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ABSTRACT 
 

PLANT-ENVIRONMENT FEEDBACKS IN A NATIVE AND INVASIVE SYSTEM 
 

by  

Emily C. Farrer 

 

Chair: Deborah E. Goldberg 

 

 Individual plants interact through a variety of mechanisms creating plant-soil 

feedbacks, in which a plant affects the environment, and this change feeds back to 

influence the performance of that plant and other members of the community.  Feedbacks 

can have consequences at the community and ecosystem levels; however, despite the 

large body of work on component processes, how measured interactions among 

individuals actually affect large-scale patterns of species composition, diversity, and 

invasion remains largely untested.  In this dissertation, I use a combination of 1) spatio-

temporal surveys and modeling and 2) measurements of interactions in field experiments, 

to test the mechanisms through which plants interact and the importance of these 

interactions in driving community structure and dynamics in two systems, temperate 

wetlands invaded by hybrid cattail and native dry grasslands.  Positive feedbacks are 

predicted to be important for explaining dominance of invasive species, because 

modification of the environment to their own benefit would further their invasion.



 

 xi 

Negative feedbacks are predicted to dominate in native systems where they lead to 

limitation of conspecific growth, promoting coexistence.  In the invaded system, 

experiments suggest that hybrid cattail (Typha x glauca) produces positive feedbacks: it 

increases nitrogen cycling twofold and decreases light through high litter production, an 

environment in which cattail performs well but native species decline.  These positive 

feedbacks could contribute to the pattern found in field surveys that T. x glauca was 

associated with locally high soil nutrients, low light, and large amounts of litter, and that 

native diversity was highest in areas of shallow litter depth.  In the native grassland 

system, both transplant experiments and fitting models to survey data suggest that 

negative feedbacks are common: conspecifics inhibit the individual and population 

growth of each of the dominant species more than heterospecifics.  The intermediaries in 

these negative feedbacks include soil nitrate and light reduction, however other 

unmeasured soil properties, such as pathogens or mycorrhizae, also likely play a role.  

Overall, this suggests that the balance of interactions may shift from negative feedbacks 

in native systems to positive in invasive systems, which contributes to the coexistence 

among natives and dominance of invasives.   
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CHAPTER I 

Introduction 

 

 Individual plants interact through a variety of different mechanisms, and these 

interactions can have consequences at the community and ecosystem levels.  However, 

despite the large body of work on components of plant interactions, how measured 

interactions among individuals actually affect large-scale patterns of species composition, 

diversity, and invasion remains largely untested.  For example, experimental research on 

competition, facilitation, and plant-soil feedbacks has typically assessed individual 

growth under controlled conditions over a single or few growing seasons (Goldberg and 

Barton 1992, Gurevitch et al. 1992, Maestre et al. 2005, Brooker et al. 2008, Cahill et al. 

2008, Kulmatiski et al. 2008).  It is therefore unclear whether these types of interactions 

have community consequences in the field, in which many other processes, such as 

disturbance, herbivory, dispersal limitation, and neutral dynamics, undoubtedly occur.  

This dissertation develops a framework integrating 1) spatio-temporal field surveys and 

2) experimental measurement of interactions and intermediaries in the field to explicitly 

test the mechanisms through which plants interact and the importance of these 

interactions in driving community structure and dynamics in two systems, temperate 

wetlands invaded by hybrid cattail and native dry grasslands. 

Historically, the main types of species interactions, studied empirically and 
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theoretically, were resource competition and other trophic interactions.  However, 

individuals interact in many ways other than through resource uptake.  Plants can affect 

the soil through root exudation, soil aeration, and attraction of pathogens or mycorrhizae.  

Many nontrophic processes for plants occur through litter deposition, which alters the 

environment through shading, temperature amelioration, moisture retention, and nitrogen 

mineralization during decomposition.  The importance of litter in plant interactions and 

community structure has received some attention in the ecological literature, however 

many studies are restricted to recruitment stages (Facelli and Pickett 1991).   Overall, 

nontrophic processes have not been fully integrated into the study of plant interactions 

and often are studied separate from resource reduction.  

These interactions can be integrated in a broader context as plant-environment 

feedbacks, in which a plant alters the environment in ways that feed back to influence the 

performance of that plant and other species.  The net effect of one plant on another is thus 

composed of two components, plant effect on the environment and plant response to that 

altered environment (Fig. 1.1, Goldberg 1990).  Plants create feedbacks through the 

effects of live processes and litter on different intermediaries both abiotic and biotic 

(Bever 1994, Bever et al. 1997, Ehrenfeld et al. 2005).  Feedbacks are positive if they 

increase plant performance relative to other species, or negative if they decrease relative 

plant performance (Bever et al. 1997).  For example, a species might negatively affect the 

environment by reducing resources to low levels; however if it is the best competitor 

under low resource conditions compared to other species in the community, this produces 

a positive feedback. 

 Theoretical studies have shown that the types of feedbacks displayed by species in 
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a community have consequences for the structure and dynamics of the system.  Both 

classic competition theory and more recent models of niche partitioning and feedbacks 

demonstrate that even small magnitudes of negative feedback can promote long-term 

species coexistence; in other words stable coexistence is possible if intraspecific 

competition is greater than interspecific competition (Tilman 1982, Bever et al. 1997, 

Chesson 2000, Bonanomi et al. 2005).  Conversely, most models of positive frequency 

dependence lead to monodominance of a single species, although spatial models indicate 

that competitive exclusion is slowed if species have similar magnitudes of positive 

feedback (Molofsky et al. 1999, Molofsky et al. 2001, Molofsky and Bever 2002). 

Empirical data are partially consistent with predictions from theory.  Plant-soil 

feedback experiments suggest that negative feedbacks are common in native systems 

(Kulmatiski et al. 2008); however most competition studies do not find evidence for 

intraspecific competition being greater than interspecific competition (Goldberg and 

Barton 1992, Gurevitch et al. 1992, Cahill et al. 2008).  Experiments also suggest that 

invasive species tend to promote positive feedbacks (Klironomos 2002, Sperry et al. 

2006, Vinton and Goergen 2006, Van der Putten et al. 2007, Van Grunsven et al. 2007).  

However, these experiments are often not integrated with field studies of community 

structure and dynamics in the same system, which could account for studies in which 

experimental results do not match theoretical predictions.   

In this dissertation, I examine plant interactions and feedbacks in a native 

grassland and an invaded wetland system.  I measure the intermediaries that are 

potentially important in the interaction, including nutrients and light, and I measure 

consequences of the feedback for the species creating the feedback, for other members of 



 4 

the community, and for the structure and dynamics of the system as a whole.  Since 

invasive and native systems are predicted to have different types of feedbacks, I 

hypothesize that positive feedbacks will dominate in an invasive cattail system, while 

negative feedbacks should occur in a native grassland system.   This dissertation is 

divided into three primary chapters.  Chapter II explores plant-environment feedbacks 

produced by invasive cattail, Typha x glauca, examined in a survey of invasion and in a 

transplant experiment.  Chapters III and IV examine feedbacks generated by the largely 

native dominants of a dry sand prairie.  Chapter III describes a detailed spatio-temporal 

survey and model fitting techniques used to estimate interactions, competitive or 

facilitative, among the four dominant species.  Chapter IV tests the direction of 

interactions among three of the species in a field experiment, and determines whether 

abiotic intermediaries play a role in driving these interactions.  The surveys and 

experiments performed in each of chapters are illustrated in Fig. 1.2. 

Chapter II.  Litter drives ecosystem and plant community changes in cattail 

invasion.  If invasive species modify the environment to their own benefit, this can 

further invasion and lead to suppression and decline of native species.  Thus positive 

feedbacks are predicted to be important in invasive systems (Ehrenfeld et al. 2001, 

Ehrenfeld 2003, Levine et al. 2006).  Invaded systems are indeed commonly associated 

with a change in environment and a decline in native species diversity; however, many 

different causal pathways linking these three factors could produce this pattern.  The 

initial driver of environmental change may be anthropogenic or it may be the invader 

itself, and the mechanism behind native species decline may be the human-induced 

environmental change, competition from the invader, or invader-induced environmental 
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change (nontrophic effects).  I examined applicability of each of these alternate pathways 

in Great Lakes coastal marshes invaded by hybrid cattail (Typha x glauca).  

I performed a field survey of three marshes, examining patterns among T. x 

glauca and native species abundance and diversity as well as their associations with 

environmental characteristics such as soil nutrients, temperature, and amount of litter 

(Fig. 1.2a).  I then tested whether live T. x glauca plants or their litter induced changes in 

the environment and diversity with a live cattail / cattail litter transplant experiment (Fig. 

1.2b).  If the experimental manipulations of cattail or its litter produce the same effects as 

the large-scale patterns found in the survey, this is a strong argument for cattails as the 

mechanism of environmental change and species decline. 

Chapter III. Time lags and the balance of positive and negative interactions in 

driving grassland community dynamics.  In order to test whether individual plant 

interactions and feedbacks have community consequences, it is necessary to quantify the 

patterns in population dynamics that occur in the field.  One way to assess population 

level interactions is to fit dynamical models to spatio-temporal survey data.  Recent 

studies have used this approach and have found that negative interactions predominate 

(Law et al. 1997, Freckleton and Watkinson 2001, Adler et al. 2006), despite much 

evidence that facilitative interactions occur simultaneously with competition (Bertness 

and Callaway 1994).  This suggests that more complex models may be necessary to 

uncover facilitative effects. In this chapter, I fit models including seasonality, interannual 

variation, and time lags to survey data to test for patterns in positive and negative 

interactions among coexisting dominants in a dry sand prairie in Michigan (Fig. 1.2c).  

The relative strength of conspecific and heterospecific interactions in the community will 
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determine the feedbacks, positive or negative, produced by each species.  Time lagged 

interactions are suggestive of litter effects, because litter production is correlated with 

past population densities. 

Chapter IV.  A test of competition and facilitation in a dry perennial grassland.  

Negative feedbacks are a fundamental requirement for most models of local stable 

coexistence, that is, intraspecific interactions are more negative than interspecific 

interactions.  Both classic pairwise competition experiments and plant-soil feedback 

experiments have addressed this question, but these two types of experiments have found 

contradictory results: competition experiments find competitive hierarchies, whereas 

plant-soil feedback experiments find evidence for negative feedbacks.  In this chapter, I 

take a first step to merge these two perspectives in an experiment in the Michigan dry 

sand prairie.  I perform a transplant experiment in natural field monocultures with live 

plants so that transplants experience both competition from the neighbor as well as 

effects from litter and accumulated soil microbial communities (Fig. 1.2e).  I ask whether 

transplants perform best in monocultures of conspecifics or heterospecifics or no 

neighbor plots.  I also measure abiotic environmental characteristics associated with each 

of these monoculture types (Fig. 1.2d) to determine if species create different 

microenvironments and which intermediaries play a role in performance and feedbacks. 

The strength and direction of these plant-environment feedbacks measured in the 

transplant experiment can be compared to the feedbacks estimated from the survey data 

in Chapter III.  If feedbacks patterns are similar in both studies, this strongly suggests that 

measured feedbacks drive population and community dynamics in nature, and proposes 

intermediaries important in these interactions.  
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Fig. 1.1.  Diagram illustrating plant-environment feedbacks.  The net interaction between 
one plant and another can be described as a feedback, which is composed of two 
components, plant effect on the environment and plant response to that altered 
environment. Plants create feedbacks through the effects of live processes and litter on 
different intermediaries, including resources, conditions, enemies and mutualists. 

Plant Plant 

Environment 
  - resources (nutrients, water, light) 
  - conditions (temperature) 
  - enemies (pathogens, herbivores) 
  - mutualists (mycorrhizae, pollinators)  

Litter 
effect response 

net interaction 
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Fig. 1.2.  Diagram illustrating the surveys and experiments performed in Chapters 2-4.  
Black lines indicate interactions that were directly measured; dashed lines indicate effects 
that were inferred.  Double-headed arrows indicate correlations; single-headed arrows 
indicate that the direction of effect was experimentally determined.  For the dominant T. x 
glauca system, Chapter 2 describes a spatial survey which identified correlations among 
cattails, litter, environmental characteristics, and native plants (a), and a live cattail / 
cattail litter transplant experiment which tested causal relationships among these factors 
(b).  For the coexisting grassland species, Chapter 3 describes a temporal survey that 
identified population level relationships among different plant species and litter (c).  
Chapter 4 describes measurements of environmental characteristics in natural 
monocultures of grassland dominants (d), and a transplant experiment testing effects of 
plant/litter field monocultures on other transplanted targets, which was combined with the 
measurements of environmental characteristics to infer intermediaries (e). 
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CHAPTER II 

Litter drives ecosystem and plant community changes in cattail invasion 

 

Abstract 

Invaded systems are commonly associated with a change in ecosystem processes 

and a decline in native species diversity; however, many different causal pathways 

linking invasion, ecosystem change, and native species decline could produce this 

pattern.  The initial driver of environmental change may be anthropogenic or it may be 

the invader itself, and the mechanism behind native species decline may be the human-

induced environmental change, competition from the invader, or invader-induced 

environmental change (nontrophic effects).  We examined applicability of each of these 

alternate pathways in Great Lakes coastal marshes invaded by hybrid cattail (Typha x 

glauca).  In a survey including transects in three marshes, we found that T. x glauca was 

associated with locally high soil nutrients, low light, and large amounts of litter, and that 

native diversity was highest in areas of shallow litter depth.  We tested whether live T. x 

glauca plants or their litter induced changes in the environment and in diversity with a 

live plant/litter transplant experiment.  After one year, Typha litter increased soil NH4
+ 

and N mineralization twofold, lowered light levels, and decreased the abundance and 

diversity of native plants, while live Typha plants had no effect on the environment or on 

native plants.  This suggests that T. x glauca, through its litter production, can cause the 

changes in ecosystem processes that we commonly attribute to anthropogenic nutrient 
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loading; and that T. x glauca does not displace native species through competition for 

resources, but rather affects them nontrophically through its litter.  Moreover, because T. 

x glauca plants were taller when grown with their own litter, we suggest that this invader 

may produce positive feedbacks and change the environment in ways that benefit itself 

and may promote its own invasion.   

 

Introduction 

Invaded systems are often associated with a change in ecosystem processes and a 

decline in native species abundance and/or diversity (D'Antonio and Vitousek 1992, 

Hobbs and Huenneke 1992, Galatowitsch et al. 1999, Zedler and Kercher 2004, 

MacDougall and Turkington 2005, Kercher et al. 2007).  Managing invaded systems and 

mitigating negative impacts requires an understanding of the mechanisms driving these 

relationships.  However, because many different causal pathways may link invasion, 

environmental change, and native decline, it is unlikely that any one set of mechanisms 

operates in all systems and therefore that management recommendations are similar 

across systems.  Instead, we need to understand the range of causal pathways and, 

eventually, the conditions under which different mechanisms are more or less important.  

Figure 2.1 describes a set of conceptual models for the linkages between invasion, 

ecosystem changes, and native decline based on the combination of the initial driver of 

the environmental change and the mechanism behind the native species decline.   

Environmental change can be initiated by humans or by the invader itself.  In 

human-directed models (Fig. 2.1, top row), changes in ecosystem processes are caused 

anthropogenically, for example by alteration of disturbance regimes (e.g., fire 
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suppression), biogeochemistry (e.g., eutrophication), or hydrology (e.g., wetland 

draining).  This change in environment allows the invader to establish and spread because 

it may create a temporary resource opportunity (Davis et al. 2000) or because the invader 

is well adapted to these new conditions (Dukes and Mooney 1999).  In invader-directed 

models (Fig. 1, bottom row), the invader establishes at a site due to chance or propagule 

pressure and, because of physiological differences from the native vegetation, it changes 

ecosystem processes such as nutrient cycling (Ehrenfeld 2003) or disturbance regime 

(Mack and D'Antonio 1998).   

Independently of the cause of environmental change, native species abundance, 

diversity, or composition may decline when associated with invasions due to three 

different reasons.  1) Native species may decline due to the human-induced changes to 

the environment, if they are not adapted to the human-induced selection regime (Fig. 2.1, 

column 1) (Byers 2002, Didham et al. 2005, MacDougall and Turkington 2005).  This is 

the same as the “passenger model” of MacDougall and Turkington (2005) in which the 

invader does not cause native decline at all but is just a passenger in a system already 

undergoing environmental change.  2) Native species may decline due to competitive 

pressure from the new invader (Fig. 2.1, column 2).  When competition is combined with 

human-directed environmental change (model 2) this represents the “driver” model of 

MacDougall and Turkington (2005), in which humans change the environment causing a 

shift in competitive ability such that the invader is now more competitive than the 

natives.  3) Lastly, the invader might change the environment in such a way that native 

species are no longer competitive or able to persist at all (Fig. 2.1, column 3).  For 
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example, if the invader’s litter reduces light levels or increases sedimentation or anoxia, 

these nontrophic (non-uptake) effects may inhibit native species. 

These five models, differentiated by the combination of the cause of 

environmental change and the mechanism of native decline, are not mutually exclusive 

and the relative importance of each pathway may depend on site conditions (e.g., Scott et 

al. 2001, Ehrenfeld 2003).  Despite this complexity, determining the cause and effect 

relationships among these factors is essential for designing effective management 

strategies, including conservation and remediation.  Knowing the extent to which humans 

vs. invaders are the cause of environmental change is important for determining if and 

how human processes should be regulated.  Determining the cause of the decline in 

native species is important for identifying remediation methods.  For example, models 2 

and 4 suggest only invader removal is necessary to promote the regrowth of native plants; 

while models 1, 3, and 5 suggest underlying environmental changes must be addressed 

before the conditions are suitable again for native species (Suding et al. 2004). 

In wetland habitats, the most important environmental change associated with 

invasion and diversity decline is often eutrophication (Galatowitsch et al. 1999, Childers 

et al. 2003, Zedler and Kercher 2004).  Both humans and invaders could potentially 

initiate this pattern and cause the increase in nutrients.  Anthropogenic nutrient input is 

often assumed to be the cause of elevated nutrient levels and is reasonable in cases where 

input is known (Davis and Ogden 1994, Drexler and Bedford 2002).  However, it is well 

documented that invasives (Ehrenfeld 2003, Levine et al. 2003), and plant species more 

generally (Eviner and Chapin 2003), can influence ecosystem processes such as nutrient 

cycling due to differences in physiology and morphology.  For example, invasive wetland 
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plants can stimulate microbial processes via root exudates or through oxygenation of the 

rhizosphere (Windham and Ehrenfeld 2003).  Invasive plants can also increase N cycling 

through their litter production.  Litter with low C:N or low lignin can increase the rate of 

microbial mineralization because it is easily decomposed and N is quickly made available 

(Hobbie 1992).  Invasives that produce large quantities of litter may also increase N 

supply in a wetland, because the litter can act as a carbon source for microbes and can 

retain N in the system in the organic N pool (Bowden 1987).   

Eutrophication and invasion in wetlands are often associated with a decline in 

native species abundance or diversity or a change in species composition (Meyerson et al. 

2000, Kercher et al. 2007).  However, this relationship is not always quantified 

(Galatowitsch et al. 1999) and unexpected positive relationships have also been found 

(Hager and Vinebrooke 2004).  Moreover, rarely is the mechanism of species decline 

investigated (Levine et al. 2003), even though the three causes for the decline in native 

species in Fig. 2.1 are all plausible.  A decline in diversity may result solely from the 

native community response to elevated nutrients, due to dominance by a particularly 

productive native species (Green and Galatowitsch 2002).  More likely, resource 

competition from the invader can cause decline of native species.  Due to high growth 

rates and high productivity, invasives such as Typha spp., Phragmites australis, and 

Phalaris arundinacea are competitive in high nutrient environments and can take 

advantage of the elevated resources (Galatowitsch et al. 1999, Zedler and Kercher 2004).  

Numerous fertilization experiments have confirmed this invader growth response coupled 

with native species decline (Newman et al. 1996, Green and Galatowitsch 2001, 

Svengsouk and Mitsch 2001, Green and Galatowitsch 2002, Woo and Zedler 2002, 
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Minchinton and Bertness 2003, Rickey and Anderson 2004, Kercher et al. 2007).  Thus 

resource competition from invaders for nutrients or light is a highly probable mechanism 

for observed declines in native species.  Lastly, a decline in natives may also result from 

nontrophic modification of the environment by the invasive species.  Large stands of 

litter often accumulate when very productive invaders occupy eutrophied environments, 

and this litter reduces light levels and physically obstructs growth of native species 

(Hager 2004).  These mechanisms of native decline are not mutually exclusive; both 

resource competition and litter accumulation can concurrently inhibit native species 

(Lenssen et al. 2000, Minchinton et al. 2006). 

The associations among invasion, ecosystem properties, and native plant 

communities have been well documented.  However, the majority of the ecosystem 

process studies have been non-manipulative surveys; thus they cannot distinguish the 

direction of causality in invader-environment relationships, nor can they separate the 

mechanisms behind the associations they see due to the many covarying variables.  

Likewise, most plant community studies have not separated trophic and nontrophic 

effects of the invader, and cannot distinguish between strict competitive superiority of the 

invader or environmental modifications due to litter production. 

