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CHAPTER 1 

Introduction 

1.1 Background 
 
The expected behavior of particles moving freely in space is governed by the linear 

Boltzmann transport equation [1]. In nuclear engineering many important problems can 

be categorized as particle transport problems and therefore can be formulated by the 

Boltzmann equation. These particle transport problems include: (a) shielding design, 

where the design parameters of a shield, used for stopping radiation to move from one 

side to the other, are desired, (b) source detector problem, which is used to design 

radiation detector for detecting and measuring radiation emitted by radiation sources, (c) 

criticality, in which the eigenvalue of the system is estimated and is used for reactor 

design.  

 
In the radiation transport process particles are born from radiation sources and travel 

stochastically through the problem medium. The transport process consists of birth of a 

particle from a radiation source, collision events, in which either the particle changes its 

direction and energy (scattering) or the particle is absorbed (absorption), streaming in 

space between scattering events and leaking out of the system through the external 

boundaries. The Boltzmann transport equation contains terms which represent radiation 

source, collisions, scatterings and streaming in the system and out of the system. The 

expected particle distributions within the system of interest can be obtained by 

numerically solving the Boltzmann transport equation subject to suitable initial and 

boundary conditions.  

 
Two general types of methods, namely deterministic methods and Monte Carlo method, 

are used to solve the Boltzmann transport equation. Deterministic methods solve the 

Boltzmann equation by discretizing the phase space and forming a system of algebraic 
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equations that can be evaluated iteratively [2]. However, these discretization schemes 

introduce truncation error, and many small geometric details that cannot be represented 

by the discretization schemes are not accounted for. In addition, for the deterministic 

calculation of a full core configuration, a series of assembly level transport calculations 

are performed to generate group-collapsed homogenized cross sections, which are then 

used as input into a global code, typically a nodal diffusion code. Generating 

homogenized cross sections is a complicated task. 

 
On the other hand, Monte Carlo simulations are nothing but stochastic numerical 

experiments. Instead of numerically solving the Boltzmann transport equation for the 

expected particle distribution at all locations in the phase space, Monte Carlo calculations 

simulate the actual physical system by analyzing the transport of a finite number of 

particles that move through it. This procedure yields a number of stochastic particle 

trajectories that could occur in the system. Statistical inference about the system 

parameters and phase space integrated quantities can be drawn from a statistically 

significant number of particle tracks generated inside the system. Hence, a solution 

obtained by a Monte Carlo simulation is actually a statistical estimate based on a finite 

number of realizations of the expected behavior of particles in the system. Thus the 

solutions from a Monte Carlo simulation are stochastic and correct only within statistical 

uncertainties.  

 
In Monte Carlo simulations each particle history can be considered as an independent 

Markov chain. In a Markov process, the future behavior of a particle history depends only 

on its present state [3]. This particular property helps to minimize computational work 

required to track a particle during its random walk. There are several advantages of 

Monte Carlo method over deterministic methods. In Monte Carlo, complicated 

geometries and complex physics can be modeled exactly. Great research efforts are 

involved to incorporate CAD (computer aided design) with the Monte Carlo geometry 

input routines, such that Monte Carlo simulations can be executed directly from the 

design drawing without any approximation. In addition, Monte Carlo can solve the 

neutron transport problem in its continuous energy form, and there is no need to calculate 

the group-collapsed cross sections. Although Monte Carlo requires more computer time 
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compared to deterministic calculations, Monte Carlo simulations can be easily 

implemented on massively parallel processors and has been described as “embarrassingly 

parallel”. 

 
In this thesis, we address three different Monte Carlo radiation transport problems and 

develop a new approach to addressing these problems. These Monte Carlo problems are: 

(a) global tally distributions inside the system, which are conventionally carried out with 

histogram estimators, (b) Monte Carlo tallies with unbounded variance, where the 

conventional approach is to use approximate estimators near the singularity, hence 

introducing a bias, and (c) criticality source convergence problems with high dominance 

ratios, where a large number of iterations may be needed to converge the fission source. 

These problems will be described in more detail later in this chapter. A nonparametric 

statistical probability density estimator, known as the kernel density estimator (KDE), is 

applied to develop novel solutions to these problems. This introductory chapter presents 

Monte Carlo particle transport method in general and an overview of this thesis work. 

1.2 The Monte Carlo Method 
 
The particle transport process can be considered as a sequence of stochastic events. A 

particle’s life start by its birth from a given radiation source with the initial or starting 

location, direction of travel and energy stochastically selected from that given source. 

The new born particle travels a random distance inside the system until it suffers from a 

collision event or leaves the system. Collisions can be of two types, scattering and 

absorption. Scattering collisions provide the particle a new set of direction and energy. 

The absorption collision on the other hand may produce progenies or simply terminate 

the particle’s life. This process continues until the particle is absorbed or lost from the 

system. This entire life of a particle is known as particle history. 

 
The physical process described above is governed by the steady state Boltzmann 

transport equation [1] and is given by 
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where x  is the coordinates of the location of the particles, Ω  is the unit direction vector, 

and E  is the particle energy. The system volume is given by V and n  is the outward unit 

surface normal vector. ψ  denotes the angular flux, tΣ  is the total macroscopic cross 

section, sΣ  is the differential scattering macroscopic cross section and Q  is the isotropic 

external source. bψ  represents the boundary condition and can be a vacuum boundary, 

reflecting boundary or a prescribed incident flux. For a criticality problem, ( ),Q x E  is 

replaced by the fission source: 

 ( ) ( ) ( ) ( )
0 4

,
, , , , .f

x E
Q x E x E x E d d E

k π

χ
υ ψ

∞

′ ′ ′ ′ ′= Σ Ω Ω∫ ∫  (1.2) 

 
fΣ  is the macroscopic fission cross section, υ  is the average number of neutrons 

produced per fission and χ  is the fission energy spectrum. The quantity k  is the 

eigenvalue, known as the criticality of the system, and the corresponding ψ  is the 

eigenfunction. k  is used to maintain the balance between neutron loss and gain in the 

steady state Boltzmann transport equation. 

 
The unknown angular flux ψ  is of primary interest as it can be used to compute reaction 

rates and leakage rates. For example, we often calculate an integral quantity of ψ such as 

a detector response, 

 ( ) ( )
4 0

, , , ,
V

R x E x E d dEdV
π

ψ
∞

= Σ Ω Ω∫ ∫ ∫  (1.3) 

 
where V  is the detector volume and Σ  is the response function. Instead of solving the 

Boltzmann equation directly, Monte Carlo simulates various realizations of the actual 

problem. These collective realizations are then used to estimate average values of some 
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system parameters and the variance of those averages. Comprehensive overviews of the 

mathematical aspects of Monte Carlo and its applications to general problems are 

documented by Hammersley and Handscomb [4], Kalos and Whitlock [5], and Spanier 

and Gelbard [6]. The monographs by Carter and Cashwell [7] and Lux and Koblinger [8] 

cover the particle transport application of the general Monte Carlo method. 

 
To simulate a single realization of the problem, Monte Carlo starts by determining a 

particle’s position in space, initial direction of travel, and the initial energy by random 

sampling from the given source distribution (criticality problems start with a source 

guess). Next, the distance to the next collision is sampled. The probability that a particle 

will collide in ds  about s  is given by [7] 

 ( ) .t s
tf s ds e ds−Σ= Σ  (1.4) 

 
The total cross section is assumed constant along the trajectory for convenience. 

Applying the inverse cumulative distribution method [8], the distance s  to the next 

collision can be sampled by 

 ( )1 ln 1 ,
t

s ξ= − −
Σ

 (1.5) 

 
where ξ  is a random number uniformly distributed between 0  and 1. Hence 1 ξ−  is also 

uniformly distributed between 0  and 1, and we can rewrite Eq. (1.5) as 

 ( )1 ln .
t

s ξ= −
Σ

 (1.6) 

 
If the distance to the collision is greater than the distance to the nearest boundary in the 

direction of flight then the particle is moved to the boundary and the distance to the next 

collision is resampled by using Eq. (1.6) and the new tΣ  of the region on the other side of 

the boundary.  

 
If a collision occurs, then the type of collision is sampled from a discrete probability 

density function (pdf) using the macroscopic cross sections for each interaction [8]. If the 

collision type is absorption, then the particle history is terminated. For scattering 
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collisions a new direction of flight and new energy are sampled from their corresponding 

pdfs and the particle moves to the next collision or boundary. 

 
In addition to stochastically following the particles inside the system, we need to extract 

desired information from the Monte Carlo simulation. This job is performed by Monte 

Carlo tallies. Conceptually Monte Carlo tallies perform counting experiments. During 

each realization or history, particular events, such as collisions or boundary crossings are 

used to accumulate the score for the corresponding tally. At the end of the simulation the 

probability of a desired event can be obtained by dividing the accumulated score for that 

event by the total number of particles run. Tallies can be used to estimate different 

quantities of interest in particle transport, such as volume averaged flux in a region, 

average flux over a surface, or current integrated over a surface. 

