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CHAPTER 1 

An overview of the molecular mechanism of autophagy 

 

ABSTRACT 

Autophagy is a highly conserved cellular degradation process in which portions of 

cytosol and organelles are sequestered into a double-membrane vesicle, an autophagosome, 

and delivered into a degradative organelle, the vacuole/lysosome, for breakdown and 

eventual recycling of the resulting macromolecules. This process relieves the cell from 

various stress conditions. Autophagy plays a critical role during cellular development and 

differentiation, functions in tumor suppression, and may be linked to lifespan extension. 

Autophagy also has diverse roles in innate and adaptive immunity, such as resistance to 

pathogen invasion. Substantial progress has been made in the identification of many 

autophagy-related, ATG, genes that are essential to drive this cellular process, including 

both selective and non-selective types of autophagy. Identification of the ATG genes in 

yeast, and the finding of orthologs in other organisms, reveals the conservation of the 

autophagic machinery in all eukaryotes. Here, we summarize our current knowledge about 

the machinery and molecular mechanism of autophagy. 
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Introduction 

Autophagy, “self-eating” at the subcellular level, has gained tremendous attention in 

the past few years, and our knowledge concerning the mechanism of autophagy has 

expanded dramatically (Yorimitsu and Klionsky, 2005b). There are three major types of 

autophagy in eukaryotic cells, macroautophagy, microautophagy and chaperone-mediated 

autophagy (CMA), and they are mechanistically different from each other (Klionsky, 2005; 

Massey et al., 2004). Both macro- and microautophagy involve dynamic membrane 

rearrangement to engulf portions of the cytoplasm, and they have the capacity for 

sequestration of large structures, such as entire organelles. Microautophagy involves the 

direct engulfment of cytoplasm at the lysosome surface by invagination, protrusion, and 

septation of the lysosome membrane. In contrast, during macroautophagy, portions of 

cytoplasm are sequestered into a de novo formed double-membrane vesicle, termed an 

autophagosome. Subsequently, the completed autophagosome fuses with the 

lysosome/vacuole and the inner single-membrane vesicle is released into the lumen. In 

either case, the membrane of the resulting autophagic body is lysed to allow breakdown of 

the contents, and the resulting macromolecules are transported back into the cytosol 

through membrane permeases for reuse. In contrast, CMA does not involve a similar type 

of membrane rearrangement; instead, it translocates unfolded, soluble proteins directly 

across the limiting membrane of the lysosome. 

In this chapter, we will focus on macroautophagy, hereafter referred to as autophagy. 

Autophagy is an evolutionarily conserved process that occurs ubiquitously in all 

eukaryotic cells (Reggiori and Klionsky, 2002) and has many physiological roles. 

Autophagy is active at a basal level for the turnover of long-lived proteins and also for the 
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removal of superfluous or damaged organelles. This latter function might provide a 

connection to autophagy’s proposed role in lifespan extension (Levine and Klionsky, 2004). 

On the other hand, autophagy is induced as a cellular response to various stress conditions, 

such as nutrient limitation, heat and oxidative stress. Autophagy also plays a role in cellular 

development and differentiation (Levine and Klionsky, 2004). Moreover, autophagy is 

implicated in a wide range of diseases (Huang and Klionsky, 2007; Mizushima et al., 2008; 

Shintani and Klionsky, 2004a), including cancer and neurodegenerative disorders such as 

Alzheimer’s, Parkinson’s and Huntington’s diseases. In addition, autophagy has diverse 

roles in innate and adaptive immunity (Levine and Deretic, 2007). For example, autophagy 

can eliminate invasive pathogens, including viruses, parasites and bacteria; autophagy also 

promotes MHC class II presentation of microbial (and self) antigens. Finally, in the 

absence of apoptosis, autophagy may participate in a type of programmed cell death, 

termed type II programmed cell death, that is distinct from apoptosis, although the 

physiological relevance of the former is not clear (Levine and Yuan, 2005). 

The morphology of autophagy was first identified in mammalian cells in the 1950s, 

and extensive morphological and pharmacological studies defined the basic steps of this 

process. Subsequent work in various fungi starting in the 1990s allowed the identification 

of individual molecular components that participate in autophagy. To date, there are 31 

AuTophaGy-related (ATG) genes (Huang and Klionsky, 2007; Klionsky et al., 2003). The 

ATG genes were discovered from genetic screens for mutants that affected protein turnover 

(non-specific autophagy), peroxisome degradation (pexophagy) and delivery of a resident 

vacuolar hydrolase (the cytoplasm to vacuole targeting (Cvt) pathway). Although the Cvt, 

pexophagy and autophagy pathway are morphologically and mechanistically similar and  
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Figure 1.1. Schematic overview of autophagy and the Cvt pathway in yeast. Both pathways 
involve the engulfment of cargos within distinct double-membrane vesicles, which are thought to 
originate from the phagophore assembly site (PAS). The Cvt pathway is biosynthetic and is used for 
the delivery of two resident vacuolar hydrolases, aminopeptidase I (Ape1) and α-mannosidase 
(Ams1), and it occurs under vegetative conditions. The Cvt vesicle is approximately 140-160 nm in 
diameter and appears to closely enwrap the specific cargo, the Cvt complex (consisting of prApe1 
and the Atg19 receptor), and exclude bulk cytoplasm. In contrast, autophagy is degradative and is 
induced by inactivation of Tor kinase upon nutrient starvation. The autophagosome, which is 
300-900 nm in diameter, sequesters cytoplasm, including organelles, and can also specifically 
sequester the Cvt complex. Once completed, the double-membrane vesicles dock and fuse with the 
vacuole, and release the inner single-membrane vesicles (autophagic or Cvt body) into the lumen. 
Subsequently, these vesicles are broken down, allowing the maturation of prApe1 and the 
degradation of cytoplasm, with recycling of the resulting macromolecules through vacuolar 
permeases. This figure is modified from Figure 1 of Yorimitsu and Klionsky (2005b). 
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share most of the Atg components, they differ in several aspects (Figure 1.1). Autophagy 

and pexophagy are degradative, whereas the Cvt pathway is biosynthetic. Autophagy is 

generally considered non-selective, whereas pexophagy and the Cvt pathway are highly 

selective. The Cvt pathway is used for delivery of two resident vacuolar hydrolases, 

aminopeptidase I (Ape1) and α-mannosidase (Ams1) (Hutchins and Klionsky, 2001; Scott 

et al., 1997). A double-membrane vesicle that sequesters these two proteins is termed a Cvt 

vesicle, which is relatively consistent in size, but significantly smaller than the 

autophagosome; being 140-160 nm in diameter compared to the 300-900 nm 

autophagosome (Baba et al., 1997). Similarly, the vesicle formed during pexophagy, the 

pexophagosome, is also larger than the Cvt vesicle in order to accommodate its specific 

cargos, peroxisomes (Hutchins et al., 1999). In contrast to the autophagosome, both the Cvt 

vesicle and pexophagosome appear to closely enwrap the cargo and exclude bulk 

cytoplasm. 

These dynamic pathways can be broken down into a series of steps (Figure 1.2), 

including induction, cargo recognition and packaging, vesicle nucleation, vesicle 

expansion and completion, Atg protein cycling, vesicle fusion with the vacuole/lysosome, 

vesicle breakdown and recycling of the resulting macromolecules (Huang and Klionsky, 

2007). Thus, the Atg proteins can be classified into several different groups according to 

their functions at the different steps of the pathway. Many orthologs of the ATG gene 

products have also been identified and studied in higher eukaryotes, such as worms, insects, 

plants and mammals, and they have essentially similar roles as those in yeast (Xie and 

Klionsky, 2007; Yorimitsu and Klionsky, 2005b). Continued investigation of functions of 

the ATG gene products in yeast will largely expand our understanding of autophagy. In this 
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chapter, we will mainly discuss the molecular machinery of autophagy, with an emphasis 

on yeast. 

 
Figure 1.2. Schematic representation of autophagy and autophagy-related pathways. These 
dynamic pathways can be broken down into a series of steps including induction, cargo recognition 
and packaging, vesicle nucleation, vesicle expansion and completion, Atg protein cycling, vesicle 
fusion with the vacuole/lysosome, vesicle breakdown and recycling of the resulting 
macromolecules. The Atg proteins can be classified into several different groups according to their 
functions at the different steps of the pathway. The Atg1 complex may act at multiple steps of the 
pathway including induction and Atg protein cycling. During the vesicle formation process, several 
Atg proteins are involved in cycling between the peripheral sites and the PAS. PAS, phagophore 
assembly site; thought to be the organizing site for phagophore formation. This figure is modified 
from Figure 2 of Huang and Klionsky (2007). 
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Induction and Regulation of Autophagy 

Insufficient autophagy can be deleterious (Komatsu et al., 2007a; Kuma et al., 2004), 

but excessive levels may also be harmful. Accordingly, autophagy is a tightly regulated 

process in all eukaryotes. The induction and regulation of autophagy have been studied 

extensively in yeast, mammalian cells and Drosophila. Several signaling pathways, as 

summarized in the following, are involved in the control of autophagy. 

TORC1. The protein target of rapamycin, Tor, plays a major regulatory role in 

autophagy induction (Carrera, 2004). Tor forms two functionally distinct protein 

complexes, Tor complex 1 and 2 (TORC1 and TORC2) (Loewith et al., 2002), and TORC1 

has the primary role in regulating autophagy. Under nutrient rich conditions, TORC1 is 

active, and inhibits autophagy, whereas upon nutrient deprivation, TORC1 is inhibited, 

which allows an increase of autophagic activity (Noda and Ohsumi, 1998). 

In yeast, TORC1 acts on autophagy in two ways (Klionsky, 2005). First, TORC1 

regulates the Atg1-Atg13-Atg17 kinase complex (Figure 1.3A). The formation of this 

ternary complex correlates with an increase in autophagic activity. Atg1, a serine/threonine 

kinase, is one of the key Atg proteins required for both autophagy and the Cvt pathway 

(Matsuura et al., 1997). Based on yeast two-hybid data and affinity isolation, Atg1 is found 

to be in a complex with Atg13 and Atg17 (Kabeya et al., 2005; Kamada et al., 2000). The 

observation that Atg17 interacts with Atg13 in the absence of Atg1, but not vice versa, 

suggests that Atg13 mediates the interaction between Atg1 and Atg17. TORC1 regulates 

directly or indirectly the Atg13 phosphorylation state. Under nutrient-rich conditions, 

Atg13 is highly phosphorylated, and has a lower affinity for Atg1 and Atg17. Upon 

inactivation of TORC1 by rapamycin or nutrient deprivation, Atg13 is rapidly and partially  
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Figure 1.3. Regulation of autophagy induction in yeast and mammalian cells. (A) Regulatory 
complex for autophagy induction in yeast. In yeast, autophagy is mainly a starvation response, 
and Tor kinase complex 1 (TORC1) regulates the induction of autophagy upon sensing the nutrient 
conditions. Atg1 kinase, which is essential for both autophagy and the Cvt pathway, forms a 
putative complex with several Atg proteins that are primarily required for autophagy (in green) or 
the Cvt pathway (in purple). Under nutrient-rich conditions, TORC1 is active and Atg13 is highly 
phosphorylated, and this hyperphosphorylated Atg13 has a lower affinity for Atg1 and Atg17. 
Upon inactivation of TORC1 by nutrient starvation, Atg13 is rapidly and partially 
dephosphorylated, leading to a higher affinity for Atg1 and Atg17. The formation of 
Atg1—Atg13—Atg17 ternary complex allows the activation of Atg1 kinase activity, which may 
regulate the switch between autophagy and the Cvt pathway in response to environmental changes. 
The function of additional components of the putative complex depicted here, including Atg20, 
Atg24, Atg29, Atg31 and Vac8, are not known. Atg11 may function in part as a scaffold protein. 
This figure is modified from Figure 2 of Yorimitsu and Klionsky (2005b). (B) Multiple 
nutrient-sensing kinase signaling pathways converge on autophagy in yeast. TORC1 plays a 
major role in the regulation of autophagy. Ras is active under nutrient-rich conditions, and allows 
the activation of PKA, which inhibits autophagy. The PKA and Sch9 signaling pathways 
cooperatively regulate the induction of autophagy in parallel with Tor, although Sch9 is also a 
direct substrate of TORC1. The eIF2α kinase signaling pathway positively regulates autophagy, 
and Gcn2 might be another target of TORC1. Snf1 and Pho85 are additional positive and negative 
regulatory components, respectively, of autophagy in yeast. (C) Regulation of autophagy in 
mammalian cells. mTor activation depends on several inputs, including nutrients (amino acids), 
energy (ATP) and growth factor (insulin/IGF). In response to insulin receptor stimulation, a class I 
phosphoinositide 3-kinase (PtdIns3K) is activated and generates PtdIns(3,4)P2 and PtdIns(3,4,5)P3 
at the plasma membrane, and the latter two activate 3-phosphoinositide-dependent protein kinase 1 
(PDK1) and protein kinase B (PKB)/Akt. PKB phosphorylates and inhibits the GTPase-activating 
protein complex TSC1—TSC2, leading to the stabilization of Rheb-GTP, which stimulates mTor, 
causing inhibition of autophagy. PTEN, a 3' phosphoinositide phosphatase, antagonizes PKB, and 
has a stimulatory effect on autophagy. Both mTor and PDK1 stimulate p70S6 kinase (p70S6K). In 
one model, under nutrient-rich conditions, activation of S6K directly stimulates autophagy, or it is 
stimulated indirectly through inhibition of PtdIns3K, allowing a basal level of autophagy for 
homeostatic purposes. Under starvation conditions, inhibition of mTor prevents further activation 
of S6K, which limits and prevents excessive autophagy. Both ATP and amino acids deprivation 
result in mTor inactivation independent of the insulin signaling pathway. Amino acids activate 
mTor via inhibition of the TSC1—TSC2 complex or are sensed by mTor directly. Energy stress 
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causes activation of the LKB1—AMPK pathway, which inhibits mTor by activating TSC1—TSC2. 
AMPK phosphorylates and stabilizes p27, a cylin-kinase inhibitor, leading to activation of 
autophagy. An anti-apoptotic protein, Bcl-2, associates with Beclin 1, the mammalian homolog of 
Atg6, and inhibits a class III PtdIns3K complex, whereas the latter serves a stimulatory role in 
autophagy. Also shown is the notion that Atg1 overexpression negatively feeds back on Tor activity 
in Drosophila. 

 

dephosphorylated, leading to a higher affinity for Atg1 and Atg17. The identities of the 

phosphatase(s) that control Atg13 phosphorylation are currently unknown. The interaction 

of Atg1 with hypophosphorylated Atg13 and Atg17 allows the activation of Atg1 kinase 

activity. Loss of interaction between Atg1 and Atg13, or between Atg13 and Atg17, leads 

to a decrease in Atg1 kinase activity and decreased autophagy. The kinase activity of Atg1 

is essential for both autophagy and the Cvt pathway, although a higher level of kinase 

activity appears to be needed for the Cvt pathway (Abeliovich et al., 2003; Cheong et al., 

2008; Kabeya et al., 2005; Kamada et al., 2000). It is possible that the kinase activity of 

Atg1 is critical for the magnitude of autophagy, but not its initiation (Nair and Klionsky, 

2005). The downstream substrate of Atg1 kinase is unclear, and it is still a matter of debate 

whether Atg1 primarily acts on autophagy through its kinase activity or through a 

structural role during autophagic complex formation. However, one role of the 

Atg1-Atg13-Atg17 ternary complex is thought to be that of regulating the switch between 

autophagy and the Cvt pathway in response to environmental changes.  

Homologs of Atg1 are involved in autophagy in various multicellular organisms such 

as Dictyostelium discoideum (Otto et al., 2004), Drosophila melanogaster (Scott et al., 

2004), C.elegans (Melendez et al., 2003), Arabidopsis thaliana (Hanaoka et al., 2002), and 

mammals (Yan et al., 1998; Yan et al., 1999). In Drosophila, Atg1 activity is modulated by 
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TORC1 as in yeast, because the induction of autophagy that results from the 

overexpression of Atg1 is suppressed when the TORC1 signaling pathway is impaired 

(Scott et al., 2007). Normally, a feedback mechanism may occur in which Atg1 

downregulates Tor activity, resulting in a further activation of Atg1 and a further increase 

in autophagy (Figure 1.3C). Because these studies are based on overexpressed Atg1, 

however, the physiological significance is not clear at present. In mammals, the 

uncoordinated 51-like kinases 1 and 2 (Ulk1 and Ulk2) appear to be the functionally 

equivalent mammalian homologs of yeast Atg1. Knockdown of ULK1 inhibits the 

induction of autophagy by rapamycin treatment, indicating that Ulk1 functions 

downstream of mTOR in autophagy regulation (Chan et al., 2007). In contrast to the result 

in Drosophila, overexpression of ULK1 or ULK2 suppresses autophagy. Furthermore, 

moderate expression of kinase-dead ULK mutants also efficiently suppresses autophagy, 

indicating that kinase activity of the Ulk proteins is critical during this process (Hara et al., 

2008). FIP200 is a recently identified Ulk-interacting protein that is required for autophagy 

(Hara et al., 2008). Ulk and FIP200 function together and form a complex that is essential 

during an early step in autophagosome formation; FIP200 is thus thought to be a 

counterpart of yeast Atg17. Further identification and analysis of a functional homolog of 

mammalian Atg13 might help clarify the functional relationship between yeast and 

mammalian Atg1 complex.  

Second, TORC1 acts through its downstream effectors to control autophagy. Several, 

but not all, TORC1 readouts, including autophagy, are regulated through protein 

phosphatase type 2A (PP2A) and/or 2A-related protein phosphatase (Sit4) (De Virgilio and 

Loewith, 2006). PP2A and Sit4 are in distinct complexes containing Tap42. Under nutrient 
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rich conditions, Tap42 is phosphorylated and tightly associates with PP2A and Sit4. 

Starvation or rapamycin treatment causes dephosphorylation and dissociation of Tap42 or a 

change in conformation, resulting in activation of Sit4. TORC1 may directly phosphorylate 

Tap42, or may indirectly regulate Tap42 via Tip41. Upon inactivation of TORC1, Tip41 is 

dephosphorylated and has a high affinity for Tap42 resulting in the inhibition of the latter. 

One report suggests that Tap42 does not transmit the signal from TORC1 to regulate 

autophagy (Kamada et al., 2000). However, more recent data indicate a role for Tap42 in 

the negative regulation of this process (Yorimitsu et al., 2009). 

The conserved Tor protein in mammalian cells (mTor) also senses nutrient status and 

modulates autophagy, but the mechanism of regulation is more complex than in fungi, 

which are not responsive to hormones. As shown in Figure 1.3C, the regulatory cascade 

upstream of mTor includes an insulin receptor, insulin-receptor substrates 1 and 2, class I 

phosphoinositide 3-kinase (PtdIns3K), 3-phosphoinositide-dependent protein kinase 1 

(PDK1) and protein kinase B (PKB)/Akt (Meijer and Codogno, 2006). mTor activity is 

controlled by the heterodimer TSC1-TSC2 which acts as a GTPase-activating protein 

(GAP) for the GTPase Rheb. The GDP-bound form of Rheb inhibits mTor, whereas the 

GTP-bound form stimulates the enzyme. PKB phosphorylates and inhibits the TSC1-TSC2 

complex, leading to activation of mTor signaling. PTEN, a 3’ phosphoinositide 

phosphatase, antagonizes PKB, and has a stimulatory effect on autophagy (Arico et al., 

2001). The best characterized signaling pathway, located downstream of mTor, includes 

components such as ribosomal subunit S6 kinase (p70S6K). In one model, S6K exerts a 

negative feedback on mTor signaling by phosphorylating IRS1 to downregulate insulin 

signaling, leading to a decline in PI(3,4,5)P3, an inhibitor of autophagy; this feedback 
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regulation may ensure a basal level of autophagy even under nutrient-rich conditions 

(Klionsky, 2005).  

Ras/cAMP-dependent protein kinase A (PKA). In addition to TORC1, the Ras/PKA 

signaling pathway also regulates autophagy from yeast to mammals (Budovskaya et al., 

2004; Furuta et al., 2004; Mavrakis et al., 2006; Schmelzle et al., 2004; Yorimitsu et al., 

2007). Under nutrient-rich conditions in yeast, two redundant small GTPases, Ras1 and 

Ras2, are activated, and stimulate adenylyl cyclase to produce cAMP. cAMP binds to the 

PKA regulatory subunit (Bcy1) and allows its dissociation from the three PKA catalytic 

subunits (Tpk1, Tpk2 and Tpk3), resulting in the activation of PKA (Thevelein and de 

Winde, 1999). Constitutive activation of PKA through a dominant hyperactive allele of 

RAS2, RAS2G19V, or deletion of BCY1, prevents the induction of autophagy by nutrient 

starvation or rapamycin, whereas inactivation of PKA by a dominant negative allele of 

RAS2, RAS2G22A, induces autophagy in rich condition without rapamycin (Budovskaya et 

al., 2004; Schmelzle et al., 2004). Thus, in addition to TORC1, Ras/PKA is another 

negative regulator of autophagy (Figure 1.3B). Among the Atg proteins, Atg1, Atg13, 

Atg18 and Atg21 contain PKA phosphorylation sites. However, it is still unclear whether 

the phosphorylation of these Atg proteins by PKA has any functional link to autophagy 

(Budovskaya et al., 2005).  

Sch9 is a homologue of mammalian PKB or p70S6 kinase (Urban et al., 2007). A 

recent report shows that PKA and Sch9 signaling pathways cooperatively regulate the 

induction of autophagy (Yorimitsu et al., 2007). Simultaneous inactivation of PKA and 

Sch9 triggers induction of autophagy in rich conditions independent of effects on TORC1, 

whereas further inactivation of TORC1 causes an additive effect. These observations 
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suggest a model wherein PKA, Sch9 and TORC1, at least in part, regulate autophagy in 

parallel (Figure 1.3B). This model is supported by the finding that TORC1 and Ras/PKA 

function as two parallel pathways that independently act in regulating cell growth 

(Zurita-Martinez and Cardenas, 2005). However, Sch9 is a direct substrate of TORC1 

(Urban et al., 2007); furthermore, it is also suggested that TORC1 transmits signals through 

the Ras/PKA pathway to its downstream targets (Schmelzle et al., 2004). Therefore, the 

connection among PKA, Sch9 and TORC1 with regard to their effects in autophagy 

regulation is still not clear. 

eIF2α kinase signaling and GCN4 general control.  In response to amino acid 

starvation, budding yeast initiate a general amino acid control to induce the transcription of 

numerous genes. Central to this response is Gcn4, a master transcriptional activator of gene 

expression (Hinnebusch, 2005). Gcn4 synthesis is mainly regulated at the translational 

level. Derepression of GCN4 mRNA translation requires a protein kinase, Gcn2, whose 

only known substrate is the α subunit of translation initiation factor 2 (eIF2). The eIF2α 

kinase signaling pathway is also involved in the regulation of autophagy from yeast to 

mammals (Figure 1.3B) (Talloczy et al., 2002). Upon loss of Gcn2 or Gcn4, or in the 

presence of the eIF2α nonphosphorylatable mutant SUI2-S51A, autophagic activity is 

impaired.  Intriguingly, TORC1 is implicated in the eIF2α kinase signaling pathway 

because rapamycin activates Gcn2, at least in part, through de-phosphorylation of Ser577 

(Kubota et al., 2003). Thus, Gcn2 might be another target of TORC1.  

Other signaling pathways controlling autophagy. Snf1, the closest yeast homologue 

of the mammalian AMP-activated protein kinase, and Pho85, a cyclin-dependent kinase 

(CDK), antagonistically control autophagy in yeast (Figure 1.3B) (Wang et al., 2001b). 
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Snf1, which is activated upon glucose depletion to allow transcription of glucose-repressed 

genes, is required for starvation-induced autophagy. Pho85, which has multiple functions 

through association with its ten different cyclins (Pcls), is a negative regulator of autophagy, 

although the functions of the various Pcl proteins and the pathways that they regulate are 

currently unknown (Carroll and O'Shea, 2002).  

In mammalian cells, AMPK is also required for autophagy (Meley et al., 2006). 

During energy stress, AMP accumulation causes activation of the LKB1-AMPK pathway, 

which inhibits mTor by activating TSC1/TSC2 (Hoyer-Hansen and Jaattela, 2007). 

Furthermore, AMPK phosphorylates p27, a cylin-kinase inhibitor, thereby stabilizing p27, 

whereas ectopic expression of wild-type or a stabilized p27 mutant induces autophagy 

(Liang et al., 2007). 
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The Cvt Pathway and Other Selective Types of Autophagy 

Although autophagy is generally considered as a nonselective pathway for the 

degradation of bulk cytoplasmic components, recent findings indicate that there exist many 

types of selective autophagy in both yeast and higher eukaryotes. In yeast, even bulk 

autophagy can be selective; cytosolic acetaldehyde dehydrogenase, Ald6, is preferentially 

sequestered into autophagosomes relative to other cytosolic proteins (Onodera and Ohsumi, 

2004). Several organelles are selectively degraded through autophagy. For example, the 

selective degradation of mitochondria is termed mitophagy (Kim et al., 2007). This type of 

selective process is thought to play a crucial role in mitochondrial homeostasis, however, 

the mechanism underlying mitophagy remains unclear. The use of electron microscopy to 

observe mitochondrial degradation indicates that mitophagy occurs both selectively and 

nonselectively. A recent report demonstrates that mature ribosomes are rapidly degraded 

by autophagy in yeast, through a process termed ribophagy. This degradation involves a 

type of selective autophagy in that it specifically requires catalytic activity of the 

Ubp3/Bre5 ubiquitin protease (Kraft et al., 2008). 

In fungi such as Saccharomyces cerevisiae, Pichia pastoris, Hansenula polymorpha, 

and Yarrowia lipolytica, peroxisomes are selectively engulfed and degraded through two 

morphologically distinct autophagic degradation processes, micro- and macropexophagy 

(Gunkel et al., 1999; Hutchins and Klionsky, 2001; Sakai et al., 2006; Tuttle et al., 1993; 

Veenhuis et al., 1983). When fungi grow on specific carbon sources, such as oleic acid or 

methanol, peroxisome proliferation is induced to adapt to the new physiological conditions 

that require peroxisome metabolism. When peroxisomes proliferation becomes 

unnecessary and peroxisomes become superfluous, as occurs after shifting to a preferred 
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carbon source such as glucose, peroxisomes are rapidly and specifically degraded. The two 

main modes of pexophagy, micro- and macropexophagy share most of the molecular 

components with non-specific autophagy. However, the presence of Pex14 at the 

peroxisomal membrane is necessary for the specific recognition of the organelle by the 

macropexophagy machinery (Bellu et al., 2001). A specificity factor, Atg11, which is 

required for the Cvt pathway, is also essential for the selective transport of peroxisomes to 

the vacuole (Kim et al., 2001). A recently identified pexophagy-specific protein, PpAtg30, 

functions as a peroxisome receptor through interactions with PpPex3, PpPex14, PpAtg11 

and PpAtg17, to delivers peroxisomes to the site for pexophagosome formation (Farre et al., 

2008). Furthermore, a fully functional actin cytoskeleton is required for selective 

autophagy, including the Cvt pathway and pexophagy, but not for nonselective autophagy 

(Reggiori et al., 2005a). 

The Cvt pathway is a unique type of specific autophagy. The mechanism of the 

selective recognition and packaging of prApe1 has been relatively well clarified (Figure 

1.4). The Ape1 protein is synthesized in the cytoplasm as a precursor form (prApe1) 

(Klionsky et al., 1992). After synthesis, prApe1 assembles into a dodecamer (Kim et al., 

1997), which is further packaged into a larger oligomeric structure, called the Ape1 

complex (Shintani et al., 2002). The prApe1 propeptide contains vacuolar targeting 

information (Martinez et al., 1997; Oda et al., 1996). In addition, the propeptide also 

mediates the interaction between prApe1 and its receptor protein, Atg19, to form the Cvt 

complex in the cytosol (Scott et al., 2001). Another Cvt cargo, Ams1, also binds Atg19 via 

a site that is distinct from the prApe1 binding site, and is concentrated at the Cvt complex 

(Shintani et al., 2002). The Cvt complex is subsequently enwrapped by a double membrane  
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Figure 1.4. Temporal order of action of cargo recognition, packaging and sequestration in the 
Cvt pathway. A selective type of autophagy, the Cvt pathway, specifically transports the vacuolar 
hydrolases precursor Ape1 and Ams1 into the vacuole. Precursor Ape1 is synthesized in the cytosol, 
assembled into a dodecamer, and then further packaged into a larger oligomeric structure, called the 
Ape1 complex. Atg19 binds to the propeptide of prApe1 to form the Cvt complex in the cytosol; 
Ams1 is also incorporated into this complex via binding to Atg19. Atg11 subsequently associates 
with Atg19, acting as an adapter to bring the Cvt complex to the phagophore assembly site or PAS, 
a potential site for Cvt vesicle formation. The PAS may organize the formation of the sequestering 
vesicle, or it may literally become the sequestering vesicle as shown. Atg11 assembles with the Cvt 
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complex before targeting to the PAS, and it forms a homodimer or homo-oligomer at the PAS, 
although it is not clear whether this self-interaction occurs before or after the arrival at this site. 
Several Atg components, including Atg8, are recruited to the PAS independent of Atg11. Atg8 is 
conjugated into Atg8—PE for subsequent vesicle formation. Atg8—PE interacts with Atg19, and 
allows the correct incorporation of the Cvt complex into the forming vesicle. Atg19 is delivered 
into the vacuole together with the cargo proteins and degraded there. The scaffold protein Atg11, 
however, dissociates from the Cvt complex before vesicle completion, although the exact timing 
and mechanism of its release remain to be resolved. This figure is modified from Figure 3 of 
Yorimitsu and Klionsky (2005b). 

 

that forms a Cvt vesicle. The Cvt complex can be also sequestered within autophagsomes, 

depending on the nutrient conditions (Baba et al., 1997), but this still occurs through a 

selective process that involves Atg19. 

Atg11 subsequently associates with Atg19, acting like an adapter or tethering protein 

to bring the Cvt complex to the phagophore assembly site (PAS), a potential site for the 

formation of the Cvt vesicle and autophagosome. Several lines of evidence support the idea 

that Atg11 assembles with the Cvt complex before targeting to the PAS (Yorimitsu and 

Klionsky, 2005a). However, how Atg11 guides the Cvt complex to the PAS is still unclear. 

A C-terminal coiled-coil domain of Atg11 is critical for interaction with the C terminus of 

Atg19, whereas the N-terminal and/or central coiled-coil domains contain information 

necessary for the Cvt complex to be targeted to the PAS (Yorimitsu and Klionsky, 2005a). 

Besides Atg19, Atg11 has several other interacting partners, including Atg1, Atg9, Atg17, 

Atg20 and itself (Chang and Huang, 2007; He et al., 2006; Yorimitsu and Klionsky, 2005a). 

Atg9, the only characterized transmembrane protein that is required for sequestering 

vesicle formation, interacts with Atg11 independent of Atg1 or Atg19, suggesting that 

there are distinct and multiple populations of Atg11 within the cell. Atg11 
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homo-oligomerization may allow various Atg11 populations, along with its various 

interacting partners, to be delivered to the PAS (Yorimitsu and Klionsky, 2005a). A point 

mutation (H192L) in Atg9 disrupts the interaction with Atg11, preventing movement of 

Atg9 to the PAS and blocking the Cvt pathway, but not bulk autophagy (He et al., 2006), in 

agreement with the finding that Atg11 is not required for non-specific autophagy (Kim et 

al., 2001). 