In this paper, we quantify the field association of invasion, eutrophication, and 

decline in native species in Great Lakes coastal marshes invaded by Typha x glauca 

Godr. (hybrid cattail).   We also test whether T. x glauca can be the initial driver of 

environmental change (does row 2 in Fig. 2.1 occur?) and whether T. x glauca affects 

native species through competition (does column 2 occur?) and/or non-trophic 

interactions (does column 3 occur?).  We assessed the contributions of these models with 



 

 17

a transplant experiment using factorial combinations of live T. x glauca individuals with 

or without the addition of T. x glauca litter.  Invader-directed models (row 2) predict that 

T. x glauca should increase soil nutrients either via its live plants or its litter.  If resource 

competition (column 2) is responsible for native decline, then the live T. x glauca 

treatment is predicted to cause both a decrease in some resource (either nutrients or light) 

and a decline in natives.  If nontrophic effects (column 3) are responsible for native 

decline, then the litter treatment would be predicted to cause both a decrease in some 

resource and a decline in natives (i.e., a decrease in abundance or diversity or a change in 

species composition).  Because we tested whether a particular model (or group of 

models) could occur, and because the models are not mutually exclusive, our approach 

can support the existence of a contribution from a model but does not reject contribution 

from other models.  Thus this paper is a first, but critical, step in understanding and 

measuring the many cause-effect relationships in an invasive system, in order to begin to 

build generalizations about conditions under which different causal pathways are 

important.  Because T. x glauca is an important invasive in many wetland systems, these 

results also have direct management implications.   

 

Methods 

Study species – Typha x glauca 

Typha x glauca Godr. (hybrid cattail) is an aggressive wetland invasive in North 

America (Galatowitsch et al. 1999).  It is the hybrid between Typha latifolia L. and Typha 

angustifolia L.  Typha latifolia, broadleaf cattail, is native to temperate North America 

and Eurasia and has a broad distribution on both continents (Grace and Harrison 1986).  
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Typha angustifolia, narrow-leaved cattail, is not native to the Midwestern United States 

and was most likely introduced from Europe to the east coast in the early 19th century  

(Stuckey and Salamon 1987, but see  Pederson et al. 2005).  It was restricted to salt 

marshes of the Atlantic coast until the 1880s, was first reported in Michigan in 1900, and 

now occupies much of the northeast habitat of T. latifolia (Stuckey and Salamon 1987, 

Galatowitsch et al. 1999).  These two parent species commonly co-occur in wetlands and 

readily hybridize; the distribution of T. x glauca follows that of T. angustifolia as it 

encounters and hybridizes with T. latifolia (Grace and Harrison 1986, Stuckey and 

Salamon 1987, Galatowitsch et al. 1999).  Although the genetic status of the hybrid is 

still uncertain, populations examined so far are composed mostly of F1 hybrids (Kuehn et 

al. 1999, A.A. Snow, T. Fér, R. Wildova, and D.E. Goldberg, unpublished data).  Typha x 

glauca appears to exhibit hybrid vigor: it is taller than either parent species, is tolerant of 

prolonged flooding, drainage, and salinity, and is often argued to be able to outcompete 

them (Smith 1987, Waters and Shay 1990, 1992, Galatowitsch et al. 1999).  For field 

identification, we used the ratio leaf width:leaf length and spike gap length, which were 

selected by discriminant function analysis to have the best fit with genetically identified 

samples (by RAPD and microsatellite analysis) of the hybrid and the two parent species 

(A.A. Snow, T. Fér, R. Wildova, and D.E. Goldberg, unpublished data). 

 

Coastal wetlands survey  

 Three Great Lakes coastal marshes in northern Michigan were chosen to quantify 

the relationships among T. x glauca invasion, nutrient availability, and the native 

community:  Cheboygan marsh on Lake Huron (45°39’31’’N, 84°28’16’’W), Pt. la Barbe 
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marsh in the Straits of Mackinac (45°50’20’’N, 84°45’24’’W), and Cecil Bay marsh on 

Lake Michigan (45°44’48’’N, 84°48’02’’W).  Each site contained both an area of native 

vegetation and a considerable stand of T. x glauca.   

In 2003, one transect was run through each marsh (ranging from 200-285 m), 

extending perpendicular to the shoreline.  A 1 m2 plot was set up approximately every 20 

m along the transect.  In each plot, stems of each species of vascular plant were counted 

(seedlings excluded) and percent cover of litter/standing dead was estimated.  Some T. 

angustifolia was mixed in with the T. x glauca at all of the sites; T. latifolia was very rare 

at all the sites and not present in or near any of the transects.  All other species in the 

plots were native, with a few exceptions present at low abundance and in fewer than 5% 

of the plots: Poa compressa, and possibly exotic genotypes of Phalaris arundinacea and 

Phragmites australis.  Species richness of the native (non-Typha) species was tallied, and 

Shannon-Wiener diversity was calculated as H = ∑(-pi ln pi), where pi is the proportion of 

total native stems of species i.  For each plot, litter depth, soil temperature at 10 cm, and 

water depth were measured, and a single soil sample (10 cm depth) was collected.  Great 

Lakes water levels are very dynamic so water depth measurements only indicate relative 

depths within a site.  Soil samples were dried (70°C) and sieved (2 mm), and extractable 

PO4
3-, NO3

-, NH4
+, and soil organic matter (SOM) were quantified using the analytical 

methods described below for the transplant experiment.  Oven dried soil was used for this 

analysis; thus the results serve as a general index of relative amounts of inorganic soil N 

and P within and among the transects, but cannot be used for comparison with absolute 

amounts based on wet soil extraction in the following transplant experiment or other 

studies due to the transformations that occur during the drying process.  
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Statistical analyses.  The sample size for each site was small (n=10, 12, 15), so 

data from the three sites were pooled and analyzed together (except for the species 

composition analysis described below).  Because many of the environmental variables 

covaried, their relationships were investigated using principal components analysis 

(PCA) with Canoco 4.0 (ter Braak 1987, ter Braak and Smilauer 1998).  Variables that 

appeared to be nonlinearly related were analyzed pairwise with quadratic regressions 

(SPSS 11).   

Patterns between native species composition and the environmental variables 

(including T. x glauca) were tested using ordination methods with Canoco 4.0.  Species 

stem densities were log-transformed to counteract skewness.  Species present in fewer 

than 5% of the plots (doubletons and singletons) were omitted from the analysis, because 

they do not contribute greatly to species composition and standardization with only 2 

occurrences can bias results.  A preliminary detrended components analysis (DCA, Hill 

and Gauch (1980)) was performed to determine if linear or nonlinear (unimodal) methods 

were most appropriate. The length of the main floristic gradient in the DCA was 4.090 

standard deviations, so a nonlinear canonical correspondence analysis (CCA) was chosen 

because nonlinear responses are expected along gradients of length > 4.  In the CCA, site 

was used as a covariable.  Due to the large number of environmental variables (8), 

forward selection was used to select only the variables that contributed significantly 

(p<0.05) to explaining variation in species composition with statistical testing by 

unrestricted Monte Carlo permutation tests for each added variable (ter Braak 1990, ter 

Braak and Verdonschot 1995).  The unique contribution of each selected environmental 

variable was determined by performing a CCA with all other environmental variables and 
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site as covariables; statistical significance of this was tested using Monte Carlo 

permutation tests within Canoco, with 499 permutations within site, and significance 

based on the overall (trace) statistic.   

 

Transplant experiment 

Study site / experimental design.  The transplant experiment was conducted in 

Cheboygan marsh.  The native vegetation at this site consists mainly of about 15 species 

of rushes (Juncaceae) and sedges (Cyperaceae) as well as a few species of wetland 

grasses and forbs.  Typha x glauca is thought to have invaded the marsh 30-40 years ago 

and now occupies approximately 2/3 of the marsh area (N.C. Tuchman, P. Geddes, D. 

Larkin, R. Wildova, K.J. Jankowski, and D.E. Goldberg, unpublished manuscript). 

In July 2004, live T. x glauca plants and T. x glauca litter were transplanted in a 

factorial design into 1 m2 plots in 10 replicate blocks throughout the uninvaded area of 

the marsh.  These four treatments will be referred to as the following: no live/no litter, 

litter only, live only, and live+litter.  Live T. x glauca plants were collected from 10 

locations, at least 20 m apart, throughout the dense T. x glauca stand to attempt to 

maximize genetic diversity, so that results can be better generalized to T. x glauca as a 

taxon.  Because T. x glauca grows rapidly, only 10 stems (1/3 the density of the dense T. 

x glauca stand in the marsh) were planted per plot; by the next growing season when the 

data reported here were collected (2005), mean T. x glauca density had increased to 25 

stems per m2.  Surface T. x glauca litter was collected at the same locations, mixed, and 

the equivalent of 2 kg dry weight (average aboveground litter in dense T. x glauca stands) 

was transplanted per plot.  Litter was held in place from movement by water by pond 
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netting (mesh size approx. 1 cm), which was kept on the litter plots throughout the 

duration of the experiment.  Typha litter is typically a mass of senescent stems still rooted 

in place but bent horizontally and lying on the surface; thus, the net helps mimic this 

relative litter immobility; in general, free-floating litter and litter removal from the marsh 

due to water movement by seiches is highly uncommon (personal observation).  At the 

end of the 2004 growing season, T. x glauca litter produced by the live only and the 

live+litter plots was clipped, divided equally, and placed under the netting in the litter 

only and live+litter plots.   

Prior to transplanting, all treatment plots were clipped and cleared of native plants 

and native litter so that the stems of native plants would not be crushed in the litter 

treatment, potentially causing an influx of nutrients to the soil.  For this reason, an 

additional control plot (a pretreatment clipping control) was also established in each 

block, to test the effects of clipping of all treatment plots.  The amount of litter removed 

from native plots (190 g/m2) was only about 10% of the amount of cattail litter added 

(2000 g/m2), so it is unlikely that its removal had substantial impact on the results. 

Environmental measurements.  Available NH4
+ and NO3

- and net N 

mineralization measurements were taken in each plot in June and August 2005.  N 

mineralization was measured using 1 month in situ buried bag incubations.  On the first 

of each month, two soil cores (5 cm diameter x 10 cm depth) were taken from each plot 

and placed in a polyethylene bag; one bag was put on ice and transported back to the lab 

for processing, and the other was returned to the soil.  Incubated samples were retrieved 

from the field after 28 days.  In the lab, soils were immediately sieved (2 mm) and a 10 g 

subsample was extracted for 1 hour with 40 ml 2 M KCl.  Extracts were filtered 



 

 23

(Whatman GF/F) and frozen until colorimetric analysis for NH4
+ and NO3

- with a Bran 

Luebbe autoanalyzer 3 (Eaton et al. 1995).  A 10 g subsample was dried at 105°C for 

wet:dry ratio, and SOM was measured by combusting the dried sample for 5 hours at 

500°C.  Bulk density (g soil ml-1) in each plot was determined by subtracting the mass 

and volume of the coarse fraction from the total core mass and volume for the June 

incubated soil cores.  There were only slight block differences in bulk density, so 

available nutrients and mineralization rates were calculated on an aerial basis using the 

overall average bulk density (1.34 g ml-1).  Nitrate concentrations for all initial samples 

were zero or negligible, as is often the case in anaerobic wetland soils (Bowden 1987), so 

NH4
+-N (mg N m-2) in initial soil cores was used as a measure of available N.  N 

mineralization (mg N m-2d-1) was calculated as the increase in NH4
+-N plus NO3

--N over 

the 28 days.  

Available phosphorus was measured in August 2005 by extracting a 10 g 

subsample from the August initial soil core with 40 ml Troug’s solution (1 mM 

H2SO4+(NH4)2SO4 pH 3) for 1 hour.  The extract was centrifuged, filtered (0.45μm), and 

refrigerated (4°C) until colorimetric analysis on a Bran Luebbe autoanalyzer 3 (Eaton et 

al. 1995).   

Light penetration through the vegetation and litter was measured in late July 2005 

as photon flux (μmol s-1m-2) at the soil surface divided by total photon flux above the 

vegetation using a LI-COR quantum sensor LI-250A.  Light at the soil surface was 

measured at a point location by averaging over a 15 second period.  Two point locations 

were measured per plot and these two measurements were averaged.  All measurements 

were taken within one hour of solar noon. 
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Water depth and soil temperature (5 cm below the surface) was measured in each 

plot twice in June and twice in August.  Temperature measurements were taken within a 

1.5 hour block of time starting about 45 minutes after solar noon because after that soil 

temperature no longer warms substantially.  The water and temperature measurements 

were averaged by month. 

Plant measurements.  Plant community composition in the four factorial 

experimental treatments was quantified in mid July 2005 by stem counts of rooted 

vascular plants.  Shannon-Weiner diversity (H) was calculated for each plot using stem 

densities of native species, as above in the survey.  Similar to the survey, almost all 

species observed during the experiment (other than the transplanted T. x glauca) were 

native.  Exceptions included Agrostis gigantea (common) and possible exotic genotypes 

of Agrostis stolonifera and Phalaris arundinacea (both present in fewer than 5% of 

plots).  The maximum height of the native vegetation and of T. x glauca was measured in 

all plots in late July 2005.   

The control plots for the pretreatment clipping were not censused for stem 

densities due to time constraints; because the majority of the species are clonal and 

resprout from rhizomes, clipping is not likely to have a large effect on species richness 

and relative abundance.  

Statistical analysis.  The effect of treatment (live, litter, and live x litter 

interaction) and block on available NH4
+ and N mineralization was analyzed with 

repeated-measures ANOVA (SPSS 11) because data were taken in both June and August.  

Treatment and block effects on soil variables that were measured once (PO4
3-, SOM, 

light) and the native community measurements (stem density, species diversity, native 
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vegetation max height) were analyzed with ANOVA (SPSS 11).  Interaction terms 

including blocks in the ANOVAs were not investigated due to limited degrees of freedom 

(n=10 per treatment combination), and because blocks did not appear to respond 

qualitatively differently to the different treatments. 

The effect of pretreatment clipping was analyzed with a separate repeated-

measures or regular ANOVA in which the no-litter/no-live treatment plot (the control for 

the factorial experiment) was compared to the pretreatment clipping control plot.   

The effect of the experimental treatments on species composition of non-Typha 

spp. was analyzed using Canoco 4.0.  Methods were identical to those used for the field 

survey CCA with the following exceptions: 1. forward selection was not used because 

there were only three treatment variables, and 2. block was used as a covariable.  In 

general, in doing a CCA, species abundances are standardized by species and by plot, 

which converts abundances to relative abundances.  Thus, CCA tests whether species 

relative abundances are differentially affected by the treatments.   

To determine whether experimental results were similar to field observations, the 

species responses to litter from the 2005 transplant experiment were compared to those 

from the 2003 survey.  The Pearson correlation coefficient was calculated and a one-

tailed significance test was done to determine if species scores along the litter axis from 

the survey CCA ordination were positively correlated with those from the experiment 

ordination.  
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Results 

Coastal wetlands survey 

The environmental variables indicative of high nutrient conditions and low light 

(NH4
+, PO4

3-, SOM, litter depth, litter percent cover, soil temperature) covaried strongly 

with each other as reflected in axis 1 in the PCA (Fig. 2.2).  Axis 1 explains 60.8% of the 

variance in environmental variables.  Water depth varied only with axis 2, which explains 

15.1% of the variance, thus it was not correlated with any of the above variables (Fig. 

2.2). 

Live T. x glauca density was associated with high nutrients (NH4
+, PO4

3-, SOM) 

and low light environments (high litter depth, litter percent cover, low soil temperature) 

because it also loaded positively on axis 1 of the PCA (Fig. 2.2).  It was not related to 

water depth (Fig. 2.2).  Interestingly, despite the overall positive correlations between T. 

x glauca density and high nutrients, T. x glauca stems were not restricted to high nutrient 

locations; rather they were also present in low nutrient microsites and were also abundant 

in one of the sites which was fairly oligotrophic overall (Fig. 2.3).  

The stem density of the native community was negatively associated with T. x 

glauca density, litter depth, and the covarying environmental variables (NH4
+, PO4

3-, 

SOM, litter % cover, soil temperature), because it loaded negatively on axis 1 of the PCA 

(Fig. 2.2).  Shannon-Weiner diversity was negatively associated with litter percent cover 

and water depth on the PCA but was not associated with live T. x glauca density or any 

of the other environmental variables as shown by their orthogonal vectors in the PCA 

(Fig. 2.2).  However, diversity was strongly related nonlinearly to litter depth (R2=0.557, 

p<0.001), in a hump-shaped relationship with highest diversity at intermediate litter 
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depths (Fig. 2.4).  Weaker nonlinear (hump-shaped) relationships were also found 

between diversity and soil NH4
+ (R2=0.237, p=0.010) and SOM (R2=0.228, p=0.012) 

(Fig. 2.4).  Interestingly, diversity was not non-linearly related to T. x glauca stem 

density (R2=0.014, p=0.79).  Species richness showed correlation patterns similar to 

Shannon-Weiner diversity (data not shown).   

The results from forward selection in the CCA indicate that four of the eight 

environmental variables explain a significant and substantial (28.0%) portion of the 

variance in species composition: soil temperature, water depth, litter depth, and PO4
3- 

(Fig. 2.5).  Notably, density of live T. x glauca stems was not in this group.  Site effects 

(differences among the three marshes) explained 14.2% of the variance.  The first axis 

(13.9% of the variance) is a gradient of increasing litter and nutrient levels and 

decreasing light levels.  Many of the rush (Juncaceae) and sedge, bulrush, and spikerush 

(Cyperaceae) species that are typical wetland dominants were more common at the low 

litter/low nutrient/high light end of the gradient, including Juncus spp., Eleocharis spp., 

Schoenoplectus spp., and Carex viridula.  Grasses and forbs predominate at the high 

litter/high nutrient/low light end of the gradient, with the exception of four Carex species 

(Cyperaceae), which were positively associated with this axis.  These species are all 

fairly productive and generate a lot of litter themselves. 

  

Transplant experiment 

Effects of T. x glauca on the abiotic environment.  All significant treatment 

effects on the abiotic environment were brought about by litter, and not by the live T. x 

glauca transplants (Table 2.1, Fig. 2.6).  Addition of T. x glauca litter increased 
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extractable soil NH4
+ and N mineralization rates in both June and August measurement 

periods.  N mineralization was higher overall in June than August (time effect) and was 

more affected by litter in June (time*litter effect, F=6.533, p=0.017).  However, neither 

litter nor live T. x glauca affected soil extractable PO4
3- or SOM (Table 2.1, Fig. 2.6).   

Light penetrating to the soil surface was very significantly reduced by litter, from 

70% of full sunlight in no litter/no Typha plots to 1% in litter plots (Table 2.1, Fig. 2.6).  

Light was not affected by live Typha.   

Effects of T. x glauca on the plant community.  As with effects on the abiotic 

environment, all significant plant community effects were brought about by the litter 

treatment, not by live T. x glauca (Table 2.1).  Litter somewhat reduced species diversity 

and dramatically reduced total stem density by almost 75% compared to the no litter plots 

(Table 2.1, Fig. 2.7).  This was true at the species level as well; for 23 out of the 26 

species (doubletons and singletons excluded) litter reduced stem densities by 32-100%.  

Only three forbs increased in absolute abundance with the litter treatment.  In contrast, 

the presence of litter resulted in taller native vegetation by an average of 8 cm compared 

to no litter treatment plots (Fig. 2.7). 

CCA ordination of species composition and post hoc tests showed that Typha 

litter, but not live Typha or the interaction, significantly affected the plant community 

(Fig. 2.8).  Despite overall reduction in stem density by litter, species varied in their 

extent of depression by litter (Fig. 2.8).  A few of the dominant and common wetland 

species increased slightly in relative abundance (Schoenoplectus americanus, Juncus 

balticus, and Carex aquatilis) or were unaffected (Eleocharis smallii, E. erythropoda, J. 

nodosus, S. validus, and S. acutus) by litter addition.  However, ten species were 
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relatively negatively affected by litter, including the common species J. alpinus, J. 

articulatus, C. viridula, C. hystericina, and E. pauciflora.  

We compared species responses to litter from the 2005 transplant experiment to 

the 2003 survey to assess whether the litter treatment produced realistic community 

consequences.  The species scores along the litter axis from the survey ordination (CCA) 

were positively correlated with those from experiment ordination (r=0.409, p=0.046, 

n=18, one outlier was removed).  Thus, species that were more positively associated with 

litter in the survey were also more positively associated with litter in the experiment.   

Effects of T. x glauca litter on T. x glauca growth.  Litter did not affect the 

density of T. x glauca stems, with 23.8 ± 3.1 vs. 26.8 ± 1.2 stems in the no litter vs. litter 

treatments (Table 2.1).  However, T. x glauca stems grew taller when grown in the litter 

plots: their maximum height increased by 18.5 cm (Table 2.1, Fig. 2.9).   

Spatial heterogeneity and block effects.  Significant block effects in almost all of 

the analyses (Table 2.1) indicate considerable spatial heterogeneity in both the 

environmental properties and the plant community.  This is not surprising because the 

blocks were intentionally situated over a 0.5 km stretch of the marsh, to test the effect of 

T. x glauca in a variety of different abiotic environments and plant assemblages.  

However, most heterogeneity in nutrient properties (NH4
+, N mineralization,  PO4

3-, and 

SOM) was due to one block that had high clay content and higher elevation (no standing 

water) compared to other blocks.  Excluding this block from the analyses eliminated or 

weakened block effects without greatly changing litter treatment effects on soil nutrient 

properties.  Heterogeneity in native species density and diversity among the blocks was 

driven by water depth.  When water depth was added as a covariate to the ANOVAs, 
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block effects became non-significant or weaker, again without greatly changing the effect 

of the litter treatment.  Heterogeneity in native vegetation maximum height was due to a 

block dominated by the tall Schoenoplectus acutus; excluding this block from the 

analysis removed block effects, while litter remained significant.  Overall, much of the 

heterogeneity in environmental and plant community variables was explained by other 

variables that were measured in this study or by taking single “outlier” blocks out of the 

analysis.  Nevertheless, including covariates or excluding outliers did not change the 

strong effects of the litter treatment and the lack of effect of the live treatment. 

