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CHAPTER I

Introduction

Estimation of large covariance matrices, particularly in situations where the data

dimension p is comparable to or larger than the sample size n, has attracted a lot

of attention recently. The abundance of high-dimensional data is one reason for the

interest in the problem: gene arrays, fMRI, various kinds of spectroscopy, climate

studies, and many other applications often generate very high dimensions and mod-

erate sample sizes. Another reason is the ubiquity of the covariance matrix in data

analysis tools. Principal component analysis (PCA), linear and quadratic discrimi-

nant analysis (LDA and QDA), inference about the means of the components, and

analysis of independence and conditional independence in graphical models all re-

quire an estimate of the covariance matrix or its inverse, also known as the precision

or concentration matrix. Finally, recent advances in random matrix theory – see

Johnstone (2001) for a review, and also Paul (2007) – allowed in-depth theoretical

studies of the traditional estimator, the sample (empirical) covariance matrix, and

showed that without regularization the sample covariance performs poorly in high

dimensions. These results helped stimulate research on alternative estimators in high

dimensions.

The existing literature on covariance estimation can be loosely divided into two

categories. One large class of methods covers the situation where variables have a

natural ordering or there is a notion of distance between variables, as in longitudinal
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data, time series, spatial data, or spectroscopy. There are, however, many applications

where an ordering of the variables is not available, such as genetics, social, financial

and economic data. Methods that are invariant to variable permutations (like the

covariance matrix itself) are necessary in such applications.

Naturally ordered variables

A large class of covariance estimation methods covers the situation where vari-

ables have a natural ordering. The implicit regularizing assumption underlying these

methods is that variables far apart in the ordering have small correlations (or partial

correlations, if the object of regularization is the concentration matrix), and estima-

tors that take advantage of this have been proposed by Wu and Pourahmadi (2003),

Bickel and Levina (2004), Huang et al. (2006), Furrer and Bengtsson (2007), Bickel

and Levina (2008b), Levina et al. (2008), and others. When the inverse of the co-

variance matrix is the primary goal and the variables are ordered, regularization is

usually introduced via the modified Cholesky decomposition,

Σ−1 = LT D−1L.

Here L is a lower triangular matrix with ljj = 1 and ljj′ = −φjj′, where φjj′, j′ < j

is the coefficient of Xj′ in the population regression of Xj on X1, . . . , Xj−1, and D

is a diagonal matrix with residual variances of these regressions on the diagonal.

Several approaches to regularizing the Cholesky factor L have been proposed, mostly

based on its regression interpretation. A k-banded estimator of L can be obtained by

regressing each variable only on its closest k predecessors; Wu and Pourahmadi (2003)

proposed this estimator and an estimation approach involving nonparametric methods

for smoothing the sub-diagonals of L where they chose k via an AIC penalty. Bickel

and Levina (2008b) showed that banding the Cholesky factor produces a consistent
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estimator in the operator norm under weak conditions on the covariance matrix,

and proposed a cross-validation scheme for picking k. Huang et al. (2006) proposed

adding either an l2 (ridge) or an l1 (lasso) penalty on the elements of L to the normal

likelihood. The lasso penalty creates zeros in L in arbitrary locations, which is more

flexible than banding, but (unlike in the case of banding) the resulting estimate of the

inverse may not have any zeros at all. Levina et al. (2008) proposed adaptive banding,

which, by using a nested lasso penalty, allows a different k for each regression, and

hence is more flexible than banding while also retaining some sparsity in the inverse.

Bayesian approaches to the problem introduce zeros via priors, either in the Cholesky

factor (Smith and Kohn, 2002) or in the inverse itself (Wong et al., 2003).

In Chapter IV (Rothman et al., 2010), we propose a new regression interpretation

of the Cholesky factor of the covariance matrix, as opposed to this well known regres-

sion interpretation of the Cholesky factor of the inverse covariance, which leads to a

new class of regularized covariance estimators suitable for high-dimensional problems.

Unordered variables

There are many applications where an ordering of the variables is not available.

Some early work of Dempster (1972) proposed setting elements in the concentration

matrix to zero as a means for regularization; however, this work did not address

positive definiteness nor models with many variables. Regularizing large covariance

matrices by Steinian shrinkage of eigenvalues has been proposed early on (Haff, 1980;

Dey and Srinivasan, 1985). More recently, Ledoit and Wolf (2003) proposed a way

to compute an optimal linear combination of the sample covariance with the identity

matrix, which also results in shrinkage of eigenvalues. Shrinkage estimators are invari-

ant to variable permutations but they do not affect the eigenvectors of the covariance,

only the eigenvalues, and it has been shown that the sample eigenvectors are also not

consistent when p is large (Johnstone and Lu, 2004). Shrinking eigenvalues also does
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not create sparsity in any sense. Sometimes alternative estimators are available in

the context of a specific application – e.g., for a factor analysis model with known

factors Fan et al. (2008a) develop regularized estimators for both the covariance and

its inverse.

Sparse concentration matrices are widely studied in the graphical models liter-

ature, since zero partial correlations imply no edge exists between vertices in an

undirected graph structure. The classical graphical models approach, however, is

different from covariance estimation, since it normally focuses on just finding the ze-

ros. For example, Drton and Perlman (2008) develop a multiple testing procedure

for simultaneously testing hypotheses of zeros in the concentration matrix. There

are also more algorithmic approaches to finding zeros in the concentration matrix,

such as running a lasso regression of each variable on all the other variables (Mein-

shausen and Bühlmann, 2006), or the PC-algorithm (Kalisch and Bühlmann, 2007).

Both have been shown to be consistent in high-dimensional settings, but none of

these methods supply an estimator of the covariance matrix. In principle, once the

zeros are found, a constrained maximum likelihood estimator of the covariance can

be computed (Chaudhuri et al., 2007), but it is not clear what the properties of such

a two-step procedure would be.

Two recent papers, d’Aspremont et al. (2008) and Yuan and Lin (2007), take a

penalized likelihood approach by applying an l1 penalty to the entries of the con-

centration matrix. This results in a permutation-invariant loss function that tends

to produce a sparse estimate of the inverse. Yuan and Lin (2007) used the max-det

algorithm to compute the estimator, which limited their numerical results to values

of p ≤ 10, and derived a fixed p, large n convergence result. d’Aspremont et al.

(2008) proposed a much faster semi-definite programming algorithm based on Nes-

terov’s method for interior point optimization. A new very fast algorithm for the

same problem was proposed by Friedman et al. (2008), which is based on the coordi-
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nate descent algorithm for the lasso (Friedman et al., 2007). In Chapter II (Rothman

et al., 2008), we offer the first large p asymptotic analysis of this estimator and offer a

fast algorithm to compute this estimator. Our work has since been extended to more

general penalties on the concentration matrix by Lam and Fan (2009) and Fan et al.

(2009).

A simple alternative to penalized likelihood is thresholding the sample covariance

matrix, which has been analyzed by Bickel and Levina (2008a) and El Karoui (2008).

Thresholding carries essentially no computational burden, except for cross-validation

for the tuning parameter (which is also necessary for penalized likelihood) and is

thus an attractive option for problems in very high dimensions and real-time applica-

tions. However, in regression and wavelet shrinkage contexts (see, e.g., Donoho et al.

(1995), Fan and Li (2001)), hard thresholding tends to do worse than more flexible

estimators that combine thresholding with shrinkage, for example, soft thresholding

or SCAD (Fan and Li, 2001). The estimates resulting from such shrinkage typically

are continuous functions of the “naive” estimates, a desirable feature not shared by

hard thresholding. We introduce a new class of generalized thresholding operators

and offer consistency and sparsity analysis in Chapter III (Rothman et al., 2009).

Estimating the covariance matrix or its inverse is usually a means to an end and

not the ultimate goal. We may ultimately be interested in prediction or classifica-

tion but need an estimate of the covariance matrix or its inverse along the way. In

Chapter V, we propose a procedure for constructing a sparse estimator of a mul-

tivariate regression coefficient matrix that accounts for correlation of the response

variables. This method, which we call multivariate regression with covariance esti-

mation (MRCE), involves penalized likelihood with simultaneous estimation of the

regression coefficients and the covariance structure.
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CHAPTER II

Sparse permutation invariant covariance

estimation

2.1 Introduction

This chapter proposes a method for constructing a sparse estimator for the inverse

covariance (concentration) matrix in high-dimensional settings. We call this estimator

SPICE, an acronym standing for sparse permutation invariant covariance estimator.

SPICE is formed by adding a lasso-type penalty to the negative normal log-likelihood.

The lasso-type penalty encourages sparsity in the concentration matrix primarily

because the convex penalty function is non-differentiable at points (matrices) where

elements in the off-diagonal of the concentration matrix are exactly equal to zero.

Aside from having a favorable convergence rate for sparse models as we will show,

the SPICE estimator also yields a pattern of zeros and non-zeros in the concentration

matrix implying an undirected graph structure.

We first establish a rate of convergence in the Frobenius norm as both data dimen-

sion p and sample size n are allowed to grow, and show that the rate depends explicitly

on how sparse the true concentration matrix is. We also show that a correlation-based

version of the method exhibits better rates in the operator norm. We illustrate these

theoretical results with simulation examples.

We additionally derive a fast iterative algorithm for computing the estimator and
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argue that it converges to the unique global minimizer of the convex problem. The

algorithm relies on the popular Cholesky decomposition of the inverse covariance

matrix but produces a permutation-invariant estimator. The method is compared

to other estimators on simulated data and on a real data example of tumor tissue

classification using gene expression data.

This chapter is organized as follows: Section 2.2 summarizes the SPICE approach

in general, and presents consistency results. The Cholesky-based computational al-

gorithm, along with a discussion of optimization issues, is presented in Section 2.3.

Section 2.4 presents numerical results for SPICE and a number of other methods,

for simulated data and a real example on classification of colon tumors using gene

expression data. Section 2.5 concludes with discussion.

2.2 Analysis of the SPICE method

We assume throughout that we observe X1, . . . , Xn, i.i.d. p-variate normal ran-

dom variables with mean 0 and covariance matrix Σ0, and write X i = (Xi1, . . . , Xip)
T .

Let Σ0 = [σ0ij ], and Ω0 = Σ−1
0 be the inverse of the true covariance matrix. For any

matrix M = [mij ], we write |M | for the determinant of M , tr(M) for the trace

of M , and ϕmax(M) and ϕmin(M) for the largest and smallest eigenvalues, respec-

tively. We write M+ = diag(M) for a diagonal matrix with the same diagonal as

M, and M− = M −M+. In the asymptotic analysis, we will use the Frobenius ma-

trix norm ‖M‖2F =
∑

i,j m2
ij , and the operator norm (also known as matrix 2-norm),

‖M‖2 = ϕmax(MMT ). We will also write | · |1 for the l1 norm of a vector or matrix

vectorized, i.e., for a matrix |M |1 =
∑

i,j |mij |.

It is easy to see that under the normal assumption the negative log-likelihood, up

to a constant, can be written in terms of the concentration matrix as

`(X1, . . . , Xn; Ω) = tr(ΩΣ̂)− log |Ω|,

7



where

Σ̂ =
1

n

n∑

i=1

(
X i − X̄

)(
X i − X̄

)T

is the sample covariance matrix.

We define the SPICE estimator Ω̂λ of the inverse covariance matrix as the mini-

mizer of the penalized negative log-likelihood,

Ω̂λ = arg min
Ω�0

{
tr(ΩΣ̂)− log |Ω|+ λ|Ω−|1

}
(2.1)

where λ is a non-negative tuning parameter, and the minimization is taken over

symmetric positive definite matrices.

SPICE is identical to the lasso-type estimator proposed by Yuan and Lin (2007),

and very similar to the estimator of d’Aspremont et al. (2008) (they used |Ω|1 rather

than |Ω−|1 in the penalty). The loss function is invariant to permutations of variables

and should encourage sparsity in Ω̂ due to the l1 penalty applied to its off-diagonal

elements.

We make the following assumptions about the true model:

A1: Let the set S = {(i, j) : Ω0ij 6= 0, i 6= j}. Then card(S) ≤ s.

A2: ϕmin(Σ0) ≥ k > 0, or equivalently ϕmax(Ω0) ≤ 1/k.

A3: ϕmax(Σ0) ≤ k.

Note that assumption A2 guarantees that Ω0 exists. Assumption A1 is more of a

definition, since it does not stipulate anything about s (s = p(p− 1)/2 would give a

full matrix).

Theorem II.1. Let Ω̂λ be the minimizer defined by (2.1). Under A1, A2, A3, if

λ �
√

log p
n

,

‖Ω̂λ − Ω0‖F = OP

(√

(p + s) log p

n

)

. (2.2)
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The theorem can be restated, more suggestively, as

‖Ω̂λ − Ω0‖2F
p

= OP

((

1 +
s

p

)
log p

n

)

. (2.3)

The reason for the second formulation (2.3) is the relation of the Frobenius norm to

the operator norm, ‖M‖2F /p ≤ ‖M‖2 ≤ ‖M‖2F .

Before proceeding with the proof of Theorem II.1, we discuss a modification to

SPICE based on using the correlation matrix. An inspection of the proof reveals that

the worst part of the rate,
√

p log p/n, comes from estimating the diagonal. This

suggests that if we were to use the correlation matrix rather than the covariance

matrix, we should be able to get the rate of
√

s log p/n. Indeed, let Σ0 = WΓW ,

where Γ is the true correlation matrix, and W is the diagonal matrix of true standard

deviations. Let Ŵ and Γ̂ be the sample estimates of W and Γ, i.e., Ŵ 2 = Σ̂+,

Γ̂ = Ŵ−1Σ̂Ŵ−1. Let K = Γ−1. Define a SPICE estimate of K by

K̂λ = arg min
Ω�0

{
tr(ΩΓ̂)− log |Ω|+ λ|Ω−|1

}
(2.4)

Then we can define a modified correlation-based estimator of the concentration matrix

by

Ω̃λ = Ŵ−1K̂λŴ
−1. (2.5)

It turns out that in the Frobenius norm Ω̃ has the same rate as Ω̂, but for Ω̃ we can get

a convergence rate in the operator norm (matrix 2-norm). As discussed previously by

Bickel and Levina (2008b), El Karoui (2008) and others, the operator norm is more

appropriate than the Frobenius norm for spectral analysis, e.g., PCA. It also allows

for a direct comparison with banding rates obtained in Bickel and Levina (2008b)

and thresholding rates in Bickel and Levina (2008a).
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Theorem II.2. Under assumptions of Theorem II.1,

‖Ω̃λ − Ω0‖ = OP

(√

(s + 1) log p

n

)

.

Note. This rate is very similar to the rate for thresholding the covariance matrix

obtained by Bickel and Levina (2008a). They showed that under the assumption

maxi

∑

j |σij|q ≤ c0(p) for 0 ≤ q < 1, if the sample covariance entries are set to 0

when their absolute values fall below the threshold λ = M
√

log p
n

, then the result-

ing estimator converges to the truth in operator norm at the rate no worse than

OP

(

c0(p)
(

log p
n

)(1−q)/2
)

. Since the truly sparse case corresponds to q = 0, and c0(p)

is a bound on the number of non-zero elements in each row, and thus
√

s � c0(p),

this rate coincides with ours, even though the estimator and the method of proof are

very different. However, Lemma II.3 below is the basis of the proof in both cases,

and ultimately it is the bound (2.6) that gives rise to the same rate. A similar rate

has been obtained for banding the covariance matrix in Bickel and Levina (2008b),

under an additional assumption that depends on the ordering of the variables and is

not applicable here (see Bickel and Levina (2008a) for a comparison between banding

and thresholding rates).

In the proof, we will need a lemma of Bickel and Levina (2008b) (Lemma 3) which

is based on a large deviation result of Saulis and Statulevičius (1991). We state the

result here for completeness.

Lemma II.3. Let Zi be i.i.d. N (0, Σp) and ϕmax(Σp) ≤ k <∞. Then, if Σp = [σab],

P
[
|

n∑

i=1

(ZijZik − σjk)| ≥ nν
]
≤ c1 exp(−c2nν2) for |ν| ≤ δ (2.6)

where c1, c2 and δ depend on k only.

Proof of Theorem II.1.
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Let

Q(Ω) =tr(ΩΣ̂)− log |Ω|+ λ|Ω−|1 − tr(Ω0Σ̂) + log |Ω0| − λ|Ω−
0 |1

=tr
[
(Ω− Ω0)(Σ̂− Σ0)

]
− (log |Ω| − log |Ω0|)

+ tr
[
(Ω− Ω0)Σ0

]
+ λ(|Ω−|1 − |Ω−

0 |1) (2.7)

Our estimate Ω̂ minimizes Q(Ω), or equivalently ∆̂ = Ω̂ − Ω0 minimizes G(∆) ≡

Q(Ω0 + ∆). Note that we suppress the dependence on λ in Ω̂ and ∆̂.

The main idea of the proof is as follows. Consider the set

Θn(M) = {∆ : ∆ = ∆T , ‖∆‖F = Mrn},

where

rn =

√

(p + s) log p

n
→ 0 .

Note that G(∆) = Q(Ω0 + ∆) is a convex function, and

G(∆̂) ≤ G(0) = 0 .

Then, if we can show that

inf{G(∆) : ∆ ∈ Θn(M)} > 0 ,

the minimizer ∆̂ must be inside the sphere defined by Θn(M), and hence

‖∆̂‖F ≤ Mrn . (2.8)

For the logarithm term in (2.7), doing the Taylor expansion of f(t) = log |Ω+t∆| and

11



using the integral form of the remainder and the symmetry of ∆, Σ0, and Ω0 gives

log |Ω0+∆|−log |Ω0| = tr(Σ0∆)−∆̃T
[ ∫ 1

0

(1−v)(Ω0+v∆)−1⊗(Ω0+v∆)−1dv
]

∆̃ (2.9)

where ⊗ is the Kronecker product (if A = [aij ]p1×q1, B = [bkl]p2×q2, then A ⊗ B =

[aijbkl]p1p2×q1q2), and ∆̃ is ∆ vectorized to match the dimensions of the Kronecker

product.