 
Monte Carlo tallies may be viewed as statistical estimators of particle behaviors obtained 

from collective realizations or histories of the actual physical problem. Since tallies 

represent statistical estimators, it is also possible to estimate the tally variance. The tally 

variance is inversely proportional to the number of particles run in the simulation. In the 

limit of an infinite number of particles the Monte Carlo estimate will converge to the true 

solution of the Boltzmann equation. However, running a large number of particles is 

computationally prohibitive. Another problem of Monte Carlo is undersampling of a 

particular region that could result in a biased estimate. Several variance reduction 

techniques [8] have been developed, which could potentially reduce the solution variance 

while reducing the number of particles required to be run. 

 
Monte Carlo is becoming the method of choice among nuclear professionals, due to its 

accuracy and flexibility. However, there are many areas of Monte Carlo radiation 

transport that could be improved. This thesis is an effort to formulate new and effective 

solutions of three such areas. These three Monte Carlo challenges will be described next. 

1.3.1 Conventional Monte Carlo Tallies 
 
Carter and Cashwell [7] categorized Monte Carlo tallies into four basic type of 

estimators, namely collision estimators, last-event estimators, track length estimators, and 



 

 7 

next-event (point detector) estimators. Collision, last-event, and next-event estimators are 

discrete estimators and score only when there is a certain type of event. On the other 

hand, the track length estimator scores along the entire neutron trajectory. All these 

traditional Monte Carlo tallies perform satisfactorily for estimating integral quantities. 

However, conventional Monte Carlo tallies can not easily extract the shape information 

of the underlying and unknown distribution function that represents a given tally from the 

random walk. The conventional approach to obtaining shape information employs 

histograms.  

 
To construct a histogram, the phase space variables are divided into a specified number 

of bins. Monte Carlo simulation estimates integrated quantities, such as flux or reaction 

rate, inside each bin. The histogram approximation has several limitations. First, the 

histogram is a discontinuous step approximation to the actual distribution. Secondly, the 

degree of smoothness depends on the number of bins. However, a large number of bins 

reduces the number of particles that score in an individual bin, resulting in an increase in 

the variance of the estimate in each bin. Finally, histogram tallies depend on the choice of 

origin. Changing the origin may reveal or obscure certain features of the unknown 

density function. 

 
In the first part of this thesis, we develop continuous, mesh-free global flux tallies by 

using the kernel density estimator (KDE) [9], a nonparametric statistical density 

estimator. These global tallies are based on both collision and track length estimators and 

are capable of estimating flux at any point inside the system. 

1.3.2 Monte Carlo Tallies with Unbounded Variance 
 
There are two popular Monte Carlo estimators with singularities. These estimators are the 

point detector or next-event estimator (e.g., F5 estimator in MCNP5) and the surface 

crossing flux estimator (e.g, F2). The point detector tally is used to estimate the scalar 

flux at a point. The point detector estimator is widely used, especially in shielding 

calculations, but because of the singularity in the estimator, it can yield incorrect or 

misleading results if not used carefully. The singularity in the point detector tally has the 

form 21/ r , where r  is the distance between a collision or source location and the 
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location of the point detector. In Monte Carlo simulations this singularity manifests itself 

when a source or collision occurs arbitrarily close to the detector point. It can be shown 

that, as a result of this singularity, the point detector estimator exists but its variance is 

infinite [10]. The conventional way of removing this singularity is to employ an 

approximate estimator near the singularity [11], which generally introduces a bias in the 

estimator.  

 
The surface crossing flux estimator is used to estimate the average flux over a surface. 

This is another very important estimator and has extensive application in many nuclear 

engineering applications. This estimator scores the inverse of the absolute value of cosine 

of the angle between the direction of flight and the surface normal ( µ ), each time a 

particle crosses the surface of interest. Similar to the point detector estimator, the surface 

crossing flux estimator exists (i.e., its mean is unbiased and finite), but its variance is 

infinite. In Monte Carlo simulations, this estimator becomes unreliable when particles 

cross the surface of interest in grazing angles and contribute large scores to the estimator.  

The conventional approach to address this deficiency is to score the expected value of the 

quantity 1/ µ  for values of  µ  near 0µ = . However, this introduces a bias in the 

estimator. 

 
An alternative approach is developed in this thesis for both the point detector and surface 

crossing flux estimators by using KDE. Based on the observation that KDE estimates the 

underlying PDFs for the particle interactions (i.e., collisions or surface crossings) that are 

scored for these tallies, variance reduction methods have been developed for both tallies 

that yields 1/N convergence for their variances while maintaining unbiased (at least 

asymptotically) estimators. 

1.3.3 Monte Carlo Fission Source Iteration 
 
Monte Carlo criticality calculations are very important in the nuclear engineering 

community and are widely used by reactor design and waste management groups. 

Criticality calculations are initiated with an arbitrary guessed source distribution. This 

initial fission source distribution could be a point source or a uniform source, for 



 

 9 

example. In criticality calculations, the total number of neutron histories is divided into 

N  cycles or batches or generations with M  neutrons per cycle. M  neutrons are sampled 

from the initial source distribution with their initial location, direction of flight, and 

energy, and they are then followed through their random walk within the system. If a 

fission event occurs, that location is stored in a place (array) known as fission bank. All 

these stored locations are used as the fission source for the next cycle. This iterative 

process is continued until all N  batches are completed.  

 
Since the initial neutron source is a guess, the first few initial batches are used to 

converge the actual fission source distribution, within statistical fluctuations. These first 

few batches are discarded and are not used for the batchwise tallying of any important 

parameters like the k-eigenvalue of the system. The discarded batches are known as 

inactive batches, and batches thereafter are called active batches. The final k-eigenvalue 

is calculated as the average over all the active batches. 

 
Depending on the system, sometimes we require many cycles to converge the source 

reasonably. This makes the Monte Carlo criticality calculation computationally 

prohibitive. This slow convergence of fission source is mainly a characteristic of loosely 

coupled systems with high dominance ratio. The dominance ratio is defined by the ratio 

of the second and first eigenvalues of the system. In this thesis, we propose a novel 

technique of sampling the next generation fission sites from the previous generation by 

using KDE-based sampling. This new sampling of the fission bank method is able to 

achieve a significant speed up in fission source convergence. In the conventional fission 

bank method, since the histories in a previous generation are used to determine the fission 

source in the next generation, the Monte Carlo samples are correlated. In the KDE 

method, as the next generation fission sites are actually sampled from the estimated 

fission source distribution, this method may also reduce the cycle to cycle correlation in 

the fission source iteration. 
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1.4 Thesis Outline 
 
The purpose of this thesis is to apply the kernel density estimator to different Monte 

Carlo radiation transport related problems. We now provide an outline of the rest of the 

thesis. 

Chapter 2: Kernel Density Estimator and its Properties 
 
In this chapter, we give a comprehensive overview of the probability density estimation 

technique by using kernel density estimator with numerical examples. We describe both 

the univariate and multivariate kernel density estimator. The statistical properties of the 

kernel density estimator are also reviewed in detail. 

Chapter 3: Kernel Density Estimated Monte Carlo Tallies 
 
This chapter introduces two new global KDE tallies, based on the well-known collision 

and track length tallies. These mesh-free tallies are capable of estimating the shape of a 

tally inside the problem domain without any bin structure. We demonstrate the 

effectiveness of these tallies over conventional histogram based Monte Carlo tallies with 

a set of one dimensional and multi dimensional criticality problems. The convergence 

properties of KDE tallies are also compared, both analytically and numerically, with two 

existing Monte Carlo tallies, namely the conventional histogram tally and the functional 

expansion tally (FET) [12].   

Chapter 4: Kernel Density Estimation Method for Monte Carlo Tallies with 
Unbounded Variance 
 
In this chapter, a kernel density estimator based method is proposed to remove the 

singularities from the point detector and surface crossing flux tallies. Due to the 

singularities, both these tallies have unbounded variance and the variance can not be used 

to measure the convergence of these tallies. The performance of this KDE based method 

over the conventional approximate methods is impressive, yielding 1/ N  variance 

convergence for both tallies, where N  is the number of histories. Numerical examples 

are used to demonstrate the effectiveness of this method. 
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Chapter 5: Kernel Density Estimation Method for Monte Carlo Eigenvalue 
Calculations 
 
The KDE sampling method is used to sample fission locations from the fission bank. The 

conventional fission bank method converges slowly to the actual fission source 

distribution for loosely coupled systems. The KDE based method significantly improves 

the fission source convergence. This KDE based fission source sampling method is 

demonstrated by one dimensional and three dimensional criticality problems.  