Controls for pretreatment clipping.  Because all experimental plots were clipped 

prior to treatment, we compared an additional control plot (clipping control) to the no 

live/no litter (treatment control) plot to assess the effect of this pretreatment clipping on 

the environment and plant community.  Most environmental and plant measurements 

were unaffected by this initial clipping, except for light, stem density, and native plant 

height.  The no live/no litter treatment plots had significantly more light penetration 

(70%) compared to the clipping control plots (39%, F1,9=36.19, p<0.001).  Although we 

did not measure stem density in the clipping control plots, it appeared to be reduced 

substantially in the no live/no litter treatment plots by approximately 50%.  The lower 

stem density and more light in the clipped experimental plots is not surprising, because 

they had not grown back to full cover nor had substantial native litter accumulated after 

only one growing season.  Despite this significant effect of clipping, the treatment effects 

of Typha litter on these two variables were so dramatic that results would not change 

qualitatively if plots were not clipped.  Also, the native vegetation was shorter by 20% in 

the no live/no litter treatment control than in the clipping control plots (F1,9=20.46, 
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p=0.001), however Typha litter effects on this variable were also small (an increase of 

10%). 

 

Discussion 

Elevated nutrients – invasion – native species loss 

The association of elevated nutrients, invasion, and native species loss is common 

in many wetland systems with many different wetland invaders, including Phragmites 

australis, Phalaris arundinacea, and Typha domingensis (Galatowitsch et al. 1999, 

Meyerson et al. 2000, Childers et al. 2003, Kercher et al. 2007).  Our results from the 

survey of T. x glauca invasion are also consistent with this association, but only if the 

relationship is mediated by litter.  Typha x glauca density was positively associated with 

high soil nutrients; however, native diversity and species composition were related only 

to litter and nutrient levels, not invader stem density.  The positive association between T. 

x glauca density and deep litter and the observation that most of the deep litter in the 

marsh is from Typha, suggests that T. x glauca affects native species non-trophically 

through litter production.  

We tested these non-trophic interactions, as well as competition and invader-

directed environmental change, with a transplant experiment, in order to begin to assess 

some of the possible causal pathways linking elevated nutrients, invasion, and native 

species loss (Fig. 2.1).  The results suggest that invaders can drive environmental change, 

because transplanted T. x glauca litter increased soil NH4
+ and rates of N mineralization.  

No evidence was found for resource competition between live T. x glauca and the native 

plant community; however, non-trophic effects were apparent because T. x glauca litter 
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decreased light and decreased native plant density and diversity and altered community 

composition by decreasing relative abundances of common wetland rushes and sedges.  

These results suggest that invaders can drive environmental change once they reach a 

new habitat.  The survey, as well as results from N.C. Tuchman, P. Geddes, D. Larkin, R. 

Wildova, K.J. Jankowski, and D.E. Goldberg (unpublished manuscript), indicates that T. 

x glauca is able to disperse to and establish in oligotrophic marshes and microhabitats.  

Therefore, model 5 is a potential pathway that may explain elevated nutrients, invasion, 

and native species decline in this system (Fig. 2.1).  Model 3 may occur as well, as 

anthropogenic inputs have been demonstrated in some invaded systems (Davis and 

Ogden 1994, Drexler and Bedford 2002).   

Many of the worst wetland invaders in N. America, Phragmites australis, 

Phalaris arundinacea, Typha domingensis, and T. angustifolia share characteristics with 

T. x glauca, such as tall stature, fast growth rate, clonality, and litter production and 

accumulation.  Thus, it is plausible that the mechanisms behind T. x glauca’s association 

with elevated soil nutrients (litter production/decomposition) and low species diversity 

(litter accumulation/light reduction) may be applicable to the other wetland invaders as 

well.  Interestingly, Lythrum salicaria is a notable exception, with highly decomposable 

leaves leading to little litter accumulation (Emery and Perry 1996); therefore changes in 

diversity associated with Lythrum invasion may not be mediated through litter.  Below, 

we discuss the two components, nutrient increase and native decline, of the invader-

directed pathway supported by this study (model 5) and their implications both for this 

system and for wetland invaders more broadly. 
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Mechanisms behind invader-directed nutrient increase 

Wetland invaders are commonly associated with increased nitrogen cycling 

(Ehrenfeld 2003), which has been attributed to oxygen release by the invader 

(Phragmites australis) (Windham and Lathrop 1999, Windham and Ehrenfeld 2003), 

oxygen and exudate release (Phalaris arundinacea) (Edwards et al. 2006), and SOM 

quality and quantity (Lythrum salicaria)  (Fickbohm and Zhu 2006).  Studies in upland 

systems have also found that invasives are often associated with increased soil nitrogen 

mineralization due to their higher litter quality or quantity (Ehrenfeld 2003).  However, 

all of these previous studies (with the single exception of the constructed wetland of 

Edwards et al. (2006)) are correlative and the mechanism actually causing the effect was 

not experimentally manipulated or measured.   

Consistent with previous reports, our survey data indicated that soil nutrients 

(NH4
+, PO4

3-, SOM), T. x glauca density, and litter depth were all positively correlated.  

The experiment suggests that the mechanism underlying this pattern could be the high 

litter production of the invader, which in turn increases extractable N and N 

mineralization rates, rather than any effect of live plants.  While the experimental 

addition of litter did not result in significant increases in SOM and PO4
3- within a year 

after deposition, such effects may well appear over the long term as the litter is further 

decomposed and incorporated into the soil (Schlesinger 1997, Bridgham et al. 1998). 

The rapidity with which the litter addition treatment increased extractable N and 

mineralization rate might seem surprising because most litter bag studies see an initial 

period of immobilization rather than mineralization after deposition (Schlesinger 1997, 

Windham and Ehrenfeld 2003).  However, these studies follow immobilization in the 
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litter itself rather than in the underlying soil, as we did in this study.  We hypothesize that 

the T. x glauca litter may be leaching labile organic compounds to the pore water of the 

sediments below.  Consistent with this hypothesis, preliminary sampling of pore water 

showed that litter plots had significantly higher dissolved organic carbon and total 

dissolved nitrogen (but not dissolved organic nitrogen) compared to plots without litter 

(and live T. x glauca had no effect) (Farrer, unpublished data); however more extensive 

sampling is necessary.  This short term positive effect of litter addition on nutrient 

cycling rates has not been observed in forest manipulations (Holub et al. 2005), but it 

may be more common in wetlands because standing water tends to accelerate 

fragmentation, decomposition, and transport of litter leachate to the soil (Welsch and 

Yavitt 2003).  Although this leaching process may be short-term, each season the 

addition of fresh litter as Typha plants senesce will provide the soil with leachate; thus 

this mechanism of nutrient increase may be particularly important in early stages of 

invasion.   

Long-term litter dynamics may also lead to increases in soil nutrient availability.  

Typha and other wetland invasives are highly productive, generating large quantities of 

litter which are large stores of organic N.  We suggest that Typha litter will also increase 

soil nutrient availability in the long term through the release of the N from the litter via 

mineralization and through its incorporation into SOM, which is an N source and 

increases cation exchange capacity.   

Interestingly, live T. x glauca plants do not affect nutrient cycling or nutrient 

pools, even though stem densities in experimental plots are similar to those found in T. x 

glauca monocultures in the field.  Therefore, neither resource depletion due to uptake nor 
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facilitation of N cycling due to oxygenation or root exudates (Windham and Lathrop 

1999, Windham and Ehrenfeld 2003, Edwards et al. 2006) appears to be important in this 

system.   

 

Mechanisms behind decline in native species 

Live T. x glauca plants in the experiment do not affect native species density, 

diversity, or species composition.  Moreover, neither nutrients nor light is reduced by live 

plants, suggesting that resource competition (i.e. column 2, Fig. 2.1) is not a likely 

mechanism of native species decline in this system.  Light limitation is commonly 

thought to be important in native species decline in wetlands either because the invader is 

taller than the natives (Lenssen et al. 2000, Drexler and Bedford 2002, Woo and Zedler 

2002) or because of the growth/allocation behavior of the native plants when grown with 

the invader (Green and Galatowitsch 2002, Minchinton and Bertness 2003).  In most 

studies, however, light levels are not measured, and because light reduction also depends 

on leaf arrangement and orientation as well as stem density, height comparisons alone are 

insufficient to infer light limitation (Güsewell and Edwards 1999).   

In contrast, non-trophic effects through litter (column 3, Fig. 2.1) seem to be the 

primary mechanism of reduction in native density and diversity and changes in species 

composition.  Non-trophic effects of invasive plants are not considered by most invasive 

species studies, despite litter being recognized as an important factor in structuring native 

plant communities (Facelli and Pickett 1991, Xiong and Nilsson 1999).   Only two 

previous field experiments on invasive species (T. angustifolia and Phragmites australis) 

have manipulated litter independently of live plants (Hager 2004, Minchinton et al. 
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2006).  Our results and the results of both previous studies suggest that suppression of 

growth is at least as strong by litter as by live plants.  Negative effects of litter on plant 

establishment and growth is likely due either to light reduction (98% in our study) and/or 

to physical obstruction of growth (Lenssen et al. 2000). 

 

Positive feedbacks 

When a plant affects environmental conditions, these effects are likely to 

feedback to influence the performance of that plant (Bever et al. 1997, Van Breemen and 

Finzi 1998, Ehrenfeld et al. 2005).  A feedback is positive if a plant modifies the 

environment in a way that benefits itself, by increasing its population or individual 

growth (Ehrenfeld et al. 2005).  Positive feedbacks may be a very effective mechanism of 

invasion (Ehrenfeld 2003, Levine et al. 2006); and positive feedbacks through nutrient 

dynamics have been hypothesized as a mechanism of invasion for Berberis thunbergii 

and Microstegium vimineum in deciduous forests (Ehrenfeld et al. 2001), Bromus 

tectorum invasion in arid grasslands (Sperry et al. 2006), as well as a number of invaders 

in Hawaii (Allison and Vitousek 2004).   

Feedbacks can be incorporated into the framework of models presented in Fig. 

2.1.  When the invader affects the environment, this influences native species, as shown 

by the arrow from the environment to the natives.  However, this environmental change 

also affects the invader’s own growth; therefore an arrow should also point from the 

environment back to the invader (this was not included in Fig. 2.1 for simplicity).  The 

results from this study suggest that T. x glauca may produce a positive feedback through 

its litter.  Although Typha litter had no effect on T. x glauca stem density, it significantly 
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increased the growth of individual T. x glauca stems, possibly due to the increased N 

under the litter.  Thus, high litter production by T. x glauca seems to create a high 

nutrient/low light environment which benefits itself.   

The low light under large amounts of litter does not negatively affect T. x glauca 

probably due to its large rhizomes compared to native species, which provide substantial 

energy reserves allowing new shoots to quickly grow through the shaded litter layer.  

Also, T. x glauca stems have a large diameter and are relatively stiff when young, so new 

shoots would be able to push through the obstructing litter layer to reach the light.  Once 

stems penetrate the litter layer, they can take advantage of the elevated N.   

 

Implications 

This study demonstrates that invaders can increase nutrients in wetlands and 

therefore act as the driver of environmental change, and that nontrophic effects can have 

much stronger negative effects on native plants than competition for resources.  Thus, 

model 5 (Fig. 2.1) very likely contributes to T. x glauca invasion.  Nevertheless, human-

directed eutrophication could also play a role in T. x glauca invasions (i.e., model 3); the 

models are not mutually exclusive.  Regardless of the source, increased nutrients would 

promote invasion due to the rapid and positive response of T. x glauca (Woo and Zedler 

2002), which would in turn promote litter production and suppression of native species.  

Anthropogenic nutrient input may, in fact, be important in initiating the positive feedback 

loop by T. x glauca and speed the spread of the invader though the site.  However, our 

results suggest that the decline in native species will occur only after litter builds up, via 

nontrophic effects.   
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While anthropogenic nutrient input probably can and does promote invasion by T. 

x glauca and consequent local diversity decline, the results from this study indicate that it 

is not necessary: T. x glauca can produce a high nutrient, low density/diversity wetland 

community all by itself.  This has very different management and remediation 

implications than a purely human-directed invasion.  For example, it indicates that a 

cessation of anthropogenic nutrient loading, although it may slow the process, will not 

prevent T. x glauca from expanding, elevating nutrient levels, and decreasing the 

diversity in wetlands.  Because transplants grew well even in the low nutrient marsh 

conditions (in the no-litter plots) and because of the ability of T. x glauca to invade 

oligotrophic sites (this study, and N.C. Tuchman, P. Geddes, D. Larkin, R. Wildova, K.J. 

Jankowski, and D.E. Goldberg, unpublished manuscript) even pristine wetlands, removed 

from anthropogenic influence, are at risk of invasion.  Because of the many 

environmental impacts of T. x glauca, the removal of the living T. x glauca plants will 

not restore wetlands; nutrients will still be elevated in the soil, rhizomes and aboveground 

litter will continue to contribute to elevated N mineralization, and any remaining litter 

will still suppress native plant growth.  Moreover, if only live T. x glauca is removed 

from a site, the remaining environmental conditions may make re-invasion much more 

likely. 

 The similarities in morphology, growth response, and litter production between T. 

x glauca and other large, clonal wetland invaders like Phragmites, Phalaris, and other 

Typha species suggest that the mechanisms behind nutrient increase and native species 

decline found in this study may be more broadly applicable.   
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Table 2.1.  Effect of litter and live T. x glauca treatments on environmental and 
community characteristics.  Data shown are F-statistics from ANOVAs with significance 
indicated by asterisks (***p<0.001, **p<0.01, *p<0.05).  NH4

+ and N mineralization 
were measured in June and August and tested with repeated measures ANOVA.  
Interactions of the treatments and block with time are not shown, but are mentioned in the 
text if significant.  All other variables were tested with ANOVA.   
 

 
Variable 

Error 
df 

Litter 
(df=1) 

Live 
Typha 
(df=1) 

Litter x 
Live 

(df=1) 

Block 
(df=9) 

Time 
(df=1) 

NH4
+ 27 7.13* 0.29 1.56 3.36** 0.282 

N mineralization 27 59.66*** 0.67 0.85 5.79*** 41.72***
PO4

3-  27 2.06 0.07 0.68 4.30** -- 
SOM 27 1.70 0.34 1.29 5.27*** -- 
Light 27 426.15*** 1.59 1.54 1.33 -- 
Stem density 27 20.96*** 0.70 0.09 4.08** -- 
Species diversity 27 4.69* 0.65 0.54 6.48*** -- 
Native vegetation 

max height 
27 5.30* 1.41 2.15 11.97*** -- 

Typha density 9 0.85 -- -- 1.05 -- 
Typha max height 9 16.19** -- -- 1.17 -- 
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Fig. 2.1.  Five models of causal relationships explaining the common pattern of invasion, 
environmental change, and decline in native species.  The models are organized based on 
the initial driver of environmental change (left axis), and the mechanism of effect on 
native species (top axis).  Either humans (models 1-3) or the invader (models 4-5) is the 
initial driver of the environmental change.  Native species decline due to human changes 
in environment (model 1), resource competition from the invader (models 2, 4), or 
invader changes in the environment (non-trophic effects of the invader, models 3, 5).  
The solid lines indicate the pathway of native species decline, while the dashed lines 
represent concomitant changes with no direct effect on native species.  None of the 
models are mutually exclusive and multiple causal pathways could contribute to the 
observed field pattern.
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Fig. 2.2.  Principle components analysis (PCA) ordination of environmental variables 
(solid lines) including T. x glauca density (typgla) from the field survey.  Native stem 
density, species richness, and diversity were added as supplementary variables (dashed 
lines), so that they do not influence the ordination, but so that their correlations with the 
environmental variables can be visualized.  Axis 1 explains 60.8% of all variation in 
environmental variables, axis 2 explains an additional 15.1%.   
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Fig. 2.3.  Typha x glauca density and extractable nitrogen levels in the field survey.  Note 
that T. x glauca is not restricted to high nutrient microsites and is abundant even in a site 
which is fairly oligotrophic overall (Cecil Bay). 
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a) 

 
 

b) 

 
 

c)  

 
 
Fig. 2.4.  Significant non-linear relationships between Shannon-Weiner diversity and 
environmental variables in the field survey. 

R2=0.557 
P<0.001 

R2=0.237 
P<0.05 

R2=0.228 
P<0.05 
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Fig. 2.5.  Biplot of environmental variables and species scores from the canonical 
correspondence analysis (CCA) ordination of native species densities from the field 
survey.  Axes 1 and 2 explain 13.9% and 8.4% of the total variation, respectively.  The 
four environmental variables together explain 28.0% of the total floristic variation, and 
site explains 14.2%.  Significant environmental variables were temperature (8.7% of the 
floristic variation), water depth (8.0%), litter depth (4.0%), and PO4 (2.9%); non 
significant variables were live T. x glauca density, litter % cover, NH4, and SOM.  The 
most important (in fit and weight) 31 of 45 species are shown in the graph below.  
Abbreviations for species names are the first 3 letters of the genus and species:  
agapur=Agalinis purpurea, astspp=Aster spp., calcan=Calamagrostis canadensis, 
camapa=Campanula aparinoides, caraqu=Carex aquatilis, carhys=Carex hystericina, 
carlas=Carex lasiocarpa, carstr=Carex stricta, carver=Carex viridula, eleell=Eleocharis 
elliptica, elepau=Eleocharis pauciflora, elesma=Eleocharis smallii, equflu=Equisetum 
fluviatile, glystr=Glyceria striata, Impcap=Impatiens capensis, irispp=Iris spp., 
junalp=Juncus alpinus, junart=Juncus articulatus, junbal=Juncus balticus, 
junnod=Juncus nodosus, lycuni=Lycopus uniflorus, lysthy=Lysimachia thyrsiflora, 
menarv=Mentha arvensis, popbal=Populus balsamifera, potfil=Potamogeton filiformis, 
potgra=Potamogeton gramineus, potans=Potentilla anserina, schacu=Schoenoplectus 
acutus, schame=Schoenoplectus americanus, schval=Schoenoplectus validus, 
solspp=Solidago spp. 
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a)  June NH4
+ b)  August NH4

+ 

 

 
 
 
 
 
 
 
 
 
c)  June N mineralization  d)  August N mineralization 
 
 
 
 
 
 
 
 
 
 
e)  PO4

3-  f)  % of full sunlight 
 

 
 
 
 
 
 
 
 
g)  SOM 
 
 
 
 
 
 
 
 
 
 
Fig. 2.6.  Effect of transplanted T. x glauca plants and litter on soil NH4

+ pools in June (a) 
and August (b), N mineralization in June (c) and August (d), soil PO4

3- pools (e), light (f), 
and SOM (g).  Numbers are means +/- SE (n=10).  For ANOVA results see Table 2.1. 

0

20

40

60

80

100

120

No litter Litter

m
g
 N

H
4-

N
 m

-2

0

5

10

15

20

No litter Litter

m
g
 N

 m
-2

d
-1

0

10

20

30

40

50

60

No litter Litter

m
g
 P

O
4
-P

 m
-2

0

0.01

0.02

0.03

0.04

No litter Litter

S
O

M
 (

g
 S

O
M

 g
-1

 s
o
il
)

0

20

40

60

80

100

120

No litter Litter

m
g
 N

H
4-

N
 m

-2
0

5

10

15

20

No litter Litter
m

g
 N

 m
-2

d
-1

0

20

40

60

80

No litter Litter

%
 l
ig

h
t



 

 47

a) 

0

200
400

600
800

1000

1200
1400

1600

No litter Litter

S
te

m
 D

en
si

ty
 (

#
 m

2
- )

 
b)                                                 

0

0.2
0.4

0.6
0.8

1

1.2
1.4

1.6

No litter Litter

S
h
an

n
on

-W
ei

n
er

 d
iv

er
si

ty

 
c)  

0

20

40

60

80

100

No litter Litter

S
te

m
 m

ax
 h

ei
g
h
t 

(c
m

)

 
 
Fig. 2.7. Effect of transplanted T. x glauca plants and litter on stem density (a), species 
diversity (b), and maximum stem height (c) of the native vegetation (mean +/- SE, n=10).  
For ANOVA results see Table 2.1.   
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Fig. 2.8. Biplot of treatments and species scores from the CCA ordination of native 
species relative densities in the experimental plots.  All 26 species are shown.  Species 
with asterisks showed an increase in absolute abundance with the litter treatment as well 
as relative abundance.  Axes 1 and 2 explain 3.0% and 6.0% of the total floristic 
variation, respectively.  All treatment variables (litter, live, litter x live) together 
explained 4.5% of the floristic variation, while block explained 67.5%.  Litter was the 
only treatment that explained a significant amount of the floristic variation by itself 
(3.0%); live T. x glauca and live x litter interaction had no significant effect on species 
composition.  Abbreviations for species names are as in Fig. 2.5 with the following 
additions: agrgig=Agrostis gigantea, agrhye=Agrostis hyemalis, carbeb=Carex bebbii, 
cicbul=Cicuta bulbifera, eleery=Eleocharis erythropoda, eutgra=Euthamia graminifolia, 
leeory=Leersia oryzoides, najfle=Najas flexilis, sagrig=Sagittaria rigida. 
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Fig. 2.9. Maximum height of T. x glauca transplants in no litter and litter addition plots 
(means +/- SE, n=10).  For ANOVA results see Table 2.1. 
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CHAPTER III

Time lags and the balance of positive and negative interactions in driving
grassland community dynamics

Abstract

Both facilitative and competitive interactions occur simultaneously among plants,

and the net balance between them can vary over time.  Despite this, recent model-fitting

studies have found that negative interactions predominate.  This suggests that more

complex models may be necessary to uncover facilitation.  Here we fit models including

seasonality, interannual variation, and time lags to survey data to test for patterns in

positive and negative interactions among plants in a Michigan dry sand prairie.  We

hypothesized that interactions would be generally facilitative in this dry environment.

