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KH: Hydraulic conductance  

Kn: Knudsen number 

M: Molecular mass of gas 

CavgM 
 : Thermal transpiration driven mass flow rate in a circular channel 

RavgM 
 : Thermal transpiration driven mass flow rate in a rectangular channel 

TTM : Thermal transpiration driven mass flow rate 

N: Number density of gas molecules 

NPOS(t): Number of moles of gas molecules leaked out of the hot chamber during the time 
interval t-Δt to t 
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NTT(t): Number of moles of gas molecules pumped into the hot chamber due to thermal 
transpiration during the time interval t-Δt to t 
 
P: Pressure of the gas 

Pamb: Ambient pressure 

Pavg (=0.5(PH+PC)): Average pressure across the transpiration element 

PC: Pressure in the cold chamber 

PCe(t): Experimentally measured pressure in the cold chamber at time t 

PCm(t): Modeled pressure in the cold chamber of the Knudsen pump at time t 

PH: Pressure in the hot chamber 

PHe(t): Experimentally measured pressure in the hot chamber at time t 

PHm(t): Modeled pressure in the hot chamber at time t 

PmxE: Experimentally measured maximum pressure head generated by a single stage 
Knudsen pump 
 
PmxM: Modeled maximum pressure head that a single stage Knudsen pump can generate 

for a given set of structural parameters a, fP, and DL 

QC: Gas outflux from the cold chamber to the hot chamber  

Qeff: Effective gas flow in/out of the cold chamber 

QH: Gas outflux from hot chamber to the cold chamber 

Qiso: Isothermal pressure driven gas flow across a transpiration element 

QmxE: Extrapolated gas flow rate generated by a single stage Knudsen pump against zero 
pressure head based on the experimentally measured load-flow characteristics of the 
pump 
 
QmxM: Modeled maximum gas flow rate generated by a single stage Knudsen pump 
against zero pressure head for a given set of structural parameters a, fP, and DL 
 
QP: Pressure gas flow coefficients 

QPOS: (volumetric) Poiseuille flow 
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QPR: Nonisothermal pressure driven gas flow across the transpiration element.  
Nonisothermal means the membrane has a nonzero temperature gradient across its 
thickness 
 
QT: Temperature gas flow coefficients 

QTT: Thermal transpiration driven volumetric gas flow 

R: Universal gas constant 

Rg: Specific gas constant 

T: Temperature of the gas molecules 

Tamb: Ambient temperature 

Tavg (=0.5(TH+TC)): Average temperature across the transpiration element 

TC: Temperature of the gas molecules enclosed in the cold chamber 

TCcrr: Corrected temperature at the cold end of the transpiration element 

TCe(t): Experimentally measured temperature at the cold side of the ceramic at time t 

TCm(t): Modeled temperature at the cold facet of the ceramic at time t 

Tfin : Steady state temperature of the heater measured experimentally 

TH: Temperature of the gas molecules enclosed in the hot chamber 

THa(t): Modeled temperature of the air enclosed in the hot chamber at time t 

THcrr: Corrected temperature at the hot end of the transpiration element 

THe(t): Experimentally measured temperature on the hot side of the ceramic at time t 

THm(t): Modeled temperature at the hot facet of the ceramic at time t 

Tin: Initial temperature of the heater measured experimentally 

VC: Volume of the cold chamber 

Vcrr: Corrected volume for the hot chamber 
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ABSTRACT

Thermal transpiration-driven Knudsen pumps have the ability to pump gas molecules 

without the use of any moving parts.  This promises high structural reliability and low 

frictional losses.  However, the dearth of suitable transpiration materials with appropriate 

properties has limited their performance, especially for atmospheric pressure operation.  

This thesis describes the use of bulk nanoporous materials for thermal transpiration-

driven gas pumping at atmospheric pressure. 

A naturally-occurring zeolite, clinoptilolite, is used to demonstrate the feasibility of 

thermal transpiration-driven Knudsen pumps using bulk nanoporous ceramics.  For an 

input power of 5.35W, the initial prototype has a temperature bias of 38K across the 

thickness of the zeolite disc.  This results in a gas flow of ≈0.12sccm with a nominal 

pressure load of ≈50Pa at the output, or a maximum pressure head of ≈1kPa.  Transient 

pressure response at the sealed outlet of a Knudsen pump is analyzed using a fitted 

model, which allows us to quantify various non-idealities. 

Several other synthetic nanoporous ceramics are also evaluated for their thermal 

transpiration-driven gas flow characteristics.  A clay-based ceramic 15PC is identified as 

suitable for multistage Knudsen pumps that may accommodate higher pressure heads.  

While operating at 55K above room temperature, a 9-stage Knudsen pump is 

demonstrated to generate a maximum pressure head ≈12kPa, or a gas flow of 

≈3.8µL/min. against a pressure head of 160Pa.  The pump has a footprint of 

≈8x8mm2/stage.  To date, a multistage Knudsen pump has operated continuously for 
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more than 7000 hours without any deterioration in its performance. 

Higher gas flow generation capabilities are demonstrated using thermal transpiration 

through nanoporous cellulose ester polymer membranes.  For an input power of 1.4W, a 

single stage Knudsen pump with 11.5mm diameter and 105µm thick polymer membrane 

has a temperature bias of 30K across the membrane, which provides 0.4sccm flow 

against a 330Pa pressure head.  Experiments suggest that the polymer Knudsen pump 

results in a thermal transpiration-driven gas flow of ≈1 sccm in absence of any external 

load.  It has a final packaged volume of 14x14x4.5mm3.  To date, a polymer pump has 

operated continuously for more than 600 hours without deterioration. 
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CHAPTER 1 

INTRODUCTION

 

1.1 Motivation 

Gas micropumps are required in a wide range of sensing and analysis related 

microsystems, such as electronic noses, mass spectrometers, gas chromatographs, 

[Nag98, Ter79, Wis04, Zel04] etc.  Gas pumps are also useful for pneumatic actuation of 

microvalves or for pneumatic movement of fluid samples within various micro-total-

analysis (µTAS) and lab-on-chip (LOC) systems [Abq07, Mar99, Tsa07, Wu08, Wan05, 

Lea03, Cho09, Wan06].   

In particular, miniaturized on-chip gas pumps are required in autonomous handheld 

microsystems for collecting and maneuvering samples within the microsystem [Kim08, 

Wan05, Ung00].  One such microsystem, micro gas chromatograph (μGC), is under 

development at The Center of Wireless Integrated Microsystems (WIMS) of The 

University of Michigan [Kim06].  The μGC has two modes of operations – gas sampling 

and gas analysis; both of these modes have different pumping requirements that should 

be met using a single micropump.  While operating in the gas-sampling mode, the μGC 

requires the gas to be pumped into a pre-concentrator at ≈25 sccm with a differential 

pressure of ≈ 20 kPa.  While operating in the gas analysis mode, the gas molecules are to 

be pushed across micro columns at the rate of ≈2 sccm with a differential pressure of 
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about 50 kPa.   

The gas pumping mechanisms based on actuation techniques, such as piezoelectric, 

electrostatic, peristaltic, etc., can be useful for some of the applications discussed above 

[Yun06, Las04, Ngu02, Ive08, Smi90].  These pumps can generate gas flow rates on the 

order of 10 sccm, with an input power of ≈100 mW.  In addition, microfabrication 

techniques allow them to have small footprint (≈4 cm2).  Although these pumping 

mechanisms are promising, they continue to evolve in terms of requirement for drive 

voltages, reliability, fabrication complexity, cost etc.  Most of these pumps require 

undesirably high operating voltages (100-400 V).  Further, the cost, reliability and yield 

of these pumps are adversely affected by their complex fabrication processes. 

In effect, the lack of available micropumps with the necessary combination of cost and 

performance has inhibited extensive use of micropumps [Las04].  Most of the existing 

microsystems use miniaturized versions of commercially available macro scale gas 

pumps.  Unfortunately, most of these pumps are either disproportionately large or they do 

not meet the optimal pumping speed required by the system.  A miniaturized and reliable 

 
Fig. 1.1: Success of various handheld gas sensing and analysis microsystems under 
development today depends largely on the availability of gas micropumps with necessary 
combination of performance and cost. 
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gas micropump that can efficiently meet the gas pumping requirements of these 

microsystems remains an important research goal (Fig. 1.1). 

The piezoelectrically driven pumps by thinXXS Microtechnologies AG, the 

electrostatically driven dual diaphragm pump by Honeywell, and the peristaltic pumping 

array by Kim et al. at The University of Michigan are some of the promising micropumps 

that satisfy some of the pumping requirements of microsystems [thinXXS08, Cab01, 

Kim06].  These are described below: 

The dual diaphragm pump reported by Cabuz et al. at Honeywell Inc. uses two 

membranes, with offset perforations, driven electrostatically to pump gas from one side 

of the membranes to the other (Fig. 1.2).  It has high gas pumping capacity (≈30 sccm), 

but it can generate a maximum differential of only 2 kPa for an input power of 8 mW.  

The architecture of the pump limits its capabilities for generating higher pressures.  This 

mechanism has a total packaged volume of 15x15x1 mm3.  The pumping pressure 

requirements can be solved by connecting multiple pumps in series, but that increases the 

total power requirement and the size of the final device drastically.  Further, the utility of 

 

Fig. 1.2:  A dual diaphragm pump, by Honeywell Inc., with two perforated membranes 
driven electrostatically to pump gas from top to bottom or vice-versa.  The sequence of 
motion of the membranes determines the direction of the pumping [Cab01]. 
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the pump is limited by the fatigue life of the two diaphragms.  These diaphragms make 

physical contact with each other, which can potentially lead to stiction problems. 

The thinXXS pump (model MDP1304), uses a piezoelectrically driven diaphragm to 

pump the gas.  It can generate relatively high gas flow rates (≈22 sccm) with a maximum 

differential pressure of 10 kPa (Fig. 1.3) [thinXXS08].  Although the pumping pressure 

specifications for the μGC can be met by connecting more than one thinXXS pump in 

series, the total power consumption and the final size will become undesirably high.  The 

power consumption of a single thinXXS pump, diameter 23 mm and thickness 3 mm, is 

≈230 mW. 

 

Fig. 1.3: A piezo-driven micropump by thinXXS Microtechnologies AG.  This is a 
piezoactuated micro diaphragm pump with passive check valves.  The pump is made of 
injection molded plastic and is light weight [thinXXS08]. 
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Fig. 1.4: An electrostatically driven, peristaltic array based gas pump, which uses a series 
of control valves to regulate the flow rate and pumping pressures for different cases.  This 
is lithographically fabricated micropump and it is easy to be multistaged [Kim06]. 
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Based on the various gas micropumping options available, the peristaltic pumping 

array proposed by Kim at The University of Michigan has emerged as a promising 

candidate for some microsystems application [Kim06, Kim07].  It uses a peristaltic array 

which includes a series of polymer membranes driven electrostatically by a dual electrode 

configuration and a series of microvalves that are optimized to generate the desired gas 

flow rates at specified pumping pressures (Fig. 1.4).  For an input power of 57 mW and 

operating voltage 100 V, the pump results in a best case flow rates of about 4 sccm at 

differential pressures upto 12.8 kPa.  It has a footprint of about 25.1x19.1 mm2.  

Although designs based on the peristaltic arrays are extremely energy efficient, these 

continue to evolve with respect to drive voltage requirements, reliability and complexity. 

The micropumps described above and most of the gas micropumps reported in 

literature are the miniaturized derivatives of their macroscale counterparts, which 

typically have several moving parts.  With miniaturization, the surface area to volume 

ratio of these moving parts increases, resulting in increased frictional losses, which may 

adversely affect their performance and life expectancy.   

Challenges that are inherent to miniaturized moving parts in a micropump motivate a 

consideration for micropumps based on thermal molecular pumping, such pumps can 

generate gas flows without the need of any moving parts.  Thermal molecular pumping 

can potentially overcome some of these challenges because it does not require any 

moving parts.  Unlike conventional micropumps, the thermal molecular pumps are driven 

by interaction of the gas molecules with the surface of the substrate [Hob00].  These 

pumps have the advantage of better effectiveness with miniaturization.  
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1.2 Thermal Molecular Pumps 

1.2.1 Gas Flow Regimes 

While analyzing various microsystems involving gas flow through miniaturized 

features, various types of gas flow regimes may need to be considered because the gas 

flow may not always follow continuum physics.  One of the most commonly used 

parameters to characterize the gas flow regimes is the Knudsen number (Kn).  The 

Knudsen number is defined as the ratio of the mean free path (i.e., the average distance 

travelled between two successive collisions) of gas molecules (λ) to the hydraulic 

diameter d of the channel (i.e., diameter of equivalent circular ducts): 

d
Kn


       (1.1) 

Knudsen number is representative of the flow regime of the gas molecules.  In general, 

there are four different types of gas flow regimes – free molecular, transitional, slip and 

viscous (Fig. 1.5) [Kar05]. 

 

Fig. 1.5: The plot shows the ranges of Knudsen numbers for different gas flow regimes.  
It suggests that the rarefied gas flow can be generated either by reducing the 
characteristic length of a systems or by increasing the channel diameter [Kar05]. 
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Viscous flow (Kn<0.01) corresponds to the gas flow regime for which all the 

continuum laws hold well.  The Navier-Stokes equation (NSE) can be used for the 

analysis of viscous flow. 

Slip flow (0.01<Kn<0.1) obeys all the laws of continuum physics and the NSE can be 

used for the analysis of slip flow.  However, the flow velocity and the temperature of gas 

need to be corrected for discontinuity in their respective values at the channel walls. 

Transitional flow (0.1<Kn<10) is the flow regime for which the equation based on the 

continuum physics, such as the NSE, cannot be used; however, the intermolecular 

collisions still dominate over the collisions of gas molecules with the surrounding walls. 

Free molecular flow (Kn>10) regime is the condition when the mutual interaction 

amongst the molecules is negligible and the number of collisions of molecules with the 

sidewalls is much more than the intermolecular collisions. 

 
 
Fig. 1.6: An accommodation pump that uses the difference in physics of interaction of the 
gas molecules with the smooth and with the roughened pyrex walls.  For chambers A and 
B connected with smooth pyrex tubes and chambers B and C through rough pyrex tubes –
if chamber B is held at lower temperature than A and C, the effective gas flow is from 
chamber A to chamber C [Hob00]. 
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Knudsen pump operation generally requires Kn > 1, that is the gas flow is in free 

molecular or transitional gas flow regime.  Under these operating conditions, collisions 

between the molecules and channel wall are much more frequent than the intermolecular 

collisions.  Hence, surface forces dominate for cases with Kn > 1. 

 

1.2.2 Thermal Molecular Pumps 

Thermal molecular pumps have no moving parts and, as the name suggests, they use 

thermal energy to regulate the molecular movement of the gas molecules [Hob00].  There 

are three types of thermal molecular pumps: accommodation pump [Hob70], 

thermomolecular pump [Tra74] and Knudsen pump [Knu09].  All these pumps share the 

advantage of no moving parts, which acts in favor of their structural reliability.  They do 

not need any operating fluid, which makes them a promising option for pumping 

 
 
Fig. 1.7: A thermomolecular pump exploits the anisotropy in the molecular fluxes 
resulting from violation of the cosine reflection law.  For two chambers A and B 
separated with a small aperture, if a reflector is located close to the aperture in chamber A 
and is at higher temperature, the cold gas molecules from chamber A hitting the reflector 
tend to bounce back closer to the normal.  This results in an effective flow from chamber 
A to B. 
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applications in hostile environments, such as space exploration. 

The accommodation pump exploits the difference in the scattering of gas molecules at 

different types of boundary surfaces to generate the pumping action [Hob70].  Figure 1.6 

shows three chambers (A, B, and C) connected in series via. tubes.  Chambers A and B 

are connected through a smooth pyrex tube and chambers B and C are connected through 

a roughened pyrex tube.  Hobson, in his experiments, demonstrated that if A and C are 

maintained at room temperature and B is held at liquid nitrogen temperature (that is, 

temperature lower than that of A and C), an effective movement of gas molecules from A 

to C occurs.  The difference in the gas-wall collision dynamics of the gas molecules 

moving through the smooth pyrex tube and through the roughened pyrex tube results in 

this pumping effect from chamber A to C.  At equilibrium the ratio of the pressure in 

chamber A to the pressure in chamber B, PA/PB, is expected to be lower than the ratio of 

the pressure in chamber C to the pressure in chamber B, PC/PB. 

Thermomolecular pumps, unlike accommodation pumps, exploit the anisotropy in the 

molecular fluxes resulting from violation of the cosine reflection law [Tra74].  The gas 

molecules incident on certain kind of surfaces, maintained at different temperature than 

the gas molecules themselves, tend to violate the laws of reflection.  For example, a gas 

molecule reflected from a relatively hot surface of carbonized nickel has a greater 

probability of being closer to the normal, that is, the angle of reflection is less than the 

angle of incidence.  Similarly, for a hot gas molecule being reflected from a relatively 

cold carbonized nickel surface, the gas molecule has a high probability to be reflected 

away from the normal.  This anisotropy in gas reflections from a material, such as heated 

carbonized nickel, can be used to pump the gas molecules from the hot side to the cold 



 

10 
 

side of the device with Kn~1.  Figure 1.7 shows a schematic layout of the pumping 

mechanism based on thermomolecular pumping.  It has two chambers A and B, 

connected through an aperture.  Chamber A has a carbonized nickel reflector placed close 

to the aperture such that the dimension of the reflector is on the order of distance of the 

reflector from the aperture.  If Chambers A and B are maintained at room temperature, 

while the reflector is maintained at a higher temperature, the gas molecules from chamber 

A incident on the reflector will be reflected closer to the normal and hence they will have 

a greater probability of being directed into the chamber B.  Thus, at equilibrium, chamber 

B will have higher pressure than chamber A. 

The third type of thermal molecular pump, the Knudsen pump, exploits the difference 

in the fluxes of hot and cold gas molecules flowing across a narrow channel.  It has at 

least two isolated chambers, at different temperatures (TH and TC), connected through a 

narrow channel (Fig. 1.8).  The gas flow from one chamber to the other chamber is 

directly proportional to the pressure in the first chamber and inversely proportional to the 

square-root of its temperature.  Hence, if the initial pressures in the two chambers are 

same, a longitudinal temperature gradient along the narrow channel results in an effective 

movement of gas molecules from the cold chamber to the hot chamber.  At equilibrium, 

the hot chamber has a higher equilibrium pressure than the cold chamber.  This 

 

 
Fig. 1.8: The gas flux along a narrow channel, which can sustain only free molecular gas 
flow, is ideally approximated by P/√T.  At equilibrium the molecular flux from the two 
chambers nullify each other. 
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phenomenon is known as thermal transpiration.  The ratio of the equilibrium pressure in 

the hot chamber (PH) to the pressure in the cold chamber (PC) is: 

2
1











C

H

C

H

T

T

P

P
      (1.1) 

A narrow channel is defined to have hydraulic diameter, d, smaller than the mean free 

path, λ, of the gas molecules flowing through it.  In other words, gas flowing through a 

narrow channel is essentially in the transitional or the free molecular regime, that is 

Kn>1. 

Figure 1.9 shows a schematic layout of a typical single stage Knudsen pump.  It has 

three chambers A, B and C, such that, chamber B is maintained at higher temperature and 

chamber A and C are maintained at a relatively lower temperature.  Chambers A and B 

are connected through a set of narrow channels.  The gas molecules move from cold 

 

Fig. 1.9: A Knudsen pump exploits the difference in molecular fluxes of hot and cold gas 
molecules flowing along a narrow channel subjected to a temperature gradient.  The gas 
molecules moving along the narrow channel have a preferential movement from the cold 
side of the channel to the hot side of the channel [McN05]. 
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chamber A to hot chamber B by the virtue of thermal transpiration.  This results in an 

equilibrium low pressure in chamber A and a relatively higher pressure in chamber B, 

which subsequently is connected to chamber C through a wide channel.  Unlike the 

narrow channels, the wide channel allows continuum flow; hence, the two chambers, B 

and C, have same equilibrium pressure irrespective of their temperatures.  Thus, the 

device demonstrates an effective movement of gas molecules from chamber A to 

chamber C, both at same temperature.  This preferential movement of gas in free 

molecular regime from cold to hot can be potentially used for gas pumping along the 

narrow channels [Knu09, McN05]. 

In this effort, the Knudsen pump is chosen because its performance is independent of 

the material used and its surface conditions.   

 

1.3 Benchmarking of Gas Micropumps 

1.3.1 Present Work 

The thermal transpiration driven gas pumping at atmospheric pressure require very 

small channels (hydraulic diameter ≈100 nm).  In order to obtain gas flow rates on the 

order of 1 sccm under typical operating conditions, more than 1010 channels are needed. 

This work explores the possibility of using bulk nanoporous materials for improving 

the gas flow generation capabilities of Knudsen pumps.  Unlike lithographically 

fabricated surface micromachined nanochannels, bulk nanoporous materials have a high 

density of interconnected nanochannels (≈1014 channels/cm2), which can transpire gas in 

parallel. 
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Figure 1.10 shows the gas flow rate generated by various micropumps, reported in 

literature, plotted against the degree of motion of the respective pumps.  The ‘degree of 

motion’, in this case, is defined as the number of dimensions in which the actuation 

mechanism moves.  For example, the piezoelectric pumps move only in thickness 

direction, and the electrostatic pumps have two electrodes that attract each other; hence 

they have been assigned degree of motion ‘1’.  Similarly, the pneumatic mechanisms 

have pressurized fluids that tend to move in all the 3 directions, hence, these mechanism 

have been assigned degree of motion ‘3’.  Attractive features of pumps with fewer 

degrees of motion include lower structural and operational complexity, which may also 

result in higher reliability in the long term. 

 

 

Fig. 1.10: The gas flow rate generated by various micropumps plotted against the degree 
of motion of each of these pumps.  The degree of motion is one of the measures of the 
reliability of a pump.  Gas pumps with higher degree of motion are expected to have 
lower reliability. 
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1.3.2 Past Work on Knudsen Pumps 

First functional Knudsen pump was reported by Knudsen himself in 1909 [Knu09].  

He demonstrated a compression ratio of ten across a set of ten capillaries connected in 

series – each containing a small constriction.  Alternate joints of these capillaries were 

maintained at a higher temperature.  The operating pressure for this set-up was 

significantly below atmospheric pressure to ensure that the gas flow across the 

constriction is in the transitional flow regime (Kn > 0.1).  Since 1909, various researchers 

have contributed towards the development of the Knudsen pump; however, unavailability 

of sufficiently small narrow channels limited the Knudsen pump operation to sub-

atmospheric pressures until recently. 

With the recent advances in the microfabrication techniques and with the introduction 

of materials having sub-micron sized capillaries, Knudsen pump operation at atmospheric 

pressure had been made possible.  Moreover, the development of microfabrication 

technology had favorable impact on the development of the Knudsen pump because with 

miniaturization the surface area to the volume ratio increases, which improves the 

effectiveness of a Knudsen pump.   

The recent developments in the Knudsen pumping technology and the associated 

benefits have motivated various numerical studies [Mun02, Guo09, Kos08].  Researchers 

have used various analytical and numerical methods to establish the theoretical limits for 

the optimization of various performance parameters of a Knudsen pump.  These 

performance parameters include the maximum gas flow rate and the maximum pressure 

generation capabilities of a Knudsen pump for a given thermal budget.  These 

optimization studies promise a very favorable performance metrics for Knudsen pumps 
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under idealized conditions [Ale06, Ale05, Mun02].  However, due to various non-

idealities present in the system the experimental results fail to match the theoretical 

estimated performance. 

Amongst various experimental studies on the thermal transpiration driven flows, only 

very few have looked at gas pumping at atmospheric pressure.  One of the leading efforts 

has been in Prof. Muntz’s group at University of Southern California.  The feasibility of 

cascading a single stage configuration to achieve a Knudsen compressor with desired 

performance was reported in [Pha95].  This was followed by an initial experimental 

investigation by Vargo [Var96], where he proposed the use of a membrane with several 

microchannel instead of using individual capillaries.  Later, he introduced the feasibility 

of nanoporous aerogel materials, with pore size on the order of 20 nm, for Knudsen 

pumping at atmospheric pressure [Var01].  (Aerogel is a supercritically dried silica gel.)  

The hot side of the nanoporous aerogel disc was resistively heated by a lithographically 

patterned gold heater on a silicon chip while the cold end was maintained at a lower 

temperature.  Their experiments suggested that the Knudsen compressor using helium as 

the operating medium yields better performance results than while using nitrogen.  This is 

so because the helium gas molecules have higher Knudsen number than nitrogen gas 

molecules at a given temperature and pressure.  For an input power of 1.7 W their 

compressor could generate a best case pressure drop of about 11.5 Torr with helium as 

the working medium.  More recently, it has been reported in [You05] that a 15-stage 

aerogel based Knudsen pump, with an input radiant power of 20.9 mW/cm2, can sustain a 

best case pressure drop of about 120 Torr (≈16 kPa); the same device could generate a 

best case flow rate of about 5x1016 molecules/sec (0.112 sccm).  Researchers have also 
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demonstrated the use of stacked microspheres, to emulate nanopores, for the thermal 

transpiration driven flow [You03].  Han et al. studied the gas flow across aerogel discs, at 

low pressures (<200 Pa), through holes and through rectangular channels micromachined 

across the thickness of bulk aerogel [Han07].  These experimental results, when 

compared to the results from the optimization studies, suggested the presence of various 

undesired flow patterns and other non-idealities that adversely affected the performance 

of the pump.  This highlights the fact that, if the non-idelities can be controlled, the 

pumping performance of Knudsen pumps can be improved significantly. 

McNamara et al. reported the first lithographically fabricated microchip scale 

Knudsen pump [McN05].  Their device had the potential to be fully integrated with IC 

fabrication process.  This chip scale pump, with small foot print of 1.5x2 mm2, could 

achieve a better gas compression ratio than previously reported Knudsen pumps.  This 

work established the feasibility of a lithographically patterned nanochannels in a chip 

scale fully micromachined Knudsen pump that achieved a pressure drop of about 54.7 

kPa with 80 mW of input power.  Use of microfabrication processes enabled this device 

to achieve very high thermal isolation (≈104 K/m), which resulted in high pressure 

gradients, while requiring power as low as 80 mW.  The small size and high gas 

compression capabilities make it a suitable candidate for chip scale cavity pressure 

modulation.  However, due to the limited number of lithographically patterned 

nanochannels that were fabricated, the flow rates were on the order of 10-6 sccm, which 

are inadequate for conventional applications such as gas chromatography.   