Chapter 6: Summary and Future Work 
 
This final chapter includes a summary of the major results of this thesis and a brief 

overview of the future work needed in this area. 
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CHAPTER 2 

Kernel Density Estimator and Its Properties 

2.1 Introduction 
 
The random variable and its corresponding probability density function (pdf) are the 

fundamental concepts in statistics. A random variable is a function that associates a real 

number to every unique outcome from a random experiment. Each time the random 

experiment is run, the random variable is evaluated and returns a number that describes 

the outcome. Each value produced in this way is referred to as a realization of the random 

variable. In other words for every outcome ξ of an experiment specified by the space S , 

a number is assigned by ( )x ξ . This function x with domain the set S and range a set of 

real numbers is called a random variable. The probability that a single realization of a 

random variable will take on a specific value or fall between a range of values in the 

continuous case is governed by the parent distribution of the random variable, denoted 

by ( )f x for the random variable x . The function ( )f x is known as the probability density 

function. For any random variable x , the probability of events ( )a b< ≤x is given by 

 ( ) ( ) , .
b

a

P a b f x dx a b< ≤ = <∫x  (2.1) 

 
For further details on the general theory and applications of random processes, the text by 

Papoulis [1] is a well known reference in this field. A pdf can be obtained in two different 

ways. If the physical laws governing the random process are known, a pdf can be defined 

theoretically. However if we do not know the exact theory a priori, then we can estimate 

the probability density function from the realizations of the underlying pdf, which may be 

an implicit function of a physical process, such as particle transport. There are two 

approaches to density estimation, namely parametric and nonparametric. If the shape of 

the pdf to be estimated is known beforehand, parametric estimation can be used. In 
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parametric estimation we assume the realizations or the observed data are from a known 

parametric family of distributions like the normal distribution with mean µ and variance 
2σ . The true density ( )f x of the observed data could then be estimated by finding 

estimates of the parameters µ and 2σ . However if the shape of the underlying density 

function is unknown, nonparametric density estimation techniques have to be employed. 

In other words for nonparametric density estimation, data are allowed to speak for 

themselves. This thesis is based on a nonparametric density estimation technique, the 

kernel density estimator (KDE). The KDE is used to formulate alternative approaches for 

three distinct and existing Monte Carlo radiation transport problems, which are discussed 

in Chapter 1 and will be discussed in detail in Chapters 3, 4, and 5.  

 
There is a vast literature on density estimation. The earliest known reference to KDE is a 

1951 report by Fix and Hodges [2]. The first published paper to deal explicitly with 

KDE-like estimator was by Rosenblatt [3] in 1956. The next known reference of the KDE 

was by Parzen [4] in 1962. Since then, thousands of articles have been written about 

kernel density estimators. Some of them will be referred in the following sections of this 

chapter and also in the subsequent chapters. Kernel density estimators are also treated in 

several books. The text book by Silverman [5] is widely considered as the definitive 

reference in this field. Silverman has described the sample properties of KDE in great 

detail in his book with several illustrations. Other readable books on KDE are by 

Devroye and Györfi [6], Härdle [7], Wand and Jones [8], and Bowman and Azzalini [9]. 

The theory about the statistical density estimation techniques discussed in the following 

sections are mainly based on the textbooks by Silverman, Wand and Jones, Härdle, and 

Bowman and Azzalini. 

 
Previous application of KDE to nuclear engineering have been to resample electron 

trajectories as a part of a response matrix approach by Du and Martin [10], and to 

resample photon trajectories in the phase space resulting from the patient-independent 

portion of a radiation transport calculation as a part of cancer treatment plan by Tyagi et 

al. [11]. Though there is a wide range of nuclear engineering applications of histogram 

estimation, which is actually a primitive nonparametric density estimator, sophisticated 
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density estimators have not been explored to a great extent in nuclear engineering. One 

notable exception is the functional expansion tally (FET), developed by Griesheimer 

[20], which uses an orthogonal series estimator. This thesis will discuss application of 

another nonparametric density estimator, viz. KDE, to nuclear engineering applications.  

  
Before we discuss the application of the kernel density estimator to problems in Monte 

Carlo simulations, we will discuss in Section 2 the evolution of the kernel density 

estimator. In Section 3, the univariate KDE and its properties are discussed in detail. 

Bandwidth calculation and the boundary problem associated with the KDE are 

investigated in this section. A numerical example is given to demonstrate the 

effectiveness of KDE compared to the histogram estimator. Section 4 presents the 

multivariate KDE and illustrates its properties with a numerical example.  

2.2 The Histogram Density Estimator 
 
The oldest and most widely known density estimator is the histogram or binning. Given 

an origin at 0x and a constant (for convenience) bin width b , we can define the bins of 

the histogram to be the intervals [ ]0 0, ( 1)x mb x m b+ + + for any integer m . Then the 

histogram density estimator is defined by 

 ( ) ( )1ˆ Total No.of in same bin as ,if x X x
Nb

=  (2.2) 

 
where N is the total number of samples ( iX ). 

 
To resolve the shape of the unknown density function f , a histogram requires a large 

number of bins and a large data set is essential to reduce the uncertainty inside each 

individual bin. In Chapter 3 we will discuss about the optimal bin width calculation for 

histogram. Another drawback of the histogram is, even in one dimension, the choice of 

origin can have significant effects. Just by changing the origin it is possible to obscure 

some structure of the unknown density function. The aim of the nonparametric 

estimation, “let the data speak for themselves”, does not seem to be fulfilled. Histograms 

also present several difficulties for multivariate density estimation. Also it follows from 

the definition that f̂  is not a continuous function, rather it is a step function.  
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2.2.1 The Naive Estimator 
 
The naïve estimator estimates [5] the following probability density function 

 ( ) ( )
0

1lim ,
2h

f x P x h X x h
h→

= − < < +  (2.3) 

 
by  

 ( ) ( ){ }i
1ˆ No.of X in , ,

2
f x x h x h

Nh
= − +  (2.4) 

 
for any given h . To express the estimator in a concrete mathematical form, let us define 

the weight function w by 

 ( )
1 , for 1

.2
0, otherwise

x
w x

 <= 


 (2.5) 

 
Then the naïve estimator can be written as  

 ( )
1

1 1ˆ .
N

i

i

x Xf x w
N h h=

− =  
 

∑  (2.6) 

 
Monte Carlo sampling of the naïve estimator is efficient, because it is an equal weighted 

summation of N weight functions. However, we still need to define h , and the estimate 

f̂ jumps at the points iX h± . The importance of the naïve density estimator is that it 

leads to the definition of the kernel density estimator, which will be discussed in the next 

section, and which is the primary subject of this thesis. It follows from Eq. (2.5) and Eq. 

(2.6) that the estimate is constructed by placing a box of width 2h and height ( ) 12Nh − on 

each observation, and these are summed to obtain the overall estimate. If we replace the 

box ( )w x by a smooth function ( )k x which satisfies the condition 

 ( ) 1,k x dx
∞

−∞

=∫  (2.7) 

 
then the estimate will be a smooth function of x , known as the kernel density estimator. 
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2.3 Univariate Kernel Density Estimation Method 
 
Consider N real observations 1,......, NX X  (independent and identically distributed) whose 

underlying density ( ( )f x ) is to be estimated. The kernel density estimator with kernel k 

for univariate data is defined by 

 
1

1ˆ ( ) ,
N

i

i

x Xf x k
Nh h=

− =  
 

∑  (2.8) 

 
where h ( 0h as N→ →∞ ) is the bandwidth, also called the smoothing parameter. ( )f̂ x  

is the estimator for the density function ( )f x . The bandwidth calculation and the form of 

the kernel function k will be discussed later in this chapter. Generally the kernel k is a 

symmetric density function, for example the normal density, about zero and has the 

following properties: 

 2
2( ) 1, ( ) 0, ( ) 0 .k t dt tk t dt and t k t dt k= = = ≠∫ ∫ ∫  (2.9) 

 
Except otherwise stated, ∫ will refer to an integral over the range ( ),−∞ ∞ . The kernel 

estimator can be visualized as the sum of bumps (kernels) placed at each observation. 

The kernel function k determines the shape of the bumps while the window width 

h determines their width. The Mean Integrated Square Error (MISE) is used as a measure 

of the discrepancy between the actual and the estimated density. The MISE is defined as 

follows 

 ( ) ( ) ( )
2ˆ ˆ .MISE f E f x f x dx = − ∫  (2.10) 

 
The term E is the expectation operator. Since the integral is non-negative, the order of the 

integration and expectation of the above equation can be reversed. Equation (2.10) can be 

written as 

 ( ) ( ) ( )
2ˆ ˆ .MISE f E f x f x dx = − ∫  (2.11) 

 
The integrand in Eq. (2.11) can be manipulated as 
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{ } { } { }{ }
{ } { } { }{ }

{ } { } { } { }{ }
{ } { }

22

2 2 2

2 2 2 2

2 2

2

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ2

ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆvar ( ).