Results indicate that most immediate (direct) interactions among dominant species are

actually competitive, although interactions were more facilitative over the drier summer

season.  Interestingly, lagged density dependence was strong for all species in both

seasons; it was positive for conspecific interactions, and both positive and negative for

heterospecific interactions.  Observed lagged density dependence is likely due to effects

from litter and/or effects from past storage in rhizomes.  Conspecific immediate and

lagged interactions tended to be stronger than heterospecific interactions, suggesting that

population dynamics in this community are driven mostly by conspecifics.  Overall, the

presence of strong lagged density dependence in this system suggests it may be more

widespread in plants than previously thought.



55

Introduction

Both facilitative and competitive interactions have been demonstrated to occur

among individual plants and are thought to influence community structure and dynamics.

Facilitative and competitive mechanisms can operate simultaneously, and the net balance

between them can change among environments, over time, and among different pairs of

species (Bertness and Callaway 1994; Brooker and Callaghan 1998; Callaway and

Walker 1997).  Experimental research on competition and facilitation has typically

assessed individual growth under controlled conditions over a single or few growing

seasons (Brooker et al. 2008; Goldberg and Barton 1992; Gurevitch et al. 1992; Maestre

et al. 2005).  It is therefore not clear whether and how these interactions affect population

and community dynamics in the field, and whether the balance of facilitation and

competition at these levels is predictably patterned over time.

A different approach used by recent studies to measure species interactions at the

population level is to fit dynamical models to field survey data (Adler et al. 2006;

Freckleton and Watkinson 2001; Freckleton et al. 2000; Law et al. 1997; Rees et al.

1996).  This approach uses the natural variation in species abundances in space and time

to estimate conspecific and heterospecific interaction coefficients.  Using this method, the

species interactions in a variety of communities have been found to be predominantly

negative (competitive), for example, in an annual pasture community (Freckleton et al.

2000), a perennial montane grassland (Law et al. 1997), and a mixed-grass prairie (Adler

et al. 2006).  Among sand dune annuals, species effects on the growth component of the

population model are negative but effects on survival are positive (Rees et al. 1996).

The prevalence of competitive interactions in model-fitting studies contrasts with
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many manipulative experiments, which often find facilitative effects of neighbor plants

on individual plant growth and, especially, survival.  These facilitative interactions are

sometimes more prevalent in, although not restricted to, stressful environments (Bertness

and Callaway 1994; Goldberg et al. 1999; Maestre et al. 2005).  This discrepancy

between experimental and model-fitting studies suggests that more complex population

dynamics models that separate different life history stages or time periods might well

uncover positive interactions.  For example, Rees et al. (1996) detected positive

interactions in models that separated effects on growth and survival, and Adler and

HilleRisLambers (2008) found more facilitative effects of neighbors on recruitment than

survival when analyzed separately.

Similarly, when model-fitting studies allow interaction coefficients to differ

among years, they often uncover some positive interactions and find that interactions can

vary in direction and magnitude over time (Rees et al. 1996).  This variability is often

related to interannual variability in climate.  Specifically, facilitative interactions are

found in drier years (Adler et al. 2006) or competitive effects are reduced during extreme

drought (Freckleton et al. 2000).  This is consistent with Bertness and Callaway’s (1994)

abiotic stress hypothesis that facilitation dominates when environmental conditions are

harsh while competition dominates when conditions are benign, however this idea has

been much debated (Brooker et al. 2008).  The abiotic stress hypothesis could also be

extended to seasonal variability, that is, competition and facilitation may vary over the

growing season due to seasonal fluctuations in environmental stress (Brooker and

Callaghan 1998).  Stress can fluctuate predictably and widely over the annual cycles,

although this has not yet been investigated using model-fitting techniques.
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The abiotic stress hypothesis is based on the idea that plants have multiple effects

on the environment and the relative importance of different mechanisms depends on

environmental conditions (Bertness and Callaway 1994).  For example, plants can

simultaneously reduce soil moisture, nutrients, and light through resource uptake but

positively affect soil moisture and temperature by shading.  In non-stressful, cool/wet

environments, competition will dominate because plants are rapidly depleting nutrients

and light, while the positive effects of shade are small because moisture and temperature

are not limiting.  However, under stressful, hot/dry conditions, shade’s influence on

moisture retention and temperature dominates over uptake; thus the net effect of a

neighbor is facilitative.

As with interactions that occur directly among live plants, interactions that occur

through plant litter can be a balance of positive and negative mechanisms operating

simultaneously.  Litter can facilitate plant growth through soil moisture retention

(Holzapfel and Mahall 1999; Violle et al. 2006), temperature amelioration (Eckstein and

Donath 2005), and nitrogen input to the soil (Belsky 1994; Garcia-Moya and McKell

1970).  It can also inhibit plants due to light reduction and physical blocking (Facelli and

Pickett 1991; Foster and Gross 1997).  While litter is argued to be important in

structuring plant communities (Facelli and Pickett 1991; Xiong and Nilsson 1999), again

much experimental data is on an individual level.

One way to test for the effects of litter on community dynamics is to test for time-

lagged density dependence in models, because the amount of litter at any given time

should be correlated with live plant density in the past.  This essentially breaks down the

interaction coefficient into an immediate (or direct) interaction and a lagged interaction.
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Although rarely tested in plants, Brook and Bradshaw (2006) included 30 plant species in

a compilation of mostly animal population data sets in a study that tested lagged density

dependence (1198 species in total).  They found that 7-30% of the plant species exhibited

lagged density dependence depending on the method of model selection.  Other studies

have found negative delayed density dependence in annual plants (Crone and Taylor

1996; Gonzalez-Andujar et al. 2006) or that including litter pools in models is necessary

to predict plant population dynamics (Molofsky et al. 2000; Tilman and Wedin 1991).

In fact, in one case the effect from litter overwhelmed the effect of immediate density

dependence (Molofsky et al. 2000).  In contrast to these relatively few examples in

plants, delayed density dependence is commonly tested for and found in animal

populations (Brook and Bradshaw 2006; Turchin 1990; Zeng et al. 1998).  Interpretation

of delayed density dependence may be different and more complex for plant populations,

because it not only can reflect delayed competition (e.g., due to sequestration of

resources) or interaction with natural enemies; it can also reflect the effects of the dead

plant material itself or delayed positive effects from past storage of resources.

In this study, we investigate patterns in the balance of positive and negative

interactions by fitting population growth models to community dynamics data derived

from a small-scale permanent transect in a dry sand prairie in Michigan.  Our goal is to

understand processes underlying the dynamics in this system by breaking down the

interaction coefficients to test how seasonality, yearly variation, and time lags influence

the balance of competition and facilitation.  Due to the hot, dry, harsh environment in this

system and based on the abiotic stress hypothesis (Bertness and Callaway 1994), we

hypothesize that 1) immediate interactions among species will be primarily facilitative, 2)
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interactions over the drier summer will be more positive than over the wetter fall/spring,

and 3) lagged interactions will be facilitative because of effects from litter.

Methods

Study system and field survey

Our study system is a native grassland in the dry sand prairie of the northern

lower peninsula of Michigan near the city of Indian River (latitude 45°23'26"N, longitude

84°35'41"W).  The dry sand prairie ecosystem is interspersed with jack pine barrens in

the sandy soils of the interior of Michigan’s lower peninsula (Kost et al. 2007), and our

study site is a patchy mosaic of grassland, shrub (Arctostaphylos uva-ursi, bearberry;

Prunus spp., cherry; Amelanchier arborea, serviceberry; Comptonia peregrina, sweet

fern), jack pine (Pinus banskiana), and planted red pine (Pinus resinosa).  It is located on

a glacial outwash plain with excessively well-drained, droughty, sandy soil (Albert 1995)

that is very nutrient poor with 3% soil organic matter (Farrer, unpublished data).  The

combination of low nutrients and organic matter, sandy soil, frequent droughts, and

growing season frosts makes this ecosystem fairly stressful overall (Kost 2004).  The site

has not burned in over 50 years (Michigan Department of Natural Resources, personal

communication).  We include in the model the dominant species in the grassland, which

make up over 90% of the stems: Carex pensylvanica (Pennsylvania sedge), Danthonia

spicata (poverty grass), Schizachyrium scoparium (little bluestem), Hieracium

piloselloides (yellow hawkweed), and Cladina spp. (reindeer lichen).  The three dominant

graminoids are native to grasslands and open canopy habitats throughout North America

and are characteristic of dry sand prairie (Kashian et al. 2003; Kost et al. 2007).
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Hieracium piloselloides is an exotic from Europe; it tends not to be invasive and in fact is

the rarest of the four species in the grassland.  Carex, Danthonia (C3 grass), and

Hieracium all flower primarily in June, while Schizachyrium (C4 grass) flowers in

September.  Cladina spp., reindeer lichens, are dominants in boreal systems, and are

important components in this system occurring at about 30 percent cover.  Less common

species not included in the model are Panicum depauperatum (starved panic grass),

Oryzopsis pungens (mountain ricegrass), Campanula rotundifolia (bluebell bellflower),

and Solidago spp. (goldenrod).  Nomenclature follows Voss (1972; 1984; 1997).

We censused a permanent transect (0.75 m by 4.5 m) for four years (2005-2008)

two times per year (mid-June and mid-August) by overlaying a 3×3 cm grid over the

transect and counting rooted stems in all cells (3750 total cells).  Lichen was assessed in

each cell on a scale of 0-4 based on the number of quadrats of the cell in which it was

present.  Although this is a fairly species-poor community overall, at the small scale it

can be diverse with up to 3 plant species in a single 3×3 cm grid cell.  Grid cell size was

chosen to be 3×3 cm, because the plants in this system are generally small (height range 2

cm – 25 cm for vegetative growth) and many stems (up to 29) can be found in a 3×3 cm

area.  This small size also leaves the option of collapsing the data or using competition

kernels if larger areas were desired.  Law et al. (1997) successfully used a similar scale

grid (3.3×3.3 cm) for their grassland survey designed to model competitive interactions.

Despite the small total area of the transect (3.375 m2), we carefully chose a location

within the grassland that was representative of the community in the rest of the site.  For

example, species abundance distributions in the 3×3 cm grid cells were similar to another

same-sized transect laid out in the site approximately 100 m away; however
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Schizachyrium and Hieracium switched in rank abundance.  Also, maximum densities in

the 3×3 cm grid cells for each species were nearly identical (within one stem) to

maximum densities in other small plots throughout an 80×80 m area that were selected

specifically to contain dense patches of the species.  Although no environmental

measurements were taken in this transect, the mean and range of soil organic matter

measurements in the other same-sized transect (mean 2.9%, range 1.8-5.0%, n=105) was

similar to that throughout the 80×80 m study area (mean 2.9%, range 1.7-6.2%, n=120)

suggesting that the range of soil conditions in a 3.375 m2 area is representative of the

grassland as a whole.

This system has a short growing season of about 100 days, from late-May to

early-September (Eichenlaub et al. 1990).  The spring (May to mid-June) has milder

temperatures and more rain than the summer (mid-June to mid-August), which is hot and

dry. The fall (mid-August to September) is also cool and wetter.  All herbaceous

perennials in this system tend to grow rapidly in the spring, but decline in aboveground

density over the hot summer, and exhibit some regrowth in the fall (personal

observation).  All aboveground tissues of herbaceous plants senesce over the winter.  We

will refer to June to August growth as “summer” and the growth from August to the

following June as “fall/spring”; the fall/spring growth mainly includes growth that occurs

in the spring but also includes any regrowth (or storage from the regrowth) at the very

end of the growing season following the August census.

Model structure

We formulated a family of models of the growth and spread of each of the four
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plant species within each season, fit various models in this family to the data by

maximum likelihood, and evaluated the relative weight of the evidence in favor of each

model using the Akaike Information Criterion (AIC).  We fully describe the family of

models here.  In the following, subscripts i, j range over species, subscripts x, y over grid

cells, and t over time.  Odd times (t = 1, 3, 5, 7) refer to spring censuses; even times (t =

2, 4, 6, 8) to fall censuses.  Let Ni,x,t denote the density of species i in cell x at time t.  All

our models assume that

Ni,x,t ~ negbin(µi,x,t, ki,x,t), (1)

i.e., that Ni,x,t is a negative binomial random variable with mean µi,x,t and size parameter

ki,x,t (and therefore with variance µi,x,t (1 + µi,x,t / ki,x,t)).  Each model predicts next season's

population densities in terms of three factors: (i) density-dependent growth within each

cell, (ii) short-distance colonization by clonal ingrowth from neighboring cells, (iii) long-

distance colonization by seed (Eq. 2).  Because we did not distinguish among these types

of recruitment in the field survey, parameters describing each of these components in the

model are estimated simultaneously by maximum likelihood.  Specifically, in each

model, the expected value of Ni,x,t is of the form

€ 

µi,x,t = (1− di,t−1)Gi,x,t−1 +
di,t−1
8

Gi,y,t−1 + ci,t−1,
y
∑ (2)

where di,t–1 is the fraction of shoots that emigrate from each cell over the season t–1 to t,

Gi,y,t–1 models clonal growth, the sum is taken over the neighboring 8 cells, and ci,t–1 is

colonization by seed over the same time period.  We use a variant of the Ricker model for

density dependent clonal growth:

(i)
(ii)

(iii)
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€ 

Gi,x,t = Ni,x,t exp ri,t + α ij,l,tN j ,x,t−l

l

∑
j
∑

 

 
  

 

 
  . (3)

Here, ri,t is the intrinsic growth rate of species i at time t.  The sums are taken over

species j and time-lags l, respectively, and αij,l,t represents the per capita effect of species

j on the growth of species i at lag l and time t.  We refer to α’s as “interaction

coefficients”, similar to “competition coefficients” except positive values of α correspond

to facilitation, negative values to competition.  We examined models including

immediate density dependence (l = 0), and lags of up to one full year (l ≤ 2).  Although

we did not model lichen growth because it is very slow (a few mm per year), we did

include the effects of lichen on the four focal species.

We used the negative binomial distribution (Eq. 1) because it allows for us to

model the variance independently of the mean (White and Bennetts 1996); our data were

overdispersed compared to a Poisson distribution (in which the variance equals the

mean).  Specifically, we assumed that the size parameter k was linearly related to density:

ki,x,t = k0
i,t + k1

i,tNi,x,t. (4)

This allowed variance to decrease as density increased, because exploratory data analysis

showed grid cell populations with low densities tended to be much more variable than

those with high densities.  Note that the coefficients of this relationship are independent

of cell location x.

Within this family of models, seasonal and interannual variability can be

accounted for by allowing the parameters ri,t, di,t, ci,t, αij,l,t, k
0

i,t, k
1

i,t to vary with t.  We

also explicitly consider models with seasonality only (and no interannual variability) by
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requiring ri,t = ri,t–2 for all t, and similarly for the other parameters.

In the models investigated in this paper, species interact directly only with other

individuals sharing the same 3×3 cm grid cell.  For each target species, we explored

models with a spatial interaction kernel (an exponential kernel with a cutoff) so that

plants interacted with individuals outside of their grid cell, both with and without time

lags.  Surprisingly, in only one case did the spatial model perform substantially better

(ΔAIC > 4) than non-spatial models, therefore only models with non-spatial competition

are presented here.

In these models, we assume that demographic parameters (r, d, c) and interaction

coefficients (α’s) are constant throughout space (within a given time period).  Although

unmeasured spatial heterogeneity in soil or microtopography may affect parameter values

and contribute to estimation error, there is no reason to expect that this spatial

heterogeneity would result in consistent differences between immediate and lagged

coefficients or between seasons and years.

Model analysis

The statistical software R (R Development Core Team 2008) package bbmle

(Bolker 2008b) was used to fit the models using maximum likelihood.  The grid cells on

the perimeter of the transect were not included as target cells, but were included as

neighboring cells and so allowed to influence clonal ingrowth.  All interior grid cells

were used for parameter estimation.

To test whether time lags should be included in models and whether parameters

should vary among years, AIC was used to compare models.  AIC tests whether more



65

parameters (time lags or yearly coefficients) should be included in a model by penalizing

based on the number of parameters added, so as not to overparameterize models.  AIC

was chosen because most models were not nested, so likelihood ratio tests could not be

used.  Also, the sample size in this data set is very large (3404 grid cells for each census,

not including perimeter cells).  When sample size is large, the Bayesian Information

Criterion (BIC) is over-conservative and tends to choose the model with fewest

parameters as the best model (Lindsey 1999).  It is generally accepted that models within

2 AIC of each other are equivalent (Bolker 2008a), so we do not make a distinction

among models this close in AIC.

Four different types of time lags were explored for each season: 1) a lag from the

previous season only, 2) a lag from the previous year only, 3) a model with both seasonal

and annual lags and different interaction coefficients for both, and 4) a model with both

lags but with the same interaction coefficients for both.  We compared these four lagged

models with a model that did not include any lagged coefficients using AIC (models (a)

through (e) in Table 3A1.1, see Appendix 1 for a list of parameter restrictions for each of

the models).  For both fall/spring and summer and for all species, the model with the lag

from the previous season only was either the best model by AIC or within 2 AIC (Table

3A2.1).  This means that, for example, for the summer transition from June 2006 to

August 2006, the best model included the lag from August 2005.  Thus for all subsequent

model fitting and investigation, a lag of one season was used.

 Yearly variability was explored by allowing parameters to differ in values for

each year; this asks whether all summers (or all fall/springs) have the same dynamics.

Three different types of yearly variability were assessed: 1) variable demographic
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parameters (c, r, d) and constant interaction coefficients (α’s), 2) constant demographic

parameters and variable interaction coefficients, and 3) variable demographic parameters

and variable interaction coefficients.  These three models were compared to a model with

constant interaction coefficients and constant demographic parameters using AIC

(models (b), (f), (g), and (h) in Table 3A1.1).

The estimated values for some interaction coefficients were near zero and/or had

large standard errors associated with them (standard error was estimated using the

quadratic approximation to the likelihood in package bbmle); thus these species

interactions likely do not play an important role in community dynamics.  To determine

which interaction coefficients were important, we started with a model that included all

interaction coefficients and systematically deleted interaction coefficients with the largest

standard errors one at a time, refitting the model after each deletion.  When standard

errors for two coefficients were similar, we tried both orders of deleting coefficients.

Because parameters were typically not highly correlated, the order of deletion did not

affect the outcome of model selection.  AIC was used to compare all of these models, and

we report models within 4 AIC of the best model, so that we are not too conservative in

judging a parameter to be zero.

We ensured that we found global maxima to our parameter estimates by using a

multistart, multistep optimization strategy (for details see “Global maxima optimization

strategy” in Appendix 3).  Also, although parameter correlations exist, profiling analyses

indicated that they did not qualitatively affect results (see “Univariate profiling” in

Appendix 3).
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Model performance

We assessed the ability of our models to produce realistic dynamics by simulating

the “best” models in a coupled map lattice.  The size of the area in the simulation was the

same as the field transect (150 × 25 grid cells).  We initiated the simulation with densities

from time steps 1 and 2, and simulated for 6 more time steps (3 years).  One thousand

simulations were done.  The mean and 95% confidence intervals were obtained for total

population trajectories and histograms of grid cell population densities in the eighth time

step and were compared to actual values.  We did not extrapolate to longer time periods,

because we do not believe we have sufficient information on interannual variability to

credibly extrapolate.

Results

The four species display seasonal fluctuations in total population size in the

transect over the four-year period (Fig. 3.1, black lines).  They differ, however, in their

responses to interannual variability, especially in the final year of the census when

Danthonia increases dramatically.

Time lags

In models without time lags, a few of the interaction coefficients are positive,

especially in the summer (Table 3.1, Table 3A4.1 for standard errors).  However, for all

species, adding one-season time lags to both summer and fall/spring models increased the

fit of the models by 2-85 AIC units despite adding five extra parameters (Table 3A2.1),

thus all subsequent analyses include one-season lags.  Adding time lags to the models
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shifted some positive and negative interactions to lagged coefficients and uncovered new

positive interactions that were lagged.  This resulted in the interesting trend that

immediate interaction coefficients tend to be negative, while lagged interactions tend to

be positive (Table 3.2, Table 3A4.2 for standard errors).  For example, only three summer

(15%) and two fall/spring (10%) immediate coefficients are positive, while for lagged

interactions, nine summer (45%) and six fall/spring (30%) are positive (Table 3.2).  This

trend was driven mainly by the conspecific lagged interactions, which were all positive.

Conspecific vs. heterospecific interactions

Conspecific immediate interaction coefficients were always included in the best

models by AIC, and they were always negative (Table 3.2).  Heterospecific immediate

interactions were only sometimes included in the best models (7/16 in summer and 7/16

in fall/spring) and were about half negative/half positive.  Thus, overall, conspecific

interactions tend to be more negative than heterospecific interactions.