This thesis describes the use of bulk nanoporous materials for thermal transpiration-

driven gas pumping at atmospheric pressure.  Several bulk nanoporous materials have 
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been studied for their thermal transpiration driven gas flow characteristics, pressure 

characteristics, and associated non-idealities.  A fitted model has been developed to 

quantify various non-idealities associated with these pumps.   

 

1.3.3 Structure of This Work 

Chapter 2 presents a detailed analysis of the principle of operation of Knudsen pumps.  

Various analytical and semi-analytical models for thermal transpiration have been 

benchmarked against the direct simulations Monte Carlo (DSMC) technique – one of the 

most precise tools for analysis of thermal transpiration gas flows.  Of particular 

importance, a semianalytical model is identified that is most representative of the DSMC 

technique and is computationally less intense. 

Chapter 3 presents the design, analysis, fabrication and testing of a naturally occurring 

nanoporous zeolite, clinoptilolite, based single stage Knudsen pump.  This chapter details 

a fitted model that is used to analyze the system level transient response of Knudsen 

pumps.  The model allows us to identify and quantify various non-idealities that affect 

the performance of a Knudsen pump.  This work demonstrates the feasibility of using a 

bulk nanoporous ceramic as a transpiration material in a Knudsen pump. 

A multistage Knudsen pumping architecture is proposed in Chapter 4.  This chapter 

compares thermal transpiration driven gas flow characteristics of several bulk nanoporous 

ceramics.  The most favorable ceramic is chosen for the multistage stage Knudsen pump, 

which is subsequently characterized for its thermal transpiration driven gas flow 

characteristics. 
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Chapter 5 introduces the use of a thermally insulating nanoporous polymer membranes 

for thermal transpiration-driven Knudsen pumping.  On an average, these membranes 

have larger pore size than the nanoporous ceramics, which is favorable for increasing the 

transpiration driven gas flow rates.  Several types of polymer membranes have been 

studied and the most favorable polymer membrane has been identified for Knudsen 

pumps targeted at various gas sensing and analysis related applications. 

Finally, Chapter 6 presents a summary of the performance of various devices 

fabricated in this effort.  Various important observations and their role in determining the 

direction of further research have been highlighted.   
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CHAPTER 2 

THEORY OF KNUDSEN PUMPS 

 

One of the primary challenges in the design and development of a Knudsen pump is 

the lack of a widely accepted technique to model the phenomenon of thermal 

transpiration with reasonable accuracy, while keeping the computational complexity low.  

This chapter identifies the direct simulations Monte Carlo1 (DSMC) technique as the 

most accurate modeling technique for the phenomenon of thermal transpiration.  

However, this approach cannot be used as a practical design tool because of its huge 

computational complexity.  Consequently, various analytical and semi-analytical models 

have been benchmarked against the DSMC results with an intention to identify a thermal 

transpiration model that is most representative of the DSMC techniques, while being 

minimally computationally intensive. 

 

2.1 The Phenomenon of Thermal Transpiration 

The phenomenon of thermal transpiration refers to the ability of a narrow channel to 

sustain a non-zero longitudinal pressure gradient when subjected to a temperature bias.  

As stated in Chapter 1, in the context of this work a narrow channel refers to a channel 

with hydraulic diameter smaller than the mean free path of the gas molecules [Rey79, 
                                                 
1 The DSMC modeling was performed in collaboration with Prof. Wenjing Ye of Georgia Institute of 
Technology and Hong Kong Institute of Science and Technology. 
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Max79].  In other words, the gas flowing through a narrow channel is essentially in 

transitional or free molecular regime, which corresponds to rarefied gas flow conditions.  

Although there is no widely accepted physical mechanism that can explain the 

phenomenon of thermal transpiration, there is one plausible explanation for the 

phenomenon, which is based on the momentum transfer between the gas molecules and 

the channel walls [Son00].  The asymmetry in the momentum flux from the hot and the 

cold sides of the narrow channel is primarily responsible for the thermal transpiration 

driven flow.  Figure 2.1 shows a small section (δS) of the wall of a narrow channel.  It 

has various gas molecules impinging on it from different directions.  Since the mean free 

paths of the gas molecules are significantly larger than the hydraulic diameter of the 

channel, the gas molecules impinging on δS have the properties corresponding to their 

previous locations.  Hence, the gas molecules from the hot side have a higher average 

velocity compared to the molecules from the cold side.  This asymmetry results in an 

effective momentum transfer to the channel walls in the direction opposite to the 

temperature gradient.  Consequently, the channel walls exert an effective force on the gas 

molecules from the cold to the hot end of the channel. 

 
 

Fig. 2.1: Mechanism for the thermal transpiration driven gas flow from the cold end of 
the channel to the hot end.  Asymmetry in the momentum being imparted to the channel 
walls due to the difference in velocities of gas molecules from the hot and the cold end of 
the channels results in an effective force on the gas molecules from the cold end of the 
channel to the hot end. 
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Thermal transpiration in a channel can be explained as an equilibrium state attained 

by two opposing flow fields: thermal creep flow and Poiseuille flow (Fig. 2.2).  The 

thermal creep flow is the movement of molecules near the walls from the cold end to the 

hot.  The counter-flow, known as the Poiseuille flow, is induced by the pressure gradient 

generated by the thermal creep flow and acts to nullify the same [Loe34].  However, with 

the reduction in the hydraulic diameter of the channel, the central region, where the 

Poiseuille flow occurs, reduces in area.  Hence, with the smaller number of gas molecules 

being pumped back through the central region, the effect of thermal transpiration 

becomes more noticeable.  It has been shown that for Kn>1, thermal creep flow starts 

overcoming Poiseuille flow and, hence, may be used for gas pumping or gas compression 

applications [McN05, You01, Var01]. 

 

2.2 Background of Thermal Transpiration 

The phenomenon of thermal transpiration was first analyzed (independently) by 

Reynolds and Maxwell in the year 1879.  In the same year, they proposed rigorous 

 

 
 

Fig. 2.2: Longitudinal temperature gradient along a channel induces the movement of gas 
molecules close to the wall, from the cold to the hot end, due to the thermal transpiration.  
This causes a backflow in the central region, which remains in viscous regime for wide 
channels.  For channels with hydraulic diameter smaller than the mean free path of the 
molecules, viscous flow is greatly reduced. 
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mathematical analyses for the phenomenon [Max79, Rey79].  Since then various 

researchers have proposed analytical and semi-analytical models for thermal transpiration 

[Col05].  Most of the models for thermal transpiration are derived from the Boltzmann 

equation (BE), which is a generalized expression for the gas flow.  The BE will be 

addressed in some detail in Section 2.3, but it is worth noting that the most complicated 

term in the BE is the collision term.  It is impossible to integrate the BE analytically 

because the expression for the collision term takes very complex forms.  Hence, the 

collision term needs to be simplified for specific cases to simplify the BE and then 

integrate it analytically.  Binary collisions (in which only two molecules collide at a time) 

form the central assumption for simplification of the collision term. 

The first step towards analytical modeling of the phenomenon of thermal 

transpiration involves use of the first order simplified BE, that is, the Navier-Stokes 

Equation (NSE) [Kar05].  These initial first order simplified models, along with the first 

order corrected boundary conditions, are applicable to the near continuum rarefied gas 

flow analysis [Ark01].  These models have allowed researchers to investigate rarefied gas 

flows through various cross-sections, such as circular [Ken38], annular [Ebe65], and 

rectangular [Ebe65; Mor98]; however they deviate significantly from the experimental 

results for Kn > 0.1 [Sre69, Pei96]. 

Since the first order simplified model for the thermal transpiration has limited 

applicability to gas flow with Kn > 0.1, higher order approximations and approaches 

based on molecular gas dynamics have been proposed to model the phenomenon of 

thermal transpiration [Cha52, Bes99, Dei64, Col04, Ark01, Mau03].  Beskok et al. 

(1999) proposed a higher order approximation for boundary conditions that could fit 
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better with the first order approximated form of the BE, that is the NSE [Bes99].  Xue et 

al. (2000) proposed a model that could match DSMC [Xue00], one of the most reliable 

techniques to study rarefied gas flows, upto Kn ≈ 3.  This was followed by a more 

mathematically stable model by Jie et al. in 2000 [Jie00].  Other efforts that have looked 

at developing higher order analytical models for the analysis of thermal transpiration 

have been presented in [Eli01, Kar05]. 

Unlike analytical models, approximate methods based on the numerical solution of 

the BE yield relatively accurate results [Sha98].  For these (approximate) methods to be 

suitable for any Knudsen number, simplifications to the collision integral should retain its 

fundamental properties.  The fundamental properties are a set of equations that need to be 

satisfied to realize a physically meaningful solution [Sha98].  These fundamental 

properties include conservation of particles, momentum, and energy in each collision 

[Lif81, Cer75, Fer72].  The simplified equation is then integrated exactly, which results 

in the model kinetic equations that are applicable for all values of the Knudsen number.  

Two main model equations that have been discussed in literature are the BGK model 

[Bha54] and the S-model [Sha74].  The BGK model assumes collison frequency to be 

independent of the molecular velocity.  The collision frequency can be chosen by various 

methods as described in [Sha98].  The BGK model is applicable only to the isothermal 

gas flows.  Based on the method used to choose the collision frequency, the analytical 

expression obtained for either viscosity or thermal conductivity (but not both) agrees with 

the experimentally measured values [Sha98].  Moreover, the BGK model gives a wrong 

estimate for the Prandtl number.  Subsequently, Shakov proposed S-model, which is a 

modification of the BGK model giving the correct Prandtl number.  Like the BGK model, 
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the S-model is also applicable to the isothermal gas flows.  However, the S-model has 

also been identified to be ideal for linear non-isothermal gas flows [Sha98, Sha97].  

Literature provides extensive results on the thermal creep flow for the BGK model and 

for the S-model; it suggests that S-model is a more appropriate model for the thermal 

transpiration flows [Sha98].  However, for the non-linear, non-isothermal gas flow, the 

fundamental properties of collisions can neither be proved nor disproved when using S-

model.  

 

2.3 Modeling of Thermal Transpiration 

This section describes some of the modeling techniques used for this work.  These 

models take forms ranging from a simple mathematical correlation, to a complex 

algorithm for tracking individual particles in the system.   

An approach based on molecular dynamics is appealing because under the rarefied 

gas flow conditions some parameters, which are independent otherwise, show cross 

coupling.  For example, under the rarefied gas flow conditions, the temperature gradient 

along the channel is not only responsible for the heat flux, but it also results in the motion 

of the gas molecules.  Similarly, the pressure gradient along the channel, not only moves 

the gas molecules, but also contributes to the heat flux.  The direct simulation Monte 

Carlo (DSMC) technique is one of the most accurate molecular dynamics based 

techniques used for studying the phenomenon of thermal transpiration.  It tracks a 

representative set of molecules used to study the dynamics of a system.  The Boltzmann 

equation, in contrast, assumes a velocity distribution function to avoid tracking of the 

individual particles.  Simplified forms of the Boltzmann equation are used to derive 
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analytical and semi-analytical models, such as those proposed by Maxwell [Max79], 

Williams [Wil70], Kennard [Ken38], Knudsen [Loe34] and Sharipov [Sha99].  Following 

sub-section give a brief overview of the DSMC techniques, Boltzmann equation and 

various analytical and semi-analytical models derived from the Boltzmann equation. 

 

2.3.1 DSMC Technique 

The DSMC technique is one of the most precise tools for analyzing the thermal 

transpiration gas flows: it tracks a statistically representative set of particles by 

calculating positions and velocities of these particles at every time step [Bir94, Ora98].  

The particle motions are modeled deterministically, whereas the collisions are treated 

statistically.  This method is useful only for dilute gas flows for which the average 

distance between the gas molecules is large in comparison to the molecular diameter.  

The method was first introduced by Bird [Bir63].  Since then it has been applied to 

various gas flow problems, such as the multidimensional flows, gas mixtures, flows with 

internal degrees of freedom, and chemically reacting gas flows [Bir63, Bir78]. 

Figure 2.3 shows a typical computational flow for the DSMC technique.  The 

computational flow can be understood as a sequence of four basic steps: particle 

movement, particle indexing and cross referencing, collision simulation, and sampling.  

The information available for particles at microscopic level is used to evaluate the 

macroscopic attributes of the system. 

The four step process can be summarized as [Ora98]: 

1. Particle Movement – This step includes implementing the boundary condition 

on the particles leaving the container during a particular time step. 
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2. Indexing and Cross-Referencing – This involves division of space into cells 

and indexing various cells.  An effective indexing and referencing is a key to 

the computational efficiency. 

3. Collision Simulation – This step introduces the probabilistic aspect of the 

DSMC technique.  An appropriate number of representative collisions 

between randomly chosen pairs of particles are simulated.  The results are 

better if the collision of a chosen molecule is limited to the nearby particles 

 

Fig. 2.3: DSMC flow chart – the computational flow can be understood as a sequence of 
four basic steps: particle movement, particle indexing and cross referencing, collision 
simulation, and sampling.  This figure has been adapted from [Mas06]. 
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only. 

4. Sampling – In this step, the macroscopic properties of the system are 

calculated based on its microscopic attributes.  The macroscopic properties 

may be sampled less frequently to increase the computational efficiency. 

Although the DSMC technique is one of the most accurate techniques that can 

theoretically analyze all kinds of flows, its computational complexity restricts its 

usefulness as a design tool.  Moreover, the computational cost makes it impractical and 

unnecessary to seek DSMC solutions for problems in slip flow and viscous flow regimes 

(Kn < 0.1), which can be modeled analytically with reasonable accuracy. 

Attempts have been made to reduce the computational complexity of this molecular 

tracking technique without sacrificing its performance.  Some of the recent versions of 

the DSMC technique that reduce the computational time of the molecular tracking 

technique include the DSMC – information preserving technique (DSMC-IP) [Fan99], 

the molecular block model for DSMC (MB-DSMC) [Pan01], and the Hybrid 

DSMC/Navier-Stokes methods [Has97, Rov98].  Although these improved techniques 

have been able to reduce the computational requirement of the DSMC technique to a 

certain extent, the computational cost of the technique is still high.  Hence, an alternative 

modeling technique that can model the rarefied gas flow more optimally is required. 

 

2.3.2 Boltzmann Equation 

Unlike DSMC, the Boltzmann equation (BE) is based on a velocity distribution 

function, which can be used to evaluate various macroscopic characteristics of a system 

with rarefied gas flow.  The concept of using velocity distribution was introduced 
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contemporarily by Maxwell and Boltzmann in their respective works.  The velocity 

distribution function eliminates the need for tracking individual particles, which is 

computationally expensive.  The resulting BE is [Col04, Col05, Cer06]: 
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    (2.1) 

where, F represents imposed body forces, v is the velocity vector, x  is the position 

vector, and fv is the velocity density function.  The rate of change in the density function 

( tfv  ) is caused by the change in fv due to the molecular motion (  xfv v . ), external 

body force (  vfF v . ) and collision between molecules ( ),( *vv ffQ ).  The first term in 

the Eqn. 2.1 is the rate of change of number of particles with velocity v .  The second 

term represents convection of molecules, with velocity v , across a volume element.  The 

third term represents convection of molecules across the velocity space as a result of the 

external force F .  The fourth term is a generalized expression for the collision of two 

molecules. 

The expression for the collision term is typically very complex, which makes it 

impossible to solve the BE analytically.  Hence, in order to solve the BE analytically, the 

collision term must be simplified.  Most of the analytical models for the phenomenon of 

thermal transpiration use the linearized BE with a simplified collision model.  Each of 

these analytical models have a different sets of assumptions for simplifying the collision 

term in the BE.  The set of assumptions used to simplify the BE for the derivation of a 

thermal transpiration model determines the limitations for the applicability of the model 

to various rarefied gas flow problems.  Some of the most common assumptions for 

solving the BE include [Sha98]: 
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 The gas in the chambers, located at both ends of a narrow channel, is assumed 

to be in equilibrium far away from the channel ends. 

 The flow regime in the capillary is assumed to be stable and not turbulent. 

 The gas flowing through the channel is assumed to be dilute.  Thus, the 

collision term can be simplified for the existence of only binary collisions. 

 The equation is derived for monoatomic gas molecules, which makes 

simplification of the kinetic equation easier since the internal degrees of 

freedom can be neglected. 

 The gas flow is assumed to comprise of single gas species, which helps in 

simplification of the kinetic equations. 

 

2.3.3 Thermal Transpiration – Models 

Different analytical models for the analysis of thermal transpiration driven gas flows, 

discussed in literature, are different variations of the BE obtained by simplification of the 

collision term under different assumptions.  Amongst these various models, the following 

are some of the models that have been benchmarked against the DSMC: Maxwell 

[Max79], Knudsen [Loe34], Kennard [Ken38], Williams [Wil70] and Sharipov [Sha99].  

The analytical expressions for each of these models and the corresponding limitations are 

discussed below.  Some of these analytical models are applicable only to the circular 

channels.  For such models, while analyzing thermal transpiration non-circular channels, 

the radius of the capillary is approximated by the hydraulic radius of the non-circular 

channel. 
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A. The Maxwell Model 

Maxwell proposed one of the earliest mathematical correlations to study the 

isothermal, and near continuum gas flow rate, QTT, through narrow circular capillary with 

radius a.  The mathematical expression for gas flow rate through a capillary subjected to 

a temperature gradient dT/dx and a pressure gradient dP/dx is given by [Max79]: 
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where m is the mass of a gas molecule, Rg is the specific gas constant, D is the collision 

diameter of the gas molecues, kB is the Boltz mann constant, T is the temperature along 

the narrow channel, P is the pressure along the narrow channel and fr is a measure of 

molecular reflectivity of the surface of the narrow channel (fr = 0.5 for half perfect 

reflecting surface and fr = 1 for a perfectly reflecting surface). 

In the absence of a pressure gradient, the gas flow is from the cold end to the hot end 

of the narrow channel.  However, in the absence of any flow, the pressure is higher at the 

hot end of the tube; the resulting pressure gradient is: 

dx
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     (2.9) 

This model assumes isothermal gas flow, which physically means that the motion of the 

gas molecules is slow and the temperature along the capillary walls varies so gradually 

that the temperature distribution across any section of the tube can be assumed to be 

uniform. 

 

B. The Kennard Model 

The Kennard model is same as the Maxwell model except for the fact that the 

coefficient of slipping in the Maxwell model is replaced by the slip length, which 

depends on the thermal accommodation coefficient of the surface.  The Kennard model 

also assumes a near continuum (Kn<0.1) flow with moderate pressures.  It assumes that 

the gas is dense enough to extend the Poiseuille’s flow equation to accommodate 

temperature gradient.  Kennard’s model for thermal transpiration driven gas flow rate 

across a narrow channel with circular cross-section (radius a), under the assumption of 

isothermal gas flow is [Ken38]: 
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However, if the two ends of the tube are sealed, the creeping flow induced along the 

walls of the tube results in an equilibrium pressure gradient along the tube.  The resulting 

pressure gradient pumps the gas against the thermal creep flow through the central region 

of the tube, such that the effective gas flow across any section of the narrow channel is 

zero.  The expression for the pressure gradient is: 
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C. The Williams Model 

The Williams model is identical to Kennard’s model except the slip length, ζ, which 

is expressed more precisely in terms of the coefficient of accommodation of the gas 

molecules to the channel walls.  The slip length is: 
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For accommodation coefficient unity (σ = 1), the slip length becomes equal to the 

mean free path of the gas molecules (Eqn. 2.12), which is true for the Kennard model 

also.  Hence, the Williams model can be seen as a more precise representation of the 

Kennard model, where Williams model represents the slip length in a rarefied gas flow in 

terms of the accommodation coefficient.  The mathematical expression for the 

dependence of pressure gradient on the temperature gradient is [Wil70]: 
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The Williams model operates on the following assumptions: constant fluid properties 

along the channel, gas flowing along a thin capillary with circular cross-section, 

isothermal gas flow, and near continuum gas flow. 

 

D. The Knudsen Model 

Unlike the Maxwell, Williams, Kennard models, the Knudsen model is an empirically 

corrected model that is applicable to either very small Kn or very large Kn gas flow 

though narrow circular capillaries.  Like all the other models discussed above, this model 

also assumes isothermal gas flow along a capillary with circular cross-section.  In the 

absence of any effective flow along the channel, the equilibrium pressure gradient 

resulting from an applied temperature gradient is [Loe34]: 
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where, k1 is an empirically determined factor.  k1=1 if Kn>>1, else 2<k1<3 

 

E. The Sharipov Model  

Unlike the models discussed above, the Sharipov model is based on a more precise 

model, the S-model, to simplify the collision term in the BE.  Hence, the Sharipov model 

is applicable to all the flow regimes (Kn>0).  The average mass flow rate of gas through a 

capillary from the cold end to the hot end is:  
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(for circular capillary) [Sha97] 
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(for rectangular channel) [Sha99] 
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where, l is the length of the capillary, a is the radius of the capillary, aR is the height of 

the (rectangular) channel, and bR is the width of the (rectangular) channel.  In the absence 

of the flow rate the equilibrium temperature gradient that exists to nullify the thermal 

transpiration driven flow is: 
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and QP and QT are the pressure and temperature coefficients that depend on rarefaction 

parameter δavg: 
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The viscous flow in the center of the channel follows Poiseuille’s equation and the 

pressure gradient driven volumetric gas flow rate is:  
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where, DL is the diameter of the channel, which allows gas flow in viscous flow regime.  

ΔP is the pressure head across the channel. 
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2.4 Benchmarking of Models 

As part of this thesis research, a test case was developed to benchmark the 

performance of the thermal transpiration models, discussed above, against the DSMC 

technique.  The intent was to identify the limitations of these different analytical and 

semi-analytical models to determine their utility in designing practical Knudsen pumps.  

The test case presented here is based on a finite element (FE) model of the fully 

micromachined Knudsen pump which was fabricated on a pyrex glass substrate and had a 

footprint of 1.5x2 mm2 [McN05].  The FE model is used to estimate the temperature 

profile along the narrow channel.  Amongst the various models benchmarked against 

DSMC, the Sharipov model is the most promising alternative to the DSMC technique.  

Moreover, amongst the analytical models discussed above, only the Sharipov model is 

applicable over the full spectrum of the Knudsen numbers (Kn > 0). 

 

 

 

Fig. 2.4: 3D schematic of the fully micromachined Knudsen pump [Gup07].  The device 
has one heated cavity (#1) and two cold cavities (#2 and #3) passively maintained at 
room temperature.  Cavities 1 and 2 are connected through narrow channels.  Cavities 1 
and 3 are connected via a wide channel. 
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2.4.1 Test Case – FEM Model 

The test model has two cavities, one hot and one cold, which are connected by a set 

of nanochannels.  The hot and the cold cavities in this case are analogous to the hot and 

cold chambers in Fig. 1.10.  They are called cavities in this case because they are formed 

by etched out void spaces on a bulk SiO2 wafer. 

Figure 2.4 shows a 3D schematic of the model, which has multiple nanochannels 

connecting two cavities (cavity 1 and cavity 2).  The two cavities are maintained at 

different temperatures – cavity 1 is heated and cavity 2 is passively held at room 

temperature.  The heated cavity (cavity 1) is further connected through a wide channel to 

cavity 3, which remains at ambient pressure and temperature.  These cavities (cavity 1, 2 

and 3) and the wide channel connecting cavity 1 and cavity 3 are countersunk in a glass 

substrate.  Each of the cavities is 10 μm deep and has a foot print of 160x50 μm2, 
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Fig. 2.5: Temperature distribution along the narrow channel (700 μm long).  An ANSYS 
model is developed for the experimental device, shown in Fig. 2.4, to estimate the 
temperature distribution along the narrow channels based on the experimentally measured 
temperatures in the two end cavities [McN05, Gup06]. 
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whereas the wide channel has a depth of 10 μm and width of 30 μm.  The cavities are 

capped by a three layer SiO2/Si3N4/SiO2 dielectric stack; each of these layers is 300 nm 

thick.  The narrow channels are patterned on polysilicon layer, which is sandwiched 

between the dielectric stack and the glass substrate.  The poly layer is 1 μm thick except 

for the places where a sub-layer of 100 nm thickness is initially etched out to define 

narrow channels.  Thus, the narrow channels are 10 μm wide and 100 nm deep.  The 

polysilicon layer is etched away from the top of the hot and the cold cavities, which 

allows thermal isolation of the polysilicon heater present in the hot cavity.  This heater 

hangs from the top dielectric stack and is located close to the ends of the narrow 

channels’ opening in the hot cavity.  This architecture achieves a thermal isolation of 

≈1570 K/mm, while heating the hot chamber upto 1373 K with an input power of 80 

mW. 

A finite element based ANSYS model, with the topology discussed above, is used to 

compute the temperature distribution along the narrow channels (Fig. 2.5) [Gup06, 

400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

Temperature at Hot End, T
H

 (K)

P
re

ss
ur

e 
D

iff
er

en
ce

, P
H

 −
 P

C
 (

at
m

)

 

 

Kennard
Williams
Maxwell
Knudsen
Sharipov

Narrow channel length: 700 um

 
Fig. 2.6: Total pressure drop (PH-PC) along the narrow channel as a function of the 
temperature in hot chamber (TH) – as predicted by various thermal transpiration models. 
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Gup07].  This temperature profile serves as an input to various analytical models, which 

are used to estimate the equilibrium pressure distribution along the narrow channel.  The 

ANSYS model assumes a fixed temperature boundary condition (300 K) at the base.  A 

convection boundary condition is imposed on the top and the side faces of the device 

with ambient at 300 K. 

 
2.4.2 Results and Discussion 

Figure 2.6 shows the steady state pressure drop (PH-PC = ΔP) across the narrow 

channels, as predicted by various models, for different temperatures (TH) at the hot end of 

the 700 µm long narrow channels.  For a given TH, the temperature distribution along the 

narrow channel is assumed to follow a trend similar to that shown in the Fig. 2.5.  The 

temperature profile for a TH other than that shown in Fig. 2.5, is obtained by scaling 

up/down the profile shown in Fig. 2.5, while keeping the cold end temperature (TC) at 

300 K.  Figure 2.6 shows that with the increase in TH, the ΔP increases linearly for the 

Maxwell, Williams and Kennard models.  The results from these three models suggest 

that TH on the order of 1000 K would evacuate the cold cavity to zero pressure (i.e. PC = 

0 atm).  This is not physically possible, because Eqn. 2.1 suggests that for complete 

evacuation of the cold chamber (i.e. PC = 0 atm), the temperature at the hot end will need 

to be infinitely large.  The Knudsen model and the Sharipov model have a more 

reasonable prediction of ΔP for a given TH.  Figure 2.6 shows that the Knudsen model 

also follows a linear trend, but a closer look at the mathematical expression (Eqn. 2.14) 

suggests that no finite value of TH would result in complete evacuation of the cold 

chamber (i.e. PC = 0 atm).  Similarly, as TH is increased from the room temperature, the 

Sharipov model predicts a higher initial ΔP than the Knudsen model.  However, the rate 
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of the rise of the ΔP, with the increase in TH, tends to reduce with increasing values of TH.  

