocol to estimate parr density (# parr ● m-1 shoreline; e.g., Zippin 1956; 1958) because 

Chinook parr were generally too small to effectively mark for mark and recapture 

abundance estimates.  I sampled each reference site twice monthly and most sites 5 times 

in a given field season.  For each electrofishing transect I measured and weighed a sub-

sample of 30 Chinook parr while the remaining individuals were counted and batch-

weighed.  I then extrapolated parr density estimates to abundance in the entire nursery 

area from Croton Dam to Newaygo (as defined by Godby et al. 2007) (Figure 2.1) by 

multiplying the mean parr density (# 100 m-1) of the five reference sites by the length of 

the total nursery shoreline from Croton Dam to Newaygo (22.5 km x 2 sides = 45 km).  I 

estimated the initial abundance of Chinook salmon fry by developing a linear relationship 

between parr length and abundance over time.  I assumed that abundance at 37 mm TL 

(length at emergence; Beachum and Murray 1990) was initial abundance.  I also 

calculated the peak abundance of Chinook parr larger than 50 mm for each sampling 

season to determine an index of potential recruitment to the Lake Michigan adult 

population (e.g., Carl 1984).   

In 2006, I used beach seines to sample Chinook salmon smolts along the shores of 

Muskegon Lake and Lake Michigan from mid-May to mid-June to determine 
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presence/absence of Chinook salmon in Muskegon Lake and also provide a rough 

estimate of out-migration timing into Lake Michigan. 

Predators 

Relative abundance of walleye, brown trout and rainbow trout was determined using a 

barge electrofisher and a 20’ Smith Root boom-style AC electrofishing boat.  Electrical 

current ranged from 4-6 Amps and voltage was set to 240 V in all electrofishing 

transects.  Spring electrofishing transects in the Muskegon River were run downstream 

for approximately 10 minutes and were always performed in daylight.  Relative 

abundances of piscivores were not determined for Muskegon Lake. 

The index of relative walleye abundance (CPUE, # hour-1) was based on 

electrofishing transects and was scaled to the estimated abundance of spawning walleyes 

in the Muskegon River (approximately 38,000 individuals) in 2002 (Hanchin et al. 2007).  

Abundance of spawning walleyes was assumed to be 38,000 with walleye numbers 

declining as they returned to the lake.  Changes in CPUE across time were scaled to 

initial fish abundance.  Hatchery brown and rainbow trout loss rates were calculated in 

the same way, but initial abundance indices were based on stocking numbers for a given 

year.   

Piscivore Diet and Consumption 

Piscivore collection 

Diets of piscivorous fishes from 2004 to 2007 were determined from samples collected in 

the Muskegon River and in Muskegon Lake using electrofishing, gillnets, and angling.  In 

Muskegon River, fish were captured using the electrofishing methods described above.  

In Muskegon Lake, I used all three methods.  Electrofishing transects conducted with a 
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20’ Smith Root boom style electrofishing boat were approximately 1 km in length (~ 10 

minutes) and were performed at night in shallow water (depth ≤ 2 m).  Upon capture, fish 

were placed in a 284 liter recirculating live well for the duration of a particular transect.  

Horizontal gill nets (3 x 30 m, 89 and 127 mm stretch mesh) were set weekly in May and 

June of 2005 – 2007.  Gill nets were set near shore (depth 2 – 5 m) for three hours at 

night to minimize digestion of stomach contents and to maximize the number of fish 

caught.  Lastly, I sampled anglers’ creel at Muskegon Lake boat ramps from angling 

occurring at dusk or after dark.  

Diet composition 

Upon capture, fish were measured (TL mm), weighed (0.01 kg), and stomach contents 

removed.  Stomach contents of live fish were flushed using a garden sprayer (e.g., 

Seaburg 1957) and fish were released; whole stomachs were excised from deceased fish.  

Diet items were qualitatively identified and recorded (when possible) in the field and then 

preserved in 95% ethanol or 10% formalin.  In the laboratory, undigested stomach 

contents were separated, measured (TL mm), weighed (0.0001 g wet weight) and 

identified.  Fish prey items were identified to species when possible, while invertebrate 

prey items were identified to order.  Partially digested prey fish were identified based on 

diagnostic structures and compared to weight-at-length data of forage fish from the 

Muskegon River 

Piscivore consumption 

I used the “meal-turnover” method as described by Vigg et al. (1991) (see also Fresh et 

al. 2003) to quantify the daily, monthly, and total consumption of Chinook salmon parr 

by walleye and brown trout in the Muskegon River.  In addition, I determined the 
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potential impact of walleye predation on stocked brown and rainbow trout abundance.  

The meal-turnover approach involved identification of piscivore stomach contents, back-

calculation of original prey weights, estimated state of prey digestion (based on 

difference in prey weight and back-calculated prey weight-at-ingestion), and prediction 

of time (h) to 90% evacuation of a meal for walleye.  Back calculated length of digested 

prey was estimated from a regression of total length on the length from nape to base of 

tail for three common species of prey fish in the Muskegon River.  Weights of prey were 

estimated from lengths using weight-length regressions.  The equations to predict time to 

90% evacuation (h in hours) for walleye (eq. 1-3; Swenson and Smith 1973; Wahl and 

Nielsen 1985) and brown trout were (eq. 4; He and Wurtsbaugh 1993): 

prey < 1.1g  ( ) 1899.10283.0/088.0178.0450.7 TRDh ++−=  (1) 

prey 1.1 – 2.5g ( ) 1899.10415.0/031.0208.0476.4 TRDh ++−=  (2) 

prey > 2.5g  ( ) 1899.10415.0/047.0231.0065.0 TRDh ++−=  (3) 

   T
e eR 073.0053.0=      (4) 

where D is % of prey weight digested, R is prey meal ration (g/g), T is temperature (°C), 

and Re is instantaneous rate of evacuation (h-1) in brown trout.  The number of prey 

consumed per predator per day was computed as the daily consumption (g ● day-1) of each 

prey type divided by the mean mass of each prey type.  A meal was defined as all diet 

items whose state of digestion did not vary by more than 20% (Swenson and Smith 

1973).  Daily consumption rates were then extrapolated to entire piscivore (walleye and 

brown trout) populations by multiplying daily consumption by estimates of daily 

abundance (e.g., Rieman et al. 1991; Vigg et al. 1991; Beamesderfer and Rieman 1991) 



 26

to determine daily, monthly and seasonal loss of Chinook salmon parr from predation, 

and any losses of stocked trout from walleye predation. 

Chinook salmon growth 

Growth rates of Chinook salmon parr were estimated from barge electrofishing 

collections at the five reference sites in the Muskegon River.  Growth rate was estimated 

as the change in average parr length over time observed from bi-weekly sampling.  In 

addition, I recorded the date at which 50% of Chinook parr measured at least 50 mm TL.  

The approximate time needed for parr to grow from emergence at 37 mm (Beachum and 

Murray 1990) to 50 mm TL was used to determine the duration of time parr were 

vulnerable to small gape-limited predators (e.g., Damsgård 1995; Quinn 2005).  I 

assumed Chinook salmon eggs were deposited on October 1, based on MDNR creel data 

from 2000 – 2005 (Tracey Kolb Michigan Department of Natural Resources personal 

communication), and used mean daily temperature to estimate the incubation time and 

emergence date of fry for each year, based on 1,000 accumulated thermal units (ATU) 

and empirical relationships between ATUs and temperature (McMichael et al. 2005).  

The total time that Chinook salmon parr spent in the river (i.e., swim-up to mean 

emigration date) also was estimated to determine temporal overlap with other piscivores 

that are not gape-limited by Chinook parr (i.e., walleye, basses, etc).  

Fish mortality/Loss rate 

Total instantaneous loss rates (Ztotal) for Chinook salmon parr from 2005 – 2007 were 

estimated from the slope of a linear regression of parr density estimates against time.  

Parr density estimates were the average of densities at all sites within a two-day period.  

Since reference sites were sampled only once in 2004 (Edward Rutherford Great Lakes 

Environmental Research Laboratory unpublished data), I assumed the total loss rate in 
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2004 was equal to mean total loss rate from 2005 – 2007.  Total loss rate (Ztotal) 

incorporates components of predation mortality (Zpred) and emigration from the river 

(Zemig) which includes other unknown sources of mortality (e.g., Ricker 1975).  I summed 

annual consumption estimates of predation from walleye and brown trout to estimate the 

percentage of the Chinook salmon parr population consumed by predators (A), and then 

calculated ( )AZ epred −−= 1log  (Ricker 1975).  I estimated Zemig as the difference 

between Ztotal and Zpred.  

 I estimated the mortality rates of brown trout and rainbow trout in two ways.  

First, I used MDNR stocking numbers as indices of initial abundance and then estimated 

the total mortality rate as the slope of the regression of loge (CPUE) vs. time.  Second, I 

used my empirical consumption model to estimate walleye consumption rates on brown 

or rainbow trout (predation mortality), then added angler mortality (Tracy Kolb MDNR 

creel data) to obtain an alternate loss rate (Predation and Mortality “PAM”) for brown 

trout and rainbow trout. 

Results  

Environmental variables 

Water temperature was similar between years in the Muskegon River although in 2007 

there was a brief warming period in early April (Figure 2.2).  Mean water temperature 

from April to June was 11.4°C in 2004, 2006, and 2007 but was only 10.4°C in 2005.  

River discharge, however, differed between years.  In 2004, the Muskegon River 

experienced anomalous flood conditions throughout the month of May.  Mean river 

discharge while Chinook occupied the nursery habitat (late March - June) was the highest 

of all four years at 118.6 m3
● sec-1.  In 2005, mean river discharge was low throughout the 
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spring and summer (mean discharge 66.4 m3
● sec-1).  Mean river discharge in 2006 and 

2007 was intermediate compared to 2004 and 2005 (88.2 m3
● sec-1 ± 2) (Figure 2.2).   

Fish abundance 

Peak Chinook abundance at swim-up (“fry”) averaged 491,504 (± 27,864) individuals 

across all sampling years and ranged from 459,717 to 511,712 (Figure 2.3).  Chinook parr 

≥ 50 mm TL were present by the first week of May in all years, although in 2006 they 

occurred as early as April 20.  By the end of May, over 50% of Chinook parr captured 

were ≥ 50 mm TL in all sampling years.  Mean abundance of Chinook salmon parr ≥ 50 

mm TL for all years was 325,018 (± 47,330) individuals (Figure 2.4A).  The mean time 

required for Chinook parr to reach 50mm TL, i.e., the duration of vulnerability to 

predation by brown trout, was 40 days and ranged from 36 to 47 days (Figure 2.4B).   

Daily growth rates of Chinook salmon parr were highest in 2007 (0.39 mm ● day-

1), slightly lower in 2006 (0.36 mm ● day-1) and 2004 (0.35 mm ● day-1), and lowest in 

2005 (0.30 mm ● day-1).  Growth rates of Chinook parr were significantly different 

between 2005 and 2007 (t = 2.495; p = 0.025) but were not significantly different 

between any other years.  Chinook salmon parr successfully out-migrated from 

Muskegon River as I caught them in shallow, sandy areas of Muskegon Lake in late May 

to early June, but capture success was too low (n = 11) to quantify their abundance in 

Muskegon Lake.  Mean length of out-migrant Chinook salmon parr was 60 mm and 

ranged from 49 to 77 mm. 

The spawning population of Muskegon River walleyes (314 mm ≤ TL ≤ 810 mm) 

was estimated at nearly 38,000 (range: 30,576 – 45,203) individuals in 2002, ranging in  
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Figure 2.2. Intra- and inter-annual variation in river discharge and temperature in the 
Muskegon River from 2004-2007. Discharge and temperature data are only shown for the 
approximate duration of Chinook salmon nursery time (emergence to out-migration).  
Data were recorded at U.S. Geological Survey station # 04121970 in Croton, Michigan. 
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Figure 2.3. Intra- and inter-annual variation in population abundances of wild Chinook 
salmon fry (“F”) and parr (open diamonds; mean ± 95% confidence intervals). 
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Figure 2.4. A) Peak abundance of Chinook salmon parr ≥ 50 mm TL.  Error bars 
represent 95% confidence intervals; dashed line indicates the overall mean of 325,018 
parr.  B) Approximate time (days) following emergence required for 50% of Chinook 
parr to reach 50 mm TL in each year.  Emergence date was based on an egg deposition 
date of October 1 and growth was dependent on mean temperature during the nursery 
period (swim-up to out-migration). 
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age from 2 to 18 years (Hanchin et al. 2007).  CPUE data indicate that most walleye 

departed the Muskegon River immediately post-spawn, approximately April 1, but an 

estimated 2,000 to 3,000 adult walleye remained through June in all years (Figure 2.5).  

In Muskegon Lake, walleye CPUE data also showed a decreasing trend post-spawn 

indicating either shallow water avoidance or migration into Lake Michigan.  Walleye 

were captured predominantly in shallow, sandy areas of Muskegon Lake in late May and 

early June, coincident with the location of Chinook salmon parr captured in beach seines. 

Numbers of hatchery trout stocked from 2004 to 2007 were high and averaged 

259,661 (mean TL = ~178 mm; Range: 140 – 217 mm TL).  There was no relationship 

between total length of stocked trout and stocking date.  Rainbow trout were stocked 

consistently (189,000 ± 11,483) over a several week period in all study years (Figure 

2.5).  Brown trout stocking averaged nearly 85,000 from 2004 to 2006 but dropped by 

about 60% in 2007.  Brown trout also were stocked over several weeks in the first three 

years but in 2007 were stocked in a single day (April 30) (Figure 2.5).  In all years, 

brown trout abundance declined rapidly following stocking events and by mid June they 

were nearly gone (Figure 2.5).  This decreasing trend was less pronounced in rainbow 

trout, which appeared relatively abundant throughout the sampling season (Figure 2.5).   

Piscivore diet composition and consumption 

I analyzed 2,096 piscivore diets (Table 2.1) collected in the MRES.  Equations to back-

calculate lengths of partially digested prey are reported for three common species in the 

Muskegon River (Table 2.2) as are weight-length regressions for five prey groups (Table 

2.3).  Of the walleyes examined (containing diets), 95% were piscivorous from  

2004 to 2007 and consumed mainly hatchery brown and rainbow trout while in the upper 
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Figure 2.5. Intra- and inter-annual variation in population abundances of brown trout, 
rainbow trout and walleye.  Filled and hollow arrows indicate stocking dates of brown 
and rainbow trout, respectively.  Direction of arrows is arbitrary.  In 2004, brown trout 
were also stocked on March 16 (not shown). 
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Table 2.1. Number of stomachs analyzed for each piscivore species.  The “other” 
category includes bowfin (Amia calva), northern pike (Esox lucius), largemouth bass 
(Micropterus salmoides) and burbot (Lota lota). 
 
Year Walleye Brown 

trout 

Rainbow 

Trout 

Smallmouth 

Bass 

Other* 

2004 238 0 0 25 11 

2005 371 33 52 20 11 

2006 155 184 180 106 55 

2007 250 73 238 81 13 

Total 1,014 290 470 232 90 
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Table 2.2. Linear regression model (Y = a + bX) statistics for total length (Y) regressed 
on length of nape-to-base-of-tail (X) for 3 species of prey fish in the Muskegon River.  
All lengths are in millimeters. 
 

      Nape to base of tail   

Prey species n a b r2 

Chinook salmon      98 7.1333 1.3 0.99 

rainbow trout 53 20.249 1.3742 0.94 

brown trout 34 10.004 1.1607 0.95 
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Table 2.3. Power regression model (Y = aXb) statistics for weight (Y, g) regressed on 
total length (X, mm) for 3 prey species (and 2 groups) in the Muskegon River.  The 
“other” category is mostly darters (Etheostoma spp.). 
 

  Length range  Regression Statistic  

Prey species n (mm) a b r2 

Chinook parr 456 35 – 99 4.0 x 10-7 3.7165 0.87 

rainbow trout 322 83 – 220 6.0 x 10-6 3.0848 0.97 

brown trout 176 113 – 220 8.0 x 10-6 3.0714 0.88 

Cyprinidae 305 31 – 116 8.0 x 10-6 3.0114 0.85 

other fish species 70 38 – 116 1.0 x 10-5 2.9395 0.88 
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Muskegon River, especially in April and May (85-90% of total biomass) (Figure 2.6).   

Chinook salmon parr, on the other hand, only comprised about 0.1 to 15% of the biomass 

of walleye seasonal diet (Figure 2.6).  In the lower Muskegon River, walleyes consumed 

primarily Cyprinidae but the proportion of Chinook salmon parr in walleye diets 

increased in June.  In Muskegon Lake, walleye diets were dominated by abundant prey 

items such as alewife and gizzard shad (Dorosoma cepedianum) (Table 2.4).  I found no 

evidence of walleye consuming Chinook parr in Muskegon Lake despite their spatial 

overlap.   