As with immediate interactions, lagged conspecific coefficients were always

included in the best model for all species, while lagged heterospecific coefficients were

only sometimes included (9/16 in summer, 7/16 in winter) (Table 3.2).  Lagged

conspecific interactions tended to be more positive than lagged heterospecific

interactions.

We examined two sources of potential bias which may have resulted in the greater

inclusion of conspecific relative to heterospecific interaction coefficients in the best

models: sample size and range of neighbor densities.  Conspecific interactions have

larger sample sizes (number of occurrences) than heterospecific interactions due to
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intraspecific aggregation, so they may be better estimated and more likely to be included

in best models.  To visualize whether sample size affected the inclusion of coefficients,

we plotted the sample sizes of non-included vs. included interaction coefficients (formal

statistical tests are not appropriate) (Fig. 3.2a).  Indeed, pairwise interactions with large

sample sizes tended to be more often included in the best model.  However, not all

coefficients with large sample sizes were included (range 10-3935) and not all

coefficients with small sample sizes were excluded (range 11-1975).

Similarly, interaction coefficients based on a broader range of neighbor densities

may be better estimated and more likely to be included in best models.  Plotting the

maximum neighbor densities for non-included vs. included interaction coefficients

showed that most species experienced a wide range of neighbor densities, and this did not

tend to influence inclusion of the coefficient by AIC (range of included densities 1-29,

range of non-included densities 2-27, Fig. 3.2b).

Seasonality

The two seasons display very different dynamics.  From June to August, all

species decline in population size (population growth rate r is negative), while in

fall/spring all populations increase (Table 3.3, Table 3A4.3 for standard errors).  Also,

both short- (d) and long-distance (c) colonization rates tend to be lower in summer than

in fall/spring.  Facilitation tends to be more prevalent and competition less intense in the

summer compared to the fall/spring (Table 3.2).  For example, 12 of the 40 interaction

coefficients are positive in the summer vs. 8 in the fall/spring, and the negative

interaction coefficients in summer are less negative than those in fall/spring.
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Yearly variability

Adding different demographic parameters (population growth rate r, short-

distance colonization d, long-distance colonization c) for each of the three summers

increased the fit of the models for all species, despite adding six extra parameters (Table

3A2.2).  In contrast, adding different interaction coefficients for each of the three

summers did not increase model fit by AIC (20 extra parameters), indicating that

competitive and facilitative interactions were similar across all three summers (Table

3A2.2).

Dynamics in the fall/spring were less consistent among years for the four species.

For Carex, the best fall/spring model included both constant demographic parameters and

constant interaction coefficients; for Danthonia, and Hieracium the best model included

variable demographic parameters and constant interaction coefficients; and for

Schizachyrium, the best model included constant demographic parameters and variable

interaction coefficients (Table 3A2.2).  For Schizachyrium, the main differences among

years were the changes in effect of Danthonia, Hieracium, and lichen from positive or

neutral in fall/spring 1 and 2 to negative in fall/spring 3 (data not shown).

Model performance

Coupled map lattice simulations of the best models produce realistic dynamics.

The models accurately capture total population fluctuations and trends over the 8 time

periods for all species (Fig. 3.1).  The models are also fairly good at producing grid cell

population density distributions similar to the actual distributions in the eighth time step
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(Fig. 3.3); however some differences are apparent.  The model tends to overestimate the

number of zeros and underestimate the number of cells with one and two stems for Carex

and Hieracium, and overestimates the number of cells with one and two stems for

Danthonia.

Discussion

As in many experimental studies but contrary to model-fitting studies to date, we

find positive interactions among species in this environmentally stressful system.  We

uncovered these positive interactions by allowing for seasonality and time lags in our

models.  In fact, contrary to our hypothesis, few immediate interactions in this

community are positive, although more interactions are positive and competition is

relatively weak over the drier, hotter, summer season.  In contrast, time-lagged

interactions are strong and primarily positive.  These results are compatible with the

Bertness and Callaway’s (1994) abiotic stress hypothesis, but this analysis separates

immediate and lagged interactions.  Below we discuss the effects of time lags,

seasonality, and interannual variation on species interactions and community dynamics,

possible mechanisms that could produce these dynamics, and implications for this

community and more broadly.

Time lags

Time lags are important in the dynamics of all species in this community in both

summer and fall/spring.  The most striking pattern is that all conspecific and many

heterospecific lagged effects are positive.  For conspecific lagged interactions, two
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different processes may produce this strong positive effect: past storage in rhizomes and

facilitative effects of litter.  The four plant species all store nutrients and carbohydrates in

rhizomes.  Thus, the size of the past populations (lagged densities) of a species is

indicative of the amount of energy they would have stored in their rhizomes from

previous growth.  Although we did not model energy transfer explicitly, this effect could

contribute to the lagged coefficient.  So, while conspecific ramets compete strongly

within a season (negative immediate interactions), any past population densities may

have a positive effect on current growth.

Conspecific lagged interactions may also be caused by litter; this mechanism is

also the most likely for heterospecific lagged interactions.  Populations tend to decline

over the summer, producing some amount of litter, and at the end of the growing season

in fall, all aboveground biomass senesces, producing litter.  The lagged population

density is therefore related to the amount of litter currently present in the grid cell.

 Aboveground litter may facilitate plant growth because it ameliorates high

temperatures and retains soil moisture (e.g., Facelli and Pickett 1991; Fowler 1986;

Holzapfel and Mahall 1999).  Above- and below-ground litter could also facilitate growth

due to nutrient release from decomposition.  Consistent with these mechanisms, other

correlative data from this system suggest that microsites with high aboveground litter are

associated with lower soil temperature, higher soil moisture in the summer (non-

significant trend), and higher available soil nitrogen (E.C. Farrer, unpublished data).

Nevertheless, several of the lagged effects from heterospecifics were negative (four in

summer and five in fall/spring).  Negative lagged interactions could be due to delayed

competition, because individuals have sequestered nutrients, which are no longer
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available for current plant growth.  Probably more likely, the negative lagged effects

could come from light reduction, because in this system aboveground litter is strongly

negatively correlated with light (E.C. Farrer, unpublished data).

Lagged density dependence is rarely studied in plant populations, perhaps because

some have argued it is unlikely due to the modularity and the lack of size thresholds in

plant reproduction (Crawley 1990; Rees and Crawley 1989).  When time lags have been

incorporated in population dynamic models, studies suggest that lagged interactions are

not very common, and when they do occur, both positive and negative lagged effects

have been found.  For example, in a study of 30 plant populations (all perennials),

delayed density dependence was found in only 7-30% of the populations (Brook and

Bradshaw 2006).  The lagged density dependence was positive in a little over half of

these cases (Brook and Bradshaw 2006, B.W. Brook, personal communication).

However, negative lagged density dependence was found in two modeling-fitting studies

of annual weeds (Crone and Taylor 1996; Gonzalez-Andujar et al. 2006).  Two other

studies that included a litter pool explicitly in population dynamics models found

negative effects of litter on plant population biomass (Molofsky et al. 2000; Tilman and

Wedin 1991).

In contrast to these studies, we found conspecific lagged effects to be strong and

positive for all four species, and heterospecific lagged effects occurred and were both

positive and negative.  Our study has two main differences that may have increased our

ability to pick up this signal of delayed density dependence.  First, our census and our

model are very local in space, at the cm scale over which individual plants interact.

Surveys at larger scales may not detect lagged density dependence (or even immediate
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density dependence) because those interactions do not occur at those scales.  Second,

most populations in model-fitting studies are censused yearly, whereas our study

populations were censused twice a year.  Delayed interactions through litter or rhizome

storage may decay over time, so the interactions may be too weak to detect with yearly

censuses.  In support of this, we found best model fits with a seasonal, not annual, lag.

The presence of positive lagged interactions in our study may be due to the

stressful abiotic environment in the dry sand prairie, in which the net effect of litter

would tend toward facilitative.  Consistent with this, the negative litter effects of Tilman

and Wedin (1991) were only found at high productivity, when the net effect of litter is

negative due to decreased light.  Positive conspecific lags in our study are likely also

influenced by the perennial nature of the plants and the consequent rhizome storage

effect.  Most of the previous studies that detected negative lagged density dependence

studied annual plants (Crone and Taylor 1996; Gonzalez-Andujar et al. 2006; Molofsky

et al. 2000).

 Theoretical studies that investigate the implications of lagged interactions for

population dynamics typically investigate negative delayed density dependence.  These

studies have demonstrated that lags in negative density dependence can produce a range

of complex dynamics including damped oscillations, periodic dynamics, and chaos (Kot

2001; May et al. 1974), and in general tend to decrease stability of the system (Crone

1997).  This whole range of dynamics has been observed in models parameterized from

animal populations (Lima et al. 1999; Turchin and Taylor 1992) as well as plant

populations (Crone and Taylor 1996; Molofsky et al. 2000; Tilman and Wedin 1991).  No

studies to our knowledge have analyzed the dynamic consequences of positive delayed
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density dependence; Pastor and Walker (2006) showed that time lags due to the delay in

nutrient release from litter can lead to damped or bounded oscillations in plants.

Preliminary simulations of simplified single-species versions of the models presented

here suggest that the consequences of positive lagged interactions depends on their

magnitude relative to negative immediate interactions; for example, when the magnitude

of the positive lagged coefficient is larger or similar to that of negative immediate

coefficient, population cycles and explosions occur.  This suggests that interactions at

very local scales can influence the dynamics of the population as a whole, although future

rigorous simulations of these models will address these questions more comprehensively.

In this study, incorporating lagged interactions in models suggested new

processes important for population dynamics, such as litter effects and rhizome storage.

Interestingly, simulations of the best models without time lags also produced fairly

reasonable dynamics over the 8 time steps, however these models obscure the

mechanisms through which interactions occur.  This study informs future theoretical and

experimental studies that lagged interactions may commonly occur in nature, can be

quantified, and their implications can be tested.

Conspecific vs. heterospecific interactions

Conspecific interactions tended to be large in magnitude and were included in the

best model by AIC in both seasons for all four species.  Heterospecific interactions,

however, were less commonly included (16/32 included in summer, 14/32 included in

fall/spring), suggesting that population dynamics are mainly driven by conspecifics.  This

was affected to some extent by sample sizes of the pairwise interactions, although most
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sample sizes were large (mean sample size 478, range 10 to 3935), and most of the non-

included interaction coefficients were small in magnitude indicating that they were weak.

Nevertheless, all species were affected by at least two heterospecifics in both summer and

fall/spring, suggesting that interactions with heterospecifics through live plants or their

litter play a modest role in the dynamics of this community.  One exception to the above

pattern is that Hieracium tends to have large magnitude effects, both positive and

negative, on other species.  Hieracium’s biomass per individual is 2-3 times that of the

other species, which may cause these large per capita effects.

In nearly all cases, conspecific immediate interactions were more negative than

heterospecific interactions.  This pattern is expected for coexisting species under classical

models of niche partitioning and has also been found in a similarly dry, nutrient poor

sand dune community (Rees et al. 1996), among functional groups in an Australian

pasture community (Freckleton et al. 2000), and in mixed grass prairie (Adler and

HilleRisLambers 2008), but not in a montane grassland (Law et al. 1997).  The four

species differ in their growth form (runner vs. clumper), photosynthetic pathway (C3 vs.

C4), tissue chemistry (e.g., C:N ratio, E.C. Farrer, unpublished data), and may occupy

different temporal niches (flowering in June vs. August).  The negative conspecific

interactions may also be attributed to negative plant-soil feedback due to species-specific

soil pathogens (Bever et al. 1997), although if this were occurring and important, lagged

conspecific interactions would not be expected to be positive.

The implications of stronger conspecific than heterospecific immediate

interactions for stable coexistence, however, are unclear because the lagged coefficients

show quite a different pattern: conspecific lagged coefficients tend to be more positive
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than heterospecific lagged coefficients.  This may be because conspecific lagged

interactions are the combined effects of rhizome storage (positive) and litter (positive or

negative), while heterospecific lags can only be from litter.  While other studies have

found that positive immediate conspecific (Molofsky et al. 2001) and heterospecific

(Gross 2008) interactions can promote coexistence or delay competitive exclusion, it is

unclear how models with lagged positive interactions will behave.

Seasonality

Population dynamics in this dry grassland community were cyclic over the year

and correspond to differences in precipitation and temperature between the two seasons

(Table 3.4).  Populations of all species decline over the hot summer and regrow over the

rainier, cooler fall and spring.  Seedling establishment (long-distance colonization) and

clonal expansion (short-distance colonization) were also more common over the

fall/spring.  Competition varied between the two seasons, with more facilitation and

weaker competition in the summer.  Kikvidze et al. (2006) and Sthultz et al. (2007) found

similar seasonal variation in interaction intensity and direction in experiments.

Measuring interactions and growth dynamics over different seasons may uncover

interactions and dynamics that would otherwise be weak or cancel out if they were

averaged over a year (e.g., if communities were censused on a yearly basis).

Understanding that yearly dynamics are the net effect of two quite different seasonal

dynamics for each species may help to explain some of their year-to-year variation.

Seasonality may also have implications for the coexistence of species in this system, not

only because species may adapt to different seasonal niches, but also because the summer
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drought particular to this system is a type of disturbance.  This disturbance may act to

reset interactions among species, maintaining the system in a non-equilibrium state,

which may slow competitive exclusion (Kikvidze et al. 2006).

Interannual variability

Even within a season, demographic parameters (growth rate, short- and long-

distance colonization) often varied among the three different years.  This is likely due to

annual variation in climatic variables such as temperature and precipitation.  For

example, Danthonia and Hieracium had higher growth rates and germination rates in

fall/spring 3 compared to fall/spring 1 and 2; this corresponded to a spring that was

cooler by 2 degrees and very wet compared to the previous two springs (Table 3.4).

Other model-fitting studies have also found that demographic parameters often vary

among years (Freckleton et al. 2000; Rees et al. 1996) and that species correlate with

different seasonal patterns of precipitation and temperature (Adler and HilleRisLambers

2008; Adler et al. 2006; Dunnett et al. 1998).

When testing variability in demographic parameters, we tested whether all

parameters (r, d, and c) vary from year-to-year vs. none of the parameters vary.

Nevertheless, the parameters may differ in their degree of interannual variability:

parameter estimates show that growth rate and short-distance colonization vary

interannually by a factor of 2 or 3, but that long-distance colonization by seed could vary

by a factor of 20 or 40.  This is reasonable because the dry conditions in the sand prairie

often severely limit germination and establishment, but occasionally a rainy year causes a

flush of seedlings.
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Unlike demographic parameters, interaction coefficients did not vary among

years, with only one exception (Schizachyrium in the fall/spring).  This indicates that the

intensity and direction of interaction (competition vs. facilitation) is fairly constant in this

system regardless of environmental conditions.  There is no clear pattern in the literature

from other model-fitting or experimental studies as to whether interaction coefficients

vary over time.  Some studies find the net balance of competition and facilitation varies

among years (Greenlee and Callaway 1996; Pugnaire and Lázaro 2000; Tielbörger and

Kadmon 2000; Turnbull et al. 2004) and is related to environmental conditions (Adler et

al. 2006), while other studies show constant (Casper 1996) or a mix of constant and

variable interactions depending on the species (Rees et al. 1996).

The results from this study suggest that demographic parameters might be more

susceptible than competition/facilitation to changes in environmental conditions.  For

example, a slight change in environment may not tip the balance in the net interaction

among plants, if plants are competing for moisture and moisture remains limiting;

however, the same change in environment may be enough to depress growth rates or

germination rates.  However, this result should be viewed with some caution for two

reasons.  First, demographic parameters may be better estimated than pairwise interaction

coefficients due to larger sample sizes.  Second, since there are fewer demographic

parameters (3) than interaction coefficients (10), a model with yearly demographic

parameters adds fewer parameters and thus is penalized less by AIC than a model with

yearly interaction coefficients; so a model with variable interaction coefficients must

increase the likelihood more to be chosen as the best model.
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Conclusions

This study demonstrated that applying complex model-fitting techniques to field

data can uncover complicated ecological interactions that would not be revealed by more

simple tests.  Specifically, we added different seasonal and lagged components to models

of plant species interactions and uncovered new interactions, some of which were

facilitative.  We found patterns of lagged vs. immediate interactions that suggest new

mechanisms that are important in driving community dynamics.  Because plant litter

plays an important role in many other plant communities and because many plant

communities are dominated by perennials that store resources in rhizomes or roots,

lagged density dependence many be a more wide-spread phenomenon in plants than

previously thought.
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Table 3.1. Summer and fall/spring interaction coefficients (per capita effect of species in
columns on species listed in rows) for the models without time lags.  Abbreviations are as
follows: Carex (C), Danthonia (D), Schizachyrium (S), Hieracium (H), and lichen (L).
Interaction coefficients in bold indicate conspecific interactions; blank cells indicate that
the interaction coefficient was not included in the best model (i.e. it is zero).  The
summer transitions are from three years, summers 2, 3, and 4.  The fall/spring transitions
are also from three years, fall/spring 1, 2, and 3.  These transitions are from the same
years as in the lagged models (Table 3.2) to allow comparison.  All summer models have
variable demographic parameters.  In fall/spring models, Carex and Schizachyrium have
constant demographic parameters, and Danthonia and Hieracium have variable
demographic parameters.

Interaction coefficient
C D S H L

C  0.012 -0.006 -0.007
D  0.028  0.032  0.027  0.009
S  0.010 -0.006 -0.020 -0.070

Summer

H  0.053 -0.016 -0.135 -0.261

C -0.029 -0.019 -0.020 -0.005 -0.010
D -0.013  0.016  0.103 -0.023
S -0.071 -0.007 -0.073 -0.267 -0.021

Fall/
spring

H -0.114 -0.023 -0.094 -0.156 -0.118
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Table 3.2.  Summer and fall/spring interaction coefficients (per capita effect of species in
columns on species listed in rows) for models with one season time lags.  Interaction
coefficients in bold indicate conspecific interactions; blank cells indicate that the
interaction coefficient was not included in the best model (i.e. it is zero).  All summer
models have variable demographic parameters.  In fall/spring models, Carex and
Schizachyrium have constant demographic parameters, and Danthonia and Hieracium
have variable demographic parameters.

Interaction coefficient
C D S H L C lag D lag S lag H lag L lag

C -0.071 -0.035 0.117 -0.007  0.043 -0.045
D  0.025 -0.030  0.047 0.008  0.044 -0.028  0.115 0.030
S -0.040  0.121 -0.056  0.035 -0.306

Summer

H -0.037 -0.185 -0.215  0.047  0.302

C -0.178  0.009 0.166 -0.017 -0.011 -0.021
D -0.033  0.032   0.024 -0.012  0.094
S -0.060 -0.006 -0.124  0.044 -0.164

Fall/
spring

H -0.089 -0.085 -0.272 -0.118  0.128  0.143
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Table 3.3. Demographic parameters for the different species in summer and fall/spring.
For each species, parameters are from the best model by AIC, so some have variable and
some have constant demographic parameters.  When three parameters are present, they
correspond to summer 2, 3, and 4, and fall/spring 1, 2, and 3.

Growth rate, r Short-distance
colonization rate, d

Long-distance
colonization rate, c

Summer Fall/spring Summer Fall/spring Summer Fall/spring
Carex -0.2580

-0.1203
-0.1178

0.0587 0.1817
0.1346
0.1196

0.1698 0.0351
0.0084
0.0056

0.1084

Danthonia -0.2167
-0.1102
-0.1105

0.1760
0.3125
0.4176

0.1409
0.0738
0.0388

0.1835
0.1608
0.1538

0.0030
0.0011
0.0015

0.0005
0.0110
0.0224

Schizachyrium -0.0989
-0.3049
-0.2798

0.5015 0.2924
0.1650
0.0968

0.2073 0.0007
0.0000
0.0004

0.0004

Hieracium -0.3124
-0.6448
-0.1977

0.6746
0.6701
1.2094

0.1901
0.1108
0.0801

0.1410
0.1367
0.2999

0.0000
0.0000
0.0000

0.0013
0.0003
0.0056
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 Table 3.4.  Annual and seasonal variability in temperature and precipitation during the
growing seasons of the four years of the survey; numbers are averages over each of the
three seasons and can be directly related to model transitions over the summer and
fall/spring.