Therefore, we may write (2.7) as,

G(∆) =tr
(
∆(Σ̂− Σ0)

)
+ ∆̃T

[ ∫ 1

0

(1− v)(Ω0 + v∆)−1 ⊗ (Ω0 + v∆)−1dv
]

∆̃

+ λ(|Ω−
0 + ∆−|1 − |Ω−

0 |1) (2.10)

For an index set A and a matrix M = [mij ], write MA ≡ [mijI((i, j) ∈ A)], where

I(·) is an indicator function. Recall S = {(i, j) : Ω0ij 6= 0, i 6= j} and let S be its

complement. Note that |Ω−
0 +∆−|1 = |Ω−

0S +∆−
S |1 + |∆−

S
|1, and |Ω−

0 |1 = |Ω−
0S|1. Then

the triangular inequality implies

λ
(
|Ω−

0 + ∆−|1 − |Ω−
0 |1
)
≥ λ(

∣
∣∆−

S
|1 − |∆−

S |1
)

. (2.11)

Now, using symmetry again, we write

|tr
(
∆(Σ̂− Σ0)

)
| ≤

∣
∣
∣

∑

i6=j

(σ̂ij − σ0ij)∆ij

∣
∣
∣+
∣
∣
∣

∑

i

(σ̂ii − σ0ii)∆ii

∣
∣
∣ = I + II. (2.12)

To bound term I, note that the union sum inequality and Lemma II.3 imply that,

with probability tending to 1,

max
i6=j
|σ̂ij − σ0ij | ≤ C1

√

log p

n

12



and hence term I is bounded by

I ≤ C1

√

log p

n
|∆−|1. (2.13)

The second bound comes from the Cauchy-Schwartz inequality and Lemma II.3:

II ≤
[

p
∑

i=1

(σ̂ii − σ0ii)
2

]1/2

‖∆+‖F ≤
√

p max
1≤i≤p

|σ̂ii − σ0ii| ‖∆+‖F

≤ C2

√

p log p

n
‖∆+‖F ≤ C2

√

(p + s) log p

n
‖∆+‖F , (2.14)

also with probability tending to 1.

Now, take

λ =
C1

ε

√

log p

n
. (2.15)

By (2.10),

G(∆) ≥ 1

4
k2‖∆‖2F − C1

√

log p

n
|∆−|1 − C2

√

(p + s) log p

n
‖∆+‖F + λ(

∣
∣∆−

S
|1 − |∆−

S |1
)

=
1

4
k2‖∆‖2F − C1

√

log p

n

(

1− 1

ε

)

|∆−
S
|1 − C1

√

log p

n

(

1 +
1

ε

)

|∆−
S |1

− C2

√

(p + s) log p

n
‖∆+‖F (2.16)

The first term comes from a bound on the integral which we will argue separately

below. The second term is always positive, and hence we may omit it for the lower

bound. Now, note that

|∆−
S |1 ≤

√
s‖∆−

S ‖F ≤
√

s‖∆−‖F ≤
√

p + s‖∆−‖F .

13



Thus we have

G(∆) ≥ ‖∆−‖2F

[

1

4
k2 − C1

√

(p + s) log p

n

(

1 +
1

ε

)

‖∆−‖−1
F

]

+ ‖∆+‖2F

[

1

4
k2 − C2

√

(p + s) log p

n
‖∆+‖−1

F

]

= ‖∆−‖2F
[
1

4
k2 − C1(1 + ε)

εM

]

+ ‖∆+‖2F
[
1

4
k2 − C2

M

]

> 0 (2.17)

for M sufficiently large.

It only remains to check the bound on the integral term in (2.10). Recall that

ϕmin(M) = min‖x‖=1 xT Mx. After factoring out the norm of ∆̃, we have, for ∆ ∈

Θn(M),

ϕmin

(∫ 1

0

(1− v)(Ω0 + v∆)−1 ⊗ (Ω0 + v∆)−1dv
)

≥
∫ 1

0

(1− v)ϕ2
min(Ω0 + v∆)−1dv ≥ 1

2
min

0≤v≤1
ϕ2

min(Ω0 + v∆)−1

≥ 1

2
min

{
ϕ2

min(Ω0 + ∆)−1 : ‖∆‖F ≤Mrn

}
.

The first inequality uses the fact that the eigenvalues of Kronecker products of sym-

metric matrices are the products of the eigenvalues of their factors. Now

ϕ2
min(Ω0 + ∆)−1 = ϕ−2

max(Ω0 + ∆) ≥ (‖Ω0‖+ ‖∆‖)−2 ≥ 1

2
k2 (2.18)

with probability tending to 1, since ‖∆‖ ≤ ‖∆‖F = o(1). This establishes the

theorem. �

As noted above, an inspection of the proof shows that
√

p log p/n in the rate

comes from estimating the diagonal. If we focus on the correlation matrix estimate

K̂λ in (2.4) instead, we can immediately obtain

14



Corollary 1. Under assumptions of Theorem II.1,

‖K̂λ −K‖F = OP

(√

s log p

n

)

.

Now we can use Corollary 1 to prove Theorem II.2, the operator norm bound.

Proof of Theorem II.2. Write

‖Ω̃λ − Ω0‖ = ‖Ŵ−1K̂λŴ
−1 −W−1KW−1‖

≤ ‖Ŵ−1 −W−1‖ ‖K̂λ −K‖ ‖Ŵ−1 −W−1‖

+ ‖Ŵ−1 −W−1‖(‖K̂λ‖ ‖W−1‖+ ‖Ŵ−1‖ ‖K‖)

+ ‖K̂λ −K‖ ‖Ŵ−1‖ ‖W−1‖

where we are using the sub-multiplicative norm property ‖AB‖ ≤ ‖A‖ ‖B‖ (see, e.g.,

Golub and Van Loan (1989)). Now, ‖W−1‖ and ‖K‖ are O(1) by assumptions A2

and A3. Lemma II.3 implies that

‖Ŵ 2 −W 2‖ = OP

(√

log p

n

)

, (2.19)

and since ‖Ŵ−1 − W−1‖ P� ‖Ŵ 2 − W 2‖ (where by A
P� B we mean A = OP (B)

and B = OP (A)), we have the rate of
√

log p/n for ‖Ŵ−1 −W−1‖. This together

with Corollary 1 in turn implies that ‖Ŵ−1‖ and ‖K̂λ‖ are OP (1), and the theorem

follows. �

Note that in the Frobenius norm, we only have ‖Ŵ 2 −W 2‖ = OP (
√

p log p/n),

and thus the Frobenius rate of Ω̃λ is the same as that of Ω̂λ.
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2.3 The Cholesky-based SPICE algorithm

In this section, we develop an iterative algorithm for computing the SPICE estima-

tor using the Cholesky decomposition; however, unlike other estimators that depend

on the Cholesky decomposition, we minimize a permutation invariant objective func-

tion, and thus the estimator remains permutation invariant. We use the quadratic

approximation to the absolute value, a standard tool in optimization which has been

previously used in the statistics literature to handle lasso-type penalties, for example,

by Fan and Li (2001) and Huang et al. (2006). In this our algorithm differs from the

glasso algorithm of Friedman et al. (2008), which is based on a lasso algorithm and

works directly on the absolute values. Both algorithms have computation complexity

of O(p3), but we acquire another small constant factor (on the order of 10) due to

the additional iterations required for the quadratic approximation to converge (see

more on this in Section 2.4). However, using the quadratic approximation allows us

to write down the algorithm explicitly in general terms for an lq penalty |wij|q with

q ≥ 1, rather than only for q = 1. In particular, our algorithm is equally applicable

for use with a ridge penalty (q = 2), although in that special case it simplifies even

further, or with a bridge penalty (1 < q < 2) proposed by Fu (1998), which may work

better for certain classes of covariances. It can also be used with SCAD (Fan and

Li, 2001) or other more complicated non-convex penalties that are typically approx-

imated by the local quadratic approximation. Even though we derive the algorithm

with a general q, in this chapter we only present results for q = 1.

Our goal is to minimize the objective function,

f(Ω) = tr(ΩΣ̂)− log |Ω|+ λ
∑

j′ 6=j

|ωj′j|q, (2.20)

where q = 1 corresponds to the computation of Ω̂λ in (2.1). For q ≥ 1, the objective

function is convex in the elements of Ω and has a global minimum Ω̂. Our strategy
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is to re-parametrize the objective (2.20) using the Cholesky decomposition of Ω to

enforce automatic positive definiteness. Rather than using the modified Cholesky de-

composition with its regression interpretation, as has been standard in the literature,

we simply write

Ω = T T T,

where T = [tij ] is a lower triangular matrix. We can still use the regression interpre-

tation if needed, by writing

tjj′ = − φjj′
√

djj

, j′ < j

tjj =
1

√
djj

, (2.21)

where φjj′ is the coefficient of Xj′ in the regression of Xj on X1, . . . , Xj−1, and djj is

the corresponding residual variance.

To minimize f in terms of T , we apply a cyclical coordinate descent approach and

minimize f with respect to one element of T at a time. Further, we use a quadratic

approximation to f , which allows to find the minimum of the univariate functions of

each parameter in closed form. The algorithm is iterated until convergence. Here we

outline the main steps of the algorithm, and leave the full derivation in Section 2.6.

In a slight abuse of notation, we write X for the n × p data matrix where each

column has already been centered by its sample mean. The three terms in (2.20) can

be expressed as a function of T as follows:

tr(ΩΣ̂) =
1

n

n∑

i=1

p
∑

j=1

(
j
∑

k=1

tjkXik

)2
(2.22)

log |Ω| = 2

p
∑

j=1

log tjj (2.23)

∑

j′ 6=j

|ωj′j|q = 2
∑

j′>j

∣
∣

p
∑

k=j′

tkj′tkj

∣
∣q (2.24)
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The quadratic approximation for |u|q is shown in (2.25). Since the algorithm is

iterative, u(k) denotes the value of u from the previous iteration, and u(k+1) is the

value at current iteration.

|u(k+1)|q ≈ q

2

(u(k+1))2

|u(k)|2−q
+
(

1− q

2

)

|u(k)|q (2.25)

Hunter and Li (2005) suggest replacing |u(k)| in the denominator with |u(k)|+ ε to

avoid division by zero, and refer to this as the ε-perturbed quadratic approximation.

This quadratic approximation to f , which we denote f̃ε,k at iteration k, allows us to

easily take partial derivatives with respect to each parameter in T , and provides a

closed form solution for the univariate minimizer for each coordinate.

The algorithm requires an initial value T̂ (0), which corresponds to Ω̂(0). If the

sample covariance Σ̂ is non-degenerate, which is generally the case for p < n, one could

simply set Ω̂(0) = Σ̂−1. More generally, we found the following simple strategy to work

well: approximate φjj′ in (2.21) by regressing Xj on Xj′ alone, for j′ = 1, . . . , j − 1,

and then compute T̂ (0) using (2.21). Yet another alternative is to start from the

diagonal estimator.

The Algorithm:

Step 0. Initialize T̂ = T̂ (0) and Ω̂(0) = (T̂ (0))T T̂ (0).

Step 1. For each parameter tlc, c = 1, . . . , p, l = c, . . . , p, solve ∇tlc f̃ε,k(T ) = 0 to

find new t̂lc.

Step 2. Repeat Step 1 until convergence of T̂ and set T (k+1) = T̂ .

Step 3. Set Ω̂(k+1) = (T (k+1))T T (k+1) and repeat Steps 1-3 until convergence of Ω̂.

Steps 2 and 3 may seem redundant, but they are needed for two different reasons.

Step 2 is needed because we only minimize with respect to one parameter at a time,

holding all other parameters fixed; and Step 3 is needed because of the quadratic
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approximation for |u|q. After convergence, we replace entries in Ω̂ with smaller mag-

nitude than ε with zero, using a fixed value of ε = 10−8. Another approach with

virtually the same performance is to replace entries of Ω̂(k) with ε if their magnitude

falls below ε in Step 3, and use (2.25) directly in the objective function in Step 1

instead of using f̃ε,k.

In practice, we found that working with the correlation matrix as described in

Theorem II.2 is slightly better than working with the covariance matrix, although

the differences are fairly small. Still, in all the numerical results we standardize the

variables first and then rescale our estimate by the sample standard deviations of the

variables.

2.3.1 Algorithm convergence

The convergence of the algorithm essentially follows from two standard results.

For the inner loop cycling through individual parameters, the value of the objective

function decreases at each iteration, and the objective function is differentiable ev-

erywhere. Thus the inner loop of the algorithm converges by a standard theorem on

cyclical coordinate descent for smooth functions (see, e.g., Bazaraa et al. (2006), p.

367), to a stationary point ∇g(T ) = 0, where g(T ) = f̃ε,k(T
TT ). The function f̃ε,k is

convex in the original parameters ωij, but since we reparametrized it in terms of T ,

the function g is not necessarily convex in T . In the next proposition we verify that

this stationary point of g corresponds to the global minimum of the convex function

f̃ε,k.

Proposition II.4. Let f̃ ≡ f̃ε,k be the original convex function f approximated by

the ε-perturbed local quadratic approximation at iteration k, let T be a p × p lower

triangular matrix, and let g(T ) = f̃(T TT ). Let S0 be the unique solution to ∇f̃(S) =

0, and let T0 be a solution to ∇g(T ) = 0. Then S0 = T T
0 T0.

Proof of Proposition II.4. Let h : T → T T T . Note that h maps all of R
p(p+1)/2
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(all lower triangular matrices) into a convex subset of R
p(p+1)/2 (non-negative definite

symmetric matrices). Denote the differential of h in the direction d ∈ R
p(p+1)/2

evaluated at t0 ∈ R
p(p+1)/2 by ∇h(t0)[d]. Then,

∇h(t0)[d] = T T
0 D + DT T0 , (2.26)

where T0 and D are, respectively, t0 and d written as p× p matrices. Now, using the

chain rule and (2.26), we have

∇g(t0)[d] = ∇f̃(vec(T T
0 T0))

(
T T

0 D + DT T0

)
. (2.27)

where we now think of f̃ as a function from R
p(p+1)/2 to R. Since f̃ is convex and

has a unique minimizer s0 = vec(S0), ∇f̃(s)[d] vanishes iff s = s0 or d = 0. Thus

∇g(t0)[d] = 0 vanishes iff T T
0 T0 = S0 or T T

0 D + DT T0 = 0, or T T
0 D = −(T T

0 D)T .

If any diagonal elements of T0 are 0, then T0 is singular, and so is T T
0 T0, and thus

g(T0) = ∞, so a singular T0 cannot be a stationary point of g. Since T0 is lower

triangular and all its diagonal elements must be non-zero, one can show by induction

that T T
0 D = −(T T

0 D)T implies D = 0. �

For the outer loop iterating through the quadratic approximation, we can apply

the argument of Hunter and Li (2005) for ε-perturbed local quadratic approximation

obtained from general results for minorize-maximize algorithms, and conclude that

as k →∞ and ε→ 0 the algorithm converges to the global minimum of the original

convex function f in (2.20). In practice, we have also observed that our algorithm

and glasso converge to the same solution.

2.3.2 Computational complexity

The computational complexity of the algorithm in terms of p is O(p3), since each

parameter update is at most O(p) (see (2.32) in the Appendix), and there are O(p2)
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Figure 2.1: Computing time in seconds vs p (log-log scale) for SPICE and glasso
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parameters. The only other algorithm for computing this estimator at the cost of

O(p3) is glasso of Friedman et al. (2008); the algorithms of Yuan and Lin (2007)

and d’Aspremont et al. (2008) have higher computational cost. For extensive timing

comparisons of glasso and the algorithm of d’Aspremont et al. (2008), which showed

convincingly that glasso is much faster, see Friedman et al. (2008). The exact timing

also depends on the implementation, platform, etc (our algorithm is implemented in

C and glasso in Fortran). Actual computing times we obtained for glasso and the

SPICE algorithm are shown below in Figure 2.1, for model Ω2 described in Section

2.4.1, with values of tuning parameters chosen as described in Section 2.3.3.

2.3.3 Choice of tuning parameter

Like any other penalty-based approach, SPICE requires selecting the tuning pa-

rameter λ. In simulations, we generate a separate validation dataset, and select λ by

maximizing the normal likelihood on the validation data with Ω̂λ estimated from the

training data. Alternatively, one can use 5-fold cross-validation, which we do for the

real data analysis. There is some theoretical basis for selecting the tuning parameter

in this way – see Bickel and Levina (2008a).
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2.4 Numerical Results

In this section, we compare the performance of SPICE to the shrinkage estimator

of Ledoit and Wolf (2003) and to the sample covariance matrix when applicable

(p < n), using simulated and real data. We do not include any estimators that

depend on variable ordering (such as banding of Bickel and Levina (2008b) or the

Lasso penalty on the Cholesky factor of Huang et al. (2006)), nor estimators that

focus on introducing sparsity in the covariance matrix itself rather than in its inverse

(such as thresholding), as they would automatically be at a disadvantage on sparse

concentration matrices. The Ledoit-Wolf estimator does not introduce sparsity in the

inverse either, but we use it as a benchmark for cases when p > n, since the sample

covariance is not invertible.

2.4.1 Simulations

In simulations, we focus on comparing performance on sparse concentration matri-

ces, with varying levels of sparsity. We consider the following four covariance models.

1. Ω1: AR(1), σj′j = 0.7|j
′−j|.

2. Ω2: AR(4), ωj′j = 1(|j′ − j| = 0) + 0.4 · 1(|j′ − j| = 1)

+ 0.2 · 1(|j′ − j| = 2) + 0.2 · 1(|j′ − j| = 3) + 0.1 · 1(|j′ − j| = 4).

3. Ω3 = B + δI, where each off-diagonal entry in B is generated independently

and equals 0.5 with probability α = 0.1 or 0 with probability 1 − α = 0.9. B

has zeros on the diagonal, and δ is chosen so that the condition number of Ω3 is

p (keeping the diagonal constant across p would result in either loss of positive

definiteness or convergence to identity for larger p).

4. Ω4: Same as Ω3 except α = 0.5.
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All models are sparse (see Figure 2.2), and are numbered in order of decreasing

sparsity (or increasing s). Note that the number of non-zero entries in Ω1 and Ω2 is

proportional to p, whereas Ω3 and Ω4 have the expected number of non-zero entries

proportional to p2.

For all models, we generated n = 100 multivariate normal training observations

and a separate set of 100 validation observations. We considered five different values

of p, 30, 100, 200, 500 and 1000. The estimators were computed on the training data,

with the tuning parameter for SPICE selected by minimizing the normal likelihood

on the validation data. Using these values of the tuning parameters, we computed

the estimated concentration matrix on the training data and compared it to the

population concentration matrix.

We evaluate the concentration matrix estimation performance using the Kullback-

Leibler loss,

∆KL(Ω̂, Ω) = tr
(

ΣΩ̂
)

− log
∣
∣
∣ΣΩ̂

∣
∣
∣− p . (2.28)

Note that this loss is based on Ω̂ and does not require inversion to compute Σ̂, which is

appropriate for a method estimating Ω. The Kullback-Leibler loss was used by Yuan

and Lin (2007) and Levina et al. (2008) to assess performance of methods estimating

Ω, and is obtained from the standard entropy loss of the covariance matrix (Lin and

Perlman, 1985; Wu and Pourahmadi, 2003; Huang et al., 2006) by reversing the roles

of Σ and Ω.