E f x f x E f x E f x E f x f x

E Ef f f Ef Ef f Ef f f f Ef

Ef f E f Ef Ef Ef f Ef f Ef

Ef x f x E f x Ef x

bias f x

− = − + −

 = − + − + − − +  

= − + − + − − +

= − + −

= +

(2.12) 

 
This yields: 

 { }2ˆ ˆ ˆ( ) ( ) ( ) var ( ) .MISE f Ef x f x dx f x dx= − +∫ ∫  (2.13) 

 
Therefore the MISE has two components, namely the integrated bias square and the 

integrated variance. 

2.3.1 Bandwidth Calculation 
 
For each x , ( )f̂ x can be considered as a random variable as it depends on the 

observations 1,........, NX X . The expected value and the variance of the estimator are 

given by 

 

1

1

1ˆ ( )

1 1 ,

1 ( )

N
i

i

N
i

i

x XEf x E k
Nh h

x XE k
N h h

x yk f y dy
h h

=

=

 − =   
  

 − =   
  

− =  
 

∑

∑

∫

 (2.14) 

 
and 

 
22

2

1 1 1ˆvar ( ) ( ) ( ) .x y x yf x k f y dy k f y dy
N h h h h

  − −    = −      
      

∫ ∫  (2.15) 

 
The bias in the estimation of ( )f x does not depend directly on the sample size ( )N , but 

depends on the bandwidth h , which of course is a function of N . That means that the 

bias will depend indirectly on N through its dependence on h . We can write 
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( ) ( ){ }

ˆ ( ) ( )
1 ( ) ( )

( ) , bysubstituting .

bias Ef x f x
x yk f y dy f x

h h
x yk z f x hz f x dz z

h

= −

− = − 
 

−
= − − =

∫

∫

 (2.16) 

 
By applying a Taylor series expansion and using the assumptions made about k in Eq. 

(2.9), we can obtain from Eq. (2.16): 

 

( ) ( )2 2

2 2

2
2

1( ) ( ) Higher Order Termsin h
2

1 ( ) ( )
2
1 ( ) .
2

bias hf x zk z dz h f x z k z dz

h f x z k z dz

h f x k

′ ′′= − + +

′′≈

′′=

∫ ∫

∫  (2.17) 

 
We assume that the unknown density function ( )f x  has at least continuous derivatives 

of first and second order. In the similar way, as in the bias, we can obtain an equation for 

the variance:  

 

{ }

{ }

22

2

2
2

2

22 2

1 1 1ˆvar ( ) ( ) ( )

1 1 1( ) ( ) ( ) , [using Eq.2.14]

1 1( ) ( ) ( ) ( ) , [ using ,and Eq.2.17]

1 ( ) (

x y x yf x k f y dy k f y dy
N h h h h

x yk f y dy f x bias x
N h h N

x yf x hz k z dz f x O h z
Nh N h

f x hzf x
Nh

  − −    = −      
      

− = − + 
 

−
≈ − − + =

′≈ −

∫ ∫

∫

∫

{ } 2

2

1) .... ( ) ( ), [ByTaylor expansion]

1 1( ) ( ) ( ).

k z dz O
N

f x k z dz O
Nh N

+ +

≈ +

∫

∫

(2.18) 

 
The MISE can be approximated easily by combining Eq. (2.13), (2.17), and (2.18) to 

find: 

 

2
2 2

2

4 2 2 2
2

1 1ˆ( ) ( ) ( ) ( )
2

1 1( ) ( ) .
4

MISE f h f x k dx f x k z dz dx
Nh

h k f x dx k z dz
Nh

 ′′≈ + 
 

′′= +

∫ ∫ ∫

∫ ∫
 (2.19) 

 



 

 20 

The basic assumption here is that the true density f is such that its second derivative f ′′  is 

continuous and square integrable. Equation (2.19) illustrates the fundamental problems in 

probability density estimation techniques. If we want to reduce the bias, we have to 

employ a very small bandwidth h . However, for small bandwidth, the integrated 

variance will become large. On the other hand by choosing a large value of h , the 

random variation as measured by the variance can be reduces at the expense of 

introducing systematic bias into the estimation. It should be noted here that whatever 

method of density estimation is being used, the choice of smoothing parameter 

(bandwidth for KDE, bin width for histogram etc) implies a trade-off between random 

and systematic error. This will be discussed again in chapter 3 with a numerical example.  

 
It is straightforward to derive the optimum bandwidth by minimizing MISE in Eq. (2.19): 

 

( ) ( )

( ){ }
( ){ }

2 23 2
2 2

1
2 5

1
5

12 2 55
2

1 0

.opt

MISE h k f x dx k z dz
h Nh

k z dz
h N

k f x dx

−

∂ ′′= − =
∂

⇒ =
′′

∫ ∫

∫

∫

 (2.20) 

  
The Eq. (2.20) for optimal bandwidth itself depends on the unknown density function 

( )f x  being estimated. However we can draw some useful conclusions from the optimum 

bandwidth formula. The optimum bandwidth will go to zero at a very slow rate with the 

increase the number of observations N . It can be also concluded that smaller value of  h  

will be appropriate for rapidly varying densities, because the term ( )2f x dx′′∫  , in a 

sense, is the measure of the rapidity of the fluctuations in the unknown density function.  

A natural approach for calculating the bandwidth h is to use a standard family of 

distributions, like the Gaussian distribution, to obtain a value of the term ( )2f x dx′′∫  in 

the Eq. (2.20). We can derive an expression for the bandwidth h by assuming a Gaussian 

function as the kernel function k  [5]:  

 
1

51.06 .opth Nσ −=  (2.21) 
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The quantity 2σ is the variance of the normal distribution and can be estimated by the 

usual standard deviation of the data or by some more robust estimators, for example 

range or interquartile range [5]. The interquartile range is the difference between the first 

quartile and third quartile of a set of data. The bandwidth or smoothing parameter h  is of 

crucial importance in density estimation. Several other techniques to calculate the 

bandwidth exist in the statistical literature [5, 7, 8, 9], for examples least-square cross-

validation, maximum likelihood cross-validation, or the local adaptive method. The basic 

idea behind the adaptive method is to construct a kernel estimate consisting of bumps or 

kernel functions placed at each observation, but to allow the bandwidth of the kernel to 

vary from one point to another. This method is based on the intuition that a natural way to 

deal with long-tailed densities is to employ a wider kernel in regions of low density. But 

these methods are expensive with respect to computing time as one needs to obtain a 

rough estimation of the density function in order to compute locally adaptive bandwidths. 

These bandwidths are then used with the data points to calculate the final estimation of 

the unknown density function. Therefore, this is a two step process. For application to 

Monte Carlo radiation transport, an inexpensive and easily obtained bandwidth is crucial. 

That is why the bandwidth in Eq. (2.21), which is the global bandwidth,  is used for all 

our one dimensional simulations. In Chapter 3 for our KDE estimated Monte Carlo tallies 

we use a quasi-locally adaptive bandwidth, which we call the region-based bandwidth. 

For the region-based bandwidths we calculated the σ and N (number of collisions or the 

number of points extracted from the tracks generated in a particular material region) for 

each region. Therefore, these region based bandwidths are one step fast calculations, but 

are not exactly locally adaptive.  

2.3.2 Kernel Function 
 
Inserting the value of optimum bandwidth opth from Eq. (2.20) into Eq. (2.19), we can 

arrive at the final minimum value expression for MISE : 

 
( ) ( ) ( ){ }

( ) [ ]

1 42 5 5

4
5

5ˆ
4

, in leading order term

KDE
MISE f C k f x dx N

O N

−

−

′′=

=

∫
 (2.22) 
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where the constant ( )C k is given by 

 ( ) ( ){ }
42 2 55

2 .C k k k z dz= ∫  (2.23) 

 
The constant ( )C k depends on the kernel function k . So the kernel which minimizes 

( )C k  will minimize MISE , given that all other things are equal. In a different context, 

Hodges and Lehmann [12] in 1956 demonstrated that ( )C k can be minimized by using 

the function ( )ek x : 

 ( )
23 1 , 5

.54 5
0, otherwise

e

x x
k x

  
− ≤  =   




 (2.24) 

 
This function ( )ek x was first used by Epanechnikov [13] in 1969 for kernel density 

estimation and is widely known as the Epanechnikov kernel. This kernel is illustrated in 

Figure 2.1.  

 
Figure 2.1 The Epanechnikov kernel. 

 
We can define efficiency of any kernel function k by comparing it with the 

Epanechnikov kernel: 
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( ) ( ){ }

( ){ } ( ){ }

5/ 4

11/ 2 22

( ) /

3 .
5 5

eeff k C k C k

x k x dx k x dx
−−

=

= ∫ ∫
 (2.25) 

 
Some kernels and their efficiencies are given in Table 2.1.  