Thus, the Knudsen and Sharipov are physically more reasonable models for the analysis 

of the phenomenon of thermal transpiration. 

The pressure profiles, as predicted by the Maxwell, Kennard and Williams models 

deviate significantly from the DSMC results, potentially because they are based on the 

analytical models that are corrected for first order velocity slip and temperature jump 

boundary conditions (Fig. 2.7).  The Maxwell model accounts for the velocity slip at the 

channel boundary by a coefficient of slipping, G (Eqn. 2.8).  The pressure profile 

evaluated using the Maxwell model, shown in Fig. 2.7, assumes the coefficient of 

slipping to be twice the mean free path of the gas molecules.  Similarly, the Kennard 

model has a term called ‘slip length’, which is typically on the order of the mean free 

path of the gas molecules.  Slip length is the thin layer along the channel walls where the 

thermal creep flow occurs.  The pressure profile evaluated using the Kennard model, 
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Fig. 2.7: The pressure distribution along the narrow channel as predicted by various 
analytical and semi-analytical models for thermal transpiration.  These pressure profiles 
are benchmarked against the pressure profile obtained from the DSMC technique. 
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shown in Fig. 2.7, assumes the slip length equal to the mean free path of the gas 

molecules.  Further, for the Williams model, the slip length is more rigorously defined in 

terms of the accommodation coefficient.  The pressure profile presented here assumes the 

accommodation to be 0.87.  The pressure profile by the Williams model, with unity 

accommodation coefficient, yields a pressure profile identical to the pressure profile by 

the Kennard model. 

The pressure distribution along the narrow channel (Fig. 2.7) corresponding to the 

temperature profile shown in Fig. 2.5 suggests that the Sharipov model is the most 

representative model for the DSMC technique.  The Sharipov model is potentially one of 

the most generic form of the semi-analytical model that is applicable to the full range of 

gas flow regimes (Kn > 0).  It uses the S-model to simplify the collision term in the 

Boltzmann equation and then numerically integrate the equation for different flow 

regimes [Sha74].  The model has a set of numerically evaluated temperature and pressure 

gas flow coefficients that make this semi-analytical model reasonably precise, while 

preserving ease of use.  Hence, the Sharipov model is the best alternative to the 

computationally expensive DSMC technique [Sha99]. 

The Knudsen model, an empirically corrected model for very low and very high 

Knudsen number flows, is applicable only to the narrow channels with circular cross-

sections.  Similarly, the Maxwell, Williams and Kennard models are applicable to the 

near continuum gas flows in the circular capillaries, whereas the model under 

consideration has gas flow in free molecular or transitional flow regime.  Hence, the 

Knudsen, Maxwell, Williams and Kennard models are the less preferred models for the 

present analysis.  The Sharipov model is preferred because it is applicable to the gas flow 
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in all the flow regimes.  Moreover, unlike all other models, the Sharipov model can be 

applied to the thermal transpiration flow through rectangular channels, which will be 

more representative of the case being studied here.  Apart from its applicability to all 

flow regimes, the Sharipov model is applicable to non-isothermal gas flows as well. 

As part of this research effort, the applicability of the Sharipov model was further 

ascertained by another hypothetical test case, which benchmarks the thermal transpiration 

generated pressure profile predicted by the Sharipov model against the pressure profiles 

predicted by two types of DSMC techniques [Mas06].  Figure 2.8 shows the pressure 

profile from a series of numerical simulations that were performed on channels with a 

length of 5 µm and various heights (1 µm, 100 nm, and 20 nm respectively), which had a 

 

Fig. 2.8: Pressure profiles, for various channel heights, corresponding to a test case for 
which the temperature profile was assumed to be linear and ΔT = 300 K.  The results 
from DSMC, IP-DSMC and S-model are in close agreement with each other for all the 
three cases.  IP-DSMC differs from DSMC in exploiting the continuum behavior along 
with the particle dynamics to achieve a better computational performance.  This figure 
has been adapted from [Mas06]. 
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linearly varying temperature from 273 K to 573 K along the channels.  The plots suggest 

that the results from the Sharipov model closely resemble those of the DSMC and the IP-

DSMC results: IP-DSMC being a more efficient DSMC technique that blends 

information from continuum theory into particle dynamics to achieve a better 

computational efficiency [Mas06].  Once again, the ability of the Sharipov model to 

reproduce the results as predicted by the DSMC technique makes it a very strong 

candidate for the initial design and simulation requirements of the thermal transpiration 

driven flows. 

The Sharipov model was then used to establish some scaling guidelines to design a 

Knudsen pump.  Figure 2.9 shows a typical variation of the cold end pressure (PC) with 

the variation in the channel heights, as predicted by the Sharipov model, for the 700 µm 

long channel.  As expected, while operating at atmospheric pressure, the thermal 
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Fig. 2.9: An estimate of the vacuum pressures generated at the cold end of the channel for 
different channel heights.  The Sharipov model is used to estimate the steady state 
vacuum pressure at the cold end of the narrow channel, 10 μm wide, while the hot end of 
the channel is vented to the ambient (that is PH = 1 atm).  The gas compression efficiency 
increases with decreasing channel height. 
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transpiration effects are observable for the narrow channels (Kn>1) with channel heights 

<100 nm.  This is so, because for larger diameters the Poiseuille flow is large enough to 

nullify the flow induced by thermal creep.  This suggests that a device with narrower 

channel heights is more effective in retaining a larger pressure difference across the 

narrow channel.  However, for a smaller channel height the gas molecules flowing across 

the channel are reduced in number, hence the response time of the device will increase.  

Thus, the channel height is one of the control parameters for pressure differential 

achieved vs. the response time of a thermal transpiration based gas pump. 

For vacuum pumping applications, the reduction in hot cavity pressure (PH), results in 

a more effective vacuum (i.e. higher PH/PC) generated at the cold end of the narrow 

channel (Fig. 2.10).  This indicates that an open system, for which cavity 3 is vented to 

the ambient, such that PH can never exceed 1 atm., is more effective than a closed system.  
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Fig. 2.10: An estimate of the pressure ratio at the two ends of the narrow channel for 
different hot end pressures.  The Sharipov model is used to estimate the pressure ratio, at 
the two ends of the narrow channel – 10 μm wide and 100 nm high.  The gas 
compression ratio increases with decreasing pressure at the hot end of the narrow 
channel.  This is favorable for a multistage Knudsen vacuum pump. 
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Moreover, the plot in Fig. 2.10 also suggests that a multistage thermal transpiration 

driven vacuum pump will benefit from higher-pressure ratios in successive stages with 

the reduction in average operating pressure of a particular stage. 

Finally, the Sharipov model suggests that unlike the case for gas compression, the gas 

pumping mechanism benefits from greater height of the narrow channels.  The Sharipov 

model was used to evaluate the mass flux of gas through varying widths of narrow 

channels for channel heights of 50 nm (channel A) and 100 nm (channel B) at ambient 

pressure.  The analysis suggests that as the height-to-width ratio reduces from unity, the 

mass flux through a channel of a given height increases and then attains a saturation 

value for widths much larger than the height (Fig. 2.11).  This indicates that depending on 

the fabrication complexity, one can choose to have multiple channels with smaller 

widths, so long as the mass flux is in saturation regime.  However, for higher mass flow 
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Fig. 2.11: The molecular flux across the narrow channels with two different heights for 
different channel widths.  As the height to width ratio reduces from unity the molecular 
flux increases initially and then attains a saturation value.  The molecular flux is high for 
channel with greater height. 
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rate channels with greater height are preferred, but as discussed earlier the channels with 

greater heights will essentially have lower pumping pressure capabilities. 

 

2.4.3 Summary 

The study suggests that the Sharipov model can be used to predict the behavioral 

response of a thermal transpiration driven microsystem with reasonable accuracy.  

Application of the Sharipov model to the Knudsen pump design suggests that: (a) 

Relatively high pressure ratios (PH/PC) are available at lower values of PH in the hot 

chamber, thus predicting higher pressure ratios in the successive stages of a multistage 

Knudsen pump.  (b) The mass flow rate calculations using the Sharipov model indicate 

that the mass flux increases with the channel height (for narrow channels), and for a 

channel with given height, the mass flux first increases with increasing width and then 

attains a saturation value for widths much larger than channel height.  However, with the 

increasing channel heights the pumping pressure capability of the pump decreases.  

Hence, the Knudsen pump design requires an optimal choice between two opposing 

performance metrics – the desired gas flow rate and the desired pumping pressure. 

. 
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CHAPTER 3 

NANOPOROUS CERAMIC-BASED SINGLE STAGE 

KNUDSEN PUMP 

 

One of the primary challenges faced with a typical Knudsen pump for conventional 

sensing applications at atmospheric pressure is that the thermal transpiration driven gas 

flow rates are low.  This is so because the mean free path λ of air molecules at 

atmospheric pressure is 100 nm, approximately, which limits the diameter of flow 

channels.  This chapter describes the use of bulk nanoporous materials for thermal 

transpiration in Knudsen pumps2.  Bulk nanoporous materials have a high density of 

interconnected nanochannels (≈1014 channels/cm2), which can pump gas in parallel.  

Thus, Knudsen pumps using bulk nanoporous materials bear the promise of generating 

meaningful gas flow rates. 

 

3.1 Nanoporous Ceramic (Zeolite) Based Knudsen Pump 

A naturally occurring zeolite, clinoptilolite, is chosen to demonstrate the feasibility of 

thermal transpiration driven gas pumping using bulk nanoporous ceramic materials.  

Naturally occurring zeolites have a dense interconnected network of narrow channels 

(>1014 pores/cm2).  Clinoptilolite, the zeolite used in this study, is one of the most 

                                                 
2 Portions of this chapter have been published in Applied Physics Letters [Gup08b]. 
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abundant and widely mined natural zeolites, and is easily machinable.  It has nanopores 

with hydraulic diameter of ≈0.45 nm and has bulk porosity of ≈34% (Fig. 3.1) [Li05, 

Jia04].  It is an inexpensive, easily accessible and mechanically strong nanoporous 

material.  The nanoporous structure of zeolites inherently provides them with high 

surface area to volume ratio and hence makes them favorable for various surface 

chemistry related applications, such as, domestic and commercial water purification, 

agriculture, construction, medicine and so on [Fen05, Gho99, Kes94, Oza06, Sak05, 

Smi99, Wei00]. 

 

3.1.1 Device Structure 

The zeolite-based Knudsen pump designed as part of this research effort is intended 

to have a hot core and a cool exterior.  It has two circular zeolite discs with a flexible 

heater (≈18.7 Ω) sandwiched between them (Fig. 3.2, 3.3).  The heater is formed by a 

thin, etched-foil resistive element laminated between insulating layers of Kapton (Minco, 

MN).  Perforated aluminum discs are used on both sides of the zeolite discs to improve 

 
Fig. 3.1: Symbolic structure of the naturally occurring zeolite molecule, clinoptilolite.  It 
has billions of parallel nanochannels formed by a dense interconnected network of 
nanopores (>1021 pores/cm3, which is 1014 channels/cm2).  Clinoptiloite has an average 
pore diameter of 0.45 nm and bulk porosity of 34%. 
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the temperature uniformity on these surfaces without blocking the gas flow.  This 

assembly is packaged in a thermally insulating polyvinyl chloride (PVC) cavity.  The two 

zeolite discs are bonded peripherally to the cavity using a vacuum grade epoxy 

(STYCAST 2850FT/Catalyst 9) to prevent leakage.  The thermally insulating PVC 

substrate leads to a higher temperature gradient across the thickness of the ceramic disc 

for a given input power, and this results in higher thermal efficiency.  Stainless steel 

capillaries are used at the inlet and at the outlet ports.  The device has two inlets one at 

the top and other at the bottom, and a common outlet for both sides of the pump is 

located at its center.  Thermocouples, embedded in the top and the bottom aluminum 

discs, are used to record the temperature in the top and the bottom cold chambers, and a 

thermocouple, bonded to the heater, is used to record the temperature of the heater. 

The zeolite discs divide the device into three compartments.  The central portion, with 

heating element sandwiched between the two zeolite discs, comprises the hot chamber.  

Compartments formed between the zeolite discs and the PVC casings comprise the two 

cold chambers in the device.   

 

Fig. 3.2: Sectional view of a Knudsen pump with the heater sandwiched between two 
zeolite discs.  This allows us to have hot core and cool exterior. 
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3.1.2 Steps of Fabrication 

Figure 3.4 shows various steps of fabrication of the zeolite based thermal 

transpiration driven Knudsen pump.  A PVC package is used for the pump; it consists of 

two halves that are bonded together after all the components are assembled into them.  

Each half has a circular pocket, ports for inlet, outlet, heater leads and thermocouple 

wires etc. 

Step 1 shows the substrate half of the PVC package.  For the current prototype 

(footprint ≈55x55 mm2, and thickness ≈6 mm), it is machined conventionally, but can be 

 

 
 
Fig. 3.3: Exploded view of a zeolite-based Knudsen pump showing relative location of 
various components.  The double arrows show the direction of the flow of pumped gas. 
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formed by other means as well.  For pumps with a small footprint or for high volume 

production, a molding process may be more appropriate. 

Step 2 shows the substrate half of the PVC encapsulation with inlet SS capillary tube 

and the cold end thermocouple assembled in place using a vacuum grade epoxy.  A disc 

 

Step 1: Conventionally machined PVC 
encapsulation.  It has a central cavity for 
zeolite pumping assembly and ports for gas 
inlet tubing and thermocouples. 

 

Step 2: SS Inlet tubing, perforated 
aluminum and thermocouple installed in 
place. 

 

Step 3: Zeolite disc is placed on the bottom 
(perforated) Aluminum layer. 

 

Step 4: A vacuum grade epoxy is used to 
bond the zeolite to the PVC encapsulation 
at its periphery. 

 

Step 5:  A second thin layer of (perforated) 
aluminum is placed on the top of the 
zeolite.  An outlet SS tubing and second 
thermocouple are assembled in place. 

Step 6: A second half similar to that in step 
5 is used to cap the structure in step 5 with 
an intermediate layer of thin film heater.  
The two structures are identical except for 
the fact that the second half does not have 
separate outlet tubing and second 
thermocouple. 

Fig. 3.4: A typical fabrication sequence for a bulk nanoporous material based Knudsen 
pump. 
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of perforated aluminum is inserted into the cavity in the PVC.  The disc is punched out of 

a sheet with 850 µm thickness and ≈15 perforations per cm2. 

Next, a zeolite disc that is machined into desired shape is placed above the perforated 

aluminum (Step 3, Fig. 3.4).  Diamond machining tools are used to shape the zeolite – a 

cylindrical core (≈48 mm diameter) is cut out of a bulk zeolite rock, which is then sliced 

into discs of desired thicknesses (≈2.3 mm).   

The zeolite disc is bonded to the PVC structure at its periphery, using a vacuum grade 

epoxy (Step 4, Fig. 3.4).  The vacuum epoxy shields the hydraulic path for the gas flow 

from one side of the zeolite to the other.  This results in an isolated air pocket underneath 

the zeolite – this air pocket is one of the cold chambers of the Knudsen pump (Fig. 1.2). 

The zeolite is then covered by another thin perforated layer of aluminum (Step 5, Fig. 

3.4).  A SS capillary, which serves as output to the pump, is bonded to the outlet port of 

the PVC encapsulation located at the top of the zeolite wafer.  A second thermocouple 

required to measure the temperature at the hot end of the zeolite is assembled onto the 

device. 

Steps 1 to 5 are followed to fabricate the second half, which is similar to first one, 

except for the fact that the second half shares the outlet port and the thermocouple at the 

hot end of the zeolite with the first half.  This second half is flipped and bonded on the 

top of the first half, such that the heater is sandwiched between the two zeolite discs (step 

6, Fig. 3.4).  This configuration has the advantage that the hot core of the structure is 

adjacent to two different thermal transpiration elements, while the cold sides of these 

zeolite discs face the outside.  Thus, the cold sides of the zeolite discs can be easily 

maintained at lower temperature without penalizing the thermal budget of the device. 
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The device has a final packaged volume of 55x55x12 mm3 (Fig. 3.6). 

 

3.2 Fitted Model 

A semi-analytical model was developed as part of this research effort to study the 

system level transient response of the Knudsen pumps based on bulk nanoporous 

materials.  In particular, the model is used to estimate the temporal evolution of pressure 

at the sealed outlet (i.e. hot chamber) of these pumps.  Three physical phenomena that 

 

Fig. 3.5:  Various components used in a zeolite-based Knudsen pump – zeolite disc, thin-
flexible heating element, and perforated aluminum disc. 
 

 
 

Fig. 3.6: Picture of the final device; it has a final packaged volume of 55x55x12 mm3. 
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play dominant role in the temporal evolution of pressure at the sealed outlet of a Knudsen 

pump were identified.  These include: (a) thermal transpiration driven gas flow across the 

nanoporous ceramic; (b) thermal expansion/contraction of air in the hot chamber; and (c) 

pressure gradient driven leakage flow through various structural imperfections in the 

ceramic.  The first phenomenon is responsible for gas pumping in a Knudsen pump; the 

latter two do not contribute to gas pumping.  In fact, the third phenomenon, pressure 

driven leakage flow, is not desirable, because it counteracts the thermal transpiration 

driven gas flow.  The fitted model presented here quantifies various non-idealities in 

terms of four fitted parameters. 

Analysis suggests that the initial transients of the Knudsen pumps, which occur as 

soon as the heater is turned on or off, depend strongly on the rate of thermal 

expansion/contraction of air encapsulated in the hot chamber.  Experimentally measured 

temperature, THe, is used to estimate the thermal time constants of the heater, τhtr.  A fitted 

parameter, fair, is used to estimate the factor by which the thermal time constant for the 

air, τa, entrapped in the hot chamber exceeds τhtr.  Hence: 

τa = fair. τhtr      (3.1) 

A second fitted parameter, the leak aperture diameter, DL, in nanoporous ceramic, is 

used to model the pressure driven leakage flow across the ceramic.  A typical nanoporous 

ceramic has grain boundaries, crystal imperfections and other structural imperfections 

that may have hydraulic diameter significantly greater than the mean free path of the gas 

molecules (i.e. Kn<0.01) [Kar05].  Literature suggests that the grain boundaries of a 

natural clinoptilolite can have mesopores ranging from 25-50 nm upto 100 nm, and 

crystal boundaries have been reported to have macropores with an aggregate pore size of 
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500 nm [Kow06].  Some of these defects may result from the choice of manufacturing 

techniques.  The gas flow through these imperfections is in the viscous regime and it 

counteracts the thermal transpiration-driven gas pumping through the nanopores.  The 

pressure driven gas flow across the leak apertures is representative of the total leakage 

flow out of the hot chamber.  For a given nanoporous material, DL may vary from device 

to device because, apart from crystal imperfections, it also accounts for leakage flow 

across the packaging etc. 

A third fitted parameter, κ, is used to quantify the fraction of experimentally 

measured temperature bias that actually appears across the nanoporous ceramic.  The 

actual temperature drop that appears across the thickness of the ceramic disc is smaller 

than the experimentally measured value due to the thermal contact resistances at various 

interfaces.  Thermal contact resistances at these interfaces are primarily due to micro-

asperities and surface roughness.  These micron size features are functionally important 

because they serve as the hydraulic paths for the gas molecules moving in/out of the 

ceramic disc.  The (overall) loss in temperature bias due to the thermal contact resistances 

is modeled as parasitic heating of the bottom facet of the ceramic disc.  All other 

interfaces are assumed to have no thermal contact resistance.  The fitted parameter κ 

quantifies the rate of parasitic heating of the bottom facet of the ceramic. 

Finally, a fourth fitted parameter, Vcrr, corrected volume of the hot chamber, is used 

to account for non-uniformity in temperature of air molecules in the hot chamber.  As 

mentioned earlier, the hot chamber has a SS outlet, which is connected to a pressure 

sensor through (slender) clear Tygon tubing.  The air molecules in vicinity of the heater 

are significantly hotter than the gas molecules away from the heater.  This non-uniformity 
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in temperature of air molecules in the hot chamber is modeled by dividing the air 

molecules into two sets, each of them at two different but uniform temperatures.  The 

first set of air molecules, close to the heater, is assumed to have temperature same as the 

hot facet of the nanoporous ceramic, that is, THm; second set of air molecules is assumed 

to be at ambient temperature Tamb.  The volume occupied by the first set of air molecules 

at ambient temperature and pressure is assumed to be Vcrr.  For the purpose of the model 

presented here, the corrected volume is treated as the actual volume of the hot chamber 

and the air encapsulated in this volume is assumed to heat up with the heater to a steady 

state temperature Tfin, but with an increased time constant τa. 

The fitted model presented here takes into account the three physical phenomena 

listed above and establishes a step-by-step procedure to estimate the four fitted 

parameters such that the root mean square (RMS) error between the estimated and the 

experimentally measured temporal evolution of pressure at the sealed outlet is minimized.  

 

 
Fig. 3.7: Typical variation in the estimated (i.e. fitted) and the experimentally measured 
temporal evolution of pressure at the sealed outlet of a Knudsen pump. 
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Figure 3.7 shows a typical variation in the estimated (i.e. fitted) and the experimentally 

measured transient pressures at the sealed outlet of a Knudsen pump.  The deviation of 

fitted pressure profile from the experimental pressure profile can be minimized in four 

steps: 

1. The difference between the steady state values of the experimental and the 

fitted pressure profiles, ePHss, has been observed to depend primarily on DL.  

Hence, the error ePHss is minimized by choosing DL appropriately. 

2. The RMS error between the fitted and the experimental pressure profile 

immediately after the heater is turned on or off, ePHin, has been observed to 

depend primarily on fair.  Hence, the error ePHin is minimized by choosing fair 

appropriately. 

3. The difference between the maximum pressure values for the fitted and the 

experimental pressure profiles, ePHmx, has been observed to depend primarily 

on Vcrr.  Hence, the error ePHmx is minimized by choosing Vcrr appropriately. 

4. The fitted parameter κ is used to minimize the total RMS error, eRMS, between 

the fitted and the experimental pressure profiles.  Hence, the error eRMS is 

minimized by choosing κ appropriately. 

Figure 3.8 shows the flowchart for the fitted model and a detailed step-by-step 

algorithm for the fitted model is presented below: 

Step 1: Choose a suitably small time step (Δt) and interpolate THe(t), TCe(t) and PHe(t) 

for all the time steps. 
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Step 2: Choose initial values for DL, κ, fair, and Vcrr.  Due to the asymmetric nature of 

the problem, some of these parameters may have different values, while the heater is on 

and while it is off. 

Step 3: Estimate the initial number of moles of air in the hot chamber based on the 

initial temperature, pressure of the device and the corrected volume of the hot chamber. 
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Fig. 3.8: The flowchart for key steps involved in the fitted model. 
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Step 4: The temperature at the hot facet of the ceramic THm(t) is assumed to be same 

as the experimentally measured temperature THe(t).  So: 

THm(t) = THe(t)      (3.3) 

 Step 5: The steady state temperature of the hot end of the ceramic with the heater on 

is Tfin.  The air in the hot chamber is assumed to attain the same steady state temperature, 

but with a longer time constant τa (= fair.τhtr).  Use τa to estimate the temperature of the air 

in the hot chamber THa(t) as a function of time t. 

)1).(()( at
infininHa eTTTtT     (3.4) 

Step 6: The fitted parameter κ for the rate of parasitic heating of the cold facet of the 

ceramic is used to estimate the temperature of the cold facet of the ceramic: 

TCm(t+Δt) = TCe(t+Δt) + [TCm(t) – TCe(t)]+κ.Δt  (3.5) 

Step 7: The transient evolutions of pressure at every time step has been addressed as 

combination of two independent sub-steps.  First sub-step: For any change in heater 

temperature during the time interval t to t+Δt, ideal gas law is used to estimate the 

intermediate pseudo-equilibrium pressure PHi (t+Δt). 
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Step 8: Second sub-step: Average values for THm, TCm and PHi are used to estimate the 

thermal transpiration gas flow and the Poiseuille (leakage) flow during the time t to t+Δt. 
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Step 9: Substitute for TH = )( ttTHm  ; TC = )( ttTCm  ; PH = )( ttPHi   and PC = 

Pamb in Eqn. 2.15 to calculate the thermal transpiration driven mass flow rate and divide it 

by the molecular mass M of air to estimate the number of moles of gas molecules 

NTT(t+Δt) pumped into the hot chamber. 

Step 10: Substitute PH = )( ttPHi  , PC = Pamb and use DL in Eqn. 2.19 to calculate 

the leakage flow, multiply it with the density of air (Eqn. 2.7), and divide it by the 

molecular mass M of air to estimate the effective number of molecules NPOS(t+Δt) leaking 

in/out of the hot chamber. 

Step 11: The effective number of moles of gas in the hot chamber after time t+Δt is 

calculated by accounting for the gas molecules moving in and out of chamber due to the 

thermal transpiration flow and Poiseuille flow. 

N(t+Δt) = N(t) + NTT(t+Δt) - NPOS(t+Δt)   (3.10) 

Step 12: Estimate the final pressure in the chamber  

)(
)(
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)( ttN

tN

ttP
ttP Hi

Hm 


    (3.11) 

Step 13: Increment time, i.e. t = t+Δt; and repeat steps 5 to 12 for all the time steps. 

Step 14: Update DL and repeat steps 5 to 13 until ePHss is smaller than ε1, where ε1 is 

the acceptable tolerance in minimizing ePHss. 

Step 15: Update fair and repeat steps from 4 to 14 until ePHin is smaller than ε2, where 

ε2 is the acceptable tolerance in minimizing ePHin. 

Step 16: Update Vcrr and repeat steps from 3 to 15 until ePHmx is smaller than ε3, where 

ε3 is the acceptable tolerance in minimizing ePHmx. 
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Step 17: Update κ and repeat steps from 3 to 16 such that eRMS is smaller than ε, where 

ε is the acceptable tolerance in minimizing eRMS. 

In the end, the model gives an estimate for the fitted parameters Vcrr, DL, fair, and κ, such 

that the RMS error between the experimentally measured and the fitted pressure in the 

hot chamber is minimized.  Note than the tolerances ε1, ε2, ε3, and ε may vary from one 

iteration to the next. 