Walleye consumption rates by number were higher for Chinook salmon parr than 

for brown trout or rainbow trout.  In May, mean daily consumption rate by walleye (# 

prey● predator-1
● day-1) of Chinook salmon parr was highest (2.45 parr ● walleye-1) in the 

upper Muskegon River and zero in the lower river. In June, walleye consumption of 

Chinook parr declined slightly in the upper river (to 2.17 parr ● walleye-1) and increased in 

the lower Muskegon River (to 1.67 parr ● walleye-1).  Walleye consumption of brown 

trout was highest in May (0.31 brown trout ● walleye-1) although consumption of rainbow 

trout was always higher than of brown trout, especially in April (0.57 brown trout ● 

walleye-1).  In all years, rainbow trout appeared to be the preferred forage item for 

walleye (Table 2.5). 

Approximately 40% of stocked brown trout sampled were piscivorous and most 

preyed upon Chinook parr from 2005 – 2007.  I found Chinook salmon parr in brown 

trout diets in April, immediately after brown trout were stocked, but consumption of 

Chinook salmon parr ceased around May 24 in each year. Brown trout diet composition 

(by biomass) was approximately 40% Chinook salmon parr in April and May from 2005 
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Figure 2.6. Diet composition (by mass) of walleye (“WE”) and brown trout (“BRT”) 
from 2004 to 2007 in the upper Muskegon River. The “other” category is composed 
mostly of northern pike (Esox lucius in walleye diets) and YOY rainbow trout (in brown 
trout diets).  Sample sizes are listed above each column.  The high sample size in April 
2005 (*) was due to the capture of spawning walleye, most of which (189) did not 
contain diets. 
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Table 2.4. Diet proportions (by wet mass) for Muskegon Lake walleyes (n = 463) during 
2004 – 2007.  The “other” category is mostly round goby Neogobius melanostomus. 
 
Month alewife Cyprinidae gizzard shad other Chinook parr 

May 0.70 0.19 0 0.11 0 

June 1.00 0 0 0 0 

July 0.77 0.21 0 0.02 0 

August 0 0.11 0.89 0 0 
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Table 2.5. Mean daily consumption (# prey/predator) by walleye and brown trout on 
three prey species in the upper and lower Muskegon River from April to June 2004 – 
2007.  The number of diets listed (n) represents the total number of stomachs containing a 
particular diet item.  The “Total” shows the number of diets as a proportion of the total 
number of stomachs examined. 
 
   Walleye    Brown trout  

Prey species N April May June N April May June 

Chinook parr         

    upper river 36 0.150 2.453 2.168 64 1.416 1.028 0 

    lower river 22 0 0 1.674 0 0 0 0 

brown trout         

    upper river 52 0.224 0.310 0.223     

    lower river 2 0 0 0.017     

rainbow trout         

    upper river 157 0.569 0.482 0.390     

    lower river 7 0 0 0.087     

Total 276 / 1014    64 / 290   
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to 2007 (Figure 2.6).  Consumption of Chinook parr by brown trout from 2005 to 2007 

was higher than by walleye in April and May but lower in June (Figure 2.7).  Brown trout 

mean daily consumption of Chinook salmon parr was highest in April at approximately 

1.42 Chinook ● predator-1
●  day-1, was 38% lower in May, and by June all brown trout were 

insectivorous.  Approximately 38% of brown trout consumed Chinook salmon parr in 

2007 (highest), 33% in 2005 and 26% in 2006 (mean 30%). 

Predation on Chinook salmon parr by other fish species was negligible.  Rainbow 

trout did not consume Chinook salmon parr to an appreciable degree; nearly all rainbow 

trout diets were composed exclusively of invertebrates (mainly Trichoptera and 

Ephemeroptera spp.).  Although I collected diet samples from other piscivorous species, 

most notably smallmouth bass, they did not consume Chinook salmon parr in appreciable 

amounts and therefore were not considered in the subsequent analyses.   

Average annual consumption of Chinook salmon parr by walleye over all years 

was lower (46,809 parr) than by brown trout.  Walleye consumed approximately 91,288 

and 71,191 Chinook salmon parr in the spring of 2004 and 2005, respectively (Figure 

2.8).  In 2007, however, they only consumed 24,824 Chinook salmon parr and in 2006 

seasonal consumption of Chinook parr by walleye was nearly absent (934 parr).  Brown 

trout consumed an estimated 174,278 and 131,100 Chinook salmon parr in 2005 and 

2006, respectively, but only consumed 77,516 Chinook parr in 2007 (Figure 2.8). 

Mortality/loss rates 

Predation mortality was likely a large component of total loss rates for Chinook salmon 

parr.  Total instantaneous daily loss (Ztotal) rates for Chinook parr averaged 0.058 and  
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Figure 2.7. Monthly consumption for brown trout (“BRT”) and walleye (“WE”) on the 
most common prey items from 2004 to 2007.  Brown trout diet data were not available 
for 2004. 
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Figure 2.8. Total number of Chinook salmon parr consumed by walleye (solid bars) and 
brown trout (hatched bars) from 2004 to 2007 based on the empirical consumption 
model.   Brown trout diet data were not available for 2004. 
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ranged from 0.052 to 0.077 (Table 2.6).  Mean instantaneous daily predation mortality 

(Zpred = -loge (1 - A)), however, also was highest in 2005 (0.0139) but lowest in 2006 

(0.0068). Peak predation mortality on Chinook salmon parr by walleye was estimated at 

18% of initial abundance (2004) (Table 2.6).  Stocked brown trout appeared to consume 

higher proportions of Chinook parr than did walleye and most predation mortality was 

attributed to brown trout (Table 2.6).  Peak predation mortality owing to brown trout was 

34% (2005) and total predation mortality by both species on Chinook parr peaked at 

49%, also in 2005. Based on the estimates of predation mortality (% mortality), the 

percentage of wild-produced Chinook salmon parr that emigrated (or experienced 

mortality from other sources) as smolts from the Muskegon River ranged from 27% in 

2005 (124,124 smolts) to 80% in 2007 (409,370 smolts) (Table 2.6).   

Angling mortality on brown trout and rainbow trout in the Muskegon River was 

low compared to predation mortality by walleye.  Brown trout and rainbow trout harvests 

averaged 2.5% and 9% of numbers stocked, respectively, from 2000 to 2005.  Walleye 

predation mortality averaged 11% for brown trout and 11.4% for rainbow trout (Table 

2.6).  Date-specific estimates of brown trout abundance based on CPUE data (i.e., Ztotal) 

were on average 35% lower than the numbers consumed by predators and harvested by 

anglers, suggesting significant loss rates of brown trout due to emigration. 

Discussion 
Interactive effects of abiotic variables, predators and alternate prey 

It is difficult to discern the relative effect of abiotic (i.e., river flow, water temperature) 

versus biotic factors (i.e., predation and competition) in empirical studies.  For example,  
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Table 2.6. Instantaneous daily loss rates (Z ● d-1) of Chinook salmon parr, brown trout, 
rainbow trout and walleyes in the Muskegon River from 2004 to 2007.  Total loss rates 
(Ztotal) were estimated as regression slopes of abundance over time; Losses due to 
consumptive predation were estimated by daily ration estimates, and for anglers through 
MDNR creel surveys.  Losses due to emigration (Zemig) were estimated as Ztotal  – Zpred.  
No data were available (n.a.) on brown trout consumption of Chinook salmon parr in 
2004.  Creel data were not available for 2006 and 2007 so mean values from 2000 to 
2005 were used. 
 
 
Prey 

 
Ztotal 

 
Zpred 

 
Zemig 

mortality via 
predation & 

angling 

 
# emigrated 

smolts 
Chinook  Brown trout Walleye    

       
2004 n.a. n.a. 0.0026 n.a. 0.18 n.a. 
2005 0.045 0.011 0.0031 0.0309 0.49 124,124 
2006 0.077 0.0081 0.0001 0.0689 0.26 286,758 
2007 0.052 0.0044 0.0009 0.0467 0.20 409,370 

       
Brown 
Trout 

 Anglers Walleye    

2004 0.018 0.00017 0.0025 0.015 0.22  
2005 0.02 0.0001 0.0004 0.0195 0.05  
2006 0.04 0.00015 0.0011 0.0388 0.12  
2007 0.074 0.00015 0.003 0.07 0.14  

       
Rainbow 

Trout 
 Anglers Walleye    

2004 0.007 0.0002 0.0025 0.0043 0.25  
2005 0.017 0.0003 0.0023 0.0144 0.25  
2006 0.009 0.00028 0.0016 0.007 0.21  
2007 0.015 0.00028 0.0018 0.013 0.22  
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while higher river temperatures can lead to higher growth rates of Chinook parr (Connor 

and Burge 2003), higher temperatures also influence predator consumption, thereby 

increasing parr vulnerability to predation (e.g., Marine and Cech 2004).  Survival of 

Chinook salmon parr is positively correlated with river discharge (Unwin 1986; Bradford 

1994; Smith et al. 2003).  Premature emigration may reduce interactions with stream 

predators, thereby increasing survival in riverine habitats.  In the Muskegon River in 

2005, mean temperature and mean river discharge were the lowest of all sampling years 

and corresponded to the lowest fry production and the highest rates of predation mortality 

from walleye and brown trout.  In 2006 and 2007, mean water temperature and mean 

river discharge were significantly higher than in 2005 and corresponded to an increase in 

fry production and a substantial reduction in Chinook predation mortality in 2007, but not 

in 2006.  Despite the potential influence of river temperature and discharge, it was 

difficult to determine how much temperature and flow directly influenced Chinook parr 

survival since abiotic factors are highly correlated, and directly influence behavior and 

spatial distribution of piscivorous fishes.   

Despite difficulties in parsing effects of abiotic factors on Chinook parr mortality, 

the predator-specific effect on Chinook mortality can be determined.  Brown trout 

predation on Chinook parr was consistently high and likely controlled by two factors: 

Chinook parr growth and brown trout stocking dates.  As piscivorous hatchery brown 

trout are gape limited by prey > 50 mm TL (e.g., Damsgård 1995), parr growth rate will 

influence the duration of vulnerability to brown trout predation, and therefore, may be a 

useful predictor for survival.  My data suggested that brown trout did not consume 
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Chinook salmon parr after (about) May 24, when parr reached a mean length of 49 mm 

TL and nearly two weeks before most Chinook parr emigrated.   

I observed mean daily growth rates of Chinook salmon parr that were similar to 

those reported from other Lake Michigan and Pacific Coast tributaries for parr captured 

in nursery areas.  Carl (1984) observed similar mean growth rates of Chinook parr (0.28 

to 1.01 mm ● d-1) in Baldwin and Pine Creeks, tributaries to Lake Michigan.  In the 

Columbia River, Chinook parr growth ranged from 0.44 – 0.60 mm● d-1 (Becker 1970; 

Dawley et al. 1986).  Mean daily growth rates of Chinook salmon parr were higher in 

systems where parr were captured in river mouths or estuaries and at larger sizes.  In the 

Pere Marquette and Little Manistee Rivers, also Lake Michigan tributaries, growth of 

Chinook salmon parr was similar to Baldwin and Pine Creeks (mean = 0.71 mm● d-1) but 

higher than in the Muskegon River (Seelbach 1985; Zafft 1992).  Growth rates of 

Chinook parr in the Nanaimo Estuary and Snake River were higher yet and ranged from 

1.1 – 1.32 mm ● d-1 (Healey 1980; Connor and Burge 2003). 

Growth of young Chinook is dependent on water temperature and food 

availability.  Hence, the low growth experienced by Chinook parr in 2005 was likely 

caused by the lowest mean daily water temperatures of my study.  If brown trout are size-

selective piscivores, low parr growth rates in 2005 may have been responsible for the 

highest predation mortality rates I observed from 2004 – 2007.  Alternatively, in 2007, 

the mean daily water temperature was highest for my study and predation mortality from 

both predators was relatively low.  These conditions may have allowed for the highest 

rate of Chinook parr growth in all study years.  The low rate of predation mortality in 

2007 was likely due to predator (i.e., brown trout) abundance being much lower than in 
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other study years while initial Chinook parr abundance was the highest of all study years.  

Hence, during 2004 – 2007, Chinook parr growth rates may have been limited by water 

temperature and predation pressure and less influenced by density-dependent growth 

limitations (e.g., Chapman 1962; Mason and Chapman 1965; Unwin 1986) in the 

Muskegon River.  This assertion is supported with the 2006 data, which indicate that 

intermediate water temperature and intermediate predation mortality may have resulted in 

intermediate growth rates of Chinook parr. 

The proportion of brown trout that are piscivorous, the temporal/spatial overlap 

between brown trout and Chinook salmon parr, and the numbers of brown trout stocked 

are factors influencing survival and potential recruitment of Chinook salmon parr.  

Approximately 30% of all brown trout sampled in the Muskegon River were piscivorous.  

In 2005 and 2006, brown trout were stocked early and over multiple dates, overlapped 

with Chinook salmon parr for a greater duration, and inflicted greater predation mortality 

than in 2007.  Predation mortality on Chinook by brown trout was highest in 2005, when 

Chinook parr growth was lowest.  Although temporal overlap between brown trout and 

Chinook salmon parr was greatest in 2006 (~60 d vs. ~ 45 d in 2005), brown trout were 

stocked in early to mid April and in great numbers in 2005; 88% of all hatchery brown 

trout were stocked while mean Chinook TL was 39.5 mm.  In 2006, only 50% of 

hatchery brown trout were stocked in mid April.  In 2007, 60% fewer brown trout were 

stocked and on a later date (April 30) than in previous years, reducing the temporal 

overlap between brown trout and Chinook salmon parr by nearly 40%.  This resulted in a 

35% reduction in predation mortality by brown trout on Chinook salmon parr, indicating 

that timing and numbers of brown trout stocked into the Muskegon River may strongly 
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affect Chinook parr survival.  Still, despite the considerable reduction in predation 

mortality on Chinook salmon parr in 2007, brown trout still consumed approximately 

15% of the estimated initial parr abundance. 

The migratory nature of brown trout may further affect the species interactions 

among important sport fishes in the Muskegon River.  I compared a loss rate for brown 

trout representing predation and angler mortality alone (i.e., PAM approach) to a total 

loss rate (i.e., CPUE approach), which also incorporated losses from all sources including 

emigration from the upper Muskegon River.  Brown trout emigration rates of 35% from 

the upper Muskegon River indicate that emigration may be prevalent and predation and 

angling mortality alone may not accurately account for total loss rates of brown trout.  

This is not entirely unique as higher emigration rates (50%) have been reported for brown 

trout in Scottish rivers (Middlemas et al. 2009). 

Walleyes also may impose high predation mortality rates on Chinook salmon parr 

before and during Chinook out-migration from the Muskegon River though this was not 

observed in all study years.  Unlike brown trout, walleye predation on Chinook salmon 

parr was inconsistent across sampling years, although this appears to have been 

dependent on the presence of alternate forage.  Generally, Muskegon River walleyes were 

opportunistic predators and consumed a low biomass of small Chinook parr but a high 

biomass of large hatchery trout.  This trend was especially obvious in May of all years 

when hatchery trout abundances were quite high; only 1.7% of pooled walleye diets were 

composed of Chinook salmon parr.  In June, hatchery trout abundances were 

considerably lower and the proportion of pooled walleye diets composed of Chinook 
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increased to 9%.  Hence, alternate forage fishes (i.e., hatchery trout) may buffer walleye 

predation mortality on Chinook salmon parr. 

In Muskegon Lake, walleye did not appear to consume Chinook parr at all and 

prefer alternate forage species, such as alewife and gizzard shad.  Nearly all Muskegon 

Lake walleye (70 - 100%) consumed the latter two species and the rest consumed 

Cyprinidae.  Hatchery trout, alewife, and gizzard shad abundances were ephemeral but 

their availability coincided with that of out-migrating Chinook salmon parr.  Thus, 

alternate forage appeared to buffer walleye predation mortality on Chinook parr 

throughout the MRES.  Johnson et al. (2007) discovered a similar trend in tributaries to 

Lake Huron, where seasonal variability of spawning alewives buffered walleye predation 

on hatchery salmon smolts.   

Predation mortality appeared to be highly correlated with Chinook recruitment 

success in the Muskegon River.  Predation mortality was highest in 2005 and coincided 

with the lowest rate of potential recruitment.  Alternatively, predation mortality was 

lowest and potential recruitment was highest in 2007.  Total instantaneous loss (Ztot) rates 

for Chinook salmon parr in the Muskegon River ranged from 2.5 to 2.91 during the 

nursery period in my study.  In the Pere Marquette and Little Manistee Rivers, also Lake 

Michigan tributaries, total mortality rates of Chinook parr were much lower and ranged 

from 0 – 0.38 (Zafft 1992; Seelbach 1985) though these were hatchery-reared fish and 

much larger.  Achord et al. (2007) reported instantaneous mortality rates of 1.38 – 2.53 

for Chinook parr in a large Pacific Northwest tributary although this value was due, in 

part, to hydroelectric dams (Beamesderfer et al. 1990) and did not incorporate emigration 

as my estimate did.  Instantaneous predation mortality rates (Zpred) of parr, however, 



 51

appeared to be much higher in the Muskegon River (Zpred range 0.22 – 0.67) as compared 

to rates for parr in the Columbia River (Zpred range 0.09 – 0.21; Rieman et al. 1991).  This 

result suggests that predation mortality from fishes can be very important in large Great 

Lakes tributaries, especially since the Muskegon River produces an order of magnitude 

fewer Chinook parr than west coast tributaries.  Comparative data on predation mortality 

are lacking for other Great Lakes tributaries. 