After the arrival of the Atg11-Atg19-cargo complex at the PAS, Atg19 interacts with 

Atg8—PE to allow the transfer of the Atg19-cargo complex to the forming Cvt vesicle (or 

autophagosome); interaction between these two proteins may ensure the incorporation of 

the Cvt complex into the Cvt vesicle (Shintani et al., 2002). Unlike most receptors that 

recycle between donor and acceptor membranes, Atg19 is delivered into the vacuole 

together with the cargo proteins and degraded there. The scaffold protein Atg11, however, 

does not appear to remain associated with the Cvt complex; rather it is thought to be 

released from Atg19 after delivery to the PAS and dissociate from the complex before 

vesicle formation (Kim et al., 2001). It remains unknown whether there is a role for Atg11 

during the process of Cvt vesicle completion, and the exact timing and mechanism of its 

release remains to be resolved. However, disassembly of the homo-oligomerized Atg11 

requires the Atg1-Atg13-Atg17 kinase complex (Yorimitsu and Klionsky, 2005a). 

Increasing evidence indicates that selective autophagy also occurs in mammals. For 

example, the p62/SQSTM1/sequestosome protein preferentially recognizes 

polyubiquitinated protein aggregates and connects these with the autophagic machinery 

through interaction with the Atg8 mammalian homolog, LC3 (Bjorkoy et al., 2005; 

Komatsu et al., 2007b). Thus, p62 could function as a receptor protein similar to Atg19 to 
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link polyubiquitinated proteins to autophagosomes. Another recent example of selective 

autophagy is seen with the clearance of mitochondria and ribosomes during reticulocyte 

maturation (Kundu et al., 2008). In this case, Ulk1 plays a critical role in selective 

autophagy, but is not essential for the induction of starvation-induced bulk autophagy. 

Selectivity is also seen with the degradation of peroxisomes in mammalian cells (Iwata et 

al., 2006). Finally, some pathogens are selectively targeted by autophagy, such as 

Mycobacterium tuberculosis and Streptococcus pyogenes (Gutierrez et al., 2004; 

Nakagawa et al., 2004). It is important to note, however, that other microbes including 

bacteria and viruses regulate autophagy for their own survival (Nakagawa et al., 2004; 

Ogawa et al., 2005; Orvedahl and Levine, 2008). Shigella, an invasive bacteria, is able to 

escape autophagy by secreting IcsB on the bacterial surface. The IcsB protein interacts 

with VirG, which prevents the latter from binding Atg5 and triggering specific autophagic 

sequestration (Ogawa et al., 2005). 
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Phosphatidylinositol 3-kinase Complex 

The class III phosphatidylinositol 3-kinase (PtdIns3K) is known to participate in 

various membrane trafficking events. Vps34 is the only PtdIns3K in yeast, and it forms at 

least two distinct complexes, complex I and II (Figure 1.5). Each complex contains three 

common components, Vps34, Vps15 and Vps30/Atg6 (Kihara et al., 2001). The function 

of Vps34 is dependent on a serine/threonine kinase, Vps15, which is required for Vps34 

membrane association and activity (Stack et al., 1995). The role of Vps30/Atg6 within 

these PtdIns3K complexes is not well understood. These three common proteins are 

involved in both autophagy, the Cvt pathway and the sorting of carboxypeptidase Y (CPY), 

which is normally transported from the late Golgi to the vacuole through the CPY pathway. 

In addition, each complex contains another specific component, Atg14 (complex I) or 

Vps38 (complex II), which is thought to act as a connector between Vps30 and 

Vps15-Vps34. The region containing the coiled-coil domain I and II within N terminal half 

of Atg14 is responsible for the interaction between Vps34 and Vps30/Atg6. Loss of Atg14 

disrupts complex I and causes a defect only in autophagy and the Cvt pathway, whereas 

Vps38 deletion disrupts complex II and blocks only the CPY pathway. The association of 

Atg14 or Vps38 confers functional specificity on the two PtdIns3K complexes by targeting 

Vps34 to distinct compartments, thus regulating different protein trafficking events. 

Vps15-Vps34 complexed with Vps30 and Atg14 localizes to the PAS, functioning in 

autophagy and the Cvt pathway; Vps15-Vps34 complexed with Vps30 and Vps38 

localizes to endosomes, and functions in the CPY pathway (Obara et al., 2006). 

PtdIns3K is a lipid kinase and the kinase activity of Vps34 is essential for autophagy 

and the Cvt pathway. One possible role of PtdIns3K is to produce PtdIns(3)P at the PAS to  
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Figure 1.5. Two phosphatidylinositol 3-kinase (PtdIns3K) complexes in yeast. Each complex 
contains three common components, Vps15, Vps34 and Vps30/Atg6. Vps34 is the PtdIns3K 
enzyme, and Vps15 is thought to be a regulatory component; the function of Vps30/Atg6 is not 
known. In addition, each complex contains another specific component, Atg14 (complex I) or 
Vps38 (complex II), which is thought to act as a connector between Vps30 and Vps15-Vps34. 
Complex I functions in autophagy and the Cvt pathway, whereas complex II acts in the Vps 
pathway, including the CPY and MVB pathways. This figure is modified from Figure 5a of 
Yorimitsu and Klionsky (2005b). 

 

recruit PtdIns(3)P-binding proteins, which in turn recruit additional downstream effectors 

to the PAS. PtdIns(3)P is bound by proteins that have specific binding sites, such as the PX 

(phox-homology) domain and the FYVE (for conserved in Fab1, YOTB, Vac1 and EEA1) 

zinc finger domain (Ellson et al., 2002; Stenmark et al., 2002). Two PX domain-containing 

proteins, Atg20 and Atg24, bind to PtdIns(3)P (Nice et al., 2002). These proteins are 

essential only for the Cvt pathway, not bulk autophagy. Their functional PX domains are 

necessary for membrane localization to the PAS and the endosome, which in turn depend 

on PtdIns3K complex I and complex II, respectively. The role of endosomal localization is 

unknown since the CPY pathway is normal in the absence of Atg20 or Atg24; however, the 

endosomal localization is not necessary for Cvt transport. Atg20 and Atg24 interact with 
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each other, and Atg24 and possibly Atg20 interact with Atg17 (Nice et al., 2002). In 

addition, Atg20 interacts with Atg11 (Yorimitsu and Klionsky, 2005a). Thus, the 

Atg20-Atg24 complex might be part of the Atg1 kinase complex. Atg18 and Atg21 are also 

PtdIns(3)P-binding proteins, although neither of them contain known 

phosphoinositide-binding domains. Both proteins are recruited to the PAS in a manner 

dependent on PtdIns3K complex I (Guan et al., 2001; Stromhaug et al., 2004). Atg18 is 

needed for the correct movement of Atg9, but the function of Atg21 is not known. 

In contrast to yeast, there are two types of PtdIns3K in mammalian cells: class I and 

class III PtdIns3K. Mammalian class III PtdIns3K, hVps34—similar to yeast 

Vps34—generates PtdIns(3)P, and plays a stimulatory role in autophagy (Figure 3C). It 

forms a complex with its regulator, p150, the homologue of Vps15, and its accessory 

protein Beclin 1, the homolog of Vps30/Atg6 (Liang et al., 1999; Panaretou et al., 1997). 

Class I PtdIns3K uses PtdIns(4,5)P2 as substrate to yield PtdIns(3,4,5)P3. It functions at the 

plasma membrane, and acts through an insulin signaling cascade to activate mTOR and 

PKB, hence it has an inhibitory role on autophagy (Jacinto and Hall, 2003). A major 

pathway by which amino acids control mTor is not mediated through class I PtdIns3K, but 

instead through activation of the class III PtdIns3K, hVps34 (Nobukuni et al., 2005). Thus, 

hVps34 might also have an inhibitory effect on autophagy in mammalian cells. The 

specific function of PtdIns(3)P in mammalian cells has not yet been clarified, but it could 

function similar to that in yeast. Moreover, the effectors of PtdIns(3)P are also not clear. 

Atg20 and Atg24 do not have mammalian homologs. Atg18 has a human homolog and 

binds to PtdIns(3)P, but its role in autophagy has not yet been elucidated (Jeffries et al., 

2004). 
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Two Ubiquitin-like Protein Conjugation Systems 

There are two protein conjugation systems that function in selective and non-selective 

autophagy, and they include the ubiquitin-like proteins Atg12 and Atg8 (Figure 1.6) 

(Ohsumi, 2001). Both conjugation systems are evolutionarily conserved from yeast to 

humans. Although Atg12 and Atg8 do not have apparent sequence homology with 

ubiquitin, each of them contains a ubiquitin-fold at the C terminus, based on the crystal 

structures of Atg12 and Atg8 homologs from plants and mammals, respectively (Paz et al., 

2000; Suzuki et al., 2005). 

Atg12 is covalently attached to Atg5 through an isopeptide bond between a 

C-terminal glycine of Atg12 and an internal lysine residue of Atg5. The conjugation 

reaction is catalyzed by two additional proteins, Atg7 and Atg10 (Mizushima et al., 1998a). 

Atg7 is homologous to the E1 ubiquitin-activating enzyme, Uba1, in the ATP-binding 

region and the active cysteine residue, but not in terms of its overall structure (Tanida et al., 

1999). Atg10 functions as an E2 ubiquitin-conjugating enzyme although Atg10 shows no 

homology to the E2 enzymes that participate in the ubiquitin system (Shintani et al., 1999). 

As occurs during ubiquitination, Atg7 hydrolyzes ATP resulting in the activation of Atg12 

via the formation of a high-energy thioester bond between the C-terminal glycine of Atg12 

and the active cysteine 507 of Atg7; subsequently, the activated Atg12 is directly 

transferred to the active cysteine 133 of Atg10 to form an Atg12-Atg10 thioester; finally, 

Atg12 is transferred to the target protein Atg5 to form the final conjugate. Atg5 is further 

bound noncovalently to another coiled-coil protein, Atg16, to form an 

Atg12—Atg5-Atg16 multimeric structure through homo-oligomerization of Atg16. This 

multimer has a molecular mass of approximately 350 kDa in yeast, which is predicted to  
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Figure 1.6. Two ubiquitin-like protein conjugation systems. The conjugation of Atg12 to Atg5 
starts with activation by Atg7, which is homologous to the E1 ubiquitin-activating enzyme. Atg7 
hydrolyzes ATP, resulting in the activation of Atg12 via the formation of a thioester bond between 
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the C-terminal glycine of Atg12 and the active site cysteine of Atg7; subsequently, the activated 
Atg12 is transferred to the active site cysteine of Atg10, an E2-like enzyme, which catalyzes the 
conjugation of Atg12 to Atg5 through the formation of an isopeptide bond between the activated 
glycine of Atg12 and an internal lysine residue of Atg5. Atg12—Atg5 is finally assembled with 
Atg16.  Atg16 forms a tetramer to allow the formation of an Atg12—Atg5-Atg16 multimeric 
structure. The conjugation of Atg8—PE starts with the cleavage of the C-terminal arginine of Atg8 
by the protease Atg4. The exposed glycine of Atg8 is then bound to the active site cysteine of the 
same E1-like enzyme, Atg7. The activated Atg8 is then transferred to another E2-like enzyme, 
Atg3. Eventually, Atg3 catalyzes the conjugation of Atg8 to form Atg8—PE. The Atg12—Atg5 
conjugate might function as an E3, ubiquitin ligase-like enzyme, to promote Atg8—PE conjugation. 
Both the Atg12—Atg5-Atg16 complex and Atg8—PE localize to the PAS to facilitate vesicle 
formation. The Atg8—PE that resides on the outer face of the sequestering vesicle is released from 
the membrane by a second Atg4-dependent cleavage. This figure is modified from Figure 4 of 
Yorimitsu and Klionsky (2005b). 

 

represent a tetramer of the Atg12—Atg5-Atg16 complex, which it is functionally essential 

for autophagy (Kuma et al., 2002). The Atg16 complex has recently been shown to specify 

the site of LC3 lipidation for membrane biogenesis in mammalian autophagy (Fujita et al., 

2008). 

A second ubiquitin-like protein, Atg8, is conjugated to a membrane lipid, 

phosphatidylethanolamine (PE) (Ichimura et al., 2000). The C-terminal arginine 117 

residue of newly synthesized Atg8 is initially proteolytically cleaved by a cysteine protease, 

Atg4, exposing a glycine (Kirisako et al., 2000). The glycine is then bound to the active 

cysteine 507 of Atg7, the same E1-like enzyme used in the Atg12—Atg5 conjugation 

system. The activated Atg8 is then transferred to another E2-like enzyme, Atg3, at the 

active cysteine 234 residue via a thioester bond. The region around cysteine 234 of Atg3 

shows partial homology to the corresponding region surrounding cysteine 133 of Atg10. 

Eventually, Atg8 is conjugated to PE through an amide bond between the C-terminal 
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glycine and the amino group of PE. Atg8—PE is tightly associated with membranes as an 

integral membrane protein. An in vitro reconstitution of the Atg8—PE conjugation process, 

using purified Atg7, Atg3 and Atg8∆R (Atg8 lacking the last arginine residue), 

demonstrates that Atg7 and Atg3 are minimal catalysts (Ichimura et al., 2004). Unlike the 

Atg12—Atg5 conjugate, Atg8—PE conjugation is a reversible process in which Atg4 

liberates Atg8 from its target lipid. The liberated Atg8 is recycled and used in another 

conjugation reaction to allow efficient progression of autophagy and the Cvt pathway 

(Kirisako et al., 2000). 

Both the Atg12 and Atg8 conjugation systems are evolutionarily conserved. The 

mammalian homologs for each component of the yeast Atg12—Atg5 conjugation systems 

(Atg5, Atg7, Atg10 and Atg12) have been characterized, and they function in a similar 

manner as their counterparts in yeast (Mizushima et al., 1998b; Mizushima et al., 2002; 

Tanida et al., 1999). There is also a mammalian Atg16-like protein, Atg16L, which forms 

an approximately 800 kDa protein complex with the Atg12—Atg5 conjugate, again 

mediated by the homo-oligomerization of Atg16L (Mizushima et al., 2003). There are at 

least four mammalian Atg8 homologs, MAP1LC3, GATE16, GABARAP and Atg8L. All 

proteins possess a conserved glycine residue near their C terminus, and are conjugated to 

PE in the same manner as occurs in yeast via the catalysts Atg4, Atg7 and Atg3 (Hemelaar 

et al., 2003; Kabeya et al., 2000; Kabeya et al., 2004; Tanida et al., 2003; Tanida et al., 2006; 

Tanida et al., 2002). Among them, LC3 is most abundant in autophagosomal membranes 

and is well established as a marker to monitor the autophagosome and autophagic activity.  

During autophagosome formation, both the Atg12—Atg5-Atg16 complex and the 

Atg8—PE conjugate localize at the PAS (Kim et al., 2002; Suzuki et al., 2001). Electron 
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microscopy analysis clearly shows that these two conjugates decorate the expanding 

phagophore (Kabeya et al., 2000; Kirisako et al., 1999; Mizushima et al., 2003; Mizushima 

et al., 2001). The Atg12—Atg5-Atg16 complex is mainly localized on the outer side of the 

phagophore and released into the cytosol before or after autophagosome completion. These 

observations suggest that the Atg12—Atg5-Atg16 complex might serve as a coat 

component to drive the expansion and/or curvature of the membrane leaflet during 

autophagosome formation. Recent data, however, indicate that the Atg12—Atg5 conjugate 

might function as an E3, ubiquitin ligase, for Atg8—PE conjugation (Figure 1.6), although 

it is not essential for the latter process to occur (Hanada et al., 2007). In contrast, Atg8—PE 

displays an apparently symmetrical distribution on both sides of the phagophore. The 

Atg8—PE that resides on the surface that becomes the outer face of the sequestering 

vesicle is released from the membrane by a second Atg4-dependent cleavage, whereas the 

inner population remains inside the vesicle and is delivered into the vacuole/lysosome 

where it is degraded (Huang et al., 2000; Kabeya et al., 2000; Kirisako et al., 1999). 

Accordingly, Atg8—PE is another scaffold candidate to drive membrane expansion and 

vesicle completion. Upon autophagy induction, Atg8 protein levels increase and this is 

needed to accommodate the larger-sized autophagosome relative to the Cvt vesicle. A 

quantitative correlation between the amount of Atg8 and the size of the sequestering 

vesicle has recently been determined (Xie et al., 2008). Atg8 is also suggested to act during 

the expansion of the autophagosomal membrane by mediating membrane tethering and 

hemifusion (Nakatogawa et al., 2007), although the physiological significance of this 

activity is not yet known. 
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Atg9 and Its Cycling Systems  

One of the intriguing questions concerning autophagy is the source of the lipid that is 

used for autophagosome formation and the mechanism used for lipid movement to the site 

of autophagosome assembly. Atg9 is an integral membrane protein and is thought to be a 

“membrane carrier” during the assembly process (He et al., 2006; Noda et al., 2000). 

Unlike most other Atg proteins, which display primarily a single punctate localization at 

the PAS, Atg9 localizes to multiple punctate structures, including the PAS (Reggiori et al., 

2005b; Reggiori et al., 2004a). The cycling of Atg9 between the PAS and the non-PAS 

punctate structures is essential for autophagosome formation. Potentially, membrane could 

be delivered to the PAS through this shuttling process. In yeast, several Atg9 non-PAS 

puncta are found to localize adjacent to or at the surface of mitochondria (Reggiori et al., 

2005b). It is still unclear, however, whether Atg9 is an integral component of the 

mitochondrial outer membrane or the membrane component of an organelle or other 

structure associated with mitochondria. Moreover, a population of the Atg9 peripheral pool 

does not co-localize with either the PAS or mitochondria, but rather is dispersed throughout 

the cytosol. This portion of Atg9 is thought to be associated with membranes in the process 

of trafficking between the PAS and the membrane donor sites. 

The anterograde movement of Atg9 to the PAS involves several Atg proteins (Figure 

1.7). In the absence of Atg11, the transport of Atg9 to the PAS is blocked (He et al., 2006; 

Shintani and Klionsky, 2004b). The efficient anterograde movement of Atg9 to the PAS 

also involves Atg23 and Atg27, which form a cycling unit with Atg9 (Legakis et al., 2007; 

Yen et al., 2007). Atg23 is a peripheral membrane protein, whereas Atg27 is a type I 

transmembrane protein. Both of these proteins are required for the Cvt pathway and  
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Figure 1.7. Cycling of Atg9. In yeast, Atg9 cycles between the PAS and non-PAS punctate 
structures (peripheral sites), some of which are found to localize adjacent to or at the surface of 
mitochondria. The efficient anterograde movement of Atg9 to the PAS requires Atg11, Atg23, 
Atg27, and the actin cytoskeletion. Atg9, Atg23 and Atg27 are in a heterotrimeric complex, and 
their movement to the PAS is interdependent. Atg11 acts as a potential adaptor between Atg9 and 
actin, and between Atg9 and the Arp2/3 complex, while the latter may provide the force to push the 
cargo (Atg9 and its associated membrane) away from the peripheral sites and toward the PAS. The 
retrograde transport of Atg9 from the PAS back to the peripheral sites depends on the Atg1—Atg13 
kinase complex, Atg2, Atg18 and the PtdIns3K complex I. The Atg1—Atg13 complex promotes 
the association of Atg2 and the PtdIns(3)P binding protein Atg18 with Atg9, and the formation of 
this ternary complex initiates Atg9 retrieval for another round of membrane delivery. 
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efficient autophagy. Similar to Atg9, they localize to the PAS and several other punctate 

structures. Current evidence suggests that Atg9, Atg23 and Atg27 are in a heterotrimeric 

complex, and travel together to the PAS. Based on fluorescence microscopy, the antergrade 

transport of these three proteins is found to be largely interdependent. In the absence of 

Atg23 or Atg27, Atg9 is at multiple punctate sites other than the PAS, whereas Atg23 is 

dispersed throughout the cytosol without either Atg9 or Atg27. 

The actin cytoskeleton also participates in Atg9 anterograde movement (He et al., 

2006). Disruption of the actin cytoskeleton prevents correct targeting of Atg9 to the PAS. 

Moreover, an actin-related protein, Arp2, interacts with Atg9 and directly regulates the 

dynamics of Atg9 PAS targeting (Monastyrska et al., 2008). Arp2 is one subunit of the 

Arp2/3 complex, the nucleation factor of branched actin filaments. Thus, one model is that 

Atg11 acts as an adaptor between the cargo (Atg9 and actin), while the Arp2/3 complex 

provides the force to push the cargo (Atg9 and its associated membrane) away from the 

membrane donor and toward the forming autophagosome (He et al., 2006; Monastyrska et 

al., 2008; Monastyrska et al., 2006). 

The retrieval of Atg9 from the PAS back to the peripheral, non-PAS sites depends on 

the Atg1-Atg13 kinase complex, Atg2, Atg18 and the PtdIns3K complex I (Figure 1.7); the 

absence of any of these proteins results in the accumulation of Atg9 at the PAS (Reggiori et 

al., 2004a). Similarly, the retrieval of Atg23 and Atg27 requires the Atg1-Atg13 complex; 

however, only Atg23 retrieval needs a high level of Atg1 kinase activity (Legakis et al., 

2007; Yen et al., 2007). Atg2 and Atg18 are two interacting peripheral membrane proteins 

(Suzuki et al., 2007). They can both interact with Atg9, and the interaction of Atg18 with 

Atg9 requires Atg2 and Atg1 (Reggiori et al., 2004a; Wang et al., 2001a). The PAS 
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localization of Atg2 and Atg18 depends on each other, Atg1, Atg13, Atg9 and the 

PtdIns3K complex I. Atg18 can bind two phosphoinositides, PtdIns(3)P and PtdIns(3,5)P2, 

but only the former is essential for autophagy (Stromhaug et al., 2004). One model is that 

once the Atg1-Atg13 complex and Atg9 are recruited to the PAS separately, Atg1-Atg13 

promotes Atg9 interaction with Atg2 and Atg18, and the formation of this ternary complex 

allows Atg9 to be released for another round of membrane delivery (Reggiori et al., 

2004a).  

Recent studies on mammalian Atg9 (mAtg9) have revealed that mAtg9 resides in a 

juxtanuclear region corresponding to the trans-Golgi network (TGN) and late endosomes 

(Young et al., 2006). Starvation triggers the distribution of mAtg9 from the TGN to a 

dispersed peripheral endosomal pool, and knockdown of Ulk1, the mammalian ortholog of 

Atg1, restricts mAtg9 to the TGN. These observations lead to the idea that mAtg9 traffics 

between the TGN and late endosomes, and that, potentially, membranes are delivered from 

the TGN to the forming autophagosomes. 
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de novo Vesicle Formation 

Unlike most other intracellular trafficking processes, autophagy undergoes de novo 

formation of double-membrane vesicles. This is a de novo process in that the sequestering 

vesicles do not bud from a pre-existing organelle. Instead, these vesicles are thought to 

form by expansion of a membrane core of unknown origin, termed the phagophore 

(Mizushima et al., 2001; Noda et al., 2002; Seglen et al., 1990). Figure 1.8 shows a 

hypothetical model for de novo vesicle formation. The proposed site for vesicle formation 

is the phagophore assembly site (Kim et al., 2002; Suzuki et al., 2001). In yeast, the PAS is 

a perivacuolar site and is defined in part as the site where almost all of the Atg proteins 

reside, at least transiently (Suzuki et al., 2001). The PAS can be also defined as a hybrid of 

the phagophore and its associated Atg proteins (Xie and Klionsky, 2007). In mammalian 

cells, colocalization of the Atg proteins has also been observed, although a comprehensive 

study has been lacking (Yamada et al., 2005; Young et al., 2006). In these observations, 

cells lack a single specialized site for autophagosome formation that is similar to the yeast 

PAS, and instead display multiple sites of Atg protein colocalization, possibly 

corresponding to multiple PAS. 

Understanding the nature of the PAS is a key to studying this novel type of 

membrane-forming process. However, the PAS is poorly characterized. Although the role 

of the PAS is not fully understood, one model suggests that the PAS serves to facilitate the 

nucleation and/or expansion of the phagophore, the precursor of the autophagosome, 

through recruitment of Atg proteins (Mizushima et al., 2001; Suzuki et al., 2007). In 

addition, membrane has to be delivered to the phagophore; although the origin of this 

membrane is also not clear, it appears to include the early secretory pathway and, in yeast,  
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Figure 1.8. Schematic depiction of double-membrane vesicle formation. The PAS serves to 
facilitate the nucleation and/or expansion of the phagophore, the precursor of the autophagosome, 
through recruitment of Atg proteins. Atg9 and the PtdIns3K complex I are recruited relatively early 
to the PAS, and act in membrane nucleation. Atg9 cycles between peripheral sites and the PAS; 
potentially, Atg9 cycling delivers lipids to the expanding membrane. The Atg12—Atg5-Atg16 
complex and the Atg8—PE conjugate, components of the vesicle-forming machinery, are 
subsequently recruited to the PAS, and mediate the expansion of the sequestering vesicle. The 
Atg12—Atg5-Atg16 complex may in part behave like a coat or may function as an E3 ubiquitin 
ligase-like enzyme, whereas Atg8—PE acts in the elongation of the vesicle as a structural 
component. Before or immediately after the autophagosome is completed, most of the Atg 
components, including the putative coat proteins, dissociate from the vesicle; the portion of 
Atg8—PE on the outer surface of the vesicle is normally cleaved off by the Atg4 protease. Finally, 
the sequestering vesicle can fuse with the vacuole. 
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the mitochondria (Reggiori et al., 2005b; Reggiori et al., 2004b).  

A recent systematic analysis demonstrated that the Atg proteins depend on each other 

for PAS recruitment (Cheong et al., 2008; Kawamata et al., 2008; Suzuki et al., 2007). In 

particular, Atg11 and Atg17 act as scaffold proteins for PAS assembly, meaning they may 

be the initial factors responsible for subsequent recruitment of the remaining Atg proteins. 

Atg11 is essential for PAS organization under vegetative conditions, whereas Atg17 (and 

associated proteins) plays a critical role during starvation. In cells lacking both Atg11 and 

Atg17, there is a complete absence of PAS localization of other Atg proteins. 

Starvation-induced PAS assembly, however, requires more than Atg17. In addition to the 

Atg1—Atg13—Atg17 ternary complex, Atg17 also interacts with two autophagy-specific 

proteins, Atg29 and Atg31 (Kawamata et al., 2008). Cells lacking Atg11 and any of the 

components in the Atg17 complex display essentially the same phenotype as the 

atg11∆ atg17∆ double mutant, suggesting these two complexes function as a 

PAS-organization center to induce the ordered recruitment of Atg proteins (Cheong et al., 

2008; Kawamata et al., 2008). Although Atg1 kinase activity is not essential for PAS 

recruitment of other Atg proteins, it might play a role in disassembly of the PAS or the 

dissociation of Atg proteins from the PAS. A dynamic process of Atg protein cycling is 

thought to be critical for proper autophagosome expansion (Cheong et al., 2008). This 

concept fits with the idea that Atg1 kinase activity is related to the size of the sequestering 

vesicle (Noda et al., 2002). 

Among the remaining Atg proteins, Atg9 is recruited relatively early to the PAS, and 

this also requires the function of the PtdIns3K complex I. Atg9 and the PtdIns3K complex 

I may play some role in membrane nucleation and facilitating the subsequent recruitment 
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of certain Atg components, including the Atg12—Atg5-Atg16 complex and the Atg8—PE 

conjugate. In their absence, these two conjugates can be formed, but they become 

completely diffuse in the cytosol without any punctate localization. The PAS localization 

of Atg8—PE depends on the Atg12—Atg5-Atg16 complex (Suzuki et al., 2001). 

As mentioned above, before or immediately after the autophagosome is completed, 

most of the Atg components dissociate from the vesicle. The sequestering vesicle must be 

completed before fusion with the vacuole. The Atg12—Atg5-Atg16 complex may in part 

behave like a coat to prevent premature fusion; the portion of Atg8—PE on the outer 

surface of the vesicle might also play such a role. Atg8—PE is normally cleaved off by the 

Atg4 protease prior to vesicle fusion. Furthermore, there may be certain unknown factors 

that can sense the completion of the double-membrane vesicle and trigger the disassembly 

of the vesicle-forming machinery. Atg1 is one possible candidate, because it functions at 

later stages in the vesicle-forming process, such as Atg9 retrieval and Atg11 release from 

the PAS, and its kinase activity has been also suggested to play a role in the disassembly of 

the PAS or the dissociation of Atg proteins from the PAS (Cheong et al., 2008; Reggiori et 

al., 2004a; Yorimitsu and Klionsky, 2005a). 
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Vesicle Docking and Fusion with the Vacuole 

Once the double-membrane vesicle is formed, it is targeted to the vacuole for the 

fusion process. Molecular genetic studies have indicated that the machinery involved in 

homotypic vacuole fusion is also essential for the fusion of autophagosomes and Cvt 

vesicles with the vacuole (Figure 1.9). This machinery includes the SNARE proteins Vam3, 

Vam7, Vti1 and Ykt6, the NSF Sec18, the α-SNAP Sec17, the Rab GTPase Ypt7 and the 

class C Vps/HOPS complex; the two recently characterized proteins, Mon1 and Ccz1, are 

also part of the fusion machinery (Klionsky, 2005; Wang and Klionsky, 2003). Mon1 and 

Ccz1 form a complex, and are critical for the Ypt7-dependent tethering/docking stage 

leading to the subsequent formation of the SNARE complex (Wang et al., 2003). The class 

C Vps/HOPS complex functions in concert with Ypt7 during the tethering/docking stage 

(Wang and Klionsky, 2003). After fusion, the autophagosome inner single-membrane 

vesicle is released inside the vacuole lumen, which is termed the autophagic body. 

In mammalian cells, maturation of autophagosomes includes several fusion events 

with vesicles originating from early and late endosomes, as well as lysosomes. Fusion with 

endosomes to become amphisomes allows convergence of the endocytic and autophagic 

pathways; subsequent fusion of autophagosomes or amphisomes with lysosomes generates 

autolysosomes (Berg et al., 1998; Tooze et al., 1990). In some cases where it is not possible 

to distinguish the precise nature of the compartment, the term “autophagic vacuoles” is 

used to cover all three autophagic structures: autophagosomes, amphisomes and 

autolysosomes. Mammalian Vtilb is involved in the fusion of autophagsomes with 

multivesicular endosomes (Atlashkin et al., 2003), and the Rab GTPase Rab7 plays a role 

in the fusion with lysosomes (Jager et al., 2004). 
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Figure 1.9. Vesicle docking and fusion with the vacuole. The SNARE proteins Vam3, Vam7, 
Vti1 and Ykt6, function in various membrane fusion events, including the process of 
autophagosome fusion with the vacuole. Also shown is the Mon1—Ccz1 complex and the class C 
Vps/HPOS complex, which function in concert at the Ypt7-dependent tethering/docking stage. This 
figure is modified from Figure 7 of Klionsky (2005). 
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Vesicle Breakdown and Recycling of the Resulting Macromolecules 

Upon release into the vacuole, the single-membrane subvacuolar vesicle, the 

autophagic or Cvt body, is broken down inside the vacuolar lumen. This process depends 

on proper vacuole function (including vacuolar acidification) and the activity of vacuolar 

resident hydrolases (including Pep4 and Prb1). In addition to these factors, Atg15, a 

putative lipase, is also implicated at this step and seems likely to function directly in the 

intravacuolar lysis of the autophagic/Cvt body (Epple et al., 2001; Teter et al., 2001). 

Atg15 contains a lipase active-site motif, and mutations in the corresponding active site 

eliminate its function. Atg15 is targeted to the vacuolar lumen via the multivesicular body 

(MVB) pathway (Epple et al., 2003). Atg15 seems to function as a general lipase because it 

is also involved in the disintegration of intravacuolar MVB vesicles. 

The main purpose of autophagy is to degrade cytoplasm and recycle the resulting 

macromolecules for the synthesis of essential components to overcome various stress 

conditions. Accordingly, the resulting macromolecules must be released back to the 

cytosol for reuse; however, little is known about this process. Atg22, a putative amino acid 

effluxer on the vacuolar membrane, has been found to play such role in mediating the 

efflux of leucine, and other amino acids resulting from autophagic degradation (Yang et al., 

2006). In addition, Avt3 and Avt4 seem to be part of the same family of permeases 

(Russnak et al., 2001). Upon elimination of all three partially redundant vacuolar effluxers, 

cells rapidly lose viability under starvation conditions, whereas supplementation with 

leucine partially restores viability. Although a mammalian homolog of Atg22 has not been 

identified, homologs of Avt3 and Avt4 have been characterized as SLC36A1/LYAAT-1 

(lysosomal amino acid transporter 1) (Sagne et al., 2001), and SLC36A4/LYAAT-2, 
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respectively. How autophagy contributes to the recycling of other macromolecules, such as 

carbonhydrate or lipids, remains unknown. 