Results for the four covariance models are summarized in Table 2.1, which re-

ports the average loss and the standard error over 50 replications. For Ω1, Ω2, and

Ω3, SPICE outperforms the Ledoit-Wolf estimator for all values of p. The sample

covariance performs much worse than either estimator in all cases (for p = 30). For

Ω4, the least sparse of the four models, the Ledoit-Wolf estimator is about the same

as SPICE (sometimes a little better, sometimes a little worse). This suggests, as we

would expect from our bound on the rate of convergence, that SPICE provides the
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Table 2.1: Simulations: Average (SE) Kullback-Leibler loss over 50 replications.
p Sample Ledoit-Wolf SPICE Sample Ledoit-Wolf SPICE

Ω1 Ω2

30 8.52(0.14) 3.49(0.04) 1.61(0.03) 8.52(0.14) 2.77(0.02) 2.55(0.03)
100 NA 26.65(0.08) 8.83(0.05) NA 12.96(0.02) 11.93(0.07)
200 NA 76.83(0.13) 21.23(0.09) NA 28.16(0.01) 24.82(0.07)
500 NA 262.8(0.19) 78.26(0.26) NA 74.37(0.02) 63.94(0.12)
1000 NA 594.0(0.13) 174.8(0.20) NA 151.9(0.04) 133.7(0.20)

Ω3 Ω4

30 8.45(0.12) 3.50(0.05) 2.12(0.04) 8.45(0.12) 3.04(0.04) 3.77(0.04)
100 NA 29.25(0.44) 17.09(0.10) NA 19.35(0.15) 21.33(0.06)
200 NA 86.93(1.64) 45.58(0.13) NA 53.18(0.37) 51.93(0.13)
500 NA 240.3(3.24) 168.7(0.37) NA 150.4(0.45) 176.6(0.33)
1000 NA 321.5(27.7) 277.3(23.5) NA 269.8(18.1) 307.3(20.6)

biggest gains in sparse models.

To assess the performance of SPICE on recovering the sparsity structure in the

inverse, we report percentages of non-zeros estimated as non-zero (TP %) and per-

centages of true zeros estimated as zero (TN %) in Table 2.2. We also plot heatmaps

of the percentage of time each element was estimated as zero out of the 50 replica-

tions in Figure 2.2, for p = 30 for all four models. In general, recovering the sparsity

structure is easier for smaller p and for sparser models.

Finally, some example computing times: the SPICE algorithm for Ω2 takes about

2 seconds for p = 200, 1 minute for p = 500, and 15 minutes for p = 1000 on a regular

PC. Glasso and SPICE both have complexity O(p3), but because of the quadratic

approximation, SPICE tends to require more iterations to converge, and on average,

we have observed a difference in computing times on the order of about 10 between

glasso and SPICE. However, this factor does not grow with p, and SPICE computing

times are still very reasonable even for large p.
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(a) True Ω1 (b) SPICE Ω̂1

(c) True Ω2 (d) SPICE Ω̂2

(e) True Ω3 (f) SPICE Ω̂3

(g) True Ω4 (h) SPICE Ω̂4

Figure 2.2: Heatmaps of zeros identified in the concentration matrix out of 50 repli-
cations. White color is 50/50 zeros identified, black is 0/50.
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Table 2.2:
Percentage of correctly estimated non-zeros (TP %) and correctly esti-
mated zeros (TN %) in the concentration matrix (average and SE over 50
replications) for SPICE.

p TP % TN % TP % TN %
Ω1 Ω2

30 100(0.00) 68.74(0.31) 50.18(1.44) 75.64(1.28)
100 100(0.00) 74.70(0.08) 49.96(1.10) 72.68(1.21)
200 100(0.00) 73.57(0.04) 27.62(0.12) 96.47(0.02)
500 100(0.00) 91.97(0.01) 22.48(0.09) 98.81(0.00)
1000 100(0.00) 98.95(0.00) 22.29(0.05) 98.82(0.00)

Ω3 Ω4

30 98.38(0.30) 63.85(1.28) 74.15(0.61) 44.50(0.84)
100 93.90(0.27) 54.01(0.61) 41.27(0.37) 63.07(0.36)
200 70.81(0.13) 69.82(0.05) 35.77(0.06) 66.08(0.06)
500 28.93(0.06) 89.28(0.02) 5.92(0.62) 94.27(0.61)
1000 4.73(0.40) 72.36(6.13) 2.07(0.14) 79.97(5.35)

2.4.2 Colon tumor classification example

In this section, we compare performance of covariance estimators for LDA classi-

fication of tumors using gene expression data from Alon et al. (1999). In this exper-

iment, colon adenocarcinoma tissue samples were collected, 40 of which were tumor

tissues and 22 non-tumor tissues. Tissue samples were analyzed using an Affymetrix

oligonucleotide array. The data were processed, filtered, and reduced to a subset of

2,000 gene expression values with the largest minimal intensity over the 62 tissue

samples. Additional information about the dataset and pre-processing can be found

in Alon et al. (1999).

To assess the performance at different dimensions, we reduce the full dataset of

2,000 gene expression values by selecting p most significant genes as measured by the

two-sample t-statistic, for p = 50, 100, 200. Then we use linear discriminant analysis

(LDA) to classify these tissues as either tumorous or non-tumorous. We classify each
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test observation x to either class k = 0 or k = 1 using the LDA rule

δk(x) = arg max
k

{

xT Ω̂µ̂k −
1

2
µ̂T

k Ω̂µ̂k + log π̂k

}

, (2.29)

where π̂k is the proportion of class k observations in the training data, µ̂k is the

sample mean for class k on the training data, and Ω̂ is an estimator of the inverse of

the common covariance matrix on the training data computed by one of the methods

under consideration. Detailed information on LDA can be found in Mardia et al.

(1979).

To create training and test sets, we randomly split the data into a training set of

size 42 and a testing set of size 20; following the approach used by Wang et al. (2007),

we require the training set to have 27 tumor samples and 15 non-tumor samples. We

repeat the split at random 100 times and measure the average classification error.

The average errors with standard errors over the 100 splits are presented in Table

2.3. We omit the sample covariance because it is not invertible with such a small

sample size, and include the naive Bayes classifier instead (where Σ̂ is estimated by a

diagonal matrix with sample variances on the diagonal). Naive Bayes has been shown

to perform better than the sample covariance in high-dimensional settings (Bickel and

Levina, 2004).

For an application such as classification, there are several possibilities for selecting

the tuning parameter. Since we have no separate validation data available, we perform

5-fold cross-validation on the training data. One possibility (columns A in Table 2.3)

is to continue using normal likelihood as a criterion for cross-validation, like we did in

simulations. Another possibility (columns B in Table 2.3) is to use classification error

as the cross-validation criterion, since that is the ultimate performance measure in

this case. Table 2.3 shows that for SPICE both methods of tuning perform similarly.

For reference, we also include the best error rate achievable on the test data, which
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Table 2.3:
Averages and SEs of classification errors in % over 100 splits. Tuning
parameter for SPICE chosen by (A): 5-fold CV on the training data max-
imizing the likelihood; (B): 5-fold CV on the training data minimizing
the classification error; (C): minimizing the classification error on the test
data.

p = 50 p = 100 p = 200
N. Bayes 15.8(0.77) 20.0(0.84) 23.1(0.96)
L-W 15.2(0.55) 16.3(0.71) 17.7(0.61)
SPICE A 12.1(0.65) 18.7(0.84) 18.3(0.66)
SPICE B 14.7(0.73) 16.9(0.85) 18.0(0.70)
SPICE C 9.0(0.57) 9.1(0.51) 10.2(0.52)

is obtained by selecting the tuning parameter to minimize the classification error on

the test data (columns C in Table 2.3). SPICE provides the best improvement over

naive Bayes and Ledoit-Wolf for p = 50; for larger p, as less informative genes are

added into the pool, the performance of all methods worsens.

2.5 Discussion

We have analyzed a penalized likelihood approach to estimating a sparse con-

centration matrix via a lasso-type penalty, and showed that its rate of convergence

depends explicitly on how sparse the true matrix is. This is analogous to results

for banding (Bickel and Levina, 2008b), where the rate of convergence depends on

how quickly the off-diagonal elements of the true covariance decay, and for thresh-

olding (Bickel and Levina, 2008a; El Karoui, 2008), where the rate also depends on

how sparse the true covariance is by various definitions of sparsity. We conjecture

that other structures can be similarly dealt with, and other types of penalties may

show similar behavior when applied to the “right” type of structure – for example,

a ridge, bridge, or other more complex penalty may work well for a model that is

not truly sparse but has many small entries. A generalization of this work to other

penalties has been recently completed by Lam and Fan (2009), who have also proved

“sparsistency” of SPICE-type estimators.
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While we assumed normality, it can be replaced by a tail condition, analogously to

Bickel and Levina (2008b). The use of normal likelihood is, of course, less justifiable if

we do not assume normality, but it was found empirically that it still works reasonably

well as a loss function even if the true distribution is not normal (Levina et al., 2008).

The Cholesky decomposition of covariance was only considered appropriate when

variables are ordered, and we have shown it to be a useful tool for enforcing positive

definiteness of the estimator even when variables have no natural ordering. Our

optimization algorithm has complexity of O(p3) and is equally applicable to general

lq penalties.

2.6 Derivation of the SPICE Algorithm

In this section we give a full derivation of the parameter update equations involved

in the optimization algorithm. Recall that we have re-parametrized the objective

function (2.20) using (2.22)–(2.24). We cycle through the parameters in T and for each

tlc, compute partial derivatives with respect to tlc while holding all other parameters

fixed, and solve the univariate linear equation corresponding to setting this partial

derivative to 0.

For simplicity, we separate the likelihood and the penalty by writing f̃(T ) =

`(T ) + P (T ). We also suppress the ε-perturbation in the denominator for simplicity

of notation. For the likelihood part, taking the partial derivative with respect to tlc,

1 ≤ c ≤ p, c ≤ l ≤ p gives

∂

∂t`c
`(T ) = −2

∂

∂t`c

p
∑

j=1

log tjj

︸ ︷︷ ︸

=0 if j 6=c

+
1

n

n∑

i=1

∂

∂t`c

p
∑

j=1

(
j
∑

k=1

tjkXik

)2

︸ ︷︷ ︸

=0 if j 6=l

=
−2

tcc
1{l = c}+ tlc [2σ̂cc] + 2

l∑

k=1, k 6=c

tlkσ̂kc, (2.30)
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For the penalty part, using the quadratic approximation (2.25) gives

∂

∂t`c
P (T ) ≈ ∂

∂t`c

∑

j′>j

λq

|ω0
j′j |2−q

ω2
j′j =

l∑

k=1,k 6=c

λq

|ω0
ck|2−q

∂

∂t`c
ω2

ck , (2.31)

since the only nonzero terms in (2.31) are those for which j′ ≤ l and either j′ = c or

j = c. For 1 ≤ k ≤ l such that k 6= c, we have ∂
∂t`c

ω2
ck = 2ωcktlk, and collecting terms

together we get

∂

∂t`c
P (T ) = tlc

[

2λq

l∑

k=1,k 6=c

t2lk
|ω0

ck|2−q

]

+ 2λq

l∑

k=1,k 6=c

(ωck − tlctlk)tlk
|ω0

ck|2−q
. (2.32)

Combining together (2.30) and (2.32), we have the parameter update equation for

tlc when l 6= c, is given by

t̂lc =
−∑l

k=1, k 6=c tlkσ̂kc − λq
∑l

k=1,k 6=c(ωck − tlctlk)tlk|ω0
ck|q−2

σ̂cc + λq
∑l

k=1,k 6=c t2lk|ω0
ck|q−2

.

If l = c, we solve au2 + bu− 1 = 0 for u using the quadratic formula, where

a = σ̂cc + λq
l∑

k=1,k 6=c

t2lk|ω0
ck|q−2 ,

b =

l∑

k=1, k 6=c

tlkσ̂kc + λq

l∑

k=1,k 6=c

(ωck − tlctlk)tlk|ω0
ck|q−2 ,

then take the positive solution t̂cc = u+.

We also can quickly update the ωck involving tlc via

ωck = ω0
ck + tlk(t̂lc − tlc) .
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CHAPTER III

Generalized thresholding of large covariance

matrices

3.1 Introduction

In this chapter we propose a new class of generalized thresholding operators which

combine thresholding with shrinkage, and study generalized thresholding of the sam-

ple covariance matrix in high dimensions. Bickel and Levina (2008a) and El Karoui

(2008) showed favorable large p convergence rates for hard thresholding of the sample

covariance matrix (i.e. setting elements in the sample covariance matrix to zero if

their magnitude falls below a thresholding parameter λ). We specifically generalize

the hard thresholding approach to covariance estimation to a whole class of estimators

based on element-wise shrinkage and thresholding. For any λ ≥ 0, define a gener-

alized thresholding operator to be a function sλ : R → R satisfying the following

conditions for all z ∈ R:

(i) |sλ(z)| ≤ |z|;

(ii) sλ(z) = 0 for |z| ≤ λ;

(iii) |sλ(z)− z| ≤ λ.

Condition (i) establishes shrinkage, condition (ii) enforces thresholding, and condition

(iii) limits the amount of shrinkage to no more than λ. It is possible to have different
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parameters λ1 and λ2 in (ii) and (iii); for simplicity, we keep them the same. For a

related discussion of penalties that have such properties, see also Antoniadis and Fan

(2001).

This chapter is organized as follows. To make our definition of generalized thresh-

olding concrete, we start by giving examples in Section 3.2, and show that generalized

thresholding covers many popular shrinkage/thresholding functions, including hard

and soft thresholding, SCAD (Fan and Li, 2001), and adaptive lasso (Zou, 2006). In

Section 3.3, we establish convergence rates for generalized thresholding of the sample

covariance on a class of “approximately sparse” matrices, and show they are consis-

tent as long as log p/n tends to 0. We also show that generalized thresholding is, in

the terminology of Lam and Fan (2009), “sparsistent”, meaning that in addition to

being consistent it estimates true zeros as zeros with probability tending to 1, and,

under an additional condition, estimates non-zero elements as non-zero, with the cor-

rect sign, with probability tending to 1. This property is sometimes referred to as sign

consistency. Simulation results are given in Section 3.4, where we show that while

all the estimators in this class are guaranteed the same bounds on convergence rates

and have similar performance in terms of overall loss, the more flexible penalties like

SCAD are substantially better at getting the true sparsity structure since in practice

one must select the tuning parameter. Finally, Section 3.5 presents an application of

the methods to gene expression data on small round blue-cell tumors (SRBC).

3.2 Examples of generalized thresholding

It turns out that conditions (i)–(iii) which define generalized thresholding are

satisfied by a number of commonly used shrinkage/thresholding procedures. These

procedures are commonly introduced as solutions to penalized quadratic loss problems

with various penalties. Since in our case the procedure is applied to each element
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separately, the optimization problems are univariate. Suppose sλ(z) is obtained as

sλ(z) = arg min
θ
{1
2
(θ − z)2 + pλ(θ)} , (3.1)

where pλ is a penalty function. Next, we check that several popular penalties and

thresholding rules satisfy our conditions for generalized thresholding. For more details

on the relationship between penalty functions and resulting thresholding rules, see

Antoniadis and Fan (2001).

The simplest example of generalized thresholding is the hard thresholding rule,

sH
λ (z) = z1(|z| > λ) , (3.2)

where 1(·) is the indicator function. Hard thresholding obviously satisfies conditions

(i)–(iii).

Soft thresholding results from solving (3.1) with the lasso (`1) penalty function,

pλ(θ) = λ|θ|, and gives the rule

sS
λ(z) = sign(z)(|z| − λ)+ . (3.3)

Soft thresholding has been studied in the context of wavelet shrinkage by Donoho

and Johnstone (1994) and Donoho et al. (1995), and in the context of regression by

Tibshirani (1996). The soft-thresholding operator sS
λ obviously satisfies conditions (i)

and (ii). To check (iii), note that |sS
λ(z) − z| = |z| when |z| ≤ λ, and |sS

λ(z) − z| =

λ when |z| > λ. Thus soft thresholding corresponds to the maximum amount of

shrinkage allowed by condition (iii), whereas hard thresholding corresponds to no

shrinkage.

The smoothly clipped absolute deviation (SCAD) penalty was proposed by Fan

(1997) and Fan and Li (2001) as a compromise between hard and soft thresholding.
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Like soft thresholding, it is continuous in z, but the amount of shrinkage decreases as

|z| increases and after a certain threshold there is no shrinkage, which results in less

bias. The SCAD thresholding function is a linear interpolation between soft thresh-

olding up to 2λ and hard thresholding after aλ (see Figure 3.1). The value a = 3.7 was

recommended by Fan and Li (2001), and we use it throughout the paper. See Fan and

Li (2001) for the formulae of the SCAD thresholding function and the corresponding

penalty function. The SCAD thresholding operator sSC
λ satisfies conditions (i)–(iii):

(ii) is immediate, and (i) and (iii) follow from |sS(|z|)| ≤ |sSC(|z|)| ≤ |sH(|z|)|.

Another idea proposed to mitigate the bias of lasso for large regression coefficients

is adaptive lasso (Zou, 2006). In regression context, the idea is to multiply each |βj | in

the lasso penalty by a weight wj, which is smaller for larger initial estimates β̂j . Thus

large coefficients get penalized less. One choice of weights proposed was wj = |β̂j|−η,

where β̂j are ordinary least squares estimates. Note that in the context of regression,

the special case η = 1 is closely related to the non-negative garrote (Breiman, 1995).

In our context, an analogous weight would be |σ̂ij |−η. We can rewrite this as a penalty

function pλ(θ) = λw(z)|θ|, where w is taken to be C|z|−η, η ≥ 0. Zou (2006) have

C = 1 (it is absorbed in λ), but for us it is convenient to set C = λ−η, because

then the resulting operator satisfies condition (ii), i.e., thresholds everything below λ

to 0. The resulting thresholding rule corresponding to C = λ−η, which we still call

adaptive lasso for simplicity, is given by

sAL
λ (z) = sgn(z)(|z| − λη+1|z|−η)+ (3.4)

Conditions (i) and (ii) are obviously satisfied. To check (iii) for |z| > λ, note that

|sAL
λ (z)− z| = λη+1|z|−η ≤ λ.

As illustrated in Figure 3.1, both SCAD and adaptive lasso fall in between hard

and soft thresholding; any other function sandwiched between hard and soft thresh-
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Figure 3.1: Generalized thresholding functions for λ = 1, a = 3.7, η = 1.

olding will satisfy conditions (i)–(iii), for example, the clipped L1 penalty. For con-

ditions on the penalty pλ that imply the resulting operator is sandwiched between

hard and soft thresholding, see Antoniadis and Fan (2001). In this paper, we focus

on the operators themselves rather than the penalties, since the penalties are never

used directly.

3.3 Consistency and sparsity of generalized thresholding

In this section, we derive theoretical properties of the generalized thresholding

estimator in the high-dimensional setting, meaning that both the dimension and the

sample size are allowed to grow. Let X1, . . . , Xn denote i.i.d. p-dimensional random

vectors sampled from a distribution F with EX1 = 0 (without loss of generality), and

E(X1X
T
1 ) = Σ. The convention in the literature is to assume that F is Gaussian.