Although my methods were consistent across years, my study may have inherent 

bias.  All sites were sampled in the same manner, however, so biases were consistent 

across sampling sites and years.  There was no effective way to estimate Chinook parr 

abundance in the lower river.  Therefore, I could not quantify population consumption by 

walleyes of Chinook salmon parr in the lower Muskegon River, which means my 

predation mortality estimates were likely conservative.  Movement of fishes from my 

study sites would be interpreted as mortality (combined with natural mortality), thereby 

underestimating survival (especially of Chinook parr).  Additionally, I used stocking 

values of trout as initial abundances and assumed no natural reproduction of hatchery 

brown and rainbow trout; abundance estimates for brown and rainbow trout may also be 

conservative.  Regardless, my estimates of predation mortality on Chinook salmon parr 

provide a baseline to which future studies can be compared. 

Management Implications 

Trophic interactions among walleyes, stocked rainbow and brown trout, Chinook salmon 

parr and forage fishes have large implications for effective management of these species 

in the Muskegon River (Figure 2.9).  The timing, location and strength of these 

interactions may determine the efficacy of fishery management in promoting future  
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Figure 2.9. Conceptual food web showing potential interactions between important sport 
fishes and their prey in the Muskegon River.  Arrows point to the affected species and 
arrow thickness represents the intensity of the interaction.  The dashed line represents 
an indirect interaction between rainbow trout and Chinook salmon parr.  All interactions 
are controlled by management actions such as stocking. 
 

 

 

 

 

 

adult Chinook Walleye

brown trout

rainbow trout

hatchery Chinook

M
an

ag
em

en
t

alewives invertebrates

juv. Chinookadult Chinook Walleye

brown trout

rainbow trout

hatchery Chinook

M
an

ag
em

en
t

alewives invertebrates

juv. Chinook



 53

productivity of valuable sport fisheries in the MRES.  Fishery managers can control 

predation mortality on Chinook salmon parr through stocking and harvest regulations of 

piscivores (e.g., Krueger and Hrabik 2005; Harvey and Kareiva 2005).   

Predation mortality on juvenile stages may have a greater impact on wild salmon 

recruitment variability in freshwater versus marine habitats (Myers 2001) though this 

may be seasonally dependent.  I estimated predation mortality rates on Chinook parr that 

ranged from 18% to 49% during the nursery period (April – June) in the Muskegon 

River.  Rieman et al. (1991) estimated a predation mortality rate on juvenile Chinook of 

approximately 30% for the same time interval in a Columbia River reservoir though 

predation may increase substantially by August when temperatures are much higher.  

Chinook salmon smolts out-migrate from the Muskegon River long before August, 

making their nursery residence much shorter than in west coast tributaries.  Tributary 

systems in both regions contain important top predators that are major sources of variable 

mortality for out-migrating Chinook salmon.  In Lake Michigan tributaries, walleye and 

brown trout are the main predators of Chinook salmon parr while the northern 

pikeminnow (Ptychocheilus oregonensis) is the dominant predator in the Pacific 

Northwest (Beamesderfer et al. 1990; Friesen and Ward 1999) as it accounts for most 

(78%) of the predation mortality on juvenile salmonids in some tributaries (Rieman and 

Beamesderfer 1990; Rieman et al. 1991).   

Manipulation of predator abundance may be helpful in assessing its relative 

contribution to overall ecosystem structure and function (e.g., Paine 1966; Navarrete and 

Menge 1996; Rand and Stewart 1998).  Management actions to remove northern 

pikeminnow have resulted in considerable reduction in salmon smolt mortality (Rieman 
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and Beamesderfer 1990; Rieman et al. 1991).  Removal of northern pikeminnow is 

dependent on angler participation and a sustained exploitation rate.  In the Muskegon  

River, however, removal of piscivorous hatchery trout can be accomplished by simply 

curtailing stocking practices or creating effective stocking windows, thereby substantially 

reducing parr mortality.  Unlike in Pacific Northwest tributaries, where hydropower dams 

are the major determinants of salmon parr mortality, predation appears to be a significant 

source of Chinook salmon parr mortality in the Muskegon River.  When brown trout 

abundances were significantly reduced (i.e., 2007), survival of Chinook salmon parr 

increased substantially and potential recruitment nearly tripled compared to 2005, when 

predation mortality peaked.  Stocking of Chinook salmon parr into tributaries can also be 

timed to ensure proper size and imprinting have been achieved and that alternate prey are 

available.  Johnson et al. (2007) found the aforementioned factors contributed strongly to 

increased survival rates of stocked Chinook salmon parr in Lake Huron. 

While fishery managers must direct stocking efforts to maximize hatchery 

efficiency and Chinook salmon parr survival, they must also supplement other valuable 

sport fish stocks.  Although walleye are not a highly prized sport fish in the Muskegon 

River (proper), angler effort and harvest are high for walleye in Muskegon Lake and 

near-shore Lake Michigan (Hanchin et al. 2007).  On the other hand, creel records 

indicate that fishing effort and harvest rates for brown trout are extremely low in all 

MRES habitats.  Further, my empirical observations suggest that brown trout are the most 

significant source of variability in wild Chinook salmon recruitment.  Therefore, to 

improve recruitment of Chinook salmon smolts to the Lake Michigan fishery, brown 
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trout stocking should be altogether eliminated in rivers that produce wild Chinook salmon 

parr.   

Natural recruitment of Pacific salmonids in the Great Lakes has become an 

extremely important source of adult salmon in the past few decades.  The increasing 

numbers of wild-produced salmon have led to very high adult abundances such that they 

cannot be supported by the forage base.  Effective management of the Lake Michigan 

Chinook salmon fishery depends on reliable estimates of adult salmon harvest, adult 

spawner returns and Chinook salmon parr production in important tributaries.  Fishery 

managers no longer have direct control over riverine Chinook salmon production which 

makes annual assessments of wild Chinook recruitment increasingly critical towards 

effective fishery management in Lake Michigan tributaries.  My study provides a 

template for estimating wild Chinook recruitment although more detailed analyses may 

provides further insight into long-term Chinook salmon management.  Detailed analysis 

of piscivore feeding behavior (i.e., functional response) in important tributaries may 

further elucidate predator diet trends such as those I have described.  Such work could 

inform modeling studies that attempt to investigate complex spatial interactions involved 

in Chinook salmon migration (Petersen and DeAngelis 2000) and would allow for the 

evaluation of combined effects of environmental variability and predation on Chinook 

parr survival.  Integrating piscivore feeding behavior, Chinook salmon habitat selection 

and migratory behavior (e.g., Jager et al. 1997, Railsback and Harvey 2002), and 

fluctuating abiotic variables in such a modeling approach may improve mechanistic 

understanding of the recruitment process of Chinook salmon in the Great Lakes. 
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Chapter III 

Feeding Behavior of Walleye and Brown Trout and 
its Influence on Chinook Salmon Recruitment in a 

Lake Michigan Tributary 
 

Abstract 

A major factor regulating variability in Chinook salmon (Oncorhynchus tshawytscha) 

recruitment is predation on early life history stages.  Predation rate is determined by a 

number of factors including availability of alternative prey to predators.  To better 

understand the role of alternative prey on predator diet selection and Chinook parr 

mortality and potential recruitment from 2004 to 2007, I determined prey densities and 

sizes, predator diet composition, feeding behavior (size- and species-specific prey 

selection), and functional response relationships for walleyes (Sander vitreus) and brown 

trout (Salmo trutta) in the Muskegon River, a tributary of Lake Michigan.  Walleye diets 

were largely composed of brown trout and rainbow trout (O. mykiss) in all study years 

(80% - 95% by weight).  Walleyes were size-selective for smaller brown and rainbow 

trout than were available in the environment but walleye prey size was independent of 

predator size.  In general, walleyes showed neutral selection for all prey species but in 

some years showed positive selection for rainbow trout and negative selection for 

Chinook parr.  I fit a Type-II curve to describe the functional response by walleyes to 

varying abundances of prey.  Hatchery brown trout diets were largely composed of 
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Chinook salmon parr in April and May (30% - 68% by weight) and invertebrates (100% 

by weight) in June.  Brown trout selected for parr that were smaller than the average parr 

length in the environment, although prey size was independent of predator size.  Chinook 

parr were positively selected for by brown trout only in April.  I fit a Type-I curve to 

describe the functional response by brown trout to variable abundances of Chinook 

salmon parr.  The presence of alternate prey significantly influenced walleye predation on 

Chinook salmon parr while brown trout appeared to be limited by size of Chinook parr.  

Functional response relationships suggested that predator management scenarios 

employing removal of brown trout would have the greatest positive impact on Chinook 

salmon recruitment.  Management efforts to reduce brown trout abundance via stocking 

could decrease predation mortality of Chinook salmon parr by up to 23.4% thereby 

improving potential recruitment.   
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Introduction 

In the Pacific Northwest and the Laurentian Great Lakes, juvenile Chinook salmon 

(Oncorhynchus tshawytscha) (parr) survival, and thus recruitment, can vary annually due 

to environmental factors such as temperature and flow, and biotic factors such as 

predation and competition (Beamsderfer et al. 1990; Bradford 1994; Jager et al. 1997; 

Einum et al. 2008).  In the Pacific Northwest, predation is thought to be the primary 

driver regulating survival (Peterman and Gatto 1978; Fresh et al. 2003; Chapter 2).  In 

U.S. tributaries to the Pacific Ocean, the northern pikeminnow (Ptychocheilus 

oregonensis), smallmouth bass (Micropterus dolomieu) and Caspian tern (Hydroprogne 

caspia) are responsible for the majority of predation mortality experienced by Chinook 

salmon parr and smolts (Tabor et al. 1993; Roby et al. 2003; Antolos et al. 2005).  

Piscivore feeding behavior in the Great Lakes, on the other hand, has been little studied 

with respect to its potential impact on survival of Chinook salmon parr (see Johnson et al. 

2007).   

In the Muskegon River, a tributary to Lake Michigan, survival of Chinook salmon 

parr is influenced by walleye (Sander vitreus) and brown trout (Salmo trutta) predation 

(Chapter 2).  Brown trout, despite their smaller size (mean length = 164 mm), consume 

more Chinook salmon parr as a group than the much larger walleye.  Fritts and Pearsons 

(2006) found a similar trend in the Yakima River, Washington, where smaller predators 

consumed more salmon parr as a group than larger predators.  However, the presence of 

alternate prey may buffer predation rates on Chinook salmon parr, thereby reducing 

overall predation mortality rates (e.g., Forney 1974).  My objectives were to 1) describe 

the feeding behavior of walleye and brown trout as a function of variable abundances and 
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sizes of primary and alternate forage, 2) determine prey preference and size selection of 

piscivorous walleye and brown trout, and 3) develop predator functional response 

relationships to evaluate management scenarios for their impact on potential Chinook 

salmon recruitment. Since predators generally select prey based on prey size (Bannon and 

Ringler 1985; Juanes 1994), I hypothesized that predation mortality on Chinook salmon 

parr will be size selective and will vary with availability of alternate prey.  I further 

hypothesized that alternate prey can buffer size-structured predation mortality of Chinook 

salmon parr in the Muskegon River (e.g., Czesny et al. 2001).  If the abundance of 

alternate prey decreases, predation mortality on Chinook parr should subsequently 

increase. 

Study Site 
 
The Muskegon River extends 365 km from Houghton Lake in north-central Michigan to 

Muskegon, Michigan, where it empties into Lake Michigan (Figure 3.1).  I focused my 

efforts on the (ca.) 22.5 km salmonid nursery section of the Muskegon River between 

Croton and Newaygo (see Godby et al. 2007).  This section of river experiences mean 

discharge rates of approximately 84.9 m3
● s-1 (range 60.9 – 260.8 m3

● s-1) from April to 

June and the substrate is predominantly cobble and gravel, which provides excellent 

spawning habitat for Chinook salmon and other important sport fishes such as walleye 

and steelhead (O. mykiss) (Auer and Auer 1990; Merz et al. 2004; Quinn 2005).  

Methods 

Fish Abundance and Size 

Abundance and size of Chinook salmon parr and Cyprinidae were estimated in the 

Muskegon River from 2004 - 2007.  In 2004, I used a 2.4 m diameter auger-style smolt 

trap to capture out-migrating Chinook salmon parr from May 6 to June 29.  Fish were  
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Figure 3.1. The location of the Muskegon River and Muskegon Lake, Michigan.  Stars 
indicate barge electrofishing reference sites (see Carl 1980) used to estimate population 
abundance of Chinook salmon parr. 
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identified, counted, weighed (nearest 0.1 g) and measured (TL mm) each day.  Densities 

of Chinook salmon parr and cyprinids were estimated for the remaining years (April 19 – 

June 15, 2005; April 20 – June 7, 2006; May 8 – June 6, 2007) using a barge-style 

electrofishing unit (3 Amps, 240 V) along daytime 100 m transects, run upstream, at five 

established reference sites (Carl 1980) (Figure 3.1).  I used a pass depletion protocol 

(e.g., Zippin 1956, 1958) because Chinook parr were generally too small (< 50 mm) for 

effective mark and recapture estimates.  I sampled each reference site twice a month and 

sampled most sites 5 times in a given field season.  I weighed and measured a sub-sample 

of 30 Chinook salmon parr from each electrofishing transect and counted and batch 

weighed the remaining individuals.  Abundances of Chinook parr and Cyprinidae were 

estimated for the whole river by multiplying the mean density (#  m-1) of fish at the five 

reference sites on each sampling date by the total nursery shoreline (22.5 km x 2 sides = 

45 km).   

I estimated the initial abundance of Chinook salmon fry at swim-up by developing 

a linear relationship between parr length and abundance over time.  I assumed swim-up 

occurred at 37 mm TL (length at emergence, Beachum and Murray 1990).  In addition, I 

tested for differences in mean length (TL, mm) of Chinook salmon parr across years 

using a general linear model (GLM).  Length was the dependent variable while water 

temperature was the covariate, and sampling date and year were included as independent 

variables.  Length data for 2004 were not included as capture methods and locations 

differed between 2004 and 2005 – 2007. 

Walleyes, brown trout, and rainbow trout were collected using a barge 

electrofisher using the aforementioned methods and reference stations in addition to 
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collections with a 20’ Smith Root boom-style AC electrofishing boat (3 Amps, 240 V).  

Boom-electrofishing transects were run in a downstream fashion and were always 

performed during the day.  Upon capture, fish were placed in a 189-liter recirculating live 

well and counted at the end of each transect.  Population abundances of these three 

species were estimated using data from boom electrofishing transects.  Date-specific 

abundances of brown trout and rainbow trout were estimated by scaling catch per unit 

effort (CPUE, # hr-1) in electrofishing transects to the number of trout stocked.  The 

decline in CPUE and abundance of stocked hatchery trout was assumed to result from 

harvest, predation and emigration from the river. I used linear interpolation to determine 

fish abundances for dates in between sampling efforts.  Walleye abundance was 

calculated in the same way, but initial abundances were based on estimates of spawning 

walleye abundance in the Muskegon River (approximately 38,000 individuals) in 2002 

(Hanchin et al. 2007). 

Predator Diet Composition 

The methods used to determine predator diet composition are reported in detail in 

Chapter 2.  Here, I provided an abbreviated version.  At the completion of each 

electrofishing transect, predators were measured (TL, mm), weighed (0.01kg) and 

stomach contents flushed from live fish using a garden sprayer (e.g., Seaburg 1957); 

whole stomachs were excised from deceased fish and live fish were released.  Diet items 

were qualitatively identified (when possible) in the field and then preserved in 95% 

ethanol or 10% formalin.  In the laboratory, undigested stomach contents were measured 

(TL mm), weighed (nearest 0.1mg wet weight) and identified.  Fish prey items were 

identified to species when possible, while invertebrate prey items were identified to 
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order.  Partially digested prey fish were identified based on diagnostic structures and 

compared to weight-at-length data of forage fish from the Muskegon River (Chapter 2).  I 

used the “meal-turnover” method described by Vigg et al. (1991) to quantify the daily 

rations of walleye and brown trout in the Muskegon River (see Chapter 2). 