Summer
mid-Jun – mid-Aug

Fall
mid-Aug – Sep

Spring
May – mid-Jun

Precipitation
    (cm/mo)
     Year 1,  05-06      5.4    11.8      7.7
     Year 2,  06-07      6.9      9.8      5.4
     Year 3,  07-08      5.5      9.0    10.3
     Year 4,  08-09      5.8      6.3
Temperature
    (mean daily max)
     Year 1,  05-06    27.6    22.2    21.0
     Year 2,  06-07    27.1    20.2    22.6
     Year 3,  07-08    26.3    22.4    18.8
     Year 4,  08-09    24.7    22.1
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Fig. 3.1. Temporal dynamics in the four species’ populations over the four-year census
(June 2005-August 2008) (black lines) and results from simulations of the best models
(gray lines).  Odd times represent June censuses and even times represent August
censuses.  Populations are stem counts summed over the entire 0.75 × 4.5 m transect.
Error bars represent 95% confidence intervals based on 1000 simulations.
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a)

b)

 

Fig. 3.2.  Distribution of a) sample sizes and b) maximum neighbor densities of pairwise
species interactions (pairwise co-occurrences in grid cells in the transect) that were not
included or included in the best model by AIC.  Sample sizes are on a log scale.
Maximum neighbor densities do not include lichen as the neighbor, for which all species
in both seasons were present with the maximum amount of lichen (4 quadrats) except for
one (3 quadrats).  Note that interaction coefficients that were included in models tended
to have higher sample sizes, but there is considerable spread in both types of coefficients;
and maximum neighbor density did not tend to influence inclusion of the coefficient.
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a) Carex b) Danthonia

 

c) Schizachyrium d) Hieracium

Fig. 3.3.  Histograms of the distribution of grid cell stem densities in the last time step
(August 2008) in the actual data and from simulations of the best models for a) Carex, b)
Danthonia, c) Schizachyrium, and d) Hieracium.  Error bars are 95% confidence intervals
based on 1000 simulations.
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Appendix 1.  Parameter restrictions

Table 3A1.1. Description of parameter restrictions for the different models compared
using AIC. Each of these tests was done separately for summer and fall/spring transitions;
“dem” refers to demographic parameters.  The variance parameters, k0

i,t and k1
i,t, are

always restricted by k0
i,t = k0

i,t-2 and k1
i,t = k1

i,t-2, so they are not listed here.  Note that t-2
indicates one year ago (i.e., the same season).

Model Parameter restrictions
a) No lag, no yearly variation in dem.

parameters or α
αij,l,t = 0, l > 0

      and αij,l,t =αij,l,t-2

ci,t = ci,t-2

di,t = di,t-2

ri,t = ri,t-2

b) One season lag, no yearly variation in
dem. parameters or α

αij,l,t = 0, l > 0

      and αij,l,t =αij,l,t-2

ci,t = ci,t-2

di,t = di,t-2

ri,t = ri,t-2

c) One year lag, no yearly variation in dem.
parameters or α

αij,l,t = 0, l = 1 and l > 2

      and αij,l,t =αij,l,t-2

ci,t = ci,t-2

di,t = di,t-2

ri,t = ri,t-2

d) One season and one year lag with different
parameters for both, no yearly variation in
dem. parameters or α

αij,l,t = 0, l > 2

ci,t = ci,t-2

di,t = di,t-2

ri,t = ri,t-2

e) One season and one year lag with same
parameters for both, no yearly variation in
dem. parameters or α

αij,l,t = αij,l-1,t, l = 2 and αij,l,t = 0, l > 2

      and αij,l,t =αij,l,t-2

ci,t = ci,t-2

di,t = di,t-2

ri,t = ri,t-2

f) One season lag, yearly variation in dem.
parameters but constant α

αij,l,t = 0, l > 1

      and αij,l,t =αij,l,t-2

g) One season lag, constant dem. parameters
but yearly variation in α

αij,l,t = 0, l > 1

ci,t = ci,t-2

di,t = di,t-2

ri,t = ri,t-2

h) One season lag, yearly variation in dem.
parameters and α

αij,l,t = 0, l > 1
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Appendix 2.  AIC testing of time lags and interannual variability.

Table 3A2.1. Testing models with different time lags.  For each species, the model with
the asterisk is the best model (lowest AIC).  ∆AIC indicates the difference in AIC
between the models.  Degrees of freedom (df) is the number of parameters.

Summer Fall/spring
df ∆AIC df ∆AIC

Carex
   No lag 10 86.5 10 67.5
   One season lag 15   1.4 15   0.0*
   One year lag 15 29.6 15 52.8
   One season and one year
      different parameters

20   4.0 20   4.2

   One season and one year
      same parameters

15   0.0* 15   9.6

Danthonia
   No lag 10 44.0 10   2.5
   One season lag 15   0.0* 15   0.5
   One year lag 15 33.4 15   3.8
   One season and one year
      different parameters

20   7.0 20   5.7

   One season and one year
      same parameters

15 12.3 15   0.0*

Schizachyrium
   No lag 10   4.0 10 18.7
   One season lag 15   0.0* 15   0.0*
   One year lag 15   7.6 15 13.2
   One season and one year
      different parameters

20   6.1 20   6.0

   One season and one year
      same parameters

15   4.6 15   1.8

Hieracium
   No lag 10   3.0 10   9.7
   One season lag 15   0.0* 15   0.7
   One year lag 15   7.3 15 13.6
   One season and one year
      different parameters

20   7.5 20   5.9

   One season and one year
      same parameters

15   2.6 15   0.0*
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Table 3A2.2. Testing yearly variation in demographic parameters (c, r, and d, abbreviated
dem.) and/or interaction coefficients (α’s). For each species, the model with the asterisk
is the best model (the one with lowest AIC).  ∆AIC indicates the difference in AIC
between the models.  Degrees of freedom (df) is the number of parameters.

Summer Fall/spring
df ∆AIC df ∆AIC

Carex
   Constant dem. and α 15 42.7 15   0.0*
   Variable dem. 21   0.0* 21   4.2
   Variable α 35 61.6 35 22.2
   Variable dem. and α 41 29.1 41 28.3
Danthonia
   Constant dem. and α 15 23.3 15 70.9
   Variable dem. 21   0.0* 21   0.0*
   Variable α 35 25.0 35 61.1
   Variable dem. and α 41  13.8 41 14.5
Schizachyrium
   Constant dem. and α 15 21.7 15 12.1
   Variable dem. 21   0.0* 21 14.1
   Variable α 35 43.8 35   0.0*
   Variable dem. and α 41 26.2 41   7.2
Hieracium
   Constant dem. and α 15   4.2 15 35.7
   Variable dem. 21   0.0* 21   0.0*
   Variable α 35 20.6 35 49.2
   Variable dem. and α 41 23.5 41 12.5



92

Appendix 3. Supplementary technical methodology

Global maxima optimization strategy

To ensure that we found global maxima, we took the models from summer and

fall/spring with variable demographic parameters and constant interaction coefficients

and used a multistart, multistep optimization strategy with 10,000 starts, evaluated the

log-likelihood, then selected the top 2% and optimized with a low tolerance (0.01), then

selected 20% and optimized with a high tolerance (1e-8).  For all species in both seasons,

80% of the optimizations converged to the single global maximum; 20% of the

optimizations did not converge due to the wide range of starting values and had lower

log-likelihood values (by an average of 9-72 log-likelihoods units).

Univariate profiling

Because parameters may be highly correlated, we used univariate profiling to test

how variation of a single parameter affected estimation of other parameters.  Specifically

we wanted to ensure that variation of a single interaction coefficient within its 95%

confidence limits did not change the sign of other interaction coefficients (so that

interpretation of the sign of coefficients in terms of competition or facilitation is valid).

For all species, using the models for summer and fall/spring with variable demographic

parameters and constant interaction coefficients, we constructed univariate profiles along

the lagged conspecific interaction coefficient.  None of the lagged conspecific interaction

coefficients changed sign within their own 95% confidence limits, and likewise none of

the important interaction coefficients included in the best models (those listed in Table

3.2) changed sign as the lagged conspecific interaction coefficient varied.
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Appendix 4.  Standard errors for parameter estimates.

Table 3A4.1. Summer and fall/spring interaction coefficients (per capita effect of species
in columns on species listed in rows) with standard errors in parentheses for models
without time lags.  Estimates are the same as those in Table 3.1.  Standard errors
(estimated by the quadratic approximation) are shown in parentheses below.  Interaction
coefficients in bold indicate conspecific interactions; blank cells indicate that the
interaction coefficient was not included in the best model (i.e. it is zero).  The summer
transitions are from three years, summers 2, 3, and 4.  The fall/spring transitions are also
from three years, fall/spring 1, 2, and 3.  These transitions are from the same years as in
the lagged models (Tables 3.2 and 3A4.2) to allow comparison.  All summer models have
variable demographic parameters.  In fall/spring models, Carex and Schizachyrium have
constant demographic parameters, and Danthonia and Hieracium have variable
demographic parameters.

Interaction coefficient
C D S H L

C  0.012
(0.009)

-0.006
(0.007)

-0.007
(0.008)

D  0.028
(0.017)

 0.032
(0.016)

 0.027
(0.047)

 0.009
(0.028)

S  0.010
(0.025)

-0.006
(0.013)

-0.020
(0.009)

-0.070
(0.003)

Summer

H  0.053
(0.055)

-0.016
(0.028)

-0.135
(0.035)

-0.261
(0.117)

C -0.029
(0.011)

-0.019
(0.009)

-0.020
(0.017)

-0.005
(0.070)

-0.010
(0.009)

D -0.013
(0.004)

 0.016
(0.020)

 0.103
(0.119)

-0.023
(0.025)

S -0.071
(0.030)

-0.007
(0.015)

-0.073
(0.011)

-0.267
(0.227)

-0.021
(0.026)

Fall/
spring

H -0.114
(0.055)

-0.023
(0.041)

-0.094
(0.093)

-0.156
(0.078)

-0.118
(0.084)
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Table 3A4.2.  Summer and fall/spring interaction coefficients (per capita effect of species
in columns on species listed in rows) with standard errors in parentheses for models with
one season time lags.  Estimates are the same as those in Table 3.2.  Standard errors
(estimated by the quadratic approximation) are shown in parentheses below.  Interaction
coefficients in bold indicate conspecific interactions; blank cells indicate that the
interaction coefficient was not included in the best model (i.e. it is zero).  All summer
models have variable demographic parameters.  In fall/spring models, Carex and
Schizachyrium have constant demographic parameters, and Danthonia and Hieracium
have variable demographic parameters.

Interaction coefficient
C D S H L C lag D lag S lag H lag L lag

C -0.071
(0.013)

-0.035
(0.022)

0.117
(0.013)

-0.007
(0.009)

 0.043
(0.023)

-0.045
(0.065)

D  0.025
(0.023)

-0.030
(0.005)

 0.047
(0.023)

0.008
(0.025)

 0.044
(0.006)

-0.028
(0.027)

 0.115
(0.096)

0.030
(0.020)

S -0.040
(0.012)

 0.121
(0.192)

-0.056
(0.030)

 0.035
(0.013)

-0.306
(0.418)

Summer

H -0.037
(0.051)

-0.185
(0.038)

-0.215
(0.117)

 0.047
(0.062)

 0.302
(0.074)

C -0.178
(0.018)

 0.009
(0.019)

0.166
(0.016)

-0.017
(0.009)

-0.011
(0.013)

-0.021
(0.019)

D -0.033
(0.007)

 0.032
(0.036)

  0.024
(0.006)

-0.012
(0.027)

 0.094
(0.071)

S -0.060
(0.030)

-0.006
(0.015)

-0.124
(0.015)

 0.044
(0.009)

-0.164
(0.160)

Fall/
spring

H -0.089
(0.054)

-0.085
(0.092)

-0.272
(0.083)

-0.118
(0.104)

 0.128
(0.033)

 0.143
(0.125)
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CHAPTER IV 

A test of conspecific and heterospecific interactions in a dry perennial grassland 

 

Abstract 

A fundamental requirement for most models of local stable coexistence is that 

intraspecific interactions are more negative than interspecific interactions.  Both classic 

competition experiments and plant-soil feedback experiments have addressed this 

question, but they have found contradictory results: competition experiments tend to find 

competitive hierarchies, whereas plant-soil feedback experiments often find evidence that 

intraspecific interactions are more negative than interspecific interactions, i.e., negative 

feedbacks.  An approach that could explain this is to measure the intermediaries, such as 

nutrients, light, or soil microbes, thought to be important in the interaction.  In the present 

study, we use this approach to test conspecific and heterospecific interactions in a field 

experiment in a dry sand prairie in Michigan.  We concentrate on three of the dominant 

species in the system, Carex pensylvanica, Danthonia spicata, and Hieracium 

piloselloides.  Using a transplant experiment, we ask whether plants perform best in 

natural field monocultures of conspecifics, heterospecifics, or no neighbor plots.  We also 

measure abiotic environmental characteristics associated with each of these monoculture 

types to determine if species create different microenvironments, and then we relate them 

to plant performance to test whether performance can be explained by the aspects of the 

environment.  We hypothesize that plants will create competitive hierarchies because our 
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experimental design is most closely related to classic competition experiments. 

Interestingly, transplant biomass was lower in conspecific monocultures compared to 

heterospecific or no neighbor plots, thus producing negative feedbacks.  Plants tended to 

perform best in no neighbor plots, suggesting that competition, not facilitation, dominates 

even in this fairly stressful, xeric system.  For two of the three species, the effects of 

neighbors are likely due to reduction of light and soil nitrate, because these soil properties 

were positively correlated with transplant biomass.  These results suggest that combining 

field transplant experiments with explicit measurement of the environment is successful 

in determining net interactions that are occurring in plant communities and uncovering 

mechanisms through which plants interact. 

 

Introduction 

A fundamental requirement for most models of local stable coexistence is that 

intraspecific interactions are more negative than interspecific interactions.  This is true 

for classic ecological theory, namely the Lotka-Volterra competition model, as well as 

more recent models of coexistence by niche partitioning such as mechanistic consumer-

resource models, Janzen-Connell effects and the natural enemies hypothesis, and, over 

long time periods, the storage effect.  In all of these models, formulated at the population 

level, species compete more strongly with conspecifics than heterospecifics.  Despite the 

importance of this condition for coexistence, few empirical studies in plants test 

explicitly whether intraspecific competition is stronger than interspecific competition 

(Silvertown 2004), even though much research from many different areas in ecology has 

investigated plant interactions at least at the individual level. 
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It has been thoroughly documented that both competitive and facilitative 

interactions are important to individual plant performance.  Evidence comes from a 

variety of subdisciplines in ecology: the extensive experimental literature on plant 

competition both in the field and in pots (Goldberg and Barton 1992, Gurevitch et al. 

1992, Keddy 2001), the facilitation literature about the importance of nurse plants in 

harsh environments (Niering et al. 1963, Bertness and Callaway 1994, Callaway and 

Walker 1997), the succession literature stressing facilitative effects of early successional 

plants and competitive dominance of late successional species (Connell and Slatyer 1977, 

Walker and Chapin 1987, Tilman 1990), and the plant-soil feedback literature (Bever et 

al. 1997, Bever 2003).  However, it is much less clear how individual interactions affect 

community dynamics and, specifically, coexistence.  Many of the studies in the areas 

mentioned above cannot address coexistence because they do not compare both intra- and 

inter- specific effects.  For example, facilitation research tends to focus only on 

interspecific effects, such as the effects of shrubs on understory plants and vice versa.  

The succession literature often focuses on unidirectional effects of early successional 

species on late successional ones.  Many field competition experiments examine the 

effect of the entire plant community of competitors on individual species but do not 

measure pairwise interactions.   

Pairwise competition designs, often in pots or common garden experiments, and 

plant-soil feedback experiments are the best suited to address the question of coexistence, 

because they are often performed with factorial designs including both intra- and inter- 

specific interactions.  These two types of studies both measure net pairwise interactions 

among plants; however, they incorporate different interaction intermediaries (Fig. 4.1).  
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Competition experiments assume resource uptake is the mechanism of plant interactions; 

thus in pairwise competition experiments, species are grown together with either 

conspecific or heterospecific competitors.  Feedback experiments focus on soil microbial 

communities as intermediaries, such as pathogens and mycorrhizae.  In feedback 

experiments, soils are first “cultivated” by different species, then those individuals are 

removed, and new plants are grown in the cultivated conspecific and heterospecific soils.  

Although these two types of experiments are designed to test different intermediaries, the 

plants in competition experiments are likely also affecting each other through 

modification of the soil microbial community; and in feedback experiments the 

“cultivating” species could reduce nutrients or influence nutrient cycling rates and 

thereby affect the subsequent performance of the target species via those mechanisms.  

Interestingly, pairwise competition experiments and feedback experiments have 

found contradictory results.  Both field and greenhouse competition experiments tend to 

find either competitive hierarchies or no pattern in the relative strength of conspecific and 

heterospecific competition (Keddy and Shipley 1989, Goldberg and Barton 1992, 

Gurevitch et al. 1992, Shipley and Keddy 1994, Goldberg 1996).  Plant-soil feedback 

experiments, however, often find evidence for negative feedbacks; that is, effects from 

conspecific soil are more negative than effects from heterospecific soil (Kulmatiski et al. 

2008).  These contradictory results suggest that the presence (or absence) of live neighbor 

plants critically influences the outcome of plant interactions.  Recent feedbacks studies 

have shown that adding direct resource competition with live plants to microbial 

feedbacks can change the net magnitude and direction of plant effects (Casper and 

Castelli 2007, Kulmatiski et al. 2008). 
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 An approach that could account for the results of both competition and feedback 

experiments would be to explicitly measure the intermediaries through which the 

interactions are thought to occur (Goldberg 1990).  Some studies have related abiotic or 

biotic characteristics of the environment to plant performance to start to tease apart which 

intermediaries may be important in plant interactions (Foster and Gross 1997, Reynolds 

et al. 1997, Holzapfel and Mahall 1999, Fargione et al. 2003, Bezemer et al. 2006, Casper 

et al. 2008); however, these environmental characteristics are often not measured in 

pairwise competition and feedback studies.   

In this study, we compare the strength of conspecific and heterospecific 

interactions among four species in a dry sand prairie system.  Using a field transplant 

experiment, we measure plant performance with conspecific, heterospecific, and no 

neighbors (a in Fig. 4.1).  This design is most similar to competition experiments, 

however, the use of natural neighborhoods in the field incorporates neighbor effects on 

both resources and soil biota.  We also measure the abiotic environmental characteristics 

associated with each of these neighborhoods in natural field monocultures to determine 

whether species differentially affect the abiotic environment (b in Fig 4.1).  To address 

the responses of species to the environment (c in Fig 4.1), we combine the data sets in (a) 

and (b) and relate transplant performance to the environmental characteristics in the 

different neighborhood types using cross-species correlations.  This will indicate which 

aspects of the environment explain plant performance and thus may act as intermediaries 

in the species interactions.  Because our experiment contains live neighbors, we 

hypothesize that plants in our system will generate competitive hierarchies, consistent 

with results from the competition literature.  Due to the dry, nutrient poor conditions in 
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the sand prairie, we focus on abiotic environmental characteristics such as nutrients, 

moisture, and light since they will be most limiting, and hypothesize that these will be 

important intermediaries in plant interactions.   

 

Methods 

Study site and species 

 Field work was carried out in a native grassland in the dry sand prairie of the 

northern lower peninsula of Michigan near the city of Indian River (latitude 45°23'26"N, 

longitude 84°35'41"W).  Dry sand prairie occurs throughout the Lower Peninsula of 

Michigan on glacial outwash plains and is characterized by excessively well-drained, 

sandy soil (Albert 1995) that is very nutrient poor.  Dry sand prairie is often interspersed 

with jack pine barrens, and our study site is a patchy mosaic of grassland, shrub, and jack 

pine (Pinus banksiana) and red pine (Pinus resinosa).  

 The study included the four dominant herbaceous species in the system, which 

together make up over 90% of the stems (E. C. Farrer, unpublished data): Carex 

pensylvanica, Danthonia spicata, Schizachyrium scoparium, and Hieracium piloselloides; 

nomenclature follows Voss (1972, 1984, 1997).  The first three are dominant graminoids 

native to grasslands and open canopy habitats throughout North America and are 

characteristic of dry sand prairie (Kashian et al. 2003, Kost et al. 2007).  Hieracium 

piloselloides is an exotic from Europe, however it tends not to be invasive and is the rarest 

of the four species.  We also include Cladina spp. (reindeer lichen) as a neighbor type in 

our study; reindeer lichens are dominants in boreal systems and are important 
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components in this system occurring at about 30% cover. 

 

Transplant experiment 

 The transplant experiment was carried out in natural monoculture plots, which 

were defined as areas of at least 9 × 9 cm dominated by bare soil or one of the five 

neighbor types (lichen, Carex, Danthonia, Hieracium, and Schizachyrium).  Each natural 

monoculture plot received one transplant, so one replicate of this experiment consisted of 

24 natural monoculture plots (4 target species × 6 neighbor types = 24 plots).  Each 

replicate was located in a block of area 2 × 5 m.  Ten replicate blocks were arranged 

continuously in a 20 × 5 m transect in the study site.     

Each transplant consisted of a clone of three connected ramets, although for 

Hieracium the ramets were not necessarily still connected because the rhizomes decay 

quickly and break easily.  Transplants were planted as a clone to allow for integration 

among ramets, which has been found to be important for clonal spread (Fischer and van 

Kleunen 2002).  Adult ramets were used rather than seedlings, because seedling 

recruitment is low in this dry system (E.C. Farrer, personal observation).  Transplants 

were dug up from the study site, their roots were washed to remove soil, and 

aboveground litter was removed.  Rhizomes differed slightly in initial length, which was 

unavoidable to obtain a sufficient sample of three connected ramets (typical range 1 to 3 

cm).  Transplants were kept in water for a maximum of 2 days until planting.  

Transplants were planted in the neighborhoods from May 25-28 2007.  Those that 

died within the first three weeks after transplanting were replaced.  Transplants were 

watered periodically (approximately twice a week) throughout June and July 2007 to aid 
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in establishment. 

Plots were harvested after two growing seasons in Aug 13-18 2008.  All neighbor 

species’ stems in the 9 × 9 cm plots were counted and clipped for aboveground biomass 

and litter mass was also collected.  The target stems were counted, and height and 

number of leaves of each stem was measured.  The 9 × 9 block of soil was then harvested 

to a depth of approximately 20 cm and was frozen until roots and rhizomes of the target 

plant could be sorted.  Noticeably dead parts of target rhizomes (those that were soft and 

decomposing) were separated out and not included in rhizome biomass.  All samples 

were dried at 55° C and weighed.   