 
Table 2.1 Some kernels and their efficiencies [5] 

 
Kernel ( )k x  Efficiency 

Epanechnikov 

23 1 , 5
54 5

0, otherwise

x x
  

− ≤  
  



 1 

Biweight ( )2215 1 , 1
16
0, otherwise

x x − ≤



 0.9939 

Triangular 
1 , 1
0, otherwise

x x − ≤



 0.9859 

Gaussian 
2 / 21

2
xe

π
−  0.9512 

Rectangular 
1 , 1
2
0, otherwise

x ≤



 0.9295 

 
Efficiency provides a measure to compare different symmetric kernels with the 

Epanechnikov kernel. Since ( )eC k has the minimum value among all the symmetric 

kernels, for any other symmetric kernel k , the closer the efficiency to one, the smaller is 

the MISE for that k , given that all other conditions are same. Table 2.1 shows that there 

is very little difference between the various kernels on the basis of asymptotic 

MISE calculation. Therefore the choice of kernel type should be based on other 

considerations, such as computational expense and differentiability. For most of our 

Monte Carlo simulations we used the Epanechnikov kernel, because of its highest 

efficiency. 



 

 24 

2.3.3 Boundary Correction 
 
The performance of the density estimator ( )f̂ x is poor near boundaries due to the 

boundary effect that occurs in nonparametric curve estimation problems. This is due to 

the fact that the bias of ( )f̂ x is not in the order of ( )2O h , which is the bias for the 

interior points or for cases without boundaries given by Eq. (2.17), at points close to the 

boundaries. Whenever the data points are near the boundaries the associated kernel will 

not integrate to unity over the problem domains because it overlaps with the boundary. 

Simply truncating the estimator at the boundaries and then renormalizing ( )f̂ x to unity 

will not entirely solved the problem as noted by Silverman [5] and also tested by the 

author. There are several boundary correction methods available in the statistical 

literatures. Some well known methods are listed below.  

1. The reflection method [5, 14] 

2. The boundary kernel method [8, 14]. 

3. The transformation method [15]. 

4. The pseudo-data method [16] 

5. The local linear method [17] 

If there is one boundary at the origin then the reflection method is specially designed for 

the case ( )0 0f ′ = , where f ′ denotes the first derivative of f . In the context of Monte 

Carlo radiation transport calculation, the reflection method is useful as reflecting 

boundaries are common in nuclear engineering applications. The data point is reflected 

within the boundary region with respect to the boundary. The extent of the boundary 

region can be defined by the bandwidth which will be discussed later in this section. 

Assuming the boundary is at the origin, the reflected kernel density estimator for the 

boundary region is given by  

 ( )
1

1ˆ .
N

i i

i

x X x Xf x k k
Nh h h=

 − +   = +    
    

∑  (2.26) 

 
The boundary kernel method is more general in the sense that it can adapt any shape of 

the density. This method is very inexpensive and easy to implement. This method will be 

discussed in detail later in this section. We used this boundary correction (boundary 
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kernels) method for all our Monte Carlo simulation except for the fission source 

convergence problem, which is the subject matter of Chapter 5. The local linear method 

is a special case of the boundary kernel method where local polynomial fitting is used. 

The pseudo-data method of Cowling and Hall [16] generates some extra data points 

( )iX ’s by employing their “three-point-rule”, and then combine them with the original 

data iX ’s to form a kernel type estimator. The transformation method proposed by 

Marron and Ruppert, is another attractive method. But this method is computationally 

expensive and not so easy to implement. This method comprises of a three step process. 

First, a transformation g is selected from a parametric family so that the density of 

( )i iY g X= has a first derivative that is approximately equal to 0 at the boundaries of its 

support. In the second step, a kernel estimator with reflection is applied to the iY ’s. 

Finally, the estimator is transformed back to the original domain by the change of 

variable to obtain an estimate of f . We initially investigated and extended from one to 

two boundaries another boundary correction method developed by Karunamuni et al. 

[18]. This boundary method is known as generalized version of the reflection method. 

Their method is quite similar to the transformation method but the generalized reflection, 

more specifically the transformation g , also depends on the estimation of the derivatives 

of the unknown pdf at the boundaries. That means basically we are dealing with two 

estimations: the unknown density function f  and its derivative at the boundaries. The 

method was sensitive to the derivative estimation. Due to the complexity of this method, 

especially in the point of view of Monte Carlo calculation, we decided not to use that. In 

the following section first we will discuss the boundary kernel method followed by a 

brief introduction of the generalized reflection method. 

2.3.4 Boundary Correction by Boundary Kernel Method 
 
To quantify the density estimation boundary problem mathematically let us assume that 

we have two boundaries at minx and maxx . Let k be a kernel with support confined to 

[ ]1,1− . Using Eq. (2.14), the expected value of the estimator ( )f̂ x is given by 
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max

min

1ˆ ( ) ( )
x

x

x yE f x k f y dy
h h

−   =     ∫  (2.27) 

 
The quantity x is a representative point in the physical domain with boundaries minx and 

maxx . After a change of variable and a Taylor series expansion as described before the 

Eq. (2.27) becomes 

 

min min min
2

2

max max max

ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ........ .
2

x x x x x x
h h h

x x x x x x
h h h

hE f x f x k u du hf x uk u du f x u k u du

− − −

− − −

  ′ ′′= − + −  ∫ ∫ ∫ (2.28) 

  
If minx x h≥ +  and maxx x h≤ −  then the upper and lower limit of the integrals in Eq. 

(2.28) can be replaced by 1and 1− , respectively, and then by using Eq. (2.9) we obtain a 

bias of order ( )2O h , which is the same as before. Note that, for any fixed 0x > and 

h converging to zero we will always have x h> for sufficiently large N . Hence for this 

case we can define the boundary region as the region within one bandwidth of a 

boundary. The observations that are not within one bandwidth from both boundaries are 

labeled interior observations/points. The basic idea is to use a point wise boundary kernel 

for the boundary regions which will force the first integral of the right hand side to Eq. 

(2.28) to be unity and the second one to be 0 , so that we will achieve ( )2O h bias for the 

boundary region. For the interior points we are using the usual kernel function, such as 

the Epanechnikov kernel. For the left boundary region ( min minx x x h< < + ) we can 

write from Eq. (2.28)  

 
2

2

1 1 1

ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ........,
2

p p phE f x f x k u du hf x uk u du f x u k u du
− − −

  ′ ′′= − + −  ∫ ∫ ∫  (2.29) 

 

where minx xp
h

−
= . Now let us define 

 ( ) ( )
1

.
p

i
ia p u k u du

−

= ∫  (2.30) 
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One simple boundary kernel can be defined [14] which will force a ( )2O h bias for the 

boundary region by a linear multiple of the kernel k : 

 ( ) ( ) ( ){ } ( )
( ) ( ) ( )

2 1
2

0 2 1

, for 1b

a p a p u k u
k u u p

a p a p a p

−
= − < <

−
 (2.31) 

 
Similarly for the right hand boundary region defined by max maxx h x x− < < Eq. (2.28) 

becomes 

 
1 1 12

2ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ........,
2p p p

hE f x f x k u du hf x uk u du f x u k u du  ′ ′′= − + −  ∫ ∫ ∫  (2.32) 

 

where maxx xp
h

−
= . We can use the same boundary kernel for the right boundary 

region given by Eq. (2.31) by defining 

 ( ) ( )
1

.i
i

p

a p u k u du= ∫  (2.33) 

 
Figure 2.2 Boundary kernel ( )bk u based on rescaled Epanechnikove kernel for different 

p values. 
 
Figure 2.2 plots the boundary kernel ( )bk u for several values of p , and k equal to the 

rescaled Epanechnikov kernel, which is given by 
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 ( ) ( )23 1 , for 1
4

k x x x= − ≤  (2.34) 

 
A drawback of this boundary kernel method is that the estimates f̂ might be negative 

near the endpoints, especially when ( )min 0f x ≈ and ( )max 0f x ≈ . Some remedies 

have been proposed [14, 19] to correct this deficiency. For most of our Monte Carlo 

simulation we simply used this boundary kernel without any practical problem as this is 

very inexpensive, simple to implement and very effective boundary correction method 

available in statistical literature.  

2.3.5 Generalized Reflection 
 
This boundary correction method was initially used. This is not very easy to implement 

and computationally expensive as the derivatives of the unknown density function need 

to be estimated at the boundaries in order to estimate the unknown density function itself. 

In this section the generalized reflection method will be discussed briefly. 