 

 42

Conclusion 

As a conserved cellular degradative pathway in eukaryotes, autophagy protects cells 

during various types of stress. Defects in autophagy have been linked to human diseases, 

indicating its crucial physiological significance. Autophagy involves dynamic membrane 

rearrangement for sequestration of cytoplasm and its delivery into the vacuole/lysosome. 

Significant breakthroughs in understanding the molecular mechanism of autophagy have 

been achieved from studies in yeast and other model systems. Currently, analyses of 

autophagy, pexophagy and the Cvt pathway in fungi have identified 31 ATG genes, 

corresponding to the unique molecular machinery that drives these pathways. However, the 

fundamental biochemical questions that concern the functions of Atg proteins still need to 

be resolved, especially those related to sequestering vesicle formation, such as the ordered 

vesicle assembly process and the origin of the lipid membrane. In addition, as more 

examples of selective types of autophagy emerge, continued studies on the specific nature 

of autophagy are becoming increasingly important. Yeast remains a powerful system to 

address these questions. Further studies of autophagy-related pathways will facilitate our 

understanding of the molecular mechanism and regulation of these pathways, and may 

allow the practical use of autophagy for therapeutic purposes. 
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CHAPTER 2 

Mammalian autophagy: core molecular machinery and 
signaling regulation 

 

ABSTRACT 

Autophagy, or self-eating, is a cellular catabolic pathway that is evolutionarily 

conserved from yeast to mammals. Central to this process is the formation of the 

autophagosome, a double-membrane vesicle responsible for the delivery of long-lived 

proteins and excess or damaged organelle into the lysosome for degradation and reuse of 

the resulting macromolecules. In addition to the hallmark discovery of core molecular 

machinery components involved in autophagosome formation, complex signaling 

cascades controlling autophagy have also begun to emerge, with mTOR as a central but far 

from exclusive player. Malfunction of autophagy has been linked to a wide range of human 

pathologies, including cancer, neurodegeneration and pathogen infection. Here we 

highlight the recent advances in identifying and understanding the core molecular 

machinery and signaling pathways that are involved in mammalian autophagy. 
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INTRODUCTION 

Autophagy, literally meaning “self-eating”, embraces three major intracellular 

pathways in eukaryotic cells, macroautophagy, microautophagy and chaperone-mediated 

autophagy (CMA), which share a common destiny of lysosomal degradation, but are 

mechanistically different from one another (Klionsky, 2005; Massey et al., 2006). During 

macroautophagy, intact organelles (such as mitochondria) and portions of the cytosol are 

sequestered into a double-membrane vesicle, termed an autophagosome. Subsequently, the 

completed autophagosome matures by fusing with an endosome and/or lysosome, thereby 

forming an autolysosome. This latter step exposes the cargo to lysosomal hydrolases to 

allow its breakdown, and the resulting macromolecules are transported back into the 

cytosol through membrane permeases for reuse (Figure 2.1). By contrast, microautophagy 

involves the direct engulfment of cytoplasm at the lysosome surface, whereas CMA 

translocates unfolded, soluble proteins directly across the limiting membrane of the 

lysosome. 

In this review, we will focus on mammalian macroautophagy (hereafter referred to as 

autophagy), which plays important physiological roles in human health and disease. The 

basal, constitutive level of autophagy plays an important role in cellular homeostasis 

through the elimination of damaged/old organelles as well as the turnover of long-lived 

proteins and protein aggregates, and thus maintains quality control of essential cellular 

components. On the other hand, when cells encounter environmental stresses, such as 

nutrient starvation, hypoxia, oxidative stress, pathogen infection, radiation, or anticancer 

drug treatment, the level of autophagy can be dramatically augmented as a cytoprotective 

response, resulting in adaptation and survival; however, dysregulated or excessive 
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autophagy may lead to cell death. Thus, defective autophagy has been implicated in the 

pathogenesis of diverse diseases, such as certain types of neuronal degeneration and cancer, 

and also in aging (Mizushima et al., 2008). 

Although autophagy was first identified in mammalian cells approximately 50 years 

ago, our molecular understanding of it only started in the past decade, largely based on the 

discovery of autophagy-related (ATG) genes initially in yeast followed by the identification 

of homologs in higher eukaryotes (Yang and Klionsky, 2009). Among these Atg proteins, 

one subset is essential for autophagosome formation, and is referred to as the “core” 

molecular machinery (Xie and Klionsky, 2007). These core Atg proteins are composed of 

four subgroups: (1) The Atg1/unc-51-like kinase (ULK) complex; (2) two ubiquitn-like 

protein (Atg12 and Atg8/LC3) conjugation systems; (3) the class III phosphatidylinositol 

3-kinase (PtdIns3K)/Vps34 complex I; and (4) two transmembrane proteins, Atg9/mAtg9 

(and associated proteins involved in its movement such as Atg18/WIPI-1) and VMP1. The 

proposed site for autophagosome formation, to which most of the core Atg proteins are 

recruited, is termed the phagophore assembly site (PAS). 

In this review, we mainly highlight the recent advances in mammalian autophagy in 

terms of the molecular machinery involved in the formation and maturation of 

autophagosomes and the signaling cascades needed for the regulation of autophagy. The 

clarification of how autophagy is modulated in response to intracellular and extracellular 

stresses relies largely on the elucidation of the signaling network upstream of the Atg 

machinery. 
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Core molecular machinery 

ULK complexes 

The yeast serine/threonine kinase Atg1 plays a key role in the induction of autophagy, 

acting downstream of the target of rapamycin (TOR) complex 1 (TORC1). A family of 

mammalian Atg1 proteins has been identified; among these, unc-51-like kinase 1 (ULK1) 

and 2 have the highest similarity with yeast Atg1 and appear to be closely related. siRNA 

knockdown of ULK1 or ULK2 blocks autophagy in HEK293 cells (Jung et al., 2009). 

However, ULK1-/- mice display normal autophagy in response to nutrient deprivation, but 

delay mitochondrial clearance during reticulocyte maturation (Kundu et al., 2008). The 

basis for these differences is not known. It is possible that in some tissues, ULK2 can 

compensate for the deficiency of ULK1. Furthermore, a role of ULK3 in autophagy 

induction in oncogene-induced cell senescence has been described recently (Young et al., 

2009). Thus, at least three ULKs are involved in mammalian autophagy regulation and 

they have mechanistically different roles in vivo. 

Yeast Atg1 exists in a complex with Atg13 and Atg17. Atg13 is phosphorylated in a 

TORC1-dependent manner and the phosphorylation state of Atg13 modulates its binding to 

Atg1 and Atg17; inactivation of TORC1 leads to dephosphorylation of Atg13, increasing 

Atg1−Atg13−Atg17 complex formation and activating autophagy (Kamada et al., 2000; 

Yang and Klionsky, 2009). ULK1 and ULK2 are also in a large complex that includes the 

mammalian homolog of Atg13 (mAtg13) and the scaffold protein FIP200 (an ortholog of 

yeast Atg17) (Ganley et al., 2009; Hosokawa et al., 2009; Jung et al., 2009). mAtg13 is 

essential for autophagy, and it directly interacts with ULK1, ULK2 and FIP200 

independent of its phosphorylation state (Hosokawa et al., 2009; Jung et al., 2009). FIP200 
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is also required for autophagy and binds to ULK1 and ULK2 independent of nutrient status 

(Hara et al., 2008), in contrast to the yeast Atg1−Atg17 interaction. In addition, under 

nutrient-rich conditions, the large ULK1−Atg13−FIP200 complex contains mammalian 

TORC1 (mTORC1); conversely, following nutrient deprivation, mTORC1 is quickly 

dissociated from the ULK1 complex (Hosokawa et al., 2009). There are several 

phosphorylation events within this complex, including phosphorylation of mAtg13 by 

ULK1, ULK2, and mTORC1, phosphorylation of FIP200 by ULK1 and ULK2, and 

phosphorylation of ULK1 and ULK2 by mTORC1 (Figure 2.1) (Hosokawa et al., 2009; 

Jung et al., 2009). Under conditions that induce autophagy, a decrease in mTORC1 activity 

leads to dephosphorylation of ULK1, ULK2, and mAtg13, activation of ULK1 and ULK2, 

and phosphorylation of mAtg13 and FIP200 by ULK1 and ULK2 (Hosokawa et al., 2009; 

Jung et al., 2009). Further studies are required to characterize the functional significance of 

these phosphorylation events. Recently, a new, mAtg13-interacting protein, Atg101, was 

found to interact with ULK1 in a mAtg13-dependent manner, and is essential for 

autophagy (Mercer et al., 2009). However, the role of the ULK1−Atg13−Atg101 complex 

in autophagy regulation remains unclear. 

Two ubiquitin-like proteins, Atg12 and Atg8/LC3, and their conjugation systems 

Studies in yeast and mammals have identified two ubiquitin-like proteins, Atg12 and 

Atg8/LC3, and their respective, partially overlapping, conjugation systems, which are 

proposed to act during elongation and expansion of the phagophore membrane. Atg12 is 

conjugated to Atg5 in a reaction that requires Atg7 and Atg10 (E1 and E2-like enzymes, 

respectively). The Atg12–Atg5 conjugate then interacts non-covalently with Atg16L, 

which oligomerizes to form a large multimeric complex called the Atg16L complex. 
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Atg8/LC3 is cleaved at its C terminus by Atg4 to generate the cytosolic LC3-I with a 

C-terminal glycine residue, which is conjugated to phosphatidylethanolamine (PE) in a 

reaction that requires Atg7 and the E2-like enzyme Atg3. The lipidated form of LC3 

(LC3-II) is attached to both faces of the phagophore membrane, but is ultimately removed 

from the autophagosome outer membrane, which is followed by fusion of the 

autophagosome with a late endosome/lysosome (Yang and Klionsky, 2009). 

Recent work suggests that these two ubiquitination-like systems are closely connected. 

On the one hand, the Atg16L complex is localized to the phagophore and it can act as a 

novel E3-like enzyme, determining the sites of Atg8/LC3 lipidation (Fujita et al., 2008b; 

Hanada et al., 2007). On the other hand, the Atg8/LC3 conjugation machinery seems to be 

essential for the formation of the Atg16L complex. In Atg3-deficient mice, where no 

LC3-II can be detected, Atg12–Atg5 conjugation is markedly reduced, and dissociation of 

the Atg16L complex from the phagophore is delayed; autophagosomes are smaller than in 

the wild type and appear either open-ended or multi-lamellar (Sou et al., 2008), indicating a 

role for the Atg16L complex and LC3 lipidation for the elongation and closure of the 

phagophore. This hypothesis is futher supported by the observation that overexpression of 

an inactive mutant of Atg4 inhibits the lipidation of LC3, and in these cells a significant 

number of nearly complete autophagosomes are not closed (Fujita et al., 2008a). 

Class III phosphatidylinositol 3-kinase complex 

In yeast, the only phosphatidylinositol 3-kinase (PtdIns3K) is Vps34, and it exists in 

two different complexes, complex I and II. Complex I, consisting of Vps34, Vps15, Atg6, 

and Atg14, is required for the induction of autophagy, and the lipid kinase activity of 

Vps34 is essential for generating phosphatidylinositol (3)-phosphate (PtdIns(3)P) at the 
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PAS to allow the recruitment of other Atg proteins. Complex II, consisting of Vps34, 

Vps15, Atg6, and Vps38, is required for the vacuolar sorting of carboxypeptidase Y. In 

mammals, there are two types of PtdIns3K: class I and III. Formation of the mammalian 

class III PtdIns3K complex, including hVps34, Beclin 1 (a homolog of Atg6), and p150 (a 

homolog of Vps15), is conserved. The orthologs of Atg14 and Vps38 have recently been 

identified and are called Atg14-like protein (Atg14L, or Barkor) and ultraviolet irradiation 

resistant-associated gene (UVRAG), respectively (Itakura et al., 2008; Liang et al., 2006; 

Sun et al., 2008). 

Atg14L plays an important role in mammalian autophagy. Under nutrient-rich 

conditions, a subpopulation of Atg14L localizes to the ER; upon starvation, Atg14L 

localizes to Atg16L-positive and LC3-positive structures, indicating the phagophore and 

autophagosome, respectively, independently of the interaction of Atg14L with hVps34 and 

Beclin 1 (Itakura et al., 2008; Matsunaga et al., 2009). Importantly, depletion of Atg14L 

reduces Atg16L and LC3 puncta formation (Matsunaga et al., 2009). Overexpression of 

Atg14L stimulates the kinase activity of hVps34, and induces autophagy, whereas Atg14L 

knockdown reduces PtdIns(3)P production, and inhibits autophagy (Sun et al., 2008; 

Zhong et al., 2009). Thus, a possible role of Atg14L is to direct the class III PtdIns3K 

complex to the phagophore to initiate the recruitment of Atg machinery. 

Recent studies suggest that UVRAG participates in at least four different mechanisms 

to regulate autophagy. First, UVRAG competes with Atg14L for binding to Beclin 1; the 

interactions of Atg14L and UVRAG with the Beclin 1−hVps34−p150 complex are 

mutually exclusive (Itakura et al., 2008; Sun et al., 2008). Second, UVRAG interacts with 

Bif-1 (Bax-interacting factor 1); Bif-1 is required for autophagy and colocalizes with Atg5, 
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LC3, and mAtg9 during starvation (Takahashi et al., 2007). It is proposed that the 

recruitment of Bif-1 via UVRAG may provide the machinery to deform membranes, as 

Bif-1 has an N-BAR domain and shows membrane binding and bending activities 

(Takahashi et al., 2009). Third, UVRAG interacts with the class C Vps/HOPS proteins, 

promoting autophagosome fusion with the late endosome/lysosome, thereby accelerating 

delivery and degradation of autophagic cargo (Liang et al., 2008). Fourth, the recently 

identified Rubicon (RUN domain and cysteine-rich domain containing, Beclin 

1-interacting) protein forms a complex with UVRAG−Beclin 1−hVps34−p150; this 

complex localizes to the late endosome/lysosome and negatively regulates autophagosome 

maturation (Matsunaga et al., 2009; Zhong et al., 2009). Rubicon reduces hVps34 activity 

and inhibits autophagy. 

In addition to hVps34, Atg14L, and UVRAG, Beclin 1 also interacts with Ambra 1 

(activating molecule in Beclin 1-regulated autophagy). Ambra 1 functions as a positive 

regulator of autophagy and the mechanism remains unclear (Fimia et al., 2007). 

Collectively, there exist multiple mammalian hVps34−Beclin 1 complexes that may 

participate in distinct steps of autophagy regulation (Figure 2.1), either at the early stage to 

promote autophagosome formation or at the later stage to promote autophagosome 

maturation. 

Transmembrane proteins in mammalian autophagy 

Mammalian Atg9 (mAtg9) and vacuole membrane protein 1 (VMP1) are the two 

transmembrane proteins so far identified that are required for mammalian autophagy. 

mAtg9, with both the N and C termini in the cytosol, spans the membrane six times. It is 

located in the trans-Golgi network and late endosomes, and upon starvation or rapamycin 
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treatment, redistributes to peripheral sites, overlapping with GFP-LC3-positive 

autophagosomes. The cycling of mAtg9 after starvation is ULK1-dependent, and also 

requires the kinase activity of hVps34 (Young et al., 2006), which is similar to the yeast 

protein (Reggiori et al., 2004). Although its functions remain unclear, based on the existing 

data from yeast Atg9, mAtg9 potentially contributes to the delivery of membrane to the 

forming autophagosome, an attrative model that needs to be experimentally tested in 

mammalian cells. 

In contrast to mAtg9, VMP1 has no known homologs in yeast. The localization of 

VMP1 is controversial: in mammalian cells it is localized to the plasma membrane and also 

colocalizes with LC3 and Beclin 1 upon autophagy induction (Ropolo et al., 2007), 

whereas the VMP1 homolog in Dictyostelium discoideum localizes to the ER 

(Calvo-Garrido et al., 2008). In mammalian cells, ectopical overexpression of VMP1 

triggers autophagy even under nutrient-rich conditions, whereas depletion of VMP1 blocks 

starvation-induced and rapamycin-induced autophagy (Ropolo et al., 2007). Importantly, 

VMP1 interacts with Beclin 1, and this interaction is essential for autophagy induced by 

VMP1 overexpression (Ropolo et al., 2007). VMP1 might function as a transmembrane 

protein that recruits Beclin 1 and other components in the class III PtdIns3K complex to the 

phagophore. This is supported by a recent finding that a novel VMP1-interacting protein, 

TP53INP2 (tumor protein 53-induced nuclear protein 2), is essential for the translocation 

of Beclin 1 and LC3 to autophagosomes upon autophagy stimulation, potentially through 

its interaction with VMP1 (Nowak et al., 2009). TP53INP2 is essential for autophagy. It 

translocates from the nucleus to autophagosomes upon autophagy induction, where it 

interacts with LC3 as well as VMP1, but not Beclin 1. 
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Figure 2.1. Schematic depiction of the autophagy pathway and its core molecular machinery 
in mammalian cells. Mammalian autophagy proceeds through a series of steps, including 
initiation at the PAS (phagophore assembly site), elongation and expansion of the phagophore, 
closure and completion of the autophagosome, autophagosome maturation via docking and fusion 
with an endosome and/or lysosome, breakdown and degradation of the autophagosome inner 
membrane and cargo, and recycling of the resulting macromolecules. Regulatory components for 
autophagy induction include the ULK1 and ULK2 complexes that contain various Atg proteins 
(light blue box at left) that are required for autophagy. The association of mTORC1 with this 
complex and the activity of mTORC1 depend on the nutrient status. Under nutrient-rich conditions, 
mTORC1 is associated with the ULK1 and ULK2 complexes, and phosphorylates ULK1, ULK2, 
and mAtg13; upon inactivation of mTORC1 by nutrient starvation, mTORC1 disassociates, 
mAtg13, ULK1 and ULK2 are partially dephosphorylated, and activation of ULK1 and ULK2 
promotes phosphosphorylation of FIP200. There are at least three class III PtdIns3K complexes 
(light red box at right), that are involved in autophagosome formation or clearance. The Atg14L 
(Atg14L−Beclin 1−hVps34−p150) and UVRAG (UVRAG−Beclin 1−hVps34−p150) complexes 
are required for autophagy, whereas Rubicon complex (Rubicon−UVRAG−Beclin 
1−hVps34−p150) negatively regulates autophagy. Ambra1 and Bif-1 are essential for the induction 
of autophagy, through direct interaction with Beclin 1 and UVRAG, respectively; whereas Bcl-2 
binds to Beclin 1 and disrupts the Beclin 1-associated hVps34 complex, thereby inhibiting 
autophagy.    
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Signaling pathways regulating autophagy 

PtdIns3K-Akt-mTORC1 

The target of rapamycin (TOR) is a highly conserved serine/threonine protein kinase 

that acts as a central sensor of growth factors, nutrient signals, and engery status. TOR 

serves as a master regulator of autophagy (Codogno and Meijer, 2005). TOR exists in two 

distinct complexes, TORC1 and TORC2 that are conserved from yeast to mammals, and 

TORC1 has a primary function in regulating autophagy. In yeast, inhibiting the TORC1 

complex during nitrogen starvation or by rapamycin stimulates autophagy (Yang and 

Klionsky, 2009). The mammalian TORC1 (mTORC1) is also sensitive to rapamycin, 

which in many settings stimulates autophagy. However, a recent report challenged this 

view by showing that rapamycin and siRNA knockdown of one of the key downstream 

effectors of mTORC1, S6 kinase 1 (S6K1), inhibit autophagy in cancer cells (Zeng and 

Kinsella, 2008), and a more recent finding shows that mTORC1 regulates autophagy 

through an unknown mechanism that is essentially insensitive to rapamycin (Thoreen et al., 

2009). 

mTORC1 integrates upstream activating signals that inhibit autophagy through the 

class I PtdIns3K-protein kinase B (PKB, also known as Akt) pathway (Figure 2.2). Upon 

association with growth factor, receptor tyrosine kinases undergo autophosphorylation and 

become activated, leading to the stimulation of two key signal transducing components: the 

small GTPase Ras and class I PtdIns3K. Class I PtdIns3K catalyzes the production of 

PtdIns(3)P at the plasma membrane, which increases membrane recruitment of both PKB 

and its activator PDK1 (phosphoinositide-dependent protein kinase 1), leading to the 

activation of PKB. PtdIns3K kinase activity can be opposed by PTEN, a 
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3'-phosphoinositide phosphatase, subsequently decreasing PKB activity, and inhibiting 

mTOR. PtdIns3K-PKB activation suppresses autophagy in mammalian cells. PKB further 

activates mTORC1 through inhibiting a downstream protein complex, the tuberous 

sclerosis complex 1/2 (TSC1/TSC2). The TSC1/TSC2 heterodimer, which is a stable 

complex, senses the upstream inputs from various kinases, including PKB and ERK1/2 

(Inoki et al., 2002; Ma et al., 2005). Phosphorylation of TSC2 by PKB or ERK1/2 leads to 

the disruption of its complex with TSC1, and results in mTOR activation. TSC1/TSC2 acts 

as the GTPase-activating protein for Rheb, a small GTP-binding protein that binds to and 

activates mTOR in its GTP-bound form. Ras has opposing roles in autophagy regulation: it 

inhibits autophagy by activating the PtdIns3K-PKB-mTORC1 pathway, and at the same 

time, it may induce autophagy via the Raf-1-MEK1/2-ERK1/2 pathway (Furuta et al., 2004; 

Pattingre et al., 2003). Finally, the mTORC2 complex is also involved in autophagy 

regulation. Full activation of PKB requires mTORC2 (Sarbassov et al., 2005), and 

inhibition of PKB, caused by mTORC2 depletion, reduces the phosphorylation of, and 

therefore activates, the forkhead box O (FoxO3) transcription factor, which stimulates 

autophagy in muscle cells independent of the activity of mTORC1 (Mammucari et al., 

2007). 

AMPK 

The AMP-activated protein kinase (AMPK) is another sensor of cellular bioenergetics, 

specifically in response to energy stress. During nutrient and energy depletion, AMPK is 

activated by a decreased ATP/AMP ratio through the upstream LKB1 kinase (encoded by 

the Peutz-Jeghers syndrome gene). Active AMPK leads to phosphorylation and activation 

of TSC1/TSC2 and inhibition of mTORC1 activity. Thus, the phosphorylation of 
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TSC1/TSC2 by AMPK and PKB has opposite effects on mTORC1 and connects mTORC1 

with energy and growth factor signaling, respectively (Figure 2.2). Recently, it is reported 

that AMPK regulates mTORC1 signaling through an alternative mechanism, whereby 

AMPK directly phosphorylates Raptor, a subunit of mTORC1, and this Raptor 

phosphorylation is important for the inhibition of mTORC1 signaling by AMPK (Gwinn et 

al., 2008). Thus, AMPK serves as a positive regulator of autophagy. Under stress 

conditions, the LKB1-AMPK pathway phosphorylates and stabilizes p27kip1, a cell cycle 

inhibitor, and stabilized p27kip1 induces autophagy (Liang et al., 2007). An increase in the 

cytosolic free Ca2+ concentration and cytokines (such as TRAIL) activates AMPK via 

activation of the Ca2+/calmodulin-dependent kinase kinase-β (CaMKKβ) and transforming 

growth factor-β-activating kinase 1 (TAK1), respectively, and these pathways are required 

for Ca2+-induced or TRAIL-induced autophagy (Herrero-Martin et al., 2009; 

Hoyer-Hansen et al., 2007). Moreover, AMPK activity contributes to the induction of 

autophagy during hypoxia (Papandreou et al., 2008). 

p53 

The p53 tumor suppressor, the “guardian of the cellular genome”, has dual positive 

and negative regulatory roles in autophagy induction (Figure 2.2) (Levine and Abrams, 

2008). Upon genotoxic stress or oncogenic activation, the activation of p53 induces 

autophagy; p53 activates AMPK, which in turn, activates the TSC1/TSC2 complex, 

leading to the inhibition of the mTORC1 pathway (Feng et al., 2005). p53 can also induce 

autophagy through upregulation of the damage-regulated modulator of autophagy (DRAM) 

(Crighton et al., 2006). 

Remarkably, chemical inhibition of p53, knockdown of p53 with siRNA, or deletion 
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of the p53 gene can trigger the onset of autophagy (Tasdemir et al., 2008). Several stimuli, 

including starvation or ER stress, can induce HDM2-dependent proteasomal degradation 

of p53 to favor autophagy induction, positioning p53 as a negative regulator of autophagy. 

HDM2, the p53-specific E3 ubiquitin ligase, targets p53 to proteasome-mediated 

destruction. The inhibition of HDM2 blocks the depletion of p53 and also prevents the 

activation of autophagy (Tasdemir et al., 2008). More importantly, it is the cytoplasmic p53 

that exerts its inhibitory function towards autophagy, in contrast to the transcriptionally 

active nuclear p53 that promotes autophagy. Upon reintroduction into p53−/− cancer cells, 

mutants of p53 that are restricted to the cytosol effectively inhibit autophagy, whereas 

mutants of p53 that accumulate within the nucleus fail to block autophagy (Tasdemir et al., 

2008). The inhibitory role of cytoplasmic p53 in autophagy may contribute to the strong 

oncogenic action of certain p53 mutants that are preferentially localized to the cytosol 

(Morselli et al., 2008). 

Bcl-2 protein family 

In mammals, the Bcl-2 protein family plays a dual role in autophagy regulation. 

Anti-apoptotic proteins, such as Bcl-2, Bcl-XL, Bcl-w, and Mcl-1, can inhibit autophagy, 

whereas pro-apoptotic BH3-only proteins, such as BNIP3, Bad, Bik, Noxa, Puma, and 

BimEL, can induce autophagy (Levine et al., 2008). The binding of Bcl-2 to Beclin 1 

disrupts the association of Beclin 1 with hVps34, decreases Beclin 1-associated hVps34 

PtdIns3K activity and thereby inhibits autophagy. There are at least three distinct 

mechanisms that may account for the release of Beclin 1 from its inhibitory interaction 

with Bcl-2/Bcl-XL (Figure 2.2). One model depicts that the BH3 domain of BH3-only 

proteins such as Bad, may competitively disrupt the inhibitory interaction of Beclin 1 and 
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Bcl-2/Bcl-XL (Maiuri et al., 2007). A second mechanism for the dissociation of Beclin 1 

from its inhibitory interaction with Bcl-2 involves the phosphorylation of Bcl-2 by the 

stress-activated c-Jun N-terminal Kinase 1 (JNK1). Starvation induces the phosphorylation 

of Bcl-2 at residues T69, S70, and S87 of the non-structured loop; expression of a 

non-phosphorylatable Bcl-2 mutant (T69A, S70A, and S87A) or inhibition of JNK1 

abolishes the starvation-triggered dissociation of Bcl-2 from Beclin 1, and inhibits 

autophagy; expression of a constitutively active JNK1 results in constitutive Bcl-2 

multisite phosphorylation, dissociation of Bcl-2 from Beclin 1 and stimulation of 

autophagy (Wei et al., 2008). Third, a recent finding shows that the activation of Beclin 1 to 

induce autophagy involves the phosphorylation of Beclin 1 by the death-associated protein 

kinase (DAPK). DAPK physically interacts with Beclin 1, and phosphorylates Beclin 1 on 

Thr119 located at a crucial position within the BH3 domain of Beclin 1, and thus promotes 

the dissociation of Beclin 1 from its inhibitor, Bcl-XL, and autophagy induction (Zalckvar 

et al., 2009). 

 

Figure 2.2. Signaling cascades involved in the regulation of mammalian autophagy. 
Autophagy is regulated by a complex signaling network of various stimulatory (arrowheads) and 
inhibitory (bars) inputs. Activation of growth factor receptors stimulates the class I PtdIns3K 
complex and small GTPase Ras, which leads to activation of the PtdIns3K-PKB-mTORC1 
pathway and the Raf-1-MEK1/2-ERK1/2 pathway, respectively. PKB and ERK1/2 phosphorylates 
and inhibits the GTPase-activating protein complex TSC1/TSC2, leading to the stabilization of 
Rheb-GTPase, which, in turn, activates mTORC1, causing inhibition of autophagy. Activated 
ERK1/2 also stimulates autophagy. mTORC2 inhibits autophagy through the phosphorylation and 
activation of PKB. Metabolic stress, such as high AMP/ATP ratios resulting from energy depletion, 
or an increase in the cytosolic free Ca2+ concentration or cytokines, cause the AMP-activated 
protein kinase (AMPK) to be phosphorylated and activated by LKB1, CaMKKβ and TAK1, 
respectively. AMPK phosphorylates and activates TSC1/TSC2, leading to inactivation of 
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mTORC1 and autophagy induction. Genotoxic and oncogenic stresses result in nuclear p53 
stabilization and activation, which stimulates autophagy through activation of AMPK or 
upregulation of DRAM. In contrast, cytoplasmic p53 has an inhibitory effect on autophagy. 
Anti-apoptotic proteins, Bcl-2 or Bcl-XL, associate with Beclin 1 and inhibit the Beclin 
1-associated class III PtdIns3K complex, causing inhibition of autophagy. For additional details, 
see the main text.    
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Concluding remarks 

In the past decade there has been a tremendous advance in our understanding of the 

molecular machinery involved in mammalian autophagy. Nonetheless, many outstanding 

questions remain to be answered, including the mystery of the membrane source for 

autophagosome formation. By comparison, our knowledge about the signaling regulation 

of autophagy is relatively limited, in particular, with regard to the complex coordination 

between autophagy machinery and signaling inputs. As an intracellular self-destructive 

system, autophagy must be tightly regulated in order to adapt to different intracellular and 

extracellular stresses. This raises a fundamental question: How does the cell determine the 

specificity and magnitude of autophagy based on the inputs from a variety of signaling 

mechanisms? Mammalian autophagy has gained tremendous attention because of its 

implications in a wide range of physiological processes and diseases in humans. Our 

current understanding of this process and continued examination of its mechanism and 

regulation hold the potential for practical modulation of autophagy and its use as a 

therapeutic intervention. 
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CHAPTER 3 

Atg22 recycles amino acids to link the degradative and 
recycling functions of autophagy 

 

ABSTRACT 

In response to stress conditions (such as nutrient limitation, or accumulation of 

damaged organelles) and certain pathological situations, eukaryotic cells use autophagy as 

a survival mechanism. During nutrient stress the main purpose of autophagy is to degrade 

cytoplasmic materials within the lysosome/vacuole lumen and generate an internal nutrient 

pool that is recycled back to the cytosol. This study elucidates a molecular mechanism for 

linking the degradative and recycling roles of autophagy. We show that in contrast to 

published studies Atg22 is not directly required for the breakdown of autophagic bodies 

within the lysosome/vacuole. Instead, we demonstrate that Atg22, Avt3 and Avt4 are 

redundant vacuolar effluxers, which mediate the efflux of leucine and other amino acids 

resulting from autophagic degradation.  The release of autophagic amino acids allows the 

maintenance of protein synthesis and viability during nitrogen starvation. We propose a 

“recycling” model that includes the efflux of macromolecules from the lysosome/vacuole 

as the final step of autophagy. 
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INTRODUCTION 

Autophagy is a carefully orchestrated process responsible for the rapid degradation of 

large portions of cytoplasm in the lysosome/vacuole lumen (Kim and Klionsky, 2000). The 

identification of over 20 conserved autophagy-related (ATG) genes in the yeast S. 

cerevisiae (Klionsky et al., 2003) has provided some insight into the molecular basis 

behind autophagy. In this process, cytoplasm is nonselectively sequestered by a 

double-membrane vesicle, an autophagosome, which fuses with the lysosome/vacuole.  