Predator Feeding Behavior 

I evaluated predator feeding behavior by determining if predators were selecting prey by 

size or species.  Size-selective predation was determined by comparing mean length of 

ingested prey to mean prey length in the environment (e.g., Wankowski 1979; Shively et 

al. 1996).  I calculated monthly mean residuals for length (mean lengthingested – mean 

lengthenvironment) of each prey type.  Piscivores were considered size-selective if the mean 

length of ingested prey was significantly greater or less than the environmental mean 

(based on 95% confidence intervals).  In addition, I calculated the ratio of prey length to 

piscivore length to determine whether prey size consumed was correlated with piscivore 

size.  I estimated a maximum prey/predator ratio (as % of TL) for piscivorous walleye 

and brown trout, which was based on the largest prey/predator ratio observed for each 

predator species.  To determine if predators selected prey species I used Chesson’s α 

(Chesson 1983):  

α i = ri /ni

ri /ni

i=1

m

 
  i = 1, …, m   (1) 

where ri and ni are the number of prey species i in a predator’s diet and the environment 

respectively, and m is the number of prey types.  Alpha values were calculated for 

individual piscivores and averaged for April, May and June of each study year.  Alpha 

values > 1/m indicate that a predator consumed a prey species in greater proportion than 



 69

prey abundance would suggest and hence, the predator was foraging in a species-

selective manner.  I used Chesson’s index because α does not change with food density 

unless consumer behavior changes.  Hence, it is appropriate for detecting behavior such 

as “switching” (Murdoch 1969).  I assumed a constant biomass of invertebrates (9.9 kg ● 

ha-1) as data were scarce for my study years (C. Riseng, University of Michigan 

unpublished data).  Rainbow trout were predominantly insectivorous and did not feed on 

Chinook salmon parr, thus were not considered in this analysis. 

Predator Functional Response 

I parameterized a multi-species functional response model (Abrams 1987) to quantify 

predator feeding rates in the presence of preferred and alternate prey.  To do this I 

estimated piscivore consumption (g ● day-1) from prey abundance (g ● ha-1) and fitted a 

Type-II functional response curve using TableCurve 2D© v 5.01 (SYSTAT software 

Inc.).  This curve predicts the amount of each prey type an average walleye will consume 

daily (Ne, g/day): 

44,433,322,211,1

44
4,

44,433,322,211,1

33
3,

44,433,322,211,1

22
2,

44,433,322,211,1

11
1,

1

1

1

1

NTaNTaNTaNTa
NaN

NTaNTaNTaNTa
Na

N

NTaNTaNTaNTa
Na

N

NTaNTaNTaNTa
NaN

hhhh
e

hhhh
e

hhhh
e

hhhh
e

++++
=

++++
=

++++
=

++++
=

  (2) 

where Ne,i  is the biomass of prey i consumed (g ● day-1), ai is the rate constant for 

capturing prey while searching, Th,i is the handling time (hours) associated with species i, 

Ni is the abundance of prey species i (g ● ha-1) and subscripts represent the prey type (1- 

Chinook parr; 2- Cyprinidae; 3- brown trout; 4- rainbow trout).  The shape of the 
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functional response curve was established by minimizing the geometric mean of the sums 

of squares for all species and simultaneously solving for ai and Th,i.  For brown trout, I 

fitted a Type-I functional response to variable abundance of Chinook salmon parr.   

Using my estimated functional response for walleyes, I evaluated the potential 

outcome of predator-prey interactions that may result from various management 

manipulations.  I accomplished this by removing individual prey and/or predator types, 

then simulated the feeding behavior of walleyes in response to each manipulation and 

compared the results to my previous empirical analysis (Chapter 2).  Since my foraging 

model was empirically derived, an inherent assumption was that predator size/species 

selectivity would not change in response to manipulations.  I used a 4 x 4 x 4 factorial 

experimental design to simulate removals (0%, 25%, 50%, 100%) of walleyes, brown 

trout and rainbow trout to determine the effect on survival of Chinook salmon parr and 

hence, Chinook salmon recruitment.  Results from simulated removals were compared to 

a baseline value, which was defined as the mean survival rate of Chinook parr observed 

during the study (S = 0.51; Chapter 2).  Although the effects of walleye removal from the 

Muskegon River would take several years to detect since individuals are long-lived (up to 

18 years), I assumed a rapid change in population abundance. 

Results 

Fish Abundance and Size 

Peak abundance of Chinook salmon at the swim-up (fry) stage averaged 491,504 (± 

27,864) parr across all sampling years and ranged from 459,717 to 511,712 (Table 3.1, 

Figure 3.2).  The swim-up stage was observed between April 10 and April 20 in all years.  

After swim-up, Chinook salmon parr abundance decreased by approximately 7,282 parr ●  
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Table 3.1. Regression statistics to estimate peak abundance of Chinook salmon at the 
swim-up (fry) stage. 
 
Year n r2 F statistic p-value Slope Intercept Peak 

abundance
2004 na na na na na na 491,504* 
2005 5,503 0.82 8.951 0.096 -22,258 1,283,263 459,717 
2006 6,984 0.91 19.313 0.048 -22,409 1,332,217 503,084 
2007 5,170 0.74 8.703 0.06 -20,032 1,252,896 511,712 
*mean value from 2005 – 2007 was used. 
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Figure 3.2. Intra- and inter-annual variation in population abundances of Chinook 
salmon fry (“F”) at swim-up and parr (open diamonds; mean ± 95% confidence 
intervals), Cyprinidae (open circles; mean ±  95% confidence intervals), brown trout, 
rainbow trout and walleye.  The 2004 abundance estimate for Chinook salmon fry is the 
mean of Chinook salmon fry production from 2005 to 2007.  Abundance of Cyprinidae 
was not available for 2006 or 2007. 
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day-1 (range 6,695 to 7,766) throughout the spring (Figure 3.2, Chapter 2).  Chinook parr 

size (TL, mm) did not differ significantly across years (F2,15 = 1.584, p-value = 0.238), 

although sampling date (F1,15 = 19.789, p-value < 0.0001) and water temperature (F1,15 = 

28.293, p-value < 0.0001) were significant sources of inter-annual variation in parr length 

(Figure 3.3).   

Abundance of trout, walleyes and Cyprinidae were fairly consistent across years.  

Annual numbers of hatchery trout stocked from 2004 – 2007 averaged 259,661 

individuals.  There was no relationship between trout total length and stocking date.  

Rainbow trout stocking levels were consistent in all study years (189,000 ± 11,483; mean 

TL = 174 mm ± 3.7) but brown trout (mean TL = 164 mm ± 3.2) stocking dropped by 

approximately 40% from nearly 85,000 in 2004 – 2006 to approximately 35,000 

individuals in 2007 (Figure 3.2).  In all years, brown trout abundance declined rapidly 

following stocking events and by mid June, brown trout were rare (Figure 3.2).  This 

decreasing trend was less pronounced for rainbow trout, which appeared relatively 

abundant throughout the sampling season (Figure 3.2).  Most walleyes (314 mm ≤ TL ≤ 

810 mm) departed the Muskegon River immediately post-spawn (approximately April 1) 

but an estimated 2,000 to 3,000 adult walleyes (mean abundance = 1,968, range:  987 – 

4,641) remained through June in all years (Figure 3.2).  Abundance of Cyprinidae 

generally increased throughout the sampling season (2005) (Figure 3.2) and their mean 

length was 55.5 mm ± 1.8. 

Predator Diet Composition 

I collected and analyzed diets from 707 walleyes in the upper Muskegon River (62 in 

2004, 366 in 2005, 66 in 2006, 213 in 2007).  For all years, approximately 55% (range:  



 74

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Mean length (mm TL) of Chinook salmon parr collected from 5 reference 
sites throughout the spring (April – June) of each study year.  Mean length did not differ 
significantly among sampling years (2005 – 2007). All error bars represent 95% 
confidence intervals.  Length data for 2004 were not included due to differences in 
capture method and location. 
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37% – 74%) of the walleyes examined had empty stomachs, but most of those walleyes 

(177) were captured immediately post-spawn in 2005 (early April).  Otherwise, walleyes 

with stomach contents were 98.3% piscivorous and consumed large proportions of 

hatchery brown and rainbow trout.  From 2004 to 2007, 74% of walleyes with prey in 

stomachs consumed hatchery trout whereas only 12% of walleyes consumed Chinook 

salmon parr.  Rainbow trout and brown trout made up from 80 to 95% of walleye diet (by 

weight) in all months across all study years (Figure 3.4).  The proportion of diets 

composed of Chinook salmon parr was much smaller and ranged from 0.1 to 15% of total 

diet biomass.  Walleyes also consumed Cyprinidae in greater proportion in June when 

hatchery trout and Chinook salmon parr abundances were low.   

I collected and analyzed diets from 268 brown trout from 2005 to 2007.  

Approximately 70% (range: 54 – 91%) of all brown trout sampled contained diet items 

and of those, 30% (range: 26 – 38%) consumed Chinook salmon parr.  In April, the 

proportion of Chinook parr in brown trout diets was relatively high (44% by weight) but 

declined in May (29% by weight, range: 25 – 38%).  In June, brown trout diets were 

composed entirely of macroinvertebrates (Trichoptera and Ephemeroptera spp.) (Figure 

3.5). 

Predator Feeding Behavior 

The maximum prey/predator ratio for Muskegon River walleye was 47% TL.  Most prey 

fell well under this maximum.  The lengths of brown trout and rainbow trout consumed 

by walleyes averaged 30% of walleye lengths, Cyprinidae lengths averaged 22% and 

Chinook salmon parr only averaged 10% of walleye lengths (Figure 3.6).  However, none 
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Figure 3.4.  Proportions of mean daily ration (g ● g-1● day-1) of Muskegon River walleye 
within and among study years.  Cyprinidae were almost entirely composed of common 
shiners (Notropis cornutus) and bluntnose minnows (Pimephales notatus). 
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Figure 3.5.  Proportions of mean daily ration (g ● g-1● day-1) of Muskegon River brown 
trout (“BRT”) within and among study years. Diet data were not available for April of 
2005 and brown trout were not stocked in April of 2007. 
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Figure 3.6. Individual walleye total length is plotted against individual prey total length.  
The solid line indicates the maximum prey/predator ratio (47% TL) observed for 
Muskegon River walleyes. The dashed lines represent the slopes of prey/predator lengths 
for each prey type; the mean prey/predator length ratio for hatchery brown trout and 
rainbow trout (upper) was 30% of walleye length, Cyprinidae (middle) were 22% and 
Chinook salmon parr (lower) were only 10% of walleye TL.  None of the species-specific 
regressions has a slope significantly different from zero. 
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of the aforementioned prey/predator relationships were statistically significant, indicating 

that relative prey size was independent of walleye size.  Walleyes were size-selective 

predators for individual hatchery rainbow trout and brown trout as ingested prey sizes 

were generally smaller than the mean prey size available in the environment (Figure 3.7). 

Walleyes exhibited neutral selection for individual prey types as a general trend 

although they did strongly select for rainbow trout in 2005 and 2007.  Conversely, 

walleyes selected against Chinook salmon parr in 2004 (June), 2006 and 2007 (Figure 

3.8).   

Brown trout consumed Chinook prey that averaged 21% of their total length and 

nearly all prey fish were much smaller than the estimated maximum prey-predator length 

ratio of 30% (Figure 3.9).  The mean size of Chinook salmon parr ingested by brown 

trout was significantly smaller than the mean size of parr in the environment (Figure 

3.10). 

Brown trout also exhibited species-selective feeding behavior and strongly 

selected for Chinook salmon parr in April (2006), were neutral towards parr in May and 

selected against parr in June (Figure 3.11).  The trend in prey selection was reversed for 

invertebrates; brown trout selected against invertebrates in April (2006), were neutral 

towards them in May and exclusively selected invertebrates in June (Figure 3.11).   

Predator Functional Response 

The functional response of walleyes to variable abundance of Chinook salmon parr 

appeared to plateau at approximately 1.25 g ● day-1.  The walleyes’ functional response to 

Cyprinidae appeared to approach an asymptote but did not plateau at the abundances 

observed.  Much higher levels of brown trout and rainbow trout were required to satiate 
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Figure 3.7. Size of prey fish species consumed by walleyes was compared to mean size 
of prey fish species in the environment in 2005 – 2007 using mean residuals. “BRT” 
represents brown trout and “RBT” represents rainbow trout. Error bars represent 95% 
confidence intervals and sample sizes are listed above error bars. Data on lengths of 
walleye prey were unavailable for 2004. 
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Figure 3.8.  Chesson’s index of prey selection for Muskegon River walleyes from 2004 – 
2007.  Error bars represent 95% confidence intervals and the dotted horizontal line in 
each box represents neutral selection for individual prey.  Asterisks represent prey for  
which walleye show positive or negative selection. 
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Figure 3.9.  Length of individual brown trout is plotted against length of Chinook prey.  
The solid line indicates the maximum prey/predator ratio (30% TL) observed for brown 
trout in the Muskegon River.  The dashed line represents mean Chinook salmon prey 
size, which was on average ~21% of predator length.  The slope of this regression is not 
significantly different from zero.  Data on lengths of brown trout prey were not available 
for 2004 or 2005. 
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Figure 3.10. Size of Chinook salmon parr consumed by brown trout (“BRT”) compared 
to mean size of Chinook parr in the environment in 2006 and 2007 using mean residuals.  
The horizontal line at “0” represents the mean standardized prey size in the environment.  
Error bars represent 95% confidence intervals and sample sizes are listed above error 
bars.  Diet data of brown trout were unavailable for 2004 and were insufficient for 
analysis in 2005.  Brown trout were not stocked in April of 2007. 
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Figure 3.11.  Chesson’s index of prey selection for brown trout caught in the Muskegon 
River in 2006 and 2007.  Error bars represent 95% confidence intervals; the dotted 
horizontal line in each box represents neutral selection.  The asterisks represent 
positive and negative selection for individual prey types (Chinook salmon parr, 
macroinvertebrates). 
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walleye (Figure 3.12).  Walleyes showed the greatest predatory response (ai = 145) to 

increasing rainbow trout abundance, a very low response to Cyprinidae (ai = 1.37) and 

Chinook parr (ai = 0.49) and the lowest response to brown trout (ai = 0.03) (e.g., Pervez 

and Omkar 2005) (Table 3.2).  Handling times were lowest for brown and rainbow trout 

(Th = 0.17), higher for Chinook parr (Th = 0.43) and highest for Cyprinidae (Th = 0.69).  

Brown trout functional response to variable abundances of Chinook salmon parr (g ● ha-1) 

was statistically significant (Ne = 0.0009X – 0.113; r2 = 0.49; F1,11 = 10.723) (Figure 

3.13). 

Based on my management manipulation scenarios using the functional response 

models, removal of walleyes (while keeping abundance of hatchery trout constant) would 

decrease survival of Chinook salmon parr by up to 50.7% (Table 3.3).  In fact, Chinook 

parr survival appeared to be correlated with walleye abundance; lower walleye 

abundance (i.e., higher rates of removal) led to lower Chinook parr survival.  Removal of 

up to 50% of mean rainbow trout abundance did not influence Chinook parr survival.  

When all rainbow trout were removed, however, Chinook parr survival decreased 

considerably provided that brown trout were present.  Removal of brown trout always led 

to increased survival of Chinook salmon parr in the Muskegon River, regardless of 

walleye abundance (Table 3.3).  Two conditions led to an especially high increase in 

Chinook parr survival above baseline: 1) parr survival increased by up to 23.4% when 

brown trout were removed but walleyes were not and 2) parr survival increased by up to 

49% when walleyes were removed and when brown trout were completely eliminated.   
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Figure 3.12.  Functional response of walleyes to variable abundance of a) Chinook 
salmon parr, b) Cyprinidae, c) brown trout and d) rainbow trout in the Muskegon River.  
Solid lines indicate the functional response curve (Holling’s Type II) fitted to the 
empirical data using least squares.  Note the change in scale of axes among panels. 
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Table 3.2. Estimated values for the attack coefficients (a) and handling times (Th, hours) 
for a multiple species functional response model (Abrams 1987) for walleyes on various 
prey in the Muskegon River, Michigan. 
 
Prey species a Th 

Chinook salmon parr 0.49 0.43 

rainbow trout 145.1 0.17 

brown trout 0.03 0.17 

Cyprinidae 1.37 0.69 
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Figure 3.13.  Functional response of brown trout to variable abundance of Chinook 
salmon parr in the Muskegon River.  The solid line represents the Type-I functional 
response curve fitted to the empirical data. 
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Table 3.3. Changes in survival (abundance) of Chinook salmon parr predicted by 
functional response models for interactions amongst walleyes, brown trout and rainbow 
trout.  Numeric values represent the percent change (and direction of change) in survival 
of Chinook parr compared to baseline (S = 0.51; Chapter 2).  “BRT” represents brown 
trout and “RBT” represents rainbow trout. 
 