 
Karunamuni and Albert [18] introduced this generalize reflection method in 2005 by 

using a transformation that preserves an ( )2O h boundary bias for a single boundary at 

0x = . We have extended this work to a slab of width a with two boundaries at 0x = and 

x a= . The resultant estimator is  

 ( )

( ) ( )

( ) ( )

1 1

1

1

2 2

1

1 , 0

1ˆ ,

21 ,

N
i i

i

N
i

i

N
i i

i

x g X x g X
k k x h

Nh h h

x Xf x k h x a h
Nh h

x g X x a g X
k k a h x a

Nh h h

=

=

=

     − + + ≤ ≤     
      


−  = < < −  
 

     − − +  + − ≤ ≤          

∑

∑

∑

 (2.35) 

 
where as usual h is the bandwidth, k is the kernel function with support [ ]1,1− , and 

1g and 2g are the boundary transformations. The transformations are given by 

 ( )0

2/ 2 / 3
1 0 00
( ) 0.5 0.5 ,c cg y y d k y d k y= + +  (2.36) 
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where 

 
(1)

0
(0) ,

(0)
fd
f

=  (2.37) 

  

 
0

0

0 0

0

1

/
10

2 ( ) ( )
,

2 ( ) ( )

c
c

c

t c k t dt
k

c t c k t dt

−

=
+ −

∫

∫
 (2.38) 

 
and 

 ( )2/ 2 / 3
2 ( ) (2 ) 0.5 ( ) 0.5 ( ) ,

aa c a ca
g y a y d k a y d k a y= − + − + −  (2.39) 

 
where 

 
(1) ( ) ,
( )a

f ad
f a

=  (2.40) 

 

 / 1

1

2 ( ) ( )
.

2 ( ) ( )

a

a a

c

a

c c

a a

t c k t dt
k

c t c k t dt

−

−

−
= −

+ −

∫

∫
 (2.41) 

 
oc  and ac are given by 

 0 , and a
x x ac c
h h

−
= =  (2.42) 

 
The logarithmic derivatives 0d and ad are estimated by FET [20], which will be 

introduced briefly in chapter 3. It was found that the estimation of these terms is 

important for obtaining good results near the boundaries. Instead of directly estimating 

the derivatives we estimate 0d and ad as 

 1

1

log ( ) log ( ) ,f x h f xd
h

+ −
=

 



 (2.43) 

 
where ( )f x



and ( )f x h+


are estimated by FET [20] and 1h is the bandwidth given by 

[18]    
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 1/100
1h hN −=  (2.44) 

2.3.6 Numerical 1-D KDE example 
 
This is a simple example to demonstrate the ability of the KDE to reproduce a known 

pdf, in this case a clipped exponential on the interval [ ]1,1− , which is given by  

 ( ) [ ]1 , 1,1 .
xef x x

e e

−

−= ∈ −
−

 (2.45) 

 
To depict this graphically, 10,000 observations are drawn from ( )f x and KDE is used 

with boundary kernel method as the boundary correction to evaluate ( )f̂ x at 50equally 

spaced points between 1− and 1.These points are plotted in Figure 2.3.  

 
  Figure 2.3 Comparison between KDE, KDE without boundary correction, and 

Histogram.  
 
It is clear from Figure 2.3 that the boundary correction algorithm discussed earlier with 

boundary kernel method is performing well near the boundaries. A visual comparison 

suggests the kernel density estimator estimates the clipped exponential better than the 

histogram. This result will be discussed in a quantitative manner in Chapter 3. Note that, 

though the bandwidth is calculated assuming the underlying distribution is Gaussian, it 

seems to work well in estimating the exponential distribution. 
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Figure 2.3 also illustrates the potential for KDE to represent Monte Carlo radiation 

transport tallies, since the tally points can be treated as if they were un-normalized 

samples from a pdf. This is the basic motivation of kernel density estimated Monte Carlo 

collision and track-length tallies which is the topic of the next chapter. 

2.4 Multivariate Kernel Density Estimator 
 
Let ( ){ }1,....... , 1,...d

i iX X i N= be a sample of independent and identically distributed 

random variables with an unknown density function ( )1,....., df x x . The general 

multivariate kernel density estimator is given by 

 ( )
1

1
1

11 1

1ˆ ,......, ,......, ,
...

dN
i d i

d
id d

x X x Xf x x K
Nh h h h=

 − −
=  

 
∑  (2.46) 

 
where K denotes a multivariate kernel function and [ ]1,......., dh h the bandwidth vector. In 

practice the choice of K is especially difficult in the boundary region. Therefore, for 

Monte Carlo implementation we propose to use the product kernel estimator. The 

estimator is defined as 

 1
1 1

1 1ˆ ( ,..., ) ,
idN

l l
d

i l l l

x Xf x x k
N h h= =

 −
=  

 
∑∏  (2.47) 

 
where 1,....., dh h are the bandwidth parameters and k is the usual univariate kernel 

function, for example the Epanechnikov kernel. In the same fashion as in the univariate 

case, approximate expressions can be derived for the bias and variance of the multivariate 

estimator, and these can be used to obtain some guidance for the appropriate choice of the 

bandwidth parameters. The expected value of the estimator is given by 

 ( ) ( )1 1 1
1

1ˆ ,..., ... ,..., ... .
d

l l
d l d d

l l l

x yE f x x k f y y dy dy
h h=

  −  =        
∏∫ ∫  (2.48) 

 
By changing variables in Eq. (2.48) we can obtain 

 ( ) ( ) ( )1 1 1 1 1
1

ˆ ,..., ... ,..., ...
d

d l l d d d d
l

E f x x k z f x h z x h z dz dz
=

   = − −    
∏∫ ∫  (2.49) 
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By expanding ( )1 1 1,..., d d df x h z x h z− − in a multivariate Taylor series with respect to all 

ix  about the point ( )1 2, ,..., dx x x we obtain 

( ) ( ) ( )
2

2 2
1 1 12

1 11

1ˆ ,..., ... ,..., ... ... .
2

d d d

d l l d j j j j d
j jl j j

f fE f x x k z f x x h z h z dz dz
x x= ==

   ∂ ∂   = − + +    ∂ ∂    
∑ ∑∏∫ ∫

 (2.50) 
 
Considering the same kernel function k in all directions and by using Eq. (2.9), the 

following is obtained: 

  ( ) ( ) ( )2
1 2

1 1 2 2
1

,...,1ˆ ,..., ,..., .
2

d
d

d d j
j j

f x x
E f x x f x x k h

x=

∂  ≈ +  ∂∑  (2.51) 

 
In Eq. (2.51) the higher order terms in h are ignored. For notational simplicity, assume 

equal bandwidth in all directions, yielding the final expression of the bias of the 

multivariate kernel density estimator: 

 ( ) ( ) ( ) ( )2
12

1 1 1 2 2
1

,...,1ˆ ˆ,..., ,..., ,..., .
2

d
d

d d d
j j

f x x
b ia sf x x E f x x f x x k h

x=

∂ = − ≈  ∂∑  (2.52) 

 
The variance of ( )1

ˆ ,..., df x x is given by 

 
( ) ( )

( ){ }

2

1 1 1
1

2

1

1 1ˆvar ,..., ... ,..., ...

1 ˆ ,..., .

d
l l

d l d d
l l l

d

x yf x x k f y y dy dy
N h h

E f x x
N

=

  −
=   

   

 −  

∏∫ ∫
 (2.53) 

 
By changing variable in Eq. (2.53) and ignoring ( )1O N  terms, this becomes 

 ( ) ( ) ( )
2

1 1 1 1 1
1 1

1 1ˆvar ,..., ... ,..., ... .
d d

d l l d d d d
l ll

f x x k z f x h z x h z dz dz
N h= =

   
= − −   

  
∏ ∏∫ ∫ (2.54) 

 
Considering same bandwidth h  in all direction as before, and by applying multivariate 

Taylor series expansion to Eq. (2.54), the final expression for variance is obtained: 

 ( ) ( )1 1
1ˆvar ,..., ,..., ,d ddf x x f x x

Nh
β=  (2.55) 

 
where 
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 ( )
2

1
1

... ... .
d

l l d
l

k z dz dzβ
=

 
=  

 
∏∫ ∫  (2.56) 

 
Similar to the univariate KDE, Combining Eqs. (2.52), and (2.55) gives the approximate 

mean integrated square error  

 ( )
22

14 2
2 12

1

,...,1 1... ... .
4

d
d

d d
j j

f x x
MISE h k dx dx

x Nh
β

=

 ∂ ≈ + ∂  
∑∫ ∫  (2.57) 

 
Hence the approximately optimal bandwidth for the multivariate KDE is obtained by 

minimizing the MISE  by simple calculus: 

 ( )
122

1 24 2 1
2 12

1

,...,
... ...

d
d
opt d

j j

f x x
h d k dx dx N

x
β

−

+ − −

=

  ∂ =    ∂   
∑∫ ∫  (2.58) 

 
The optimal bandwidth can be chosen by replacing f in Eq. (2.58) by a standard density 

function, such as multivariate normal density.Replacing f by multivariate normal density 

and assuming a normal density function as the kernel k , the bandwidth is given by 

 
( )

1
44 ,

2

d

i ih
d N

σ
+  =  +  

 (2.59) 

 
where ih denotes the optimal smoothing parameter and iσ the standard deviation in 

dimension i . For practical implementation, the latter is replaced by the sample estimate. 