 

3.3 Experimental Results 

While the structure described in Section 3.1 is capable of pumping simultaneously 

through both the zeolite discs that sandwich the heater, only one side of the pump (only 

the bottom zeolite discs in Fig. 3.3) was used for the preliminary characterization. 

 

3.3.1 Test Set-Up 

Two different experimental set-ups are described in this section.  The first set-up was 

used for isothermal pressure driven gas flow characterization of the nanoporous ceramic 

 

 
Fig. 3.9: Test set-up for isothermal pressure driven gas flow characterization of the 
nanoporous ceramic discs.  The ceramic disc was sandwiched between two “O”-rings and 
vacuum pressure was applied from the left side to create a known pressure difference 
across the ceramic. 



 

61 
 

discs (Fig. 3.9).  A 25 mm diameter disc of nanoporous ceramic sample was sandwiched 

between a threaded glass tube and its plastic cap.  “O”-rings were used to seal the 

ceramic disc between the glass tube and the plastic cap.  The glass tube, ceramic disc, and 

plastic cap assembly was mounted in horizontal position.  The plastic cap was connected 

to a vacuum chamber, which was used to apply an externally controlled pressure 

differential across the nanoporous ceramic.  The other end of the glass tube was 

connected to clear Tygon tubing with a water plug to visualize and quantify the gas flow 

across the ceramic disc.  The Tygon tubing was laid down horizontally to eliminate the 

effect of gravity on the movement of the water plug.  These tests were performed in 

ambient air at room temperature (≈293 K) and atmospheric pressure (≈735 Torr). 

The second test set-up was used to study the temperature gradient driven thermal 

transpiration flow characteristics of Knudsen pumps (Fig. 3.10).  As shown in the Figure 

3.10, the Knudsen pump was kept on a large metallic block, which acted as a heat sink 

required to cool the bottom facet of the lower zeolite disc (Fig. 3.3).  The metallic block 

 

Fig. 3.10: Pressure Mode Testing: Experimental set-up for pressure measurement at the 
sealed outlet. 
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was maintained at room temperature passively.  With this apparatus, the device was 

tested in two different operation modes: pressure mode and flow mode.  While operating 

in pressure mode, the outlet was sealed, a differential pressure sensor (Kulite 

Semiconductor Inc., NJ) was attached at the sealed outlet, and the inlet was open to the 

ambient (Fig. 3.10).  The pressure sensor was used to record the temporal evolution of 

pressure at the sealed outlet.  It had a sensitivity of 10.8 mV/psi (1.57 mV/kPa).  Voltage 

output from the pressure sensor was read into HP34401A multimeter, which was 

connected to a PC using a GPIB-USB-HS.  HP Benchlink program was used to acquire 

voltage output measured by the multimeter at a sampling frequency of about 1 Hz. 

While operating in flow mode, the inlet was open to the ambient.  At the outlet, a 

flexible, clear Tygon tubing (ID 1.57 mm) with water droplet plug (≈2 mm long) was 

connected to the Knudsen pump (Fig. 3.11).  The water plug was used to visualize and 

quantify the gas flow rate generated by the Knudsen pump.  The load pressure was 

estimated by the length of the droplet. 

 

Fig. 3.11: Flow Mode Testing: Experimental set-up with flexible tubing attached to the 
outlet of the device and with a water droplet plug in it.  The rate of movement of water 
droplet quantifies the rate of gas flow generated by the pump. 
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Fig. 3.12: Experimental characterization of pressure driven gas flow across a typical ≈25 
mm diameter and ≈1.15 mm thick zeolite disc. 
 

3.3.2 Steady State Response 

Isothermal Poiseuille Gas Flow: Figure 3.12 plots the experimentally measured 

isothermal pressure driven gas flow across the zeoltie disc (diameter ≈25 mm and 

thickness ≈1.15 mm).  The same plot also shows the corresponding flow rate expected 

under conditions assuming a perfect zeolite element of 0.45 nm pore size and 34% 

porosity, as calculated from Eqn. 2.15.  The two flow rates deviate because of various 

leakage flow paths that might exist across the thickness of the zeolite.  The difference 

between the experimentally measured flow and the ideal flow for the nanoporous material 

indicates the leakage (Poiseuille) flow.  Equation 2.19 was used to estimate the leak 

aperture diameter in the zeolite discs based on the leakage flow estimated from Fig. 3.12.  

Figure 3.12 suggests that 1.15 mm thick clinoptilolite samples have typical leak aperture 

diameters per unit area of transpiration element (dL) of 10.2-13.5 µm/cm2: 
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25.0
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L D

d

D 
       (3.12) 

where, DTE is the diameter of the transpiration element with leak aperture DL. 

Device Response: The device, while operating with a single zeolite element, resulted 

in a gas flow rate of 0.12 sccm, against a nominal pumping load presented by the water 

plug (Fig. 3.13).  The driving voltage for this device was 10 V and the power required 

was 5.35 W.  This resulted in a temperature drop of about 40 K across the 2.3 mm thick 

zeolite, while limiting the temperature rise at the cold end of zeolite to 17 K.  A Tygon 

tube (inner diameter ≈1.57 mm) with water plug (2 mm long) was connected at the outlet 

to visualize and quantify the gas flow generated by the pump. 

The pumping load offered by a water plug has two components – resistance due to 

viscous drag at the capillary wall and the water interface, and resistance due to the 

 
Fig. 3.13: Experimentally observed steady state flow rates for one side of the pump, as 
the hot cavity temperature is changed.  Parasitic heating of cold cavity is also plotted.  
Unloaded gas flow rate is slightly higher because the droplet presents a small load (≈50 
Pa). 
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movement of the two end menisci of the water plug.  The movement of the end menisci 

involves continuous absorption and release of free energy, which translates into the 

pumping load required to move the plug.  A preliminary estimate of the flow resistance 

offered by the water droplet was obtained using [Mye05]: 

r
P

 cos2
int       (3.13) 

This correlation suggested that the flow resistance offered by a 2 mm long water droplet 

 

Fig. 3.14: (a) Experimental (PHe) and modeled (PHm) pressure transients recorded with a 
sealed outlet for a single side of the Knudsen pump, showing a root mean square error of 
<0.15 kPa.  (b) THe and TCe show the recorded temperature from the thermocouples.  The 
corrected temperatures are THm and TCm respectively.  THa is the temperature of the air 
encapsulated in the hot chamber. 
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in Tygon tubing with 1.57 mm inner diameter was about 50 Pa. 

 

3.3.3 Transient Response 

Figure 3.14 shows the experimentally measured pressure (PHe) at the sealed outlet of 

the Knudsen pump.  The corresponding experimental measurement of the temperature at 

the hot and the cold ends of the zeolite disc are plotted as THe and TCe, respectively.  The 

plots suggest that as soon as the heater was turned on, the experimentally measured 

pressure increased sharply from 101.3 kPa to 103 kPa within 120 seconds and then 

decayed to a steady state value of about 102.3 kPa.  Similarly, as soon as the heater was 

turned off, the experimentally measured pressure droped almost instantaneously to a 

pressure lower than the atmospheric pressure (≈100.3 kPa) and then rose asymptotically 

to atmospheric pressure.  Based on these observations, various dominant phenomena that 

govern the temporal evolution of pressure at the sealed outlet of the Knudsen pump have 

been marked on top of Fig. 3.14. 

The fitted model described in Section 3.2 was used to identify and quantify various 

non-idealities that affect the performance of a nanoporous ceramic based Knudsen pump.  

For a corrected volume Vcrr of 2.8 cm3, the numerically modeled pressure profile PHm 

could reproduce the experimentally observed pressure profile PHe with a root mean 

square error (RMSE) of <150 Pa. 

Given the earlier characterization of the leakage aperture per unit area in the zeolite 

samples, it is expected that the leakage apertures, DL, for a typical zeolite disc of 48 mm 

diameter is 21.1-27.8 µm.  In comparison, the fitted value of DL, as determined from the 

semi-analytical simulation model – see Fig. 3.14, PHm – is ≈37.5 μm while heating, and 
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≈31.6 μm while cooling.  The difference in the leak apertures during heating and during 

cooling is attributed to the difference in the hydraulic path followed by gas molecules in 

these cases.  For example, the leakage path may have different hydraulic diameters at the 

hot and the cold facets of the ceramics.  This may result in different hydraulic resistances 

offered to the air molecules moving in the two directions – hot chamber to cold chamber 

and cold chamber to hot chamber.  The pressure transient when the pump turns on is 

adequately captured by the fitted parameter fair.  The fitted model suggests that fair = 2.25 

while heating and 1 while cooling.  Figure 3.14 illustrates the delay between the 

temperature rise of heater THe (or the ceramic surface THm) and heating up of air THa.  TCm 

plots the corrected temperature at the cold facet of the zeoltie disc after accounting for the 

parasitic heating at various interfaces.  The analysis suggests that the fitted value κ is on 

the order of 0.005 K/s for the case when heater is on and κ is 0.01 K/s when the heater is 

turned off.   

 

3.4 Discussion and Summary 

This chapter has evaluated the use of naturally occurring zeolite for thermal 

transpiration driven gas pumping.  Isothermal pressure driven flow characteristics show 

that the experimentally measured flow resistance, variation in applied pressure head that 

would result in unity change of (isothermal) pressure driven gas flow across the ceramic, 

is higher than the ideal flow resistance.  This suggests that, the nanoporous ceramic disc 

has shunt paths, i.e., leakage paths, which contribute to the reduction in the hydraulic 

resistance of these ceramic discs.  Note that this technique provides an average estimate 

of the flow resistance of the bulk nanoporous material.  Tortuosity in the narrow channels 
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will result in higher flow resistance, and leakage paths will reduce the effective flow 

resistance. 

Although the temperature rise at the cold end of the nanoporous ceramic is nominal 

(≈17 K), limiting the cold end temperature to even lower values may allow lower average 

operating temperature for the devices.  Further, there is a possibility that lower cold end 

temperatures may limit the parasitic heating of some of the interfaces, which will help in 

improving the performance of the Knudsen pumps.  The parasitic heating at various 

interfaces of the device is addressed in the subsequent chapters by replacing the PVC at 

the cold facet of the ceramic with a thermally conducting element.   

Thermal contact resistance plays an important role in determining the performance of 

a Knudsen pump.  Thermal contact resistances at various interfaces might result in 

undesirable loss in temperature bias at these interfaces.  Thus, the temperature reading 

observed experimentally from thermocouple could be significantly different from what 

actually exists across the nanoporous material.  Lack of planarity of the zeolite-aluminum 

interface and surface asperities due to conventional machining processes may result in 

significant thermal contact resistance. 

The fitted model adequately captures the transient pressure response in the sealed hot 

chamber with the help of four fitted parameters.  The four fitted parameters are: (i) leak 

aperture diameter in the zeolite disc (DL); (ii) factor by which the thermal time constant 

of air exceeds the thermal time constant of the heater (fair); (iii) rate of parasitic heating of 

the cold facet of the zeolite disc (κ); and (iv) corrected volume of air in the hot chamber 

(Vcrr).  These fitted parameters quantify various non-idealities in the system that cannot 

be measured directly due to various limitations. 
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In conclusion, it is evident that a zeolite-based Knudsen pump using naturally 

occurring nanoporous clinoptilolite (and potentially other bulk nanoporous materials as 

well) can be built for atmospheric pressure operation.  Having no moving parts, it offers 

the promise of high reliability.  The architecture of the Knudsen pump presented here can 

be potentially extended to serial or parallel multistage pumping.  Idealized analysis 

suggests that a suitable combination of series/parallel multistage pumping configurations 

can potentially result in gas flow rates of 0.005-0.02 sccm/cm2 of zeolite disc, or gas 

pumping pressure on the order of 50 kPa, for power density levels of roughly 1 W/cm2. 
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CHAPTER 4 

NANOPOROUS CERAMIC-BASED MULTISTAGE KNUDSEN PUMP 

 

The zeolite based Knudsen pump discussed in Chapter 3 results in a gas flow rate of 

0.12 sccm and a pressure head of about 1 kPa with a single stage architecture using a 

pumping area of 3.77 cm2 and input power of 5.35 W.  Its performance was limited by 

microstructural defects, grain/crystal boundaries that cause leakage and allow backflow 

in naturally occurring zeolites.  This chapter evaluates the possibility of replacing 

Clinoptilolite by three possible candidates all of which are synthetic nanoporous 

ceramics3.  These ceramics include:  

(a) A 15 bar nanoporous ceramic (denoted 15PC) – clay based nanoporous ceramic 

from Soil Moisture Corp. with air entry value of 15 bar.  The air entry value is the 

pressure at which air will break through a wetted pore channel. 

(b) A 5 bar nanoporous ceramic (denoted 05PC) – clay based nanoporous ceramic 

from Soil Moisture Corp. with air entry value of 5 bar. 

(c) A porous glass VYCOR (denoted VYPG) from Corning Inc. 

Single stage Knudsen pumps (SSKP) based on these three ceramics are fabricated and 

tested for pressure and flow characteristics.  The performance metrics of these three 

pumps are compared with that of a similar single stage Knudsen pump based on 

                                                 
3 Portions of this chapter have appeared in conference abstract form in [Gup09] 
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clinoptilolite (denoted ZEO).  Subsequently, the most preferred ceramic is chosen for a 

multistage Knudsen pump (MSKP).  Finally, the performance characteristics of a 9 stage 

Knudsen pump based on the most preferred ceramics are reported.  It is shown that a 

pumping pressure head in excess of 12 kPa can be generated, which is better aligned with 

the needs of various microfluidic systems such as polymerase chain reaction (PCR), 

electrophoresis, cell sorting, cell culture etc. [Ung00, Sia03].  Section 4.1 describes the 

device structure, Section 4.2 describes the fitted model used to model the system level 

performance of the device, test set-ups and experimental results are presented in Section 

4.3 and finally notable observations have been discussed in Section 4.4. 

 

 
Fig. 4.1: Exploded view of a single stage Knudsen pump showing relative location of 
various components. 
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4.1 Device Structure 

Figure 4.1 shows an exploded view of SSKP discussed in this chapter.  A nanoporous 

ceramic disc is bonded peripherally to a thermally insulating polyetherimide (PEI) 

substrate using a vacuum grade epoxy (STYCAST 2850FT/Catalyst 9).  A thermally 

insulating substrate allows higher temperature gradient across the thickness of the 

ceramic disc for a given input power, which results in higher thermal efficiency.  A brass 

 

 
 

Fig. 4.2: Planar architecture for the multistage Knudsen pump (MSKP): a) Planar array of 
9 single stage Knudsen pumps encapsulated in a polyetherimide substrate; the arrows 
mark the direction of flow of the gas molecules from one stage to another; b) Exploded 
view of two successive stages of the pump; the arrows show the direction of flow through 
different elements. 
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base ensures effective thermal contact of the bottom facet of the ceramic to an external 

heat sink.  The top facet of the ceramic is in thermal contact with a heater through a brass 

top.  The brass top has a cavity, which holds a heater (≈26.5 Ω).  The heater has a thin, 

etched-foil resistive element laminated between two insulating layers of Kapton (Minco, 

MN).  Finally, a PEI cap and a PEI top are used to hold all the components in place and 

seal the device from above.  The PEI cap and the brass base are bonded to the PEI 

substrate resulting in two sealed chambers, a hot one and a cold one, on either side of the 

ceramic disc.  The use of thermally insulating PEI cap ensures effective thermal isolation 

between the top and the bottom surfaces of the ceramic.  This particular architecture 

allows the heater to be located outside the hot chamber of the device, which minimizes 

the possibility of leakage.  Stainless steel capillaries are used to provide inlet and outlet 

ports from the bottom and the top surfaces of the nanoporous ceramic respectively.  

Conventional machining techniques are used to fabricate the brass and PEI components, 

while the nanoporous ceramics are machined using diamond tools. 

The basic architecture for the MSKP is derived from the SSKP discussed above.  The 

9-stage Knudsen pump has stages arranged in a 3x3 planar array (Fig. 4.2).  The planar 

architecture allows a common heater and a common heat sink, which helps with overall 

thermal efficiency of the device.  As in the SSKP, the MSKP uses a PEI substrate to 

achieve thermal efficiency.  The PEI substrate is patterned with 9 cavities that house the 

transpiration elements, and 9 vertical transfer ports that serve to serially connect the 

outlet of one stage to the inlet of next stage.  The nanoporous ceramic discs are bonded 

peripherally into the cavities in the PEI substrate.  Brass caps with embedded 

microgroove channels seal each porous ceramic disc from above and below, and direct 
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the gas flow laterally – into/out of each stage through the vertical transfer ports.  The caps 

also ensure good thermal contact of the ceramic discs with the heater and the heat sink. 

Figure 4.3 shows the final assembled SSKP, it uses nanoporous ceramic disc with 

diameter ≈12.75 mm and thickness ≈2.75 mm.  The final packaged volume of the SSKP 

 

 
 

Fig. 4.3: Photograph of the final packaged single stage Knudsen pump. 
 

 
 

Fig. 4.4: Photographs of various components used in the multistage Knudsen pump and 
the final packaged multistage Knudsen pump.  These pictures are of: a) Patterned 
polyetherimide; b) enlarged view of a single cavity; c) other components used in the 
pump; and (d) final packaged multistage Knudsen pump. 
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is 18x18x6.5 mm3. 

Figure 4.4a-c shows various components used in the MSKP.  The nanoporous 

ceramic discs are ≈5 mm in diameter and ≈2.85 mm thick.  The vertical transfer ports are 

1 mm in diameter.  The final packaged volume of the MSKP, shown in Figure 4.4d, is 

25x25x7.25 mm3. 

 

4.2 Fitted Model 

The fitted model presented here resembles closely the model presented in Chapter 3, 

albeit with adjustment in some of the fitting parameters. 

The first fitted parameter fair is replaced by τa.  Note that in the fitted model presented 

in Chapter 3, the fitted parameter fair was used to calculate τa.  In contrast, the fitted 

model presented in this chapter uses τa as a fitted parameter. 

The second fitted parameter, effective leak aperture diameter (DL), remains same as in 

the model discussed in Chapter 3.  However, in order to compare the leak aperture sizes 

in the transpiration element of different sizes, a parameter leak aperture diameter per unit 

area of the transpiration material dL is used, as defined in Chapter 3 (Eqn. 3.12). 

For the third fitted parameter, instead of assuming continuous (parasitic) heating of 

the cold facet of the ceramic, the model uses a fitted parameter f.  It is defined as the 

fraction of the experimentally measured temperature bias that actually appears across the 

nanoporous ceramic.  The experimentally measured temperature bias is recorded across 

the top and the bottom brass caps.  However, the actual temperature drop that appears 

across the thickness of the ceramic disc is smaller than the experimentally measured 

value due to the thermal contact resistances at the top and the bottom facets of the 
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ceramic.  The model assumes that the (overall) loss in temperature bias due to the thermal 

contact resistances appears at the top facet of the ceramic disc. 

The fourth fitted parameter is the corrected volume of the hot chamber Vcrr – this is 

same as in Chapter 3.  

As in Chapter 3, the flow and the pressure measurements in this chapter are also at 

the outlet.  So, the variation in the pressure profile will be identical to the pressure profile 

shown in Fig. 3.7.  Hence, the approach for fitted model remains identical to the 

 

 
 

Fig. 4.5: The flowchart for key steps involved in the fitted model. 
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description in Chapter 3, except the fitted parameter τa is used instead of fair and the fitted 

parameter f is used instead of κ. 

Figure 4.5 shows the flowchart for the fitted model and a detailed step-by-step 

algorithm for the fitted model is presented below: 

Step 1: Choose a suitably small time step (Δt) and interpolate THe(t), TCe(t) and PHe(t) 

for all the time steps. 

Step 2: Choose initial value for Vcrr, DL, τa, and f.  Due to the asymmetric nature of the 

problem, these parameters may have different values, while the heater is on and while it 

is off. 

Step 3: Estimate the initial number of moles of air in the hot chamber based on the 

initial temperature, pressure of the device and the corrected volume of the hot chamber. 

)0(.

).0(
)0(

He

crrHe

TR

VP
N       (4.1) 

Step 4: Evaluate the temperature at the hot end of the ceramic at time t. 

))(.()( inHeinHm TtTfTtT      (4.2) 

Step 5: The steady state temperature of the hot end of the ceramic when the heater is 

on is given by ).( infinin TTfT  , where Tin is the steady state temperature of the heater in 

its off state and Tfin is its steady state temperature in on state.  The air in the hot chamber 

is assumed to attain the same steady state temperature as the hot facet of the ceramic, but 

with a longer time constant τa.  Use τa to estimate the temperature of the air in the hot 

chamber THa(t) at a given time t.  Assume, TCm(t) = TCe(t). 

)1).(.()( at
infininHa eTTfTtT     (4.3) 
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Step 6: The transient evolutions of pressure at every time step has been addressed as 

combination of two independent sub-steps.  First sub-step – for any change in heater 

temperature during the time interval t to t+Δt, ideal gas law is used to estimate the 

intermediate pseudo-equilibrium pressure PHi (t+Δt). 
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Hi      (4.4) 

Step 7: Second sub-step – average values for THa, TCm and PHi are used to estimate the 

thermal transpiration gas flow and the Poiseuille (leakage) flow during the time t to t+Δt. 
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Step 8: Substitute for TH = )( ttTHm  ; TC = )( ttTCm  ; PH = )( ttPHi   and PC = 

Pamb in Equation 2.15 to calculate the thermal transpiration driven mass flow rate and 

divide it by the molecular mass M of air to estimate the number of moles of gas 

molecules NTT(t+Δt) pumped into the hot chamber. 

Step 9: Substitute PH = )( ttPHi   and PC = Pamb in Equation 2.19 to calculate the 

leakage flow, multiply it with the density of air (Eqn. 2.7), and divide it by the molecular 

mass M of air to estimate the effective number of molecules NPOS(t+Δt) leaking in/out of 

the hot chamber. 
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Step 10: The effective number of moles of gas in the hot chamber after time t+Δt is 

calculated by accounting for the gas molecules moving in and out of chamber due to the 

thermal transpiration flow and Poiseuille flow. 

N(t+Δt) = N(t) + NTT(t+Δt) - NPOS(t+Δt)   (4.8) 

Step 11: Estimate the final pressure in the chamber  

)(
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ttP
ttP Hi

Hm 


    (4.9) 

Step 12: Increment time, i.e. t = t+Δt; and repeat steps 4 to 11 for all the time steps. 

Step 13: Update DL repeat steps 4 to 12 until ePHss is smaller than ε1, where ε1 is the 

acceptable tolerance in minimizing ePHss. 

Step 14: Update τa and repeat steps from 4 to 13 until ePHin is smaller than ε2, where ε2 

is the acceptable tolerance in minimizing ePHin. 

Step 15: Update Vcrr and repeat steps from 3 to 14 until ePHmx is smaller than ε3, where 

ε3 is the acceptable tolerance in minimizing ePHmx. 

Step 16: Update f and repeat steps from 3 to 15 such that eRMS is smaller than ε, where 

ε is the acceptable tolerance in minimizing eRMS. 

Thus, the fitted model gives an estimate for the fitted parameters Vcrr, DL, τa, and f, 

such that the RMS error between the experimentally measured and modeled pressure in 

the hot chamber is minimized.  Note than the tolerances ε1, ε2, ε3, and ε may vary from 

one iteration to the next. 
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4.3 Experimental Results 

4.3.1 Characterization of Nanoporous Ceramics 

15PC, 05PC and VYPG have a bulk porosity of 32%, 31%, and 28%, respectively.  

While these are commercially available ceramics with known bulk porosity (fp); however, 

no reliable data for the pore size distribution is available.  In contrast, clinoptilolite has an 

average pore diameter DNP (=2a) of 0.45 nm and bulk porosity fp of 34% [Li05].  

However, the porosity data is not reliable because the naturally occurring zeolite samples 

may have impurities that block the nanopores.  In addition to the structural parameters a 

and fp, a complete analysis of the gas flow across a nanoporous ceramic requires the 

knowledge of the leak aperture DL in the nanoporous disc. 

This section summarizes a technique that uses experimental results and one of the 

(known) structural parameters (a or fP) to estimate the other two (unknown) structural 

parameters.  It requires two sets of experimental results: (a) The experimentally measured 

isothermal pressure driven gas flow characteristic of a ceramic, typical variation shown in 

 

 
 

Fig. 4.6: A typical variation in the isothermal pressure driven gas flow generated across a 
ceramic with the externally applied pressure head. 
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Fig. 4.6; and (b) The experimentally measured variation in the gas flow generated by a 

single stage Knudsen pump based on that ceramic, typical variation shown in Fig. 4.7. 

Gas flow rate versus pressure head characteristic of a SSKP is extrapolated to estimate 

the gas flow QmxE that the pumps can generate with zero pressure head at its outlet (Fig. 

4.7).  The flow characteristic also suggests the maximum pressure head PmxE generated by 

the pump.  Since, zero pressure head operation of a Knudsen pump implies no leakage 

flow, QmxE will have no contribution from leakage flow.  Hence, QmxE is the thermal 

transpiration driven gas flow across the ceramic.  Knowing QmxE and one of the structural 

parameters, a or fp, the first step is to use Eqn. 2.15 to get an initial estimate of the second 

(unknown) structural parameter (fp or a).  In the second step, parameters a and fP are used 

to calculate the ideal isothermal flow expected across the ceramic (shown in Fig. 4.6).  

The difference between the experimentally measured and the ideal flows shown in Fig. 

 

 
 

Fig. 4.7: A typical variation in the thermal transpiration driven gas flow rate generated 
across a Knudsen pump with pressure head at its outlet (or inlet). 
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4.6 gives an estimate of DL (Eqn. 2.19).  In the third step, a, DL and fp are used to estimate 

modeled variation in the thermal transpiration driven gas flow generated by the Knudsen 

pump (shown in Fig. 4.7).  This modeled flow characteristic gives an estimate of the 

maximum pressure head, PmxM, and maximum flow rate, QmxM, expected from the device 

for a given set of parameters – a, fP and DL.  Steps 1-3 described above are iterated and 

the unknown parameter, a or fp, is fine-tuned further such that: 

mxE

mxMmxE

mxE

mxMmxE

P

PP

Q

QQ 



     (4.10) 

Each iteration yields a corresponding value for DL.  The parameters QmxM and PmxM 

may deviate significantly from QmxE and PmxE respectively because QmxM and PmxM do not 

account for all the non-idealities present in the system (as noted in Section 4.2). 