The resulting single-membrane intravacuolar autophagic body is subsequently lysed, the 

cargos are typically degraded, and the resulting macromolecules reused to synthesize 

essential cellular components. For ease of description, autophagy can be separated into 

several steps including induction, vesicle formation, retrieval of Atg proteins, fusion with 

the lysosome/vacuole and processing of the cargo (Klionsky, 2005). 

It has long been assumed that during extreme conditions, such as nutrient shortage, 

autophagy provides an internal nutrient pool to maintain the metabolism essential for 

survival. One example of this function is illustrated by the observation that the survival of 

neonatal mice is dependent upon the amino acids produced by autophagy for the 

maintenance of energy homeostasis and viability (Kuma et al., 2004). Another example of 

the survival-promoting role of autophagy in mammalian cells is the recent evidence 

showing that in the absence of apoptosis, Bax- and Bak-deficient mice activate autophagy, 

maintain ATP production, and ultimately sustain viability for several weeks following 

growth factor withdrawal (Lum et al., 2005). 

Although the accumulated evidence suggests that the recycling of degradation 

products generated by autophagy is a critical part of its function, no experimental data have 
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ever demonstrated the existence of such a process. In fact, while virtually all reviews that 

discuss autophagy refer to breakdown in the lysosome/vacuolar lumen followed by 

recycling of the resulting macromolecules, none of the accompanying models include the 

recycling step as part of the autophagic process, and no mechanistic information has been 

published that directly connect autophagy with cytosolic amino acid levels.  However, 

autophagy would be largely pointless, at least as a starvation response, without this final 

step. 

One purpose of autophagy is to degrade cytoplasmic components and recycle the 

resulting macromolecules that are essential for cell survival when nutrients are scarce. 

Accordingly, it must break down the single-membrane autophagic body that results from 

fusion of the autophagosome with the vacuole. This breakdown event depends on the 

acidic pH of the vacuole lumen and Prb1. Two other proteins have also been reported to be 

involved in this step, Atg15/Cvt17 (Epple et al., 2001; Teter et al., 2001) and Atg22/Aut4 

(Suriapranata et al., 2000). Atg15 is a putative lipase and seems likely to function directly 

in the intravacuolar lysis of autophagic bodies. In contrast, Atg22 is a putative integral 

membrane protein located in the limiting membrane of the vacuole, with limited 

homologies to permeases. It was suggested that the breakdown of autophagic bodies 

depends on Atg22, because starving atg22Δ/aut4Δ mutant cells exhibit a slight 

accumulation of autophagic bodies inside the vacuole, and are partially defective in total 

protein turnover (Suriapranata et al., 2000). In contrast, the cytoplasm to vacuole targeting 

(Cvt) pathway, a type of specific autophagy involved in biosynthetic delivery to the 

vacuole (Kim and Klionsky, 2000) is normal in the atg22Δ mutant cells. In particular, the 

breakdown of the single-membrane intravacuolar Cvt bodies was unaffected by the 
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absence of Atg22 (Suriapranata et al., 2000). These data imply a fundamental difference in 

the composition of the membranes that form the Cvt/autophagic bodies and/or the 

breakdown process used in the Cvt and autophagy pathways. 

In this paper, we carefully examined the role of Atg22 in autophagy and the 

breakdown of autophagic bodies.  In contrast to previously published data, we find that 

Atg22 is not directly required for the steps of autophagy up to and including vesicle 

breakdown. Instead, our results suggest that Atg22 functions as an amino acid effluxer on 

the vacuolar membrane. In addition, two other vacuolar amino acid effluxers, Avt3 and 

Avt4, which seem to be part of the same family as Atg22, were discovered to be also 

required for maintenance of viability under nitrogen starvation conditions in the absence of 

leucine in a leucine auxotrophic strain. Finally, these results support a model wherein the 

efflux of amino acids resulting from the breakdown of autophagic bodies within the 

vacuole lumen constitutes the final step of autophagy. 
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MATERIALS AND METHODS 

Strains, Plasmids and Media 

The yeast S. cerevisiae strains used in this study are listed in Table 2.1. For gene 

disruptions, the entire coding region was replaced with either the Kluveromyces lactis 

URA3, or the S. cerevisiae TRP1, LEU2, or URA3 genes using PCR primers containing ~60 

bases of identity to the regions flanking the open reading frame. 

Cells were grown in rich (YPD; 1% yeast extract, 2% peptone, 2% glucose) or 

synthetic minimal media (SMD; 0.67% yeast nitrogen base, 2% glucose, amino acids and 

vitamins as needed). Starvation experiments were conducted in synthetic medium lacking 

nitrogen (SD-N; 0.17% yeast nitrogen base without amino acids, 2% glucose). 

 

Table 2.1. Yeast strains used in this study. 

Strain Genotype Reference 

BY4742 MATα, leu2- 0, his3- 1, lys2- 0, ura3- 0 ResGen/Invitrogen 

SEY6210 MATα ura3-52 leu2-3,112 his3-Δ200 
trp1-Δ901 lys2-801 suc2-Δ9 mel GAL 

(Robinson et al., 1988) 

TN124 MATα leu2–3,112 ura3–52 trp1 
pho8Δ::PHO8Δ60 pho13Δ::LEU2 

 

WCG4a MATα  his3-11,15 leu2-3,112 ura3 (Thumm et al., 1994) 

WHY1 SEY6210 atg1Δ::HIS5 S.p. (Shintani et al., 2002) 

YTS178 SEY6210 vac8Δ::HIS5 S.p. (Cheong et al., 2005) 

ZFY1 WCG4a atg22Δ::HIS3 This study 

ZFY2 WCG4a pep4Δ::LEU2 This study 
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ZFY4 WCG4a atg1Δ::URA3 This study 

ZFY6 SEY6210 atg22Δ::TRP1 This study 

ZFY8 SEY6210 atg22Δ::TRP1 vac8Δ::URA3 This study 

ZFY14 TN124 atg22Δ::TRP1 This study 

ZFY15 SEY6210 ATG22-GFP::HIS3 This study 

ZFY16 BY4742 ATG22-GFP::HIS3 This study 

ZFY19 SEY6210 avt3Δ::HIS3 This study 

ZFY20 SEY6210 avt3Δ::HIS3 avt4Δ::URA3 This study 

ZFY22 SEY6210 avt3Δ::HIS3 avt4Δ::URA3 
atg22Δ::TRP1 

This study 

ZFY32 SEY6210 avt4Δ::HIS3 This study 

ZFY36 SEY6210 ATG22-HA::TRP1 This study 

ZFY38 SEY6210 ATG22-protein A::TRP1 
pep4Δ::LEU2 

This study 

 

Microscopy 

For fluorescent microscopy, cultures were grown in SMD until early log phase. To 

label the vacuolar membrane, the cells were pelleted and resuspended in fresh SMD at 

OD600 = 1.0. FM 4-64 was added to a final concentration of 8 µM, and the culture was 

incubated at 30°C for 30 min. The cells were washed and resuspended in either SMD or 

SD-N at OD600 = 1.0. After a 2 h incubation, the samples were examined using a 

DeltaVision Spectris microscope (Applied Precision, Issaquah, WA) fitted with differential 

interference contrast optics and Olympus camera IX-HLSH100 with softWoRx software 
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(Applied Precision).  Electron microscopy was performed essentially as described 

previously (Kaiser and Schekman, 1990). Briefly, cells were fixed in potassium 

permanganate and embedded in Spurr’s resin. After resin polymerization, 65-75 nm 

sections were mounted on nickel grids. The grids were stained with 1% uranyl acetate 

followed by lead citrate, and then they were imaged using a Philips CM-100 transmission 

electron microscope. 

Yeast Vacuolar Amino Acid Analysis   

The Cu2+ method (Ohsumi et al., 1988) was used for extraction of vacuolar amino acid 

pools from yeast cells. In summary, cells at OD600 = 1.6 were harvested, washed twice with 

distilled water, resuspended in AA buffer (2.5 mM potassium phosphate buffer, pH 6.0, 0.6 

M sorbitol, 10 mM Glucose, 0.2 mM CuCl2), and incubated at 30°C for 10 min. Cell 

suspensions was collected by filtration on membrane filters (0.45 μm, Millipore, Bedford, 

MA) and washed five times with the AA buffer lacking 0.2 mM CuCl2. The cells retained 

on the filter were resuspended in distilled water and boiled for 15 min, then subjected to 

ultracentrifugation at 100,000 g for 1 h. The supernatant was collected as the vacuolar 

fraction. The amino acid analysis was performed at the Protein Chemistry Laboratory 

(Texas A&M University, College Station, TX) using a Hewlett Packard AminoQuant II 

system, and the data were analyzed and reviewed by Dr. Henriette A. Remmer (Protein 

Structure Facility, University of Michigan, Ann Arbor, MI). 

Subcellular Fractionation 

Cells were grown to mid-log phase in SMD medium and converted to spheroplasts as 

described previously (Kim et al., 1999). Supernatant and pellet fractions were generated by 
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centrifugation at 13, 000 × g for 5 min. All samples were collected by trichloroacetic acid 

(TCA) precipitation and subjected to immunoblotting as described previously (Kim et al., 

1999). 

Autophagy Assays 

The alkaline phosphate assay to measure activity from Pho8∆60 has been described 

previously (Abeliovich et al., 2003; Noda et al., 1995). The green fluorescent protein 

(GFP)-Atg8 processing assay was carried out as described previously (Cheong et al., 

2005). 
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RESULTS 

atg22Δ Cells Display Normal Autophagy 

The Cvt pathway shares most of the components needed for autophagy. In both 

pathways, the basic mechanism of cytoplasm-to-vacuole transport involves the formation 

of a double-membrane vesicle that enwraps cytoplasmic components, and delivers them 

into the vacuole for subsequent degradation. We began our analysis with an interest in what 

is typically viewed as the last step of autophagy, intravacuolar vesicle breakdown. The 

putative lipase Atg15 is needed for the disintegration of both Cvt and autophagic bodies 

(Teter et al., 2001). In contrast, it was reported that another protein, Atg22, is only needed 

for breakdown of autophagic bodies (Suriapranata et al., 2000). This finding was intriguing 

because it implied a difference between the membrane composition of Cvt vesicles and 

autophagosomes. The conclusion about the pathway specificity of Atg22 is based on the 

following observations: 1) Electron microscopy revealed that Atg22-deleted cells 

accumulate a low level of autophagic bodies within the vacuole lumen, 2) the atg22Δ 

mutant displayed a partial reduction in total protein turnover under starvation conditions, 

and 3) processing of prApe1 seemed normal in this mutant (Suriapranata et al., 2000). 

However, other assays including the analysis of Pho8Δ60 (Noda et al., 1995), the most 

commonly used procedure for monitoring autophagy, were not used to examine the atg22Δ 

mutant.  If the breakdown of autophagic vesicles really depends on Atg22, we should 

observe a general autophagy-defective phenotype in atg22Δ mutant cells. 

To make a quantitative measurement of autophagy in the atg22Δ mutant, we analyzed 

the truncated version of Pho8, Pho8Δ60, which resides in the cytosol and can be only 

delivered into the vacuolar lumen by autophagy. Once it enters into the vacuole, it is 
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processed by removal of a C-terminal propeptide to generate the active form. As a 

nonspecific cargo, Pho8Δ60 serves as a protein marker for bulk autophagy. The Pho8Δ60 

activity was measured in wild-type, atg22Δ and atg8Δ cells under vegetative and starvation 

conditions (Figure 2.1A). As expected, wild-type cells showed Pho8Δ60-dependent 

alkaline phosphatase activity that increased between 2 and 4 h of starvation, whereas the 

atg8Δ autophagy-defective strain retained a background level of activity.  The atg22Δ 

mutant demonstrated an increase of Pho8Δ60 activity similar to that observed in the 

wild-type strain indicating normal breakdown of autophagic bodies. 

 
Figure 2.1. The atg22Δ mutant displays normal autophagy. (A) Pho8Δ60 activity, a marker for 
nonspecific autophagy, indicates this process is normal in atg22Δ cells. The Pho8Δ60-dependent 
alkaline phosphatase activity was measured before and 2 or 4 h after shifting from YPD to SD-N 
medium. The error bars indicate the SD of two independent experiments. (B) GFP-Atg8p 
processing is normal in the atg22Δ mutant. The wild-type (WT, SEY6210), atg1Δ (WHY1), and 
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atg22Δ (ZFY6) strains expressing GFP-Atg8 were grown in SMD to mid log phase and shifted to 
SD-N to induce autophagy. At the indicated times, aliquots were removed and examined by 
immunoblot using anti-GFP antibody.  The position of free GFP, indicating autophagy-dependent 
processing of GFP-Atg8, is indicated.  The asterisk indicates a non-specific band. (C) In the 
atg22Δ mutant autophagic delivery of prApe1 is normal in the Cvt pathway-defective vac8Δ 
background. The vac8Δ (YTS178), atg22Δ vac8Δ (ZFY8), and atg1Δ (WHY1) strains were 
cultured as described above. At the indicated times, aliquots were taken and checked by 
immunoblot using anti-Ape1 antiserum. The positions of precursor and mature Ape1 are indicated. 

 

In addition to Pho8Δ60, there are several other assays available to monitor autophagy, 

each one reflecting a different parameter of the process.  For example, Atg8 is an 

ubiquitin-like protein that is conjugated to phosphatidylethanolamine and seems to be the 

only Atg protein, aside from the cargo receptor Atg19, which remains associated with the 

completed autophagosome and autophagic body. The population of GFP-tagged Atg8 that 

is within the lumen of these vesicles becomes trapped. When the autophagic bodies are 

broken down, Atg8 is degraded, whereas the GFP moiety remains relatively stable.  Thus, 

the generation of free GFP reflects the delivery of autophagosomes, and in particular the 

vesicle inner membrane, to the vacuole, and it can also be used to monitor the efficiency of 

lysis of the autophagic bodies (Cheong et al., 2005). Wild-type, atg22Δ and atg1Δ strains 

were transformed with a plasmid encoding GFP-Atg8, grown in synthetic complete 

medium (SMD) with auxotrophic amino acids and shifted to SD-N to induce autophagy. At 

the indicated time, aliquots were removed and analyzed by western blot using antiserum 

against GFP. As shown in Figure 2.1B, wild-type cells displayed an increase in the level of 

free GFP over time in starvation conditions.  In contrast, the atg1Δ mutant that is defective 

in autophagy accumulated only full-length GFP-Atg8.  In the atg22Δ cells, free GFP was 

detected in increasing amounts as starvation proceeded, similar to the result seen with the 
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wild-type strain. Thus, by this assay as well, autophagic bodies were broken down in the 

atg22Δ mutant. 

To extend our analysis, we chose to examine the autophagy pathway by monitoring 

the maturation of prApe1, a marker for specific autophagy, in the Cvt pathway-defective 

vac8Δ background (Cheong et al., 2005). In this background, the maturation of prApe1 

under starvation conditions is due to autophagy, allowing us to use a western blot-based 

“pulse/chase” analysis.  Cells were grown to early log phase in SMD medium, shifted to 

SD-N and protein extracts examined by western blot.  The vac8Δ strain accumulated only 

prApe1 during vegetative growth, but it was able to efficiently deliver the precursor to the 

vacuole by autophagy, where it was processed to the mature form (Figure 2.1C).  The 

atg1Δ mutant again served as a negative control and accumulated only the precursor form, 

prApe1, under both conditions. As with vac8Δ cells, we observed the mature 

aminopeptidase I (Ape1) band by immunoblot in the vac8Δ atg22Δ double deletion mutant 

after shifting to starvation conditions, supporting our conclusion of a normal autophagy 

pathway in the absence of Atg22.  We also examined the kinetics of prApe1 maturation 

through the Cvt pathway in the atg22Δ mutant using a radioactive pulse-chase analysis and 

found essentially normal processing (our unpublished data) in agreement with the 

previously published results (Suriapranata et al., 2000). Taken together, these data 

suggested that Atg22 is not defective in either autophagy or the Cvt pathway. 

Breakdown of Autophagic Bodies is Kinetically Delayed in the atg22Δ Mutant. 

Suriapranata et al., (2000) observed the accumulation of autophagic bodies with 350 

nm diameter inside the vacuole by electron microscopy in the atg22Δ mutant, which 

suggests a defective autophagy phenotype. However, based on our data, the atg22Δ mutant 
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displayed normal autophagy, at levels similar to the wild-type strain. This finding 

suggested that the vacuolar lysis of autophagic bodies should be also normal. To address 

this apparent discrepancy, we examined the vacuolar accumulation of autophagic bodies 

using electron microscopy. To minimize potential differences, we chose the same strain 

background, WCG4a, as used in the previous study. Autophagic bodies are 

single-membrane vesicles that result from the fusion of autophagosomes with the vacuole; 

once delivered into the vacuolar lumen, they are broken down in a Pep4-dependent manner. 

Therefore, we chose the wild-type and pep4Δ mutant strain as negative and positive 

controls, respectively. 

We first examined the cells after shifting to SD-N for 4 h. As shown in Figure 2.2A, 

the pep4Δ mutant accumulated autophagic bodies within the vacuole lumen as expected. In 

contrast, the wild-type strain did not accumulate autophagic bodies at all (our unpublished 

data), because they were rapidly broken down.  As with the pep4Δ strain, we also 

observed the accumulation of some autophagic bodies inside the vacuole in the atg22Δ 

mutant. To compare the accumulation phenotype between the atg22Δ and pep4Δ mutants, 

we quantified the data (Figure 2.2B). We determined the number of autophagic bodies per 

vacuole, only counting those cells containing similar sized vacuoles. In the atg22Δ mutant, 

the highest proportion of the vacuoles at the 4-h time point contained zero autophagic 

bodies, and the average number was 3.74 ± 3.87 (Figure 2.2C). However, in the pep4Δ 

mutant, the average number of accumulated autophagic bodies per vacuole was 10.14 

± 4.03, with seven to nine autphagic bodies in 32% of the vacuoles. Thus, the atg22Δ 

mutant accumulated far fewer autophagic bodies than the pep4Δ mutant. This result 

suggested two possibilities: either fewer autophagosomes were produced in the atg22Δ 
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mutant, or the breakdown of the autophagic bodies was partially defective and/or 

kinetically delayed. 

The normal autophagy phenotype observed in the atg22Δ mutant excluded the first 

possibility. To test the second possibility, we extended our electron microscopy analysis by 

observing the accumulation of autophagic bodies in cells starved for 6 h. As shown in 

Figures 2.2, A and B, atg22Δ mutant cells accumulated fewer autophagic bodies at 6 h 

compared to cells that had been starved for 4 h. The percentage of vacuoles containing zero 

autophagic bodies increased from 31.5% at 4 h to 38.9% at 6 h.  Similarly, the vacuoles 

containing one to three autophagic bodies increased from 22% to 29.6%. The average 

number of autophagic bodies per vacuole decreased to 2.24 ± 2.31 (Figure 2.2C). In 

contrast, in the pep4Δ mutant, it was difficult to discern the vacuole boundary because the 

organelles were essentially filled with autophagic bodies at this time point. The average 

number of autophagic bodies increased to 15.01 ± 2.86, and >75% of the cells contained 13 

to 18 autophagic bodies. Taken together, this result strongly supported our hypothesis that 

autophagic bodies in the atg22Δ mutant were indeed gradually broken down, with the rate 

of degradation much slower than in the wild-type strain. Thus, partially accumulated 

autophagic bodies seen in this mutant might be due to a kinetic delay in the breakdown 

process. 
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Figure 2.2. The atg22Δ mutant cells display a kinetic delay in the breakdown of autophagic 
bodies. (A) The atg22Δ (ZFY1), and pep4Δ (ZFY2) strains were grown to mid-log phase in YPD, 
and shifted to SD-N medium for 4 and 6 h. Cells were fixed and then examined by electron 
microscopy as described in MATERIALS AND METHODS. The bars in the main images (X7,900) 
and insets (X19,000) represent 2 and 0.5 µm, respectively. (B) Quantification of autophagic body 
(AB) accumulation. The number of autophagic bodies in ~100 or 50 cells containing vacuoles of 
similar size in atg22Δ and pep4Δ cells, respectively, were quantified. The error bars represent the 
SD. (C) The average number of vacuoles from the quantification in (B) is depicted. 

 

Atg22 is a Vacuolar Integral Membrane Protein. 

To identify the molecular function of Atg22, we searched databases, but we found that 

Atg22 does not show significant similarity with characterized proteins in other organisms. 

ATG22 encodes a protein of 528 amino acids with a predicted molecular mass of 58 kDa. 

Based on TMpred hydrophobicity analysis (http://www.ch.embnet.org/software/ 

TMPRED_form.html), Atg22 is predicted to contain 11 to 12 transmembrane helices 

(Figure 2.3A). A computer-based analysis was carried out to identify all members of the 

major facilitator superfamily (permeases) in S. cerevisiae that are characterized by two 

structural units of six transmembrane-spanning α-helical segments connected by a 

cytoplasmic loop (Nelissen et al., 1997). These parameters allowed the consideration of 

proteins with a length of 500-600 amino acids, making up a total of 12 

transmembrane-spanning segments. Within this study, Atg22 is characterized as a 

predicted permease with unknown function. Additionally, Atg22 shows limited similarity 

with some putative transporters, such as the multidrug-efflux transporter Bmr3 from B. 

subtilis (Ohki and Murata, 1997; Suriapranata et al., 2000). To gain more insight about 

Atg22, we performed several experiments to examine the biosynthesis of the protein. 
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First, to assess whether Atg22 is an integral membrane protein, we carried out 

subcellular fractionation. We generated a functional C-terminal 3xHA fusion at the 

chromosomal ATG22 locus. Lysed spheroplasts of the strain expressing Atg22-3xHA 

(ZFY36) were separated into soluble and pelletable fractions. As shown in Figure 2.3B, 

Atg22 was found predominantly in the pellet fraction when spheroplasts were lysed in the 

presence of buffer alone.  Similarly, 1.0 M KCl did not extract Atg22 into the supernatant 

fraction (our unpublished data), and Na2CO3 at pH 10.5 solubilized only a small amount of 

the protein, indicating that Atg22 is not a peripheral membrane protein. In contrast, 

extraction with Triton X-100 completely solubilized Atg22 into the supernatant fraction. 

Cytosolic Pgk1 was almost completely absent from the pellet fraction, indicating the 

successful lysis of spheroplasts and separation of soluble and pelletable fractions. Vma4, a 

peripheral vacuole membrane protein, was extracted into the supernatant fraction in the 

presence of KCl (our unpublished data) and Na2CO3. Pho8, an integral membrane protein, 

served as a positive control, and displayed a similar fractionation pattern as seen with 

Atg22. Thus, combined with the hydrophobicity analysis, this result strongly indicated that 

Atg22 is an integral membrane protein. 
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Figure 2.3. Atg22 is an integral vacuolar membrane protein. (A) Hydrophobicity analysis 
based on TMpred (Hofmann and Stoffel, 1993) predicts 12 transmembrane helices, which are 
indicated schematically. (B) Atg22 is an integral membrane protein. Cells expressing Atg22-3xHA 
(ZFY36) were grown in YPD, converted to spheroplasts, and osmotically lysed and fractionated 
into total (T), supernatant (S), and pellet (P) fractions, as described in MATERIALS AND 
METHODS. The resulting pellet was subjected to the indicated treatment: 0.5 mM Na2CO3, pH 
10.5, or 1% Triton X-100. After centrifugation, S and P fractions were collected and analyzed by 
immunoblots with anti-hemagglutinin (HA) antibody or the indicated antisera. The positions of 
Atg22-HA, and the markers Pgk1 (cytosolic), Vma4 (peripheral membrane) and Pho8 (integral 
membrane) are indicated. (C) Atg22 is localized on the vacuolar membrane. Cells expressing 
Atg22-GFP (ZFY16) were grown in YPD, treated with FM 4-64 to label vacuoles and analyzed by 
fluorescence microscopy as described in MATERIALS AND METHODS. DIC, differential 
interference contrast. (D) The expression level of Atg22 seemed constant under vegetative growth 
and was induced under nitrogen starvation conditions. Cells expressing Atg22-Protein A (ZFY38) 
in the background of pep4Δ were grown in YPD and shifted to SD-N. At the indicated times, 
aliquots were removed and analyzed by immunoblot using anti-protein A (PA) antidody and 
antisera to Atg8 and Pgk1; Pgk1 was used as a loading control. The blot is shown for a 
representative experiment and the graph plots the data for the three independent experiments. The 
error bars represent the SD.   

 

Suriapranata et al., (2000) visualized the intracellular localization of Atg22 at the 

vacuolar membrane, using a plasmid-based fusion protein consisting of GFP fused at the N 

terminus of Atg22, under the control of the MET25 promoter. Because of the differences in 

the phenotype of the atg22Δ mutant in our current studies compared to the previously 

published data, we also examined the subcellular localization of Atg22.  The gene 

encoding GFP was integrated in-frame at the 3’ end of ATG22 at the chromosomal locus, 

under the control of its native promoter. Cells expressing Atg22-GFP were grown to 

mid-log phase, treated with FM 4-64, and imaged with a fluorescence microscope. As 

shown in Figure 2.3C, Atg22 localized primarily to the vacuolar membrane, and it 

overlapped with the FM 4-64-labeled vacuole. Thus, our result was consistent with that in 
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the previous study. Taken together, Atg22 is a vacuolar integral membrane protein. 

In addition, we also examined the expression level of Atg22 under both vegetative 

growth and nitrogen starvation conditions. We generated a functional C-terminal 3xProtein 

A fusion at the chromosomal ATG22 locus. To eliminate the cleavage of protein A by 

vacuolar hydrolases, we knocked out the gene encoding vacuolar proteinase A, PEP4. The 

pep4Δ cells expressing Atg22-3xProtein A were grown to mid-log phase and then 

incubated in nitrogen starvation medium. At the indicated time, aliquots were removed and 

analyzed by western blot using antiserum against protein A.  As shown in Figure 2.3D, 

Atg22 displayed an approximately threefold increase after 18-h starvation, relative to the 

loading control Pgk1, which displayed a constant level over time. This finding is in 

agreement with published data indicating a 2.7-fold increase in expression of Atg22 after 1 

d of nitrogen depletion (Gasch et al., 2000). As a comparison, we examined Atg8, which is 

induced by nitrogen starvation (Huang et al., 2000). This protein increased its 

accumulation in the pep4Δ strain immediately when cells were shifted to SD-N, whereas 

the increase in Atg22 was apparent only after starvation for 2 h. Atg8 also showed a 

substantially higher level of induction, but both proteins seemed to reach a maximum after 

18 h. 

Atg22 is a Leucine Effluxer on the Vacuolar Membrane. 

Autophagy genes are dispensable for vegetative growth, but they are required for 

survival during nutrient starvation conditions (Levine and Klionsky, 2004). It has been 

assumed that an internal nutrient pool provided by autophagy, helps yeast cells sustain 

viability to survive nutrient deprivation. Accordingly, testing for viability during nitrogen 

starvation has been used as an assay to assess autophagic capacity. Although atg22Δ cells 
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were not autophagy-defective by most assays, electron microscopy revealed that deletion 

of Atg22 caused the partial accumulation of autophagic bodies. Because breakdown of 

autophagic bodies is required for recycling the cargo contained within, deletion of Atg22 

might also cause a loss of viability during nitrogen starvation.  To test this possibility, we 

examined the viability of atg22Δ cells incubated in SD-N, by using wild-type and atg1Δ 

cells as positive and negative controls, respectively. As expected, atg1Δ cells exhibited a 

dramatic decrease in cell viability after 4-d starvation, whereas wild-type cells maintained 

robust viability even under prolonged nitrogen starvation (Figure 2.4A). The atg22Δ cells 

gradually lost viability through 12 d of starvation. The ATG22 gene expressed on a plasmid 

restored the viability of the atg22Δ cells to the wild-type level (Figure 2.4B), indicating 

that the loss of viability was due to the absence of Atg22.  Thus, there was a certain 

discrepancy in the data: atg22Δ cells displayed normal autophagy by most criteria, but they 

were starvation sensitive, a characteristic of atg mutants. 

To resolve this discrepancy, we examined the reason for the starvation sensitivity of 

the atg22Δ strain.  Atg22 is an integral vacuolar membrane protein, and its protein 

sequence places it in a family of permeases.  Accordingly, we decided to test whether it 

was a vacuolar permease. We hypothesized that the absence of a permease would cause a 

loss of viability in strains that lack the biosynthetic capacity for the substrate of the 

permease under starvation conditions. To test our hypothesis, we decided to identify the 

substrate for the putative permease Atg22. The atg22Δ strain was auxotrophic for histidine, 

leucine, lysine and uracil. Thus, we decided to test whether one of these four components 

could rescue the starvation sensitive phenotype seen in atg22Δ cells. Wild-type, atg1Δ, and 

atg22Δ cells were starved in SD-N containing each of these components separately 



 

 100

(Figures 2.4, C and D, our unpublished data).  The addition of histidine, lysine or uracil 

was not able to restore viability to the atg22Δ strain in SD-N.  Similarly, the addition of 

other amino acids such as isoleucine that could be synthesized by the cell did not affect 

viability.  In contrast, the addition of leucine, or complementation of the leu2 defect by 

transformation with a plasmid carrying the LEU2 gene, restored viability to the wild-type 

level (Figures 2.4, E and F). These results led us to conclude that Atg22 was a leucine 

effluxer on the vacuolar membrane. 
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Figure 2.4. atg22Δ mutant cells displayed a loss of viability in starvation conditions. The 
wild-type (SEY6210), atg22Δ (ZFY6), and atg1Δ (WHY1) cells were grown in SMD containing 
auxotrophic amino acids and nucleosides to OD600 = 1.0, and then they were shifted to SD-N. The 
SD-N included no addition (A), 30 µg/ml lysine (C), 30 µg/ml isoleucine (D), 50 µg/ml leucine (E). 
Cells harbored the plasmid pCu-ATG22, expressing Atg22 from the CUP1 promoter (B), or the 
pRS425 (LEU2) plasmid (F). At the indicated day, viability was determined by removing aliquots, 
plating on YPD in triplicate, and counting the number of colonies per plate after 2-3 d growth. The 
addition of leucine, or the LEU2 or ATG22 genes restored viability of atg22Δ cells to wild-type 
levels.  The addition of histidine or uracil resulted in essentially the same loss of viability as seen 
with lysine. The error bars indicate the SD of two independent experiments. 

 

To obtain direct evidence for the role of Atg22 as a vacuolar leucine effluxer, we 

decided to examine vacuolar levels of leucine. In addition, we considered the possibility 

that Atg22 might share substrates with two other vacuolar amino acid effluxers, Avt3 and 

Avt4, which belong to a family of yeast vacuolar amino acid transporters, designated as 

Avt1-7, in the yeast S. cerevisiae (Russnak et al., 2001). Among this family, Avt1 is 

required for uptake of neutral amino acids including tyrosine, isoleucine and glutamine; 

leucine and asparagine might also be substrates because competitive inhibition studies by 

Sato et al., (1984) have shown that leucine/isoleucine and asparagine/glutamine use the 

same vacuolar uptake system. Avt3 and Avt4, two closely related proteins, display the 

same specificity as Avt1, but are synergistically involved in the efflux of amino acids from 

the vacuole into the cytosol, whereas Avt6 is responsible for the efflux of aspartate and 

glutamate. Thus, we decided to extend our analysis to Avt3/Avt4. Accordingly, we 

generated avt3Δ avt4Δ double mutant and atg22Δ avt3Δ avt4Δ triple mutant strains, and 

then we carried out amino acid analysis to examine vacuolar levels of various amino acids. 

The vacuolar amino acid fraction was extracted from log phase-grown cells, as described in 
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MATERIALS AND METHODS. We normalized the concentrations of the analyzed amino 

acids to that for arginine, which is stored in the vacuole, but is not a substrate for the 

Avt3/Avt4 permeases. 