This bandwidth formula is used for all our multidimensional Monte Carlo simulations. It 

is straightforward to use the boundary kernel method as the boundary correction for the 

multivariate KDE as we are taking the product of the kernel in each dimension. 

Therefore, if the point of evaluation at one dimension is within the boundary region, 

defined by the bandwidth in that dimension, then we just need to replace the kernel in 

that dimension by the boundary kernel given by Eq. (2.31). 
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2.4.1 Numerical Multivariate KDE Example  
 
A simple 2 dimensional example is used to demonstrate that the multivariate KDE can 

reproduce a known density function. The density function used in this example is given 

by 

 ( ) 22

1, , 0 , .
4

xyf x y x y a
aa

+
= < <

+
 (2.60) 

 
To plot this graphically, 2 million data points were drawn from ( ),f x y and Eq. (2.47)

was used to evaluate ( )ˆ ,f x y at 20 20× equally spaced points inside a 2 2× square. These 

points are plotted in Figure 2.5. Figure 2.4 illustrates the exact reference plot obtained by 

evaluating the Eq. (2.60). The boundary kernel method is used as the boundary correction 

in this example. Visual inspection suggests that in this case 2-D KDE produces a good 

estimation of the known pdf f . Figure 2.5 reconfirms the potential for KDE to estimate 

Monte Carlo radiation transport tallies. 

 
Figure 2.4 Exact graphical representation of the 2-d pdf ( ),f x y in Eq. (2.60). 
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Figure 2.5 Graphical representation of the KDE estimation of function f in Eq. (2.60). 
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CHAPTER 3 

Kernel Density Estimated Monte Carlo Tallies 

3.1 Introduction 
 
While traditional Monte Carlo tallies work very well for estimating integral quantities, 

such as average scalar flux over large volumes, they are limited in their abilities to 

estimate the detailed shape of the distribution of particle flux or current with respect to 

space, angle, energy or time. There are, however, many applications in which the shape 

of the flux distributions is desired. The conventional Monte Carlo approach to extract the 

shape information from the particle histories is to approximate the true distribution by a 

histogram. These histogram approximations are generated by dividing the phase space 

into bins and the Monte Carlo simulation yields an estimate of the desired quantity, e.g., 

the integrated flux, within each bin. When normalized by the bin width, the results 

generate a step approximation to the true distribution. To achieve better resolution, finer 

bins are required, resulting in poor statistics for the bins, and potentially leading to an 

excessive number of histories to reduce the uncertainty in each bin to an acceptable level. 

Also, finer partitioning of the phase space requires additional surfaces to be tracked in the 

geometry, which can add significant overhead to the simulation.   

 
Keeping in mind that any positive tally can be viewed as an unnormalized probability 

density function (pdf), one approach to this problem is to estimate the equivalent pdf with 

the functional expansion tally (FET) method, which makes use of orthogonal functions 

(e.g., Legendre polynomials), which was done by Griesheimer [1]. This chapter discusses 

the application of KDE to estimate the underlying pdf of the Monte Carlo tally. Since 

KDE is a nonparametric density estimator, there are no a priori assumptions about the 

functional form of the distribution associated with the random variable. The KDE method 

is attractive because it can estimate MC tallies in any location within the required domain 

without any particular bin structure. Post-processing or simultaneous processing of the 
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KDE tallies is sufficient to extract detailed tally information for an arbitrary grid. In this 

chapter we introduce the mathematical form of two new scalar flux estimators, viz. KDE-

collision and KDE-track-length estimators [2, 3], including their variances. Convergence 

properties of the KDE tally, the Functional Expansion Tally (FET), and the histogram 

tally are also investigated. Convergence analyses of these estimators has been reported 

previously [4, 5, and 6] and a detailed analytical and numerical convergence comparison 

between the FET and histogram tallies was carried out by Griesheimer et al. [7]. In this 

chapter the convergence properties of KDE from Chapter 2 are briefly reviewed, mainly 

for comparison with FET and histogram tallies. This chapter ends with quantitative and 

qualitative comparison between the KDE, FET, and histogram estimators. 

3.2 Conventional Monte Carlo Tallies 
 
In this chapter and throughout the thesis, individual particle histories are identified by the 

index i . All the events, such as collision, absorption, boundary crossing etc., in a 

particle’s life are identified sequentially by the index c . Values of c  can range from 0 , 

the birth of the particle, to iC , termination of the particle history after iC  events. For all 

radiation transport problems, the phase space location of particle i during an event c is 

expressed by the seven-dimensional vector { }, ,
, , , , , ,i c i c

x y z E tξ θ ψ=


. The series of events 

that occur during a single particle’s life is a Markov chain [8], denoted 

 { }, , 1 0
ˆ , ,......, .

i ii i C i Cξ ξ ξ ξ−=
  

 (3.1) 

 
Every Monte Carlo simulated particle history yields a Markov chain ξ̂ . Each chain is 

independent and identically distributed by the parent distribution ( )f ξ , which describes 

the relative likelihood of all possible Markov chains [9].  

 
Monte Carlo tallies are functions that operate on a finite set of Markov chain realizations 

{ }
1,î i N

ξ
=

, and yield an estimate for some desired unknown parameter µ of the governing 

distribution ( )f ξ . The general form of all Monte Carlo tallies can be given by 

 { }( )1,
ˆˆ ,i i N

Sµµ ξ
=

=  (3.2) 
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where µ̂ is the estimator of µ , estimated by the set of particle histories { }
1,î i N

ξ
=

, and 

Sµ in Monte Carlo terminology is known as the “tally” or “scoring” function. The scoring 

function is responsible for extracting desired information from the collection of particle 

histories. The distribution ( )f ξ theoretically describes all particle behaviors that are 

physically possible in the system. As it contains all information, it is possible to express 

any quantity of interest as a parameter of ( )f ξ . 

3.2.1 Conventional Monte Carlo Collision Estimator of Flux 
 
In nuclear engineering, the incremental scalar flux ( ), ,x E t dxdEφ  is defined as the total 

distance traveled per unit time by all the particles of energies dE about E in a volume 

element dx  about x  at time t . The energy dependent flux has the units 

2 1seccm eV− − ⋅ ⋅  and is mathematically expressed as 

 ( ) ( ), , , , ,x E t vN x E tφ =  (3.3) 
 
where ( ), ,N x E t is the corresponding number density of particles per unit volume at x  

and per unit energy at E at time t. Also, v is the velocity of a particle with energy E . 

Particle flux is an important quantity in nuclear engineering as it is used to calculate the 

nuclear reaction rates and leakage rates. A reaction rate ( ), ,R x E t dxdEχ calculates the 

expected rate 1reactions sec− ⋅  at which reaction of type χ take place in the elemental 

volume dx  about x , at time t , due to particles with incident energy dE about E . The 

reaction rate can be given by 

 ( ) ( ) ( ), , , , , , ,R x E t x E t x E tχ χ φ= Σ  (3.4) 
 
where χΣ is the macroscopic cross section for reaction χ . By integrating Eq. (3.4) over 

all space, energy and time we can obtain 

 ( ) ( ), , , , ,
V E t

N x E t x E t dtdEdxχ χ φ= Σ∫ ∫ ∫  (3.5) 

 



 

 41 

which is the total number of reactions that occur in the volume V per particle. In Eq. (3.5) 

the flux ( ), ,x E tφ  is normalized by the total number of particle histories, which is a 

standard practice in nuclear engineering applications. Similarly, Nχ  is also normalized.  

 
It is trivial to calculate the average number of reactions in a finite volume by a simple 

Monte Carlo counting experiment. It is straightforward to show that for N independent 

particle histories, the quantity 

 Total number of reaction in tally volumeN̂
Nχ

χ
=  (3.6) 

 
is an unbiased estimator of the quantity Nχ . This estimator of the reaction rate can be 

used to derive an estimator for the average flux in the entire tally volume. 

 
By using the mean value theorem [10], the average flux in an arbitrary special volume 

V can be expressed as 

 ( )1 .
V

x dx
V

φ φ= ∫  (3.7) 

 
Now assume that the total macroscopic cross section is constant for all locations, times, 

and energies inside volume V . After multiplying and dividing the right hand side of Eq. 