 

 
 

Fig. 4.8: Test set-ups for: (a) Isothermal pressure driven gas flow characterization of 
nanoporous ceramics; and (b) Thermal transpiration driven gas flow characterization of a 
Knudsen pump. 
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4.3.2 Test Set-Up 

Two different experimental set-ups were used for this chapter.  As in chapter 3, the 

first set-up was for isothermal pressure driven gas flow characterization of the 

nanoporous ceramic discs (Fig. 4.8a).  A 25 mm diameter disc of nanoporous ceramic 

sample was sandwiched between a threaded glass tube and its plastic cap.  “O”-rings 

were used to seal the ceramic disc between the glass tube and the plastic cap.  The plastic 

cap was connected to a vacuum chamber, which was used to apply a (externally) 

controlled pressure differential across the nanoporous ceramic.  The other end of the glass 

tube was connected to a clear Tygon tubing with a water plug to visualize and quantify 

the gas flow across the ceramic disc. 

The second test set-up that was used to study the performance characteristics of the 

Knudsen pumps (Fig. 4.8b).  The bottom facet of the device under test was attached to a 

heat sink – a metallic block with large thermal mass maintained at room temperature.  

Silver grease was used for effective thermal coupling of the Knudsen pump with the heat 

sink.  As in Chapter 3, the device was tested in two different operation modes: pressure 

mode and flow mode.  While operating in pressure mode, the outlet was sealed, a 

pressure sensor (Model# MPXM2053D by Freescale Semiconductor) was attached at the 

sealed outlet, and the inlet was open to the ambient.  This mode was used to quantify the 

maximum limiting pressure head against which the device could pump gas.  While 

operating in flow mode, flexible tubing (ID 0.79 mm) for water plugs, and a pressure 

sensor with water plugs, and a pressure sensor were connected to the outlet of the pump 

through a T-joint; the inlet was open to ambient.  This mode was used to characterize the 

variation, with applied pressure head, in the air flow generated by the pump at the outlet 
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for different input power levels.  Thermocouples, attached to the brass top and the brass 

base, were used to record the applied temperature bias across the nanoporous ceramic.  

The voltage output from the two thermocouples and the pressure sensor were read into 

HP34401A multimeters, which was connected to a PC running a LabviewTM program, 

through a National Instruments GPIB-USB-HS data transfer cable to record the temporal 

variation of the voltage outputs. 

 

4.3.3 Steady State Characterization 

A. Isothermal Poiseuille Gas Flow 

Figure 4.9 illustrates the isothermal pressure driven gas flow characteristics across ≈25 

mm diameter and ≈2.7 mm thick nanoporous discs.  The rate of variation of the gas flow 

rate across the ceramic disc with the externally applied pressure head was used to 

 

Fig. 4.9: Isothermal pressure driven gas flow characteristics of various nanoporous 
ceramic discs.  Variation in the experimentally measured isothermal pressure driven gas 
flow rates across 25 mm diameter and ≈2.7 mm thick nanoporous ceramic discs with 
externally applied pressure head were used to estimate their hydraulic conductance. 
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estimate the hydraulic conductance of these ceramic discs.  Experiments suggested that 

15PC has highest conductance (≈76.9 µL/min-kPa) followed closely by 05PC  (≈71.4 

µL/min-kPa).  ZEO and VYPG were observed to have about an order of magnitude lower 

hydraulic conductance (≈9 µL/min-kPa) than 15PC and 05PC. 

The experimentally measured isothermal pressure driven gas flow has two 

components: (i) pressure driven transpiration flow through the nanopores (Eqn. 2.15); 

and (ii) leakage (Poiseuille) flow through the leak apertures (Eqn. 2.19).  For a perfect 

(ideal) nanoporous ceramics, that is, ceramic with no structural imperfections, there is no 

leakage flow and the expected idealized gas flow rate is given by Eqn. 2.15.  The 

deviation of the experimentally measured gas flow from the ideal case gives an estimate 

of DL for the bulk nanoporous ceramic discs.  A detailed procedure to calculate 

(unknown) structural parameters of the bulk nanoporous materials has been discussed in 

Section 4.3.1. 

 

B. Thermal Transpiration – SSKP 

Figure 4.10 shows the relative performance of SSKPs based on various nanoporous 

ceramics.  While operating in pressure mode, 15PC-, 05PC-, and ZEO-SSKP resulted in 

almost identical pressure ratios, PH/PC, for a given temperature ratio, TH/TC (Fig. 4.10a).  

However, the VYPG-SSKP resulted in a significantly higher pressure ratio than the 

15PC, 05PC and ZEO SSKP(s).  The plot also identifies the idealized limit for the 

performance of a Knudsen pump.  Idealized limit corresponds to the case for which (a) 

the nanoporous ceramics has no structural defects; (b) there exists no thermal contact 
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resistance at the interface between the ceramic disc and the brass elements; and (c) the 

ceramic disc have uniform in-plane temperature. 

Flow mode testing of these single stage pumps suggested that the maximum pressure 

head (PmxE) generated by VYPG-SSKP was ≈2x greater than that of any other SSKP.  

However, under similar operating conditions VYPG-SSKG had ≈5x smaller no load gas 

flow generation capabilities (QmxE) as compared to the best performing 15PC-SSKP (Fig. 

4.10b).  The gas flow generated by each of these pumps decreased linearly with 

 
Fig. 4.10: Performance characteristics of single stage Knudsen pumps (SSKPs) based on 
various nanoporous ceramics: 15 bar nanoporous ceramic (15PC), 5 bar nanoporous 
ceramic (05PC), VYCOR nanoporous glass (VYPG), and zeolite (ZEO).  (a) Variation in 
square of pressure ratio PH/PC with applied temperature ratio TH/TC for single stage 
Knudsen pumps.  (b) The gas flow rate generated by single stage pumps, based on each 
of these ceramics, for different applied pressure head at the outlet. 
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increasing pressure head at the outlet. 

As described in Section 4.3.1, the flow characteristics illustrated in Figure 4.9 and 

4.10b were used to estimate the unknown structural parameters of the nanoporous 

ceramics.  Table 4.1 summarizes the average value for the three structural parameters for 

the ceramics.  Note that the parameter values in bold were already known, while the 

remaining parameter were estimated based on the procedure discussed in Section 4.3.1. 

 

C. Thermal Transpiration – MSKP 

Based on the SSKP performance, ceramic 15PC was identified as the preferred 

material for the MSKP.  A 15PC-MSKP operating in pressure mode resulted in a 

maximum pressure head of ≈12 kPa for a temperature gradient of ≈16.5 K/mm across the 

nanoporous ceramics (Fig. 4.11).  The pressure head at the sealed outlet was directly 

proportional to the temperature gradient applied across the nanoporous ceramics, which, 

in-turn, was linearly dependent on the input power density to the device.   

The variation in the gas flow rate generated by 15PC-MSKP was observed to decrease 

linearly with the applied pressure head at its outlet (Fig. 4.12).  The flow also scaled 

down linearly with the applied power density to the device.  A sustained temperature 

gradient of ≈16.5 K/mm across the 15PC ceramic discs in a MSKP required an input 

Table 4.1: Summary of nanopore diameter DNP, bulk porosity fp, and leak aperture 
diameter dL of various nanoporous ceramics.

Material Nanopore Diameter Percent Porosity Leak Aperture 
Units nm % µm/cm2

Symbol DNP (=2.a) fp dL

15PC 26.0
66.023.1 

 32 21.1 – 22.5

05PC 22.0
52.008.1 

 31 21.0 – 22.2

ZEO 0.45 8.1
7.42.5 

 14.4 – 14.9

VYPG 02.0
01.047.0 

 28 13.5 – 13.7
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power density of 525 mW/cm2.  While operating in flow mode, a temperature gradient of 

16.5 K/mm resulted in a maximum gas flow rate of ≈3.7 µL/min against a pressure head 

of ≈160 Pa.   

Fluid manipulation capability of 15PC-MSKP for potential application to droplet 

manipulation in microfluidic assays is shown in Fig. 4.13.  For an input power density of 

525 mW/cm2, the device could maneuver a water droplet plug through a 250 µm ID 

fluorinated ethylene propylene (FEP) tubing, connected at its outlet, at speeds in excess 

of 1.2 mm/sec.  The plot suggests that the droplet speed is directly proportional to the 

input power to the device.   

In order to test the reliability of ceramic based Knudsen pumps, the MSKP is being 

operated continuously in flow mode for extensive periods.  To date, it has operated 

 

 
 

Fig. 4.11:  Steady state performance characteristics of a 15PC 9-stage Knudsen pump.  
The maximum pressure generated at sealed outlet increases linearly with the input power 
density to the device.  Similarly, the gas flow rate measured at the outlet against a 
pressure head of ≈160 Pa increases linearly with the input power.  Top axis indicates the 
temperature gradient across the thickness of the nanoporous ceramic corresponding to 
various input power densities to the device. 
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continuously for more than 7000 hours without any deterioration in its performance (Fig. 

4.14).  For an input power of 1.9 W, the average gas flow generated by MSKP during this 

period is ≈2.2 µL/min. with a standard distribution of ≈0.04 µL/min.  (This flow rate is 

measured against a pressure load of 150 Pa.)  The variation in gas flow rate is primarily 

due to the variation in the ambient operating temperature of the device.  Variation in 

ambient temperature results in fluctuation of the effective temperature gradient across the 

ceramic discs, which, in-turn, results in variation of the gas flow rate generated. 

 

4.3.4 Transient Response 

A. Transient Response of SSKP 

Figure 4.15 shows the experimentally measured transient pressure response PHe of 

15PC-SSKP at its sealed outlet corresponding to temperatures THe and TCe (measured 

 

 
 

Fig. 4.12: Gas flow characteristics of 15PC 9-stage Knudsen pump.  Gas flow rate 
generated by each of these pumps decreases linearly with increasing pressure head 
applied at the outlet. 
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experimentally) at the hot and the cold ends of the pump, respectively.  The fitted model 

discussed in Section 4.2 was used to quantify the four fitted parameters that control the 

temporal evolution of pressure at the sealed outlet of the device.  The device had an 

estimated leak aperture dL of ≈18.8 µm/cm2 while heating and ≈19.2 µm/cm2 while 

cooling.  The initial pressure transients that occured as soon as the heater was turned on 

(or off) were captured adequately by the fitted parameters Vcrr and τa.  The corrected 

volume of the hot chamber Vcrr was 0.32 cc, which was 20% of the actual physical 

volume of the hot chamber.  The time constants τa for heating (≈494 sec) was 5.5 times 

the corresponding time constant for heater, whereas τa (≈568 sec) was 8 times the time 

constant for heater during cooling.  Finally, the model suggested that the loss in 

temperature gradient due to thermal contact resistance was about 49% (i.e. f ≈ 0.51).  

Based on these fitted parameters, the modeled pressure profile PHm could reproduce the 

experimentally observed pressure profile PHe with a root mean square error (RMSE) of 

<30 Pa. 

 

 
 

Fig. 4.13: Velocity at which the 15PC 9-stage Knudsen pump could push a water droplet 
through a 250 µm ID fluorinated ethylene propylene capillary for different input power 
densities to the device. 
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B. Transient Response of MSKP 

Figure 4.16 shows the experimentally measured transient pressure at the sealed outlet 

of 15PC-MSKP, PHe, corresponding temperatures measured at the hot and the cold facets 

of the device are shown by THe and TCe, respectively (Fig. 4.16).  Temperatures THe and 

TCe were measured at the top and the bottom of the 5th stage and the pressure was 

measured at the outlet of the 9th stage.   

The fitted model for MSKP comprises of 9 interlinked fitted models, one for each of 

the 9 stages, such that the pressure at the outlet of one stage is reflected at the inlet of the 

next stage.  Table 4.2 summarizes the values for various fitted parameters that adequately 

capture the temporal evolution of pressure at the sealed out of the device.  The relative 

location of individual stages in MSKP with respect to the inlet (I) and outlet (O) are 

indicated by dark circles in the first row of Table 4.2.  Based on these fitted parameters, 

the modeled pressure profile PHm could reproduce the experimentally observed pressure 

profile PHe with a RMS error ≈110 Pa. 

 

Fig. 4.14: The variation in gas flow rate with time during a continuous 7000 hours 
operation of the 15PC 9-stage Knudsen pump.   The average gas flow rate generated 
during this period is 2.2 µL/min with a standard deviation of 0.04 µL/min. 
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4.4 Discussion 
 

Although ceramic 15PC has the largest leak aperture, dL (Table 4.1), it offers the best 

performance of the ceramic materials considered.  This is so because it has the largest 

pore diameter DNP and the highest porosity fp, which provide significantly higher thermal 

transpiration driven gas flow to overcome the disadvantage due to its large dL.   

The leak aperture dL (≈22.2 µm/cm2) for 15PC-SSKP, as estimated from the steady 

 

Fig. 4.15: Variation in the experimentally measured pressure PHe at the sealed outlet of 
the 15PC single stage Knudsen pump corresponding to the experimentally measured 
temperatures THe at the hot and TCe at the cold ends of the nanoporous ceramic.  THm is the 
corrected temperature of the hot facet of the nanoporous ceramic, THa is the modeled 
temperature of the air in the hot chamber; and PHm is the pressure at the sealed outlet – as 
predicted by the fitted model.  The root mean square error between PHe and PHm <30 Pa. 



 

93 
 

state characterization, is reasonably close to the dL (≈19 µm/cm2) predicted by the fitted 

model.  Similarly, the dL (≈22 µm/cm2) for stages 1-8 in 15PC is in good agreement with 

the estimate value for dL.  However, dL for the 9th stage is larger (≈29 µm/cm2) than the 

remaining stages, potentially because of additional leakage across various joints/fitting at 

the outlet of the device.   

 
 

Fig. 4.16: Variation in the experimentally measured pressure PHe at the sealed outlet of 
the 15PC 9-stage Knudsen pump corresponding to the experimentally measured 
temperatures THe at the hot and TCe at the cold ends of the nanoporous ceramic.  THm is the 
modeled temperature of the hot facet of the nanoporous ceramic, THa is the corrected 
temperature of the air in the hot chamber; and PHm is the corresponding pressure at the 
sealed outlet – as predicted by the fitted model.  The root mean square error between PHe 
and PHm <110 Pa. 



 

94 
 

Based on the experimental characterization of various ceramics, 15PC has been 

identified as a favorable ceramic for multistage Knudsen pumping.  Although VYPG-

SSKP results in about 2 times greater pressure head than 15PC-SSKP, the maximum gas 

flow rate generated by 15PC-SSKP is more than 5 times greater than the maximum gas 

flow rate generated by VYPG-SSKP (Fig. 4.10b).  Hence, 15PC is a better thermal 

transpiration material than VYPG. 

The fitted model for 15PC-SSKP suggests that only 20% of the actual physical 

volume of the hot chamber contributes to Vcrr (≈0.32 cm3).  However, the contribution 

reduces to 17% for 15PC-MSKP, potentially because the footprint of individual stage in 

MSKP is significantly smaller than the footprint of SSKP.  Hence, the volume of air 

closer to heater is significantly less in MSKP than in SSKP.  In contrast, for stages 1-8 in 

the MSKP, 85% of the actual physical volume of the hot chamber constitutes Vcrr.  This 

high percentage for Vcrr in stages 1-8 is probably because the hot chambers for stages 1-8 

are comprised primarily of the vertical transfer ports that serve to connect subsequent 

stages.  These transfer ports are embedded in the PEI substrate and are sealed at ends 

with brass caps.  They fall directly underneath the heater.  Hence, a significant portion of 

the air entrapped in these hot chambers gets heated resulting in higher percentage for Vcrr. 

Table 4.2: Summary of fitted parameters for 15PC 9SKP. 
Location in 
3x3 Array   

  
Fitted 

Parameters 
Units Heater 1st 

Stage 
2nd 

Stage 
3rd 

Stage 
4th 

Stage 
5th 

Stage 
6th 

Stage 
7th 

Stage 
8th 

Stage 
9th 

Stage 
Vcrr cm3 - 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.26 
τa 

 

Heat s 90 126 126 126 126 126 126 126 126 207 
Cool s 94 132 132 132 132 132 132 132 132 216 

dL Heat µm/ 
cm2 

- 22 22 22 22 22 22 22 22 29 

Cool µm/ 
cm2 

- 22 22 22 22 22 22 22 22 29 

f 
 

- 0.88 0.88 0.88 0.93 0.93 0.93 0.88 0.88 0.88 
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For stages 1-8 in 15PC-MSKP, τa is 1.4 times the thermal time constant for heater 

itself.  Whereas, τa for the air entrapped in the 9th stage is ≈2.3 times the thermal time 

constant for heater.  The 9th stage has a longer time constant because it has a larger 

volume of air encapsulated in its hot chamber that must heated.  However, τa for 

heating/cooling in 15PC-SSKP is significantly larger than either of the stages in 9SKP 

because it has the significantly large Vcrr. 

The arrayed structure of the MSKP results in non-uniform thermal loss from different 

stages.  Hence, the temperature gradient across various stages is expected to be non-

uniform.  Moreover, the heater used is narrower on one side, so the stages 1-3 and 7-9 are 

not completely covered by the heater, which contributes to the non-uniformity in 

temperature gradient across various stages.  A finite element (COMSOLTM) model is 

used to estimate the relative variation in temperature gradient across various stages with 

respect to the 5th stage.  (The temperature gradient across 5th stage is used as reference 

because it is located at the center and is expected to have the highest temperature 

gradient.)  Subsequently, the fitted model is used to estimate the fitted parameter f for the 

5th stage.  The parameters f for remaining stages are determined by scaling down the 

fitted value of f for the 5th stage based on the relative variation in the temperature bias 

across various stages, as predicted by the FE model.  The fitted parameter f is 0.88 for 

stages 1-3 and 7-9, whereas its value for stages 4-6 is 0.93.  

The model uses nominal values for the unknown parameters (a or fp), which are 

derived from the steady state characterization of various ceramics (Table 4.1).  The 

limiting values for the derived structural parameters are associated with the cases: 

0


mxE

mxMmxE

Q

QQ
      (4.11) 
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and 

0


mxE

mxMmxE

P

PP
      (4.12) 

These structural parameters have significantly large error margins associated with 

them because the steady state analysis does not account for all the non-idealities.  

Moreover, large error bars for a (or fp) may be due to their relatively large standard 

deviation of the pore sizes and percent porosity of the ceramics (Table 4.1).  A more 

rigorous analysis may require the knowledge of pore size distribution, impurities in the 

nanoporous ceramic, etc.  Such detailed characterization may require sophisticated 

imaging techniques that can image the bulk nanopores and their distribution without 

damaging the sample itself.  Detailed imaging of these nanoporous ceramics is out of the 

scope of present analysis. 

This work suggests that 15PC-MSKP is effective in generating desired gas flow rates 

at required pressure heads, which was not possible with the single stage Knudsen pump 

[Var01, McN05, Gup08].  The performance results from 15PC-MSKP affirm the fact that 

Knudsen pumps can potentially be useful for liquid droplet manipulation in biological 

assays.  Rate of increase in the droplet speed per unit increment in input power suggests 

that the device can provide volumetric delivery of liquid sample into a designated assay 

with a precision of ≈1 nL/min per unit mW input power (Fig. 4.13).  The slope of load-

flow characteristics, shown in Figure 4.12, suggests that the volumetric delivery of fluid 

sample into a designated assay can also be controlled upto a precision of 0.3 nL/min/Pa 

by regulating the pressure head driving the droplet. 
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4.5 Summary 

The 15 bar nanoporous ceramic (15PC) from Soil Moisture and Equipment 

Corporation is one of the most promising ceramics for Knudsen pumps.  Large nanopore 

diameter and high porosity of 15PC result in gas flow rates as high as high as 3.7 µL/min 

against a pressure head of 160 Pa.  Further, for an input power of 1.9 W, the serially 

connected 9-stage structure of MSKP, with footprint 25x25 mm2, allows a pressure head 

as high as 12 kPa.  These operating characteristics suggest the potential utility of multiple 

stage Knudsen pumps for liquid droplet manipulation capabilities in biological assays.  

The 9-stage pump has also been demonstrated as pumping water drops through a 250 µm 

ID fluorinated ethylene propylene capillary at speeds in excess of 1.2 mm/sec.  The 

MSKP has also been demonstrated to operate continuously for more than 7000 hours 

without any observable deterioration in its performance.  A semi-analytical fitted model 

has been proposed that uses four fitted parameters to estimate the highly nonlinear 

temporal evolution of the pressure at the sealed outlet of the single stage and the 

multistage Knudsen pumps.  The fitted model can reproduce the experimentally measured 

results with root mean square error of <110 Pa.   

Having demonstrated the feasibility of the multistage Knudsen pump to meet the 

performance requirement of various microsystems, the fabrication process and the 

materials used can be refined further to optimize the efficiency of the device and to 

minimize the size of the device.  A suitable choice of materials and fabrication steps is 

expected to enable batch fabrication methods for these devices.   
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CHAPTER 5 

NANOPOROUS POLYMER MEMBRANE BASED SINGLE STAGE 

KNUDSEN PUMP 

 

Although nanoporous ceramic based Knudsen pumps continue to show promise for 

thermal transpiration driven Knudsen pumping at atmospheric pressures, these have 

limited gas flow generation capability.  Nanoporous polymer membranes have been 

introduced that have pore sizes significantly larger than the pore sizes in the nanoporous 

ceramics, which allows them to achieve higher thermal transpiration driven gas flow 

rates4.  These membranes have higher percent porosity, which is also favorable for high 

gas flow rates.  Although these membranes are about 100 µm thick, high thermal 

insulation allows them to sustain significant thermal gradient with reasonably low power 

inputs.   

The primary goal for the work described in this chapter is to maximize the thermal 

transpiration driven gas flow rate of a Knudsen pump by using nanoporous polymer 

membrane as the transpiration element.  In addition, the secondary goal is to study the 

vacuum generation capabilities of polymer based Knudsen pumps. 

 

 

                                                 
4 Portions of this chapter have appeared in conference abstract form in [Gup10]. 



 

99 
 

5.1 Nanoporous Polymer Membranes 

Conventionally, nanoporous polymer membranes are used for filtration purposes and 

therefore have well controlled nanopore diameters.  The nanopore diameters are on the 

order of 25-100 nm, and porosity is on the order of 70-75%, both of which are promising 

for high gas flow rates in Knudsen pumps.  The low thermal conductivity of these 

membranes also acts in favor of the power efficiency.  In this chapter, a mixed cellulose 

ester (MCE) nanoporous polymer membranes has been used, which are marketed as 

microfilters by Millipore Corporation.  They have high percent porosity (≈70%), low 

(bulk) thermal conductivity (≈0.2 W/m-K). 

Experiments performed as part of this effort suggest that commercially available 

nanoporous polymer membranes are relatively defect-free as compared to the bulk 

nanoporous ceramics reported in Chapters 3 and 4.  Transpiration elements based on 

membranes with three different pore sizes – 25 nm, 50 nm, and 100 nm – are evaluated in 

this chapter.  Gas flow characteristics and vacuum generation capabilities of Knudsen 

pumps based on these transpiration elements are used to identify the most favorable 

element for thermal transpiration driven gas pumping.  Finally, the performance 

Table 5.1: Summary of the types of polymer membranes and number of layers of 
polymer membranes used in different transpiration elements and corresponding Knudsen 
pumps. 
Device# Membrane 

Layout 
Membrane 
Diameter 

Thickness of 
individual 

layer 

Nanopore 
diameter 

% 
porosity 

# of 
layers 

  mm µm Nm %  
SSKP1 PM1 11.5 105 25 70 1 
SSKP2 PM2 11.5 105 25 70 5 
SSKP3 PM3 11.5 105 50 72 1 
SSKP4 PM4 11.5 105 50 72 5 
SSKP5 PM5 11.5 105 100 74 1 
SSKP6 PM6 11.5 105 100 74 5 
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characteristics of single stage Knudsen pumps using that transpiration element are studied 

in detail.  

  

5.2 Device Structure 

Six different transpiration elements were studied in this effort.  A transpiration 

element refers to the component of a Knudsen pump that results in thermal transpiration 

driven gas flow when subjected to a temperature gradient.  The transpiration elements 

were made from mixed cellulose ester (MCE) nanoporous polymer membranes, with pore 

sizes 25 nm, 50nm, and 100 nm; and percent porosity of 70%, 72%, and 74%, 

respectively.  Three of the transpiration elements used a single layer of these membranes; 

three additional elements used 5 layers of these membranes (Table 5.1). 

One of the primary challenges in using transpiration elements based on such thin 

 

 
 

Fig. 5.1: Exploded view of a nanoporous polymer based single stage Knudsen pump. 
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membranes is to impose a meaningful temperature gradient across its thickness.  This is 

accomplished by sandwiching the transpiration element between two brass elements – the 

brass base and the brass top (Fig. 5.1).  The brass base is cooled by a passively cooled 

heat sink.  The brass top is maintained at a higher temperature with the help of a heater 

above it.    A polyetherimide (PEI) ring is used to thermally isolate the top and the bottom 

brass elements.  The heater, located on the brass top, has a thin, etched foil, resistive 

element (≈26 Ω) laminated between insulating layers of Kapton (Minco, MN).  Finally, 

the structure is sealed from top using a PEI cap.  Thermocouples are used to record the 

temperature of the heater and the brass base.  Stainless steel capillaries are used at the 

inlet and outlet ports.   

For this effort, the brass and PEI elements were machined using CNC milling (Fig. 

5.2).  A vacuum epoxy, STYCAST2850FT/Catalyst 9 was used to hermetically seal 

various elements in place.  Figure 5.3 shows the final assembled device – it has a final 

packaged volume of 14x14x4.5 mm3.  Note that the transpiration element PM1 is used in 

the Knudsen pump SSKP1, PM2 is used in SSKP2 and so on (Table 5.1).  

 

 

 
 

Fig. 5.2: Various components used in nanoporous polymer membrane based single stage 
Knudsen pumps. 
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5.3 Fitted Model 

The fitted model presented here is a derivative of the models presented in the previous 

two chapters.  However, unlike Chapter 3 and 4, the work in this chapter addresses the 

vacuum generation capabilities of a polymer based Knudsen pump.  So, the fitted model 

here emulates the temporal evolution of vacuum generated in the (sealed) cold chamber, 

that is, at the inlet.   

Note that since the fitted model here addresses the transient pressure response at the 

sealed cold chamber, there is no heating of air molecules under consideration.  Hence, 

two of the fitted parameters – thermal time constant of air, fair or τa; and corrected 

volume, Vcrr – discussed in Chapters 3 and 4 can be eliminated.  So, the fitted model 

presented here has only two fitted parameters:  (i) Leak aperture, DL, present in the 

transpiration element.  (ii) loss in the temperature bias at various interfaces due to the 

thermal contact resistance, f. 