As shown in Figure 2.5, the most striking accumulation in all three mutant strains was 

seen with tyrosine, which showed a sixfold accumulation in the atg22Δ cells relative to the 

wild-type strain. A similar result was seen with the avt3Δ avt4Δ double mutant, whereas 

the triple mutant displayed an even higher level of accumulation, ~8.5-fold higher than 

wild type. This result confirmed the validity of the analysis because tyrosine is a known 

substrate of the Avt3/Avt4 effluxers and should accumulate within the vacuole in the 

corresponding mutant strain. This finding also implicated Atg22 as a vacuolar effluxer for 

tyrosine. 

We were not able to examine levels of glutamine or asparagine, two other substrates 

of the Avt3/Avt4 effluxers because the concentrations of these amino acids could not be 

determined separately from glutamate and aspartate, respectively, by the methodology 

used; however, we continued the analysis by monitoring the levels of leucine and 

isoleucine, two putative substrates, as well as three control hydrophobic amino acids: 

valine, methionine and phenylalanine. None of these amino acids displayed as great a-fold 

increase in accumulation in the mutant strains as seen with tyrosine (Figure 2.5A); however, 

we also examined the absolute values and the change in concentration in each amino acid 

(Figure 2.5, B and C). For example, the level of leucine in the atg22Δ avt3Δ avt4Δ triple 

mutant increased to 20.07 nmol/108 cells, compared with 15.58 nmol for the wild-type 

strain, representing a difference of 4.49 nmol, or a 1.3-fold increase. A similar change was 

seen in the isoleucine levels. In constrast, the control amino acids showed either a minimal 
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increase or a decrease in concentration (Figure 2.5, B and C). The values for leucine and 

isoleucine showed a much lower-fold increase than tyrosine; however, this is partly due to 

the relatively low level of tyrosine accumulation in the vacuoles of wild-type cells. For 

tyrosine and leucine, the triple mutant demonstrated a greater accumulation of predicted 

substrate amino acids than seen with either the atg22Δ single mutant, or the avt3Δ avt4Δ 

double mutant. Taken together, these results suggested that Atg22 is a vacuolar effluxer for 

leucine, isoleucine and tyrosine, sharing the same substrates with Avt3 and Avt4. 

 

Figure 2.5. Yeast vacuoles accumulated a high level of tyrosine, isoleucine and leucine in the 
absence of Atg22 and/or Avt3/Avt4. The wild-type (SEY6210), atg22Δ (ZFY6), avt3Δ avt4Δ 
(ZFY20), and avt3Δ avt4Δ atg22Δ (ZFY22) cells were grown in YPD medium and harvested at log 
phase. The preparation of vacuolar amino acid pools and analysis of amino acid composition are 
described in MATERIALS AND METHODS. The results represent the mean and SD of three 
experiments. The amino acid concentration was normalized to the highest concentration of arginine 
among three experiments. The results are displayed as the ratio to wild type (A), the absolute values 
expressed as nanomoles/108 cells (B), and the difference from wild type for tyrosine, isoleucine, 
leucine, valine, methionine and phenylalanine for the wild-type, atg22Δ (I), avt3Δ avt4Δ (II), avt3Δ 
avt4Δ atg22Δ (III) strains (C). Tyrosine, isoleucine, and leucine accumulated in the mutants, 
compared to the controls valine, methionine, and phenylalanine. The table lists the vacuolar amino 
acid level shown in the graph in (B).  
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Putative Amino Acid Permeases Mediate the Connection Between Autophagy and 
Maintenance of Protein Synthesis under Amino Acid Starvation Conditions. 

Recently, Onodera and Ohsumi (2005) reported an interesting new phenotype for 

autophagy-defective mutants (Onodera and Ohsumi, 2005). They found that bulk protein 

synthesis was substantially reduced under nitrogen starvation conditions in mutants, such 

as atg7Δ, atg1Δ and pep4Δ cells, compared to the wild-type. They also demonstrated that 

the synthesis of certain proteins, such as the vacuolar proteinases Ape1 and Prc1 

(carboxypeptidase Y), which are up-regulated at the protein expression level upon nitrogen 

starvation, was dramatically abrogated in the atg7Δ strain. Additionally, the total 

intracellular amino acid pool was reduced in atg7Δ cells. They interpreted these results to 

indicate that free amino acids pools generated during autophagy were a limiting factor for 

protein synthesis under starvation conditions. Here, we were interested in identifying the 

mechanistic connection between autophagy and maintenance of amino acid levels and 

hence protein sysnthesis. Based on the data we have already shown, we hypothesized that 

in a strain auxotrophic for a particular amino acid, a defect in efflux from the vacuole 

lumen for this amino acid would cause an intracellular shortage, which would result in a 

decline in the ability of the cell to maintain general protein synthesis. Because Atg22 may 

function in part as a leucine effluxer on the vacuolar membrane and our strain is 

auxotrophic for leucine, we decided to test the protein synthesis capacity in the atg22Δ 

mutant in the presence and absence of leucine. 

We first verified that the absence of a single amino acid would induce autophagy by 

using the GFP-Atg8 processing assay.  The atg22Δ strain (his3 leu2 lys2 ura3) was grown 

in synthetic complete medium (SMD) lacking either leucine or lysine.  Either condition 

induced autophagy at levels similar to those seen with nitrogen starvation based on 
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processing of GFP-Atg8 (our unpublished data).  Next, we carried out a protein synthesis 

assay.  Cells were grown in SMD and then shifted to SMD-leucine or SMD-lysine, 

conditions that we had demonstrated would induce autophagy.  To examine the effect on 

protein synthesis, we took advantage of the starvation-induced increase in Ape1 and Prc1 

synthesis. Pgk1 did not show a substantial change in protein levels under these conditions 

and served as a loading control.  Using immunoblot analysis, we quantified the protein 

levels of Ape1 and Prc1 in wild-type, atg1Δ, and atg22Δ cells. Under both SMD-leucine 

and SMD-lysine conditions, there was clear protein synthesis in wild-type cells, with up to 

a 19-fold increase in the Ape1 level and up to a 4.5-fold increase in the level of Prc1 

(Figure 2.6, A, B, and D).  In contrast, synthesis of Ape1 and Prc1 was essentially blocked 

in the atg1Δ cells under both SMD-leucine and SMD-lysine conditions, in agreement with 

the previous study by Onodera and Ohsumi (Onodera and Ohsumi, 2005). In atg22Δ cells, 

in SMD-leucine both Ape1 and Prc1 synthesis were minimally elevated even after 12-h 

starvation, and gradually increased by 14- and 3.4-fold , respectively, only after prolonged 

(24-h) starvation (Figure 2.6, A, C, and E). In contrast, in SMD-lysine Ape1 and Prc1 

synthesis seemed similar to wild type and increased by 17- and 4.2-fold, respectively, with 

a substantial increase as early as 2 h. Thus, in the atg22Δ cells, a reduced level of Ape1 and 

Prc1 synthesis was only observed under SMD-leucine conditions, supporting our 

conclusion that Atg22 functions in part as a vacuolar leucine effluxer. Furthermore, this 

result supported our hypothesis that under amino acid deprivation conditions, permeases 

mediate the connection between autophagy and the maintenance of amino acid levels in the 

cytosol, and hence protein synthesis levels, through the efflux of amino acids resulting 

from autophagy. 
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Figure 2.6. Protein synthesis dependent upon autophagic amino acids was partially defective 
in atg22Δ mutant cells. (A) The wild-type (SEY6210), atg1Δ (WHY1), and atg22Δ (ZFY6) cells 
were grown in SMD and then shifted to SMD-leucine or SMD-lysine to induce autophagy. At the 
indicated incubation time, aliquots were removed and cell lysates (1.0 OD600 unit of cells) were 
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analyzed by immunoblot with antiserum against Ape1, Prc1, and Pgk1. Pgk1 was used as a loading 
control. (B-E) Quantification of immunoblots from SMD-leucine (open symbols) or SMD-lysine 
(closed symbols) in the wild-type (square), atg1Δ (circle), and atg22Δ (triangle) cells. Band 
intensities were quantified using NIH Image 1.62 (by Wayne Rasband, National Institutes of Health, 
Bethesda. MD). The data are the average of three independent experiments and the error bars 
indicate the SD. 

 

Vacuolar Release of Amino Acids during Starvation Is Essential for Survival. 

Having established that permeases mediate autophagy and its physiological role in 

terms of maintenance of protein synthesis under conditions of amino acid starvation, we 

decided to investigate whether they are also needed for cell viability, examining the Atg22 

and Avt3/Avt4 proteins. Based on our data, the atg22Δ cells gradually lost viability through 

12 d of starvation (Figure 2.4A), and Ape1 and Prc1 protein synthesis in the atg22Δ cells 

was severely but not completely blocked in SMD-leucine (Figure 2.6). Thus, we 

hypothesized that Avt3/Avt4 could partially compensate for the defect seen in the absence 

of Atg22. To address this possibility, we examined an avt3Δ avt4Δ strain auxotrophic for 

both leucine and lysine. Ape1 and Prc1 synthesis were compared under either 

SMD-leucine or SMD-lysine conditions (Figure 2.7, A, B, and D). Pgk1 again served as a 

loading control. In the avt3Δ avt4Δ cells, Ape1 and Prc1 synthesis was delayed and showed 

a clear increase only after 12-h starvation in SMD-leucine, whereas there was normal 

synthesis in SMD-lysine, in support of a role for Avt3/Avt4 as leucine permeases. 

Accordingly, we hypothesized that the absence of Atg22 along with Avt3/Avt4 might 

completely block Ape1 and Prc1 synthesis. Thus, we further tested protein synthesis in the 

atg22Δ avt3Δ avt4Δ strain. Ape1 and Prc1 synthesis was hardly detected even after 24-h 
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starvation in SMD-leucine in the triple deletion strain, but it was relatively unaffected in 

SMD-lysine conditions (Figure 2.7, A, C, and E). Taken together, these results supported 

the premise that Atg22, Avt3 and Avt4 are redundant with regard to their function as 

leucine effluxers on the vacuolar membrane. 

To bring our analysis full circle, we decided to examine viability in avt3Δ avt4Δ and 

atg22Δ avt3Δ avt4Δ cells.  The avt3Δ avt4Δ strain was transformed with a plasmid 

carrying the TRP1 gene to balance the prototrophy of the atg22Δ::TRP1 deletion, leaving 

both strains auxotrophic for leucine and lysine.  The two strains were then grown in SMD 

to mid-log phase and incubated in SD-N, or SD-N containing leucine, and viability was 

measured as described previously. The avt3Δ avt4Δ culture lost viability between 5 and 6 d 

in SD-N (Figure 2.7F), whereas the atg22Δ avt3Δ avt4Δ cells displayed a slightly more 

severe phenotype, completely losing viability by day 4 (Figure 2.7G). Addition of leucine 

rescued the loss of viability for both mutants for several days, probably until these nutrients 

became limiting. These results combined with the result seen with atg22Δ cells shown in 

Figure 2.4, suggested that if the efflux of amino acids resulting from autophagy was 

blocked, the cytosolic shortage of these amino acids would cause a decreased level of 

general protein synthesis, and, ultimately, cells would lose the ability to survive starvation 

of the corresponding amino acids. 
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Figure 2.7. Protein synthesis and survival dependent on autophagic amino acids was reduced 
in avt3Δ avt4Δ mutant cells, and the defect was exacerbated by the atg22Δ mutation. (A) avt3Δ 
avt4Δ (ZFY20) and avt3Δ avt4Δ atg22Δ (ZFY22) cells were grown and analyzed for up-regulated 
protein synthesis as described in the legend to Figure 2.6.  (B-E) Quantification of immunoblots 
from SMD-leucine (open symbols) or SMD-lysine (closed symbols) in the avt3Δ avt4Δ (square), 
avt3Δ avt4Δ atg22Δ (circle) cells. Band intensities were quantified as described in the legend to 
Figure 2.6. The loss of leucine effluxers blocked synthesis of Ape1 and Prc1 during leucine 
depletion. The avt3Δ avt4Δ strain harboring pRS414 (TRP1) (F) and avt3Δ avt4Δ atg22Δ (G) cells 
were grown in SMD to mid-log phase and incubated in SD-N or SD-N containing 100 µg/ml 
leucine. At the indicated days, viability was determined as described in the legend to Figure 2.4. 
The error bars indicate the SD of three independent experiments.  The reduced viability of the 
avt3Δ avt4Δ, and avt3Δ avt4Δ atg22Δ mutant cells was partially rescued by addition of leucine. 
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DISCUSSION 

The atg22Δ Mutant is Not Defective in Autophagic Body Breakdown. 

One of the main roles of autophagy is to degrade cytoplasm and recycle the resulting 

macromolecules for reuse in the synthesis of essential components during nutrient stress. 

Accordingly, autophagic bodies that are delivered into the vacuole lumen must be 

disintegrated and broken down (Klionsky, 2005). The topic of vesicle breakdown is an 

important one, as the vacuole is the terminal destination for many cellular delivery 

pathways; however, little is known about the process of lipid recycling within this 

organelle. For example, Atg15 is the only putative lipase so far associated with this 

organelle. In addition, it is not even known how the vacuole membrane is itself protected 

from degradation. This complication extends to all heterotypic fusion events. That is, the 

vesicle membrane that fuses with the vacuole must be rapidly removed or protected to 

prevent its degradation while part of the vacuole limiting membrane and the subsequent 

loss of vacuolar integrity, which could be deleterious to the cell. Finally, with regard to 

autophagy, a difference in the susceptibility to lysis of Cvt versus autophagic bodies as 

suggested by Suriapranata et al. (2000) might provide insight into the origin of the 

sequestering vesicle membrane, a topic of considerable debate. 

As we have demonstrated in this article, in contrast to the previously reported data, 

Atg22 is not directly involved in intravacuolar vesicle lysis. The steps of autophagy up to 

and including autophagic body breakdown are essentially normal in the atg22Δ mutant, 

although there is a kinetic delay in breakdown (Figures 2.1 and 2.2).  Our data disagree 

with the conclusion from the previous work (Suriapranata et al., 2000), that the primary 
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role of Atg22 is in the breakdown of autophagic, but not Cvt bodies. Thus, no data at 

present suggest a substantial difference between the membranes used for autophagy and 

the Cvt pathway, nor do they indicate a fundamental difference between autophagic and 

Cvt bodies with regard to the mechanism of degradation. This finding is supported by 

recent studies indicating that the origin of the membrane for the Cvt pathway and 

autophagy is probably the same (Reggiori et al., 2004b). 

Atg22 is a Putative Amino Acid Effluxer on the Vacuolar Membrane. 

Biochemical analysis of Atg22 indicates that it is an integral membrane protein 

(Figure 2.3). Localization of Atg22-GFP suggests that this protein is localized on the 

vacuole-limiting membrane. These data fit well with the predictions based on its amino 

acid sequence that Atg22 functions as a permease. Analysis of amino acid concentrations 

suggested that Atg22 is an effluxer for tyrosine, but it also revealed that vacuolar 

accumulation of leucine in the atg22Δ mutant (Figure 2.5). We were unsuccessful in 

carrying out analyses of amino acid efflux by using vacuoles containing radiolabeled 

amino acids; thus, we do not have direct evidence for the function of Atg22 as a leucine 

effluxer. However, the Avt3/4 proteins have been characterized as permeases for leucine 

and other amino acids in addition to tyrosine. The defect in protein synthesis seen in the 

absence of leucine in the atg22Δ strain along with the viability assays suggested that 

leucine is also a substrate for Atg22 (Figures 2.4, 2.6, and 2.7). 

Release of Amino Acid from the Vacuole Is Essential for Viability as the Last Stage of 
Autophagy. 

The finding that Ape1 synthesis in the atg22Δ cells was severely but not completely 



 

 114

blocked in SMD-leucine (Figure 2.6) indicated there might be redundant leucine effluxers 

that could partially compensate for the defect.  At present, only Avt3/Avt4 and Avt6 have 

been identified as vacuolar amino acid effluxers in S. cerevisiae, and leucine has been 

shown to be a possible substrate of Avt3 and Avt4 (Sato et al., 1984). Analysis of both 

Ape1 and Prc1 protein synthesis and cell viability in avt3Δ avt4Δ and atg22Δ avt3Δ avt4Δ 

strains (Figure 2.7) suggested that all three proteins are redundant leucine effluxers and 

part of the same family of permeases.  In support of this finding, vacuolar amino acid 

analysis indicated an increase in leucine, isoleucine and tyrosine levels in the double and 

triple mutants (Figure 2.5).  We note that there is precedence for redundancy in vacuolar 

permeases; the Vba1, Vba2, and Vba3 proteins all seem to function in influx of basic 

amino acids (Shimazu et al., 2005). To examine the nature of this redundancy, we 

transformed the avt3Δ avt4Δ strain with a plasmid overexpressing the ATG22 gene under 

the control of the CUP1 promoter. Overexpression of Atg22, however, did not rescue the 

decrease in viability of the avt3Δ avt4Δ strain or rescue the defect in protein synthesis in 

medium lacking leucine (our unpublished data), suggesting that the functions of these 

permeases are not completely overlapping. Finally, these results verify the previously 

untested assumption that vacuolar amino acid efflux is essential for cell viability under 

starvation conditions. 

Breakdown of Autophagic Bodies is Kinetically Delayed in the atg22Δ Mutant. 

Although the steps of autophagy up to and including breakdown are essentially 

normal in the atg22Δ mutant, there is a partial accumulation of autophagic bodies. The 

present study, however, makes it clear that the atg22Δ mutant displays only a kinetic block 

in breakdown (Figure 2.2). One response of cells to long-term amino acid or nitrogen 
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starvation is the up-regulation of certain genes, including those for some autophagy-related 

proteins (such as Atg8) and vacuolar proteinases (such as Pep4, Prb1, and Prc1) (Gasch et 

al., 2000). Thus, the role of Atg22 as a leucine effluxer provides an explanation for an 

indirect effect on autophagic body breakdown.  The atg22Δ mutant will be limited for 

leucine in strains that are leu2 auxotrophs when incubated in starvation conditions.  As a 

result, proteins that are normally up-regulated during starvation will not be synthesized.  

The proteinases Pep4, Prb1, and Prc1 are critical for breakdown of autophagic bodies, and 

they are normally substantially induced during starvation.  The strain used by 

Suriapranata et al. (2000) as well as those used in the present study are leu2 mutants.  Thus, 

we propose that the inability to synthesize adequate levels of Pep4, Prb1, and Prc1, which 

are normally up-regulated approximately eight-, nine-, and sevenfold under nitrogen 

starvation, respectively (Gasch et al., 2000) (Figures 2.6 and 2.7), could account for the 

observed kinetic delay in autophagic body degradation. 

Recycling Model for Autophagy. 

When cells lack essential nutrients, autophagy is induced, which generates an internal 

nutrient pool to supply the missing components essential for survival (Kuma et al., 2004; 

Levine and Klionsky, 2004; Lum et al., 2005). However, there are no mechanistic data that 

specifically connect the breakdown process with subsequent cytosolic protein synthesis. In 

this study, using genetics and biochemical assays, we have provided this link by 

demonstrating that 1) Atg22 most likely functions as a leucine effluxer; and 2) vacuolar 

permeases mediate the connection between autophagy and its associated protein 

degradation, and maintenance of amino acid levels in the cytosol and hence protein 

synthesis levels. Thus, our study has allowed us to propose a “recycling” model that 
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includes the efflux of macromolecules from the vacuole as the final step of autophagy 

(Figure 2.8). 

The vacuole/lysosome is a highly complex organelle that is characterized as having an 

acidic lumen, and harboring a range of hydrolytic enzymes. These hydrolases are involved 

in the degradation of various substrates, and in concert with vacuolar permeases, they 

allow the homeostatic control of cytosolic nutrients used for anabolic and catabolic 

processes. Importantly, the vacuole it is not a “dead-end” compartment, and this study is 

the first report with the efflux process being defined as the final step of autophagy. 

 

 
 

Figure 2.8. Model for autophagy including the final step of amino acid efflux. Autophagy is 
depicted as occurring in five discrete stages as shown. Additional steps including cargo recognition, 
vesicle nucleation and retrieval of Atg proteins have been omitted for simplicity. See the text for a 
discussion of the role of efflux. 
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CHAPTER 4 

Dual Positive and Negative Regulatory Roles of the 
Cyclin-Dependent Kinase Pho85 Orchestrate Induction of 

Autophagy in Saccharomyces cerevisiae 

 

ABSTRACT 

As a major intracellular degradation pathway, autophagy is tightly regulated to 

prevent cellular dysfunction in all eukaryotic cells. The rapamycin-sensitive Tor kinase 

complex 1 is a major regulator of autophagy. Several other nutrient-sensory kinases also 

play critical roles to precisely modulate autophagy; however, the network of regulatory 

mechanisms remains largely elusive. We used genetic analyses to elucidate the mechanism 

by which the stress-responsive, cyclin-dependent kinase, Pho85 and its corresponding 

cyclins antagonistically modulate autophagy in Saccharomyces cerevisiae. When 

complexed with cyclins Pho80 and Pcl5, Pho85 negatively regulates autophagy through 

downregulating the protein kinase Rim15, and the transcription factors Pho4 and Gcn4. 

The cyclins Clg1, Pcl1 and Pho80, in concert with Pho85, positively regulate autophagy 

through promoting the degradation of Sic1, a negative regulator of autophagy that targets 

Rim15. Our results suggest a model in which Pho85 has opposing roles in autophagy 

regulation. 
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INTRODUCTION 

Eukaryotic cells confronted by various stresses in their intracellar and extracellular 

environment can initiate an adaptive response, autophagy, for survival (Levine and 

Klionsky, 2004). As a major intracellular degradation pathway, autophagy helps cells to get 

rid of long-lived proteins and damaged and/or unused organelles. Autophagy involves a 

dynamic rearrangement of subcellular membranes to sequester portions of cytoplasm into a 

double-membrane vesicle, termed an autophagosome, which is delivered to a degradative 

organelle, the vacule/lysosome, resulting in the breakdown of the contents, and finally, the 

resulting macromolecules are released back into the cytosol for recycling (Huang and 

Klionsky, 2007; Yang et al., 2006). Autophagy is an evolutionarily conserved pathway that 

occurs in all eukaryotic cells (Reggiori and Klionsky, 2002). In yeast, autophagy helps cells 

survive nutrients limitation; in mammalian cells, autophagy is implicated in many 

physiological events, such as development and differentiation, antiaging, cell growth 

control, cancer, and innate and adaptive immunity (Levine and Deretic, 2007; Levine and 

Klionsky, 2004). 

As an intracellular degradative pathway, autophagy is tightly regulated in order to 

prevent insufficient or excess levels, both of which are harmful for cells. The mechanism of 

autophagy regulation has been studied extensively. A schematic overview of the key 

components involved in autophagy regulation is depicted in Figure 4.1A. The target of 

rapamycin (Tor) signaling pathway plays a major role in regulating autophagy induction 

(Carrera, 2004). Tor proteins (Tor1 and Tor2) are conserved serine/threonine protein 

kinases, that are linked to nutritional controls, especially the availability of nitrogen, and 

they regulate many processes, including protein synthesis and autophagy. Tor proteins 
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form two functional distinct protein complexes, Tor complex 1 and 2 (TORC1 and TORC2) 

(Loewith et al., 2002). Only TORC1 has primary functions in autophagy, and is 

particularly sensitive to the drug rapamycin. In nutrient-rich conditions, TORC1 is active 

and inhibits autophagy; upon nutrient starvation, TORC1 is inhibited and autophagy is 

induced. Treatment with rapamycin can largely mimic nutrient starvation, inhibiting 

TORC1 and allowing the induction of autophagy (Noda and Ohsumi, 1998). However, in 

mammalian cells, rapamycin is a relatively poor inducer of autophagy (Takeuchi et al., 

2005). More recent data reveal that Torin, an ATP-competitive mTOR inhibitor, disrupts 

mTORC1-dependent phenotypes more completely than rapamycin (Thoreen et al., 2009). 

In addition to TORC1, other nutrient-regulated protein kinase signaling pathways are 

also implicated in autophagy regulation. For example, the Ras/cAMP-dependent protein 

kinase A (PKA) signaling pathway negatively regulates autophagy; constitutive activation 

of PKA prevents the induction of autophagy by rapamycin or nutrient starvation, whereas 

inactivation of PKA induces autophagy in rich conditions without rapamycin (Budovskaya 

et al., 2004; Schmelzle et al., 2004). Sch9 is a homologue of mammalian protein kinase B 

(PKB)/Akt or p70S6 kinase (Urban et al., 2007). Simultaneous inactivation of PKA and 

Sch9 triggers a stronger induction of autophagy that is seen with inactivation of just PKA, 

and the induction is independent of effects on TORC1; further inactivation of TORC1 

causes an additive effect on autophagy (Yorimitsu et al., 2007). These observations suggest 

a model in which TORC1, PKA and Sch9 cooperatively regulate autophagy, at least in part, 

in parallel. The Gcn2 kinase signaling pathway is also involved in the regulation of 

autophagy. In response to amino acid starvation, Gcn2 derepresses GCN4 mRNA 

translation. Gcn4 is a master transcriptional activator and initiates transcriptional induction 
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of nearly all amino acid biosynthetic genes (Hinnebusch, 2005). Moreover, 

rapamycin-induced TORC1 inactivition activates Gcn2 through dephosphorylation, 

leading to translational derepression of GCN4 mRNA (Cherkasova and Hinnebusch, 2003; 

Kubota et al., 2003). Upon loss of Gcn2 or Gcn4, autophagy is impaired (Talloczy et al., 

2002). 

Pho85, a yeast cyclin-dependent kinase (CDK), is structurally and functionally related 

to the mammalian kinase, CDK5. It has multiple functions and associates with ten different 

cyclin regulatory subunits, each of which potentially direct Pho85 to different target 

substrates. Thus, Pho85 in conjugation with different cyclins can discharge numerous 

biological functions, including phosphate metabolism, cell cycle control, cell polarity 

establishment, and the regulation of autophagy (Huang et al., 2007). Pho85 negatively 

regulates starvation-induced autophagy, antagonistically with a positive regulator of 

autophagy, Snf1, the closest yeast homologue of the mammalian AMP-activated protein 

kinase (AMPK) (Wang et al., 2001b). It is unknown, however, which potential cyclin(s) 

associates with Pho85 to negatively regulate autophagy (Wang et al., 2001b). 

Ten Pho85 cyclin (Pcl) partners were identified primarily through sequence homology 

and two-hybrid screens (Measday et al., 1997). Based on sequence alignment within a 

region called the “cyclin box”, they are grouped into two subfamilies: the Pcl1,2 subfamily 

(Pcl1, Pcl2, Pcl5, Pcl9 and Clg1) and the Pho80 family (Pho80, Pcl6, Pcl7, Pcl8, Pcl10). 

The Pho80-Pho85 complex signals a response to the stress of phosphate starvation. When 

inorganic phosphate is abundant, the Pho80-Pho85 kinase is active, phosphorylating and 

inactivating the transcription factor Pho4, maintaining Pho4 cytosolic localization, where it 

is unable to activate transcription of the phosphate acquisition genes. When inorganic 
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phosphate becomes limiting, the kinase activity of Pho80-Pho85 is inhibited, thereby 

allowing the activation of Pho4 and leading to the expression of genes that promote the 

survival response to phosphate starvation (Carroll and O'Shea, 2002). The Pho80-Pho85 

complex also negatively regulates cell entery into a quiescent state (G0) in response to 

nutrient availability, through direct phosphorylation and retention of Rim15 in the cytosol 

(Wanke et al., 2005). Rim15 is a protein kinase, which functions as a key controller of 

many aspects of the G0 program through its ability to integrate signaling from TORC1, 

PKA, Sch9 and Pho80-Pho85 pathways (Swinnen et al., 2006). Moreover, Rim15 is also 

required for the induction of autophagy that occurs upon inhibition of PKA and Sch9 

(Yorimitsu et al., 2007). Another well-studied ancillary partner of Pho85 is the cyclin Pcl5. 

Pcl5 targets Pho85 specifically to Gcn4, eventually causing the degradation of this 

transcription factor (Shemer et al., 2002). 

Cln1, Cln2 and Cln3 are G1-specific cyclins that associate with Cdc28, the major 

yeast CDK required for cell cycle progression (Bloom and Cross, 2007). Pho85 plays a role 

in the cell cycle when complexed with the related G1-specific cyclins, Pcl1, Pcl2 and Pcl9, 

which are expressed specifically in the G1 phase of the cell cycle (Tennyson et al., 1998). 

Pcl1,2-Pho85 complexes become essential in cells lacking Cln1 and Cln2 (Espinoza et al., 

1994; Measday et al., 1994). Most of the characterized Pho85 substrates that have a role in 

cell cycle progression are also substrates of Cdc28, such as Rga2 and Sic1. The 

GTPase-activating protein (GAP) Rga2 is one of the substrates of G1-specific forms of 

Pho85 and has a role in polarized growth (Sopko et al., 2007). Sic1 is a stoichiometric, 

cyclin-dependent kinase (CDK) inhibitor that specifically inhibits S phase Clb 

cyclin-containing Cdc28 kinase complexes, hence blocking the onset of S phase 
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(Mendenhall et al., 1995). This inhibition is removed after phosphorylation of Sic1 

followed by degradation (Deshaies and Ferrell, 2001). The major kinases involved in 

controlling Sic1 stability are the Cln-Cdc28 Cdks (Verma et al., 1997). However, Pho85 is 

also involved in this process because it phosphorylates Sic1 in vitro and prompts Sic1 

degradation in vivo (Nishizawa et al., 1998). A more recent study shows that Pho85 is 

required for cells arrested in G1 after DNA damage to return to cell cycle progression, 

through targeting Sic1 for degradation (Wysocki et al., 2006). However, at this point, it is 

still unclear which is the actual cyclin(s) of Pho85 required in vivo for the phosphorylation 

and destabilization of Sic1 (Carroll and O'Shea, 2002). 

A role of the CDK inhibitor in the regulation of autophagy is suggested by several 

studies in mammalian cells. p27, a mammalian CDK2-cyclin E inhibitor, has similar 

functions with the yeast CDK inhibitor Sic1, such as a role in orchestrating the G1/S 

transition, although they do not share significant sequence similarity (Bloom and Cross, 

2007). In cancer cells, overexpression of p27, or expression of a stabilized, active p27, 

induces autophagy (Komata et al., 2003; Liang et al., 2007). A recently identified small 

molecule (CpdA) stabilizes p27, in association with the induction of autophagy (Chen et al., 

2008). Nonetheless, overexpression of p27 or stabilization of p27 accompanies cell cycle 

arrest at G1. This raises a question as to whether p27 itself, or cell cycle arrest caused by 

p27 overexpression, contributes to the induction of autophagy. In fact, cell cycle arrest and 

autophagy share many similarities, but the precise correlation between G1 arrest and 

autophagy is still a matter of debate (Huang and Klionsky, 2007). More recent findings in 

mammalian cell culture show that autophagy occurs but is not required for entrance into G0 

arrest (Valentin and Yang, 2008). It is possible that autophagy and cell cycle arrest may 
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occur in parallel, or cell cycle arrest may induce autophagy. Using budding yeast as a 

model system may help to elucidate the mechanisms by which CDK inhibitors regulate 

autophagy.  

Here, we demonstrate the mechanism by which the Pho85 signaling pathway is 

involved in the control of autophagy. Our work implicates Pho85 as both a negative and a 

positive regulator of autophagy. We found that the yeast CDK inhibitor, Sic1, functions as a 

negative regulator of autophagy, which is opposite from the mammalian ortholog, p27. 

Results from physiological, genetic and biochemical studies reveal a model for the 

regulation of autophagy by Pho85 (Figure 4.1).  