     
   RBT-0%* RBT-25% RBT-50% RBT-100% 
No reduction in walleye abundance     
BRT-0%*   0** -1.8 -2.2 -6 
BRT-25% +5.9 +4.8 +3.6 -0.6 
BRT-50% +11.7 +10.6 +9.3 -1.1  
BTR-100% +23.4 +22.2 +20.5 -3.9 
 
25% reduction in walleye abundance 
BRT-0% -12.6 -13.7 -14.3 -17.2 
BRT-25% -8.9 -9.8 -10.7 -13.9 
BRT-50% -5.2 -6.3 -7.3 -10.5 
BRT-100% +26.3 +24.9 +23.6 -2.9 
 
50% reduction in walleye abundance 
BRT-0% -25.4 -26.3 -26.5 -28.4 
BRT-25% -17.9 -18.5 -19.1 -21.2 
BRT-50% -10.5 -11.2 -11.8 -14 
BRT-100% +27.5 +27.6 +26.8 -2 
 
100% reduction in walleye abundance*** 
BRT-0% -50.7 -50.7 -50.7 -50.7 
BRT-25% -38 -38 -38 -38 
BRT-50% -25.3 -25.3 -25.3 -25.3 
BRT-100%        +49**** +49 +49 +49 
 
*Percentage displayed represents percent reduction in abundance (e.g., BRT-25% 
represents 25% reduction in population size). 
**Baseline, e.g., walleyes, brown trout, and rainbow trout at zero reduction in abundance.  
***Without walleyes, there are no interactions with rainbow trout. 
****Without walleyes or brown trout, I assumed no predation from other species. 
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Discussion 
Predator Feeding Behavior 
Walleyes are apex predators in the Muskegon River and may forage optimally unless the 

forage base is inadequate (Hodgson and Kitchell 1987).  Walleye consumption of large 

brown trout and rainbow trout appeared to support my expectations of optimal foraging 

as larger prey are often considered more profitable than the consumption of smaller prey 

(Werner and Hall 1974; Kaufman et al. 2006).  Further, Diana (2006) found that diets of 

Muskegon River walleyes were dominated by brown and rainbow trout (by weight) in 

2004 and 2005 and that trend continued within and among all study years in my 

expanded analysis of Muskegon River predators.  Although larger prey species are 

normally less abundant than smaller prey (Rasmussen 1993), brown trout and rainbow 

trout were stocked at high levels in the Muskegon River, thereby minimizing the 

expected discrepancy in search and handling times for large versus small prey.  The large 

size of brown and rainbow trout prey may further minimize the relative importance of 

prey abundance (Kerr 1971).  These assumptions are reasonable as total rainbow trout 

and brown trout biomass was, on average, 49 times greater than Chinook parr biomass. 

Walleyes consumed rainbow and brown trout that were smaller than the average 

length of trout in the environment, which supports the suggestion of Juanes (1994) that 

piscivores select for small-sized prey independent of predator size.  In Wisconsin lakes 

and in Lake Erie, walleyes selected prey that had similar prey/predator length ratios 

found in my study (range 0.2 to 0.3; Parsons 1971; Campbell 1998).  Forney (1974) also 

showed that walleyes preferred small prey (i.e., < 20% prey/predator length), although 

this may have been caused by low abundance of larger forage.   
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Interestingly, walleyes positively selected for rainbow trout in multiple months 

but selected against brown trout, despite the species’ similar size and morphology.  This 

feeding behavior always occurred in June when brown trout abundance was very low.  

Hence, negative selection may be attributable to depensatory consumption rates by 

walleyes due to lower-than-expected encounter rates with brown trout.  However, since 

handling times for rainbow and brown trout are the same but walleye attack rates on these 

species are highly divergent, other important differences must exist between the two prey 

types.  Piscivorous brown trout were found in very shallow water 1.5 times more 

frequently than rainbow trout, perhaps searching for Chinook salmon parr (D. Krueger 

unpublished CPUE data).  Rainbow trout, however, were found in the middle of the river 

or in plunge pools about six times more frequently than brown trout, feeding on 

invertebrates in the drift.  Walleyes also were captured in deeper, faster moving water.  

The opposing foraging strategies of brown trout and rainbow trout may therefore have led 

to higher spatial overlap between walleyes and rainbow trout and may explain the 

asymmetric predation rates I observed in walleyes. 

Spatial overlap between walleyes and Chinook parr also must have been very low 

due to the extremely shallow water in which parr were found.  Hence, walleye 

consumption of Chinook salmon parr was relatively low compared to brown trout 

piscivory.  Walleyes never selected for Chinook salmon parr and actually selected against 

parr in three of four study years.  In addition, I found no relationship between walleye 

size and Chinook parr size.  Few walleyes (of any size) consumed Chinook salmon parr 

in any given year.  Walleye feeding behavior was similar in Lake Huron, where they 

preferred larger alewife prey over smaller Chinook smolts (Johnson et al. 2007).  In the 
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Muskegon River, walleyes and Chinook parr generally do not exhibit high spatial overlap 

(Chapter 2).  Even so, the small size of Chinook salmon parr may prevent them from 

entering the perceptual field of walleye, thereby leading to lower encounter rates relative 

to hatchery trout (Gerritsen and Strickler 1977).  The relatively low attack rate coefficient 

of walleyes on Chinook parr supports this claim while the high handling time is likely an 

artifact of fitting the model as walleyes should be able to easily handle or evacuate 

Chinook prey.  The few walleye that consumed large numbers of Chinook salmon parr 

may have responded to transient dense patches of prey (Petersen and DeAngelis 2000).  

Inclusion of these piscivores in my analysis likely skewed mean consumption of Chinook 

salmon parr by walleyes towards the high end.   

Muskegon River walleyes appeared to respond quickly to changes in prey 

densities and exhibited prey-switching behavior twice per sampling season.  First, 

although walleyes did not eat for the first few weeks in the river (i.e., March – early 

April) when they were actively spawning, they began feeding by mid April after 

spawning when trout were first stocked.  Brown and rainbow trout were stocked at boat 

launches and were patchily distributed near boat launches throughout the early spring 

(April – May).  Walleyes that consumed brown and rainbow trout were generally found 

aggregated near these boat launches but walleyes that consumed other prey items were 

more isolated (i.e., walleyes were captured one at a time) (D. Krueger University of 

Michigan unpublished data).  Based on daily rations and attack coefficients, it is apparent 

that once walleyes began to feed, they preferred to consume rainbow trout.  The 

artificially high densities of stocked trout likely elicited the observed walleye feeding 

response (Lyons 1987; Petersen and DeAngelis 1992; Baldwin et al. 2003).  The second 
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prey switch occurred late in the sampling season.  Following the departures of preferred 

(rainbow trout) and alternate (Chinook salmon parr) prey species, walleye predation on 

Cyprinidae increased in three of four study years.  Walleyes that remained in the river 

continued to prey upon Cyprinidae into July and August (D. Krueger University of 

Michigan unpublished data).   

Brown trout are typically piscivorous at sizes of 300 mm TL or greater (Keeley 

and Grant 2001), but I found high rates of piscivory in much smaller individuals (TL ~ 

164 mm).  This result is perhaps not surprising given the high abundance of small 

Chinook salmon parr (Kahilainen and Lehtonen 2002).  While 30% of brown trout diets 

contained Chinook salmon parr, it appeared that brown trout selected the smallest 

available parr.  I noticed an especially high rate of piscivory and positive selection for 

Chinook salmon parr in April (2006) presumably due to the small size of parr (mean TL 

39 mm) which was 24% of brown trout length.  In May, mean Chinook parr length (46 

mm TL) was about 28% of brown trout length, selection for Chinook was lower (neutral) 

as was the proportion of brown trout ration that was composed of Chinook parr.  The 

mean size of ingested Chinook parr, however, was always significantly less than the 

environmental mean.  By June, Chinook parr length (53 mm TL) was ~32% of brown 

trout length, and although the theoretical gape limit of the average brown trout was 

higher (~40%; Damsgård 1995), I never observed brown trout predation on parr > 46 

mm.  Further, I observed only three instances of brown trout consuming Chinook with 

prey/predator length ratios > 26%, my estimated maximum value.  Maximum prey size 

was likely dictated by the increase in handling time that a larger prey item represented.  
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Therefore, the maximum prey/predator ratio found in my study is probably more realistic 

than that of Damsgård (1995) due to its functional applicability.   

Given the relatively small gape of brown trout, Chinook growth may be a useful 

predictor of Chinook parr survival.  Chinook salmon parr inhabit the Muskegon River for 

approximately 60 days, and since they can reach 50 mm within 40 days of emergence 

(Chapter 2), it appears they can attain a size refuge from brown trout well before out-

migration.  Rapid growth would therefore reduce parr vulnerability to predation 

throughout the latter portion of the nursery-dependent life stage (e.g., Chapter 2).  Hence, 

hatchery brown trout may impose high predation rates on Chinook salmon parr only in 

the early spring when parr are less than 40 mm and appear to be most vulnerable. 

Brown trout preyed explicitly upon Chinook salmon parr during the short 

temporal overlap with suitably small individual prey.  Still, in May and June, invertebrate 

prey became an increasingly large component of brown trout diets.  Some invertebrate 

taxa (Ephemeropterans in particular) may have experienced large emergence events 

during this time although I did not have sufficient data to detect changes in invertebrate 

biomass over time.  Hence, I cannot discount the possibility that brown trout predation on 

Chinook parr also was influenced by changes in invertebrate abundance.  

Functional Response and Management Implications 

The functional response I observed for walleyes in the Muskegon River was similar to 

predatory responses observed in other field and laboratory studies of walleyes (Forney 

1974; Swenson 1977) and other piscivorous fishes (Ruggerone and Rogers 1984; Fresh 

and Schroder 1987).  Fresh and Schroder (1987) reported that the foraging behavior of 

stream salmonids on variable abundances of juvenile chum (O. keta) fit a Type II pattern.  
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Further, salmonids responded rapidly (< 48 hours) to variable abundances of released 

chum in small stretches of natural (1.5 – 2.3 km) and artificial (33 m) streams.  The Type-

I functional response by brown trout to variable prey abundance in the Muskegon River 

(nursery = 22.5 km) indicates that this predator may not be satiated by the abundances of 

Chinook salmon parr I observed.  Consequently, I used bioenergetic simulations (Krueger 

et al. unpublished data) to calculate the maximum daily consumption rate (Cmax) by an 

average brown trout (164 mm TL) of 3.2 g • day-1.  According to my foraging model, this 

level of consumption is predicted at a Chinook parr density of approximately 3,700 g • ha-

1 which is about 1.8 times the typical initial (i.e., maximum) abundance of Chinook parr 

in the Muskegon River.  Thus, it seems brown trout are capable of consuming an even 

larger number of available Chinook salmon parr compared to what I observed. 

Many studies have described feeding responses of walleyes and brown trout (e.g., 

Swenson and Smith 1973; Ringler 1979; Porath and Peters 1997; Elliott and Hurley 

2000), though several of them were performed in controlled laboratory settings using 

only one prey type.  My foraging model used empirically derived data to describe the 

feeding behavior of predators to varying densities of prey.  Further, I considered variable 

densities of three prey types in my analysis to describe walleye feeding behavior.  Since I 

did not perform laboratory trials to accurately determine attack rate coefficients (ai) and 

handling times (Th,i), my functional response curves had relatively low fit.  Still, my 

model predicted attack coefficients that supported the observed trends in predator ration, 

prey selection and consumption and implicitly included differences in the spatial overlap 

of predator and different prey types.  My handling time estimates also support observed 

trends in feeding behavior although their estimation may be unnecessary as handling 
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times are relatively unimportant for piscivores (Breck 1993).  Evacuation rates may be 

more important than handling times for piscivores, and evacuation rates are primarily 

dependent on temperature (Swenson and Smith 1973; Wahl and Nielsen 1985; He and 

Wurtsbaugh 1993).  Because temperature is easily determined, evacuation rates may be 

easier to estimate than handling times.  Therefore, due to its relative simplicity in terms 

of data collection and application, my foraging model may serve as a more realistic and 

readily utilized management tool for tributaries in the Great Lakes and Pacific Coast 

regions. 

Harvey and Kareiva (2005) recommended that a targeted removal of predator 

species was the most effective way to reduce predation on salmon smolts.  Removal of 

walleyes, brown trout, or rainbow trout in the Muskegon River can easily be 

accomplished by cessation of stocking efforts.  My foraging model simulations may 

therefore provide useful predictions of scenarios that result from stocking manipulations.  

Although removal of walleyes would be difficult to achieve from a practical perspective, 

this simulation was worthwhile as it highlighted the importance of walleyes as a mediator 

of Chinook parr vulnerability to predation from brown trout.  Removing walleyes would 

lead to increased brown trout abundance due to the lack of predation mortality from 

walleyes and a net increase in predation mortality on Chinook salmon parr.  Each 

scenario that involved removal of rainbow trout resulted in reduced survival of Chinook 

salmon parr (Table 3.3).  Thus, rainbow trout must positively (and indirectly) influence 

survival of Chinook salmon parr by buffering predation via walleyes (e.g., Chapter 2).  In 

Oneida Lake, the abundance of alternate forage (mayflies, yellow perch) was similarly 

influential to walleye cannibalism of their young (Forney 1974; Rose et al. 1999).  On the 
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other hand, all scenarios with reduced brown trout abundance led to increased survival of 

Chinook salmon parr.  Although brown trout may also provide an indirect benefit to 

Chinook parr via buffering predation mortality by walleyes, this benefit is outweighed by 

their direct predatory impact on Chinook parr survival.  Thus, termination of non-

indigenous brown trout stocking efforts would greatly improve survival rates of Chinook 

salmon parr.   

Removal of a particular prey type (i.e., brown trout) would require assumptions to 

determine the subsequent diet composition of a predator.  In the Muskegon River, 

walleyes would be expected to consume artificially high levels of Chinook prey to 

compensate for the caloric deficit previously satisfied by the missing prey.  Thus, it is 

important to consider predator feeding behavior and prey preference (Anderson et al. 

2005) when implementing management plans to remove or control the abundance of a 

particular species.   

Several factors may have contributed to the relatively poor fit of the walleye 

functional response models to observed data.  First, predator and prey abundances in the 

Muskegon River generally decreased throughout each sampling year due to seasonal 

migrations.  Next, my study site (22.5 km) was much larger than other study sites (33 m 

to 2.3 km; Ruggerone and Rogers 1984; Fresh and Schroder 1987) which may have 

precluded my ability to collect sufficient diet data.  Finally, I observed predator feeding 

behavior for nearly three months while most studies only did so for several hours or days.  

Predation rates are highly variable for fish in natural habitats, thereby making functional 

response curves difficult to plot (Peterman and Gatto 1978; Fresh and Schroder 1987).  

These factors may have combined to limit my ability to accurately depict predator 
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foraging responses to variable prey abundance.  Swenson (1977) reported a stronger 

relationship between walleye consumption and prey densities for two Minnesota Lakes 

and Lake Superior.  The plotted values, however, were compiled for all three lakes and 

represented monthly averages and likely dampened the high variability in predation rates 

compared to my observations of migratory riverine fishes.   

My empirical data represented daily averages and showed that predator 

consumption rates can be much higher or much lower than my functional response 

relationships predicted.  Consider the simulation where all brown and rainbow trout were 

removed and Chinook survival only decreased by 3.9%.  In reality, this type of 

manipulation would likely lead to one of several possible outcomes including: 1) fewer 

walleyes would remain in the river post-spawn, or 2) walleye feeding behavior would 

change and consumption of Chinook parr would increase substantially more than my 

model suggested.  I was unable, however, to simulate either of these scenarios.  Although 

walleye functional responses exhibited poor fit to observed data, brown trout foraging 

response to variable Chinook parr abundance in the Muskegon River exhibited a better fit 

and was similar to that of Fresh and Schroder (1987) in a closed, artificial stream.  Hence, 

my model may be broadly applicable as it was parameterized with reliable empirical data 

(Chapter 2) that independently yielded similar results to the foraging model presented 

here. 

Muskegon River fishery managers have the ability to control species interactions 

through stocking efforts.  Hence, manipulating the abundance of important sport fishes, 

especially trout, can quickly improve survival and recruitment of Chinook salmon.  In 

this sense, the Muskegon River is a model system for other Great Lakes and Pacific Coast 
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tributaries that rely on production of salmonid recruits.  Provided that tributary managers 

have the goal of efficiently increasing Chinook salmon recruitment in order to sustain 

adult stocks, I recommend elimination of brown trout stocking in tributaries that produce 

Chinook salmon parr.  Management efforts directed at controlling walleye abundance 

should be discouraged as long as brown trout are stocked into the Muskegon River.  

Further, such management efforts are probably unnecessary due to the relatively low 

predation rates of walleyes on Chinook parr when hatchery rainbow trout are present. 
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Chapter IV 
 

Modeling the Impact of Alternate Management 
Strategies on Chinook Salmon Population 

Dynamics in a Large Lake Michigan Tributary 
 
 

Abstract 

Chinook salmon experience variable recruitments throughout their native and introduced 

ranges that may be caused by predation on smolts by stocked predators in tributary 

streams.  I used a stage-based matrix model (RAMAS), parameterized with empirically-

derived data, to simulate impacts of predation by walleyes and brown trout on Chinook 

salmon recruitment and population growth rate from the Muskegon River tributary to 

Lake Michigan.  Key parameters of the model included stage-specific estimates of 

Chinook salmon growth, survival, abundance and fecundity.  I simulated effects of 

predators on survival rates of Chinook salmon during the fry-to-smolt stage and observed 

the long-term effects on Chinook salmon recruits and population growth rate.  All other 

stage-specific values were held constant in predation scenarios.  I also simulated effects 

of environmental stochasticity on Chinook salmon fecundity, recruitment and population 

growth by increasing variation around all model parameters and reducing egg-fry 

survival rates.  Relative to a baseline scenario of low stochasticity, median egg-hatch 

survival and mean size at age of adults, only the removal of brown trout resulted in a 



 107

significant increase in long-term (≥ 50 years) Chinook salmon recruitment.  Similarly, 

long-term population growth of Chinook salmon increased only when brown trout 

abundance was low or absent.  Predation on Chinook salmon smolts during out-migration 

was positively correlated with variation in salmon population growth.  Fishery 

management decisions on Chinook salmon management should therefore be informed by 

potential tradeoffs involving stocked predators. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 108

Introduction 

Variation in recruitment of Chinook salmon (Oncorhynchus tshawytscha) from natal 

tributaries can be attributed to the effects of abiotic and biotic factors which affect 

survival and growth of early life stages (Hilborn and Walters 1992; Shively et al. 1996; 

Jager et al. 1997; Johnson et al. 2007).  In many Pacific Coast and Great Lakes 

tributaries, variability in Chinook salmon recruitment (number of smolts entering the lake 

or ocean; Jager and Rose 2003) is mediated through management actions (Chapter 2, 3) 

in the riverine nursery area.  Stocked piscivores may prey heavily on Chinook salmon 

parr, potentially leading to high mortality rates on juvenile stages (e.g., Rieman et al. 