However, the key result underlying this theory is the bound (3.11), and Bickel and

Levina (2008b) noted that for this result the normal assumption can be replaced with
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a tail condition on the marginal distributions, namely that for all 1 ≤ j ≤ p,

E(etX2
1j ) <∞ , (3.5)

for t ∈ (−t0, t0), for some t0 > 0.

Let Σ̂ denote the sample covariance matrix,

Σ̂ =
1

n

n∑

k=1

(
Xk − X̄

)(
Xk − X̄

)T
. (3.6)

Let sλ(A) = [sλ(aij)] denote the matrix resulting from applying a generalized thresh-

olding operator sλ to each of the elements of a matrix A. Condition (ii) implies that

sλ(A) is sparse for sufficiently large λ. Like with hard thresholding and banding of

the covariance matrix, the estimator sλ(Σ̂) is not guaranteed to be positive definite,

but instead we show that it converges to a positive definite limit with probability

tending to 1.

We proceed to establish a bound on the convergence rate for sλ(Σ̂). The re-

sult is uniform on a class of “approximately sparse” covariance matrices which was

introduced by Bickel and Levina (2008a):

Uτ (q, c0(p), M) = {Σ : σii ≤ M, max
i

p
∑

j=1

|σij |q ≤ c0(p) } , (3.7)

for 0 ≤ q < 1. When q = 0, this is a class of truly sparse matrices. For example,

a d-diagonal matrix satisfies this condition with any 0 ≤ q < 1 and c0(p) = M qd.

Another example is the AR(1) covariance matrix, σij = ρ|i−j|, which satisfies the

condition with c0(p) ≡ c0. Note that the condition of bounded variances, σii ≤M , is

weaker than the often assumed bounded eigenvalues condition, λmax(Σ) ≤ M . Also

note that the constant c0(p) is allowed to depend on p and is thus not an explicit

restriction on sparsity. The convergence will be established in the matrix operator
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norm (also known as spectral or l2 matrix norm), ‖A‖2 = λmax(AAT ).

Theorem III.1 (Consistency). Suppose sλ satisfies conditions (i)–(iii) and F satis-

fies condition (3.5). Then, uniformly on Uτ

(
q, c0(p), M

)
, for sufficiently large M ′, if

λ = M ′
√

log p
n

= o(1),

‖sλ(Σ̂)− Σ‖ = OP

(

c0(p)

(
log p

n

) 1−q

2

)

.

To prove Theorem III.1 we start from a Lemma summarizing several earlier results

we will use. The proofs and/or further references for these can be found in Bickel

and Levina (2008a).

Lemma III.2. Under conditions of Theorem III.1,

max
i

p
∑

j=1

|σ̂ij |1(|σ̂ij| ≥ λ, |σij| < λ) = OP

(

c0(p)λ−q

√

log p

n
+ c0(p)λ1−q

)

(3.8)

max
i

p
∑

j=1

|σij | 1(|σ̂ij | < λ, |σij | ≥ λ) = OP

(

c0(p)λ−q

√

log p

n
+ c0(p)λ1−q

)

(3.9)

max
i

p
∑

j=1

|σ̂ij − σij| 1(|σ̂ij| ≥ λ, |σij | ≥ λ) = OP

(

c0(p)λ−q

√

log p

n

)

(3.10)

P (max
i,j
|σ̂ij − σij | > t) ≤ C1p

2e−nC2t2 + C3pe
−nC4t (3.11)

where t = o(1) and C1, C2, C3, C4 depend only on M .

Proof of Theorem III.1. We start from the decomposition

‖sλ(Σ̂)− Σ‖ ≤ ‖sλ(Σ)− Σ‖ + ‖sλ(Σ̂)− sλ(Σ)‖ . (3.12)

For symmetric matrices, the operator norm satisfies (see e.g., Golub and Van Loan
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(1989)),

‖A‖ ≤ max
i

∑

j

|aij| . (3.13)

That is, the operator norm is bounded by the matrix l1 or l∞ norm, which coincide

for symmetric matrices. From this point on, we bound all the operator norms by

(3.13). For the first term in (3.12), note that by assumptions (ii) and (iii),

p
∑

j=1

|sλ(σij)− σij | ≤
p
∑

j=1

|σij |1(|σij| ≤ λ) +

p
∑

j=1

λ1(|σij| > λ)

=

p
∑

j=1

|σij |q|σij|1−q
1(|σij| ≤ λ) +

p
∑

j=1

λqλ1−q
1(|σij | > λ) ≤ λ1−q

p
∑

j=1

|σij |q ,

and therefore by (3.13) and the definition (3.7) the first term in (3.12) is bounded by

λ1−qc0(p).

For the second term in (3.12), note that by (i) and (ii),

|sλ(σ̂ij)− sλ(σij)| ≤ |σ̂ij |1(|σ̂ij| ≥ λ, |σij| < λ) + |σij |1(|σ̂ij| < λ, |σij| ≥ λ)

+
(
|σ̂ij − σij |+ |sλ(σ̂ij)− σ̂ij |+ |sλ(σij)− σij |

)
1(|σ̂ij| ≥ λ, |σij | ≥ λ) (3.14)

The first three terms in (3.14) are controlled by (3.8), (3.9), and (3.10), respectively.

For the fourth term, applying (iii) we have

max
i

p
∑

j=1

|sλ(σ̂ij)− σ̂ij |1(|σ̂ij| ≥ λ, |σij | ≥ λ) ≤ max
i

p
∑

j=1

λqλ1−q
1(|σ̂ij| ≥ λ, |σij| ≥ λ)

≤ λ1−q max
i

p
∑

j=1

|σij |q1(|σij| ≥ λ) ≤ λ1−qc0(p) .

Similarly, for the last term in (3.14) we have,

max
i

p
∑

j=1

|sλ(σij)− σij |1(|σ̂ij| ≥ λ, |σij | ≥ λ) ≤ λ1−qc0(p) .
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Collecting all the terms, we obtain

‖sλn
(Σ̂)− Σ‖ = OP

(

c0(p)

(

λ1−q + λ−q

√

log p

n

))

and the theorem follows by substituting λ = M ′
√

log p
n

.

For the case of hard thresholding, this theorem was established in Bickel and

Levina (2008a). Note that, through c0(p), the rate explicitly depends on how sparse

the truth is. Also note that this rate is very similar to the rate of
√

s log p
n

for a sparse

estimator of the inverse covariance matrix established in Rothman et al. (2008), where

s is the number of non-zero off-diagonal elements in the true inverse, even though the

estimator is obtained by a completely different approach of adding a lasso penalty

to the normal likelihood. However, the fundamental result underlying these different

analyses is the bound (3.11), which ultimately gives rise to similar rates.

Next, we state a sparsity result, which, together with Theorem III.1, establishes

the “sparsistency” property in the sense of Lam and Fan (2009).

Theorem III.3 (Sparsity). Suppose sλ satisfies conditions (i)–(iii), F satisfies (3.5),

and σii ≤M for all i. Then, for sufficiently large M ′, if λ = M ′
√

log p
n

= o(1),

sλ(σ̂ij) = 0 for all (i, j) such that σij = 0 , (3.15)

with probability tending to 1. If we additionally assume that all non-zero elements of

Σ satisfy |σij | > τ , where
√

n(τ − λ)→∞, we also have, with probability tending to

1,

sgn(sλ(σ̂ij) · σij) = 1 for all (i, j) such that σij 6= 0 . (3.16)

Proof of Theorem III.3. To prove (3.15), apply (ii) to get

{(i, j) : sλ(σ̂ij) 6= 0, σij = 0} = {(i, j) : |σ̂ij | > λ, σij = 0} ⊆ {(i, j) : |σ̂ij − σij | > λ} .
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Therefore

P
(∑

i,j

1(sλ(σ̂ij) 6= 0, σij = 0) > 0
)
≤ P (max

i,j
|σ̂ij − σij | > λ) . (3.17)

Now we apply (3.11). With the choice λ = M ′
√

log p
n

, the first term dominates the

second one, so we only need to make sure C1p
2e−nC2λ2 → 0. Since we can choose M ′

large enough so that 2− C2M
′2 < 0, the probability in (3.17) tends to 0.

Similarly, for (3.16) we have,

{(i, j) : sλ(σ̂ij) ≤ 0, σij > 0 or sλ(σ̂ij) ≥ 0, σij < 0} ⊆ {(i, j) : |σ̂ij − σij | > τ − λ} ,

and applying the bound (3.11) and the additional condition
√

n(τ − λ)→∞ gives

P
(∑

i,j

1(|σ̂ij − σij | ≥ τ − λ) > 0
)
≤ C1p

2e−nC2(τ−λ)2 → 0 .

Note that Theorem III.3 only requires that the true variances are bounded, and not

the approximately sparse assumption. The additional condition on non-zero elements

is analogous to the condition of El Karoui (2008) that non-zero elements are greater

than n−α. If we assume the same, i.e., let τ = n−α, the result holds under a slightly

stronger condition log p/n1−2α → 0 instead of log p/n → 0. It may also be possible

to develop further joint asymptotic normality results for non-zero elements along the

lines of Fan and Peng (2004) or Lam and Fan (2009), but we do not pursue this

further because of restrictive conditions required for the method of proof used there

(p2/n→ 0).
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3.4 Simulation results

3.4.1 Simulation settings

To compare the performance of various generalized thresholding estimators, both

in terms of the overall covariance estimation and recovering the sparsity pattern, we

conducted a simulation study with the following three covariance models.

Model 1: AR(1), where σij = ρ|i−j|, for ρ = 0.3 and 0.7;

Model 2: MA(1), where σij = ρ1(|i− j| = 1) + 1(i = j), for ρ = 0.3;

Model 3: “Triangular” covariance, σij = (1− |i−j|
k

)+, for k = bp/2c.

Models 1 and 2 are standard test cases in the literature. Note that even though

these models come from time series, all estimators considered here are permutation

invariant, and thus the order of the variables is irrelevant. Model 1 is “approximately

sparse”, because even though there are no true zeros, there are many very small

entries away from the diagonal. Model 2 is a tri-diagonal covariance matrix and is

the most sparse of the three models. Model 3 has a linear decay in covariances as

one moves away from the diagonal and provides a simple way to generate a positive

definite matrix with the level of sparsity controlled by the parameter k. With k = p/2,

model 3 is effectively the least sparse of the three models we consider. This covariance

structure was considered by Wagaman and Levina (2009).

For each model, we generated n = 100 independent and identically distributed

p-variate normal random vectors with mean 0 and covariance Σ, for p = 30, 100, 200,

and 500. The number of replications was fixed at 50. The tuning parameter λ

for each method was selected by minimizing the Frobenius norm of the difference

between sλ(Σ̂) and the sample covariance matrix computed from 100 independently

generated validation data observations. We note that the use of a validation set

can be replaced with cross-validation without any significant change in results. We
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selected the Frobenius norm (‖A‖2F =
∑

i,j a2
ij) for tuning because it had a slightly

better performance than the operator norm or the matrix l1 norm. Also, a theoretical

justification for this choice for cross-validation has been provided by Bickel and Levina

(2008a).

3.4.2 Performance Evaluation

Keeping consistent with theory in Section 3.3, we defined the loss function for

the estimators by the expected operator norm of the difference between the true

covariance and the estimator,

L(sλ(Σ̂), Σ) = E‖sλ(Σ̂)− Σ‖ .

The ability to recover sparsity was evaluated via the true positive rate (TPR) in

combination with the false positive rate (FPR), defined as

TPR =
#{(i, j) : sλ(σ̂ij) 6= 0 and σij 6= 0}

#{(i, j) : σij 6= 0} , (3.18)

FPR =
#{(i, j) : sλ(σ̂ij) 6= 0 and σij = 0}

#{(i, j) : σij = 0} . (3.19)

Note that the sample covariance has TPR = 1, and a diagonal estimator has FPR =

0.

In addition, we compute a measure of agreement of principal eigenspaces between

the estimator and the truth, which is relevant for principal components analysis. The

measure we use to compare the eigenspaces spanned by the first q eigenvectors was

defined by Krzanowski (1979) as

K(q) =

q
∑

i=1

q
∑

j=1

(êT
(i)e(j))

2, (3.20)

where ê(i) denotes the estimated eigenvector corresponding to the i-th largest esti-
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mated eigenvalue, and e(i) is the true eigenvector corresponding to the true i-th largest

eigenvalue. Computing cosines of angles between all possible pairs of eigenvectors re-

moves the problem of similar eigenvectors estimated in a different order. Note that

K(0) ≡ 0 and K(p) = p. For any 0 < q < p, perfect agreement between the two

eigenspaces will result in K(q) = q. A convenient way to evaluate this measure is to

plot K(q) against q. Alternative measures of eigenvector agreement are available; for

example, Fan et al. (2008b) proposed using the measure

D(q) = 1− 1

q

q∑

i=1

max
1≤j≤q

|eT
(i)êj| ,

which shares many of the properties of the Krzanowski’s measure, such as invariance

to permutations of the eigenvector order.

3.4.3 Summary of results

Table 3.1 summarizes simulation results for the AR(1) model. Note that this

model is not truly sparse, and thus true and false positive rates are not relevant.

All generalized thresholding estimators improve over the sample covariance matrix

under the operator norm loss. This improvement increases with dimension p. The

thresholding rules are all quite similar for this model, with perhaps hard thresholding

having a slight edge for ρ = 0.7 (more large entries) and being slightly worse than

the others for ρ = 0.3.

Table 3.2 gives results for Model 2, the tri-diagonal sparse truth. We again see a

drastic improvement in estimation performance of the thresholded estimates over the

sample covariance matrix, which increases with dimension. This is expected since this

is the sparsest model we consider. Under operator norm loss, the rules that combine

thresholding with shrinkage all outperform hard thresholding, with soft thresholding

performing slightly better than SCAD and adaptive lasso.
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Table 3.1: Average(SE) operator norm loss for Model 1.
p ρ Sample Hard Soft Adapt.lasso SCAD

30 0.3 1.30(0.02) 0.75(0.01) 0.71(0.01) 0.71(0.01) 0.71(0.01)
30 0.7 1.75(0.04) 1.56(0.04) 1.59(0.05) 1.53(0.04) 1.47(0.04)

100 0.3 3.09(0.03) 0.93(0.01) 0.86(0.01) 0.86(0.01) 0.85(0.01)
100 0.7 4.10(0.07) 2.17(0.04) 2.49(0.03) 2.30(0.04) 2.16(0.04)

200 0.3 4.90(0.03) 0.98(0.01) 0.90(0.00) 0.91(0.01) 0.90(0.00)
200 0.7 6.63(0.08) 2.46(0.03) 2.86(0.02) 2.65(0.03) 2.52(0.03)

500 0.3 9.69(0.04) 1.06(0.01) 0.95(0.00) 0.96(0.00) 0.95(0.00)
500 0.7 12.54(0.08) 2.80(0.02) 3.23(0.02) 3.01(0.02) 2.97(0.02)

Table 3.2:
Average(SE) operator norm loss and true and false positive rates for Model
2.
p Sample Hard Soft Adapt.lasso SCAD

Operator norm loss

30 1.34(0.02) 0.69(0.01) 0.61(0.01) 0.62(0.01) 0.63(0.01)
100 2.99(0.02) 0.88(0.01) 0.70(0.01) 0.73(0.01) 0.72(0.01)
200 4.94(0.03) 0.94(0.02) 0.75(0.01) 0.78(0.01) 0.76(0.01)
500 9.65(0.04) 1.01(0.02) 0.81(0.01) 0.85(0.01) 0.81(0.01)

TPR/FPR

30 NA 0.70/0.01 0.94/0.18 0.88/0.08 0.95/0.21
100 NA 0.49/0.00 0.87/0.07 0.78/0.03 0.92/0.12
200 NA 0.33/0.00 0.81/0.04 0.69/0.01 0.91/0.11
500 NA 0.20/0.00 0.70/0.02 0.57/0.01 0.89/0.08

The 50 realizations of the values of TPR and FPR are also plotted in Figure 3.2,

in addition to their average values given in Table 3.2. Here we see a big difference

between the different thresholding rules. Hard thresholding tends to zero out too

many elements, presumably due to its inability to shrink moderate values; thus it has a

very low false positive rate, but also a lower true positive rate than the other methods,

particularly for large p. Overall, Figure 3.2 suggests that the SCAD thresholding has

the best performance on sparsity for this model, particularly for large values of p.

Table 3.3 gives results for the “triangular” model with k = p/2, the least sparse of

the three models we consider. Here we see only a small improvement of thresholded

estimates over the sample covariance in the operator norm loss. All methods miss a
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(c) p = 200 (d) p = 500

Figure 3.2:
TPR vs. FPR for Model 2. The points correspond to 50 different realiza-
tions, with each method selecting its own threshold using validation data.
The solid line is obtained by varying the threshold over the whole range
(all methods have the same TPR and FPR for a fixed threshold).

substantial fraction of true zeros, most likely because a large number of small non-

zero true entries leads to a choice of threshold that is too low. In this case, hard

thresholding does somewhat better on false positives, which we conjecture may in
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general be the case for less sparse models. However, the plot of realizations of TPR

and FPR in Figure 3.3 shows that the variance is very high and there is no clear best

choice for estimating the sparsity structure in this case.

Table 3.3:
Average(SE) operator norm loss and true and false positive rates for Model
3 (k = p/2).

p Sample Hard Soft Adapt.lasso SCAD

Operator norm loss

30 2.55(0.10) 2.40(0.10) 2.33(0.10) 2.34(0.09) 2.39(0.09)
100 8.67(0.37) 8.10(0.37) 8.05(0.39) 7.99(0.35) 8.11(0.36)
200 17.66(0.90) 16.81(0.85) 16.42(0.79) 16.21(0.75) 16.69(0.99)
500 43.71(2.01) 40.49(1.80) 42.75(1.87) 41.08(1.80) 40.60(1.79)

TPR/FPR

30 NA 0.92/0.26 0.98/0.69 0.94/0.45 0.95/0.51
100 NA 0.91/0.28 0.98/0.72 0.94/0.54 0.94/0.46
200 NA 0.92/0.35 0.97/0.69 0.94/0.49 0.95/0.51
500 NA 0.90/0.39 0.98/0.79 0.94/0.54 0.95/0.59

In Figure 3.4, we plot the average eigenspace agreement measure K(q) defined in

(3.20) versus q for p = 200 in all four models. For effectively sparser models AR(1)

and MA(1), all thresholding methods improve on eigenspace estimation relative to

the sample covariance, with SCAD and adaptive lasso showing the best performance.

This effect is more pronounced for large p (plots not shown). For the less sparse

triangular model, there is in fact no improvement relative to the covariance matrix,

even though there is a slight improvement in overall operator norm loss. However, the

eigenvalues corresponding to q > 50 here are very small, and thus the differences in

eigenspaces are inconsequential. The biggest improvement in eigenspace estimation

across models is for AR(1) with ρ = 0.7, which is consistent with our expectations

that these methods perform best for models with many small or zero entries and few

large entries well separated from 0.