 
Figure 4.1. Schematic overview of the key components in autophagy regulation. Arrows 
represent positive regulation; bars represent negative regulation. Cyclins Pho80, Clg1 and Pcl1 (not 
shown) form complexes with Pho85 to inhibit Sic1.  
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RESULTS 

Pho80 and Pcl5 are the cyclins of Pho85 that participate in the negative regulation of 
autophagy 

Although Pho85 serves as a negative regulator of autophagy (Wang et al., 2001b), it is 

unclear which Pho85 partner cyclin(s) may be involved, and the mechanism through which 

Pho85 exerts its effect. Pho80 directs Pho85 to inhibit Rim15 function, and Rim15 is 

needed for autophagy that is induced by PKA and Sch9 inactivation (Wanke et al., 2005; 

Yorimitsu et al., 2007). Pcl5 directs Pho85 to initiate the degradation of Gcn4, a protein 

required for both starvation- and rapamycin-induced autophagy (Shemer et al., 2002; 

Talloczy et al., 2002). Thus, Pho80 and Pcl5 are potential Pho85 cyclins involved in 

negative autophagy regulation. In order to measure the level of autophagy induction in the 

presence of PHO85 or cyclin knockouts, we used the Pho8∆60 assay (Noda et al., 1995), 

which measures autophagy-dependent activation of an altered alkaline phosphatase 

marker. 

Wild-type cells grown in rich medium displayed a basal level of Pho8∆60-dependent 

alkaline phosphatase activity, and rapamycin treatment increased the level of activity 

substantially (Figure 4.2A). In contrast, atg1∆ cells showed no increase after rapamycin 

treatment. In agreement with previous studies (Wang et al., 2001b), deletion of PHO85 

caused a markedly elevated activity of Pho8∆60 after rapamycin treatment, being ~40-50% 

higher than that of wild-type cells. As expected, upon rapamycin treatment, pho80∆ cells 

and pcl5∆ cells displayed a significant increase of Pho8∆60 activity, with values similar to 

that of pho85∆cells (Figure 4.2A). Thus, Pho80 and Pcl5 are cyclins of Pho85 that 

negatively regulate autophagy. Double deletion of both PHO80 and PCL5 resulted in 
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~80% higher activity of Pho8∆60 than that of wild-type cells, after rapamycin treatment, 

suggesting that Pho80-Pho85 and Pcl5-Pho85 kinase complexes have an additive effect on 

autophagy and presumably function in parallel pathways (Figure 4.1). 

As part of our effort to elucidate how Pho80-Pho85 and Pcl5-Pho85 negatively 

regulate autophagy, we wanted to determine which downstream targets might be involved. 

We first examined the role of downstream targets of Pho80-Pho85, Rim15 and Pho4. The 

corresponding higher increase of Pho8∆60 activity beyond the wild type level in 

pho80∆ cells depended to a large extent on the presence of Rim15 and Pho4 (Fig. 1C, 1D). 

However, deletion of RIM15 or PHO4 did not affect the increase of Pho8∆60 activity in 

pcl5∆ cells, in agreement with the fact that Rim15 and Pho4 are bona fide targets of 

Pho80-Pho85, but not Pcl5-Pho85 (Figure 4.1, 4.2B, 4.2C). Next, we examined the effect 

on autophagy of loss of Gcn4, a downstream target of Pcl5-Pho85. Knockout of GCN4 

significantly reduced the level of Pho8∆60 activity in pcl5∆ cells (Figure 4.2D). Together, 

these data suggested that the Pho80-Pho85 and Pcl5-Pho85 kinase complexes contribute 

appreciably to the negative regulation of autophagy, through their inhibitory roles on 

Rim15 and Pho4, and on Gcn4, respectively. Further analyses showed that compared to 

single rim15∆, pho4∆, or gcn4∆ mutants or the double pho4∆ gcn4∆ mutant, the triple 

rim15∆ pho4∆ gcn4∆ mutant displayed the lowest activity of Pho8Δ60, being ~50% 

relative to that of wild-type cells, after rapamycin treatment (Figure 4.2E), suggesting that 

Rim15, Pho4 and Gcn4 have partially additive effects on autophagy, and presumably 

regulate autophagy in parallel. 
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Figure 4.2. Pho80 and Pcl5 are the cyclins of Pho85 that participate in the negative regulation 
of autophagy. Cells expressing Pho8∆60 were grown in YPD to midlog phase and then treated 
with rapamycin for 4 h. The Pho8∆60 activity was measured as described in Supplemental 
Experimental Procedures, and was normalized to the activity of wild-type cells with rapamycin 
treatment, which was set to 100%. Error bars indicate the standard deviation (SD) of three 
independent experiments. Strains used were wild type (TN124), and atg1∆ (HAY572), and in (A) 
pho85∆ (ZFY089), pho80∆ (ZFY105), pcl5∆ (ZFY099) and pho80∆ pcl5∆ (ZFY128); in (B) 
rim15∆ (ZFY100), pho80∆ rim15∆ (ZFY102) and pcl5∆ rim15∆ (ZFY103); in (C) pho4∆ 
(ZFY135), pho4∆ pho80∆ (ZFY137) and pcl5∆ pho4∆ (ZFY143); in (D) gcn4∆ (ZFY111), gcn4∆ 
pcl5∆ (ZFY112); in (E) rim15∆ (ZFY100), pho4∆ (ZFY135), gcn4∆ (ZFY111), gcn4∆ pho4∆ 
(ZFY142) and gcn4∆ pho4∆ rim15∆ (ZFY175). 
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Sic1 functions as a negative regulator of autophagy 

In cancer cells, overexpression of a mammalian CDK inhibitor, p27, induces 

autophagy (Liang et al., 2007). A recently identified small molecule (CpdA) stabilizes p27, 

in association with the induction of autophagy (Chen et al., 2008). The yeast CDK inhibitor 

Sic1 is negatively regulated by Pho85 through phosphorylation (Nishizawa et al., 1998). 

To gain more insight into the mechanism by which this CDK inhibitor regulates autophagy, 

we decided to investigate the role of Sic1 in autophagy. 

 
 



 

 131

 
Figure 4.3. Sic1 functions as a negative regulator of autophagy. (A) and (B) Overexpression of 
Sic1 inhibits rapamycin- and nitrogen starvation-induced autophagy. (A) Wild-type (W3030-1B) 
cells expressing GFP-Atg8 (pCU-GFP-AUT7(414)) and expressing either 3HA-Sic1 (pZY011), or 
an empty vector (pTY006), were grown in SMD and shifted to SMGal for 12 h, and then subjected 
to either rapamycin treatment or starvation treatment (SG-N). At the indicated times, proteins were 
TCA-precipitated and subjected to immunoblotting with anti-YFP, anti-HA and anti-Pgk1 (loading 
control) antisera. Percentage of GFP-Atg8 processing was calculated as described in Supplemental 
Experimental Procedures. Error bars indicate the SD of three independent experiments. (B) 
Wild-type (ZFY202), atg1∆ (TYY181) and GAL1-SIC1 (ZFY203) cells expressing Pho8∆60 were 
grown in YPD and shifted to YPGal for 12 h, and were then treated with rapamycin or shifted to 
nitrogen starvation (SG-N) medium for 5 h. The Pho8∆60 activity was normalized to the activity of 
wild-type cells treated with rapamycin or nitrogen starved, which was set to 100%. Error bars 
indicate the SD of three independent experiments. (C) Overexpression of Sic1 inhibits delivery of 
GFP-Atg8 to the vacuole. Wild type (W303-1B), atg1∆ (TYY164), and GAL1-SIC1 (ZFY184) 
cells expressing GFP-Atg8 (pCU-GFP-AUT7(416)), were analyzed by fluorescence microscopy as 
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described in Supplemental Experimental Procedures. Bar, 5 μm. (D) Nonspecific autophagy is 
elevated upon deletion of SIC1. Wild-type (TN124), atg8∆ (YZX200) and sic1∆ (ZFY098) cells 
expressing Pho8∆60 were grown to midlog phase and treated with rapamycin, or shifted to nitrogen 
starvation conditions (SD-N). At the indicated times, the Pho8∆60 activity was measured, and it 
was normalized to the activity of wild-type cells with nitrogen starvation or rapamycin treatment 
for 4 h, which was set to 100%. Error bars indicate the SD of three independent experiments. (E) 
GFP-Atg8 processing is blocked by inactivation of Cdc28 and Cdc34. Wild type  (BY4742) and 
temperature-sensitive mutants cdc28-4ts (D4), cdc28-13ts (D13) and cdc34-2ts (MTY670) 
expressing GFP-Atg8 (pCU-GFP-AUT7(416)), were grown in 24°C or 38°C for 3 h, and shifted to 
nitrogen starvation medium or treated with rapamycin for 2 h. (F) The autophagic defect in the 
cdc28-4ts mutant is partially suppressed by deletion of SIC1. Wild-type  cells (BY4742) and 
temperature-sensitive mutants cdc28-4ts (D4), and cdc28-4ts sic1∆ (ZFY258) expressing GFP-Atg8 
(pCU-GFP-AUT7(416)), were grown at 24°C or 38°C for 3 h, and treated with rapamycin for 2 h. 
(E) and (F) TCA-precipitated proteins were subjected to immunoblotting with anti-YFP and 
anti-Pgk1 (loading control) antisera. 

 

We first asked whether overexpression of Sic1 would induce autophagy in yeast, 

using a GFP-Atg8 processing assay; Atg8 is associated with autophagosomes and, when 

delivered into the vacuole, GFP-Atg8 is hydrolyzed to yield free GFP, which thus reflects 

the level of autophagy (Shintani and Klionsky, 2004b). The wild-type strain was 

transformed with a plasmid expressing GFP-Atg8 and a plasmid expressing Sic1 driven by 

the GAL1 promoter, or an empty vector. After 12 h overexpression of Sic1 in 

galactose-containing medium, we found that no free GFP was detected in cells, suggesting 

that autophagy was not induced under this condition (Figure 4.3A, lanes 4 and 10). After 

rapamycin treatment or starvation for nitrogen, cells harboring the empty vector displayed 

free GFP, whereas the level of free GFP was substantially reduced in the cells 

overexpressing Sic1 (Figure 4.3A). Furthermore, overexpression of Sic1 resulted in a 

markedly reduced activity of Pho8∆60 after rapamycin treatment or following nitrogen 
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starvation (Figure 4.3B). A similar result was observed when we examined the effect of 

Sic1 overexpression on the delivery of GFP-Atg8 to the vacuole by fluorescence 

microscopy. Wild-type cells grown in SMGal displayed a prominent GFP-Atg8 punctum 

with a perivacuolar localization that corresponded to the phagophore assembly site (PAS; 

the organizing site for the autophagosome), as well as diffuse cytosolic staining (Figure 

4.3C). When shifted to SG-N, GFP-Atg8 could also be detected within the vacuole lumen. 

The atg1∆ mutant prevented the movement of GFP-Atg8 into the lumen. The 

overexpression of Sic1 also blocked movement of GFP-Atg8 into the vacuole lumen, 

indicating a defect in autophagy. Thus, these results suggested that the CDK inhibitor Sic1 

has an inhibitory role in the control of autophagy in yeast, which is opposite to the role of 

p27 in mammalian cells. Moreover, deletion of SIC1 caused a significantly elevated 

activity of Pho8∆60 after rapamycin treatment and a modest increase following starvation, 

compared to wild-type cells (Figure 4.3D). Taken together, our data indicated that Sic1 

functions as a negative regulator of autophagy in parallel with TORC1. 

Sic1 is controlled by ubiquitin-dependent protein degradation. Cln-Cdc28 can 

phosphorylate Sic1, which allows Sic1 to be specifically recognized by the F-box protein 

Cdc4. Cdc4, Cdc53 and Skp1 constitute a ubiquitin ligase complex (SCFCdc4) that 

cooperates with the ubiquitin-conjugating enzyme Cdc34 to promote the ubiquitination of 

Phospho-Sic1, leading to its degradation, and S phase entry (Feldman et al., 1997; Schwob 

et al., 1994). Sic1 accumulates in temperature-sensitive mutants such as cdc28 and cdc34, 

leading to cell cycle arrest at the G1 phase; whereas deletion of SIC1 allows cdc34 mutant 

to enter into S phase (Schneider et al., 1998; Schwob et al., 1994). To further examine the 

negative regulation of autophagy by Sic1, we decided to monitor this process in cdc28 and 
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cdc34 mutants that stabilize Sic1. Cells expressing GFP-Atg8 were grown at permissive 

temperature and then shifted to non-permissive temperature, followed by rapamycin 

treatment or nitrogen starvation. Wild-type cells displayed processing of GFP-Atg8 when 

autophagy was induced by either condition (Figure 4.3E). In contrast, cdc28-4tsand 

cdc28-13ts mutants displayed a significant defect in GFP-Atg8 processing at the 

non-permissive temperature (Figure 4.3E). cdc34-2ts mutant also displayed an autophagic 

defect at the non-permissive temperature when autophagy was induced by nitrogen 

starvation, but not rapamycin treatment (Figure 4.3E). We next addressed whether 

accumulation of Sic1 in these cdc mutants is responsible for the autophagic defect. We 

found that deletion of SIC1 in the cdc28-4ts mutant partially suppressed the defect in 

GFP-Atg8 processing at non-permissive temperature after rapamycin treatment (Figure 

4.3F).  Thus, these data suggested that autophagy is inhibited in these cdc mutants that are 

defective in Sic1 degradation and accumulate Sic1. 

Pho85 positively regulates autophagy 

Pho85 negatively regulates Sic1 (Nishizawa et al., 1998), and our data suggested that 

Sic1 is a negative regulator of autophagy. Thus, it was tempting to speculate that Pho85 

might promote autophagy through downregulation of Sic1, even though Pho85 is also a 

negative regulator of autophagy. Consistent with this idea, the level of autophagy induced 

by rapamycin treatment was higher in the double pho80∆ pcl5∆ mutant than in the single 

pho85∆ mutant (Figure 4.1). This result indicated that loss of PHO85 might have an 

inhibitory effect on autophagy when the Pho80 and Pcl5 cyclins that exert a negative effect 

are deleted (Figure 4.1). To test this hypothesis, we used the Pho8∆60 assay to monitor the 

induction of autophagy in pho80∆ pcl5∆ cells in the presence and absence of PHO85. 
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When treated with rapamycin, or after nitrogen starvation, pho80∆ pcl5∆ pho85∆ cells 

displayed ~1.5-fold lower activity of Pho8∆60 than that of pho80∆ pcl5∆ cells (Figure 

4.4A). This result suggested that Pho85 has a positive role in the induction of autophagy, at 

least in the pho80∆ pcl5∆ background. To further substantiate the premise that Pho85 

promotes autophagy, we chose a different genetic background, the gcn4∆ pho4∆ rim15∆ 

strain, lacking all three downstream targets of Pho80-Pho85 and Pcl5-Pho85 to negatively 

regulate autophagy (Figure 4.1). Again, we found that deletion of PHO85 decreased the 

level of autophagy, in this case in the gcn4∆ pho4∆ rim15∆ cells, particularly during 

nitrogen starvation (Figure 4.4B and 4.4C). 

Next, we decided to use a chemical genetics approach to eliminate potential 

confounding effects of the chronic pho85∆ mutation. We took advantage of a strain 

carrying a mutation in the ATP binding pocket of Pho85 (Pho85F82G). This mutant retains 

wild-type function but is rapidly inactivated when treated with the cell-permeable 

ATP-analogue inhibitor 1-Na-PP1 (Carroll et al., 2001). Cells expressing Pho85F82G were 

treated with or without 1-Na-PP1, followed by additional treatment with rapamycin to 

induce autophagy. Consistent with our previous finding that Pho85 is partly a negative 

regulator of autophagy, PHO85-F82G cells displayed an increase of Pho80∆60 activity 

when treated with both 1-Na-PP1 and rapamycin, compared to rapamycin alone (Figure 

4.4D). In contrast, PHO85-F82G pho80∆ pcl5∆ cells showed a decrease of Pho8∆60 

activity in the presence of 1-Na-PP1, in agreement with our result that loss of Pho85 

inhibited autophagy in the pho80∆ pcl5∆  background. Notably, 1-Na-PP1 treatment had 

essentially no effect on rapamycin-induced autophagy in wild-type cells. Taken together, 

we propose a model in which Pho85 has dual roles in autophagy regulation; that is, it is 
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both a negative and a positive regulator of autophagy (Figure 4.1). 
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Figure 4.4. Pho85 positively regulates autophagy. (A) Deletion of PHO85 suppresses autophagy 
in pho80∆ pcl5∆ cells. Wild-type (TN124), atg1∆ (HAY572), pho80∆ pcl5∆ (ZFY128) and 
pho80∆ pcl5∆ pho85∆ (ZFY172) cells were analyzed by the Pho8∆60 assay, as described in Figure 
2D. (B) and (C) Deletion of PHO85 suppresses autophagy in gcn4∆ pho4∆ rim15∆ cells. (B) 
gcn4∆ pho4∆ rim15∆ (ZFY152) and gcn4∆ pho4∆ pho85∆ rim15∆ (ZFY174) cells expressing 
GFP-Atg8 (pCU-GFP-AUT7(416)), were grown to midlog phase and shifted to nitrogen starvation 
medium or treated with rapamycin. At the indicated times, proteins were precipitated with TCA and 
resolved by SDS-PAGE followed by immunoblotting with anti-YFP and anti-Pgk1 (loading control) 
antisera. (C) Wild-type (TN124), atg1∆ (HAY572), pho85∆ (ZFY089), gcn4∆ pho4∆ rim15∆ 
(ZFY175) and gcn4∆ pho4∆ pho85∆ rim15∆ (ZFY177) cells expressing Pho8∆60 were analyzed 
by the Pho8∆60 assay, as described in Figure 2D. (D)Addition of the inhibitor 1-Na-PP1 to block 
Pho85F82G kinase activity partially suppressed autophagy in the background of pcl5∆ pho80∆, and 
further deletion of SIC1 relieved the autophagic defect that is seen upon loss of Pho85 activity. 
Wild-type (ZFY155), pho85-F82G (ZFY145), pho85-F82G atg1∆ (ZFY213), pho85-F82G pcl5∆ 
pho80∆ (ZFY215) and pho85-F82G pcl5∆ pho80∆ sic1∆ (ZFY214) cells expressing Pho8∆60, 
were grown in YPD to midlog phase, and treated (+) or untreated (–) for 1 h with 1-Na-PP1, 
followed by additionally treatment with rapamycin for 5 h to induce autophagy as indicated. 
Samples were collected and analyzed by the Pho8∆60 assay. The Pho8Δ60 activity in wild-type 
cells was normalized to the activity of wild-type cells treated with rapamycin alone, which was set 
to 100%. The Pho8Δ60 activity in the other four strains was normalized to the activity of 
pho85-F82G cells treated with rapamycin alone, which was set to 100%. Error bars indicate the SD 
of three independent experiments. * indicates a statistically non-significant difference (p > 0.05), 
*** indicates a statistically significant effect of 1-Na-PP1 versus untreated cells (p < 0.01) 

 

Pho85 inhibits Sic1 to positively regulate autophagy 

Having established a role of Pho85 as a positive regulator of autophagy, we decided to 

determine whether Sic1, which is a known Pho85 substrate, was the downstream target of 

Pho85 for autophagy induction. 1-Na-PP1 treatment caused a decrease in the level of 

autophagy that was induced by rapamycin in PHO85-F82G pho80∆ pcl5∆ cells (Figure 

4.4D). We further extended our analysis by examining the effect of deletion of SIC1. 
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Without 1-Na-PP1 treatment, there was a marked increase in the level of autophagy 

induced by rapamycin treatment in PHO85-F82G pho80∆ pcl5∆ sic1∆ cells (Figure 4.4D), 

with approximately 1.25-fold higher activity of Pho8∆60 than in PHO85-F82G pho80∆ 

pcl5∆ cells. This result suggested that Pho80-Pho85, Pcl5-Pho85, and Sic1, at least in part, 

negatively regulate autophagy in parallel pathways. When treated with 1-Na-PP1 followed 

by rapamycin, the PHO85-F82G pho80∆ pcl5∆ sic1∆cells did not display any decrease in 

the activity of Pho8∆60, compared to rapamycin treatment alone (Figure 4.4D). This result 

suggested that the deletion of SIC1 in the PHO85-F82G pho80∆ pcl5∆ cells suppressed the 

inhibition of autophagy that was caused by inactivation of Pho85 after addition of 

1-Na-PP-1.  

To further confirm our chemical genetics data, we utilized a complementary approach. 

Instead of using mutants, we decided to overexpress Pho85 and/or Sic1. To this end, we 

first examined the effect caused by overexpression of Pho85 alone. GAL1::HIS3 

chromosomal tagging was used to replace the endogenous PHO85 promoter. After 12 h 

overexpression of Pho85 in galactose-containing medium, GFP-Atg8 was processed in 

nutrient-rich conditions even without rapamycin treatment (Figure 4.5A), although the 

level of autophagy induction was low. Additional deletion of PHO80 and PCL5, increased 

the level of free GFP by ~30-40%, which further confirmed the view that Pho80-Pho85 and 

Pcl5-Pho85 negatively regulate autophagy. Deletion of ATG1 completely abolished the 

induction of autophagy upon overexpression of Pho85, indicating that the induction was 

Atg1-dependent. A similar result was observed when we examined the effect of Pho85 

overexpression on the delivery of GFP-Atg8 to the vacuole by fluorescence microscopy 

(Figure 4.5B). We then extended our analysis to examine the ability of Pho85 to induce 
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autophagy by using the quantitative Pho8∆60 assay. Overexpression of Pho85 caused a 

significant induction of autophagy in pho80∆ pcl5∆ GAL1-PHO85 cells, with 

approximately 2-fold higher activity of Pho8∆60 than that of pho80∆ pcl5∆ cells (Figure 

4.5C, open bars). After additional treatment with rapamycin, the activity of Pho8∆60 

dramatically increased, being ~40-50% higher than that of pho80∆ pcl5∆ cells (Figure 

4.5C, closed bars). Taken together, these results further supported the model that Pho85 has 

dual roles in autophagy regulation. 

Next, we examined the effect of overexpressing Sic1 or both Pho85 and Sic1. We 

again used the pho80∆ pcl5∆mutant to simplify the analysis by removing these two 

Pho85-mediated negative regulation pathways (Figure 4.1). To this end, the pho80∆ pcl5∆ 

cells and pho80∆ pcl5∆ GAL1-PHO85 cells were co-transformed with a plasmid 

expressing GFP-Atg8, and a plasmid allowing galactose-inducible expression of SIC1, or 

an empty vector. As expected, after 12 h in galactose-containing medium, in pho80∆ pcl5∆ 

GAL1-PHO85 cells containing an empty vector, autophagy was induced without any 

additional treatment (Figure 4.5D, lane 2); whereas treatment with rapamycin or nitrogen 

starvation resulted in a significantly elevated level of free GFP (Figure 4.5D, compare lane 

5 to 6, and 9 to 10). Sic1 overexpression inhibited autophagy induction (Figure 4.5D, 

compare lane 5 to 7, and 9 to 11). In contrast, when both Sic1 and Pho85 were 

overexpressed, the inhibition of autophagy caused by Sic1 overexpression was abolished 

(Figure 4.5D, compare lane 3 to 4, 7 to 8, and 11 to 12). Taken together, we infer that Pho85 

targeted the CDK inhibitor Sic1 for degradation to relieve the inhibitory effect of Sic1 

overexpression on autophagy, hence promoting autophagy induction. 
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Figure 4.5. Overexpression of Pho85 induces autophagy and relieves the inhibitory effect of Sic1 
overexpression on autophagy. (A), (B) and (C) Overexpression of Pho85 induces autophagy. (A) 
and (B) Wild-type (W3030-1B), pcl5∆ pho80∆ (ZFY207), GAL1-PHO85 (ZFY209), pcl5∆ 
pho80∆ GAL1-PHO85 (ZFY208), atg1∆ pcl5∆ pho80∆ GAL1-PHO85 (ZFY217), clg1∆ pcl5∆ 
pho80∆ GAL1-PHO85 (ZFY246) and pcl5∆ pho80∆ rim15∆GAL1-PHO85 (ZFY216) cells 
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expressing GFP-Atg8 (pCU-GFP-AUT7(416)), were grown in SMD and shifted to SMGal for 12 h. 
In (A), cells that were grown in SMD (–) or SMGal (+) were collected and subjected to 
immunoblotting, as described in Figure 2A. In (B), cells that were grown in SMGal were analyzed 
by fluorescence microscopy as described in Supplemental Experimental Procedures. Bar, 2.5 μm. 
(C) Wild type (ZFY202), pcl5∆ pho80∆ (ZFY206), GAL1-PHO85 (ZFY224), pcl5∆ pho80∆ 
GAL1-PHO85 (ZFY225) and atg1∆ pcl5∆ pho80∆ GAL1-PHO85 (ZFY227) cells were grown in 
YPD and shifted to YPGal for 12 h, then treated with rapamycin for 5 h and analyzed by the 
Pho8∆60 assay. Values were normalized to the activity of wild-type cells with rapamycin treatment, 
which was set to 100%. Error bars indicate the SD of three independent experiments. (D) In pcl5∆ 
pho80∆ cells, overexpression of Pho85 suppresses the autophagic defect resulting from Sic1 
overexpression. pcl5∆ pho80∆ (ZFY207) and pcl5∆ pho80∆ GAL1-PHO85 (ZFY208) cells were 
analyzed by the GFP-Atg8 processing assay, as described in Figure 2A. 

 

Clg1 targets Pho85 to antagonize Sic1 inhibition of autophagy 

Having established the positive regulatory role of Pho85 in autophagy, we sought to 

determine which particular Pho85 cyclin(s) may be involved. A pcl6∆ pcl7∆ double mutant 

displays normal induction of autophagy (Wang et al., 2001c). By using the Pho8∆60 assay, 

we found essentially normal induction of autophagy in pcl8∆, pcl10∆ or pcl8∆ pcl10∆ 

double mutant cells (Figure 4.6A). Similarly, pcl1∆, pcl2∆, pcl9∆ or triple pcl1∆ pcl2∆ 

pcl9∆ cells did not display any discernable difference in Pho8∆60 activity relative to 

wild-type cells (Figure 4.6B, 4.7A). We then turned to the cyclin Clg1, which belongs to 

the Pcl1,2 subfamily; the role of Clg1 has not yet been clearly characterized. When treated 

with rapamycin, cells deleted for CLG1 displayed a significant reduction in Pho8∆60 

activity, being ~30% lower than that of wild-type cells (Figure 4.7A). This result suggested 

that Clg1 is a potential cyclin of Pho85 to positively regulate autophagy. When autophagy 

was induced by nitrogen starvation, however, clg1∆ cells displayed no appreciable 
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Figure 4.6. Deletion of PCL8, PCL10, PCL1, PCL2 or PCL9 reveals a minor effect on 
autophagy. In (A), Wild-type (TN124), atg1∆ (HAY572), pcl8∆ (ZFY178), pcl10∆ (ZFY179) and 
pcl8∆ pcl10∆ (ZFY180) cells; and in (B), Wild-type (TN124), atg1∆ (HAY572), pcl1∆ (ZFY121), 
pcl2∆ (ZFY130), pcl9∆ (ZFY139) and pcl1∆ pcl2∆ pcl9∆ (ZFY129) cells, were analyzed by the 
Pho8∆60 assay, as described in Figure 2D.  

 

difference in Pho8∆60 activity compared to the wild type although further deletion of 

PCL1, PCL2 and PCL9 significantly reduced the level of autophagy (Fig. 5A). When 

autophagy was induced by overexpression of Pho85, deletion of CLG1 significantly 

reduced the level of free GFP by ~70-80% (Figure 4.7C). Similarly, there was a reduction 

in the delivery of GFP-Atg8 to the vacuole (Figure 4.5B). These results suggested that 

Clg1 is a major cyclin that targets Pho85 to positively regulate autophagy, whereas Pcl1, 

Pcl2 and Pcl9 might function redundantly with Clg1 in autophagy regulation. To test the 
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possibility that the autophagic defect seen in clg1∆ and clg1∆ pcl1∆ pcl2∆ pcl9∆ cells was 

due to the accumulation of Sic1, we decided to examine the stability of protein A 

(PA)-tagged Sic1 in the presence of PHO85 or cyclin knockouts. Deletion of PHO85 

largely stabilized PA-Sic1 (Figure 4.7B), in agreement with previous studies (Nishizawa et 

al., 1998). Although single deletion of CLG1, PCL1, PCL2 or PCL9 did not appreciably 

stabilize PA-Sic1, triple knockout pcl1∆ pcl2∆ pcl9∆ cells and quadruple knockout clg1∆ 

pcl1∆ pcl2∆ pcl9∆ cells displayed an approximately 2-fold and 2.5-fold higher amount of 

PA-Sic1, respectively, compared to wild-type cells (Figure 4.7B). These results suggested 

that Clg1, Pcl1, Pcl2 and Pcl9 might be functionally redundant cyclins of Pho85 to promote 

Sic1 degradation. 

To further assess whether Clg1-Pho85 regulates autophagy through targeting Sic1 for 

degradation, we examined the phenotypes associated with co-overexpression of Sic1 and 

Clg1. pho80∆ pcl5∆ cells bearing a plasmid expressing Sic1 driven by the GAL1 promoter 

displayed a slow growth phenotype on a galactose-containing plate, compared to vector 

alone; whereas Clg1 overexpression partially suppressed the slow growth phenotype 

resulting from overexpression of Sic1 (Figure 4.7D). We then asked whether 

overexpression of Clg1 suppressed the inhibition of autophagy caused by Sic1 

overexpression. After 12 h in galactose-containing medium followed by treatment with 

rapamycin or nitrogen starvation, a pho80∆ pcl5∆ GAL1-CLG1 strain overexpressing both 

Clg1 and Sic1, displayed a substantially greater level of free GFP than the pho80∆ pcl5∆ 

strain overexpressing Sic1 alone (Figure 4.7E, compare lane 7 to 8, and 11 to 12). A similar 

result was observed when we examined the effect of combined overexpression of Clg1 and 

Sic1on the delivery of GFP-Atg8 to the vacuole by fluorescence microscopy (Figure 4.8). 
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Thus, Clg1-Pho85 potentially targets Sic1 for degradation to relieve inhibition of 

autophagy caused by Sic1 overexpression. 
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Figure 4.7. Clg1 targets Pho85 to antagonize Sic1 inhibition of autophagy. (A) Deletion of 
CLG1 inhibits autophagy induced by rapamycin treatment. Wild-type (TN124), atg1∆ (HAY572), 
clg1∆ (ZFY182), pcl1∆ pcl2∆ pcl9∆ (ZFY129) and clg1∆ pcl1∆ pcl2∆ pcl9∆ (ZFY183) cells were 
analyzed by the Pho8Δ60 assay, as described in Figure 2D. (B) Sic1 stability is regulated by Pho85 
and its cyclins Clg1, Pcl1, Pcl2 and Pcl9. Wild-type (W303-1B), pho85∆ (ZFY088), clg1∆ 
(ZFY228), pcl1∆ (ZFY229), pcl2∆(ZFY230), pcl9∆(ZFY231), pcl1∆ pcl2∆ pcl9∆(ZFY234), 
clg1∆ pcl1∆ pcl2∆ pcl9∆ (ZFY235) and pcl5∆ pho80∆ (ZFY207) cells, expressing a CUP1 
promoter driven, N-terminal 3×protein A (PA) tagged Sic1 (pZY041), were grown to early log 
phase (OD600 = 0.5-0.6). Immunoblotted proteins were detected with a purified antibody (to detect 
protein A), and anti-Adh1 antiserum (as a loading control). Band intensities of PA-Sic1 and Adh1 
were quantified as described in Supplemental Experimental Procedures. The relative amount of 
PA-Sic1 in wild-type cells was set to 1 as reference, and error bars indicate the SD of three 
independent experiments. (C) Deletion of CLG1 inhibits autophagy induced by overexpression of 
Pho85 in pcl5∆ pho80∆ cells. Wild-type (W3030-1B), pcl5∆ pho80∆ (ZFY207), GAL1-PHO85 
(ZFY209), pcl5∆ pho80∆ GAL1-PHO85 (ZFY208) and clg1∆ pcl5∆ pho80∆ GAL1-PHO85 
(ZFY246) cells were analyzed by the GFP-Atg8 processing assay, as described in Figure 4A. (D) In 
pcl5∆ pho80∆ cells, overexpression of Clg1 partially suppresses the slow growth phenotype 
resulting from overexpression of Sic1 wild-type but not the degradation-resistant mutant, Sic1-∆3P. 
pcl5∆ pho80∆ (ZFY207) and pcl5∆ pho80∆ GAL1-CLG1 (ZFY220) cells bearing either 3HA-Sic1 
(pZY011), 3HA- Sic1-∆3P (pZY016), or an empty vector (pTY006), were spotted in serial 10-fold 
dilutions on plates containing galactose and incubated at 30°C for 72 h. (E) and (F) In pcl5∆ 
pho80∆ cells, overexpression of Clg1 partially suppresses the autophagic defect resulting from 
overexpression of wild-type Sic1 but not the degradation-resistant mutant, Sic1-∆3P. pcl5∆ pho80∆ 
(ZFY207) and pcl5∆ pho80∆ GAL1-CLG1 (ZFY220) cells expressing either 3HA-Sic1 (pZY011), 
3HA- Sic1-∆3P (pZY016), or an empty vector (pTY006), were analyzed by the GFP-Atg8 
processing assay, as described in Figure 2A.    