1991; Johnson et al. 2007, Chapter 2).  

Previous studies (Chapters 2, 3) explored the potential for management actions to 

increase survival of Chinook salmon parr over four field seasons in the Muskegon River, 

a large Lake Michigan tributary.  These empirical studies (Chapters 2, 3) found that 

potential recruitment of Chinook salmon was heavily affected by piscivory from walleyes 

and brown trout.  Alternate forage such as hatchery-reared rainbow trout (O. mykiss), 

however, may provide a significant buffer to predation mortality on Chinook parr.  

Analysis of piscivore feeding behavior documented species-specific predation on 

Chinook salmon parr as well as important indirect interactions between Chinook salmon 

parr and alternate prey species (Chapter 3).  The extent of manipulation or control of 

predator-induced mortality in these studies, however, was minimal.  Studies have shown 

that by manipulating fishing and stocking regulations, fishery managers can influence 

predator-prey interactions and hence, the population dynamics within a system on a short 

temporal scale (< 10 years; e.g., Krueger and Hrabik 2005).   
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In this study, I simulated the effects of longer-term (i.e., > 10 years) management 

manipulations of species composition and interactions on Chinook salmon dynamics in 

Lake Michigan (Harvey and Kareiva 2005).  The objective of this paper was to assess the 

relative impacts of stocked predators on Chinook salmon recruitment and population size.  

I hypothesized that predation during the short nursery period of 1 – 2 months has 

significant impacts on variability in Chinook salmon recruitment and population growth 

rate.  To test this hypothesis, I simulated the effects of predation on Chinook population 

dynamics using a stage-based matrix model, parameterized to approximate the Chinook 

salmon population in the Muskegon River and Lake Michigan. 

Methods 

Modeled Ecosystem 

My model incorporated all life stages of Chinook salmon so I considered influential 

processes in three major habitats: the Muskegon River, Muskegon Lake and Lake 

Michigan (Figure 4.1).  The Muskegon River is especially important as it produces more 

wild Chinook salmon smolts than any other Lake Michigan tributary (Carl 1984; O’Neal 

et al. 1997).  Wild produced Chinook salmon smolts are more economically efficient than 

hatchery smolts because they are essentially free (hatchery smolts require months of 

rearing) and they do not require a caged “imprinting” period.  The sport fish populations 

in the Muskegon River are supported by stocking predators including walleyes (Sander 

vitreus) and brown trout (Salmo trutta), and insectivorous rainbow trout.  Muskegon Lake 

is a 1,680 hectare drowned river mouth of the Muskegon River that connects to 

southeastern Lake Michigan via a navigation channel (Muskegon Channel).  Muskegon 

Lake is relatively shallow and mesotrophic and provides a temporary residence for  
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Figure 4.1. The location of the modeled ecosystem, showing the three major habitats for 
Chinook salmon in the Muskegon River Estuary System: Muskegon River, Muskegon 
Lake and Lake Michigan. 
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Chinook parr before they complete their out-migration into Lake Michigan.  Lake 

Michigan, the second largest Laurentian Great Lake (58,016 km2), provides important 

habitat and forage for growing juvenile and adult Chinook salmon.   

Modeling Approach 

I used RAMAS Stage (Ferson 1993) to evaluate alternative predator management 

strategies affecting the early life history stages and how they might affect population 

dynamics of Chinook salmon.  RAMAS Stage is a matrix modeling approach developed 

for understanding population dynamics of species with complex life histories.  This 

program tracks the number of individuals in each stage (Caswell 2001), allowing 

researchers to forecast population trajectories based on minimal demographic data such 

as survival, growth and reproduction (Brook et al. 1999; Sable and Rose 2008).  Model 

simulations may also implicitly include environmental factors such as river and lake 

water temperatures, and river discharge that may affect survival and growth of salmon 

life stages and hence salmon population dynamics.  I configured RAMAS Stage to 

simulate finite stages describing the life cycle of Chinook salmon.  Model simulations 

began with an initial abundance of Chinook salmon at each age or stage.  Individuals that 

survived one stage moved into the next stage based on field-derived transition 

probabilities. 

Data Sources and Baseline Simulation 

I parameterized the RAMAS Stage model using stage- specific abundances, survival 

rates, and fecundities of Chinook salmon (Table 4.1).  My RAMAS Stage matrix 

included 7 life stages of Chinook salmon: fry and smolts in Muskegon River, and ages 0 

through 4 in Lake Michigan.  The river-fry stage represents Chinook just after emergence  
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Table 4.1. Stage matrix used in the baseline simulation.  Off-diagonal values represent 
stage-specific survival rates while top row elements represent stage-specific fecundity 
values (# of river-fry individuals per female). 
 
        River                                   Lake   
 fry smolt 0 1 2 3 4 
River-

fry 
  0 0.026 0.601 8.336 15.939 

River-
smolt 

0.51 
 

      

Lake-0 
 

 0.750      

Lake-1 
 

  0.705     

Lake-2 
 

   0.705    

Lake-3 
 

    0.350   

Lake-4 
 

     0.259  
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from redds in early April.  One or two weeks after hatching, fry quickly deplete their yolk 

reserves and become parr.  Approximately two months later (June), parr will enter the 

river-smolt stage, at which point they will out-migrate toward Lake Michigan, a process 

that generally takes one to two days.  Smolts that reach Lake Michigan are considered to 

enter the lake-0 stage.  Individuals enter stages lake-1 to lake-4 one year after entering the 

previous stage.  Abundance and survival rates of Chinook salmon were obtained from 

empirically-derived predation mortality rates from walleyes and brown trout in the 

Muskegon River and stocking evaluations of salmon in Lake Michigan (Rutherford 1997; 

Benjamin and Bence 2003) while fecundity values were obtained from the literature.   

Survival Rates: Fry to smolt survival rates were based only on predation mortality and 

were estimated using a multi-species functional response algorithm based on field and 

modeling studies of foraging behavior of walleyes and brown trout in the Muskegon 

River (Chapters 2, 3).  This value changed markedly across simulations as it was 

dependent on walleye, brown trout and rainbow trout abundance (and therefore predation 

rates).  Survival values for adult lake stages were held constant and were based on 

analyses of Chinook salmon density and age composition in biological surveys and creel 

data compiled for a deterministic catch-at-age model (“CONNECT”) that predicts fishery 

yield as a function of stocking abundance (Rutherford 1997; Benjamin and Bence 2003).  

Natural mortality rates (including spawner mortality) of lake-phase salmon ranged from 

27% at age-1 to 53% at age 4; not all individual Chinook survive to spawn.  Natural 

mortality was assumed to be age-specific and constant.  Finally, for all simulations, I 

implemented a 50% angler harvest rate for the age 1 – 4 spawners.  Creel estimates from 

the 1980s and 1990s show that 20,000 – 40,000 spawners were harvested annually from 
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the Muskegon River which supports my harvest assumption (Michigan Department of 

Natural Resources unpublished data). 

Abundances: Since Chinook salmon are no longer stocked into the Muskegon River, I 

used estimates of mean abundances of fry (541,272) and smolt (291,232) production from 

2004 – 2007 (Chapter 2) as the initial fry and smolt abundances.  Initial abundances of 

lake stages were based on age composition data from agency surveys in Lake Michigan 

and creel surveys and research surveys from the Muskegon River (Table 4.2; D. Krueger 

University of Michigan unpublished data).   

Fecundity: Several calculations were required in order to determine Chinook salmon 

fecundity, which I defined as the number of river-fry individuals produced per adult 

Chinook salmon.  I first estimated egg deposition based on a length-specific relationship 

averaged for 10 spawning populations of Chinook salmon in the Pacific Northwest 

(Healey and Heard 1984): 

234.200195.0 LF ⋅=      (1) 

where F is the number of eggs deposited by each female and L is total length (mm).  

Next, I estimated the number of spawning females using spawning mortality estimates 

and a maturity schedule (Table 4.3) and assumed a 1:1 sex ratio and 50% harvest rate:   

  ∑
=

−−− =
4

1
***

i
ilakeilakeifilake PEAMaturePfemale    (2) 

where femalelake-i is the abundance of female spawners in stage i, Pf is the product of the 

proportion of females and the harvest rate (0.5 * 0.5 = 0.25), Maturei is the fractional 

contribution of stage i to total spawner abundance, Alake-i is the proportional mortality in 

stage i due to spawning (lake-1 = 0.02, lake-2 = 0.1, lake-3 = 0.6, lake-4 = 0.8) and 

PElake-i is the initial abundance of stage i.  I then multiplied stage-specific female  
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Table 4.2. Initial stage-specific abundances of Chinook salmon used in modeling 
scenarios. 
 

  

Stage Initial Abundance 

Fry 541,272 

Smolt 291,232 

Lake-0 218,424 

Lake-1 153,770 

Lake-2 108,254 

Lake-3 37,878 

Lake-4 9,818 
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Table 4.3. Maturity schedule (stage-specific contribution to total spawner abundance) for 
Chinook salmon in Lake Michigan as a function of relative alewife biomass.  Age 
composition data were available from spawners sampled at the Little Manistee River weir 
(Randy Claramunt Michigan Department of Natural Resources personal communication).  
Age 5 fish were not included in my analysis as they are a minimal component of harvest 
(Johnson et al. 2005). 
 

  % of total spawner abundance  

Age baseline LOW alewife HIGH alewife 

Lake-1 3.6 0 6.9 

Lake-2 20.4 5.7 47.2 

Lake-3 54.8 60 37.6 

Lake-4 20.9 31.4 8.3 

Lake-5 0.2 2.9 0 
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spawner abundance by individual female egg production and divided that value by the 

summation of all eggs produced by all stages to determine stage-specific egg production: 

   
( )∑

=
−

−
− = 4

1

*

*

i
ilake

ilake
ilake

femaleF

femaleF
Egg     (3) 

where Egglake-i is the proportional contribution of stage i toward total egg production.  

Finally, I calculated stage-specific fecundity of all individuals by assessing the 

contribution of all salmon in each stage toward total egg production and multiplied that 

by survival from the egg to fry stage: 

fry
ilake

ilake S
PE
Egg

Fecundity *
−

−=      (4) 

where Sfry is egg to fry survival and Fecundity is the number of river-fry individuals per 

adult salmon.  Egg to fry survival was 9% based on my assumptions that egg viability 

was 70%, egg-hatch survival was 0.85, and hatch to fry survival was 15% (Quinn 2005).   

Alewives (Alosa pseudoharengus) are the primary prey of adult Chinook salmon 

in Lake Michigan (Kitchell and Crowder 1986).  Hence, abundance of alewife prey in 

Lake Michigan may influence the growth rate (Stewart and Ibarra 1991) and the maturity 

schedule (Quinn 2005) of Chinook salmon.  Further, variation in salmon body size 

changes population fecundity since fecundity is a nonlinear function of Chinook salmon 

length (Equation 1).  A length-at-age relationship for adult Chinook salmon in Lake 

Michigan was estimated using an age and growth study of Lake Michigan Chinook 

salmon (Wesley 1996) (Table 4.4).  I used estimates of length-at-age (Wesley 1996) to 

calculate fecundities that represented periods of high alewife abundance and large 

Chinook salmon size (1990s) as well as low alewife abundance and small Chinook  
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Table 4.4. Mean size (mm TL) of spawning Chinook salmon for baseline, LOW and 
HIGH alewife abundances.  Changes in size at age were calculated using data from the 
Muskegon River and from Wesley (1996). 
 

  Mean size (mm)  

Age LOW Baseline HIGH 

Lake-1 370  393 416 

Lake-2 609 636 662 

Lake-3 765 828 891 

Lake-4 815 931 1047 
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salmon size (1980s) (Table 4.5).  Chinook salmon that were lake age 1 and older are 

considered mature and therefore assigned fecundity values.  Lake-4 was the oldest stage 

class used in my simulations as the Lake-5 stage class represents a minimal component of 

harvest (Johnson et al. 2005).  The lake-3 stage was responsible for the majority of 

spawners, except when alewife abundance was HIGH (Table 4.3).   

Environmental Variation: Environmental influences on variability in Chinook salmon 

survival (Carl 1982), fecundity and population dynamics were modeled implicitly in 

RAMAS Stage.  For each simulation run, a vital rate (survival or fecundity) was selected 

as a random variate from a normal distribution whose mean was specified from the Stage 

matrix (which incorporated density dependence) and whose standard deviation was taken 

from the standard deviation matrix.  I assumed a ‘LOW’ level of environmental variation 

by including a constant rate of one standard deviation around certain model parameters; 

one standard deviation was assumed to be 10% of mean values in the Stage matrix.   

Density dependence: Population dynamics and recruitment of Chinook salmon are 

influenced by density dependent mechanisms in early life stages (Ricker 1954, 1975).  I 

assumed a “ceiling” type density dependence for Chinook salmon that has been promoted 

in fisheries science to describe population dynamics of various species such as Coho 

salmon (O. kisutch) (Barrowman and Myers 2000; Bradford et al. 2000).  Ceiling density 

dependence is similar to a Ricker-type density-dependent function but simpler; the 

population grows exponentially until it reaches the ceiling (carrying capacity):   

rt
t eNN 0=       (5) 

where N0 is the initial population, r is the population growth rate and t is the time in  

years.  Exponential growth occurs if r > 0 and exponential decay occurs if r < 0.  If 
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Table 4.5. Variation in fecundity values (number of river-fry individuals produced per 
female spawner) due to changes in abundance of alewife prey in Lake Michigan 
(modeled as change in size of adult Chinook salmon). 
 

         Fecundity  

 

Stage 

LOW 

alewife abundance 

MEAN 

Alewife abundance 

HIGH 

alewife abundance 

Lake-1 0 0.026 0.059 

Lake-2 0.172 0.601 1.619 

Lake-3 8.609 8.336 7.158 

Lake-4 20.022 15.939 8.741 
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abundance increases above carry capacity, it is set to the ceiling value (i.e., max).  A 

population that reaches the carrying capacity will remain at that abundance until a 

population decline occurs through random fluctuation (i.e., demographic or 

environmental stochasticity).  Another important difference between the ceiling type of 

density dependence and the Beverton-Holt (compensatory) and Ricker (over-

compensatory) types is that the ceiling does not assume that a population will recover 

from low densities (Sabo et al. 2004).  When the population is below its carrying 

capacity, the likelihood that the population grows or declines at any time step is entirely 

dependent on the Stage Matrix and its variation (Standard Deviation Matrix).  I specified 

a carrying capacity (K) of 2 million individuals to accommodate the initial abundance of 

Chinook salmon (1.36 million for all stages combined) and allow for potential population 

growth. 

Model Simulations 

Baseline simulation: I used a mean survival rate of S = 0.51 for Chinook salmon parr 

under mean values of walleye and brown trout abundances (walleye = 3,027; brown trout 

= 24,283 individuals) from 2005 – 2007 (Chapter 2) to estimate the baseline value of 

Chinook salmon recruitment (number surviving to lake-0 stage), adult abundance and risk 

of population decline.  The abundance of predators used in modeling simulations 

reflected the number that actually consumed Chinook parr, which was lower than the 

abundances of spawning walleyes (~38,000) or stocked brown trout (~86,000).  The 

baseline simulation also incorporated mean values of fecundity and sizes-at-age of adult 

Chinook salmon.  In addition, I assumed a LOW level of environmental stochasticity by 

placing a one-standard deviation boundary around all model parameters.   
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Predator Management scenarios: I first characterized the potential effects of variable 

predator abundance on Chinook salmon population dynamics by varying the survival rate 

from the fry to smolt stage (Table 4.6).  I ran absence and presence scenarios for walleyes 

and brown trout, singly and in combination (ABSENT, LOW, MEAN, HIGH; Table 4.7), 

given relative abundances of alternate forage species (Cyprinidae, brown trout, rainbow 

trout) for walleyes (Table 4.6).  For walleye forage, I added a simulation that excluded 

rainbow trout but included remaining forage species (Cyprinidae, brown trout), and 

another that excluded Cyprinidae (removed indirect effects from minnows) (Table 4.6).  