Overall, the simulations show that in truly sparse models thresholding makes a big

difference, and that penalties that combine the advantages of hard and soft thresh-

olding, tend to perform best at recovering the true zeros. When the true model is not
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(c) p = 200 (d) p = 500

Figure 3.3:
TPR vs. FPR for Model 3. The points correspond to 50 different realiza-
tions, with each method selecting its own threshold using validation data.
The solid line is obtained by varying the threshold over the whole range
(all methods have the same value of TPR and FPR for a fixed threshold).

sparse, the thresholded estimator does no worse than the sample covariance matrix,

and thus in practice there does not seem to be any harm in applying thresholding

even when there is little or no prior information about the degree of sparsity of the
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Figure 3.4: Average K(q) versus q with p = 200.

true model.
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3.5 Example: Gene clustering via correlations

Clustering genes using their correlations is a popular technique in gene expression

data analysis (Eisen et al., 1998; Hastie et al., 2000). Here we investigate the effect

of generalized thresholding on gene clustering using the data from a small round

blue-cell tumors (SRBC) microarray experiment (Khan et al., 2001). The experiment

had 64 training tissue samples, and 2308 gene expression values recorded for each

sample. The original dataset included 6567 genes and was filtered down by requiring

that each gene have a red intensity greater than 20 over all samples (for additional

information, see Khan et al. (2001)). There are four types of tumors in the sample

(EWS, BL-NHL, NB, and RMS).

First we ranked the genes by how much discriminative information they provide,

using the F -statistic,

F =
1

k−1

∑k
m=1 nm(x̄m − x̄)2

1
n−k

∑k
m=1 (nm − 1)σ̂2

m

,

where k = 4 is the number of classes, n = 64 is the number of tissue samples,

nm is the number of tissue samples of class m, x̄m and σ̂2
m are the sample mean

and variance of class m, and x̄ is the overall mean. Then we selected top 40 and

bottom 160 genes according to their F -statistics, so that we have both informative

and non-informative genes. This selection was done to allow visualizing the correlation

matrices via heatmaps.

We apply group average agglomerative clustering to genes using the estimated

correlation in the dissimilarity measure,

djj′ = 1− |ρ̂jj′|, (3.21)

where ρ̂jj′ is the estimated correlation between gene j and gene j′. We estimate the

correlation matrix using hard, soft, adaptive lasso, and SCAD thresholding of the

sample correlation matrix. The tuning parameter λ was selected via the resampling
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scheme described in Bickel and Levina (2008b). The group-average agglomerative

clustering is a bottom-up clustering method, which starts from treating all genes as

singleton groups. Each step merges the two most similar groups, chosen to have

the smallest average of pairwise dissimilarity between members of one group and the

other. There are a total of p − 1 stages, and the last stage forms one group of size

p. Figure 3.5 shows a heatmap of the data, with rows (genes) sorted by hierarchical

clustering based on the sample correlations and columns (patients) sorted by tissue

class for the 40 genes with the highest F -statistics, along with a heatmap of the sample

correlations (absolute values) of the 40 genes ordered by hierarchical clustering. In all

correlation heatmaps, we plot absolute values rather than the correlations themselves,

because here we are interested in the strength of pairwise association between the

genes regardless of its sign. It is clear that these 40 genes form strongly correlated

blocks that correspond to different classes.
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Figure 3.5:
(a) Heatmap of the absolute values of sample correlations of the top 40
genes; (b) Heatmap of the gene expression data, with rows (genes) sorted
by hierarchical clustering and columns sorted by tissue class.
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Heatmaps of the absolute values of estimated correlations. The 40 genes
with the largest F -statistic are marked with stars. The genes are ordered
by hierarchical clustering using estimated correlations. The percentage
of off-diagonal elements estimated as zero is given in parentheses for each
method.
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The resulting heatmaps of the correlation matrix ordered by hierarchical cluster-

ing for each thresholding method are shown in Figure 3.6, along with the percentage

of off-diagonal entries estimated as zero. Hard thresholding estimates many more

zeros than other methods, resulting in a nearly diagonal estimator. This is consistent

with hard thresholding results in simulations, where it tended to threshold too many

entries, especially in higher dimensions. Also consistent with the simulation study is

the performance of SCAD, which estimates the smallest number of zeros and appears

to do a good job at cleaning up the signal without losing the block structure. As

in simulations, adaptive lasso’s performance is fairly similar to SCAD. This example

confirms that using a combination of thresholding and shrinkage, which is more flexi-

ble than hard thresholding, results in a cleaner and more informative estimate of the

sparsity structure.
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CHAPTER IV

A new approach to Cholesky-based covariance

regularization in high dimensions

4.1 Introduction

A large class of covariance estimators relies on the assumption that variables have a

natural ordering, and those far apart in the ordering have small partial correlations.

There are many applications that fall in this class, such as longitudinal data and

spectroscopy, and exploiting the natural ordering present in the data in such cases

leads to improved performance. The inverse estimators in this case usually rely on the

modified Cholesky decomposition of the inverse covariance matrix, which is described

in Section 4.2. This decomposition has a nice regression interpretation to which

regularization can be applied more easily (Wu and Pourahmadi, 2003; Huang et al.,

2006; Bickel and Levina, 2008b; Levina et al., 2008).

In this chapter we show that the modified Cholesky factor of the covariance ma-

trix, rather than its inverse, also has a natural regression interpretation, and therefore

all Cholesky-based regularization methods can be applied to the covariance matrix

itself instead of its inverse to obtain a sparse estimator with guaranteed positive def-

initeness. As with all Cholesky-based regularization methods, this approach exploits

the assumption of naturally ordered variables where variables far apart in the ordering

tend to have small correlations. The simplest estimator in this new class is banding
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the covariance Cholesky factor. Unlike banding the sample covariance matrix itself,

it is guaranteed to be positive definite, but still has the same low computational

complexity. We also derive some theoretical properties of banded estimators, con-

necting sparsity in a matrix to sparsity in its Cholesky factor and connecting banding

Cholesky factors to constrained maximum likelihood.

4.2 Modified Cholesky decomposition of the covariance ma-

trix

Throughout this chapter we assume that the data X1, . . . , Xn are independent

and identically distributed p-variate random vectors with population covariance ma-

trix Σ and, without loss of generality, mean 0. Let Σ̂ denote the sample covariance

matrix, Σ̂ = n−1
∑n

i=1(X i − X̄)(X i − X̄)T. As a tool for regularizing the inverse

covariance matrix, Pourahmadi (1999) and Wu and Pourahmadi (2003) suggested

using the modified Cholesky factorization of Σ−1. For a mean 0 random vector

X = (X(1), . . . , X(p))T with covariance matrix Σ, this factorization arises from re-

gressing each variable X(j) on X(j−1), . . . , X(1) that is, fitting regressions

X(j) =

j−1
∑

q=1

(−tjq)X
(q) + ε(j) = X̂(j) + ε(j) ,

where ε(j) denotes the error term in regression j, j = 2, . . . , p, and ε(1) = X(1). Let

ε = (ε(1), . . . , ε(p))T, let D = var(ε) be the diagonal matrix of error variances, and let

T = (tjq) denote the lower-triangular matrix containing regression coefficients with

the opposite sign, with ones on the diagonal. Then writing ε = X − X̂ = TX and

using the fact that the errors are uncorrelated, D = var(ε) = var(TX) = TΣT T, and

thus

Σ−1 = T TD−1T. (4.1)
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This decomposition transforms inverse covariance matrix estimation into a regression

problem, and hence regularization approaches for regression can be applied. If these

regressions are not regularized, the resulting estimate is simply Σ̂−1. Banding the

Cholesky factor of the inverse refers to regularizing by only including the immedi-

ate k predecessors in the regression, X(j−k), . . . , X(j−1), for some fixed k (Wu and

Pourahmadi, 2003; Bickel and Levina, 2008b).

The modified Cholesky factorization of Σ itself can be obtained from a latent

variable regression model. Let Σ = LDLT be the modified Cholesky decomposition

of Σ, where D is diagonal and L is lower triangular with ones on the diagonal. Let

ε be a normal vector with independent components, ε ∼ Np(0, D). Then if we let

X = Lε, we have

Σ = var (Lε) = LDLT . (4.2)

Our main interest here is in the regression interpretation. The vector ε is unobserved,

but because L is lower triangular, we can think of (4.2) as a sequence of regressions,

where each variable X(j) is regressed on the previous regression errors ε(j−1), . . . , ε(1).

For j = 2, . . . , p, we have

X(j) =

j−1
∑

q=1

ljqε
(q) + ε(j) = X̃(j) + ε(j) . (4.3)

The decompositions above apply to the population matrices; Pourahmadi (2007)

briefly mentions this decomposition for the population, but does not discuss any

implications for estimation. Let X denote an n by p data matrix, where each column

xj ∈ R
n is centered by its sample mean. For the first variable, we set e1 = x1. For

j = 2, . . . , p, let lj = (lj1, . . . , lj,j−1)
T, Zj = (e1, . . . , ej−1), and compute coefficients

and the residual, respectively, as

l̂j = argmin
lj

‖xj − Zjlj‖2, ej = xj − Zj l̂j . (4.4)
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The variances are estimated as d̂jj = n−1‖ej‖2. Let Z denote the n by p matrix of

residuals from carrying out the regressions in (4.3) sequentially. Here we assume that

p < n to ensure that all model matrices are of full column rank; Section 4.3 discusses

the rank deficient case when p ≥ n. Performing the regressions in (4.4) amounts

to, for each j = 2, . . . , p, orthogonally projecting the response xj onto the span of

e1, . . . , ej−1 to estimate l̂j . After the last projection we have an orthogonal basis

(e1, . . . , ep), and the estimates L̂ and D̂. This algorithm is a scaled version of Gram–

Schmidt orthogonalization of the data matrix X for computing its QR decomposition,

where the upper triangular matrix R is restricted to have positive diagonal entries.

The orthonormal matrix Q is the matrix Z with its column vectors scaled to have unit

length and RT = L̂(nD̂)
1
2 . If all regressions are fitted by least squares, the resulting

estimate recovers the sample covariance matrix: Σ̂ = n−1X TX = n−1RTR = L̂D̂L̂T.

4.3 Regularized estimation of the Cholesky factor L

4.3.1 Banding the Cholesky factor

The simplest way to introduce sparsity in the Cholesky factor L is to estimate

only the first k sub-diagonals of L and set the rest to zero. This approach for the

inverse was proposed by Wu and Pourahmadi (2003) and Bickel and Levina (2008b).

In our case, each variable xj is regressed on the k previous residuals ej−k, . . . , ej−1,

for all j = 2, . . . , p. The index j − k is understood to mean max(1, j − k). Let

l
(k)
j = (lj,j−k, . . . , lj,j−1)

T and Z
(k)
j = (ej−k, . . . , ej−1). Then we compute,

l̂
(k)

j = argmin
l
(k)
j

‖xj − Z
(k)
j l

(k)
j ‖2, ej = xj − Z

(k)
j l̂

(k)

j . (4.5)

In each regression, the design matrix Z
(k)
j has orthogonal columns, which allows (4.5)

to be solved with at most k univariate regressions. Hence the computational cost of
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banding the Cholesky factor in this manner is O(kpn), the same order as banding the

sample covariance matrix without the Cholesky decomposition. To ensure that design

matrices are of full rank, the banding parameter k must be less than min(n − 1, p).

For sparse matrices, it is usually not necessary to search for values of k ≥ n, since

the optimal k is much smaller than n. We describe how to choose k in Section 4.4.

If we do need to perform regressions when k ≥ n − 1, we use a generalized inverse

of Z
(k)T
j Z

(k)
j for fitting ordinary least squares, in which case the resulting estimator is

positive semi-definite.

Although each design matrix Z
(k)
j has orthogonal columns, all of the residual vec-

tors e1, . . . , ep are not necessarily mutually orthogonal; ej and ej′ are only guaranteed

to be orthogonal if |j − j′| ≤ k.

4.3.2 Connection to constrained maximum likelihood

Given that a Cholesky-based banded estimator is always positive definite, it is

natural to ask whether it coincides with the maximum likelihood estimator under the

banded constraint. Here we show that, somewhat surprisingly, banding the Cholesky

factor of the inverse coincides with constrained maximum likelihood, and banding

the Cholesky factor of the covariance matrix itself does not. First we establish some

relationships between zero patterns in positive definite matrices and their Cholesky

factors.

Proposition IV.1. Let Σ and Ω be positive definite matrices with modified Cholesky

decompositions Σ = LDLT and Ω = T TD−1T , where L and T are both lower tri-

angular. Then for any row i and c(i) < i, σi1 = · · · = σi,c(i) = 0 if and only if

li1 = · · · = li,c(i) = 0; and for any column j and r(j) > j, ωp,j = · · · = ωr(j),j = 0 if

and only if tp,j = · · · = tr(j),j = 0.

Proof of Proposition IV.1. We prove the first claim only since the proof of the second

one is very similar. From σij =
∑j

m=1 limljmdmm, it is obvious that li1 = · · · = li,c(i) =
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0 implies σi1 = · · · = σi,c(i) = 0.

Now assume σi1 = · · · = σi,c(i) = 0 for some i. The formula for computing the

modified Cholesky factorization L one column at a time, starting from the first column

is given by, for i > j (Watkins, 1991),

dii = σii −
i−1∑

m=1

l2imdmm, lij =
1

djj

(

σij −
j−1
∑

m=1

limljmdmm

)

. (4.6)

We proceed by induction: for the first column of L, li1 = σi1/σ11, hence li1 = 0.

Assuming that for a column u < c(i) we have li1 = · · · = liu = 0, using (4.6) gives,

li,u+1 =
1

du+1,u+1

(

σi,u+1 −
u∑

m=1

limlu+1,mdu+1,u+1

)

=
σi,u+1

du+1,u+1
,

which implies li,u+1 = 0.

Proposition IV.1 is a simple matrix property, but we are not aware of a source to

cite, so we give a proof in the Appendix for completeness. Proposition IV.1 implies

that a covariance Cholesky factor with banded rows of arbitrary band lengths, not

necessarily all the same, corresponds to a covariance matrix with banded rows of the

same band lengths. On the other hand, the modified Cholesky factor of the inverse

covariance matrix T with arbitrary column band lengths corresponds to an inverse

covariance matrix Ω with the same column band lengths. In particular, the Cholesky

factor of either the covariance matrix or the inverse is k-banded if and only if the

corresponding matrix itself is k-banded.

Proposition IV.2. Banding the modified Cholesky factor T of the inverse covariance

matrix Ω maximizes the normal likelihood subject to the banded constraint, ωij = 0

for |i− j| > k.

Proof of Proposition IV.2. Let Ω(k) be a symmetric positive definite matrix with k

non-zero main sub-diagonals, ω(k)ij = 0 for |i − j| > k. The negative normal log-
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likelihood up to a constant, as a function of the non-zero unique parameters in

Ω(k) is, f(Ω(k)) = tr(Σ̂Ω(k)) − log |Ω(k)|. The k-banded constrained maximum likeli-

hood estimator Ω̂(k) satisfies ∇f(Ω̂(k)) = 0. Let T T

(k)D
−1
(k)T(k) = Ω(k) be the modified

Cholesky decomposition of Ω(k). By Proposition IV.1, t(k)ij = 0 for |i − j| > k. Let

g(T(k), D(k)) ≡ f(T T

(k)D
−1
(k)T(k)), where g is a function of non-zero unique parameters

in (T(k), D(k)).

We continue by establishing that if ∇g(T̂(k), D̂(k)) = 0 then T̂ T

(k)D̂
−1
(k)T̂(k) = Ω̂(k).

Let h(T(k), D(k)) = T T

(k)D
−1
(k)T(k). Denote the differential of h in the direction u =

(AT , AD) evaluated at (T(k), D(k)), by ∇h(T(k), D(k))[u]. Then

∇h(T(k), D(k))[u] = T T

(k)D
−1
(k)AT + AT

T D−1
(k)T(k) − T T

(k)D
−2
(k)ADT(k) , (4.7)

where AT is written as a p× p matrix with non-zero entries in the same positions as

the non-zero lower triangular entries in T(k), and AD is written as a p × p diagonal

matrix. Since the diagonal entries of T(k) are all equal to 1 and the diagonal entries of

D(k) are positive, one can show by induction that ∇h(T(k), D(k))[u] = 0 implies u = 0.

By the chain rule,∇g(T(k), D(k))[u] = ∇f(T T

(k)D
−1
(k)T(k))[u] · ∇h(T(k), D(k))[u] . Since f

is convex with global minimizer Ω̂(k) it follows that ∇f(T T

(k)D
−1
(k)T(k))[u] = 0 if and

only if T T

(k)D
−1
(k)T(k) = Ω̂(k) unless u = 0. Hence we have that ∇g(T(k), D(k))[u] = 0 iff

∇f(T T

(k)D
−1
(k)T(k))[u] = 0 and T̂ T

(k)D̂
−1
(k)T̂(k) = Ω̂(k).

Minimizing,

g(T(k), D(k)) =

p
∑

j=1






n log d(k)jj +

n∑

i=1

1

d(k)jj

(

xij +

j−1
∑

v=j−k

t(k)jvxiv

)2





,

where Σ̂ = n−1X TX , is equivalent to minimizing,

gj(t(k)j,j−k, . . . , t(k)j,j−1, d(k)jj) = n log d(k)jj +

n∑

i=1

1

d(k)jj

{

xij −
j−1
∑

v=j−k

(−t(k)jv)xiv

}2

,
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for each row j = 1, . . . , p. For row j, the solution to∇gj(t̂(k)j,j−k, . . . , t̂(k)j,j−1, d̂(k)jj) =

0, gives exactly the ordinary least squares regression coefficients with the opposite sign

from regressing xj on xj−k, . . . , xj−1, and the sample variance of the n residuals from

this fit.

Proposition IV.3. Banding the modified Cholesky factor L of the covariance matrix

Σ does not maximize the normal likelihood under the constraint that σij = 0 for

|i− j| > k.

Proof of Proposition IV.3. We show this by counter-example for p = 3. Let the func-

tion g be the negative normal log-likelihood parametrized by the inverse Cholesky

factor T = L−1 and D. Consider a 3 × 3 covariance matrix Σ with the banding

constraint σ31 = σ13 = 0. This constraint is equivalent to l31 = 0 by Proposition

IV.1. The unique parameters in the inverse Cholesky factor T in terms of the entries

in the Cholesky factor L are: t21 = −l21, t31 = −l31 + l32l21, and t32 = −l32. Mini-

mizing the negative log-likelihood subject to l31 = 0 is equivalent to minimizing the

unconstrained function

b(l21, l32, D) =n
3∑

j=1

log djj +
1

d11
‖x1‖2 +

1

d22
‖x2 − l21x1‖2

+
1

d33
‖x3 + l32l21x1 − l32x2‖2 .