The definition for DL is same as in Chapters 3 and 4.  However, the second fitted 

Fig. 5.3: Photograph of a nanoporous polymer based single stage Knudsen pump.  It has a 
final packaged volume of 14x14x4.4 mm3. 
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parameter has been redefined to predict the effect of thermal contact resistances more 

precisely.  The second fitted parameter is denoted by f and, as in Chapter 4, it is used to 

estimate the fraction of experimentally measured applied temperature bias to the Knudsen 

pump that actually appears across its transpiration element.  However, unlike Chapter 4, 

the model presented here assumes that the (overall) loss in temperature bias due to the 

thermal contact resistances is divided equally at the top facet and at the bottom facet of 

the transpiration element. 

Figure 5.4 shows typical variation in the estimated (i.e. fitted) and the experimentally 

measured temporal evolution of pressure at the sealed inlet of a Knudsen pump.  Unlike 

the pressure profile presented in the Fig. 3.7, the pressure profile here can be controlled 

by using only two fitted parameters, discussed above.  The difference between the steady 

state values of the experimental and the fitted pressure profiles, ePHss, depends primarily 

on DL and the fitted parameter f is used to minimize the total RMS error, eRMS, between 

 

 
 

Fig. 5.4:  A typical variation in the estimated (i.e. fitted) and the experimentally measured 
temporal evolution of pressure at the sealed inlet of a Knudsen pump. 
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the fitted and the experimental pressure profiles. 

Figure 5.5 shows the flowchart for the fitted model and a detailed step-by-step 

algorithm for the fitted model is presented below: 

Step 1: Choose a suitably small time step (Δt) and interpolate THe(t), TCe(t), PHe(t) and 

PCe(t) for all the time steps. 

Step 2: Choose initial value for DL, and f.  Due to the asymmetric nature of the 

problem, these parameters may have different values, while the heater is on and while it 

is off. 

Step 3: Estimate the initial number of moles of air in the cold chamber based on the 

 

 

 

Fig. 5.5: The flowchart for key steps involved in the fitted model. 
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initial temperature, pressure of the device and the volume of the cold chamber. 
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Step 4: Evaluate the temperature at the hot and the cold facets of the transpiration 

element at time t. 
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Step 5: Evaluate average values of THcrr, and TCcrr over the period t to t+Δt. 
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Step 6: Substitute for TH = )( ttTHcrr  ; TC = )( ttTCcrr  ; PH = )(tPHm = PHe(t) and 

PC = )(tPCm  in Equation 2.15 to calculate the thermal transpiration driven mass flow rate 

and divide it by the molecular mass M of air to estimate the number of moles of gas 

molecules NTT(t+Δt) pumped out of the cold chamber due to the thermal transpiration 

pumping. 

Step 7: Use DL, PH and PC in Equation 2.19 to calculate the leakage flow, multiply it 

with the density of air (Eqn. 2.7), and divide it by the molecular mass M of air to estimate 

the effective number of molecules NPOS(t+Δt) leaking into the cold chamber. 

Step 8: The effective number of moles of gas in the cold chamber after time t+Δt is:. 

N(t+Δt) = N(t) - NTT(t+Δt) + NPOS(t+Δt)    (5.6) 

Step 9: Estimate the final pressure in the chamber, assuming ideal gas behavior  
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Step 10: Increment time, i.e. t = t+Δt; and repeat steps 4 to 9 for all the time steps. 

Step 11: Update DL and repeat steps 3 to 10 until ePHss is smaller than ε1, where ε1 is 

the acceptable tolerance in minimizing ePHss. 

Step 12: Update f and repeat steps from 3 to 11 such that eRMS is smaller than ε, where 

ε is the acceptable tolerance in minimizing eRMS. 

Thus, the fitted model provides an estimate for the fitted parameters DL, and f, such 

that the RMS error between the experimentally measured and modeled pressure in the hot 

chamber is minimized.  Note than the tolerances ε1, and ε may vary from one iteration to 

the next. 

 

5.4 Results and Discussion 

This section presents steady state and transient testing results from the six 

transpiration elements (PM1 to PM6) and Knudsen pumps (SSKP1 to SSKP6) based on 

these transpiration elements (Table 5.1).  Performance characteristics of these Knudsen 

pumps have been studied at and below atmospheric pressure.  However, all the 

experimental results are at atmospheric pressure unless specified. 

 

5.4.1 Test Set-up 

A. Isothermal Pressure Driven Flow 

Figure 5.6 shows a schematic layout of the test set-up used for isothermal pressure 

driven gas flow characterization of the transpiration elements PM1 to PM6.  Each of 

these transpiration elements were mounted in a transpiration element assembly, which 
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was sandwiched between a threaded glass tube and its plastic cap.  “O”-rings were used 

to seal the assembly between the glass tube and the plastic cap.  The plastic cap was 

connected to a vacuum chamber, which was used to apply a (externally) controlled 

pressure differential across the transpiration element.  The other end of the glass tube was 

connected to a clear Tygon tubing, inner diameter 1/32”, with a water plug to visualize 

and quantify the gas flow across the transpiration element.  The corresponding pressure 

drop across the transpiration element was recorded using a differential pressure sensor. 

The transpiration element assembly had a transpiration element sandwiched between 

two perforated brass discs, which was then bonded peripherally inside a metallic washer 

(exploded view shown in Fig. 5.6).  Brass discs were used to support the transpiration 

 

Fig. 5.6: Test set-up for isothermal pressure driven gas flow characterization of various 
tranpiration elements.  (a) Transpiration element assembly was sandwiched between two 
“O”-rings and vacuum pressure was applied from one side to create pressure difference 
across the transpiration element.  (b) The transpiration element assembly compised of 
transpiration element sandwiched between two perforated brass discs;  transpiration 
element and the brass discs were mounted inside and bonded peripherally to a metallic 
washer that could be firmly clamped between the two “O”-rings. 
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element in order to protect it from structural damage due to the externally applied 

differential pressure.  The metallic washer provided structural support to the transpiration 

element, so that it could be clamped firmly in the test set-up. 

 

B. Knudsen Pumping Characteristics 

Figure 5.7 shows the schematic layout of the test set-up used to quantify the Knudsen 

pumping characteristics of the devices SSKP1 to SSKP6.  These devices were tested in a 

controlled pressure chamber (CPC).  The pressure inside CPC and hence the ambient 

operating pressure of these devices was regulated using an external vacuum pump.  The 

bottom facet of the device was maintained in thermal equilibrium with a heat sink, which 

was passively maintained at room temperature.  Vacuum grease was used at the bottom 

facet of the Knudsen pump to ensure effective thermal coupling between the brass base 

and the heat sink.  In this study, Knudsen pumps were tested in two different modes – 

pressure mode and flow mode.  While operating in pressure mode, the inlet of the pump 

was sealed and the outlet was open to the CPC.  The temporal evolution of pressure at the 

 

Fig. 5.7: Test set-up for thermal transpiration driven gas flow characterization of a 
Knudsen pump.  The pressure chamber is used to regulate the ambient operating pressure 
of the Knudsen pump. 
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sealed inlet was recorded using a differential pressure sensor – one end of the pressure 

sensor was connected to the inlet of the Knudsen pump and the other end was open to 

CPC.  While operating in flow mode, the inlet of the Knudsen pump was connected to a 

differential pressure sensor, and Tygon tubing with one or more water plugs in it.  Again, 

water plugs were used to visualize and quantify the gas flow generated by these devices 

and corresponding pressure load at the inlet was recorded using the differential pressure 

sensor.  Pressure load applied at the inlet was controlled by changing the number of water 

plugs in the tubing.  Note that there are two mechanisms by which a water plug offers 

resistance to the gas flow: (i) viscous drag at the outer periphery of the water plug; (ii) 

absorption/release of free energy at the two menisci of a plug.  Experiments suggested 

that pressure load from the later is significantly larger than the former.  Hence, the 

pressure load applied to the Knudsen pump was controlled by varying the number of 

water plugs instead of varying the length of a single water plug. 

The voltage output from the two thermocouples and the pressure sensor were read into 

HP34401A multimeters.  These multimeters were further connected to a PC, running a 

LabviewTM program, through a National Instruments’s GPIB-USB-HS data transfer cable 

to record the temporal variation in the voltage outputs. 

Table 5.2: Experimentally measured hydraulic conductance KH and its percentage 
deviation from the ideal hydraulic conductance KHideal for various transpiration elements.  

Transpiration 
element 

KH KHideal Deviation 

 sccm/Pa sccm/Pa % 
PM1 1.97x10-3 1.85x10-3 6.5 
PM2 4.21x10-4 3.71x10-4 13.5 
PM3 3.15x10-3 3.71x10-3 15.1 
PM4 6.76x10-4 7.44x10-4 9.1 
PM5 5.46x10-3 7.62x10-3 28.3 
PM6 1.1x10-3 1.53x10-3 27.5 
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5.4.2 Steady State Results 

A. Isothermal Pressure Driven Flow Characteristics 

Figure 5.8 illustrates the isothermal pressure driven gas flow characteristics of the six 

transpiration elements studied here.  The gas flow through these elements, Qiso, increased 

linearly with (externally) applied pressure differential ΔP across these elements.  Hence: 

Qiso = KH.ΔP      (5.8) 

Based on the experimentally measured values for Qiso and ΔP, the hydraulic 

conductance KH of various transpiration elements (diameter ≈11.5 mm) is listed in Fig. 

5.8.  The experimentally measured hydraulic conductance values, KH, of these 

transpiration elements were in close agreement with the ideal hydraulic conductance, 

KHideal, estimated using Sharipov’s model (Table 5.2).  In particular, the transpiration 

element PM1 could approach 95% of the ideally estimated value for hydraulic 

conductance, calculated using nominal values for polymer membrane parameters.  Close 

 

Fig. 5.8: Rate of variation in the isothermal pressure driven gas flow rate with the applied 
pressure drop across the transpiration element yields the hydraulic conductance KH of 
each of these elements. 
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resemblance between KH and KHideal suggested that the pore size and the porosity of the 

polymer membranes had minimal deviation from their nominal values. 

 

B. Thermal Transpiration – Pressure Mode Testing 

As mentioned in Chapter 1, ideally, the pressure ratio generated by a Knudsen pump is 

equal to the square root of the temperature ratio across the transpiration element (Eqn. 

1.1).  However, in practice, the pressure ratio generated is smaller than the square root of 

the temperature ratio due to various non-idealities present in the system.  A lumped 

parameter fN was introduced in this chapter to quantify the effects of various non-

idealities on the pressure ratio generation capabilities of the polymer based Knudsen 

pumps discussed here (Fig. 5.9).  This lumped parameter was defined as: 

 

 
 

Fig. 5.9: Pressure Mode Testing: Variation in pressure ratio generated by various 
Knudsen pumps with applied temperature ratio.  A limped parameter fN was introduced to 
quantify various non-idealities that diminish the pressure (ratio) generation capability of a 
Knudsen pump. 
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Figure 5.9 shows variation in the pressure ratio generated by devices SSKP1 to SSKP6 

with applied temperature ratio.  Parameter fN has been identified for each of these 

devices.  It is expected to be higher for transpiration elements with smaller nanopore 

diameter and it is also expected to have greater values for Knudsen pumps based on 

transpiration elements with 5-layered structure than for the Knudsen pumps with single-

layered structure.  However, some of the pumps (SSKP3, in particular) do not follow 

these trends (Fig. 5.9), potentially because of the variation in the non-idealities from 

device to device.  These non-idealities include thermal contact resistance, leak aperture 

diameter, etc.   

Similar experiments at sub-atmospheric pressures suggested that the pressure ratio 

generation capabilities of these Knudsen pumps, for a given temperature ratio, increase 

 

Fig. 5.10: Pressure Mode Testing: Pressure ratio generated by a Knudsen pump increases 
as the ambient operating pressure of these pumps decrease. 
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with decreasing operating pressures.  Figure 5.10 illustrates the variation in pressure ratio 

PH/PC with ambient operating pressure Pvc of the devices SSKP1 to SSKP6 held at (TH 

/TC)0.5 = 1.05.  This happens because with reduction in pressure the gas flow through the 

transpiration element extends further into the free molecular regime, i.e., the Knudsen 

number increases.  Higher Knudsen number reduces the leakage flow and is more 

favorable for achieving higher PH/PC for a given TH/TC.  Moreover, at sufficiently low 

pressures the mean free path of the gas molecules becomes larger than the hydraulic 

diameter of the micro-defects in the transpiration element and these (also) start 

supporting thermal transpiration flow through them. 

Figure 5.11a shows the maximum (differential) vacuum pressure generated by devices 

SSKP1 to SSKP6 at their sealed inlet for an input power of ≈1 W.  The bar graph 

suggests that SSKP2 has the best vacuum generation capabilities followed by SSKP4, 

SSKP6, SSKP1, SSKP3, and SSKP5 in decreasing order.  In other words, for a given 

number of layers of nanoporous membranes in a transpiration element, Knudsen pumps 

that used transpiration elements based on membranes with 25 nm pore sizes had higher 

vacuum generation capabilities than those which used transpiration elements based on 

membranes with 50 nm or 100 nm pore sizes.  For example, among Knudsen pumps with 

single layered structure for transpiration element, SSKP1 had the highest vacuum 

generation capability; similarly, among Knudsen pumps with five-layered structure for 

transpiration element, SSKP2 resulted in highest vacuum.  The input power to each of 

these pumps was 1W. 
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Further, the experimentally measured temporal evolution of vacuum at the sealed inlet 

of each of these pumps was used to estimate their respective time constants for 

evacuating an encapsulated volume ≈0.43 cm3 (Fig. 5.11b) to their respective steady state 

pressure shown in Fig. 5.11a.  Analysis suggested that both the Knudsen pumps that used 

membranes with 25 nm pore size have almost identical time constants.  Other pumps 

either have poor vacuum generation capability or high time constant for evacuation or 

both.  Hence, Knudsen pumps SSKP1 (based on transpiration element PM1) and SSKP2 

(based on transpiration element PM2) have been chosen for the purpose of further 

analysis. 

 
 

Fig. 5.11: Pressure Mode Testing: Vacuum pressure generation capabilities of various 
Knudsen pumps.  (a) The maximum vacuum pressure generated by various Knudsen 
pump for an input power of 1 W; (b) The time constant for each of these pumps to 
evacuate a 0.43 cm3 micro-cavity down to the corresponding maximum vacuum pressures 
shown in (a). 
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C. Thermal Transpiration – Flow Characteristics 

If QTT is the temperature gradient driven thermal transpiration flow from the cold side 

to the hot side of the transpiration element, and QPR is the pressure gradient-driven gas 

flow across the transpiration element from its hot side to its cold side.  The net flow Qeff 

is the algebraic sum of these two gas flow rates, that is: 

Qeff = QTT – QPR      (5.10) 

For the purpose of present analysis it is assumed that the non-isothermal pressure 

(only) driven gas flow characteristics as identical to the isothermal pressure driven gas 

flow characteristics of the transpiration element.  Hence: 

QPR = Qiso = KH.ΔP     (5.11) 

As mentioned earlier, inlet of a Knudsen pump is sealed while testing it in pressure 

mode.  This implies that the effective gas flow across its transpiration element at steady 

state is zero: Qeff = 0.  Hence, QTT = QPR = KH.ΔP.  This value of QTT can, therefore, be 

 

Fig. 5.12: Pressure Mode Testing: Variation in the thermal transpiration driven gas flow 
QTT generated by Knudsen pumps SSKP1 and SSKP2 with the input power to the 
devices. 
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extracted from the Pressure Mode Tests.  Figure 5.12 shows that QTT for SSKP1 is about 

2x greater than that for SSKP2 under similar operating conditions.  However, SSKP2 has 

2.4x more vacuum generation capability than SSKP1 under similar operating conditions 

(Fig. 5.11).  So, there exists a trade-off in choosing the 5-layered transpiration element 

PM2 (used in SSKP2) versus a single layered transpiration element PM1 (used in 

SSKP1).  Although PM2 had slight advantage over PM1, PM1 was preferred because it 

yielded results that were more representative of the idealized results estimated based on 

the Sharipov model (Table 5.2).  Moreover, use of the multilayered transpiration element 

PM2 would have increased the fabrication complexity, which would adversely affect the 

yield.  Hence, PM1 was the preferred transpiration element for thermal transpiration 

driven Knudsen pumping, particularly while operating close to atmospheric pressure. 

Equation 5.10 and 5.11 suggest that for the no load case ΔP = 0, Qeff = QTT.  Hence, 

the pressure mode testing results, shown in Fig. 5.12, suggest that for an input power of 

 

Fig. 5.13: Flow Mode Testing: Variation in the experimentally measured gas flow rate 
generated at the inlet of SSKP1 with applied pressure head at the inlet. 



 

117 
 

1.4 W, SSKP2 can result in a no load gas flow rate of about 1.2 sccm. 

Figure 5.13 shows the experimentally measured gas flow generated by the device Qeff 

with pressure load ΔP at the inlet.  The input power was held constant at 1.4 W for this 

experiment.  The pump was demonstrated to generate a gas flow rate of 0.4 sccm against 

a pressure load of 330 Pa at its inlet.  As expected, the measured gas flow increased with 

reduction in the pressure load.  The load flow characteristics illustrate that for a limiting 

case with no (external) pressure load at its inlet, the pump could result in gas flow rates as 

high as 0.93 sccm.  Note that, while operating in flow mode, the pump has to overcome 

internal load offered by various elements.  Hence, no (external) load gas flow rate, 

extrapolated from direct flow measurement results, is smaller than the no load flow 

estimated from pressure mode testing results. 

In order to test the reliability of the polymer based Knudsen pumps, the SSKP1 is 

being operated continuously in flow mode for extensive periods.  To date, it has operated 

continuously for more than 600 hours without any deterioration in its performance (Fig. 

 

 
 

Fig. 5.14:  The variation in gas flow rate with time during a continuous 600 hours 
operation of the SSKP1.   The average gas flow rate generated during this period is 0.44 
sccm with a standard deviation of 0.01 sccm. 
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5.14).  For an input power of 1.4 W, the average gas flow generated by SSKP1 during 

this period is ≈0.44 sccm with a standard distribution of ≈0.01 sccm  (This flow rate is 

measured against a pressure load of 337 Pa.)  The variation in gas flow rate is primarily 

due to the variation in the ambient operating temperature of the device.  Variation in 

ambient temperature results in fluctuation of the effective temperature gradient across the 

ceramic discs, which, in-turn, results in variation of the gas flow rate generated. 

 

5.4.3 Transient Results 

A. Pressure/Flow Transients 

Pressure Mode Testing: Figure 5.15a shows the experimentally measured transient 

differential vacuum pressure PH-PC (=ΔP(t)) in the sealed cold chamber of SSKP1.  The 

corresponding experimentally measured temperatures at the hot and at the cold ends of 

the transpiration element are plotted as TH and TC, respectively.  The volume of the cold 

chamber was 0.46 cm3 and the input power to the device was 1.4 W.   

Time derivative of ΔP(t) is proportional to the gas pumped out of the cold chamber 

Qeff(t) (Fig. 5.15b).  The product of KH and ΔP(t) results in the rate of pressure driven gas 

flow into the cold chamber QPR(t) (Eqn. 5.11).  Sum of QPR(t) and Qeff(t) provides the 

temporal evolution of the thermal transpiration flow QTT(t) (Eqn. 5.10, Fig. 5.15b).   

Figure 5.15 suggests that the device SSKP1 could generate thermal transpiration gas 

flow rate on the order of 1.2 sccm, while operating at temperature smaller than 60 °C.  

Moreover, the plot suggested that the time constant for PH-PC is almost identical to the 

time constant of TH-TC, which means that the primary factor limiting the rate of 

evacuation of the cold chamber was the thermal mass of the device.  Reduction in thermal 
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mass of the device is expected to reduce the time constant for TH-TC and hence will 

reduce the time constant for PH-PC. 

 

B. Fitted Model 

Based on the experimentally measured TH and TC, the fitted model discussed in 

Section 5.3 was used to reproduce the experimentally measured PH-PC.  This model 

 

Fig. 5.15: Pressure mode transient pumping characteristics of SSKP1: (a) Measured 
temporal evolution of differential vacuum (PH-PC) at the sealed inlet, corresponding 
temperatures at the hot and at the cold ends of the transpiration element are TH and TC, 
respectively.  (b) Effective gas flow into the cold chamber, calculated based on the 
variation in pressure at the sealed inlet.  The sum of the effective gas flow Qeff and the 
pressure driven backflow, QPR = ΔP.KH = (PH-PC).KH, provides an estimate of the 
temporal evolution of thermal transpiration driven gas flow QTT generated by SSKP1. 
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served to quantify the two fitted parameters, f and DL, such that the RMS deviation of the 

experimentally measured pressure and the modeled pressure was minimized.  A 

preliminary estimate for the fitted parameter DL was obtained from the deviation of the 

experimentally measured hydraulic conductance KH of PM1 from its ideal value KHideal 

(Table 5.2).  The difference in the two hydraulic conductance values suggested that the 

11.5 mm diameter nanoporous polymer membrane with nanopore diameter 25 nm and 

percent porosity 70% had a leak aperture of 19.9 µm.  This value for leak aperture was 

further verified using the fitted model. 

The fitted pressure (PH-PC)model could reproduce the experimentally measured pressure 

PH-PC with a root mean square error of smaller than 7.5 Pa, while using the values 0.18 

and 19.9 µm for the fitted parameters f and DL, respectively (Fig. 5.16a).  Figure 5.16b 

shows the corresponding variation in the corrected temperatures at the hot end THcrr and 

at the cold end TCcrr of the transpiration element.  Experimentally measured variation in 

the temperatures at the hot (TH) and at the cold (TC) ends have also been shown.  The 

model suggested that only 18% of the measured temperature drop across SSKP1 actually 

appears across the transpiration element PM1; remaining is lost in the non-idealities, such 

as, thermal contact resistances at various interfaces etc. 

Apart from the various non-idealities in the systems, the fitted model could also 

capture measurement errors.  The model suggested that the due to the compressible 

nature of the gas the time delay between the vacuum generated at the cold end of the 

transpiration element in SSKP1 and the vacuum pressure detected by the pressure sensor 

was of about 5 sec.  High gas pumping speed (≈1 sccm) also contributed to the delay in 

propagation of vacuum in the cold chamber, which was essentially long and slender in 
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geometry with Knudsen pump at one end and pressure sensor at the other end.  Further, 

the model could capture a zero error of 13 Pa in the experimentally measured PH-PC.   

 

5.5 Summary 

Nanoporous polymer based Knudsen pumps have been demonstrated to be one of the 

 

Fig. 5.16: Pressure Mode Testing: (a) The fitted pressure (PH-PC)model at the sealed inlet of 
SSKP1 could reproduce the corresponding experimentally measured pressure PH-PC with 
a root mean square error of <7.5 Pa.  (b) TH and TC show the temperature recoded by the 
thermocouples at the hot and the cold ends of the transpiration element (PM1) used in 
SSKP1.  THcrr and TCcrr are the corrected temperatures at the hot end and at the cold end 
of the PM1 after accounting for thermal contact resistances – as estimated by the fitted 
model. 
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most promising options for generating thermal transpiration driven gas flow rates in 

excess of 1 sccm.  Experimentally measured isothermal pressure driven gas flow 

characteristics for these polymer membranes are in close agreement with the ideal values.  

In particular, the nanoporous polymer membrane with pore size 25 nm and percent 

porosity 70% has been identified as the most favorable transpiration material for thermal 

transpiration driven Knudsen pumping.  These polymer membranes are promising for 

high vacuum pressure generation.  The pressure ratio generated by these membranes for a 

given temperature ratio increases with lower operating pressures.  Finally, the two fitted 

paramaters: (i) fraction of experimentally measured temperature gradient that actually 

appears across the nanoporous ceramic, f; and (ii) leak aperture diameter in the 

transpiration element, DL, have been identified to have values of 0.18 and ≈20 µm 

(respectively) for SSKP1.  Although the leak aperture is significantly large, the high 

transpiration driven gas flow rate through the nanopores ensures that the loss in 

performance due to the leakage flow is proportionately small.  The performance of the 

device (SSKP1) can potentially be improved to 5X the present values by optimizing the 

device structure such that the value of f is closer to 1. 

The polymer pump SSKP1 has also been demonstrated to operate continuously for 

more than 600 hours without any observable deterioration in its performance.   

 



 

123 
 

CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 

This research effort has evaluated several bulk nanoporous materials as candidate for 

the transpiration material in Knudsen pumps. The pumps are generally intended for 

microsystems used in gas sensing and micrototal analysis systems.  As noted earlier, 

these bulk nanoporous materials have high density of interconnected narrow channels 

(1014 channels/cm2) that pump gas in parallel.  This high density of narrow channels is 

potentially adequate for generating gas flow rates that can be useful for the target 

microsystems. 

Section 6.1 presents a brief overview of the strengths and the weaknesses of various 

Knudsen pumps and the transpiration materials used in those pumps.  This discussion 

highlights key observations that were instrumental in determining the direction of 

research during the course of this study.  Section 6.2 addresses how this work can be 

extended further targeting the long term goals of the project. 

 

6.1 Conclusions 

In Chapter 2, Sharipov’s semi-analytical model for rarefied gas flow in narrow 

channels was identified as one of the most relevant for this work.  The modeling results 

from the Sharipov’s model are comparable to the DSMC technique and it is not as 
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computationally intense as the DSMC technique.  This semi-analytical model is 

applicable to a wide range of gas flow regimes.  A fitted model based on Sharipov’s 

approach was developed and adapted to accommodate various non-idealities in the 

system.  These non-idealities include thermal expansion/contraction of gas, leakage of air 

into/out of the device, thermal contact resistances at various interfaces, etc. 

Table 6.1 summarizes the device parameters and performance metrics of different 

Knudsen pumps that were fabricated as a part of this effort.  A Knudsen pump based on 

the naturally occurring zeolite, clinoptilolite (Chapter 3), demonstrated the feasibility of 

using a bulk nanoporous ceramic for thermal transpiration driven Knudsen pump.  A 

Table 6.1: Summary of performance characteristics of various devices discussed in this 
effort. 

 

Sec. TT 
Matr’l 

# of 
Stgs 

Pump 
Size 

TT Matr’l 
Size 

Flow Rate ΔPmax Input 
Power 

TH TC 

 Matr’l 
(Pore Dia.) 

 Area 
(thk.) 