Cyprinidae were otherwise included as prey in all simulations.  A simulation to represent 

no predation (walleyes and brown trout ABSENT) was run to yield theoretical maximum 

recruitment and population growth rates. 

I ran additional simulations to determine the potential for environmental 

stochasticity to influence Chinook salmon recruitment rates.  The riverine-dependent 

stages of the Chinook salmon life cycle are more likely to be influenced by 

environmental variation since survival from egg to hatch is almost entirely dependent on 

environmental conditions (Quinn 2005; Honea et al. 2009; Jensen et al. 2009).  Further, 

riverine conditions fluctuate more widely than conditions in Lake Michigan.  Therefore, I 

only imposed the increased levels of environmental variation on riverine survival (i.e., fry 

survival, parr survival) and adult fecundity.  I increased environmental stochasticity by 

increasing variation around fecundity and parr survival estimates from one standard 

deviation to two (MODERATE) and five (HIGH) standard deviations.  The influence of  
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Table 4.6. Experimental design for the matrix model simulations.  Numeric values 
represent survival of Chinook salmon parr predicted from a functional response model 
(Chapter 2) for each simulation.  Baseline recruitment was achieved using MEAN 
abundance of walleye and brown trout, LOW environmental stochasticity, mean alewife 
abundance and 60% egg-hatch survival (Quinn 2005).   
 
Simulation Chinook parr 

survival 
WE ABSENT  
        BRT ABSENT 1 
        BRT LOW 0.85 
        BRT MEAN 0.64 
        BRT HIGH 0.24 
WE LOW  
        BRT ABSENT 0.99 
        BRT LOW 0.85 
        BRT MEAN 0.58 
        BRT HIGH 0.23 
WE MEAN  
        BRT ABSENT 0.91 
        BRT LOW 0.77 
        BRT MEAN 0.51 
        BRT HIGH 0.15 
        NO hatchery trout 0.64 
WE HIGH  
        BRT ABSENT 0.8 
        BRT LOW 0.68 
        BRT MEAN 0.41 
        BRT HIGH 0.06 
WE MEAN, BRT MEAN  
        NO Cyprinidae 0.44 
        LOW alewife abundance 0.51 
        HIGH alewife abundance 0.51 
        Environmental Stochasticity MODERATE 0.51 
        Environmental Stochasticity HIGH 0.51 
WE HIGH, BRT HIGH  
        Environmental Stochasticity MODERATE 0.06 
        Environmental Stochasticity HIGH 0.06 
WE ABSENT, BRT ABSENT  
        Environmental Stochasticity MODERATE 1 
        Environmental Stochasticity HIGH 1 
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Table 4.7. Predator abundance at ABSENT, LOW, MEAN and HIGH designations 

 

  Abundance   

Predator ABSENT LOW MEAN HIGH 

Walleye 0 984 3,027 6,820 

Brown trout 0 10,927 24,283 55,851 
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environmental stochasticity was simulated in combination with low (0.06), mean (0.51) 

and high (1.0) fry-smolt survival rates.  I assumed a high (100%) survival rate in the 

absence of walleye and brown trout predation to investigate the relative influence of 

predation on Chinook salmon recruitment dynamics; walleyes and brown trout were the 

only significant predators of Chinook parr in the Muskegon River. 

Finally, I examined the effects of alewife abundance on body size, age at maturity 

and population dynamics of Chinook salmon by varying Chinook salmon fecundities as a 

function of altered adult growth rates and maturity schedules (Table 4.5).  

Model Output: All simulations were replicated (n = 50) and run for 50 years.  For each 

simulation I reported mean recruitment (abundance of Chinook salmon at lake-age 0), 

population abundance (mean adult abundance of the final 10 years in each simulation) 

and the probability that the adult population would fall below one-third of initial adult 

abundance (103,230) which may be considered a “healthy” population (e.g., Jager and 

Rose 2003).  Results from all model simulations are reported as % mean deviation from 

baseline conditions, with 95% confidence intervals at α = 0.05 and d.f. = 49.  Differences 

between simulation results and baseline conditions were considered significant if their 

95% confidence intervals did not overlap.  I reported coefficients of variation (CV) for 

recruitment and population abundance for the last 10 years of each simulation to quantify 

variability.  Finally, I define that a particular scenario resulted in a population “crash” if 

the total population abundance fell below 1,000 total individuals at any point during the 

simulation and noted the time (in years) that the population persisted. 
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Results 

Baseline simulations: Mean abundance of all stages of Chinook salmon remained fairly 

constant for the baseline 50-year simulation (Figure 4.2).  The mean abundance of lake-0 

Chinook salmon recruits after 50 years was 135,489 (± 21,488) (Figure 4.2a), mean 

abundance of adult stages was 188,490 (± 30,904) (Figure 4.2b) and the total population 

abundance for the final 10 years was stable at 858,245 (C.V. = 0.01), which includes all 

river and lake stages.  The stable age distribution indicates that most adults were in the 

lake age-1 and 2 stages (Figure 4.2c).  The population did not “crash” in any single 

replicate of the baseline simulation. 

Management scenarios: Relative recruitment success of Chinook salmon was higher 

under simulated walleye-only regimes than under brown trout-only regimes. In the 

absence of brown trout, simulated mean recruitment to the lake-0 stage increased 161% 

(range 152 to 174%) compared to baseline conditions.  In the absence of brown trout and 

rainbow trout, simulated Chinook recruitment to the lake-0 stage was approximately 

double that of baseline (Figure 4.3).  Relative recruitment of Chinook salmon also varied 

inversely with relative abundance of brown trout in the absence of walleye.  Relative 

recruitment of Chinook salmon was higher than baseline at LOW and MEAN brown trout 

abundance and decreased significantly below baseline at HIGH brown trout abundances 

(Figure 4.4). 

In simulations with both walleye and brown trout present, relative recruitment of 

Chinook salmon was highly dependent on predator abundances.  Simulated Chinook 

salmon recruitment increased above baseline when brown trout abundance was LOW 

regardless of walleye abundance.  At MEAN levels of brown trout abundance, relative 
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Figure 4.2 a) Population trajectory of Chinook salmon recruits, and b) population 
trajectory of adults for the 50-year baseline simulation.  Error bars represent 95% 
confidence intervals based on 50 replicates. c) Stable age distribution of Chinook salmon 
as a proportion of total Chinook abundance resulting from the baseline scenario.  The 
shaded bars denote the river stages. 
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Figure 4.3. Percent change from baseline conditions in simulated recruitment of Chinook 
salmon with walleye predation and in the absence of piscivorous brown trout.  Note the 
simulation “NO TROUT” represents a lack of hatchery rainbow trout as well.  Error bars 
represent 95% confidence intervals around mean.  Dashed lines represent 95% 
confidence intervals around the baseline estimate of recruitment. 
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Figure 4.4. Percent change from baseline conditions in simulated recruitment of Chinook 
salmon with brown trout predation but in the absence of walleyes.  Error bars represent 
95% confidence intervals around mean.  Dashed lines indicated 95% confidence intervals 
around the baseline estimate of recruitment. 
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Chinook salmon recruitment was inversely correlated with walleye abundance (Figure 

4.5).  Relative Chinook salmon recruitment was significantly lower than baseline in all 

instances of HIGH brown trout abundance (Figure 4.5) and Chinook salmon populations 

crashed whenever brown trout abundance was HIGH (Table 4.8).  A lack of predation 

mortality from either walleyes or brown trout resulted in a significant (169%) increase in 

Chinook salmon recruitment compared to baseline.  Simulated removal of all hatchery 

trout (walleyes present) led to a significant increase in Chinook recruitment while 

removal of Cyprinidae (hatchery trout and walleye present) resulted in recruitment that 

was significantly lower than baseline (Figure 4.5). 

Simulated changes in alewife abundance affected Chinook growth and fecundity 

in Lake Michigan but did not significantly influence the long-term recruitment rates of 

Chinook salmon (Figure 4.6).  Increases in environmental stochasticity to MODERATE 

levels significantly reduced Chinook salmon recruitment below baseline at LOW parr 

survival, did not significantly differ at MEAN survival and increased significantly at 

HIGH survival (Figure 4.6).  The trend was similar when environmental stochasticity was 

again elevated to HIGH levels, although MEAN survival also resulted in a significantly 

lower recruitment compared to baseline.   

Simulated changes in predator abundance (hence, parr survival) influenced the 

probability that the adult Chinook salmon population would decline to below one-third of 

its initial abundance (103,230 adults).  When brown trout abundance was MEAN, the 

probability of such a decline was ≥ 69% unless walleye abundance was LOW or absent 

(Table 4.8)  At HIGH brown trout abundance, the probably of decline for Chinook was 

100%, regardless of walleye abundance (Table 4.8).  The probability of decline was also  
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Figure 4.5. Percent change from baseline conditions in simulated recruitment of Chinook 
salmon with predation by variable abundances of walleyes (“WE”) and brown trout 
(“BRT”).  Also included are simulations with 1) no predation mortality (NO WE, NO 
BRT), 2) no hatchery trout (no BRT, no rainbow trout), and 3) no Cyprinidae (WE 
MEAN, BRT MEAN). Error bars represent 95% confidence intervals around mean.  
Dashed lines indicate 95% confidence intervals around the baseline estimate of 
recruitment. 
 

 

 

 

 

-100

BRT
LOW

BRT
MEAN

BRT
HIGH

BRT
LOW

BRT
MEAN

BRT
HIGH

BRT
LOW

BRT
MEAN

BRT
HIGH

N
O

 PRE
D

A
TIO

N

A
ge

-0
 r

ec
ru

its
 (%

 c
ha

ng
e 

fr
om

 b
as

el
in

e) WE
LOW

WE
MEAN

WE
HIGH

N
O

 H
A

TCH
ERY

 TRO
U

T

N
O

 CY
PRIN

ID
A

E-50

BL

50

100

150

200

-150

-100

BRT
LOW

BRT
MEAN

BRT
HIGH

BRT
LOW

BRT
MEAN

BRT
HIGH

BRT
LOW

BRT
MEAN

BRT
HIGH

N
O

 PRE
D

A
TIO

N

A
ge

-0
 r

ec
ru

its
 (%

 c
ha

ng
e 

fr
om

 b
as

el
in

e) WE
LOW

WE
MEAN

WE
HIGH

N
O

 H
A

TCH
ERY

 TRO
U

T

N
O

 CY
PRIN

ID
A

E-50

BL

50

100

150

200

-150



 132

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Simulated changes from baseline conditions of recruitment of Chinook 
salmon resulting from increased variation in Chinook survival and fecundity 
(stochasticity), and effects of variable adult salmon growth rate (alewife abundance) on 
salmon fecundity.  Error bars represent 95% confidence intervals around mean.  Dashed 
lines represent 95% confidence intervals around the baseline estimate of recruitment. 
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Table 4.8. Coefficients of variation for mean recruitment values over the last 10 years of 
each simulation and probability of decline for all simulations.  “Crash” indicates that the 
population abundance fell below 1,000 individuals and the number in parentheses is the 
number of years it persisted. 
 
Simulation Coefficient of 

variation 
Crash? Probability of 

decline 
WE ABSENT    
        BRT LOW 0.009 no 0.02 
        BRT MEAN 0.013 no 0.02 
        BRT HIGH na yes (50) 1.00 
WE LOW    
        BRT ABSENT 0.004 no 0.02 
        BRT LOW 0.007 no 0.02 
        BRT MEAN 0.016 no 0.04 
        BRT HIGH na yes (50) 1.00 
WE MEAN    
        BRT ABSENT 0.013 no 0.02 
        BRT LOW 0.007 no 0.02 
        BRT HIGH na yes (36) 1.00 
        NO hatchery trout 0.007 no 0.02 
WE HIGH    
        BRT ABSENT 0.009 no 0.02 
        BRT LOW 0.014 no 0.98 
        BRT MEAN 0.119 no 1.00 
WE MEAN, BRT MEAN 0.010 no 0.74 
        NO Cyprinidae 0.164 no 1.00 
        LOW alewife 0.060 no 0.74 
        HIGH alewife 0.064 no 0.76 
        Env. Stochasticity MODERATE 0.052 no 0.69 
        Env. Stochasticity HIGH 0.122 no 0.98 
WE HIGH, BRT HIGH na yes (22) 0.02 
        Env. Stochasticity MODERATE na yes (23) 1.00 
        Env. Stochasticity HIGH na yes (25) 1.00 
WE ABSENT, BRT ABSENT 0.007 no 0.02 
        Env. Stochasticity MODERATE 0.011 no 0.02 
        Env. Stochasticity HIGH 0.122 no 0.04 
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very high when environmental stochasticity was increased to MODERATE or HIGH 

levels but only if predator abundances were MEAN or HIGH (Table 4.8). 

Variability in Chinook salmon recruitment increased with increasing levels of 

predator mortality on Chinook parr and with increasing variation around survival and 

fecundity rates.  Increased environmental stochasticity generally yielded the highest 

variability in recruitment rates (Table 4.8; Figure 4.6).  Removal of brown trout yielded 

the lowest variability in recruitment for individual predation scenarios (Table 4.8; Figure 

4.5).   

Discussion 

The effects of predation during the parr stage appear to be highly influential on Chinook 

salmon recruitment, according to my analysis.  At high predation levels, I observed a 

100% decrease in Chinook salmon recruitment.  On the other hand, several scenarios that 

included predator removals led to increased Chinook salmon recruitment by up to 174%.  

Although there appeared to be an interactive effect between brown trout and walleye on 

Chinook recruitment, brown trout were the dominant predator on Chinook parr.  Hence, 

brown trout were responsible for the greatest changes (positive and negative) in Chinook 

salmon recruitment. 

Predation on Chinook parr in the Muskegon River also had a large effect on the 

subsequent adult Chinook population.  When brown trout were present at HIGH 

abundance, there was 100% probability that the adult Chinook population would drop 

below one-third of their initial abundance.  Further, when HIGH brown trout abundance 

was combined with MEAN or HIGH walleye abundance, the Chinook population 

crashed.  Environmental stochasticity also led to similar results, though only when 
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predator abundances were MEAN or HIGH.  Some studies suggest that a recovering 

Chinook population is considered “healthy” when its abundance returns to one-third of its 

historical levels (Jager and Rose 2003).  Hence, predation in the Muskegon River, 

especially by brown trout, has important consequences for the persistence of Chinook 

salmon in Lake Michigan.  Walleye abundance did not have as big an influence as brown 

trout abundance on population persistence or recruitment of Chinook salmon.   

The simulated effects of environmental stochasticity on Chinook salmon 

recruitment were generally negative unless predator abundance was LOW or ABSENT.  

While many of my simulations resulted in significant changes compared to baseline, 

simulations involving stochastic events produced the highest variability in recruitment 

(i.e., increase in error around mean).  This supports data from Rutherford et al. (in prep) 

which indicate that Chinook salmon recruitment in the Muskegon River is much more 

variable (~ 10-fold) than was observed in Chapter 2 (~ 4-fold) over a similar time period.  

Therefore, environmental stochasticity may be more influential than I have modeled here, 

especially over shorter (< 10 years) durations.  I modeled environmental stochasticity as 

an increase in standard deviations around mean values of adult fecundity and juvenile 

survival.  At each time step in a simulation, RAMAS Stage chose parameter values from 

the stage matrix (fecundity, survival) and modified them (±) using a variance defined by 

the standard deviation matrix.  The mean value of a particular variable, however, 

remained fairly constant throughout a simulation.  Therefore, over longer durations, a 

population may recover from low densities potentially caused by stochastic events.   

 Results from RAMAS Stage were generally consistent with my previous foraging 

model (Chapter 3) although there were a few differences.  For example, the foraging 
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model predicted that a cessation in hatchery trout (brown and rainbow trout combined) 

stocking efforts would lead to a 3.9% decrease in survival rates of Chinook salmon parr 

while RAMAS Stage predicted a substantial increase in recruitment.  Such discrepancies 

between the forecasts of my foraging model and RAMAS Stage were likely due to 

density-dependence (Chapman 1962; Mason and Chapman 1965; Unwin 1986) which 

was incorporated in RAMAS Stage simulations but not in foraging model simulations.  

RAMAS Stage models density dependence explicitly as an interaction among juvenile 

Chinook salmon.  Chinook salmon experience density dependence in the river and in the 

lake and these were expressed as changes in fecundity and survival in RAMAS Stage.  In 

Lake Michigan, Chinook salmon growth and survival are dependent upon successful 

recruitment of alewife prey.  In general, low alewife recruitment will lead to reduced size 

at age of Chinook salmon in subsequent years (Wesley 1996), though this is also 

dependent on the abundance of adult Chinook salmon.  In river habitats, adult Chinook 

salmon compete for preferred spawning sites, while juveniles compete for access to 

preferred feeding and resting sites (Chapman 1966; Hearn 1987; Glova and Field-

Dodgson 1995).  Forecasts of my foraging model (Chapter 2) were dependent on the 

relative abundances of Chinook salmon and alternate prey species but were not dependent 

on intra-specific interactions.  In the Muskegon River, high predation rates on Chinook 

parr can reduce the number of out-migrant smolts in a given year as my foraging model 

would predict.  However, reduced resource competition may lead to increased parr size 

and improved smolt survival.  Therefore, per capita recruitment into Lake Michigan may 

improve though it would take several years to detect.  Hence, a short-term decline in 
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recruitment may actually lead to an increase in long-term recruitment as RAMAS Stage 

predicted. 