Since ∂b(l̂21, l̂32, D̂)/∂l21 = 2l̂32x
T

1x3d̂
−1
33 6= 0 with probability 1, the Cholesky banding

solution does not satisfy the first-order necessary condition for being an optimum

of an unconstrained differentiable function b, and hence Cholesky banding does not

maximize the constrained normal likelihood.

Intuitively, the constrained maximum likelihood result holds for the inverse only

because the inverse is the canonical parameter of the normal likelihood. The con-

strained maximum likelihood estimator of the covariance matrix can be computed by
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the algorithm proposed by Chaudhuri et al. (2007), but this algorithm only works

for p < n. We are not aware of suitable constrained maximum likelihood estimation

algorithms for p > n, which makes banding the Cholesky factor a more attractive op-

tion for computing a positive definite estimator for large p. In Section 4.4, we briefly

compare the numerical performance of banding the Cholesky factor of covariance to

the constrained maximum likelihood estimator when p < n, and find that the two

estimators are in practice very close, even though they differ theoretically.

4.3.3 The penalized regression approach

Once we have the regression interpretation (4.3), all penalty-based approaches

proposed for regularizing the inverse become equally applicable to the covariance

matrix itself. In general, we can estimate the Cholesky factor by,

l̂j = argmin
lj

{‖xj − Zjlj‖2 + Pλ(lj)}. (4.8)

Penalty functions Pλ that encourage sparsity in the coefficient vector lj are of partic-

ular interest. Huang et al. (2006) applied the lasso penalty in the inverse covariance

Cholesky estimation problem, and here we can analogously use

P L
λ (lj) = λ

j−1
∑

t=1

|ljt|.

The lasso penalty function can result in zeros in arbitrary locations in the Cholesky

factor, which may or may not lead to any zeros in the resulting covariance matrix. To

impose additional structure, Levina et al. (2008) proposed the nested lasso penalty,

which in our context is given by,

P NL
λ (lj) = λ

(

|lj,j−1|+
|lj,j−2|
|lj,j−1|

+
|lj,j−3|
|lj,j−2|

+ · · ·+ |lj,1||lj,2|

)

, (4.9)
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where 0/0 is defined as 0. This penalty imposes the restriction that ljt = 0 if lj,t+1 = 0.

By Proposition IV.1, this means that all the zeros estimated in the Cholesky factor

of covariance L̂ will be preserved in Σ̂. This is not the case in the inverse Cholesky

decomposition for which this penalty was originally proposed by Levina et al. (2008),

although some zeros are preserved in that case as well. In practice, Levina et al.

(2008) recommend using a slightly modified version of (4.9), where the first term is

divided by the univariate regression coefficient from regressing xj on ej−1 alone, to

address a potential difference of scales, which is the version we used in simulations.

Both lasso and nested lasso have much higher computational cost than banding, and

are not appropriate for very large p; however, the additional flexibility of the sparsity

structure of nested lasso’s variable band widths may work well in some cases.

4.4 Numerical results

4.4.1 Simulation Settings

Our simulation study compares the performance of all the covariance estimators

discussed in Section 4.3, banding the sample covariance matrix directly (Bickel and

Levina, 2008b), which is not positive definite, and, as a benchmark, the shrinkage

estimator of Ledoit and Wolf (2003) which does not depend on the order of variables.

The Ledoit–Wolf estimator is a linear combination of the identity matrix and the

sample covariance matrix, with coefficients optimal in a certain sense; it does not

introduce any sparsity.

We consider the following three covariance structures: Σ1 has entries σij = ρ|i−j|

with ρ = 0.7, Σ2 has entries σij = 1(i = j)+0.4 1(|i− j| = 1)+0.2 1(2 ≤ |i − j| ≤

3)+0.1 1(|i − j| = 4), and Σ3 has entries σij = 1(i = j)+ 0.5 1(i 6= j). The first

order autoregressive model Σ1 has a dense Cholesky factor, but its entries decay as

one moves away from the diagonal. We only report results for ρ = 0.7, but the same
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pattern is observed over the whole range of ρ. The fourth order moving average model

Σ2 is a banded matrix with k = 4, and therefore its Cholesky factor is also 4-banded.

The model Σ1 was considered by Bickel and Levina (2008b), and Σ2 by Yuan and

Lin (2007). Model Σ3 is a full matrix, where introducing sparsity cannot improve

estimation, and thus we expect the regularization methods to perform similarly to

the covariance matrix.

We generate n = 100 training observations and another 100 independent valida-

tion observations from Np(0, Σ), with p = 30, 100, 200, 500, and 1000. Lasso and

nested lasso were not run for p ≥ 500 due to their high computational cost. Tuning

parameters were selected by minimizing the Frobenius norm, ‖M‖2F =
∑

i,j m2
ij , of

the difference between the regularized estimate computed with the training obser-

vations and the sample covariance computed with the validation observations. The

results are not sensitive to the choice of loss, we have also tested matrix 1-norm and

matrix 2-norm losses and obtained very similar results, and we selected the Frobenius

norm because it had a very slight edge in simulations and because there are general

theoretical results justifying cross-validation via Frobenius norm (Bickel and Levina,

2008a). The whole process was repeated 200 times.

To compare estimators, we used the operator norm, also known as the matrix

2-norm, ‖M‖2 = λmax(MMT), of the difference between the covariance estimator and

the truth, ∆(Σ̂, Σ) = ‖Σ̂ − Σ‖. This loss is commonly used to assess covariance

estimators because convergence in this norm implies convergence of all eigenvectors

and eigenvalues. Other losses such as Frobenius norm, matrix 1-norm, and entropy

loss are omitted to save space; they produce very similar results.

We also compute the true positive rate and true negative rate, defined respectively

63



as

TPR(Σ̂, Σ) =
#{(i, j) : σ̂ij 6= 0 and σij 6= 0}

#{(i, j) : σij 6= 0} , (4.10)

TNR(Σ̂, Σ) =
#{(i, j) : σ̂ij = 0 and σij = 0}

#{(i, j) : σij = 0} . (4.11)

The sample covariance has TPR(Σ̂, Σ) = 1, and a diagonal estimator has TNR(Σ̂, Σ) =

1.

4.4.2 Results

The averages and standard errors over 200 replications of the operator norm loss

for the three models are given in Table 4.1. For models Σ1 and Σ2, where the true

Cholesky factor is either banded or has entries decaying fast as one goes away from the

diagonal, banding the Cholesky factor provides the best performance in every case.

In particular, it outperforms banding the sample covariance directly, particularly in

high dimensions, presumably due to its ability to enforce positive definiteness. Both

banding methods outperform the Ledoit–Wolf estimator, which is not sparse at all,

and lasso applied to the Cholesky factor, which cannot create a banded structure

and loses sparsity in the matrix itself. The nested lasso does have the ability to

create a banded structure in the Cholesky factor, but its extra flexibility, not needed

for these models, leads to noisier estimates in this case. As expected, the margin

by which sparse regularized estimators outperform non-sparse estimators, the sample

and Ledoit–Wolf, is larger for the sparse population covariance Σ2. For the full matrix

Σ3, introducing sparsity cannot help, and thus all sparse estimators, excluding nested

lasso, perform similarly to the sample covariance. The Ledoit–Wolf estimator is very

close to the sample covariance because one eigenvalue of Σ3 is very large relative to

others, which makes the coefficient of the sample covariance term very close to 1.

Nested lasso has a large risk for p = 200 because it can only estimate up to n − 1
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Table 4.1:
Averages and standard errors of the operator norm loss for the sample
covariance, Ledoit–Wolf’s estimator, the banded sample covariance, and
regularization of Cholesky factor of the covariance by banding, lasso, and
nested lasso.

p Samp. Ledoit–Wolf Samp. Band. Chol. Band. Lasso Nes. Lasso
Σ1

30 1.82 1.70 1.31 1.30 1.73 1.47
(0.03) (0.02) (0.02) (0.02) (0.02) (0.02)

100 4.10 3.10 1.61 1.61 3.53 1.83
(0.04) (0.01) (0.02) (0.02) (0.01) (0.02)

200 6.59 3.83 1.77 1.76 3.91 1.97
(0.04) (0.01) (0.02) (0.01) (0.01) (0.01)

500 12.47 4.43 1.96 1.91 – –
(0.04) (0.00) (0.02) (0.01)

1000 20.64 4.64 2.08 2.01 – –
(0.04) (0.00) (0.02) (0.01)

Σ2

30 1.44 1.14 0.76 0.74 1.24 0.87
(0.02) (0.01) (0.01) (0.01) (0.01) (0.01)

100 3.27 1.63 0.92 0.89 1.63 1.03
(0.02) (0.00) (0.01) (0.01) (0.00) (0.01)

200 5.33 1.77 1.00 0.95 1.72 1.08
(0.02) (0.00) (0.01) (0.01) (0.00) (0.01)

500 10.37 1.84 1.09 1.06 – –
(0.03) (0.00) (0.01) (0.01)

1000 17.58 1.85 1.17 1.14 – –
(0.03) (0.00) (0.01) (0.01)

Σ3

30 2.62 2.64 2.63 2.69 2.62 2.68
(0.07) (0.07) (0.07) (0.07) (0.07) (0.07)

100 8.83 8.86 8.83 8.88 8.82 8.86
(0.22) (0.23) (0.22) (0.23) (0.22) (0.23)

200 17.63 17.85 17.63 17.73 17.62 68.11
(0.43) (0.44) (0.43) (0.43) (0.43) (0.67)

500 44.58 44.77 44.58 44.62 – –
(1.25) (1.29) (1.25) (1.25)

1000 86.62 87.13 86.62 86.69 – –
(2.43) (2.47) (2.43) (2.43)

non-zeros in any row of the Cholesky factor in a band extending from the diagonal.

The covariance Cholesky factor of Σ3 is lij = (j + 1)−1I(i > j) + I(i = j) and thus
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the true row coefficients are the smallest in a band extending from the diagonal. The

lasso is also only able to estimate up to n − 1 non-zeros in any row of the Cholesky

factor; however, these non-zeros could be estimated in any location, and estimating

most of the first n− 1 coefficients in a row as non-zero is enough to come close to the

sample covariance in this model.

The banded maximum likelihood estimator was also computed using the algorithm

of Chaudhuri et al. (2007) for p = 30, since the algorithm is only applicable when

p < n. Its loss values are 1.32(0.02) for Σ1, 0.74(0.01) for Σ2, and 2.77(0.07) for Σ3,

which are essentially the same as those for Cholesky banding for p = 30.

For the sparse matrix Σ2, we also report true positive and true negative rates of

estimating zeros in Table 4.2. Both Cholesky banding and sample covariance banding

have nearly perfect true negative rates, but banding the Cholesky factor has a better

true positive rate than for banding the sample, which means that banding the sample

tends to set more sub-diagonals to zero than necessary. The lasso method has a

low true negative rate because zeros in the Cholesky factor are not preserved in the

matrix, and the nested lasso does reasonably well on both but not as well as Cholesky

banding.

Table 4.2:
Averages and standard errors of true positive/true negative percentages
for Σ2, based on 200 replications.
p Sample Band. Cholesky Band. Lasso Nested Lasso

30 87.47/100.00 90.19/99.69 99.71/3.90 94.07/89.06
(0.84)/(0.00) (0.83)/(0.12) (0.05)/(0.27) (0.32)/(0.46)

100 88.31/100.00 93.72/99.99 90.38/37.35 93.82/97.25
(0.87)/(0.00) (0.76)/(0.01) (0.14)/(0.21) (0.20)/(0.08)

200 87.22/100.00 93.92/100.00 90.59/34.93 94.11/98.69
(0.88)/(0.00) (0.76)/(0.00) (0.10)/(0.14) (0.14)/(0.03)

500 85.42/100.00 96.51/100.00 – –
(0.87)/(0.00) (0.61)/(0.00) – –

1000 85.77/100.00 98.13/100.00 – –
(0.88)/(0.00) (0.47)/(0.00) – –

66



0 200 400 600 800 1000

0

2

4

6

8

Index

E
ig

en
va

lu
e

0 200 400 600 800 1000
0

1

2

3

4

5

Index

E
ig

en
va

lu
e

Σ1 Σ2

Figure 4.1: Scree plots for the sample covariance (gray dashes), Ledoit–Wolf (dots),
banding the sample covariance (dash-dot), Cholesky banding (black
dashes), and the truth (solid) for p = 1000, averaged over 200 replica-
tions.

In Fig. 4.1 we plot the average estimated eigenvalues in descending order for

sample banding, Cholesky banding, the sample covariance, and the Ledoit–Wolf esti-

mator, as well as the true eigenvalues, for both models with p = 1000. Since n = 100,

the sample covariance matrix only has 99 non-zero eigenvalues. Cholesky banding

and sample banding perform similarly for both models, with Cholesky banding hav-

ing a slight edge for the small eigenvalues. The banding methods outperform both

the sample covariance and the Ledoit–Wolf estimator by a considerable amount, es-

pecially for larger eigenvalues. This is expected since the banding methods performed

best under the operator norm loss, and the truth is banded or almost banded. For

Σ3, the plots are indistinguishable and are omitted to save space.

Since sample covariance banding does not necessarily produce a positive definite

estimator, we also report the percentage of estimates that are positive definite in

Table 4.3. It is clear that larger p and denser truth make it harder to keep positive

definiteness.
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Table 4.3: Percentage of positive definite banded sample realizations
p 30 100 200 500 1000
Σ1 61.5 16.5 3.0 0.0 0.0
Σ2 100.0 100.0 99.5 98 98.0
Σ3 98.0 4.0 0.0 0.0 0.0

4.5 Sonar data example

In this section we illustrate the effects of Cholesky banding and sample covariance

banding on SONAR data from the UCI machine learning data repository, available at

http://www.ics.uci.edu/˜mlearn/MLRepository.html. This dataset has 111 spectra

from metal cylinders and 97 spectra from rocks, where each spectrum has 60 frequency

band energy measurements. These spectra were measured at multiple angles for the

same objects, but following previous analyses of the dataset we assume independence

of the spectra.

Sample covariance Sample banding Cholesky banding

Figure 4.2:
Heatmaps of the absolute values of entries in the correlation matrix esti-
mates, where a correlation of magnitude 0 is white and a correlation of
magnitude 1 is black. The top row is for metal spectra and the bottom
row is for rock spectra.

The top panel of Fig. 4.2 shows heatmaps of the absolute values of the sample

correlation matrices for metal and rock, where we standardize the variables first to

facilitate comparison for metal and rock spectra, which are on different scales. Both
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Figure 4.3:
Scree plots of the sample covariance (solid), sample banding (dots), and
Cholesky banding (dashes) for the metal spectra in panel (a) and for the
rock spectra in panel (b).

matrices show a general pattern of correlations decaying away from the diagonal,

which makes banding a reasonable option.

The banding parameter k for both banding methods was selected using the random-

splitting scheme of Bickel and Levina (2008b),

k̂ = argmin
k

N−1
N∑

v=1

‖Σ̂(v)
(k) − Σ̃(v)‖F ,

where Σ̂
(v)
(k) is the banded estimator with k bands computed on the training data, and

Σ̃(v) is the sample covariance of the validation data. To obtain these training and

validation sets, the data was split at random N = 100 times, with 1/3 of the sample

used for training. For metal, Cholesky banding and sample banding both chose k̂ = 31

sub-diagonals; for rock, Cholesky banding chose k̂ = 17 and sample banding chose

k̂ = 18. Since these values are so close, for easier visual comparison we show both

with k̂ = 17 for the rock spectra. The heatmaps of the absolute values of correlations

from the banded estimators are shown in Fig. 4.2. We see that Cholesky banding

shrinks the non-zero correlations whereas the sample banding does not, which is the

property that allows Cholesky banding to achieve positive definiteness.
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We also show eigenvalue plots for these estimators in Fig. 4.3(a) and (b). We see

that the sample covariance has the most spread out eigenvalues, and the eigenvalues

from Cholesky banding have the least spread, as we would expect.

We also compared the performance of the various estimators if they are used in

quadratic discriminant analysis to discriminate between rock and metal. An ob-

servation x is classified as rock j = 0 or metal j = 1 using the rule, G(x) =

argmaxj{log |Ω̂j |/2 − (x − µ̂j)
TΩ̂j(x − µ̂j)/2 + log π̂j}, where π̂j is the proportion

of class j observations, µ̂j is the class j sample mean, and Ω̂j is the inverse covari-

ance estimate for class j, all computed on the training data. More details can be found

in Mardia et al. (1979). In addition to banding the Cholesky factor of covariance and

of the inverse, we also added a diagonal estimator of the covariance matrix, which

corresponds to the naive Bayes classifier. Banding the sample covariance was omitted

because it is not invertible. Leave-one-out cross validation was used to estimate the

testing error, and the banding parameters were selected with 10 random splits with

1/3 of the data used for training, using Frobenius loss for covariance Cholesky band-

ing and the validation likelihood for the inverse covariance Cholesky banding. The

test errors were 24.0% for the sample covariance, 32.7% for naive Bayes, 20.2% for

covariance Cholesky banding, and 14.9% for inverse Cholesky banding. Both band-

ing methods are substantially better than either estimating the whole dependency

structure by the sample covariance or not estimating it at all with naive Bayes. We

conjecture the inverse Cholesky banding does better because it introduces sparsity

directly in the inverse.

4.6 Discussion

In terms of convergence rates, one would expect a convergence result analogous

to the one for inverse Cholesky banding established by Bickel and Levina (2008b)

to hold here as well, but this case presents substantial extra technical difficulties in
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analysis, due to the fact that the errors used as predictors in the regressions required to

compute the Cholesky factor are unobservable and have to be estimated by residuals.

Nonetheless, we expect the method to be equally useful based on its good practical

performance.

The regression representation of the covariance matrix and its inverse have obvious

parallels with time series models for moving average and autoregressive processes,

respectively. However, we do not fit a parametric model here, and do not assume

stationarity, which would correspond to imposing a Toeplitz structure on the matrix,

and thus fitting and model selection methods are very different from time series. As

a rule of thumb in practice, if it is not clear from the problem whether it is preferable

to regularize the covariance or the inverse, we would recommend fitting both and

choosing the sparser estimate.
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CHAPTER V

Sparse multivariate regression with covariance

estimation

5.1 Introduction

Multivariate regression is a generalization of the classical regression model of re-

gressing a single response on p predictors to regressing q > 1 responses on p predictors.

Applications of this general model arise in chemometrics, econometrics, psychomet-

rics, and other quantitative disciplines where one predicts multiple responses with a

single set of prediction variables. For example, predicting several measures of quality

of paper with a set of variables relating to its production, or predicting asset returns

for several companies using the vector auto-regressive model (Reinsel, 1997), both

result in multivariate regression problems.