Statistical analyses: net interactions.  Schizachyrium was not included as a target 

species in any analyses because its survival was so low (8 out of the original 60 

transplants survived through the second summer).   

Three measures were used to describe performance of the Carex, Danthonia, and 

Hieracium transplants in the different backgrounds: survival, biomass of surviving 

transplants (shoot + root + rhizome mass of only transplants that survived), and total 

performance (shoot + root + rhizome mass of transplants that survived and zero for 

transplants that did not survive).  For means for each of these performance measures in 

each treatment combination, see Appendix 1. 

The effect of target species, neighbor type, and their interaction on survival was 

analyzed by a generalized linear model with binary error distribution and a logit link 

function (Proc GLIMMIX in SAS, SAS 9.2 SAS Institute, Cary, North Carolina, USA). 

Performance in bare plots was not used in the analysis of survival, so that it is similar 

analytically to the analysis of biomass and suvival+biomass (see below), however, the 
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survival of Carex, Dathonia, and Hieracium in bare plots were very similar to each other 

(Carex 0.6, Dathonia 0.5, and Hieracium 0.6), so this is unlikely to have a strong effect 

on the analysis.  The Gauss-Hermite quadrature method was used for likelihood 

approximation, and Wald χ2 tests were used for testing of significance of fixed effects 

(Bolker et al. 2009).  Block was included as a random effect in all models.  We tested two 

different models.  First, neighbor type was classified by species with five different levels 

(lichen, Carex, Danthonia, Hieracium, Schizachyrium).  Second, neighbor type was 

classified with two levels, conspecific and heterospecific.  Data were slightly 

underdispersed (Pearson χ2 /df = 0.98 and 0.90, respectively) but we kept the dispersion 

parameter equal to 1, making this test more conservative.  

For biomass and total performance, relative performance was calculated by a log 

response ratio comparing the biomass or total performance in a given neighbor type 

(Carex, Danthonia, Hieracium, Schizachyrium, lichen) to their mean performance in bare 

plots:  lrr=ln(performance,C,D,H,S,orL/mean performancebare). This standardizes the species 

responses to their performance with no neighbors (i.e. in bare plots) so that responses can 

be compared among target species.  We standardized each sample to the mean no-

neighbor performance because of mortality of some transplants in no neighbor plots.  For 

total performance, the analysis was performed on the ln(performance,C,D,H,S,orL/mean 

performancebare+1) in order to avoid taking the log of zero when any transplant died.  The 

effect of target species, neighbor species, and their interaction on biomass and total 

performance log response ratios were analyzed using linear mixed models (Proc MIXED 

in SAS).  Block was used as a random effect in all models.  We used a Kenward-Roger 

approximation to adjust degrees of freedom in the mixed model F tests (Littell et al. 
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2006). We checked for normality of residuals visually with normal probability plots of 

residuals and predicted values, and homogeneity of variances with Levene’s test.  When 

Levene’s test indicated heteroscedasticity, we modeled heterogeneous variances for target 

only, neighbor only, and both target and neighbor species and used AIC to choose the 

best model (West et al. 2007).  Similar to the survival analysis, we tested two different 

models: first neighbor type was classified by species with five different levels (lichen, 

Carex, Danthonia, Hieracium, Schizachyrium), and second neighbor type was classified 

with two levels, conspecific and heterospecific.   

To visualize the effects of different neighbors on survival, biomass, and total 

performance in figures (Fig. 4.1), the log response ratio was used, because positive values 

indicate facilitation while negative values indicate competition.  For survival and total 

performance, the log response ratio was calculated using means ln(mean 

performance,C,D,H,S,orL/mean performancebare), to avoid taking the log of zero.  For 

biomass, the log response ratio was calculated for each plot, and then the mean and the 

standard error were calculated; thus biomass is the only graph with error bars. 

 

Species effect on the environment 

 Environmental characteristics thought to be potential intermediaries in plant 

interactions were measured in June and August of 2007 and 2008 in natural monoculture 

plots.  These natural monocultures were separate from those used in the transplant 

experiment but located in the same grassland (within 50 m); environmental 

measurements were not taken from the transplant experiment plots because the plots were 

small and soil sampling is destructive.  Ten replicate 2 × 5 m blocks were laid out in two 
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transects measuring 5 × 40 m (blocks were not continuous).  In each block, 5 natural 

monocultures of each species were flagged; four of these monocultures were used for 

destructive soil nutrient sampling and one was used for nondestructive repeated 

measurements of light, temperature, number of stems, and litter and live height/cover.   

 Nutrient sampling was done in June and August 2007 and 2008 using one month in 

situ buried bag incubations (Eno 1960).  On the first of each month, two soil cores (2.54 

cm diameter, 10 cm depth) were taken from each natural monoculture plot (6 neighbor 

types × 10 replicates = 60 natural monocultures) and placed in a polyethylene bag.  The 

aboveground shoot and litter biomass in the area over the cores was clipped, sorted, and 

dried at 55° C for the June 2007-2008 and August 2007 sampling periods (but not for the 

August 2008 period due to time constraints).  One soil core was put on ice and 

transported back to the lab for processing, the other was returned to the soil.  Incubated 

samples were retrieved from the field after 28 days.  In the lab, soils were sieved (2 mm) 

and a 20 g subsample was extracted for 1 hour with 40 mL 2M KCl.  Extracts were 

filtered (Whatman GF/F; Whatman, Florham Park, New Jersey, USA) and frozen until 

colorimetric analysis for NH4
+ and NO3

- (Eaton et al. 1995) on a Bran Luebbe 

autoanalyzer 3 (Hamberg, Germany) and a SmartChem 200 (Westco Scientfic, Inc., 

Brookfield, CT, USA).  Available NH4
+ and NO3

- were the values in the initial cores.  N 

mineralization (ug N g-2 d-1) was calculated as the increase in NH4
+ plus NO3

- over the 28 

days; nitrification (ug N g-2 d-1) was calculated as the increase in NO3
- only over the 28 

days.   

 A 10 g subsample was dried at 105°C for wet:dry ratio, and SOM (soil organic 

matter) was measured by combusting the dried sample for 4 hours at 550°C.  Bulk 
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density (g soil/mL) was measured using the August 2007 initial soil cores by subtracting 

the mass and volume of the coarse fraction from the total core mass and volume.  Root 

and rhizome biomass was also sorted from the August 2007 initial soil cores, dried at 55° 

C, and weighed, and total C and N of roots was measured by dry combustion on a Perkin 

Elmer 2400 Series II Elemental Analyzer (Waltham, Massachusetts, USA). 

 At each sampling period, nondestructive environmental measurements were also 

taken in the remaining 60 natural monoculture plots in each block.  Light penetration 

through the vegetation and litter was measured as photon flux (µmol s-1 m-2) at the soil 

surface divided by total photon flux above the vegetation using a LI-COR quantum 

sensor LI-189 (LI-COR, Lincoln, Nebraska, USA).  Soil temperature was measured at a 

depth of 5 cm.  Both light and soil temperature measurements were taken within one hour 

of solar noon.  The number of stems was counted within the 9 × 9 cm monoculture plots, 

and the height and percent cover of live vegetation and litter was measured.  

 Statistical analyses: species effect on the environment.  The effect of neighbor 

species identity on environmental characteristics (NH4
+, NO3

-, N mineralization, 

nitrification, moisture, SOM, temperature, light) was analyzed using redundancy analysis 

(RDA) in Canoco 4.0 (ter Braak 1987, ter Braak and Smilauer 1998).  The two years of 

environmental measurements were averaged for each season to accommodate missing 

data.  Neighbor species characteristics (shoot biomass and litter biomass), season, and 

block were used as covariables in the RDA.  Significance of neighbor species identity in 

explaining environmental variance after accounting for the covariables was tested using 

Monte Carlo permutation tests within Canoco, with 499 permutations within block, and 

significance based on the overall (trace) statistic.  The initial model included the season × 
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neighbor identity interaction, however it explained minimal, although significant, 

variance (3.6%, F=2.054, P=0.0040) and was not included in the analysis presented. 

 A second RDA was performed as above but using only the data from August 2007 

because root biomass and C:N was sampled in this time period.  This RDA tested the 

effect of neighbor species identity on the environment, with block, shoot, litter, and root 

biomass, and root C:N as covariables.   

 For an alternate analysis of environmental characteristics using linear mixed 

models see Appendix 2. 

 

Relating net interactions to neighbor effect on the environment  

To link target performance to characteristics of the neighbors and their 

environment, we explored correlations between target performance and neighbor biomass 

from the transplant experiment and abiotic measurements from natural monocultures.  

We used Pearson correlations with a two-tailed t test for significance.   

Because neighbor aboveground biomass and litter mass in the transplant 

experiment strongly covaried with background species, the effect of neighbor biomass vs. 

neighbor species per se on target performance unfortunately could not be teased apart in 

this study.  Therefore, we correlated target performance with neighbor biomass and with 

litter mass separately (with no main effect of neighbor species) to determine if target 

species responded to the biomass of the neighbor and/or its litter.  These cross-species 

correlations were done on the means of target performance and neighbor biomass and 

litter in the 6 neighbor types because neighbor characteristics were not measured in plots 

in which transplants did not survive, making this a conservative test of correlation due to 
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low power (n=6). 

Eight abiotic environmental characteristics were of interest to relate to target 

performance: moisture, SOM, NH4
+, N mineralization, NO3

-, nitrification, light, and soil 

temperature. The RDA of the environment showed that these characteristics were 

clustered in two groups of correlated characteristics that roughly correspond to axes 1 and 

2, respectively (Fig. 4.3); group 1 contained NO3
-, nitrification, light, and soil 

temperature, and group 2 contained moisture, SOM, NH4
+, N mineralization.  To reduce 

the number of correlations performed, we chose one characteristic to represent each 

group, soil temperature and SOM, to correlate with target performance.  These 

correlations were performed on means since environmental measurements were not taken 

in the transplant experimental plots (n=6).  Similarly, we could not use RDA sample 

scores to correlate with target performance because environmental measurements and 

transplant performance measurements were not paired.  

 

Results 

Intraspecific vs. interspecific net interactions 

Neighbor identity did not affect the survival of targets, either when classified by 

neighbor species or by conspecific/heterospecific, but did affect the biomass of surviving 

transplants and total performance (Table 4.1, Fig. 4.2). 

The five neighbor types differentially affected the biomass of the target species 

(significant target × neighbor interaction) (Table 4.1a).  Neighbor species also strongly 

affected biomass when classified as conspecific/heterospecific, so that all species 

performed relatively worse with conspecific vs. heterospecific neighbors (Table 4.1b, 
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Fig. 4.2b).  The magnitude of reduction by conspecifics differed among target species 

(significant target × con/het interaction), for example, Danthonia was most negatively 

affected by conspecifics. 

Similarly, target species responded differently to the five neighbor types in their 

total performance (Table 4.1a).  When neighbors were classified as 

conspecific/heterospecific, target species performed worse with conspecifics, and the 

extent of this reduction tended to vary among target species (nearly significant 

interaction, Table 4.1b, Fig. 4.2c).  In only two instances was heterospecific competition 

stronger than conspecific competition, in the effects of Schizachyrium and lichen on 

Carex (Fig. 4.2c).  Four interactions were facilitative, including the effect of lichen on 

Danthonia, and the effects of Carex, Schizachyrium and lichen on Hieracium. 

 

Species effect on the environment 

 Species were associated with different suites of environmental characteristics 

(Table 4A2.2, Fig. 4.3).  For example, Schizachyrium was associated with high NH4
+ and 

SOM, Hieracium had high N mineralization rates, Danthonia had low light levels, and 

Carex had high light and nitrification rates.  Bare and lichen plots also were distinct from 

plant species backgrounds in that bare plots had very high light and nitrification, and 

lichen had low N mineralization.  Species identity explained a significant proportion of 

the total variation in environmental characteristics (14.8%, F=8.09, P=0.002) even after 

the significant effects of shoot biomass and litter mass were taken into consideration 

(22.5%, F=23.04, P=0.002).  Likewise, a second RDA on a reduced dataset from August 

2007 showed that species identity explained a significant proportion of the environmental 
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variance (12.3%, F=2.41, P=0.002) even after accounting for the variation explained by 

shoot biomass, litter mass, root biomass, and root C:N (31.8%, F=6.64, P=0.002; data not 

shown). 

 

 Relating net interactions to neighbor effect on the environment 

To determine if the negative effects of neighbor species were associated with the 

biomass of the neighbor or its litter, we investigated correlations among them.  

Danthonia was most negatively affected by neighbor biomass and litter (Table 4.2, Fig. 

4.4).  Carex and Hieracium were not strongly affected by neighbor mass, although most 

correlations were negative (Table 4.2, Fig. 4.4). 

Because many of the abiotic environmental characteristics covaried (Fig. 4.3), we 

chose temperature and SOM to represent suites of environmental characteristics to 

correlate with target performance.  Temperature is correlated with high light, NO3
-, and 

nitrification; and SOM is correlated with high moisture, NH4
+, and N mineralization (Fig. 

4.3).  The temperature characteristics positively affected Carex and Danthonia total 

performance and Hieracium survival (Table 4.2, Fig. 4.5).  Danthonia total performance 

was negatively affected by the SOM characteristics (Table 4.2, Fig. 4.5).  

 

Discussion 

 Consistent with classic ecological theory, we found that conspecific interactions 

tend to be more negative than heterospecific interactions.  This is concordant with the 

results of many feedback experiments, which support negative feedbacks (Kulmatiski et 

al. 2008), but it is contrary to the vast majority of pairwise competition experiments, 
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which typically find competitive hierarchies among plants (Keddy 2001, Cahill et al. 

2008).  To take a first step in understanding the underlying mechanisms behind these net 

interactions, we measured abiotic environmental characteristics in field monocultures of 

each of the dominant species and found that species are associated with distinct 

environmental microsites within the grassland.  Furthermore, for two species, data 

suggest that light and nutrient reduction are driving the patterns in net plant interactions.  

Below we discuss each of the three components of our study, net interaction, effect on the 

environment, and response to the environment (Fig. 4.1), and implications for this system 

and plant interactions more broadly. 

 

Intraspecific vs. interspecific net interactions 

 The presence of neighbors in general facilitated survival of transplants, however 

the particular identity of the neighbor did not affect survival.  In contrast, the effect of 

neighbors on target biomass and total performance was highly competitive, and 

conspecific neighbors tended to affect the target most negatively.  The finding that 

neighbors facilitate survival but negatively affect growth is common in many plant 

studies (Goldberg et al. 1999).  

 Although consistent with classic competition theory, it is nevertheless surprising 

that most conspecific interactions are more negative than heterospecific interactions, both 

in competitive effect and response (i.e., neighbors affect conspecific targets most 

negatively and targets respond most negatively to conspecific neighbors).  This is the 

result found by most feedback experiments (Kulmatiski et al. 2008), but not pairwise 

competition experiments which are most similar to our experimental design.  Nearly all 
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greenhouse pot competition experiments find competitive hierarchies (Gaudet and Keddy 

1988, Keddy and Shipley 1989, Shipley and Keddy 1994, Keddy 2001, Cahill et al. 

2008).  Field competition experiments tend to also find hierarchies in competitive effect 

and response or else do not detect any pattern in the strength of intraspecific and 

interspecific interactions (Goldberg and Barton 1992, Gurevitch et al. 1992, Goldberg 

1996).  However, a few field experiments have found intraspecific competition to be 

stronger than interspecific competition for some species pairs in successional grasslands 

(Fargione et al. 2003, Fargione and Tilman 2005, Dybzinski and Tilman 2007).  

A few differences between our study and classic pairwise competition 

experiments may explain this inconsistency.  First, in our study, the neighbor 

monocultures were chosen to be at maximum natural densities.  Some competition 

studies that find hierarchies, especially hierarchies in competitive effect, are done by 

manipulating individuals, so that the most competitive species is the one with the greatest 

individual biomass (Goldberg 1987, Gaudet and Keddy 1988, Keddy and Shipley 1989, 

Shipley and Keddy 1994, Rösch et al. 1997, Keddy 2001).  Our study attempts to add 

field realism to these pairwise interactions, by allowing species to compete with 

neighbors at their natural densities; for example the species with the smallest individual 

biomass, Danthonia, had the largest neighbor biomass because it occurs in dense clumps.  

One caveat to this approach is that we did not measure the shape of the interaction curve, 

because we restricted neighbor biomass to be near field maximum; so we cannot 

calculate per-gram effects unless we assume linearity, which is unlikely (Goldberg 1987).  

Second, our study was carried out over two growing seasons, which is longer than the 

typical one-season competition experiment.  Two growing seasons allows for a 
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reasonable amount of time for plants to partition resources within a growing season.  

Species differences may be more pronounced over two years because we capture slightly 

more year-to-year environmental variability.  If the storage effect occurs in the grassland, 

even longer-term competition experiments would be necessary to detect the conspecific < 

heterospecific pattern.  In fact, the other competition studies that have found evidence for 

niche partitioning have been relatively long term, 3 to 11 years (Fargione et al. 2003, 

Fargione and Tilman 2005, Dybzinski and Tilman 2007).  Lastly, the use of mature 

connected ramets as transplants in this experiment, rather than seedlings, may detect 

different types of interactions compared to many competition experiments that measure 

recruitment phase interactions or ignore clonal growth. 

  

Species effect on the environment  

 The four plant species created different abiotic environments, which were also 

distinct from bare or lichen plots.  The shoot biomass and litter mass of the neighbor 

explained some of this variation in the abiotic environment.  For example, shoot and litter 

mass were negatively correlated with light, temperature, NO3
-, and nitrification; and litter 

mass was positively correlated with NH4
+, moisture, and SOM.  Live biomass effects on 

resources such as NO3
- and light are likely due to direct uptake, because large plants have 

greater nutrient demand and ability to shade.  However, counterintuitively, the two plant 

species with the greatest live biomass, Danthonia and Schizachyrium, had the highest 

NH4
+ levels.  Litter quantity positively affects SOM formation as it is the source of 

organic matter in the soil (Eviner and Chapin 2003); it also affects N pools and cycling 

directly through release during decomposition and indirectly through modification of soil 
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temperature and moisture levels (Eviner and Chapin 2003).   

However, even after accounting for shoot and litter biomass, a significant amount 

of the variance remaining was described by neighbor species per se.  This indicates that 

other characteristics such as the microbial community associated with each species, 

differences in plant tissue quality (C:N, lignin, etc.), or leaf architecture are important in 

driving abiotic environmental differences (Hobbie 1992, Eviner and Chapin 2003). 

For example, lichen patches had very low SOM, NH4
+, and N mineralization rates, which 

has been found in other studies and is likely due to their slow growth rate, lack of 

belowground structures, and complex secondary chemistry (Sedia and Ehrenfeld 2005).  

Danthonia, Schizachyrium, and lichen all exhibited low nitrification rates, which may 

also be due to litter chemistry (Wedin and Tilman 1990, Eviner and Chapin 2003). 

 

Relating net interactions to neighbor effect on the environment 

To take a first step to identify intermediaries that may play a role in net 

interactions, we explored relationships between target performance and characteristics of 

the neighbors and their environments.  For the target Danthonia, both neighbor biomass 

and litter mass negatively affected performance, while temperature and its correlated 

abiotic variables (light, NO3
-, and nitrification) positively affected performance.  Light 

reduction may be driving the pattern of conspecific vs. heterospecific effects for 

Danthonia, because Danthonia neighbors had the largest biomass and litter mass, and 

lowest light levels in the field.  Carex target biomass showed a threshold effect, that 

targets were largest in plots with no neighbors but that the presence of any amount of 

neighbor reduced growth.  This could be explained by the lower light and NO3
- levels in 
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plots with neighbors and is consistent with the positive correlation between Carex 

performance and temperature and its correlated variables (light, NO3
-, and nitrification).  

Hieracium was not strongly affected by neighbor biomass or environmental 

characteristics, except that survival was higher in neighborhoods with high neighbor 

biomass and low temperature suggesting the importance of neighbors in ameliorating the 

hot temperatures that can occur in dry sand prairie.  Hieracium likely has the highest 

susceptibility to drought of all the species, because it has the highest transpiration rates 

(E.C. Farrer, unpublished data).  However, neither neighbor nor environmental 

characteristics could explain the pattern of conspecific competition being greater than 

heterospecific competition for biomass or total performance of Hieracium.   

 A few competition and feedback studies have measured abiotic characteristics of 

soils to determine which properties may be intermediaries in feedbacks.  These studies 

have found that certain abiotic characteristics affect target performance, for example 

nitrate (Reynolds et al. 1997), nitrate and light (Fargione et al. 2003), potassium 

(Bezemer et al. 2006) or potassium, magnesium, and calcium levels (Casper et al. 2008).  

However, in these studies, nutrients or light could not explain the pattern of conspecific 

competition being greater than heterospecific competition for all species pairs, suggesting 

some other mechanism is also at work.    

 Similarly, the lack of strong correlation to the abiotic environment especially for 

Hieracium in the present study suggests that species may be responding to soil biota.  

Species may accumulate species-specific soil pathogens or unfavorable mycorrhizae in 

the local soil environment, so that conspecific transplants perform worst in conspecific 

neighborhoods, producing negative feedbacks.  Both greenhouse feedback experiments 
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(Casper et al. 2008, Kulmatiski et al. 2008) and to a lesser extent field experiments 

(Kulmatiski et al. 2008) have found negative feedbacks dominate; and often certain 

mycorrhizae (Bever 2002, Klironomos 2002, Casper and Castelli 2007) or fungal 

pathogens (Van der Putten and Peters 1997, Holah and Alexander 1999, Klironomos 

2002) can be identified as important intermediaries.   