 

An in vivo phosophorylation study suggests that Pho85 phosphorylates one of the 

consensus sites (Thr5) of Sic1, and at least one of another two sites (Val33 and Ser76), for 

efficient degradation of Sic1 (Nishizawa et al., 1998). To further clarify the mechanism of 

Clg1-Pho85 in the destabilization of Sic1, we generated a mutant version of Sic1, Sic1-∆3P 

(T5A, T33V, and S76A). This mutant has a severe ubiquitination defect and is largely 
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stabilized; overexpression of Sic1-∆3P driven by the GAL1 promoter strongly inhibits cell  

 
Figure 4.8. Overexpression of Clg1 suppresses Sic1 inhibition of autophagy. pcl5∆ pho80∆ 
(ZFY207) and pcl5∆ pho80∆ GAL1-CLG1 (ZFY220) cells expressing GFP-Atg8 
(pCU-GFP-AUT7(414)) and either 3HA-Sic1 (pZY011), 3HA- Sic1-∆3P (pZY016), or an empty 
vector (pTY006), were analyzed by fluorescence microscopy, as described in Supplemental 
Experimental Procedures. Bar, 2.5 μm.  
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growth (Verma et al., 1997). As expected, overexpression of Sic1-∆3P strongly inhibited 

cell proliferation in both wild-type cells and GAL1-CLG1 cells (Figure 4.7D). Moreover, 

overexpression of Clg1 failed to suppress the autophagic defect when Sic1-∆3P was 

overexpressed (Figure 4.7F and 4.8), suggesting that Sic1 is degraded in a Clg1-dependent 

manner, and that this degradation requires phosphorylation of Sic1. Taken together, these 

results let us propose a model in which the Clg1-Pho85 kinase complex (as well as 

Pcl1/2/9-Pho85) targets Sic1 for degradation, exerting a positive regulatory effect on 

autophagy induction (Figure 4.1). 

Phosphorylation of Sic1 by Pho85 associated with Clg1, Pcl1 and Pho80 

When complexed with Pcl1, Pho85 phosphorylates Sic1 in vitro (Nishizawa et al., 

1998), although there is no evidence to show that Pcl1 is the actual cyclin required in vivo 

for the phosphorylation and hence destabilization of Sic1. Based on our model that the 

Clg1-Pho85 kinase complex exerts a positive regulatory effect on autophagy through 

destabilizing Sic1, we decided to examine whether this complex is able to directly 

phosphorylate Sic1 in an in vitro phosphorylation assay. Pho85 associates with its cyclin 

partners and hence should co-immunoprecipitate with them (Measday et al., 1997). 

Immunoprecipitated HA-tagged Clg1 obtained from PHO85 cells but not from pho85∆ 

cells phosphorylated Sic1, indicating specific phosphorylation by the Clg1-Pho85 complex 

(Figure 4.9A). As our genetic data suggested that Clg1 is not the sole cyclin that targets 

Pho85 to positively regulate autophagy, we decided to extend our in vitro phosphorylation 

analysis to cyclins Pcl1, Pcl2, Pcl9, Pho80 and Pcl5. Consistent with the result from 

Nishizawa et al. (1998), immunoprecipitated HA-tagged Pcl1, but not Pcl2, obtained from 

PHO85 cells but not from pho85∆ cells, phosphorylated Sic1 in vitro (Figure 4.9A and  
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Figure 4.9. Clg1, Pcl1 and Pho80 are cyclin partners of Pho85 for Sic1 phosphorylation. (A) 
In vitro phosphorylation of T5, T33 and S76 in Sic1 by Clg1, Pcl1 and Pho80-associated Pho85 
complexes. GST-Sic1 (pZY037) and GST-Sic1-∆3P (pZY040), expressed and purified from E.coli, 
were used as substrates in in vitro kinase assay using immunoprecipitated HA-tagged Clg1 
(pZY017), Pcl1 (pZY018), and Pho80 (pZY022) from wild-type (W303-1B) or pho85∆ (ZFY088) 
cells. As a negative control, the antibody was not added (-) to the reaction. Phosphorylated proteins 
were detected by autoradiography (top) and the protein input was shown by Coomassie Blue 
staining (bottom). (B) The immunoprecipitates used in (A) were analyzed for the presence of 
HA-cyclin by immunoblotting using anti-HA antibody. (C) and (D) Overexpression of Clg1, Pcl1 
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or Pho80 reduced the abundance of overexpressed Sic1 wild type, but not the Sic1-Δ3P mutant, and 
suppressed the inhibitory effect of overexpression of wild-type Sic1, but not Sic1-∆3P, on 
autophagy. pcl5∆ pho80∆ (ZFY255), pcl5∆ pho80∆ GAL1-3HA-SIC1 (ZFY256) and pcl5∆ 
pho80∆ GAL1-3HA-SIC1-Δ3P (ZFY257) cells expressing either 3HA-Clg1 (pZY017), 3HA-Pcl1 
(pZY018), 3HA-Pho80 (pZY022) or an empty vector (pTY006), were grown in SMD and shifted 
to SMGal for 12 h. In (C), samples were collected and analyzed by immunoblotting using anti-HA 
and anti-Pgk1 (loading control) antisera; in (D) cells were shifted to SG-N and analyzed by the 
Pho8∆60 assay. Values were normalized to the activity of ZFY255 cells bearing pTY006, and 
subjected to nitrogen starvation, which was set to 100%. Error bars indicate the SD of three 
independent experiments. 

 

4.10A). Phosphorylated Sic1 was also obtained with Pho80 (Figure 4.9A); however, we 

could not detect phosphorylation of Sic1 by immunoprecipitated HA-tagged Pcl9 or Pcl5 

in vitro (Figure 4.10A). Further analysis demonstrated that the Clg1-Pho85, Pcl1-Pho85 or 

Pho80-Pho85-mediated phosphorylation of Sic1 was significantly reduced by the 

introduction of the T5A, T33V, and S76A mutations (Sic1-∆3P) (Figure 4.9A), suggesting 

that T5, T33 and/or S76 are the Pho85 targets in vitro (notably, the residual 

phosphorylation level in Sic1-∆3P suggests the presence of an additional site(s) in Sic1 that 

may be targets in vitro by Pho85). Taken together, our data suggested that the Pho85 

cyclins Clg1, Pcl1 and Pho80 contribute to the kinase activity of Pho85 towards the T5, 

T33 and/or S76 sites on Sic1.  

To assess the relevance of Sic1 phosphorylation by Clg1-, Pcl1- and Pho80-associated 

Pho85 complexes in vivo, we assayed the effects of overexpression of these cyclins on the 

stability of Sic1 or Sic1-∆3P, and hence the effect on autophagy. pcl5∆ pho80∆ cells 

bearing chromosomally integrated GAL1 promotor-driven HA-tagged Sic1 or Sic1-∆3P, 

were transformed with a plasmid expressing GAL1 promotor-driven HA-tagged Clg1, Pcl1, 

Pcl2, Pcl9, Pho80 or Pcl5, or an empty vector. Although all of the various cyclin-CDK 
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Figure 4.10. Pcl9, Pcl2 and Pcl5 are not cyclin partners of Pho85 for Sic1 phosphorylation. (A) 
Immunoprecipitated Pcl9-, Pcl2- and Pcl5-associated Pho85 complexes do not phosphorylate Sic1 
in vitro. GST-Sic1 (pZY037) and GST-Sic1-Δ3P (pZY040), expressed and purified from E.coli, 
were used as substrates in in vitro kinase assay using immunoprecipitated HA-tagged Pcl9 
(pZY021), Pcl2 (pZY019), or Pcl5 (pZY020) from wild-type (W303-1B) or pho85∆ (ZFY088) 
cells. As a negative control, the antibody was not added (-) to the reaction. Phosphorylated proteins 
were detected by autoradiography (top) and the protein input was shown by Coomassie Blue 
staining (bottom). (B) The immunoprecipitates used in (A) were analyzed for the presence of 
HA-cyclin by immunoblotting using anti-HA antibody. (C) Overexpression of Pcl9, Pcl2 or Pcl5 
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does not affect the abundance of overexpressed Sic1 wild type or the Sic1-Δ3P mutant. pcl5∆ 
pho80∆ GAL1-3HA-SIC1 (ZFY256) and pcl5∆ pho80∆ GAL1-3HA-SIC1-∆3P (ZFY257) 
expressing either 3HA-Pcl9 (pZY021), 3HA-Pcl2 (pZY019), 3HA-Pcl5 (pZY020) or an empty 
vector (pTY006), were grown in SMD and shifted to SMGal for 12 h, and were analyzed by 
immunoblotting using anti-HA and anti-Pgk1 (loading control) antisera. (D) Overexpression of 
Pcl9, Pcl2 or Pcl5 does not suppress the inhibitory effect of overexpression of Sic1 wild type, or the 
Sic1-Δ3P mutant, on autophagy. pcl5∆ pho80∆ (ZFY255), ZFY256 and ZFY257 bearing either 
pZY021, pZY019, pZY020 or pTY006, were grown in SMD and shifted to SMGal for 12 h, then 
shifted to SG-N for 5 h, and analyzed by the Pho8∆60 assay. Values were normalized to the activity 
of ZFY255 cells bearing pTY006, and subjected to nitrogen starvation, which was set to 100%. 
Error bars indicate the SD of three independent experiments. 

 

complexes displayed similar stability (Figure 4.9B and 4.10B), after 12 h in 

galactose-containing medium, cells that overexpressed Sic1 alone accumulated Sic1, 

whereas cells that additionally overexpressed Clg1, Pcl1 or Pho80, but not Pcl9, Pcl2 or 

Pcl5, displayed a markedly reduced level of Sic1 (Figure 4.9C and 4.10C). Furthermore, 

the defect of nitrogen starvation-induced autophagy caused by overexpression of Sic1 was 

almost completely abolished by overexpression of Clg1, Pcl1 or Pho80, but not Pcl9, Pcl2 

or Pcl5 (Figure 4.9D and 4.10D). In contrast, in the cells that overexpressed Sic1-∆3P, the 

level of Sic1-∆3P did not decrease appreciably when combined with overexpression of 

Clg1, Pcl1 or Pho80 (Figure 4.9C). Correspondingly, these cells were unable to relieve the 

autophagic defect caused by accumulation of Sic1-∆3P (Figure 4.9D). Taken together, the 

above results suggested that Pho85 forms complexes with cyclins Clg1, Pcl1 and Pho80 to 

directly phosphorylate T5, T33 and/or S76 of Sic1, and hence promote autophagy by 

targeting Sic1 for degradation. 
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Rim15 is a downstream target of Sic1 

To better understand how Sic1 negatively regulates autophagy, we decided to identify 

which downstream effectors of Sic1 might be involved in autophagy regulation. The data 

presented above suggested that Pho80-Pho85, Pcl5-Pho85, and Sic1, at least in part, 

negatively regulate autophagy in parallel pathways. If this is true, one would expect to see 

that loss of the three downstream targets of Pho80-Pho85 and Pcl5-Pho85 (Figure 4.1) 

would not suppress the upregulation of autophagy that was seen in the sic1∆ mutant. When 

treated with rapamycin, deletion of PHO4 had little, if any, effect on Pho8∆60 activity in 

sic1∆ cells (Figure 4.11A). In contrast, deletion of RIM15 or GCN4 resulted in a dramatic 

decrease in the Pho8∆60 activity of sic1∆ cells (Figure 4.11A). This result suggested that 

Rim15 and/or Gcn4, but not Pho4, might be downstream targets of Sic1.  

We reasoned that if Sic1 inhibits autophagy through downregulating Rim15 and/or 

Gcn4, then overexpression of Sic1 in mutants lacking Rim15 or Gcn4 would not 

exaggerate the defect in autophagy. To this end, the GAL1 promoter was integrated at the 

SIC1 locus to allow conditional overexpression of SIC1 in wild-type, rim15∆, pho4∆ and 

gcn4∆ cells. With rapamycin or nitrogen starvation, the level of free GFP processed from 

GFP-Atg8 was significantly reduced upon overexpression of Sic1 in wild-type, pho4∆ and 

gcn4∆ cells (Figure 4.11B). In contrast, in rim15∆ cells, there was no discernable 

difference in GFP-Atg8 processing between the presence and absence of Sic1 

overexpression (Figure 4.11B). Furthermore, overexpression of Sic1 resulted in a 

markedly reduced activity of Pho8∆60 that was induced by nitrogen starvation, in 

wild-type, pho4∆ and gcn4∆ cells, but not rim15∆ cells (Figure 4.11C). Notably, deletion 

of RIM15, PHO4 or GCN4 does not affect the stability of Sic1 (Figure 4.11D). Thus, these  
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Figure 4.11. Rim15 is a downstream target of Sic1. (A) Deletion of RIM15 or GCN4, but not 
PHO4, suppresses the upregulation of autophagy in sic1∆ cells. Wild-type (TN124), atg1∆ 
(HAY572), sic1∆ (ZFY098), pho4∆ (ZFY135), pho4∆ sic1∆ (ZFY141), rim15∆ (ZFY100), 
rim15∆ sic1∆ (ZFY116), gcn4∆ (ZFY111) and gcn4∆ sic1∆ (ZFY115) cells were analyzed by the 
Pho8∆60 assay, as described in Figure 2D. (B) and (C) Overexpression of Sic1 inhibits autophagy 
in wild-type, pho4∆ and gcn4∆ cells, but not rim15∆ cells. (B) Wild type (W303-1B), rim15∆ 
(ZFY132), pho4∆ (ZFY170), gcn4∆ (ZFY131), GAL1-SIC1 (ZFY184), rim15∆GAL1-SIC1 
(ZFY187), pho4∆ GAL1-SIC1 (ZFY188) and gcn4∆ GAL1-SIC1 (ZFY185) cells were analyzed by 
the GFP-Atg8 processing assay, as described in Figure 2A. (C) Wild-type (ZFY202), rim15∆ 
(ZFY204), pho4∆ (ZFY252), gcn4∆ (ZFY251), GAL1-SIC1 (ZFY203), rim15∆ GAL1-SIC1 
(ZFY249), pho4∆ GAL1-SIC1 (ZFY250) and gcn4∆ GAL1-SIC1 (ZFY248) cells were analyzed by 
the Pho8∆60 assay, as described in Figure 2B. The difference of the Pho8∆60 activity between the 
absence and presence of Sic overexpression was normalized to the difference in wild-type cells 
treated with nitrogen starvation, which was set to 100%. Error bars indicate the SD of three 
independent experiments. (D) Deletion of RIM15, PHO4 or GCN4 does not affect the stability of 
Sic1. Wild type (W303-1B), rim15∆ (ZFY132), pho4∆ (ZFY170), gcn4∆ (ZFY131), 
GAL1-3HA-SIC1 (ZFY184), rim15∆ GAL1-3HA-SIC1 (ZFY187), pho4∆ GAL1-3HA-SIC1 
(ZFY188) and gcn4∆ GAL1-3HA-SIC1 (ZFY185) cells, were grown to early log phase (OD600 = 
0.5-0.6). Immunoblotted proteins were detected with anti-HA and anti-Pgk1 (loading control) 
antisera. (E) and (F) Overexpression of Rim15 partially suppresses the inhibitory effect of Sic1 
overexpression on autophagy. (D) Wild-type (W303-1B), GAL1-RIM15 (ZFY192), GAL1-SIC1 
(ZFY184) and GAL1-SIC1 GAL1-RIM15 (ZFY193) cells were analyzed by the GFP-Atg8 
processing assay, as described in Figure 2A. (E) Wild-type (ZFY202), GAL1-RIM15 (ZFY253), 
GAL1-SIC1 (ZFY203) and GAL1-SIC1 GAL1-RIM15 (ZFY254) cells were analyzed by the 
Pho8∆60 assay, as described in Figure 2B. (G) Deletion of RIM15 blocks the induction of 
autophagy upon overexpression of Pho85 in pcl5∆ pho80∆ cells. Wild-type (W3030-1B), pcl5∆ 
pho80∆ (ZFY207), GAL1-PHO85 (ZFY209), pcl5∆ pho80∆ GAL1-PHO85 (ZFY208) and pcl5∆ 
pho80∆ rim15∆ GAL1-PHO85 (ZFY216) cells were analyzed by the GFP-Atg8 processing assay, 
as described in Figure 4A. 

 

results indicated that Rim15, but not Gcn4, might be a downstream target of Sic1. 

To further examine this possibility, we generated a strain in which the GAL1 promoter 

was integrated in front of both RIM15 and SIC1. When cells were shifted to nitrogen 
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starvation, the percentage of GFP-Atg8 processing was dramatically increased in cells 

co-overexpressing Rim15 and Sic1, being ~2.5-fold higher than that of cells 

overexpressing Sic1 alone (Figure 4.11E, compare lane 11 to 12). Furthermore, the level of 

Pho8Δ60 activity was significantly elevated (~2-fold increase) in cells co-overexpressing 

Rim15 and Sic1, compared to that of cells overexpressing Sic1 alone (Figure 4.11F). Thus, 

these data let us propose a model in which Rim15 acts as a downstream target of Sic1, and 

overexpression of Rim15 acts to antagonize the inhibition of autophagy caused by Sic1 

overexpression. 

Based on the above data, Pho85 negatively regulated Sic1, and Sic1 negatively 

regulated Rim15, which indicated that Rim15 may be essential for autophagy induced by 

Pho85 overexpression. However, since Rim15 is also under the negative regulation of 

Pho80-Pho85, a negative regulator of autophagy, loss of Rim15 would presumably 

suppress both negative and positive regulation of Pho85 (Figure 4.1). To this end, we 

decided to examine the effect associated with deletion of RIM15 in the background of 

pho80∆ pcl5∆ GAL1-PHO85. We found that loss of Rim15 completely abolished the 

appearance of vacuolar GFP-Atg8 (Figure 4.5B) and free GFP induced by Pho85 

overexpression (Figure 4.11G). Thus, these data further strengthened our model that 

Rim15 is a downstream target of Sic1. 
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DISCUSSION 

The nutritional environment is a critical determinant of cellular behavior. As an 

intracellular degradative process, autophagy is tightly regulated by intracellular and 

extracellular nutrient levels. Several key intracellular regulators, many of which are protein 

kinases, play roles in the regulation of autophagy, including Tor, PKA, Sch9 and Pho85. In 

this study, we elucidated the mechanism of Pho85 in autophagy regulation, and 

demonstrated: (1) Pho80 and Pcl5 target Pho85 to negatively regulate autophagy via 

downregulating Rim15, Pho4 and Gcn4; (2) Sic1 is a negative regulator of autophagy; (3) 

Clg1, Pcl1 and Pho80 target Pho85 to positively regulate autophagy via destabilizing Sic1; 

(4) Rim15 acts as a downstream target of Sic1. 

Pho85 seems to be involved in at least two types of sensing, including roles in 

environmental signaling and cell cycle regulation (Huang et al., 2007). The main role of 

Pho85 in environmental signaling is to turn off activities that are needed only under 

specific stress conditions. For example, when inorganic phosphate becomes scarce, 

Pho80-Pho85 is inhibited, thereby allowing activation of Pho4 which promotes the 

expression of genes involved in phosphate metabolism, and activation of Rim15 which is a 

key controller of many aspects of the G0 program. In response to amino acid starvation, the 

level of the Pcl5 protein is substantially reduced, resulting in hypophosphorylation and 

stabilization of Gcn4, which activates amino acid biosynthesis genes. We found that both 

of these two nutrient sensors, Pho80-Pho85 and Pcl5-Pho85, negatively regulate autophagy. 

Thus, Pho85 links the regulation of autophagy to phosphate and amino acid starvation. 

In addition to serving as a repressor of environmental stress responses, Pho85 has 

important roles in regulating cell-cycle progression (Carroll and O'Shea, 2002). We 
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investigated one of the targets of Pho85 with well-defined functions in G1/S progression, 

the CDK inhibitor Sic1. Sic1 is an inhibitor of S phase Clb cyclin-containing Cdc28 kinase 

complexes. It is expressed in late M phase and remains stable until the late G1 phase. Sic1 

must be phosphorylated to be targeted for destruction at the end of the G1 phase, which is a 

necessary step for initiation of S phase entry and DNA replication (Deshaies and Ferrell, 

2001). The major kinases involved in phosphorylating Sic1 are the Cln-Cdc28 kinases, 

whereas Pho85 serves an accessory role, based on the observations that Pho85 can 

phosphorylate Sic1 in vitro and is required for full phosphorylation of Sic1 in vivo 

(Nishizawa et al., 1998; Verma et al., 1997). Moreover, when DNA damage occurs in G1, 

Cln-Cdc28 is downregulated, leading to cell cycle delay. Pho85 is required for the return to 

cell cycle progression through promoting Sic1 degradation and Cdc28 activation (Wysocki 

et al., 2006). While most previous work has linked only the roles of Sic1 to cell cycle 

regulation, our observations indicate that it also functions as a negative regulator of 

autophagy. Moreover, we found that Pho85 is a positive regulator of autophagy through 

targeting Sic1 for degradation, and apparently several of the cyclins, including Clg1, form 

complexes with Pho85 to fulfill this role. Thus, these data demonstrated that Pho85 has two 

separate and opposite roles in autophagy regulation. 

One question is to ask which cyclin partner(s) function together with Pho85 to 

promote autophagy. We reasoned that since Pho85 promotes the induction of autophagy, 

then the corresponding cyclin(s) must also be involved in autophagy regulation. We found 

that deletion of CLG1 alone, but not other cyclins, significantly reduced the level of 

autophagy that was induced by rapamycin (Figure 4.6 and 4.7A). On the other hand, when 

starved for nitrogen, the clg1∆ pcl1∆ pcl2∆pcl9∆ quadruple mutant displayed a 
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significantly lower Pho8∆60 activity than the single clg1∆ mutant, suggesting that Pcl1, 

Pcl2 and Pcl9 might have some redundant role with Clg1 in autophagy regulation. 

Moreover, deletion of CLG1 significantly inhibited, but did not completely abolish the 

induction of autophagy by Pho85 overexpression (Figure 4.7C), suggesting that Clg1 is not 

the sole cyclin that targets Pho85 to positively regulate autophagy. Since Pho85 promotes 

the induction of autophagy through destabilizing Sic1, then the corresponding cyclin(s) 

must be also involved in regulation of Sic1 stability. Since Sic1 must be phosphorylated to 

be targeted for degradation, we then asked which cyclin(s) is responsible for 

Pho85-associated kinase activity toward Sic1. We found that Clg1 was the primary 

autophagy-regulating cyclin partner of Pho85 to phosphorylate Sic1 in vitro (Figure 4.9A). 

In addition, we confirmed the previous result from Nishizawa et al. (1998) that the 

Pcl1-Pho85 (but not Pcl2-Pho85) complex phosphorylates Sic1 in vitro. Intriguingly, the 

stress responsive Pho80-Pho85 complex strongly phosphorylated Sic1 in vitro. We further 

investigated the mutant version of Sic1, Sic1-∆3P, which contains T5A, T33V and S76A 

mutations. Sic1-∆3P was phosphorylated to a significantly lower extent than wild type Sic1 

(Figure 4.9A), suggesting at least T5, T33 and/or S76 were phosphorylated in vitro. To gain 

more insight into the physiological relevance of these phosphorylation events in vivo, we 

further examined the effect of overexpression of these cyclins on the regulation of Sic1 

stability and the induction of autophagy. Indeed, overexpression of Clg1, Pcl1 or Pho80 

significantly reduced the level of wild type Sic1, but not Sic1-∆3P, and overcame the 

inhibition of autophagy caused by overexpression of wild type Sic1, but not Sic1-∆3P 

(Figure 4.9C and 4.9D). Taken together, these data support our model that Pho85 

complexes with cyclins Clg1, Pcl1 and Pho80 to directly phosphorylate T5, T33 and/or 
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S76 of Sic1, and hence promote autophagy by targeting Sic1 for degradation. The 

observations that Pho80-Pho85 negatively regulated autophagy through inactivating 

Rim15 and Pho4, and also positively regulated autophagy through downregulating Sic1, 

led us to propose that it has dual roles in autophagy regulation (Figure 4.1); however, 

further studies are clearly needed to clarify the relationship between Clg1, Pcl1 and Pho80 

in Sic1 and autophagy regulation. The observation that single clg1∆ cells, but not other 

single pcl mutants, showed an autophagic defect (Figure 4.6 and 4.7A), indicated that Clg1 

might play a primary role. Pho80-Pho85 is localized exclusively to the nucleus (Kaffman et 

al., 1998); Clg1 is localized primarily to the nucleus (our unpublished data), whereas Pcl1 

localizes partially to the nucleus as well as sites of polarized cell growth (Moffat and 

Andrews, 2004). Moreover, transcript levels for CLG1 and PHO80 are constant throughout 

the cell cycle, whereas PCL1 is specifically expressed during the late G1 phase (Measday et 

al., 1997). Thus, it is likely that subcellular localization of Pcl-Pho85 complexes and/or the 

timing of expression of these cyclin genes contributes to the selection of when and where to 

phosphorylate Sic1 and promote its degradation. 

In mammalian cells, the CDK inhibitor p27 functions as a positive regulator of 

autophagy (Liang et al., 2007). In the present study, however, we found that the yeast CDK 

inhibitor Sic1 is a negative regulator of autophagy, based on the observations that 

overexpression of Sic1 or Sic1-∆3P, a degradation-resistant mutant, significantly inhibited 

autophagy, and that loss of Sic1 dramatically upregulated autophagy. Moreover, autophagy 

was inhibited in the cdc28-4ts and cdc34-2ts mutants, in which Sic1 accumulates (Schwob 

et al., 1994), whereas deletion of SIC1 in the cdc28-4ts mutant partially suppressed the 

defect in autophagy induction. These observations fit well with the view that 
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hyper-accumulation of Sic1 inhibits autophagy. Cells that overexpress the Clb-Cdc28 

inhibitor Sic1 accumulate in G1 phase, and the cdc34-2ts, cdc28-4ts and cdc28-13ts mutants 

also display a G1 cell cycle arrest after incubation at nonpermissive temperature (Nugroho 

and Mendenhall, 1994; Schwob et al., 1994; Verma et al., 1997). Thus, we cannot rule out 

the possibility that the defect in autophagy caused by hyper-accumulation of Sic1 might be 

due to cell cycle arrest at the G1 phase. On the other hand, induction of autophagy under 

conditions of nutrient limitation often accompanies cell cycle arrest at the G1 phase. 

Therefore, it is also possible that cell cycle arrest may not be directly linked to autophagy 

regulation, and autophagy may occur in parallel with cell cycle arrest. Further analysis is 

needed to identify the precise correlation between cell cycle arrest and autophagy. 

One obvious question is how Sic1 negatively regulates autophagy. Our data suggest 

that Rim15 acts as a downstream target of Sic1. First, deletion of RIM15 completely 

suppressed the upregulation of autophagy in sic1∆ cells (Figure 4.11A). Second, inhibition 

of autophagy caused by Sic1 overexpression did not occur in rim15∆ cells (Figure 4.11B 

and 4.11C). Third, Rim15 overexpression partially suppressed the inhibition of autophagy 

caused by Sic1 overexpression (Figure 4.11E and 4.11F). Since Sic1 is a stoichiometric 

inhibitor of Clb-Cdc28 kinases, we asked whether inhibition of Rim15 kinase activity 

occurs through a physical interaction between Rim15 and Sic1. However, only a weak 

interaction was detected in co-immunoprecipitation experiments (data not shown). Thus, 

further study will be needed to elucidate the mechanism by which Sic1 inhibits Rim15. 

Notably, our data suggest that Rim15 integrates signals from both the negative and positive 

regulatory pathways of Pho85 to properly control autophagy. 

In conclusion, we have elucidated the regulatory mechanism by which Pho85 and its 
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corresponding cyclins modulate autophagy in yeast. We propose that Pho85, not only 

integrates nutrient signals via the Pho80-Pho85 and Pcl5-Pho85 cyclin-CDK complexes to 

negatively regulate autophagy, but that it also integrates information from the cell cycle 

inhibitor Sic1 via the Clg1-, Pcl1-, and Pho80-Pho85 cyclin-CDK complexes to promote 

autophagy. Although Pho85 does not play a major role in regulating autophagy compared 

to the TORC1 complex, the multifunctional CDK Pho85 is critical to ensure appropriate 

autophagy activity during various extracellular and intracellular stress conditions. 
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EXPERIMENTAL PROCEDURES 

Strains, Plasmids and Media 

Yeast strains and plasmids used in this study are listed in Table 4.1 and 4.2. 

Strains were grown at 30°C in standard rich medium with 2% glucose (YPD), or 2% 

galactose plus 2% raffinose (YPGal) as carbon source, or synthetic medium with 2% 

glucose (SMD), or 2% galactose plus 2% raffinose (SMGal) as carbon source. Rapamycin 

(dissolved in 90% ethanol/10% Tween-20) was added to the media at a final concentration 

of 2 μg/ml. For starvation conditions, cells were shifted to SD-N or SG-N medium. 

1-Na-PP1 was added to the media at a final concentration of 20 mM for the analysis of the 

ATP analogue-sensitive mutant PHO85F82G. 