Let xi = (xi1, . . . , xip)
T denote the predictors, let yi = (yi1, . . . , yiq)

T denote the

responses, and let εi = (ε1, . . . , εq)
T denote the errors, all for the ith sample. The

multivariate regression model is given by,

yi = BT xi + εi, for i = 1, . . . , n,

where B is a p×q regression coefficient matrix and n is the sample size. Column k of B

is the regression coefficient vector from regressing the kth response on the predictors.
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We make the standard assumption that ε1, . . . , εn are i.i.d Nq(0, Σ). Thus, given a

realization of the predictor variables, the covariance matrix of the response variables

is Σ. This assumption of correlated errors suggests that separately estimating each

column of B by performing q separate regressions may be inferior to jointly estimating

all columns of B, accounting for the correlated errors.

The model can be expressed in matrix notation. Let X denote the n×p predictor

matrix where its ith row is xT
i , let Y denote the n× q random response matrix where

its ith row is yT
i , and let E denote the n× q random error matrix where its ith row

is εT
i , then the model is,

Y = XB + E.

Note that if q = 1, the model simplifies to the classical regression problem where B

is a p dimensional regression coefficient vector. For simplicity of notation we assume

that columns of X and Y have been centered and thus the intercept terms are omitted.

The negative log-likelihood function of (B, Ω), where Ω = Σ−1, can be expressed

up to a constant as,

g(B, Ω) = tr

[
1

n
(Y −XB)T (Y −XB)Ω

]

− log |Ω|. (5.1)

The maximum likelihood estimator for B is simply B̂OLS = (XT X)−1XT Y , which

amounts to performing separate ordinary least squares estimates for each of the q

response variables and does not depend on Ω.

Prediction with the multivariate regression model requires the estimation of pq pa-

rameters which becomes challenging when there are many predictors and responses.

Criterion-based model selection has been extended to multivariate regression by Fu-

jikoshi and Satoh (1997) and Bedrick and Tsai (1994). For a review of Bayesian

approaches for model selection and prediction with the multivariate regression model

see Brown et al. (2002) and references therein. A dimensionality reduction approach
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called reduced-rank regression (Anderson, 1951; Izenman, 1975; Reinsel and Velu,

1998) minimizes (5.1) subject to rank(B) ≤ r for some r ≤ min(p, q). The solu-

tion involves canonical correlation analysis, which amounts to finding r uncorrelated

linear combinations of the predictors Xu1, . . . , Xur to predict r uncorrelated linear

combinations of the responses Y v1, . . . , Y vr so that the squared correlations between

predictor canonical variates Xuk and response canonical variates Y vk are maximized

in order from k = 1, . . . , r. Thus the method combines information from all of the

q response variables into r canonical response variates that have the highest canon-

ical correlation with the corresponding predictor canonical variates. As in the case

of principal components regression, the interpretation of the reduced rank model is

typically impossible in terms of the original predictors and responses.

Other approaches aimed at reducing the number of parameters in the coefficient

matrix B involve solving,

B̂ = argmin
B

tr
[
(Y −XB)T (Y −XB)

]
subject to: C(B) ≤ t, (5.2)

where C(B) is some constraint function. A method called factor estimation and se-

lection (FES) was proposed in Yuan et al. (2007), who apply the constraint function

C(B) =
∑min(p,q)

j=1 σj(B), where σj(B) is the jth singular value of B. This constraint

encourages sparsity in the singular values of B̂, and hence reduces the rank of B̂;

however, unlike reduced rank regression, FES offers a continuous regularization path.

A novel approach for imposing sparsity in the entries of B̂ was taken by Turlach et al.

(2005), who proposed the constraint function, C(B) =
∑p

j=1 max(|bj1|, . . . , |bjq|).

This method was recommended for model selection (sparsity identification), and not

for prediction because of the bias of the L∞-norm penalty. Imposing sparsity in B̂ for

the purposes of identifying “master predictors” was proposed by Peng et al. (2009),

who applied a combined constraint function C(B) = λC1(B) + (1 − λ)C2(B) for
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λ ∈ [0, 1], where C1(B) =
∑

j,k |bjk|, the lasso constraint (Tibshirani, 1996) on the

entries of B and C2(B) =
∑p

j=1 (b2
j1 + · · ·+ b2

jq)
0.5, the sum of the L2-norms of the

rows of B. The first constraint introduces sparsity in the entries of B̂ and the sec-

ond constraint introduces zeros for all entires in some rows of B̂, meaning that some

predictors are irrelevant for all q responses. Asymptotic properties for an estimator

using this constraint with λ = 0 have also been established (Obozinski et al., 2008).

This combined constraint approach provides highly interpretable models in terms of

the prediction variables. However, all of the methods above that solve (5.2) do not

account for correlated errors.

To directly exploit the correlation in the response variables to improve prediction

performance, a method called Curds and Whey (C&W) was proposed by Breiman

and Friedman (1997). C&W predicts the multivariate response with an optimal linear

combination of the ordinary least squares predictors. The C&W linear predictor has

the form Ỹ = Ŷ OLSM , where M is a q × q shrinkage matrix estimated from the

data. This method exploits correlation in the responses arising from shared random

predictors as well as correlated errors.

In this chapter, we propose a method that combines some of the strengths of

the estimators discussed above to improve prediction in the multivariate regression

problem while allowing for interpretable models in terms of the predictors. We reduce

the number of parameters using the lasso penalty on the entries of B while accounting

for correlated errors. We accomplish this by simultaneously optimizing (5.1) with

penalties on the entries of B and Ω. We call our new method multivariate regression

with covariance estimation (MRCE). The method assumes predictors are not random;

however, the resulting formulas for the estimates would be the same with random

predictors. Our focus is on the conditional distribution of Y given X and thus, unlike

in the Curds and Whey framework, the correlation of the response variables arises

only from the correlation in the errors.
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We also note that the use of lasso penalty on the entries of Ω has been consid-

ered by several authors in the context of covariance estimation (Yuan and Lin, 2007;

d’Aspremont et al., 2008; Rothman et al., 2008; Friedman et al., 2008). However, here

we use it in the context of a regression problem, thus making it an example of what

one could call supervised covariance estimation: the covariance matrix here is esti-

mated in order to improve prediction, rather than as a stand-alone parameter. This

is a natural next step from the extensive covariance estimation literature, which has

been given surprisingly little attention to date; one exception is the joint regression

approach of Witten and Tibshirani (2009). Another less directly relevant example

of such supervised estimation is the supervised principal components by Bair et al.

(2006).

The remainder of the chapter is organized as follows: Section 5.2 describes the

MRCE method and associated computational algorithms, Section 5.3 presents sim-

ulation studies comparing MRCE to competing methods, Section 5.4 presents an

application of MRCE for predicting asset returns, and Section 5.5 concludes with a

summary and discussion.

5.2 Joint estimation of B and Ω via penalized normal likeli-

hood

5.2.1 The MRCE method

We propose a sparse estimator for B that accounts for correlated errors using

penalized normal likelihood. We add two penalties to the negative log-likelihood

function g to construct a sparse estimator of B depending on Ω = [ωj′j ],

(B̂, Ω̂) = argmin
B,Ω

{

g(B, Ω) + λ1

∑

j′ 6=j

|ωj′j|+ λ2

p
∑

j=1

q
∑

k=1

|bjk|
}

, (5.3)
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where λ1 ≥ 0 and λ2 ≥ 0 are tuning parameters.

We selected the lasso penalty on the off-diagonal entries of the inverse error co-

variance Ω for two reasons. First, it ensures that an optimal solution for Ω has finite

objective function value when there are more responses than samples (q > n); second,

the penalty has the effect of reducing the number of parameters in the inverse error

covariance, which is useful when q is large (Rothman et al., 2008). Other penalties

such as the ridge penalty could be used when it is unreasonable to assume that the

inverse error covariance matrix is sparse. If q is large, estimating a dense Ω means

that the MRCE regression method has O(q2) additional parameters in Ω to estimate

compared with doing separate lasso regressions for each response variable. Thus es-

timating a sparse Ω has considerably lower variability, and so we focus on the lasso

penalty on Ω. We show in simulations that when the inverse error covariance matrix is

not sparse, the lasso penalty on Ω still considerably outperforms ignoring covariance

estimation altogether (i.e., doing a separate lasso regression for each response).

The lasso penalty on B introduces sparsity in B̂, which reduces the number of

parameters in the model and provides interpretation. In classical regression (q = 1),

the lasso penalty can offer major improvement in prediction performance when there

is a relatively small number of relevant predictors. This penalty also ensures that an

optimal solution for B is a function of Ω. Without a penalty on B (i.e., λ2 = 0), the

optimal solution for B is always B̂OLS.

To see the effect of including the error covariance when estimating an L1-penalized

B, assume that we know Ω and also assume p < n. Solving (5.3) for B with Ω fixed

is a convex problem (see Section 5.2.2) and thus there exists a global minimizer Bopt.

This implies that there exists a zero subgradient of the objective function at Bopt (see

Theorem 3.4.3 page 127 in Bazaraa et al. (2006)). We express this in matrix notation

as,

0 = 2n−1XT XBoptΩ− 2n−1XT Y Ω + λ2Γ,
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which gives,

Bopt = B̂OLS − λ2(2n
−1XT X)−1ΓΩ−1, (5.4)

where Γ ≡ Γ(Bopt) is a p× q matrix with entries γij = sign(bopt
ij ) if bopt

ij 6= 0 and oth-

erwise γij ∈ [−1, 1] with specific values chosen to solve (5.4). Ignoring the correlation

in the error is equivalent to assuming that Ω−1 = I. Thus having highly correlated

errors will have greater influence on the amount of shrinkage of each entry of Bopt

than having mildly correlated errors.

5.2.2 Computational algorithms

The optimization problem in (5.3) is not convex; however, solving for either B or

Ω with the other fixed is convex. We present an algorithm for solving (5.3) and a fast

approximation to it.

Solving (5.3) for Ω with B fixed at a chosen point B0 yields the optimization

problem,

Ω̂(B0) = argmin
Ω

{

tr
(

Σ̂RΩ
)

− log |Ω|+ λ1

∑

j′ 6=j

|ωj′j |
}

, (5.5)

where Σ̂R = 1
n
(Y − XB0)

T (Y − XB0). This is exactly the L1-penalized covariance

estimation problem considered by d’Aspremont et al. (2008), Yuan and Lin (2007),

Rothman et al. (2008), and Friedman et al. (2008). The fastest available algorithm

for solving the covariance optimization problem in (5.5) is called the graphical lasso

(glasso), proposed by Friedman et al. (2008).

Solving (5.3) for B with Ω fixed at a chosen point Ω0 yields the optimization

problem,

B̂(Ω0) = argmin
B

{

tr

[
1

n
(Y −XB)T (Y −XB)Ω0

]

+ λ2

p
∑

j=1

q
∑

k=1

|bjk|
}

, (5.6)

which is convex if Ω0 is non-negative definite. This follows because the trace term in
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the objective function has the Hessian 2n−1Ω0⊗XT X, which is non-negative definite

because the Kronecker product of two symmetric non-negative definite matrices is

also non-negative definite. A solution can be efficiently computed using cyclical-

coordinate descent analogous to that used for solving the single output lasso problem

(Friedman et al., 2007). We summarize the optimization procedure in Algorithm 1.

We use the ridge penalized least-squares estimate B̂RIDGE = (XT X + λ2I)−1XT Y to

scale our test of parameter convergence since it is always well defined (including when

p > n).

Algorithm 1. Given Ω and an initial value B̂(0), let S = XT X and H = XT Y Ω.

Step 1: Set B̂(m) ← B̂(m−1). Visit all entries of B̂(m) in some sequence and for

entry (r, c) update b̂
(m)
rc with the minimizer of the objective function along its

coordinate direction given by,

b̂(m)
rc ← sign

(

b̂(m)
rc +

hrc − urc

srrωcc

)(∣
∣
∣
∣
b̂(m)
rc +

hrc − urc

srrωcc

∣
∣
∣
∣
− nλ2

srrωcc

)

+

,

where urc =
∑p

j=1

∑q
k=1 b̂

(m)
jk srjωkc.

Step 2: If
∑

j,k |b̂
(m)
jk − b̂

(m−1)
jk | < ε

∑

j,k |b̂RIDGE
jk | then stop, otherwise goto Step 1.

A full derivation of Algorithm 1 is found in the Section 5.6. Algorithm 1 is

guaranteed to converge to the global minimizer if the given Ω is non-negative definite.

This follows from the fact that the trace term in the objective function is convex and

differentiable and the penalty term decomposes into a sum of convex functions of

individual parameters (Tseng, 1988; Friedman et al., 2007). We set the convergence

tolerance parameter ε = 10−4.

In terms of computational cost, we need to cycle through pq parameters, and for

each compute urc, which costs at most O(pq) flops, and if the least sparse iterate

has v non-zeros, then computing urc costs O(v). The worst case cost for the entire

algorithm is O(p2q2).
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Using (5.5) and (5.6) we can solve (5.3) using block-wise coordinate descent, that

is, we iterate minimizing with respect to B and minimizing with respect to Ω.

Algorithm 2 (MRCE). For fixed values of λ1 and λ2, initialize B̂(0) = 0 and Ω̂(0) =

Ω̂(B̂(0)).

Step 1: Compute B̂(m+1) = B̂(Ω̂(m)) by solving (5.6) using Algorithm 1.

Step 2: Compute Ω̂(m+1) = Ω̂(B̂(m+1)) by solving (5.5) using the glasso algorithm.

Step 3: If
∑

j,k |b̂
(m+1)
jk − b̂

(m)
jk | < ε

∑

j,k |b̂RIDGE
jk | then stop, otherwise goto Step 1.

Algorithm 2 uses block-wise coordinate descent to compute a local solution for

(5.3). Steps 1 and 2 both ensure a decrease in the objective function value. In

practice we found that for certain values of the penalty tuning parameters (λ1, λ2),

the algorithm may take many iterations to converge for high-dimensional data. For

such cases, we propose a faster approximate solution to (5.3).

Algorithm 3 (Approximate MRCE). For fixed values of λ1 and λ2,

Step 1: Perform q separate lasso regressions each with the same optimal tuning pa-

rameter λ̂0 selected with a cross validation procedure. Let B̂lasso
λ̂0

denote the

solution.

Step 2: Compute Ω̂ = Ω̂(B̂lasso
λ̂0

) by solving (5.5) using the glasso algorithm.

Step 3: Compute B̂ = B̂(Ω̂) by solving (5.6) using Algorithm 1.

The approximation summarized in Algorithm 3 is only iterative inside its steps.

The algorithm begins by finding the optimally tuned lasso solution B̂lasso
λ̂0

(using cross

validation to select the tuning parameter λ̂0), then computes an estimate for Ω using

the glasso algorithm with B̂lasso
λ̂0

plugged in, and then solves (5.6) using this inverse

covariance estimate. Note that one still must select two tuning parameters (λ1, λ2).

The performance of the approximation is studied in Section 5.3.
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5.3 Simulation study

5.3.1 Estimators

We compare the performance of the MRCE method, computed with the exact and

the approximate algorithms, to other multivariate regression estimators that produce

sparse estimates of B. We report results for the following methods:

• Lasso: Performing q separate lasso regressions, each with the same tuning pa-

rameter λ.

• Separate lasso: Perform q separate lasso regressions, each with its own tuning

parameter.

• MRCE: The solution to (5.3) (Algorithm 2).

• Approx. MRCE: An approximate solution to (5.3) (Algorithm 3).

The ordinary least squares estimator B̂OLS = (XT X)−1XTY and the Curds and

Whey method of Breiman and Friedman (1997) are computed as a benchmark for

low-dimensional models (they are not directly applicable when p > n).

We select tuning parameters minimizing the squared prediction error, accumu-

lated over all q responses, of independently generated validation data of the same

sample size (n = 50). This is similar to performing cross-validation and is used to

save computing time for the simulations. For the MRCE methods, the two tuning

parameters are selected simultaneously.

5.3.2 Models

In each replication for each model, we generate an n× p predictor matrix X with

rows drawn independently from Np(0, ΣX) where ΣX = [σXij ] is given by σXij =

0.7|i−j|. This model for the predictors was also used by Yuan et al. (2007) and

Peng et al. (2009). Note that all of the predictors are generated with the same unit
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marginal variance. The error matrix E is generated independently with rows drawn

independently from Nq(0, ΣE). We consider two models for the error covariance,

• AR(1) error covariance: σEij = ρ
|i−j|
E , with values of ρE ranging from 0 to 0.9.

• Fractional Gaussian Noise (FGN) error covariance:

σEij = 0.5
(
(|i− j|+ 1)2H − 2|i− j|2H + (|i− j| − 1)2H

)
,

with values of the Hurst parameter H = 0.9, 0.95.

The inverse error covariance for the AR(1) model is a tri-diagonal sparse matrix while

its covariance matrix is dense, and thus this error covariance model completely satis-

fies the regularizing assumptions for the MRCE method, which exploits the correlated

error and the sparse inverse error covariance. The FGN model is a standard example

of long-range dependence and both the error covariance and its inverse are dense ma-

trices. Varying H gives different degree of dependence, from H = 0.5 corresponding

to an i.i.d. sequence to H = 1 corresponding to a perfectly correlated one. Thus the

introduction of sparsity in the inverse error covariance by the MRCE method should

not help; however, since the errors are highly correlated the MRCE method may still

perform better than the lasso penalized regressions for each response, which ignore

correlation among the errors. The sample size is fixed at n = 50 for all models.

We generate sparse coefficient matrices B in each replication using the matrix

element-wise product,

B = W ∗K ∗Q,

where W is generated with independent draws for each entry from N(0, 1), K has

entries with independent Bernoulli draws with success probability s1, and Q has rows

that are either all one or all zero, where p independent Bernoulli draws with success

probability s2 are made to determine whether each row is the ones vector or the zeros
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vector. Generating B in this manner, we expect (1− s2)p predictors to be irrelevant

for all q responses, and we expect each relevant predictor to be relevant for s1q of the

response variables.

5.3.3 Performance evaluation

We measure performance using model error, following the approach in Yuan et al.

(2007), which is defined as,

ME(B̂, B) = tr
[

(B̂ −B)T ΣX(B̂ − B)
]

.

We also measure the sparsity recognition performance using true positive rate (TPR)

and true negative rate (TNR),

TPR(B̂, B) =
#{(i, j) : b̂ij 6= 0 and bij 6= 0}

#{(i, j) : bij 6= 0} , (5.7)

TNR(B̂, B) =
#{(i, j) : b̂ij = 0 and bij = 0}

#{(i, j) : bij = 0} . (5.8)

Both the true positive rate and true negative rates must be considered simultaneously

since OLS always has perfect TPR and B̂ = 0 always has perfect TNR.

5.3.4 Results

The model error performance for AR(1) error covariance model is reported in Ta-

ble 5.1 for low-dimensional models, and Table 5.2 for high-dimensional models. We

see that the margin by which MRCE and its approximation outperform the lasso and

separate lasso in terms of model error increases as the error correlation ρE increases.