 

Competition and feedback studies 

The fact that competition experiments find competitive hierarchies while 

feedback experiments find that conspecific interactions are more negative than 

heterospecific interactions suggests that net interactions (Fig. 4.1) through resource 

uptake mechanisms have different outcomes than interactions through soil microbes.  

This leads to the question of what is the combined net effect of all abiotic and biotic 

intermediaries in the field, which will be the determinant of population dynamics.  Our 

study attempts to address this by performing a competition experiment in field natural 

monocultures, which contain both accumulated effects on resources and microbes.  

A few other studies have addressed this by explicitly combining competition and 

feedback experiments.  For some species, adding live plant competitors to a feedback 

experiment does not change the results from soil-only experiments, but for some species 

competition can outweigh the soil-only feedback (Casper and Castelli 2007).  Other 

studies have found that soil source influences competitive ability for some species 

(Reynolds et al. 1997, Van der Putten and Peters 1997, Reinhart and Callaway 2006) but 

not for others (Bever 1994, Reinhart and Callaway 2006).  These results suggest that the 

balance of different intermediaries is idiosyncratic, and cannot be predicted based on a 
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soil-only feedback experiment or a competition-only experiment; sometimes uptake 

mechanisms may dominate the net interaction while sometimes microbial intermediaries 

may dominate.   

 

Implications  

 The results from this study, that conspecific competition is greater than 

heterospecific competition for the three target species, suggest that niche processes occur 

in this grassland.  These niches may be driven by resource reduction, as in the case of 

Danthonia neighbors reducing light levels, or modification of soil microbial 

communities.  The species could also occupy different temporal niches (e.g., differences 

in peak flowering time). 

This pattern in conspecific and heterospecific competition is predicted for species 

that stably coexist under classical competition theory.  However, coexistence theory is 

actually based on population level interactions, not individual interactions.  The fact that 

the three species are clonal and were transplanted as clones in this experiment may begin 

to bridge the gap between population and individual interactions, since at least some of 

the population growth in this system is via clonal expansion.  However, studies of seed 

germination would be necessary to complement the clonal growth data to understand 

overall population interactions.   

 An alternative method of measuring population dynamics is by fitting population 

dynamic models to long-term survey data to estimate population-level competition 

coefficients. We used this approach in this same sand prairie system and found similar 

results: per capita interaction coefficients were more negative for conspecific than 
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heterospecific interactions (E.C. Farrer, D.E. Goldberg, and A.A. King, in press).  Other 

studies have used this approach and have found that conspecific interactions are more 

negative than heterospecific interactions in some grassland communities (Rees et al. 

1996, Freckleton et al. 2000, Adler and HilleRisLambers 2008), but not others (Law et al. 

1997).  It is important to link these model-fitting studies with experiments in the same 

system not only to validate the results, but to explore the mechanisms through which the 

interactions occur.  

 

Conclusions 

 This study demonstrated that net interactions among three dominant dry sand 

prairie species could be quantified using a field competition experiment, which we are 

confident measures interactions important in driving community dynamics in the field.  

By combining a field competition experiment with measurements of abiotic 

environmental characteristics, we were able to take a first step explaining the interesting 

result that conspecific competition was stronger than heterospecific competition.  The 

next step would be to quantify the microbial communities associated with each of these 

species to determine the influence of pathogens or mycorrhizae on net interactions.  

Linking this field experiment with data driven models based on temporal dynamics that 

found concordant results suggests that niche processes are likely important to this 

community. 
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Table 4.1.  Effects of target identity (Carex, Danthonia, Hieracium) and (a) neighbor 
identity (lichen, Carex, Danthonia, Hieracium, Schizachyrium) or (b) neighbor type 
(conspecific, heterospecific) on target performance.  Numbers for survival are χ2 values 
with degrees of freedom in subscript, and numbers for biomass are F statistics with 
numerator and denominator degrees of freedom in subscript.  Block is a random variable 
and the number shown is a Z statistic testing whether the variance component is different 
from zero.  Significance is indicated by asterisks (*** P<0.001, ** P<0.01, * P<0.05, † 
P<0.10).  Denominator degrees of freedom are not consistent because species had 
different numbers surviving to include in the biomass statistics and some models included 
heterogeneous variances for target and neighbor species; denominator degrees of freedom 
were estimated by the Kenward-Roger approximation. 
 
a) 
 

Variable Target 
species 

Neighbor 
identity 

Target × 
neighbor Block 

Survival 
    Binary (yes, no) 

3.942 1.974 5.878 0.41 

Biomass  
     ln(response ratio) 

0.132,41.4 3.694,42.9* 3.238,49.3** 1.34 

Total performance  
     ln(response ratio+1) 

5.232,81.3** 1.044,107 2.268,98.2* -0.35 

 
b) 
 

Variable Target 
species 

Conspecific / 
heterospecific  

Target × 
con/het Block 

Survival 
    Binary (yes, no) 

8.962* 0.391 3.942 0.29 

Biomass  
     ln(response ratio) 

1.942,44.8 20.741,50.8*** 4.372,45.4* 1.40 

Total performance  
     ln(response ratio+1) 

3.812,31.3* 7.911,42** 2.962,31.3† -0.93 
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Table 4.2.  Correlations between measures of target performance and neighborhood 
characteristics.  Neighbor biomass and litter mass measurements were from the transplant 
experiment.  Soil temperature and SOM were measured in separate environmental 
monocultures.  Due to covariance among environmental characteristics, temperature 
represents light, NO3

- and nitrification, and SOM represents moisture, NH4
+, and N 

mineralization. Values are Pearson correlation coefficients for the correlation between the 
mean target performance and the mean neighborhood characteristics (n = 6), **P<0.01, 
*P<0.05, †P<0.10 (two-tailed test).  For Danthonia, coefficients in parentheses represent 
correlations excluding the lichen neighbor type, because it appeared to be an outlier (n = 
5). 
 

Performance 
measure 

 Carex Danthonia Hieracium 

Neighbor biomass -0.39 -0.34 0.73† Survival 
Litter mass 0.12 -0.15 0.24 

 Temp (light, NO3
-, 

nitrification) 
0.41 0.50 -0.87* 

 SOM (moisture, NH4
+, 

N mineralization) 
0.25 -0.40 0.01 

     
Neighbor biomass -0.38 -0.17 (-0.93*) -0.34 Biomass  
Litter mass -0.16 -0.80† -0.48 

 Temp (light, NO3
-, 

nitrification) 
0.67 0.13 (0.79) 0.29 

 SOM (moisture, NH4
+, 

N mineralization) 
-0.38 -0.76† -0.21 

     
Neighbor biomass -0.59 -0.26 (-0.95*) 0.18 Total 

performance Litter mass -0.03 -0.80† -0.31 
 Temp (light, NO3

-, 
nitrification) 

0.86* 0.27 (0.91*) -0.38 

 SOM (moisture, NH4
+, 

N mineralization) 
-0.15 -0.83* -0.11 
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Fig. 4.1.  Simple diagram illustrating interactions among plants.  Plants primarily interact 
through modification of the environment or other intermediaries.  We measure the net 
interaction among plants in a transplant experiment (a), and the effect of species on a 
suite of abiotic environmental properties in field monocultures (b).  It is difficult to 
directly and experimentally measure the response of plants to a wide range of different 
environmental conditions (c) so we make this link by combining data sets from (a) and 
(b), and relating the performance of target plants to the environmental characteristics in 
the different species’ neighborhoods. 

Intermediary 
-nutrients 
-moisture 
-light 
-pathogens 
-mycorrhizae 

Plant Plant 
a) net interaction 

b) effect c) response 

competition exp. 

feedback exp. 
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 a) Survival ln(mean/mean) b) Biomass 

 
 
c) Total performance ln(mean/mean)   

  
Fig. 4.2.  Relative performance of the three target species in different backgrounds for a) 
survival, b) biomass, and c) total performance data.  Relative performance was calculated 
by a log response ratio of the performance in the three backgrounds to the average 
performance in bare plots: lrr=ln(performanceC,D,H,S,orL/performancebare).  Survival and 
total performance figures do not have error bars because log response ratios had to be 
calculated on mean performance (see text).  The biomass figure has error bars ( ± 1 S.E.) 
because log response ratios were calculated by plot and then averaged.  Dark grey bars 
represent species performance with conspecifics and light grey represents performance 
with heterospecifics.  Abbreviations for the target species are Carpen, Carex 
pensylvanica; Danspi, Danthonia spicata; and Hiepil, Hieracium piloselloides); 
abbreviations for background species that are listed along the bottom of each figure are 
C=Carex, D=Danthonia, H=Hieracium, S=Schizachyrium, and L=lichen. 
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Fig.4.3.  Biplot from RDA ordination of the effect of background species identity, shoot 
biomass, and litter biomass on environmental variables.  Axes 1 and 2 explain 25.6% and 
9.2% of the total variation, respectively.  Block and season were used as covariables in 
the analysis; block explains 11.0% and season 14.4% of the environmental variation.  
Shoot and litter biomass explain 22.5% of the environmental variation after accounting 
for block and season (F=23.04, p=0.0020), and species identity explains an additional 
14.8% (F=8.09, p=0.0020).  Abbreviations are as follows: carpen, Carex pensylvanica; 
danspi Danthonia spicata; hiepil Hieracium piloselloides; schsco Schizachyrium 
scoparium.  Lichen mass was considered “shoot biomass” in the analysis. 
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a) Carex b) Carex 

 
c) Danthonia d) Danthonia 

 
e) Hieracium f) Hieracium 

  
Fig. 4.4.  Effect of neighbor biomass and litter mass on target total performance for Carex 
(a, b), Danthonia (c, d) and Hieracium (e, f).  Each point represents mean performance 
and mean neighbor mass (± 1 S.E.) in one neighbor type; neighbor types are listed along 
the x axis (B=bare, C=Carex, D=Danthonia, H=Hieracium, L=lichen, S=Schizachyrium). 
Pearson correlation coefficients are shown in the upper right corner and dashed lines 
indicate a significant or nearly significant correlation (**P<0.01, *P<0.05, †P<0.10, ns = 
not significant, see Table 4.2); for (c), the correlation excludes the outlier, lichen. 

† 
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a) Carex b) Carex 

  
c) Danthonia d) Danthonia 

  
e) Hieracium f) Hieracium 

  
Fig. 4.5.  Effect of environment on target total performance for Carex (a, b), Danthonia 
(c, d), and Hieracium (e, f).  Soil temperature was used as a proxy for light, NO3

-, and 
nitrification; SOM was used as a proxy for moisture, NH4

+, and N mineralization.  Each 
point represents means (± 1 S.E.) in one neighbor type; neighbor types are listed along 
the x axis (as in Fig. 4.4).  Pearson correlation coefficients are shown in the upper right 
corner and dashed lines indicate a significant correlation (**P<0.01, *P<0.05, †P<0.10, 
ns = not significant, see Table 4.2); for (c), the correlation excludes the outlier, lichen. 
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Appendix 1: Means for survival, biomass, and total performance in the six 
neighborhood types. 
 
a) Carex b) Danthonia 

  
 
c) Hieracium d) Schizachyrium 

  
 
Fig. 4A1.1. Survival of the four target species in the six neighborhood types.   

Neighborhood Neighborhood 

Neighborhood Neighborhood 
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a) Carex b) Danthonia 

  
 
c) Hieracium  

 
 
Fig 4A1.2.  Biomass (shoot, root, and live rhizome) of each of the three target species in 
the six neighborhood types. 
 

Neighborhood Neighborhood 

Neighborhood 
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  a) Carex b) Danthonia 

   
 
c) Hieracium  

  
 
Fig 4A1.3.  Total performance (biomass with zeros for transplants that did not survive) of 
each of the three target species in the six neighborhood types. 
 
 
 
 
 

Neighborhood Neighborhood 

Neighborhood 
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Appendix 2.: Alternate analysis for the environmental data. 
 
Table 4A2.1. Effects of neighborhood type (Carex, Danthonia, Hieracium, 
Schizachyrium, lichen, or no neighbors), season, year, and neighborhood × season 
interaction on environmental variables.  Data were analyzed using linear mixed models 
(SAS 9.2) and were log transformed if needed to correct for non-normal residuals.  
Numbers shown for all variables except block are F statistics with numerator and 
denominator degrees of freedom in subscript.  Block is a random variable and the number 
shown is a Z statistic testing whether the variance component is different from zero.  
Significance is indicated by asterisks (*** P<0.001, ** P<0.01, * P<0.05, † P<0.10). 
Numerator and denominator degrees of freedom are not consistent because variables 
were measured different numbers of times, some models were fit with heterogeneous 
variances, and a few data points are missing; denominator degrees of freedom were 
estimated by the Kenward-Roger approximation.  Root C:N, root biomass, and rhizome 
biomass were only measured at one time point, so season, year, and neighborhood × 
season effects could not be analyzed. 
 

Variable Neighborhood Season Year Neighborhoo
d × season Block 

NH4
+ 11.595,218*** 5.441,218* 13.531,218*** 0.815, 218 1.32 

NO3
- 18.735,140*** 48.491,140*** 1.381,137 3.915,140** 1.41 

Inorganic N 6.575,218*** 17.251,218*** 13.851,218*** 1.245,218 1.06 
N mineralization 13.375,83.6*** 29.581,147*** 1.731,161 4.015,83.6** 1.77† 
Nitrification 18.375,91.3*** 21.551,157*** 8.381,105** 1.355,91.3 1.73† 
SOM 10.485,218*** 3.541,218† 9.741,218** 2.145,218† 0.85 
Moisture  4.285,218** 355.051,218*** 12.001,218*** 1.055,218 1.57 
Light (no lichen) 152.994,36.2*** 13.081,45*** 12.261,49** 10.924,45*** -0.79 
Temperature 13.185,42*** 275.041,54.3*** 315.891,59*** 3.035,54* 0.99 
Root C:N (no 
bare, lichen) 

3.463,27*    -1.55 

Root biomass 12.135,45***    -0.35 
Rhizome 
biomass 

86.705,45***    -0.97 

Litter biomass 155.575,158*** 8.861,158** 2.771,158† 1.995,158 1.03 
Live biomass 195.965,158*** 7.261,158** 4.621,158* 13.265,158*** 0.80 
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CHAPTER V 

Conclusion 

 

 Individual plants interact through a variety of different mechanisms, including 

nutrients, light, and soil microbes, and these interactions can have consequences at the 

community and ecosystem levels.  However, despite the large body of work both at the 

experimental and theoretical levels, it remains largely untested whether experimentally-

measured interactions among individuals drive the large-scale patterns of community 

structure and dynamics in the field.   

In this dissertation, I integrate spatio-temporal field surveys with manipulative 

experiments within the same system to comprehensively test the importance of plant 

interactions in driving community dynamics.  To understand the mechanisms behind 

these interactions, I also test many of the intermediaries through which the interactions 

are thought to occur, such as nutrients, light, and plant litter.  I use this framework to test 

plant interactions and their consequences in two distinct systems, temperate wetlands 

invaded by hybrid cattail and native dry sand prairie in Michigan.  Below I summarize 

the results from my three primary chapters. 

Chapter II.  Litter drives ecosystem and plant community changes in cattail 

invasion.  Invaded systems are commonly associated with a change in environment and a 

decline in native species diversity (D'Antonio and Vitousek 1992, Galatowitsch et al. 

1999, Zedler and Kercher 2004); however, many different causal pathways linking these 
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three factors could produce this pattern.  In this chapter, I used invaded Great Lakes 

coastal marshes as a study system to test whether the invasive species itself, Typha x 

glauca, could be driving these changes in ecosystem processes and native species 

diversity. 

 In a survey including transects in three marshes, I found that T. x glauca was 

associated with locally high soil nutrients (NH4
+ and PO4

3-), low light, and large amounts 

of litter.  Also, native diversity, especially that of obligate wetland sedges, rushes, and 

bulrushes, was highest in areas of shallow litter depth.  I then tested whether live T. x 

glauca plants or their litter induced changes in the environment and in diversity with a 

live cattail / cattail litter transplant experiment.  After one year, T. x glauca litter 

increased soil NH4
+ and N mineralization twofold, lowered light levels, and decreased the 

abundance and diversity of native plants, while live T. x glauca plants had no effect on 

the environment or on native species.  Moreover, T. x glauca plants appeared to benefit 

from their litter, because they were taller when grown in litter plots. 

Thus, experimental manipulations of cattail litter produced the same 

environmental and plant community effects as seen in the large-scale survey.  This 

suggests that T. x glauca, through its litter production, can cause the changes in 

ecosystem processes that we commonly attribute to anthropogenic nutrient loading; and 

that T. x glauca does not displace native species through competition for resources, but 

rather affects them nontrophically through its litter via light reduction.  Because T. x 

glauca plants actually benefited from their litter, this suggests that the invader may 

produce positive feedbacks and change the environment in ways that benefit itself and 

promote its own invasion. 
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Chapter III. Time lags and the balance of positive and negative interactions in 

driving grassland community dynamics.  In order to test whether individual plant 

interactions and feedbacks have community consequences, it is necessary to first quantify 

the patterns in population dynamics that occur in the field.  Both facilitative and 

competitive interactions occur simultaneously among plants, and the net balance between 

them can change over time and among different pairs of species.  In this chapter, I used 

model-fitting techniques (Rees et al. 1996, Law et al. 1997, Freckleton and Watkinson 

2001, Adler et al. 2006) to quantify population level interactions among the four 

dominants in a dry sand prairie.  I fit population dynamic models to four years of small-

scale spatial data and I included seasonality, interannual variation, and time lags in 

models to test for patterns in positive and negative interactions.  Due to the harsh, hot, 

dry conditions in this system, I predicted interactions would be largely facilitative 

(Bertness and Callaway 1994), and because species appear to be coexisting in this 

system, I expect conspecific interactions to be more negative than heterospecific.  

Results indicate that most immediate (direct) interactions among dominant 

species are actually competitive, although interactions were more facilitative over the 

drier summer season.  Interestingly, lagged density dependence was strong for all species 

in both seasons; it was positive for conspecific interactions, and both positive and 

negative for heterospecific interactions.  Observed lagged density dependence is likely 

due to effects from litter and/or effects from past storage in rhizomes.  Conspecific 

immediate and lagged interactions tended to be stronger than heterospecific interactions, 

suggesting that population dynamics in this community are driven mostly by 

conspecifics.  Moreover, conspecific immediate interactions tended to be more negative 
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than heterospecific interactions, suggesting negative feedbacks occur and stable 

coexistence though niche mechanisms may be possible for these four species.  However 

this conclusion is tenuous because the conspecific lagged interactions were positive, 

which may introduce population fluctuations or instability to the system.   

 Chapter IV.  A test of competition and facilitation in a dry perennial grassland.  

Conspecific and heterospecific interactions in the dry sand prairie were also investigated 

experimentally in a field competition experiment to determine whether experiments 

support negative feedbacks.  Negative feedbacks are a fundamental requirement for most 

models of local stable coexistence; however most classic pairwise competition 

experiments do not find evidence for negative feedbacks, but rather find evidence of 

competitive hierarchies.  In this chapter, I used a field transplant experiment to measure 

performance of plants with different neighbors, and I related transplant performance to 

environmental characteristics in natural field monocultures to determine which 

intermediaries might play a role in the interactions.   

Neighbors in general tended to increase transplant survival, but not in a species-

specific manner.  Plant biomass and combined performance (biomass with zeros when 

transplants did not survive), however, for the three dominant species was lower with 

conspecific neighbors compared to heterospecific or no neighbor plots, thus producing 

negative feedbacks.  Plants tended to perform best in bare plots, which suggests that 

competition, not facilitation, dominates even in this fairly stressful, xeric system.  For 

two of the species, Danthonia and Carex, transplant performance could be partly 

explained by neighbor reduction of light and soil nitrate, suggesting these are important 

intermediaries in the plant interactions.  However, Hieracium did not correlate with any 
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abiotic soil properties, which indicates that other mechanisms, such as pathogens or 

mycorrhizae, may play a role. 

The results from this experiment are largely consistent with results from the 

survey in Chapter III.  The importance of competition in this system and the pattern that 

conspecific competition is generally stronger than heterospecific competition suggests 

that negative feedbacks are driving the community dynamics in the field and that 

nutrients and light are important intermediaries in plant interactions. 

 Synthesis.  This dissertation illustrates that integrating field surveys with 

experiments is successful in both uncovering the mechanisms through which plants 

interact as well as linking individual local interactions with broader scale patterns over 

space and time.  The feedback framework is useful for examining plant interactions 

because many intermediaries simultaneously influence net interactions in the field.  One 

common theme found in this research is the importance of nontrophic mechanisms, 

particularly litter deposition, in influencing environmental intermediaries.  In two very 

different systems, litter played a key role in reducing light levels and increasing soil 

nutrients so that its effect on the interaction was equal to or more important than live 

plants.  This suggests that interactions through litter should not be studied apart from 

resource uptake, because the combined effects will influence interactions in the field. 

Overall, these two very different systems correspond to predictions from existing 

theoretical and experimental studies that invasive systems exhibit positive feedbacks 

while native systems exhibit negative feedbacks.  It is a step toward understanding how 

local interactions can contribute to the dominance of invasives and the coexistence of 

native plants and how the properties of invaded and native systems differ. 
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