While RAMAS Stage can be used to effectively model population dynamics of 

numerous species, I noticed obvious shortfalls of the program.  For example, many 

important abiotic factors, such as river temperature and discharge, must be modeled 

implicitly.  Because river temperature and discharge heavily influence predator feeding 

rates, changes in those factors were modeled as changes in parr survival.  A spatially-

explicit individual-based model (IBM) may be more adept at modeling population 

dynamics of Chinook salmon as it has the potential to adequately simulate processes in an 

ecosystem-level approach (Grimm et al. 2005).  Compared to RAMAS Stage, an IBM 

can more easily incorporate mechanistic relationships between abiotic factors and 

individual feeding, growth, survival and fecundity (Jager et al. 1997; Godby et al. 2007).  

An IBM could also be used to explicitly model variable river discharge, which is 

positively correlated with Chinook recruitment (Seelbach 1985; Zafft 1992; Quinn 2005).  

Because an IBM can be parameterized to include habitat boxes representative of the 

Muskegon River, it could model density dependence between individual Chinook parr 

more effectively than RAMAS Stage.  Therefore, an IBM may provide indices that may 

be more useful towards forecasting the impact of management manipulations on long 

term population dynamics.  RAMAS Stage, on the other hand, is a useful tool for 

population dynamics modeling because of its relative simplicity.  This model is more 

easily parameterized than an IBM and is accessible to a wider user base.  It relies on 

easily obtainable demographic information and uses a minimal number of intensive 
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calculations which allows for quick simulations.  Further, it gives researchers the ability 

to model environmental and demographic stochasticity and density dependence.   

Several assumptions were necessary to use RAMAS Stage to represent the fish 

community and interspecific interactions in the Muskegon River.  I assumed that 

piscivore feeding behavior was constant throughout 50 years of simulations.  This further 

assumed that the results of Chapter 3 were not anomalous and the foraging model 

adequately described feeding behavior of walleyes and brown trout.  Previous estimates 

of predation mortality (Chapter 2) were likely conservative as there may have been 

additional predation mortality in areas I couldn’t sample effectively (i.e., deep water 

habitats).  Further, I only used estimates of predation mortality to calculate survival of 

Chinook salmon for my simulations.  Although I did not quantify it, Chinook salmon 

likely experienced additional stream mortality due to sources other than predation such as 

disease (Fitzsimons et al. 2007), which implies that actual mortality rates may be higher 

still.  While my assumption that Chinook parr have 100% survival without predation may 

not be realistic, I was able to use empirical estimates of predation mortality to generate 

worthwhile simulations to investigate the relative influence of predation on recruitment 

dynamics.  Further research should strive to examine and quantify all sources of stream 

mortality.   

Other assumptions of fecundity relationships and type of density dependence 

incorporated in the RAMAS model were likely not as critical as those listed above.  I 

used length-fecundity estimates for Pacific Coast populations of Chinook salmon to 

estimate fecundity of salmon in Lake Michigan.  Relative fecundities of Lake Michigan 

salmon may be higher or lower.  Finally, I used the ceiling type of density dependence in 
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my simulations which did not allow us to specify a maximum population growth rate 

(Rmax).  Still, this type of density dependence has been used to model Coho salmon, a 

closely related species (Bradford et al. 2000).  Because of the many density dependent 

factors influencing the riverine life stages of Chinook salmon (i.e., redd competition in 

adults, feeding and resting site competition in juveniles), not allowing a population to 

exceed an arbitrary carrying capacity does not seem an implausible option.  Further, the 

ceiling type of density dependence does not necessarily allow a population at low 

abundance to recover as the Beverton-Holt (compensatory) and Ricker (over-

compensatory) types would.  For example, a scenario simulating persistently low parr 

survival (S = 0.06) and using the ceiling type density dependence will lead to a 

population crash.  The Beverton-Holt and Ricker types of density dependence, however, 

would allow a population to persist with the same parr survival rate. 

Management Implications for Lake Michigan 

This simple model to describe the effect of species interactions in the Muskegon River 

could serve as a tool for fishery managers to develop and evaluate stocking scenarios 

(Cox and Walters 2002) for sport fisheries in Great Lakes and coastal ocean tributaries 

that contain important salmonid nursery habitats.  A goal of the Fish Community 

Objectives for Lake Michigan (Eshenroder et al. 1995) is to maintain Chinook salmon at 

stable densities and balance predator and prey communities (Claramunt et al. 2009).  One 

step towards realizing this goal is to minimize variability observed in wild Chinook 

salmon recruitment.  Aside from stocking, Claramunt et al. (2009) proposed altering 

habitat conditions to influence natural recruitment as a management tool to meet 

objectives.  I argue that habitat can be defined not only by physical structure but also by 
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the fish community present in a system.  Given the ability of brown trout to influence 

variability in Chinook salmon survival and recruitment, this seems an appropriate 

argument.  By manipulating the abundance of an important predator, I have shown that 

management actions to reduce stocking efforts can significantly improve long-term 

recruitment and reduce recruitment variability of Chinook salmon in important 

tributaries.  Based on my simulations, removal of walleyes from the Muskegon River 

does not appear to be warranted, which is good news for managers since walleyes are 

highly sought after by anglers in this system (Chapter 2). 

The Muskegon River was an ideal system for this analysis as fishery managers 

essentially have total control of predator abundance.  Hence, through stocking efforts, 

walleye and brown trout predation effects on Chinook salmon parr can be controlled as 

well.  Theoretically, long term recruitment of Chinook salmon can also be controlled 

through manipulation of important predators.  Similar assertions have been made in other 

studies to promote persistence of Great Lakes piscivores (e.g., Kitchell and Crowder 

1986; Kitchell et al. 2000).  Managers could apply this model to other systems to 

determine the population consequences of stream piscivores on long-term Chinook 

salmon reproduction. Although my modeling effort was simple, it is the first such 

analysis of a Lake Michigan tributary and may provide the first step towards 

implementing such actions. 
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Chapter V 

Implications of Fishery Management actions on 
Chinook Salmon Survival and Recruitment in the 

Muskegon River, Michigan: A Synthesis 
 

An improved understanding of ecosystem-level processes is important for 

understanding species’ population dynamics and formulating fisheries management 

recommendations.  In this dissertation, I have described species interactions and their 

ramifications for Chinook salmon recruitment and population dynamics across various 

temporal and spatial scales.  Fine temporal and spatial scale patterns in growth and 

survival of Chinook salmon parr were discernable through mean daily rations of 

piscivores throughout the Muskegon River Estuary System.  Detailed analyses of 

piscivore feeding behavior supported development of predator foraging models that were 

used to evaluate consequences of management scenarios for population dynamics and 

recruitment of Chinook salmon.  Hence, the recommendations I have set forth are based 

on robust patterns and may be applicable in multiple regions. 

Based on the results of the three research chapters (2 – 4) of this dissertation, I 

concluded that in some years, environmental processes (i.e., river temperature and 

discharge) may not explain typical levels of recruitment variability observed in 

Muskegon River Chinook salmon.  Departures from mean river temperature and 

discharge did not correspond with a noticeable trend in survival of Chinook salmon parr 
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(or recruitment).  On the contrary, extensive analysis of piscivore diets suggested that 

variable piscivory, especially from walleyes and brown trout, did explain recruitment 

variability in Chinook salmon.  Walleyes and brown trout preyed upon Chinook salmon 

parr more than any other piscivore in the Muskegon River.  Brown trout were much more 

numerous than walleyes and, although much smaller, consumed a much greater 

proportion of available Chinook salmon parr.  Their diet patterns, however, suggested 

that brown trout piscivory (on Chinook salmon parr) was regulated by prey size.  

Conversely, walleyes typically consumed much larger prey; brown trout and rainbow 

trout composed a majority of walleye diets for the duration of all sampling seasons.  

Although walleyes did consume Chinook salmon parr, there was no consistent trend 

between years.  The availability of alternate walleye forage and the temporal overlap 

between Chinook salmon parr and brown trout were correlated with survival of Chinook 

salmon parr. 

Predator feeding behavior and a foraging model helped inform management 

recommendations in the Muskegon River.  Early in the spring (especially in April), 

brown trout positively selected Chinook salmon parr as their major prey source but in 

later months brown trout selection waned.  In April and May, brown trout consumed 

Chinook salmon parr that were smaller than the average sized parr in the river.  However, 

brown trout did not consume Chinook salmon parr once they reached a maximum 

prey/predator length ratio of 26% even though this was within the constraints of a brown 

trout gape limit (~ 40% TL; Damsgård 1995).  Daily rations of brown trout were 

composed mostly of Chinook salmon parr in April, balanced between parr and stream 

invertebrates in May, and entirely stream invertebrates by June.  A multi-species 
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functional response model suggested that brown trout were not satiated by the 

abundances of Chinook salmon parr observed in the Muskegon River.  This result implies 

that if piscivorous brown trout are stocked early in the spring (i.e., April) when Chinook 

salmon parr are small, brown trout are capable of consuming a significant fraction of 

available Chinook salmon parr in a given year.   

Like brown trout, walleyes also consumed prey fish that were smaller-than-

average.  Walleyes selected for rainbow trout prey during several months of the study but 

showed the opposite behavior toward brown trout prey.  I hypothesized that differences in 

brown trout and rainbow trout foraging behavior placed the prey species in different parts 

of the river and resulted in differential spatial overlap with walleye.  Chinook salmon parr 

were negatively selected by walleyes in two entire seasons (2006, 2007).  Schooling 

behavior of Chinook parr (Petersen and Gadomski 1994; Petersen and DeAngelis 2000) 

may account for this phenomenon but may also explain why some walleyes consumed 

upwards of 50 Chinook parr in one meal.  Overall differences in spatial distribution 

between walleyes and prey may also explain the lack of small fishes such as Chinook 

salmon in their diets.  Chinook parr were found in very shallow water, while walleyes 

were found in the thalweg, plunge pools and deep corners of the river.  Further, walleyes 

forage at low light while juvenile salmon tend to decrease their movements during 

darkness (Ledgerwood et al. 1991), which may lower encounters with walleyes (Petersen 

and Gadomski 1994).  Regardless, cessation of brown trout stocking efforts was the most 

promising management action for increasing survival of juvenile Chinook salmon.   

The foraging relationships and empirical studies provided information to 

parameterize a stage-based model to forecast the consequences of fish interactions on 
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long-term population dynamics of Chinook salmon in the Muskegon River.  Many of the 

stage-based modeling simulations substantiated the short-term forecasts of the functional 

response model.  I found that walleye removals were not effective towards increasing 

Chinook recruitment.  On the other hand, simulations that incorporated removal of brown 

trout resulted in a significant increase in Chinook salmon recruitment and reduced the 

likelihood that the adult population would fall below “healthy” abundance levels (e.g., 

Jager and Rose 2003).  Stochastic events were an added element of the stage-based 

modeling approach and led to the greatest amounts of variability in recruitment though 

they only positively influenced Chinook recruitment when parr survival was very high.  

Still, variable brown trout abundance led to large variations (positive and negative) in 

Chinook salmon recruitment and their effects were generally independent of walleye 

abundance.  Hence, implementation of my management recommendations to halt 

stocking of brown trout would yield immediate benefits for Chinook salmon survival and 

would also increase long-term recruitment of Chinook salmon.   

Management Recommendations 

Whether stocked or wild produced, Chinook salmon parr face similar challenges that lead 

to variable recruitment.  In Lake Huron’s Thunder Bay, stocked salmonids simply 

provide forage for walleye, lake trout and cormorants and do not typically reach 

adulthood (Johnson et al. 2007).  However, if managers employ an appropriate stocking 

window, predation mortality can be minimized.  In Thunder Bay, walleyes preferentially 

consume alewife over Chinook salmon smolts.  When Chinook smolts were released and 

alternate forage was abundant (i.e., May), smolt survival increased (Johnson et al. 2007).  

In the Muskegon River, the presence of alternate forage for walleyes led to reduced 
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predation mortality on Chinook parr.  Despite the spatial differences, my dissertation 

research also showed that Chinook parr would benefit from a stocking window.  Brown 

trout only imposed high predation rates on Chinook salmon parr in the early spring when 

they were most vulnerable.  Brown trout stocking should only occur after parr have 

reached a size (TL > 50 mm) to outgrow predation vulnerability from brown trout.  This 

would substantially improve parr survival and minimize variability observed in wild 

Chinook salmon recruitment, a goal of the Lake Michigan Fish Community Objectives 

(Eshenroder 1995). 

Predation and other species interactions can be controlled directly and indirectly 

through manipulation of predatory fishes via stocking efforts and fishing regulations 

(e.g., Krueger and Hrabik 2005).  While I did not focus on fishing regulations in my 

dissertation, I have shown the effects of predation via stocked brown trout and walleyes 

and I base the following recommendations on that information. 

Brown trout appear to have significant effects on Chinook salmon recruitment and 

population dynamics through predation on parr and these effects are realized across 

multiple spatial and temporal scales.  Therefore, I recommend changes in the timing or 

numbers of brown trout stocked in the Muskegon River and other Lake Michigan 

tributaries that rely on wild Chinook production.  While brown trout are not highly 

sought-after by Muskegon River anglers (Tracy Kolb Michigan Department of Natural 

Resources personal communication), they may be targeted in other systems.  In this 

instance, I recommend that managers utilize a stocking window where brown trout are 

stocked in mid to late May and over the course of several weeks.  For example, stocking 

32,000 brown trout (165 mm TL) in four efforts beginning in mid May would probably 
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result in low predation mortality on Chinook salmon parr (via brown trout).  This 

management strategy would also lead to improved Chinook salmon recruitment and 

reduced recruitment variability. 

Other considerations 

In this dissertation, I proposed that survival of juvenile Chinook salmon could be an 

important predictor for short (≤ 10 years) and long-term (> 10 years) population 

dynamics in the Muskegon River.  This assertion appears to be supported by empirical 

data (short term) and by some modeling scenarios where brown trout were either very 

low in abundance or altogether absent (long term).  There are, however, multiple factors 

that could influence Chinook salmon population dynamics over multiple temporal and 

spatial scales.   

While juvenile survival depends heavily on riverine processes, the majority of the 

Chinook life cycle occurs in pelagic water (Lake Michigan proper or the open ocean) and 

there are a number of factors therein that could represent a potential bottleneck for 

Chinook salmon survival and persistence.  The pelagic environment can have a dramatic 

influence on size-at-age and age-at-maturity of Chinook salmon (Wells et al. 2007).  

Decreased size-at-age could lead to delayed maturation (Healey 1991) and an increased 

duration where individuals are vulnerable to predation.  Marine survival of Columbia 

River stocks, for example, is thought to be predation-driven and a large proportion of 

predation mortality occurs in estuary habitats (Emmett and Sampson 2007).  Middlemas 

et al. (2009) showed that the highest levels of predation mortality on anadromous brown 

trout also occurred in estuaries.  This is likely the case in the Great Lakes though I was 

unable to determine estuarine predation on Chinook parr in the Muskegon River Estuary 
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System.  Still, it appears that in all instances, predation mortality would be considerably 

reduced provided that alternate forage for Chinook predators was abundant (e.g., Johnson 

et al. 2007).   

Oceanographic conditions likely have widespread impacts on salmonid stocks in 

multiple regions and may have caused the observed decline in a number of salmon stocks 

in the Pacific Northwest (Mantua et al. 1997).  Wells et al. (2007) found that the 1982 – 

1983 El Niño Southern Oscillation (ENSO) event led to a 30% decrease in fecundity of 

Coho salmon (O. kisutch) in Oregon.  Further, salmon productivity in the Pacific 

Northwest appears to be strongly correlated with the Pacific Decadal Oscillation (PDO); 

salmon productivity was generally lower than expected when PDO values were negative 

(Levin 2003).  Responses to ocean/climate change, however, were not the same among 

all salmonid stocks.   

Unfortunately, little is known about the connection between oceanographic 

conditions and pelagic survival of salmon (Friedland 1998; Pyper et al. 2005) in the Great 

Lakes.  Like the Pacific Ocean (perhaps to a much lesser extent), the Great Lakes are 

affected by PDO and ENSO through changes in weather patterns that lead to changes in 

precipitation, stratification timing, ice cover and duration of ice cover (Rodionov and 

Assel 2003; Winder and Schindler 2004).  These factors strongly influence primary 

productivity of lake and river systems in the Great Lakes region.  Researchers and 

managers must, therefore, carefully re-evaluate the ability of the Lake Michigan food 

web to distribute nutrients throughout the fish and invertebrate communities and sustain 

Chinook salmon populations.  Indeed, realizing the Fish Community Objectives set forth 
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for Chinook salmon may be more difficult than deciding whether or not to stock 

hatchery-reared fish in tributaries. 
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