Dia. (thk.) Best 
Measured 

No 
load 

    

  
(nm) 

 mm2

(mm) 
mm 

(mm) 
sccm sccm kPa W °C °C 

3.3 Zeolite 
(0.45) 

1 55x55 
(12) 

48  
(2.3) 

0.12 0.13 1 5.35 75 42 

4.4.3 Zeolite 
(0.45) 

1 18x18 
(6.5) 

12.8 
(2.2) 

0.0005 0.0006 0.78 0.95 56 24 

4.4.3 VYPG 
(0.47) 

1 18x18 
(6.5) 

12.8 
(3.2) 

0.0036 0.0038 2.29 0.95 59 24 

4.4.3 05PC 
(1.08) 

1 18x18 
(6.5) 

12.8 
(2.8) 

0.013 0.017 0.91 0.93 60 25 

4.4.3 15PC 
(1.23) 

1 18x18 
(6.5) 

12.8 
(2.7) 

0.017 0.022 1.02 0.94 61 37 

4.4.3 15PC 
(1.23) 

9 25x25 
(7.2) 

5 
(2.8) 

0.0037 0.0037 12.09 3.38 77 30 

5.4.2 MCE 
(100 nm) 

1 14x14 
(4.5) 

11.5 
(0.5) 

- - 0.61 0.94 58 25 

5.4.2 MCE 
(100 nm) 

1 14x14 
(4.5) 

11.5 
(0.1) 

- - 0.31 0.98 42 25 

5.4.2 MCE 
(50 nm) 

1 14x14 
(4.5) 

11.5 
(0.5) 

- - 0.85 0.98 59 25 

5.4.2 MCE 
(50 nm) 

1 14x14 
(4.5) 

11.5 
(0.1) 

- - 0.31 1.00 46 25 

5.4.2 MCE 
(25 nm) 

1 14x14 
(4.5) 

11.5 
(0.5) 

- - 1.04 0.94 56 24 

5.4.2 MCE 
(25 nm) 

1 14x14 
(4.5) 

11.5 
(0.1) 

0.4 0.93 0.62 1.35 54 25 
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single stage Knudsen pump with 48 mm diameter and 2.3 mm thick zeolite disc resulted 

in a gas flow rate of ≈0.12 sccm with a temperature bias of 33 K.  The gas flow rate 

generated was higher than the gas flow rates reported in past from Knudsen pumps of 

comparable size operating at atmosphreric pressure.  However, analysis suggested that 

the zeolite disc had an effective leak aperture of about 35 µm, which limited its pressure 

head generation capability.  Subsequently, three synthetic nanoporous ceramics – 05PC, 

15PC, and VYPG – were studied for their thermal transpiration driven gas flow 

characteristics (Chapter 4).  The clay based ceramic 15PC was identified as the most 

preferred material for generating high pressure heads, while allowing reasonable gas flow 

rates.  15PC had the largest nanopore diameter, which allowed it to support highest 

thermal transpiration driven flow under a given operating condition.  The fitted model 

suggested that in 15PC also had the largest leak aperture diameter.  However, the increase 

in pumping due to large pore size dominates the increased leakage flow.  This suggests 

that large nanopore diameters that provide higher transpiration flow may allow us to 

tolerate larger leak apertures. 

Polymer membranes with varying pore sizes (25 nm, 50 nm, and 100 nm) and 

thickness were also evaluated for Knudsen pumps (Chapter 5).  These membranes had 

larger pore sizes than the nanoporous ceramics, so they could support a higher gas flow 

rate.  The polymer membrane with pore size 25 nm was identified as the preferred 

membrane for future efforts on Knudsen pumps targeting high flow rate and high 

pressure generation capabilities.  Its isothermal pressure driven gas flow characteristics 

were almost identical to ideal defect free values, which suggested that the pore size and 

the percent porosity had minimal variation from the corresponding nominal values.  The 
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membrane with 25 nm pore size allowed transitional gas flow at atmospheric pressure, 

which was favorable for generating high gas flow rates.  A Knudsen pump using this 

membrane as the transpiration material resulted in a gas flow rate of 0.44 sccm against a 

pressure of 330Pa and a no (external) load gas flow rate was estimated to be 0.93 sccm.  

Moreover, since it had the smallest pore size amongst the three types of membranes, it 

resulted in highest pressure heads.   

Lifetime performance evaluation tests are being done on some of the Kndusen pumps 

discussed in this effort.  The 9-stage Knudsen pump has been demonstrated to run 

continuously for more than 7000 hours without any deterioration in its performance.  A 

polymer based Knudsen pump SSKP1 has also been demonstrated to run continuously for 

600 hours without any noticeable deterioration in its performance.  Some minor 

variations in the flow rate were observed, primarily due to the variation in ambient 

operating temperature of the device.   

In addition to the specific findings discussed above this work has made two major 

contributions that may have long term impact on the design and development of Knudsen 

pump: 

1) Nanoporous ceramic and polymer membranes have been introduced for thermal 

transpiration driven Knudsen pumping.  These membranes have well controlled pore 

sizes and have low thermal conductivity.  Therefore, they are useful for generating 

reasonable gas flow rates while limiting the parasitic heat loss from the device.  Further, 

these membranes have thickness on the order of 100 µm, which allow the integration and 

processing of these membranes using conventional microfabrication processes.  A single 

stage Knudsen pump (footprint ≈14x14 mm2) based on these membranes was 
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demonstrated to generate a no load gas flow rate of about 1 sccm for an input power of 

about 1.4 W.  These pumps were also demonstrated to pump continuously in excess of 

7000 hours without any significant loss in their pumping capability. 

2) A semi-analytical system level model was introduced that can be used to identify 

and quantify various non-idealities in the Knudsen pumps.  In addition, the model allows 

us to predict the performance of the pump, if the non-idealities can be partially/fully 

rectified.  This model allows us to have a system level understanding of the function of 

the Knudsen pump and gives us an insight into how the design can be improved to 

achieve the desired performance metrics. 

 

6.2 Future Work 

Although the work described here resulted in unprecedented gas flow rates using bulk 

nanoporous materials, more work remains to be done to meet all the current needs of 

microsystem.  The long term target remains a Knudsen pump that can deliver gas flow 

rates ≈25 sccm @ pressure head 20 kPa and ≈2 sccm @ pressure head 50 kPa, required 

for the micro gas chromatograph under development at The University of Michigan.  The 

device designs/architectures documented in the chapters 3, 4, and 5 can be adapted easily 

to meet the gas pumping requirements of a wide range of microsystems. 

As demonstrated in Chapter 4, high pressure head generation would require multiple 

stages cascaded in series.  A low pressure head across each of the stages allows us to 

limit the leakage back flow across the transpiration elements.   

It might be possible to reduce the overall size of the Knudsen pumps by using 

microfabrication processes; however, defect free integration of the bulk nanoporous 
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material to the microfabrication based fabrication process will be a challenge.  Efforts 

will be required to explore the feasibility and methodology of integrating bulk 

nanoporous material into the microfabricated structure for multistage Knudsen pump. 

Another avenue that remains to be explored is the possibility of improving the thermal 

efficiency of the Knudsen pumps, in general.  Thermal efficiency can be improved by 

effective thermal isolation of the heater used in these Knudsen pump.  Microfabrication 

techniques can potentially be useful in achieving high thermal isolations.  Thermal 

isolations as high as 105 W/K have been demonstrated by McNamara, et al. [McN05]. 

In addition to the research directions proposed above, a study of the statistical 

variation in the performance of these devices will be useful.  As mentioned in the section 

5.4.2B, the performance of some of the Knudsen pumps deviates from the predicted 

trends because of the variation in the non-idealities from device to device.  It would be 

useful to fabricate several pumps of each kind and study the statististical distribution in 

their performance.  The average behavior of each kind of pump is expected to follow the 

predicted trends; and variation in their performance will be representative of the 

uncertainity introduced in the performance of these pumps due to various non-idealities. 

One possible cause of device-to-device variation is the statistical distribution of 

porosity and pore sizes.  A more accurate estimate of some of these non-idealities may 

require use of specilized metrology techniques.  
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APPENDIX A 

DETAILED EXPERIMENTAL SET-UP 

 

This appendix presents a detailed overview of the experimental set-up used for 

estimating the thermal transpiration driven gas flow characteristics of a Knudsen pump.  

It presents a exhaustive list of various equipments used in the test set-up and illustrates 

how each of these equipments are connected.  

Figures A.1 and A.2 show detailed schematics of the experimental test set-ups used to 

characterize the Knudsen pumps (KP), discussed in Chapters 3, 4 and 5, operating at and 

below atmospheric pressure.  The bottom facet of the Knudsen pump is kept in thermal 

equilibrium with a heat sink (HS) – a metallic block with large thermal mass maintained 

at room temperature.  A silver grease (SG) is used for effective thermal coupling of the 

Knudsen pump with the heat sink.  The device is tested in both modes: pressure mode 

and flow mode.  While operating in pressure mode, a pressure sensor (PS) is attached at 

the sealed outlet (O) and the inlet (I) is left open to the ambient.  In order to test these 

devices at sub-atmospheric pressures, the KP is placed in a controlled vacuum chamber 

(CPC) (as shown in Fig. 5.7).  The pressure inside CPC and hence the ambient operating 

pressure of the KP is regulated externally. 
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For flow mode testing – a clear flexible tubing (CT) with water plugs (WP), and a 

pressure sensor are connected to the outlet of the pump through a T-joint; and the inlet is 

kept open to ambient (Fig. A.2).   

Thermocouples (TC1 and TC2), attached to the hot and the cold chamber of the 

Knudsen pump, are used to record the applied temperature gradient across the 

nanoporous ceramic.  The voltage output from the two thermocouples and the pressure 

sensor are read into HP34401A multimeters.  The multimeters are further connected to a 

PC running a Labview program through a National Instruments GPIB-USB-HS data 

transfer cable to record the temporal variation of the voltage outputs. 
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Fig. A.1: Schematic of the pressure mode test set-up for Knudsen pump operating at and 
below atmospheric pressure.  For sub-atmospheric pressure operation, the Knudsen pump 
is placed in a controlled pressure chamber. 
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Fig. A.2: Schematic of the flow mode test set-up for Knudsen pump operating at 
atmospheric pressure. 
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APPENDIX B 

FITTED MODELS: MATLAB CODES 

 

B.1 Fitted model for single stage Knudsen pump in Chapter 4 

Main Program 
clc 
clear all 
  
tic 
% % IMPORTING EXP DATA 
TPexp 
len = length(TPdata); 
dumm = min(TPdata(len,1),TPdata(len,3)); 
tmax = floor(min(dumm,TPdata(len,5))); 
dumm = min(TPdata(1,1),TPdata(1,3)); 
tmin = floor(min(dumm,TPdata(1,5))); 
tchg1 = 804.6; 
tchg2 = 2868.4; 
  
 
% % Importing QT and QP data 
QTQPsha 
  
NPdia = 1.23e-9; %% Diameter of the nanopores 
a = NPdia/2;  %% radius of nanopores 
por = 0.32; %% void fraction in the nanoporous ceramics 
  
% % FITTED PARAMETERS 
fThH = 5.5; 
fThC = 8; 
  
DleakH = 20e-6; 
DleakC = 20.5e-6; 
  
fDELTh = 0.51; 
  
ftr = 0.2; 
% % % NEXT GOOD CHOICE 
  
HTRtauH = 61.81; 
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HTRtauC = 70.97; 
delThH = 38.71; 
delThC = 38.94; 
  
AIRtauH = HTRtauH * fThH; 
AIRtauC = HTRtauC * fThC; 
  
DThH = fDELTh * delThH; 
DThC = fDELTh * delThC; 
 
% % % CONSTANTS 
Dcoll = 3.7e-10;  %% Collision diameter of air 
kB = 1.38e-23;  %% Boltzmann Constant 
M_air = 2.87e-2;  %% Molecular mass of air 
NA = 6.023e23;  %% Avagadro number 
m_air = M_air/NA;  %% Mass of one molecule of air 
Rg = kB*NA; %% Universal Gas Constant 
R = Rg/M_air; %%Gas Constant 
  
% % % CHOOSEN PARAMETERS 
tstep1 = 0.2; 
tlim = tstep1/2; 
  
vol1 = 0.01*(7.8+13.5+44+10.5)*0.25*pi*(0.05*0.0254)^2; %% vol of 
flexible tubing 0.05" ID 
vol2 = 0.01*(3+3.5+5+10+4.5)*0.25*pi*(0.001615)^2; %% vol of steel 
tubing 0.001615 m ID 
vol3 = 17*17*(2.745-2)*1e-9 - 0.25*pi*15^2*(2.745-2)*1e-9; %% dead 
volume between the nanoporous disc and top cap 
vol = ftr*(vol1+vol2+vol3);   %%vol of hot chamber 
Pamb = 98125;   %% Ambient pressure = 736 torr 
Tamb = min(min(TPdata(:,4)), min(TPdata(:,6)));  %% Ambient temperature 
CERdia = 12.75e-3; %% diameter of ceramic disc 
CERthk = 2.745e-3; %% thickness of ceramic disc 
Pc = Pamb; 
  
t1 = tmin; 
t2 = tmin; 
t = tmin; 
  
Ph1 = interp1(TPdata(:,1),TPdata(:,2),t1,'cubic') + Pamb; 
Th1 = interp1(TPdata(:,3),TPdata(:,4),t1,'cubic'); 
Th1 = Tamb + fDELTh*(Th1-Tamb); 
Tc1 = interp1(TPdata(:,5),TPdata(:,6),t1,'cubic'); 
N1 = Ph1*vol/(Rg*Th1); 
Th1air = Th1; 
  
Ph2 = Ph1; 
Th2 = Th1; 
Tc2 = Tc1; 
N2 = N1; 
Th2air = Th1air; 
  
htr = 0; 
Phfit = Ph1; 
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Thot = Th1; 
Tcold = Tc1; 
time = t1; 
ThotAIR = Th1air; 
Phexp = Ph1; 
Thexp = Th1; 
  
tinit = t1; 
Tinit = Tc1; 
  
% % % % test arrays 
prn = []; 
pl_data = []; 
  
% % PROCESSING 
while t < tmax%%tmin+10*tstep%% 
  
    if (t/1000 - floor(t/1000)) < 1e-10 
        t 
    end 
     
    t1 = t; 
    t2 = t+tstep1; 
    Ph1 = Ph2; 
    Th1 = Th2; 
    Tc1 = Tc2; 
    N1 = N2; 
    Th1air = Th2air; 
     
    t = t2;    
    tstep = t2-t1; 
  
    if t <= tchg1+tlim   %%% somehow the program does not enter this 
loop for t = tchg1... so add 0.1!! 
        tinit = t2; 
        htr = 0; 
        Dleak = DleakC; 
        AIRtau = AIRtauC; 
%         CERtau = CERtauC; 
        delTh = 0; 
%         delTc = 0; 
        Thinit = interp1(TPdata(:,3),TPdata(:,4),tinit,'cubic'); 
        Thinit = Tamb + fDELTh*(Thinit-Tamb); 
%         Tcinit = interp1(TPdata(:,5),TPdata(:,6),tinit,'cubic'); 
        Th2air = Thinit + htr*delTh*(1-exp(-(t2-tinit)/AIRtau)); 
%         Tc2 = Tcinit + htr*delTc*(1-exp(-(t2-tinit)/CERtau)); 
        Thlast1 = Th2air; 
%         Tclast1 = Tc2; 
    elseif t>tchg1+tlim && t<=tchg2+tlim 
        tinit = tchg1; 
        %         Tinit = 
interp1(TPdata(:,3),TPdata(:,4),tinit,'cubic'); 
        Thinit = Thlast1; 
%         Tcinit = Tclast1; 
        delTh = DThH; 
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%         delTc = DTcH; 
        htr = 1; 
        Dleak = DleakH; 
        AIRtau = AIRtauH; 
%         CERtau = CERtauH; 
        Th2air = Thinit + htr*delTh*(1-exp(-(t2-tinit)/AIRtau)); 
%         Tc2 = Tcinit + htr*delTc*(1-exp(-(t2-tinit)/CERtau)); 
        Thlast2 = Th2air; 
%         Tclast2 = Tc2; 
    elseif t>tchg2+tlim 
        tinit = tchg2; 
        %         Tinit = 
interp1(TPdata(:,3),TPdata(:,4),tinit,'cubic'); 
        Thinit = Thlast2; 
%         Tcinit = Tclast2; 
        delTh = DThC; 
%         delTc = DTcC; 
        htr = -1; 
        Dleak = DleakC; 
        AIRtau = AIRtauC; 
%         CERtau = CERtauC; 
        Th2air = Thinit + htr*delTh*(1-exp(-(t2-tinit)/AIRtau)); 
%         Tc2 = Tcinit + htr*delTc*(1-exp(-(t2-tinit)/CERtau)); 
    end 
  
    Th2 = interp1(TPdata(:,3),TPdata(:,4),t2,'cubic'); 
    Thexp = [Thexp 
        Th2]; 
    Thtmp = Th2; 
    Th2 = Tamb + fDELTh*(Th2-Tamb); 
    Tc2 = interp1(TPdata(:,5),TPdata(:,6),t2,'cubic'); 
    Phexp2 = interp1(TPdata(:,1),TPdata(:,2),t2,'cubic') + Pamb; 
    Th = (Th1+Th2)/2; 
    Tc = (Tc1+Tc2)/2; 
    Tavg = (Th+Tc)/2; 
    DTDx = (Th-Tc)/CERthk; 
    DThDt = (Th2-Th1)/tstep; 
  
    Phint2 = (Ph1/Th1air)*Th2air; 
    Phavg2 = (Phint2+Ph1)/2; 
    Ph = Phavg2; 
    Pavg = (Ph+Pc)/2; 
    delP = Phavg2-Pamb;  %% equals Ph-Pc 
    DPDx = delP/CERthk; 
  
 
    % %     mean free path 
    mfp = mfpath(kB, Tavg, Dcoll, Pavg); 
 
    % % average velocity 
    u_bar = meanvel(R, Tavg); 
% % % % % % %     function u_bar = meanvel(R, Tavg) 
% % % % % % %     u_bar = (8*R*Tavg/pi)^0.5; 
     
    % % Molecules per unit volume 
    N = moldens(kB, Pavg, Tavg); 
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% % % % % % %     function N = moldens(kB, Pavg, Tavg) 
% % % % % % %     N = Pavg/(kB*Tavg); 
     
    % % Dynamic Viscosity 
    mu = visc(N, m_air, u_bar, mfp); 
% % % % % % %     function mu = visc(N, m_air, u_bar, mfp) 
% % % % % % %     mu = 0.5 * N* m_air* u_bar* mfp; 
     
    % % density 
    rho = dens(N, m_air); 
% % % % % % %     function rho = dens(N, m_air) 
% % % % % % %     rho = N*m_air; 
     
    % % DEL - ??? 
    del = rarpar(a, Dcoll, Pavg, kB, Tavg); 
% % % % % % %     function del = rarpar(a, Dcoll, Pavg, kB, Tavg) 
% % % % % % %     del = (0.5*pi^3)^0.5 * a* Dcoll^2 * Pavg/(kB* Tavg); 
     
    % % Flow coefficients 
    [QT QP] = QTQPcalc(del, QTQPdata); 
     
    % % Mas flow through each pore 
    Mdot1 = massflo(QT, QP, Th, Tc, Tavg, Ph, Pc, Pavg, a, CERthk, 
m_air, kB); 
     
    % % Number of pores 
    Npores = CERdia^2 * por/NPdia^2; 
    % % Total mass flow 
    MdotTT = Mdot1*Npores; 
    % % Flow rate in ccm 
    QccmTT = (MdotTT/rho)*1e6*60; 
    % % Rate of movement of gas molecules 
    ndotTT = MdotTT/m_air; 
    % % Rate of movement of number of moles/sec 
    NdotTT = ndotTT/NA; 
  
    % %     Poiseuille flow across leak aperture 
    QL = posflo(Dleak, DPDx, mu); 
% % % % % % %     function QL = posflo(Dleak, DPDx, mu) 
% % % % % % %     QL = pi*Dleak^4*DPDx/(128*mu); 
     
    % %     Mass of leaked gas 
    MdotL = QL*rho; 
    % %     Number of moles of leaked air 
    NdotL = MdotL/M_air; 
  
    delN = (NdotTT - NdotL)*tstep; 
  
    N2 = N1 + delN; 
  
    Ph2 = (Phint2/N1)*N2; 
  
    Phfit = [Phfit 
        Ph2]; 
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    time = [time 
        t2]; 
    Thot = [Thot 
        Th2]; 
    Tcold = [Tcold 
        Tc2]; 
    ThotAIR = [ThotAIR 
        Th2air]; 
    Phexp = [Phexp 
        Phexp2]; 
    % % 
 
    pl_data = [pl_data 
        [t2 Phexp2 Ph2 Thtmp Th2 Th2air Tc2]]; 
end 
  
[RMSE stdDEV] = RMSEcalc(Phfit, Phexp) 
  
obj_fn = ((RMSE-0)^2 + (stdDEV-0)^2)^0.5  %% target to reduce RMSE to 0 
and stdDEV to 0 
  
tEND = toc 
Pemx = max(Phexp) 
Prmx = max(Phfit) 
tmx = tmax 
stats = [RMSE tmx tEND Pemx/1000 Prmx/1000 NPdia*1e9 por*100] 
  
  
figure(1) 
plot(time, ThotAIR,'-r') 
hold on 
plot(time, Thot,'-k') 
plot(TPdata(:,3),TPdata(:,4)) 
h = legend('ThotAIR','Thot','Thexp',1); 
set(h,'Interpreter','none') 
xlabel('Time (s)'); 
ylabel('Temperature (K)'); 
hold off 
  
figure(2) 
plot(time, Tcold,'-r') 
hold on 
plot(TPdata(:,5),TPdata(:,6)) 
h = legend('TcoldCER','Tcexp',1); 
set(h,'Interpreter','none') 
xlabel('Time (s)'); 
ylabel('Tcold (K)'); 
hold off 
  
figure(3) 
plot(time, Phfit,'-r') 
hold on 
plot(TPdata(:,1),TPdata(:,2)+Pamb) 
h = legend('Phfit','Phexp',1); 
set(h,'Interpreter','none') 
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xlabel('Time (s)'); 
ylabel('Phot (Pa)'); 
hold off 

 

Subroutines 
mfpath.m 

function mfp = mfpath(kB, Tavg, Dcoll, Pavg) 
mfp = kB*Tavg/(2^0.5 * pi * Dcoll^2 * Pavg); 

 
meanvel.m 

function u_bar = meanvel(R, Tavg) 
u_bar = (8*R*Tavg/pi)^0.5; 

 
moldens.m 

function N = moldens(kB, Pavg, Tavg) 
N = Pavg/(kB*Tavg); 

 
visc.m 

function mu = visc(N, m_air, u_bar, mfp) 
mu = 0.5 * N* m_air* u_bar* mfp; 

 
dens.m 

function rho = dens(N, m_air) 
rho = N*m_air; 

 
rarpar.m 

function del = rarpar(a, Dcoll, Pavg, kB, Tavg) 
del = (0.5*pi^3)^0.5 * a* Dcoll^2 * Pavg/(kB* Tavg); 

 
QTQPcalc.m 

function [QT QP] = QTQPcalc(del, QTQPdata) 
delta = QTQPdata(:,1); 
QP0p6 = QTQPdata(:,2); 
QT0p6 = QTQPdata(:,3); 
QP0p8 = QTQPdata(:,4); 
QT0p8 = QTQPdata(:,5); 
QP1p0 = QTQPdata(:,6); 
QT1p0 = QTQPdata(:,7); 
QP = interp1(delta, QP0p8, del, 'cubic'); 
QT = interp1(delta, QT0p8, del, 'cubic'); 

 
Massflo.m 

function Mdot1 = massflo(QT, QP, Th, Tc, Tavg, Ph, Pc, Pavg, a, 
CERthk, m_air, kB) 

Mdot11 = QT*(Th-Tc)/Tavg - QP*(Ph-Pc)/Pavg; 
Mdot12 = pi * a^3 * Pavg / CERthk; 
Mdot13 = (m_air/(2*kB*Tavg))^0.5; 
Mdot1 = Mdot11* Mdot12* Mdot13; %%* test 

 
Posflo.m 

function QL = posflo(Dleak, DPDx, mu) 
QL = pi*Dleak^4*DPDx/(128*mu); 

 
RMSEcalc.m 

function [RMSE stdDEV] = RMSEcalc(Phfit, Phexp) 
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SQsum = 0; 
sum = 0; 
leng = length(Phfit); 
for i = 1:leng 
    SQsum = SQsum + (Phfit(i) - Phexp(i))^2; 
    sum = sum + abs(Phfit(i) - Phexp(i)); 
end 
RMSE = (SQsum/leng)^0.5;     
avg = sum/leng; 
SD = 0; 
for i = 1:leng 
    SD = SD + (abs(Phfit(i) - Phexp(i)) - avg)^2; 
end 
stdDEV = (SD/leng)^0.5; 

 

B.2 Fitted model for multi stage Knudsen pump in Chapter 4 

Main Program 
clc 
clear all 
  
% % format long 
tic 
% % IMPORTING EXP DATA 
TPexp 
len = length(TPdata); 
dumm = min(TPdata(len,1),TPdata(len,3)); 
tmax = floor(min(dumm,TPdata(len,5))); 
dumm = min(TPdata(1,1),TPdata(1,3)); 
tmin = floor(min(dumm,TPdata(1,5))); 
tchg1 = 344.235; 
tchg2 = 19732.63; 
nstg = 9; 
  
% % tmax = 20*tchg1; 
% % tmax = 10000 
% % Importing QT and QP data 
QTQPsha 
delta = QTQPdata(:,1); 
QP0p6 = QTQPdata(:,2); 
QT0p6 = QTQPdata(:,3); 
QP0p8 = QTQPdata(:,4); 
QT0p8 = QTQPdata(:,5); 
QP1p0 = QTQPdata(:,6); 
QT1p0 = QTQPdata(:,7); 
  
NPdia = 1.23e-9; %% Diameter of the nanopores 
por = 0.32; %% void fraction in the nanoporous ceramics 
  