This trend is consistent with the analysis of the subgradient equation given in (5.4),

since the manner by which MRCE performs lasso shrinkage exploits highly corre-

lated errors. Additionally, the MRCE method and its approximation outperform the
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lasso and separate lasso more for sparser coefficient matrices. We omitted the exact

MRCE method for p = 60, q = 20 and p = q = 100 because these cases were com-

putationally intractable. All of the sparse estimators outperform the ordinary least

squares method by a considerable margin. The Curds and Whey method, although

designed to exploit correlation in the responses, is outperformed here because it does

not introduce sparsity in B.

Table 5.1:
Model error for the AR(1) error covariance models of low dimension. Av-
erages and standard errors in parenthesis are based on 50 replications with
n = 50. Tuning parameters were selected using a 10x resolution.

p q ρE s1, s2 OLS lasso sep.lasso MRCE ap.MRCE C&W
20 20 0.9 0.1, 1 14.46 2.78 2.81 0.89 0.96 9.89

(0.54) (0.09) (0.09) (0.02) (0.03) (0.38)
20 20 0.7 0.1, 1 14.48 2.86 2.83 2.00 1.99 10.72

(0.32) (0.07) (0.08) (0.05) (0.06) (0.23)
20 20 0.5 0.1, 1 14.49 2.85 2.88 2.78 2.64 11.08

(0.27) (0.08) (0.08) (0.07) (0.07) (0.19)
20 20 0 0.1, 1 14.39 2.93 3.00 3.32 3.18 11.57

(0.25) (0.07) (0.10) (0.07) (0.07) (0.19)
20 20 0.9 0.5, 1 14.46 10.10 9.12 3.98 4.95 11.95

(0.54) (0.23) (0.20) (0.11) (0.15) (0.38)
20 20 0.7 0.5, 1 14.48 10.59 9.29 7.70 7.87 13.00

(0.32) (0.23) (0.18) (0.21) (0.18) (0.27)
20 20 0.5 0.5, 1 14.49 10.45 9.26 10.08 9.20 13.32

(0.27) (0.23) (0.18) (0.26) (0.19) (0.24)
20 20 0 0.5, 1 14.39 10.40 9.08 10.33 9.71 13.58

(0.25) (0.17) (0.15) (0.22) (0.18) (0.22)

The model error performance for FGN error covariance model is reported in Ta-

ble 5.3 for low-dimensional models and in Table 5.4 for high-dimensional models.

Although there is no sparsity in the inverse error covariance for the MRCE method

and its approximation to exploit, we see that both methods are still able to provide

considerable improvement over the lasso and separate lasso methods by exploiting

the highly correlated error. As seen with the AR(1) error covariance model, as the

amount of correlation increases (i.e., larger values of H), the margin by which the
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Table 5.2:
Model error for the AR(1) error covariance models of high dimension.
Averages and standard errors in parenthesis are based on 50 replications
with n = 50. Tuning parameters were selected using a 10x resolution.

p q ρE s1, s2 OLS lasso sep.lasso MRCE ap.MRCE
20 60 0.9 0.1, 1 45.16 8.53 8.63 2.49 2.71

(1.21) (0.20) (0.20) (0.04) (0.05)
20 60 0.7 0.1, 1 44.34 8.52 8.65 5.92 5.90

(0.75) (0.15) (0.16) (0.09) (0.09)
20 60 0.5 0.1, 1 43.92 8.54 8.63 8.57 7.99

(0.61) (0.15) (0.14) (0.14) (0.13)
20 60 0 0.1, 1 43.53 8.55 8.60 9.93 9.37

(0.50) (0.12) (0.13) (0.14) (0.12)
60 20 0.9 0.1, 1 NA 11.05 11.07 - 5.00

(0.32) (0.32) (0.13)
60 20 0.7 0.1, 1 NA 10.91 11.03 - 8.84

(0.26) (0.26) (0.19)
60 20 0.5 0.1, 1 NA 10.76 10.88 - 10.83

(0.24) (0.24) (0.20)
60 20 0 0.1, 1 NA 10.79 10.88 - 12.63

(0.20) (0.19) (0.20)
100 100 0.9 0.5, 0.1 NA 58.79 59.32 - 34.87

(2.29) (2.35) (1.54)
100 100 0.7 0.5, 0.1 NA 59.09 59.60 - 60.12

(2.22) (2.30) (2.02)

MRCE method and its approximation outperform competitors increases.

Table 5.3:
Model error for the FGN error covariance models of low dimension. Aver-
ages and standard errors in parenthesis are based on 50 replications with
n = 50. Tuning parameters were selected using a 10x resolution.

p q H s1, s2 OLS lasso sep.lasso MRCE ap.MRCE C&W
20 20 0.95 0.1, 1 14.51 2.72 2.71 1.03 1.01 9.86

(0.69) (0.10) (0.11) (0.02) (0.03) (0.46)
20 20 0.90 0.1, 1 14.49 2.76 2.77 1.78 1.71 10.29

(0.53) (0.09) (0.09) (0.05) (0.05) (0.36)
20 20 0.95 0.5, 1 14.51 9.89 8.94 3.63 4.42 11.72

(0.69) (0.26) (0.21) (0.09) (0.16) (0.45)
20 20 0.90 0.5, 1 14.49 10.01 9.03 6.11 6.34 12.29

(0.53) (0.21) (0.18) (0.14) (0.13) (0.34)
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Table 5.4:
Model error for the FGN error covariance models of high dimension. Av-
erages and standard errors in parenthesis are based on 50 replications with
n = 50. Tuning parameters were selected using a 10x resolution.

p q H s1, s2 OLS lasso sep.lasso MRCE ap.MRCE
20 60 0.95 0.1, 1 46.23 8.56 8.63 3.31 3.20

(2.04) (0.36) (0.37) (0.19) (0.18)
20 60 0.90 0.1, 1 45.41 8.60 8.69 5.31 5.03

(1.42) (0.24) (0.25) (0.15) (0.14)
60 20 0.95 0.1, 1 NA 11.15 11.23 - 4.84

(0.35) (0.36) (0.12)
60 20 0.90 0.1, 1 NA 11.14 11.21 - 7.44

(0.30) (0.30) (0.16)
100 100 0.95 0.5, 0.1 NA 58.28 58.86 - 31.85

(2.36) (2.44) (1.26)
100 100 0.90 0.5, 0.1 NA 58.10 58.63 - 47.37

(2.27) (2.36) (1.68)

We report the true positive rate and true negative rates in Table 5.5 for the AR(1)

error covariance models and in Table 5.6 for the FGN error covariance models. We see

that as the error correlation increases (larger values of ρE and H), the true positive

rate for the MRCE method and its approximation increases, while the true negative

rate tends to decrease. While all methods perform comparably on these sparsity

measures, the substantially lower prediction errors obtained by the MRCE methods

give them a clear advantage over other methods.

5.4 Example: Predicting Asset Returns

We consider a dataset of weekly log-returns of 9 stocks from 2004, analyzed in

Yuan et al. (2007). We selected this dataset because it is the most recent dataset

analyzed in the multivariate regression literature. The data are modeled with a first-

order vector autoregressive model,

Y = Ỹ B + E,
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Table 5.5:
True Positive Rate / True Negative Rate for the AR(1) error covariance
models, averaged over 50 replications; n = 50. Standard errors are omit-
ted, the largest standard error is 0.04 and most are less than 0.01. Tuning
parameters were selected using a 10x resolution.

p q ρE s1, s2 lasso sep.lasso MRCE ap.MRCE
20 20 0.9 0.1, 1 0.83/0.72 0.82/0.74 0.95/0.59 0.94/0.62
20 20 0.7 0.1, 1 0.83/0.71 0.82/0.73 0.89/0.60 0.89/0.63
20 20 0.5 0.1, 1 0.83/0.70 0.81/0.73 0.86/0.62 0.87/0.63
20 20 0 0.1, 1 0.84/0.70 0.82/0.72 0.85/0.63 0.85/0.64
20 20 0.9 0.5, 1 0.86/0.44 0.87/0.44 0.93/0.42 0.91/0.45
20 20 0.7 0.5, 1 0.85/0.47 0.87/0.42 0.86/0.51 0.86/0.52
20 20 0.5 0.5, 1 0.83/0.52 0.87/0.44 0.83/0.54 0.85/0.48
20 20 0 0.5, 1 0.84/0.50 0.87/0.43 0.84/0.51 0.82/0.56
20 60 0.9 0.1, 1 0.83/0.70 0.80/0.74 0.94/0.58 0.93/0.61
20 60 0.7 0.1, 1 0.84/0.71 0.81/0.73 0.89/0.61 0.89/0.62
20 60 0.5 0.1, 1 0.84/0.70 0.82/0.73 0.86/0.64 0.86/0.64
20 60 0 0.1, 1 0.83/0.71 0.81/0.74 0.85/0.63 0.85/0.65
60 20 0.9 0.1, 1 0.79/0.76 0.79/0.76 - 0.89/0.66
60 20 0.7 0.1, 1 0.79/0.76 0.78/0.76 - 0.85/0.65
60 20 0.5 0.1, 1 0.79/0.76 0.79/0.76 - 0.83/0.66
60 20 0 0.1, 1 0.79/0.76 0.79/0.76 - 0.81/0.66
100 100 0.9 0.5, 0.1 0.77/0.81 0.76/0.82 - 0.87/0.72
100 100 0.7 0.5, 0.1 0.78/0.81 0.76/0.82 - 0.82/0.72

Table 5.6:
True Positive Rate / True Negative Rate for the FGN error covariance
models averaged over 50 replications; n = 50. Standard errors are omitted,
the largest standard error is 0.04 and most are less than 0.01. Tuning
parameters were selected using a 10x resolution.

p q H s1, s2 lasso sep.lasso MRCE ap.MRCE
20 20 0.95 0.1, 1 0.83/0.72 0.81/0.75 0.94/0.55 0.93/0.59
20 20 0.90 0.1, 1 0.84/0.71 0.83/0.73 0.90/0.59 0.89/0.61
20 20 0.95 0.5, 1 0.87/0.40 0.87/0.45 0.93/0.39 0.92/0.39
20 20 0.90 0.5, 1 0.86/0.43 0.87/0.45 0.88/0.51 0.90/0.43
20 60 0.95 0.1, 1 0.83/0.70 0.81/0.73 0.93/0.55 0.93/0.58
20 60 0.90 0.1, 1 0.83/0.70 0.81/0.73 0.90/0.58 0.90/0.60
60 20 0.95 0.1, 1 0.79/0.76 0.79/0.76 - 0.89/0.66
60 20 0.90 0.1, 1 0.79/0.76 0.78/0.76 - 0.87/0.65
100 100 0.95 0.5, 0.1 0.77/0.81 0.75/0.82 - 0.87/0.72
100 100 0.90 0.5, 0.1 0.77/0.81 0.75/0.82 - 0.83/0.71
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where the response Y ∈ R
T−1×q has rows y2, . . . , yT and the predictor Ỹ ∈ R

T−1×q

has rows y1, . . . , yT−1. Here yt corresponds to the vector of log-returns for the 9

companies at week t. Let B ∈ R
q×q denote the transition matrix. Following the

approach of Yuan et al. (2007), we use log-returns from the first 26 weeks of the year

(T = 26) as the training set, and the log-returns from the remaining 26 weeks of

the year as the test set. Prediction performance is measured by the average mean-

squared prediction error over the test set for each stock, with the model fitted using

the training set. Tuning parameters were selected with 10-fold CV.

Average test squared error over the 26 test points is reported in Table 5.7, where we

see that the MRCE method and its approximation have somewhat better performance

than the lasso and separate lasso methods. The lasso estimate of the transition matrix

B was all zeros, yielding the null model. Nonetheless, this results in prediction

performance comparable, (i.e., within a standard error), to the FES method of Yuan

et al. (2007) (copied directly from Table 3 on page 341), which was shown to be

the best of several competitors for these data. This comparable performance of the

null model suggests that the signal is very weak in this dataset. Separate lasso,

MRCE, and its approximation estimated 3/81, 4/81, and 12/81 coefficients as non-

zero, respectively.

We report the estimate of the unit lag coefficient matrix B for the approximate

MRCE method in Table 5.8, which is the least sparse estimate, identifying 12 non-

zero entries. The estimated unit lag coefficient matrix for separate lasso, MRCE,

and approximate MRCE all identified the log-return for Walmart at week t− 1 as a

relevant predictor for the log-return of GE at week t, and the log-return for Ford at

week t− 1 as a relevant predictor for the log return of Walmart at week t. The FES

does not provide any interpretation.

We also report the signs of the estimate for the inverse error covariance matrix

for the MRCE method in Table 5.9. A non-zero entry (i, j) means that we estimate
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Table 5.7:
Average testing squared error for each output (company) ×1000, based on
26 testing points. Standard errors are reported in parenthesis. The results
for the FES method where copied from Table 3 in Yuan et al. (2007).

OLS sep.lasso lasso MRCE ap.MRCE FES
Walmart 0.98 0.44 0.42 0.41 0.41 0.40

(0.27) (0.10) (0.12) (0.11) (0.11)
Exxon 0.39 0.31 0.31 0.31 0.31 0.29

(0.08) (0.07) (0.07) (0.07) (0.07)
GM 1.68 0.71 0.71 0.71 0.69 0.62

(0.42) (0.17) (0.17) (0.17) (0.17)
Ford 2.15 0.77 0.77 0.77 0.77 0.69

(0.61) (0.25) (0.25) (0.25) (0.25)
GE 0.58 0.45 0.45 0.45 0.45 0.41

(0.15) (0.09) (0.09) (0.09) (0.09)
ConocoPhillips 0.98 0.79 0.79 0.79 0.78 0.79

(0.24) (0.22) (0.22) (0.22) (0.22)
Citigroup 0.65 0.61 0.66 0.62 0.62 0.59

(0.17) (0.13) (0.14) (0.13) (0.13)
IBM 0.62 0.49 0.49 0.49 0.47 0.51

(0.14) (0.10) (0.10) (0.10) (0.09)
AIG 1.93 1.88 1.88 1.88 1.88 1.74

(0.93) (1.02) (1.02) (1.02) (1.02)
AVE 1.11 0.72 0.72 0.71 0.71 0.67

(0.14) (0.12) (0.12) (0.12) (0.12)

that εi is correlated with εj given the other errors (or εi is partially correlated with

εj). We see that AIG (an insurance company) is estimated to be partially correlated

with most of the other companies, and companies with similar products are partially

correlated, such as Ford and GM (automotive), GE and IBM (technology), as well as

Conoco Phillips and Exxon (oil). These results make sense in the context of financial

data.

5.5 Summary and discussion

We proposed the MRCE method to produce a sparse estimate of the multivariate

regression coefficient matrix B. Our method explicitly accounts for the correlation of
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Table 5.8:
Estimated coefficient matrix B for approximate MRCE. Results are
rounded to the nearest tenth, and coefficients that are exactly zero are
denoted by “0”.

Wal Exx GM Ford GE CPhil Citi IBM AIG
Walmart 0 0 0 0 0 0 0.1 0.1 0
Exxon 0 0 0 0 0 0 0 0 0
GM 0 0 0 0 0 0 0 0 0
Ford -0.1 0.0 0.0 0 0 0 0 -0.0 -0.0
GE 0 0 0 0 0 0.0 0 0 0
ConocoPhillips 0 0.0 0 0 0 0 0 -0.0 0
Citigroup 0 0 0.0 0 0 0 0 0 0
IBM 0 0 0 0 0 0 0 0 0
AIG 0 0 0.0 0 0 0 0 0 0

Table 5.9: Signs of the inverse error covariance estimate for MRCE
Wal Exx GM Ford GE CPhil Citi IBM AIG

Walmart + 0 - 0 0 0 0 0 -
Exxon 0 + 0 0 0 - 0 0 -
GM - 0 + - - 0 - - -
Ford 0 0 - + 0 0 0 0 0
GE 0 0 - 0 + 0 - - -
CPhillips 0 - 0 0 0 + 0 0 -
Citigroup 0 0 - 0 - 0 + 0 -
IBM 0 0 - 0 - 0 0 + -
AIG - - - 0 - - - - +

the response variables. We also developed a fast approximate algorithm for computing

MRCE which has roughly the same performance in terms of model error. These

methods were shown to outperform q separate lasso penalized regressions (which

ignore the correlation in the responses) in simulations when the responses are highly

correlated, even when the inverse error covariance is dense.

Although we considered simultaneous L1-penalization of B and Ω, one could use

other penalties that introduce less bias instead, such as SCAD (Fan and Li, 2001;

Lam and Fan, 2009). In addition, this work could be extended to the situation when

the response vector samples have serial correlation, in which case the model would
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involve both the error covariance and the correlation among the samples.

5.6 Derivation of Algorithm 1

The objective function for Ω fixed at Ω0 is now,

f(B) = g(B, Ω0) + λ2

p∑

j=1

q∑

k=1

|bjk|.

We can solve for B with cyclical coordinate descent. Express the directional deriva-

tives as,

∂f+

∂B
=

2

n
XT XBΩ− 2

n
XTY Ω + λ21(bij ≥ 0)− λ21(bij < 0)

∂f−

∂B
= −2

n
XT XBΩ +

2

n
XT Y Ω− λ21(bij > 0) + λ21(bij ≤ 0),

where the indicator 1() is understood to be a matrix. Let S = XT X and H =

XT Y Ω and urc =
∑p

j=1

∑q
k=1 bjksrjωkc. To update a single parameter brc we have the

directional derivatives,

∂f+

∂brc
= urc − hrc + nλ21(bij ≥ 0)− nλ21(bij < 0)

∂f−

∂brc
= −urc + hrc − nλ21(bij > 0) + nλ21(bij ≤ 0).

Let b0
rc be our current iterate. The unpenalized univariate minimizer b̂∗rc solves,

b̂∗rcsrrωcc − b0
rcsrrωcc + urc − hrc = 0,

implying b̂∗rc = b0
rc + hrc−urc

srrωcc
. If b̂∗rc > 0, then we look leftward and by convexity the

penalized minimizer is b̂rc = max(0, b̂∗rc − nλ2

srrωcc
). Similarly if b̂∗rc < 0 then we look to

the right and by convexity the penalized univariate minimizer is b̂rc = min(0, b̂∗rc +
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nλ2

srrωcc
), thus b̂rc = sign(b̂∗rc)(|b̂∗rc|− nλ2

srrωcc
)+. Also if b̂∗rc = 0, which has probability zero,

then both the loss and penalty part of the objective function are minimized and the

parameter stays at 0. We can write this solution as,

b̂rc = sign

(

b0
rc +

hrc − urc

srrωcc

)(∣
∣
∣
∣
b0
rc +

hrc − urc

srrωcc

∣
∣
∣
∣
− nλ2

srrωcc

)

+

.
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