 

Table 4.1. Yeast strains used in this study 

Strain Genotype Source or Reference 

BY4742 MATa leu2- 0 his3- 1 lys2- 0 ura3- 0 ResGen/Invitrogen 

D4 MATα ade1 cdc28-4 his3 leu2 trp1 (Mendenhall et al., 1988)

D13 MATα ade1 cdc28-13 his3 leu2 trp1 (Mendenhall et al., 1988)

EY0823 W303-1A pho85∆::LEU2 
trp1::pho85-F82G::TRP1 pho3∆ ADE2 

(Carroll et al., 2001) 

HAY572 TN124 atg1∆::URA3 (Abeliovich et al., 2003) 

MTY670 W303-1A MATa cdc34-2 (Willems et al., 1996) 

TN124 MATα leu2–3,112 ura3–52 trp1 
pho8Δ::PHO8∆60 pho13∆::LEU2 

(Noda et al., 1995) 

TYY164 W303-1B atg1∆::KanMX6 This study 
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TYY181 W303-1B pho13∆::KanMX6 pho8∆60::HIS3 
atg1∆::URA3 

(Yorimitsu et al., 2007) 

W303-1A MATa ade2-1 can1-100 his3-11,15 leu2-3,112 
trp1-1 ura3-1 

(Wallis et al., 1989) 

W303-1B MATα ade2-1 can1-100 his3-11,15 leu2-3,112 
trp1-1 ura3-1 

(Wallis et al., 1989) 

YZX200 TN124 atg8∆::KanMX6 (Xie et al., 2008) 

ZFY088 W303-1B pho85∆::HIS3 This study 

ZFY089 TN124 pho85∆::URA3 This study 

ZFY098 TN124 sic1∆::URA3 This study 

ZFY099 TN124 pcl5∆::URA3 This study 

ZFY100 TN124 rim15∆::URA3 This study 

ZFY102 TN124 pho80∆::URA3 rim15∆::TRP1 This study 

ZFY103 TN124 pcl5∆::URA3 rim15∆::TRP1 This study 

ZFY105 TN124 pho80∆::URA3 This study 

ZFY111 TN124 gcn4∆::TRP1 This study 

ZFY112 TN124 gcn4∆::TRP1 pcl5∆::URA3 This study 

ZFY115 TN124 gcn4∆::TRP1 sic1∆::URA3 This study 

ZFY116 TN124 rim15∆::URA3 sic1∆::TRP1 This study 

ZFY121 TN124 pcl1∆::URA3 This study 

ZFY128 TN124 pho80∆::KanMX6 pcl5∆::URA3 This study 

ZFY129 TN124 pcl1∆::URA3 pcl2∆::TRP1 
pcl9∆::KanMX6 

This study 

ZFY130 TN124 pcl2∆::KanMX6 This study 
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ZFY131 W303-1B gcn4∆::KanMX6 This study 

ZFY132 W303-1B rim15∆::KanMX6 This study 

ZFY135 TN124 pho4∆::KanMX6 This study 

ZFY137 TN124 pho80∆::URA3 pho4∆::KanMX6 This study 

ZFY139 TN124 pcl9∆::KanMX6 This study 

ZFY141 TN124 sic1∆::URA3 pho4∆::KanMX6 This study 

ZFY142 TN124 gcn4∆::TRP1 pho4∆::KanMX6 This study 

ZFY143 TN124 pcl5∆::URA3 pho4∆::KanMX6 This study 

ZFY145 EY0823 pho13∆::HIS3 pho8∆60::URA3 This study 

ZFY152 W303-1B gcn4∆::KanMX6 rim15∆::HIS3 
pho4∆::LEU2 

This study 

ZFY155 W303-1A pho13∆::HIS3 pho8∆60::URA3 This study 

ZFY170 W303-1B pho4∆::LEU2 This study 

ZFY172 TN124 pho80∆::KanMX6 pcl5∆::URA3 
pho85∆::TRP1 

This study 

ZFY174 W303-1B gcn4∆::KanMX6 rim15∆::HIS3 
pho4∆::LEU2 pho85∆::TRP1 

This study 

ZFY175 TN124 gcn4∆::TRP1 pho4∆::KanMX6 
rim15∆::URA3 

This study 

ZFY177 TN124 gcn4∆::TRP1 pho4∆::KanMX6 
rim15∆::URA3 pho85∆::BLE 

This study 

ZFY178 TN124 pcl8∆::URA3 This study 

ZFY179 TN124 pcl10∆::URA3 This study 

ZFY180 TN124 pcl8∆:: KanMX6 pcl10∆::URA3 This study 

ZFY182 TN124 clg1∆::BLE This study 



 

 165

ZFY183 TN124 pcl1∆::URA3 pcl2∆::TRP1 
pcl9∆::KanMX6 clg1∆::BLE 

This study 

ZFY184 W303-1B HIS3::GAL1p-3HA-SIC1 This study 

ZFY185 W303-1B gcn4∆::KanMX6 
HIS3::GAL1p-3HA-SIC1 

This study 

ZFY187 W303-1B rim15∆::KanMX6 
HIS3::GAL1p-3HA-SIC1 

This study 

ZFY188 W303-1B pho4∆::LEU2 
HIS3::GAL1p-3HA-SIC1 

This study 

ZFY192 W303-1B TRP1::GAL1p-3HA-RIM15 This study 

ZFY193 W303-1B HIS3::GAL1p-3HA-SIC1 
TRP1::GAL1p-3HA-RIM15 

This study 

ZFY202 W303-1B pho13∆ pho8∆60::HIS3 This study 

ZFY203 W303-1B pho13∆ pho8Δ60::HIS3 
TRP1::GAL1p-3HA-SIC1 

This study 

ZFY204 W303-1B pho13∆ pho8∆60::HIS3 
rim15∆::BLE 

This study 

ZFY206 W303-1B pho13∆ pho8∆60::HIS3 
pho80∆::LEU2 pcl5∆::BLE 

This study 

ZFY207 W303-1B pho80∆ pcl5∆ This study 

ZFY208 W303-1B pho80∆ pcl5∆ 
HIS3::GAL1p-3HA-PHO85 

This study 

ZFY209 W303-1B HIS3::GAL1p-3HA-PHO85 This study 

ZFY213 EY0823 pho13∆::HIS3 pho8∆60::URA3 
atg1∆::KanMX6 

This study 

ZFY214 EY0823 pho13∆ pho8∆60::URA3 
pho80∆::HIS3 pcl5∆::BLE sic1∆::KanMX6 

This study 
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ZFY215 EY0823 pho13∆ pho8∆60::URA3 
pho80∆::HIS3 pcl5∆::BLE 

This study 

ZFY216 W303-1B pho80∆ pcl5∆ 
HIS3::GAL1p-3HA-PHO85 rim15∆::LEU2 

This study 

ZFY217 W303-1B pho80∆ pcl5∆ 
HIS3::GAL1p-3HA-PHO85 atg1∆::LEU2 

This study 

ZFY220 W303-1B pho80∆ pcl5∆ 
HIS3::GAL1p-3HA-CLG1 

This study 

ZFY224 W303-1B pho13∆ pho8∆60::HIS3 
TRP1::GAL1p-3HA-PHO85 

This study 

ZFY225 W303-1B pho13∆ pho8∆60::HIS3 
pho80∆::LEU2 pcl5∆::BLE 
TRP1::GAL1p-3HA-PHO85 

This study 

ZFY227 W303-1B pho13∆ pho8∆60::HIS3 
pho80∆::LEU2 pcl5∆::BLE 

TRP1::GAL1p-3HA-PHO85 atg1∆::URA3 

This study 

ZFY228 W303-1B clg1∆::BLE This study 

ZFY229 W303-1B pcl1∆::LEU2 This study 

ZFY230 W303-1B pcl2∆::KanMX6 This study 

ZFY231 W303-1B pcl9∆::LEU2 This study 

ZFY234 W303-1B pcl1∆::LEU2 pcl2∆::KanMX6 
pcl9∆::HIS3 

This study 

ZFY235 W303-1B clg1∆ pcl1∆ pcl2∆::KanMX6 pcl9∆ This study 

ZFY246 W303-1B pho80∆ pcl5∆ clg1Δ::LEU2 
HIS3::GAL1p-3HA-PHO85 

This study 

ZFY248 W303-1B pho13∆::LEU2 pho8∆60::URA3 
gcn4∆::KanMX6 HIS3::GAL1p-3HA-SIC1 

This study 
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ZFY249 W303-1B pho13∆::LEU2 pho8∆60::URA3 
rim15∆::KanMX6 HIS3::GAL1p-3HA-SIC1 

This study 

ZFY250 W303-1B pho13∆::KanMX6 pho8∆60::URA3 
pho4∆::LEU2 HIS3::GAL1p-3HA-SIC1 

This study 

ZFY251 W303-1B pho13∆ pho8∆60::HIS3 
gcn4∆::LEU2 

This study 

ZFY252 W303-1B pho13∆ pho8∆60::HIS3 
pho4∆::KanMX6 

This study 

ZFY253 W303-1B pho13∆::LEU2 pho8∆60::URA3 
TRP1::GAL1p-3HA-RIM15 

This study 

ZFY254 W303-1B pho13∆::KanMX6 pho8∆60::URA3 
HIS3::GAL1p-3HA-SIC1 
TRP1::GAL1p-3HA-RIM15 

This study 

ZFY255 W303-1B pho13∆ pho8∆60::HIS3 pho80∆ 
pcl5∆ 

This study 

ZFY256 W303-1B pho13∆ pho8∆60::HIS3 pho80∆ 
pcl5∆ LEU2::GAL1p-3HA-SIC1 

This study 

ZFY257 W303-1B pho13∆ pho8∆60::HIS3 pho80∆ 
pcl5∆ LEU2::GAL1p-3HA-SIC1-Δ3P 

This study 

ZFY258 BY4742 cdc28-4 sic1∆::HIS3 This study 

 

Table 4.2. Yeast plasmids used in this study. 

Plasmid Vector; Insert Source Used in figure(s) 

pCU-GFP-AUT7
(416) 

pCU-GFP(416); 
Atg8 

(Kim et al., 
2001a) 

2C, 2E, 4A, 4B, 5B, 
7B, 7D, 7F, S2, S3A 

pCU-GFP-AUT7
(414) 

pCU-GFP(414); 
Atg8 

(Kim et al., 2002) 2A, 4D, 5C, 5D, S7 
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pTY006 Yes2; 3HA (Yorimitsu et al., 
2009) 

2A, 4D, 5C, 5D, 6A, 
6C, 6D, S5, S6, S7A, 

S7C, S7D 

pZY011 Yes2; 3HA-SIC1 This study 2A, 4D, 5C, S6, S7 

pZY016 Yes2; 3HA-SIC1 
(T5A T33V S76A) 

This study 5D, S6, S7 

pZY017 Yes2; 3HA-CLG1 This study 6A, 6B, 6C, 6D 

pZY018 Yes2; 3HA-PCL1 This study 6A, 6B, 6C, 6D 

pZY019 Yes2; 3HA-PCL2 This study S8A, S8B, S8C, S8D 

pZY020 Yes2; 3HA-PCL5 This study S8A, S8B, S8C, S8D 

pZY021 Yes2; 3HA-PCL9 This study S8A, S8B, S8C, S8D 

pZY022 Yes2; 3HA-PHO80 This study 6A, 6B, 6C, 6D 

pZY032 pRS405; 
GAL1-3HA-SIC1 

This study 6C, 6D, S8C, S8D 

pZY033 pRS405; 
GAL1-3HA-SIC1 
(T5A T33V S76A) 

This study 6C, 6D, S8C, S8D 

pZY037 pGEX4T-1; SIC1 This study 6A, S8A 

pZY040 pGEX4T-1; SIC1 
(T5A T33V S76A) 

This study 6A, S8A 

pZY041 pCU-PA(416); SIC1 This study S5 

 

Immunoblotting and Quantitative Analysis 

Protein samples for western blotting were extracted by TCA precipitation and 

resolved by SDS-PAGE, followed by immunoblotting with appropriate antiserum or 
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antibodies, as described previously (Cheong et al., 2005). The band intensity was 

quantified with ImageJ software (National Institutes of Health). To calculate the 

percentage of GFP-Atg8 processing, we quantified the band intensity of both free GFP and 

GFP-Atg8, and calculated the percentage of free GFP relative to the sum of GFP-Atg8 and 

free GFP. To calculate the relative amount of PA-Sic1, we quantified the band intensity of 

PA-Sic1 and Adh1, and calculated the amount of PA-Sic1 relative to the amount of Adh1. 

Fluorescence Microscopy 

Cells were cultured in SMD selective medium to mid-log phase, and then shifted to 

SMGal selective medium for 12 h. For experiments under growing conditions, cells were 

pelleted and resuspended in fresh SMGal. For starvation experiments, cells were shifted to 

SG-N for 3 h, pelleted and resuspended in SG-N. Cells were visualized with a microscope 

(DeltaVision Spectris; Applied Precision, Issaquah, WA) fitted with differential 

interference contrast (DIC) optics and Olympus camera IX-HLSH100. The images were 

deconvolved using softWoRx software (Applied Precision). 

Assays for Autophagy 

To monitor bulk autophagy, the Pho8∆60 assay and the GFP-Atg8 processing assay 

were performed as previously described (Noda et al., 1995; Shintani and Klionsky, 2004b). 

In vitro Kinase Assay 

GST-Sic1 wild type or GST-Sic1-∆3P mutant were expressed in E.coli and purified 

using glutathione-Sepharose beads (GE Healthcare). To assay in vitro phosphorylation of 

Sic1 by Pho85 and its cyclin complex, HA-Clg1 (pZY017), HA-Pcl1 (pZY018), HA-Pcl2 
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(pZY019), HA-Pcl5 (pZY020), HA-Pcl9 (pZY021) and HA-Pho80 (pZY022), fusion 

proteins were expressed in SMGal medium for 4 h. The cells were disrupted by vortexing 

with acid-washed glass beads, in lysis buffer (50 mM Tris-HCl, pH7.5, 150 mM NaCl, 1 

mM EDTA, 0.2% NP-40, 10% glycerol, 1 mM PMSF, 1X protease inhibitor cocktail, 1X 

phosphatase inhibitor cocktail [Roche]). HA-tagged fusion proteins were purified from 

clarified extracts with protein A sepharose beads using monoclonal mouse anti-HA 

antibody. Kinase reactions were performed with the protein A sepharose beads in kinase 

buffer (10 mM HEPES, 10 mM MgCl2, 50 mM NaCl, 2 mM EDTA, 1 mM DTT, 0.02% 

Triton X-100) in a final volume of 30 μl containing 1 μg of indicated GST-Sic1 substrates, 

100 μM ATP, 2 μCi of [γ-32P]ATP and incubated for 30 min at 30 °C. Reactions were 

stopped by adding 10 μl of 4X SDS-PAGE sample buffer and denaturing for 5 min at 90 °C, 

and then subjected to SDS-PAGE and autoradiography. 
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CHAPTER 5 

Conclusions and Contributions to the Field 

This thesis can be broken down into two parts. In part I, including chapters 1 and 2, I 

reviewed our current knowledge of autophagy and its related pathways, in terms of the 

molecular machinery and signaling regulation in yeast and higher eukaryotic cells, with an 

emphasis on yeast (chapter 1) and on mammals (chapter 2). In both reviews, I discussed 

the physiological significance of autophagy, and more importantly, highlighted recent 

advances and pinpointed some unanswered questions remaining in the field. These 

reviews might provide some clues for our future work in autophagy. In part II, including 

chapters 3 and 4, I described the advances made contributing to the understanding of 

autophagy in the yeast Saccharomyces cerevisiae. These advances include: i) 

identification of the molecular mechanism by which Atg22 recycles amino acids to link 

the degradative and recycling functions of autophagy. These results led us to propose a 

“recycling” model that includes the efflux of macromolecules from the lysosome/vacuole 

as the final step of autophagy; ii) identification of the molecular mechanism by which the 

stress-responsive, cyclin-dependent kinase (CDK) Pho85 and its corresponding cyclins 

antagonistically modulate the induction of autophagy; iii) discovery of the role of an 

inhibitor of Clb-Cdc28 kinases, Sic1, in the negative regulation of autophagy and further 

identification of Rim15 as a downstream target of Sic1. 

Permeases Recycle Amino Acids Resulting from Autophagy 

Previously, Onodera and Ohsumi showed that in autophagy-defective atg7Δ cells, the 
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total intracellular amino acid pool was dramatically reduced, and bulk protein synthesis 

was substantially abrogated under nitrogen starvation conditions, compared to the wild 

type (Onodera and Ohsumi, 2005). They interpreted these results to indicate that free 

amino acid pools generated during autophagy become a limiting factor for protein 

synthesis under starvation conditions. This is compatible with a recent report that plasma 

and tissue amino acid levels, which are critical for the maintenance of energy homeostasis 

and viability, were reduced in Atg5 knock-out neonatal mice under fasting conditions 

(Kuma et al., 2004). Because of these observations, we hypothesized that amino acids 

generated by autophagy are released from the vacuolar/lysosomal lumen into the 

cytoplasm to be re-utilized for protein synthesis, and this recycling is essential to allow 

cells to sustain viability during nutrient deprivation. The unanswered question was what 

factors mediate the connection between the breakdown process and the subsequent 

cytosolic protein synthesis? Permeases located in the limiting membrane of the vacuole 

could play such a role for the mobilization of amino acids resulting from autophagy. Thus, 

we began our analysis by examining a putative vacuolar integral membrane protein, Atg22, 

with limited homologies with permeases (Nelissen et al., 1997; Ohki and Murata, 1997; 

Suriapranata et al., 2000). 

In chapter 3, I have described the study of the characterization of ATG22, which was 

previously identified as AUT4. First, I carefully examined the role of Atg22 in autophagy 

and breakdown of the autophagic body. A previous report suggested that the breakdown of 

autophagic bodies depends on Atg22; in contrast, the cytoplasm to vacuole targeting (Cvt) 

pathway, a type of specific autophagy involved in biosynthetic delivery to the vacuole 

(Kim and Klionsky, 2000), is reported to be normal in the atg22Δ mutant cells 
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(Suriapranata et al., 2000). The apparent difference in the susceptibility to lysis of Cvt 

versus autophagic bodies suggested there might be a fundamental difference between the 

membrane used for autophagy versus the Cvt pathway, and might provide some insight to 

the origin of the sequestering vesicle membrane, a topic of considerable debate. In contrast 

to previously published data, I found that the steps of autophagy up to and including 

breakdown are essentially normal in the atg22Δ mutant. I monitored non-specific 

autophagy through the Pho8Δ60 assay (Noda et al., 1995) (measuring bulk autophagy of 

the cytosol), and processing of GFP-tagged Atg8 (Cheong et al., 2005) (monitoring the 

efficiency of delivery and lysis of the autophagic body). In addition, I followed the 

maturation of prApe1, a marker for specific autophagy, in the Cvt pathway-defective 

vac8Δ background (Cheong et al., 2005). In all cases, I found essentially normal kinetics 

for both the Cvt pathway and autophagy in the absence of Atg22. In particular, there was no 

evidence for a substantial difference in the lysis of Cvt versus autophagic bodies. Thus, my 

data suggest that the membrane origin for the autophagy and Cvt pathways is probably the 

same, as supported by Reggiori et al (2004). 

Second, the loss of viability seen in the atg22∆ mutant, which is auxotrophic for 

leucine, could be rescued by addition of leucine or complementation of the leu2 defect by 

transforming the cells with a plasmid carrying a LEU2 gene. These results suggested that 

Atg22 might function as a leucine effluxer on the vacuolar membrane. This conclusion is 

supported by analysis of vacuolar amino acid levels, which suggest that Atg22 appears to 

be part of the same family with Avt3 and Avt4, two other vacuolar amino acid permeases 

(Russnak et al., 2001), which mediate the efflux of leucine and other amino acids; however, 

since I was unsuccessful in carrying out analyses of amino acid efflux using vacuoles 
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containing radiolabeled amino acids, I do not have direct evidence for the function of 

Atg22 as a leucine effluxer.  

Third, to identify the connection between autophagy and maintenance of amino acid 

levels and hence protein synthesis, I carried out a protein synthesis assay by measuring two 

vacuolar proteinases, Ape1 and Prc1, which are normally upregulated during nitrogen 

starvation (Onodera and Ohsumi, 2005). Under autophagy-induced conditions in synthetic 

complete medium lacking only leucine, the atg22Δ mutant shows a severely reduced level 

of Ape1 and Prc1 synthesis; these proteins are hardly detected in the atg22Δ avt3Δ avt4Δ 

mutant. I interpret my data to indicate that the defect in the efflux of autophagy-derived 

amino acids causes the defect in protein synthesis. The latter is presumably needed for the 

maintenance of cell viability upon starvation. 

Finally, this work has led us to propose a “recycling” model that includes the efflux of 

macromolecules from the lysosome/vacuole as the final step of autophagy. This model 

explains the starvation-sensitivity of the atg22∆ mutant, which is otherwise normal for 

autophagy. That is, atg22∆ cells are able to carry out the initial steps of autophagy 

including the formation of autophagosomes, their fusion with the vacuole, and the 

breakdown of the autophagic bodies. In contrast, leucine and other amino acids accumulate 

within the vacuole lumen and are not released back into the cytosol. The release of 

autophagic amino acids is necessary for the maintenance of protein synthesis and viability 

during starvation conditions. This work provides the first mechanistic data to specifically 

connect the breakdown process of autophagy with subsequent cytosolic protein synthesis. 

In addition, this work points out the physiological significance of the recycling step of 

autophagy. 
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Cyclin-dependent kinase Pho85 and its Cyclin Complex Antagonistically Modulate 
the Induction of Autophagy 

Previous work has indicated that Pho85 is a negative regulator of autophagy (Wang et 

al., 2001). However, it remains elusive which potential cyclin(s) associate with Pho85 to 

play this role. The multifunctional CDK Pho85 has ten different cyclins and each cyclin 

potentially directs Pho85 to different target substrates to fulfill different roles. Based on 

these observations, we began our analysis to carefully examine the role of Pho85 and its 

individual cyclins in autophagy. 

In chapter 4, I first demonstrated that cyclins Pho80 and Pcl5 complex with Pho85 to 

negatively regulate autophagy. Pho80-Pho85 and Pcl5-Pho85 are two nutrient sensors, 

which sense phosphate and amino acid starvation, respectively. Thus, my work provides 

evidence to indicate how autophagy is regulated under phosphate and amino acid 

starvation conditions. I further demonstrated that Pho80-Pho85 and Pcl5-Pho85 kinase 

complexes contribute appreciably to the negative regulation of autophagy, through their 

inhibitory roles on Rim15 and Pho4, and on Gcn4, respectively. This is consistent with 

previous observations that Rim15 and Gcn4 are required for autophagy induction (Talloczy 

et al., 2002; Yorimitsu et al., 2007). 

Second, my work has led to the idenfication of the dual roles of Pho85 in autophagy 

induction. That is, Pho85 is both a positive and negative regulator of autophagy. The 

positive regulatory role of Pho85 can be seen in the pcl5∆ pho80∆ background where the 

Pho80 and Pcl5 cyclins that exert a negative effect are deleted, and also in the gcn4∆ pho4∆ 

rim15∆ background where all three downstream targets of Pho80-Pho85 and Pcl5-Pho85 

to negatively regulate autophagy are deleted. Overexpression of Pho85 led to the induction 

of autophagy, whereas further deletion of PHO80 and PCL5 elevated the level of 
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autophagy induction. All of these observations provided the first evidence to support the 

view that Pho85 has a positive regulatory role in autophagy induction. This important 

discovery is quite intriguing, and fits well with the fact that Pho85 in conjugation with 

different cyclins can discharge numerous biological functions (Huang et al., 2007). 

Third, another important finding in this work is that the CDK inhibitor Sic1 functions 

as a negative regulator of autophagy. This is based on the observations that overexpression 

of Sic1 inhibits autophagy, whereas deletion of SIC1 dramatically increased the level of 

autophagy induced by rapamycin treatment. While most previous work has linked the roles 

of Sic1 only to cell cycle regulation, our study assigns new function to Sic1, a negative 

regulator of autophagy. However, in mammalian cells, overexpression of the CDK 

inhibitor p27, or expression of a stable p27 mutant, is sufficient to induce autophagy (Liang 

et al., 2007). At this moment, we cannot explain the reason for these totally opposite roles 

of this CDK inhibitor in autophagy regulation between yeast and mammalian cells. 

Nonetheless, I also found that autophagy was inhibited in the cdc34-2ts mutant, in which 

Sic1 accumulates (Schwob et al., 1994), and in the cdc28-1ts, cdc28-4ts and cdc28-13ts 

mutants, in which inactivation of Cdc28 causes hypophosphorylation of Sic1, leading to its 

accumulation (Schneider et al., 1998), whereas deletion of SIC1 in the cdc28-4ts mutant 

partially suppressed the defect in autophagy induction. These observations fit well with the 

view that hyper-accumulation of Sic1 inhibits autophagy.  

Fourth, the mechanism by which Pho85 positively regulates autophagy is also 

carefully elucidated. Since Pho85 is known to phosphorylate Sic1 and prompt its 

degradation (Nishizawa et al., 1998), and Pho85 mediates Sic1 degradation to allow Cdc28 

activation and reentry into the cell-cycle after DNA damage-induced G1 arrest (Wysocki et 



 

 182

al., 2006), I hypothesized that the CDK Pho85 exerts its positive regulatory role in 

autophagy induction through targeting Sic1, a negative regulator of autophagy, for 

degradation. I took advantage of an analogue-sensitive mutant PHO85-F82G to prevent 

the synthetical lethal effect upon double deletion of PHO85 and SIC1, and found that 

deletion of SIC1 in the PHO85-F82G pcl5∆ pho80∆ cells suppressed the inhibition of 

autophagy that was caused by inactivation of Pho85. I also observed that overexpression of 

Pho85 abolished the inhibitory effect of Sic1 overexpression on autophagy. These results 

led us to propose a model that Pho85 targets Sic1 to relieve the autophagy defect after Sic1 

overexpression.  

Fifth, my work further found that Pho85 complexes with cyclins Clg1, Pcl1 and 

Pho80 to promote Sic1 degradation, exerting a positive regulatory effect on autophagy 

induction. Since Sic1 must be phosphorylated to be targeted for destruction (Deshaies and 

Ferrell, 2001), an apparent question is to ask whether Clg1-, Pcl1- and Pho80-Pho85 

complexes are able to phosphorylate Sic1. I performed an in vitro phosphorylation study 

and provided direct evidence to show that immunoprecipitated HA-tagged Clg1, Pcl1 and 

Pho80, but not Pcl2, Pcl5 and Pcl9, obtained from PHO85 cells but not from pho85∆ cells, 

phosphorylated Sic1 in vitro. I further investigated the mutant version of Sic1, Sic1-∆3P, 

which contains T5A, T33V and S76A mutations. Sic1-∆3P was phosphorylated to a 

significantly lower extent than wild-type Sic1, suggesting at least T5, T33 and/or S76 were 

phosphorylated in vitro. To gain more insight into the physiological relevance of these 

phosphorylation events in vivo, I further examined the effect of overexpression of these 

cyclins on the regulation of Sic1 stability and the induction of autophagy. Indeed, 

overexpression of Clg1, Pcl1 or Pho80 significantly reduced the level of wild-type Sic1, 
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but not Sic1-∆3P, and overcame the inhibition of autophagy caused by overexpression of 

wild-type Sic1, but not Sic1-∆3P. Thus, my work not only addressed the previous 

unanswered question as to which cyclins of Pho85 regulate Sic1 stability in vivo, and 

showed that Clg1, Pcl1 and Pho80 redundantly fufill this role, but also unraveled an 

exciting link between cyclins, Sic1 and autophagy; that is, the cyclins Clg1, Pcl1 and 

Pho80, in concert with Pho85, promote the degradation of Sic1, resulting in the elevation 

of the magnitude of autophagy. However, to bring our story full circle, further work 

remains to be done to show that i) Clg1-, Pcl1- and Pho80-Pho85 complexes indeed 

phosphorylate Sic1 in vivo using an in vivo phosphorylation assay; ii) immunoprecipitated 

Pho85 obtained from wild-type cells but not from clg1∆ pcl1∆ pho80∆ cells, 

phosphorylate Sic1 in vitro; iii) triple knockout clg1∆ pcl1∆ pho80∆ cells display an 

accumulation of Sic1. Further analysis also needs to be carried out to elucidate the 

mechanism by which Clg1-, Pcl1- and Pho80-Pho85 complexes synergistically regulate 

Sic1 stability and the magnitude of autophagy. In fact, Pho80-Pho85 is localized 

exclusively to the nucleus (Kaffman et al., 1998); Clg1 is localized primarily to the nucleus 

(our unpublished data), whereas Pcl1 localizes partially to the nucleus as well as sites of 

polarized cell growth (Moffat and Andrews, 2004). Moreover, transcript levels for CLG1 

and PHO80 are constant throughout the cell cycle, whereas PCL1 is specifically expressed 

during the late G1 phase (Measday et al., 1997). Thus, it is likely that subcellular 

localization of Pcl-Pho85 complexes and/or the timing of expression of these cyclin genes 

contributes to the selection of when and where to phosphorylate Sic1 and promote its 

degradation. 

Sixth, another achievement of my work is the identification of Rim15 as the 
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downstream target of Sic1 in autophagy regulation. Thus, Rim15 is under the negative 

regulation of both Pho80-Pho85 and Sic1. This intriguing finding inferred that Rim15 

integrates signals from both the negative and positive regulatory pathways of Pho85 to 

properly control autophagy. The main question that remains to be further investigated is 

how does Sic1 negatively regulate Rim15? At least four nutrient-sensory kinases converge 

on Rim15 regulation through controlling the nucleocytoplasmic distribution of Rim15 

(Swinnen et al., 2006), such that Pho80-Pho85 negatively regulates Rim15 through 

phosphorylating Rim15 and promoting the association of Rim15 with 14-3-3 proteins in 

the cytoplasm (Wanke et al., 2005). Thus, it is possible that Sic1 negatively regulates 

Rim15 through controlling the nucleocytoplasmic distribution of Rim15. We checked the 

localization of GFP-Rim15 by using the kinase-inactive GFP-Rim15K823Y and 

GFP-Rim15C1176Y fusion proteins, which accumulate in the nuclei of rapamycin-treated 

rim15Δ cells, as shown previously by Wanke et al. (2005). We found that deletion of SIC1 

did not induce the nuclear import of GFP-Rim15 in nutrient-rich conditions. In addition, 

when Sic1 wild type or Sic1-Δ3P was overexpressed, we did not observe a clear defect in 

the movement of Rim15 into the nucleus. However, there was a decrease in the percentage 

of the cells with clear nuclear staining of GFP-Rim15 when cells were treated with 

rapamycin. One explanation for this observation is that the nuclear localization of Rim15 

may not be directly correlated with its activity. Since Sic1 is a stoichiometric inhibitor, we 

then asked whether inhibition of Rim15 kinase activity occurs through a physical 

interaction between Rim15 and Sic1. However, only a weak interaction was detected in 

co-immunoprecipitation experiments. Thus, Sic1 might inhibit Rim15 indirectly. Since 

Sic1 is an inhibitor of S phase Clb cyclin-containing Cdc28 kinase complexes (Mendenhall 
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et al., 1995), it is possible that Clb-Cdc28 phosphorylates and activates Rim15, and, 

thereby, Sic1 indirectly inhibits Rim15 through inhibiting Clb-Cdc28. Further study will be 

needed to elucidate the mechanism by which Sic1 negatively regulates Rim15. 

Finally, the correlation between cell cycle regulation and autophagy induction is still a 

matter of debate. Sic1 has roles in controlling both the G1/S phase transition and the exit 

from mitosis, hence preventing premature onset of S phase and ensuring genome integrity 

(Mendenhall et al., 1995). Deletion of SIC1 causes premature DNA replication from fewer 

origins, and extension of the duration of S phase. Deletion of SIC1 also results in the defect 

in the initiation of mitosis, inefficient separation of sister chromatids during anaphase, 

leading to partial mitotic arrest, with a high rate of chromosomal damage (Nugroho and 

Mendenhall, 1994). In addition, I found that deletion of SIC1 dramatically increased the 

level of autophagy induced by rapamycin treatment. Thus, it is reasonable to conclude that 

autophagy is upregulated in order to help cells mitigate genome damage caused by loss of 

Sic1, and this notion is also consistent with a previous report in mammalian cells that 

autophagy plays roles in preventing genomic instability (Karantza-Wadsworth et al., 2007; 

Mathew et al., 2007). Another concern in this field is that since overexpression of Sic1 or 

inactivation of CDC34 or CDC28 leads to G1 cell cycle arrest (Nugroho and Mendenhall, 

1994; Schwob et al., 1994; Verma et al., 1997), we cannot rule out the possibility that the 

defect in autophagy caused by hyper-accumulation of Sic1 might be due to cell cycle arrest 

at the G1 phase. On the other hand, induction of autophagy under conditions of nutrient 

limitation often accompanies cell cycle arrest at the G1 phase. Moreover, Rim15 functions 

as a positive regulator of autophagy, and is also essential for the cells to enter the G0 phase 

(cell cycle arrest at the G0/G1 phase) in reponse to nutrient starvation (Swinnen et al., 2006). 
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I reasoned that if cell cycle arrest leads to an autophagic defect, then it would be 

contradictory to the fact that Rim15 is required for autophagy. Therefore, it is also possible 

that cell cycle arrest may not be directly linked to autophagy regulation, and autophagy 

may occur in parallel with cell cycle arrest. Further analysis is clearly needed to clarify the 

precise correlation between cell cycle arrest and autophagy. 

In conclusion, my work largely contributes to our current understanding of autophagy, 

a precisely controlled process. It elucidated a quite complex regulatory nework by which 

Pho85 and its corresponding cyclins modulate autophagy in yeast. We believe that 

potential future work will further extend our knowledge about this important intracellular 

degradative pathway. 
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