% % PARAMETERS 
% % % % % time constants for heating and cooling air in hot chambers 
dumm = 1.4;  %% factor time constt for air-heating 
fThH = [dumm dumm dumm dumm dumm dumm dumm dumm  2.3]; 
% % %% factor time constant for air -cooling 
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dumm = 1.4; 
fThC = [dumm dumm dumm dumm dumm dumm dumm dumm 2.3]; 
dumm = 14.7; %% leak dia - heating 
DleakH = [dumm dumm dumm dumm dumm dumm dumm dumm 19.5]*1e-6; 
% % %% leak dia -cooling 
dumm =14.7; 
DleakC = [dumm dumm dumm dumm dumm dumm dumm dumm 19.5]*1e-6; 
dumm = 0.85; %% fraction of air that gets heated 
ftr = [dumm dumm dumm dumm dumm dumm dumm dumm 0.17]; 
% % fraction of temp drop actoss ceramic 
dumm =0.93; 
fDELTh = dumm*[0.95 0.95 0.95 1 1 1 0.95 0.95 0.95]; 
% %  volume of the chambers 
vol1 = 12e-9*1; %% interconnecting vol. between two stages 
vol2 = 15e-7*1; %% vol encapsulated at outlet - press. sensor 
vol = [vol1 vol1 vol1 vol1 vol1 vol1 vol1 vol1 vol2]; 
vol = vol.*ftr; 
  
% % % % % % % % % % % % % % % % % % %     END Fitted parameters 
HTRtauH = 89.97; 
HTRtauC = 93.94; 
delThH = 54.2237; 
delThC = 53.899; 
AIRtauH = HTRtauH * fThH; 
AIRtauC = HTRtauC * fThC; 
DThH = fDELTh * delThH; 
DThC = fDELTh * delThC; 
  
Dcoll = 3.7e-10;  %% Collision diameter of air 
kB = 1.38e-23;  %% Boltzmann Constant 
M_air = 2.87e-2;  %% Molecular mass of air 
NA = 6.023e23;  %% Avagadro number 
m_air = M_air/NA;  %% Mass of one molecule of air 
Rg = kB*NA; %% Universal Gas Constant 
R = Rg/M_air; %%Gas Constant 
Pamb = 98125;   %% Ambient pressure = 736 torr 
Tamb = min(min(TPdata(:,4)), min(TPdata(:,6)));  %% Ambient temperature 
a = NPdia/2;  %% radius of nanopores 
CERdia = 5e-3; %% diameter of ceramic disc 
CERthk = 2.9e-3; %% thickness of ceramic disc 
  
% % % CHOOSEN PARAMETERS 
  
tstep = 0.2; 
tlim = tstep/2; 
time = (tmin:tstep:tmax)'; 
stps = length(time); 
Phexp = interp1(TPdata(:,1),TPdata(:,2),time,'cubic')+Pamb; 
Thexp = interp1(TPdata(:,3),TPdata(:,4),time,'cubic'); 
Tcexp = interp1(TPdata(:,5),TPdata(:,6),time,'cubic'); 
Thot = Tamb + (Thexp-Tamb)*fDELTh;  %%temperature at the top surface of 
the ceramics 
Tcold = zeros(stps,nstg); 
pl_data = []; 
dumm = ones(1,9); 
Tcold = Tcexp*dumm; 
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Thair = Thot; %% intialization of Thair 
Nmole = zeros(stps,nstg); 
t = 0; 
for i = 1:stps 
    t = time(i); 
    if t <= tchg1+tlim   %%% somehow the program does not enter this 
loop for t = tchg1... so add 0.1!! 
        tinit = t; 
        htr = 0; 
        AIRtau = AIRtauC; 
        delTh(1,1:nstg) = 0; 
        Thinit = Thot(i,:); 
        Thair(i,:) = Thinit + htr.*delTh.*(1-exp(-(t-tinit)./AIRtau)); 
        Thlast1 = Thair(i,:); 
    elseif t>tchg1+tlim && t<=tchg2+tlim 
        tinit = tchg1; 
        Thinit = Thlast1; 
        delTh(1,1:nstg) = DThH; 
        htr = 1; 
        AIRtau = AIRtauH; 
        Thair(i,:) = Thinit + htr.*delTh.*(1-exp(-(t-tinit)./AIRtau)); 
        Thlast2 = Thair(i,:); 
    elseif t>tchg2+tlim 
        tinit = tchg2; 
        Thinit = Thlast2; 
        delTh(1,1:nstg) = DThC; 
        htr = -1; 
        AIRtau = AIRtauC; 
        Thair(i,:) = Thinit + htr.*delTh.*(1-exp(-(t-tinit)./AIRtau)); 
    end 
end 
  
Th = (Thot(2:stps,:) + Thot(1:stps-1,:))/2; 
Tc = (Tcold(2:stps,:) + Tcold(1:stps-1,:))/2; 
Tavg = (Th+Tc)/2; 
DTDx = (Th-Tc)/CERthk; 
DThDt = (Thot(2:stps,:) - Thot(1:stps-1,:))/tstep; 
  
Pr = zeros(stps,nstg+1); 
Pr2 = zeros(stps-1,nstg+1); 
Pavg = zeros(stps-1,nstg); 
delP = zeros(stps-1,nstg); 
Pr(:,1) = Pamb; 
Pr(1,:) = linspace(Pamb,Phexp(1,1),10); 
Nmole(1,:) = Pr(1,2:nstg+1).* vol./(Rg.*Tavg(1,:)); 
  
Npores = CERdia^2*por/NPdia^2; 
for i = 2:stps 
    t = time(i); 
    if (t/1000 - floor(t/1000)) < 1e-10 
        time(i) 
    end 
     
    if t <= tchg1+tlim   %%% somehow the program does not enter this 
loop for t = tchg1... so add 0.1!! 
        Dleak = DleakC; 
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    elseif t>tchg1+tlim && t<=tchg2+tlim 
        Dleak = DleakH; 
    elseif t>tchg2+tlim 
        Dleak = DleakC; 
    end 
    % %     store intermediate pressure in next row of Pr 
    rat = ftr./(1-ftr); 
    Nr = rat./Thair(i-1,1:nstg) + 1./Tcold(i-1,1:nstg); 
    Dr = rat./Thair(i,1:nstg) + 1./Tcold(i,1:nstg); 
    Nr(1,nstg) = rat(1,nstg)/Thair(i-1,nstg) + 1/Tamb; 
    Dr(1,nstg) = rat(1,nstg)/Thair(i,nstg) + 1/Tamb; 
    % %OLD % %     Pr(i,2:nstg+1) = Pr(i-1,2:nstg+1)./Thair(i-
1,1:nstg).*Thair(i,1:nstg); 
    Pr(i,2:nstg+1) = Pr(i-1,2:nstg+1) .* Nr ./ Dr; 
    % %     create a new matrix that averages the intial pressure an 
    % intermediate pressure.  This is used as hot and cold pressure for 
thermal 
    % transpiration 
    Pr2(i-1,:) = (Pr(i-1,:) + Pr(i,:))/2; 
    % %     this is the average for thermal transpiration across each 
individual disc. 
    Pavg(i-1,:) = (Pr2(i-1,1:nstg) + Pr2(i-1,2:nstg+1))/2; 
    % %     pressure drop across each disc 
    delP(i-1,:) = (Pr2(i-1,2:nstg+1) - Pr2(i-1,1:nstg)); 
    DPDx = delP/CERthk; 
    % %     mean free path 
    mfp = (kB*Tavg(i-1,:))./(2^0.5 * pi * Dcoll^2 * Pavg(i-1,:)); 
    % % average velocity 
    u_bar = (8*R*Tavg(i-1,:)/pi).^0.5; 
    % % Molecules per unit volume 
    N = Pavg(i-1,:)./(kB*Tavg(i-1,:)); 
    % % Dynamic Viscosity 
    mu = 0.5 .* N.* m_air.* u_bar.* mfp; 
    % % density 
    rho = N.*m_air; 
    % % DEL - rarefaction parameter 
    del = (0.5*pi^3)^0.5 .* a.* Dcoll^2 .* Pavg(i-1,:)./(kB* Tavg(i-
1,:)); 
    % % Flow coefficients 
    QP = interp1(delta, QP0p8, del, 'cubic'); 
    QT = interp1(delta, QT0p8, del, 'cubic'); 
    % % Mas flow through each pore 
    dumm1 = (QT.*DTDx(i-1,:)./Tavg(i-1,:) - QP.*DPDx(i-1,:)./Pavg(i-
1,:)).* pi .* a^3 .* Pavg(i-1,:); 
    dumm2 = (m_air./(2.*kB.*Tavg(i-1,:))).^0.5; 
    Mdot1 = dumm1 .* dumm2; %%* test 
    % % Total mass flow 
    MdotTT = Mdot1*Npores; 
% %     % % Flow rate in ccm 
% %     QccmTT = (MdotTT./rho)*1e6*60; 
% %     % % Rate of movement of gas molecules 
% %     ndotTT = MdotTT/m_air; 
% %     % % Rate of movement of number of moles/sec 
    NdotTT = MdotTT./M_air; 
    % %     Poiseuille flow across leak aperture 
    QL = pi.*Dleak.^4.*DPDx(i-1,:)./(128.*mu); 
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    % %     Mass of leaked gas 
    MdotL = QL.*rho; 
    % %     Number of moles of leaked air 
    NdotL = MdotL./M_air; 
     
    delN(1,1:nstg-1) = (NdotTT(1,1:nstg-1) - NdotL(1,1:nstg-1)- 
NdotTT(1,2:nstg) + NdotL(1,2:nstg))*tstep; 
    delN(1,nstg) = (NdotTT(1,nstg) - NdotL(1,nstg))*tstep; 
    
% %     ****correc this for gas moving out into the next stage??? 
     
    Nmole(i,:) = Nmole(i-1,:)+delN; 
    Pr(i,2:nstg+1) = Pr(i,2:nstg+1) ./ Nmole(i-1,:) .* Nmole(i,:); 
     
    if (t - floor(t)) < 1e-10 
        pl_data = [pl_data 
            [time(i) Phexp(i) Pr(i,nstg+1) Thexp(i) Thot(i,nstg) 
Thair(i,nstg) Tcexp(i)]]; 
    end 
end 
  
Pemx = max(Phexp) 
Prmx = max(Pr(:,nstg+1)) 
tmx = time(stps) 
RMSE = (mean((Phexp-Pr(:,nstg+1)).^2))^0.5 
  
figure(1) 
plot(time,Phexp,'--r') 
hold on 
plot(time,Pr(:,nstg+1),'-k') 
hold off 
  
figure(2) 
plot(time,Thexp,'--r') 
hold on 
plot(time,Thot(:,nstg),'-b') 
plot(time,Thair(:,nstg),'-g') 
hold off 
tEND = toc 
stats = [RMSE tmx tEND Pemx/1000 Prmx/1000 NPdia*1e9 por*100] 

 

B.3 Fitted model for single stage Knudsen pump in Chapter 5 

Main Program 
clc 
clear all 
% % format long 
tic 
% % IMPORTING EXP DATA 
TPexp 
tdelay = 5; % (sec) propagation delay between the heater is turned On 
and when the pressure sensor shows any response. 
Pzerr = 13.5; %% zero error adjustmant of pressure sensor 
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len = length(TPdata); 
dumm = min(TPdata(len,1),TPdata(len,3)); 
tmax = floor(min(dumm,TPdata(len,5))) - 5; 
dumm = min(TPdata(1,1),TPdata(1,3)); 
tmin = floor(min(dumm,TPdata(1,5))); 
% % Importing QT and QP data 
QTQPsha 
  
NPdia = 25e-9; %% Diameter of the nanopores 
a = NPdia/2;  %% radius of nanopores 
por = 0.7; %% void fraction in the nanoporous ceramics 
  
% % FITTED PARAMETERS 
Dleak = 19.9e-6; 
fDELT = 0.1815; 
  
% % % CONSTANTS 
Dcoll = 3.7e-10;  %% Collision diameter of air 
kB = 1.38e-23;  %% Boltzmann Constant 
M_air = 2.87e-2;  %% Molecular mass of air 
NA = 6.023e23;  %% Avagadro number 
m_air = M_air/NA;  %% Mass of one molecule of air 
Rg = kB*NA; %% Universal Gas Constant 
R = Rg/M_air; %%Gas Constant 
  
% % % CHOOSEN PARAMETERS 
tstep1 = 0.05; 
tlim = tstep1/2; 
  
vol = 4.72e-7;   %%vol of hot chamber 
Pamb = 99805.1;   %% Ambient pressure = 736 torr 
Tamb = min(min(TPdata(:,4)), min(TPdata(:,6)));  %% Ambient temperature 
CERdia = 11.5e-3; %% diameter of ceramic disc 
CERthk = 0.105e-3; %% thickness of ceramic disc 
Ph = Pamb; 
  
t1 = tmin; 
t2 = tmin; 
t = tmin; 
  
Pc1 = Pamb - interp1(TPdata(:,1),TPdata(:,2),t1+tdelay,'cubic')-Pzerr; 
Th1 = interp1(TPdata(:,3),TPdata(:,4),t1,'cubic'); 
Thexp = Th1; 
Tc1 = interp1(TPdata(:,5),TPdata(:,6),t1,'cubic'); 
Tcexp = Tc1; 
  
Tavg1 = (Th1+Tc1)/2; 
delT1 = (Th1-Tc1)*fDELT; 
  
Th1 = Tavg1 + delT1/2; 
Tc1 = Tavg1 - delT1/2; 
  
N1 = Pc1*vol/(Rg*Tamb); 
  
Pc2 = Pc1; 
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Th2 = Th1; 
Tc2 = Tc1; 
N2 = N1; 
  
htr = 0; 
Pcfit = Pc1; 
Tcold = Tc1; 
Thot = Th1; 
time = t1; 
Pcexp = Pc1; 
  
tinit = t1; 
Tinit = Tc1; 
  
% % % % test arrays 
prn = []; 
pl_data = []; 
  
% % PROCESSING 
while t < tmax%%tmin+10*tstep%% 
  
    if (t/100 - floor(t/100)) < 1e-4 
        t 
    end 
     
    t1 = t; 
    t2 = t+tstep1; 
    Pc1 = Pc2; 
    Th1 = Th2; 
    Tc1 = Tc2; 
    N1 = N2; 
     
    t = t2;    
    tstep = t2-t1; 
  
    Th2 = interp1(TPdata(:,3),TPdata(:,4),t2,'cubic'); 
    Thexp = [Thexp 
        Th2]; 
    Tc2 = interp1(TPdata(:,5),TPdata(:,6),t2,'cubic'); 
    Tcexp = [Tcexp 
        Tc2]; 
     
    Tavg2 = (Th2+Tc2)/2; 
    delT2 = (Th2-Tc2)*fDELT; 
     
    Th2 = Tavg2 + delT2/2; 
    Tc2 = Tavg2 - delT2/2; 
     
    Pcexp2 = Pamb - interp1(TPdata(:,1),TPdata(:,2),t2+tdelay,'cubic')-
Pzerr; 
    Th = (Th1+Th2)/2; 
    Tc = (Tc1+Tc2)/2; 
    Tavg = (Th+Tc)/2; 
    DTDx = (Th-Tc)/CERthk; 
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    Ph = Pamb; 
    Pc = Pc1; 
    Pavg = (Ph+Pc)/2; 
    delP = Ph-Pc;  %% equals Ph-Pc 
    DPDx = delP/CERthk; 
  
    % %     if t > 810 
    % %         break; 
    % %     end 
  
    % %     mean free path 
    mfp = mfpath(kB, Tavg, Dcoll, Pavg); 
% % % % % % %     function mfp = mfpath(kB, Tavg, Dcoll, Pavg) 
% % % % % % %     mfp = kB*Tavg/(2^0.5 * pi * Dcoll^2 * Pavg); 
  
    % % average velocity 
    u_bar = meanvel(R, Tavg); 
% % % % % % %     function u_bar = meanvel(R, Tavg) 
% % % % % % %     u_bar = (8*R*Tavg/pi)^0.5; 
     
    % % Molecules per unit volume 
    N = moldens(kB, Pavg, Tavg); 
% % % % % % %     function N = moldens(kB, Pavg, Tavg) 
% % % % % % %     N = Pavg/(kB*Tavg); 
     
    % % Dynamic Viscosity 
    mu = visc(N, m_air, u_bar, mfp); 
% % % % % % %     function mu = visc(N, m_air, u_bar, mfp) 
% % % % % % %     mu = 0.5 * N* m_air* u_bar* mfp; 
     
    % % density 
    rho = dens(N, m_air); 
% % % % % % %     function rho = dens(N, m_air) 
% % % % % % %     rho = N*m_air; 
     
    % % DEL - ??? 
    del = rarpar(a, Dcoll, Pavg, kB, Tavg); 
% % % % % % %     function del = rarpar(a, Dcoll, Pavg, kB, Tavg) 
% % % % % % %     del = (0.5*pi^3)^0.5 * a* Dcoll^2 * Pavg/(kB* Tavg); 
     
    % % Flow coefficients 
    [QT QP] = QTQPcalc(del, QTQPdata); 
     
    % % Mas flow through each pore 
    Mdot1 = massflo(QT, QP, Th, Tc, Tavg, Ph, Pc, Pavg, a, CERthk, 
m_air, kB); 
     
    % % Number of pores 
    Npores = CERdia^2 * por/NPdia^2; 
    % % Total mass flow 
    MdotTT = Mdot1*Npores; 
    % % Flow rate in ccm 
    QccmTT = (MdotTT/rho)*1e6*60; 
    % % Rate of movement of gas molecules 
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    ndotTT = MdotTT/m_air; 
    % % Rate of movement of number of moles/sec 
    NdotTT = ndotTT/NA; 
  
    % %     Poiseuille flow across leak aperture 
    QL = posflo(Dleak, DPDx, mu); 
% % % % % % %     function QL = posflo(Dleak, DPDx, mu) 
% % % % % % %     QL = pi*Dleak^4*DPDx/(128*mu); 
     
    % %     Mass of leaked gas 
    MdotL = QL*rho; 
    % %     Number of moles of leaked air 
    NdotL = MdotL/M_air; 
  
    delN = (NdotTT - NdotL)*tstep; 
  
    N2 = N1 - delN; 
  
    Pc2 = (Pc1/N1)*N2; 
  
    Pcfit = [Pcfit 
        Pc2]; 
    time = [time 
        t2]; 
    Thot = [Thot 
        Th2]; 
    Tcold = [Tcold 
        Tc2]; 
    Pcexp = [Pcexp 
        Pcexp2]; 
    % % 
    % %     % % % % %     ARRAYS FOR TESTING THE COMPATIBILITY WITH 
CALCULATION IN 
    % %     % EXCEL SHEET 
    % % 
    % %     prn = [prn 
    % %         t2 Th2 Tc2 Th2air Phint2 Phavg2 delP QL MdotL NdotL QT 
QP MdotTT NdotTT delN N2 Ph2 DThDt]; 
  
    pl_data = [pl_data 
        [t2 Pcexp2 Pc2 Th2 Tc2]]; 
end 
fitDATA = [time Tcexp Tcold Thot Thexp Pcfit Pcexp]; 
     
[RMSE stdDEV] = RMSEcalc(Pcfit, Pcexp) 
  
obj_fn = ((RMSE-0)^2 + (stdDEV-0)^2)^0.5;  %% target to reduce RMSE to 
0 and stdDEV to 0 
  
tEND = toc; 
Pemn = min(Pcexp); 
Prmn = min(Pcfit); 
Prmn-Pemn 
tmx = tmax; 
stats = [RMSE tmx tEND Pemn/1000 Prmn/1000 NPdia*1e9 por*100]; 
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% % tprn = {'t2' 'Th2' 'Tc2' 'Th2air' 'Phint2' 'Phavg2' 'delP' 'QL' 
'MdotL' 'NdotL' 'QT' 'QP' 'MdotTT' 'NdotTT' 'delN' 'N2' 'Ph2' 'DThDt'}; 
% % xlswrite('test1', tprn); 
  
figure(1) 
plot(time, Thot,'-k') 
hold on 
% plot(TPdata(:,3),TPdata(:,4)) 
plot(time,Thexp); 
% % h = legend('Thot','Thexp',1); 
% % set(h,'Interpreter','none') 
% % xlabel('Time (s)'); 
% % ylabel('Temperature (K)'); 
% % hold off 
% %  
% % figure(2) 
plot(time, Tcold,'--r') 
% % hold on 
% % plot(TPdata(:,5),TPdata(:,6),'--g') 
plot(time,Tcexp,'--g'); 
h = legend('TcoldCER','Tcexp',1); 
set(h,'Interpreter','none') 
xlabel('Time (s)'); 
ylabel('Temperature (K)'); 
hold off 
  
figure(2) 
plot(time, Pcfit,'-r') 
hold on 
plot(time,Pcexp) 
% % plot(TPdata(:,1),Pamb - TPdata(:,2)) 
h = legend('Pcfit','Pcexp',1); 
set(h,'Interpreter','none') 
xlabel('Time (s)'); 
ylabel('Phot (Pa)'); 
hold off 

 

Subroutines 
mfpath.m 

function mfp = mfpath(kB, Tavg, Dcoll, Pavg) 
mfp = kB*Tavg/(2^0.5 * pi * Dcoll^2 * Pavg); 

 
meanvel.m 

function u_bar = meanvel(R, Tavg) 
u_bar = (8*R*Tavg/pi)^0.5; 

 
moldens.m 

function N = moldens(kB, Pavg, Tavg) 
N = Pavg/(kB*Tavg); 

 
visc.m 

function mu = visc(N, m_air, u_bar, mfp) 
mu = 0.5 * N* m_air* u_bar* mfp; 

 



 

151 
 

dens.m 
function rho = dens(N, m_air) 
rho = N*m_air; 

 
rarpar.m 

function del = rarpar(a, Dcoll, Pavg, kB, Tavg) 
del = (0.5*pi^3)^0.5 * a* Dcoll^2 * Pavg/(kB* Tavg); 

 
QTQPcalc.m 

function [QT QP] = QTQPcalc(del, QTQPdata) 
delta = QTQPdata(:,1); 
QP0p6 = QTQPdata(:,2); 
QT0p6 = QTQPdata(:,3); 
QP0p8 = QTQPdata(:,4); 
QT0p8 = QTQPdata(:,5); 
QP1p0 = QTQPdata(:,6); 
QT1p0 = QTQPdata(:,7); 
QP = interp1(delta, QP0p8, del, 'cubic'); 
QT = interp1(delta, QT0p8, del, 'cubic'); 

 
Massflo.m 

function Mdot1 = massflo(QT, QP, Th, Tc, Tavg, Ph, Pc, Pavg, a, 
CERthk, m_air, kB) 

Mdot11 = QT*(Th-Tc)/Tavg - QP*(Ph-Pc)/Pavg; 
Mdot12 = pi * a^3 * Pavg / CERthk; 
Mdot13 = (m_air/(2*kB*Tavg))^0.5; 
Mdot1 = Mdot11* Mdot12* Mdot13; %%* test 

 
Posflo.m 

function QL = posflo(Dleak, DPDx, mu) 
QL = pi*Dleak^4*DPDx/(128*mu); 

 
RMSEcalc.m 

function [RMSE stdDEV] = RMSEcalc(Phfit, Phexp) 
SQsum = 0; 
sum = 0; 
leng = length(Phfit); 
for i = 1:leng 
    SQsum = SQsum + (Phfit(i) - Phexp(i))^2; 
    sum = sum + abs(Phfit(i) - Phexp(i)); 
end 
RMSE = (SQsum/leng)^0.5;     
avg = sum/leng; 
SD = 0; 
for i = 1:leng 
    SD = SD + (abs(Phfit(i) - Phexp(i)) - avg)^2; 
end 
stdDEV = (SD/leng)^0.5; 
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Table B.1: Value of the temperature and pressure gas flow coefficients for different 
rarefaction parameters [Sha97]. 

δ  QP  QT  QP  QT  QP  QT 

α = 0.6  α = 0.6  α = 0.8  α = 0.8  α = 1.0  α = 1.0 

0.0005  3.4875 1.7365 2.2484 1.1215 1.5023  0.7502 

0.001  3.4751 1.7237 2.2437 1.1166 1.5008  0.7486 

0.005  3.4001 1.6452 2.2131 1.0838 1.4904  0.7366 

0.01  3.3374 1.5775 2.1853 1.053 1.48  0.7243 

0.02  3.2488 1.4807 2.1442 1.007 1.4636  0.7042 

0.03  3.1853 1.4093 2.1141 0.9719 1.4514  0.6884 

0.04  3.1355 1.3512 2.0901 0.9432 1.4418  0.6752 

0.05  3.0945 1.3036 2.0703 0.9186 1.4339  0.6637 

0.06  3.0599 1.2617 2.0534 0.897 1.4273  0.6536 

0.07  3.0299 1.2247 2.0388 0.8778 1.4217  0.6444 

0.08  3.0037 1.1916 2.0259 0.8603 1.4168  0.6359 

0.09  2.9805 1.1616 2.0145 0.8444 1.4127  0.6281 

0.1  2.9597 1.1341 2.0043 0.8297 1.4101  0.621 

0.2  2.8346 0.9435 1.9444 0.7244 1.3911  0.5675 

0.3  2.771 0.8255 1.9169 0.6558 1.3876  0.5303 

0.4  2.7367 0.7415 1.9056 0.605 1.392  0.5015 

0.5  2.7184 0.6769 1.9033 0.5648 1.4011  0.4779 

0.6  2.7101 0.625 1.9069 0.5315 1.413  0.4576 

0.7  2.7085 0.582 1.9144 0.5031 1.427  0.4397 

0.8  2.7117 0.5455 1.9248 0.4784 1.4425  0.4237 

0.9  2.7183 0.514 1.9373 0.4567 1.4592  0.4092 

1  2.7277 0.4865 1.9514 0.4372 1.4758  0.3959 

1.2  2.7559 0.4402 1.9859 0.4035 1.5158  0.3721 

1.4  2.7861 0.4029 2.0214 0.3754 1.555  0.3514 

1.6  2.8201 0.3718 2.0593 0.3513 1.5956  0.333 

1.8  2.8568 0.3456 2.0991 0.3303 1.6373  0.3165 

2  2.8956 0.323 2.1402 0.3118 1.6799  0.3016 

3  3.1074 0.2445 2.3585 0.2443 1.9014  0.2439 

4  3.3342 0.1971 2.5881 0.2009 2.1315  0.2042 

5  3.5677 0.1651 2.8233 0.1704 2.3666  0.1752 

6  3.805 0.142 3.062 0.1479 2.6049  0.1531 

7  4.0446 0.1245 3.303 0.1305 2.8455  0.1359 

8  4.2858 0.1108 3.5455 0.1167 3.0878  0.122 

9  4.5281 0.09979 3.7893 0.1055 3.3314  0.1106 

10  4.7703 0.09079 4.0343 0.0962 3.5749  0.1014 

20  7.2387 0.04746 6.5086 0.05104 6.0492  0.05426 

30  9.7105 0.03187 8.9965 0.03452 8.5392  0.03685 

40  12.185 0.02388 11.491 0.026 11.036  0.02785 

50  14.656 0.01874 13.972 0.0208 13.495  0.02212 
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