(3.7) by tΣ , this becomes 

 ( )1 ,t
t V

x dx
V

φ φ= Σ
Σ ∫  (3.8) 

 
where tΣ is the total macroscopic cross section. Note that the integral term in Eq. (3.8) is 

identical to Eq. (3.5). Substituting Eq. (3.5) into Eq. (3.8), and replacing the index χ by 

t , yields the following expression for the average flux: 

 .t

t

N
V

φ =
Σ

 (3.9) 

 
Using the unbiased estimator of tN we can write 

 Total number of reactions in volumeˆ .
t

V
V N

φ =
Σ

 (3.10) 
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Equation (3.10) can be written in a more conventional Monte Carlo tally format 

 ,
1 1

1ˆ ,
iCN

i c
i ct

w
NV

φ
= =

=
Σ ∑∑  (3.11) 

 
where c is a sequential index of collision events for history i  and ,i cw is the weight of 

particle i prior to collision c . The weights are important for cases where variance 

reduction techniques are used [11]. For analog Monte Carlo simulations the weight w is 

always equal to 1. The average flux estimator in Eq. (3.11) is known as collision 

estimator as it scores at each collision a particle undergoes during the simulation. The 

total cross section in Eq. (3.11) can be easily replaced with any other cross section to 

yield other types of flux tallies, such as an absorption tally. Absorption estimators are not 

commonly used because they accumulate little information (1 event per history) relative 

to the collision estimator, and therefore have a large variance.  

 
One very common and widely used collision estimator, especially in shielding 

applications, is the next event estimator or point detector estimator. These tallies are used 

to estimate the flux at a single point inside the system. At every collision this estimator 

scores what would be the contribution of that particular collision towards the detector 

point. This tally is the subject of the next chapter. 

 
The underlying assumption of the above derivation of the collision flux estimator is the 

cross section in the tally volume is independent of time, energy, and space. Such an 

assumption is not physically realistic. It can be shown [9], not in a straightforward way, 

that if the cross section indeed depends on the phase space vector ξ


, then the collision 

flux estimator is given by 

 
( )

,

1 1 ,

1ˆ .
iCN

i c

i c t i c

w
NV

φ
ξ= =

=
Σ

∑∑ 
 (3.12) 

3.2.2 Monte Carlo Track Length Estimator of Flux 
 
The collision flux estimator directly depends on the number of collisions inside the tally 

region. If the number of collision is not well resolved, for instance regions with very 

small cross sections, then the collision estimator can produce unreliable estimates with 
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high variance. Moreover collision estimates are incapable of estimating flux in a void 

region. These limitations prompted the development of a completely different flux tally: 

the track length or path length estimator. 

 
A simple derivation of the track length tally can be achieved from the definition of the 

scalar flux given by Eq. (3.3). The speed v  corresponds to the distance traveled by a 

single particle per unit time. The ( ), ,N x E t term is the particle density, which gives the 

total number of particles per unit phase space volume (e.g., per unit volume per unit 

energy) at time t. Hence the scalar flux can be interpreted as the total path length 

traversed per unit time per unit phase space volume by all the particles. This 

interpretation of scalar flux can be written mathematically as  

 ( ) Rateat which particles generate path length in about .d dφ ξ ξ ξ ξ=
 

 (3.13) 

 
We can integrate Eq. (3.13) over some arbitrary phase space volume ℜ to obtain 

 ( ) Total path length generated by particles in .dφ ξ ξ
ℜ

= ℜ∫


 (3.14) 

 
By dividing both side of Eq. (3.14) by the volume V of ℜ and applying the mean value 

theorem we can write 

 ( )1 Total path length generated by particles in .d
V V

φ φ ξ ξ
ℜ

ℜ
= =∫



 (3.15) 

 
The right hand side of Eq. (3.15) can be easily estimated in Monte Carlo simulation by 

simply accumulating the total distance traveled by the particles in the tally region 

multiplied by the weight of the particle and dividing by the volume of the tally region. 

The formal mathematical form of the track length tally is given by 

 , , ,
1 1

Total path length generated by particles in1ˆ ,
per particle history

iCN

i c i c
i c

w d
NV

φ ℜ
= =

ℜ 
= =  

 
∑∑  (3.16) 

 
where , ,i cd ℜ is the distance traveled by particle i in phase volume ℜ as it passes between 

events 1c −  and c . This derivation of the path length tally is directly based on the 

definition of the scalar flux. 
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3.3 Weighted Kernel Density Estimator 
 
In the previous definition of the kernel density estimator, which is discussed in chapter 2 

(Eq. (2.8)), all the observations ( )1,..., NX X from the unknown density function ( )f x are 

considered equiprobable. That means they all have weight equal 1. If instead, all the 

observations from the unknown density function ( )1,..., NX X have corresponding weights 

( )1,..., Nw w , then one can define the weighted kernel density estimator as 

 
1

1

1 1ˆ ( ) ,
N

i
iN

i
i

i

x Xf x w k
h hw =

=

− =  
 

∑
∑

 (3.17) 

 
where the terms have their usual meaning. This weighted kernel density estimator is used 

to derive KDE collision and track length tallies. Similarly for three dimensional cases 

with observations ( ) ( )( )1 1 1, , ,...., , ,N N NX Y Z X Y Z  from the unknown density 

function ( ), ,f x y z , and their corresponding weights ( )1,..., Nw w , the multivariate KDE 

given in Eq. (2.47) becomes 

 ( )
1

1

1 1 1 1ˆ , , .
N

i i i
iN

i x x y y z z
i

i

x X y Y z Zf x y z w k k k
h h h h h hw =

=

    − − −
=           

∑
∑

 (3.18) 

 
Equation (3.18) represents weighted 3-D KDE. 

3.3.1 1-D Kernel Density Estimated Collision Tally and Its Variance 
 
Deriving the KDE collision tally is a very straightforward exercise. Let ,i cX is the 

location of a collision event during the life of a particle i , denoted by the index c . The 

collision point ,i cX is given a weight equal to ( ), ,/i c t i cw XΣ , where ,i cw  is the weight of 

the particle i  just before the collision event c and ( ),t i cXΣ is the total cross section at the 

collision location ,i cX . By recording all the collision points and their corresponding 

weight during the Monte Carlo simulation and by using the definition of the weighted 
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kernel density estimator from Eq. (3.17), the following expression for the normalized flux 

distribution in the tally region is obtained:  

 , ,

, 1 1 ,

1 1 ,

( ) 1 1 .
( )( )

( )

i

i

cN
i c i c

cN
i c i c t i c

i c t i c

w x Xx k
w X h hx dx
X

φ
φ = =

= =

− 
=  Σ  

Σ

∑∑
∫ ∑∑

 (3.19) 

 
The lefthand side of this equation is the scalar flux "pdf", reflecting the fact that the scalar 

flux tally can be viewed as an unnormalized pdf. The bandwidth h  can be calculated 

from Eq. (2.21) by using all the recorded collision points. By applying the conventional 

Monte Carlo collision estimator from Eq. (3.12), we can easily obtain an expression for 

the integrated flux over the tally region (the normalizing constant in the left hand side of 

Eq. (3.19)): 

 ,

1 1 ,

1ˆ( ) .
( )

icN
i c

i c t i c

w
x dx V

N X
φ φ

= =

= =
Σ∑∑∫  (3.20) 

 
By combining Eq. (3.19) and Eq. (3.20) one can obtain the final equation for the KDE 

collision flux tally: 

 , ,

1 1 ,

1 1( ) .
( )

iCN
i c i c

i c t i c

w x X
x k

N X h h
φ

= =

− 
=  Σ  

∑∑  (3.21) 

 
The key observation in Eq. (3.21) is that it is independent of the arbitrary volume R. In 

other words, the KDE collision tally is mesh-free and provides a pointwise estimate of the 

scalar flux (and its variance as shown below) throughout the problem geometry. 

 
Let x̂  is the estimator of the true mean µ of some unknown density function ( )p x . 

Considering { }( )1,..., Nx X X= are independent and identically distributed observations 

from the density function ( )p x  we can write 

 
1

1ˆ .
N

i
i

x X
N =

= ∑  (3.22) 

 
By applying elementary statistics the variance of the estimated mean is given by 
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2 2
ˆ 2

1

2

1

1 .

N

x x
i

x

N

N

σ σ

σ

=

=

=

∑
 (3.23) 

 
Hence the sample variance 2

x̂σ can be estimated by 

 

( ) ( )22
ˆ

1

2 2

1

2
2

1 1

1ˆ ˆ
1

1 ˆ

1

1 1

.
1

N

x i
i

N

i
i

N N

i i
i i

X x
N N

X x
N

N

X X
N N

N

σ
=

=

= =

= −
−

−
=

−

 
−  
 =
−

∑

∑

∑ ∑

 (3.24) 

 
By using Eq. (3.24), we can easily derive an estimator of the variance of the KDE 

collision flux tally given by Eq. (3.21): 

 

2 2

, , , ,

1 1 1 1, ,2
( )

1 1 1 1
( ) ( )

.
1

i iC CN N
i c i c i c i c

i c i ct i c t i c
x

w x X w x X
k k

N X h h N X h h
Nφσ

= = = =

   − −      −      Σ Σ         =
−

∑ ∑ ∑∑
(3.25) 

3.3.2 1-D Kernel Density Estimated Track Length Tally and Its Variance 
 
Most modern Monte Carlo codes depend on track length estimators for tallying 

volumetric flux. This is because for most of the cases the track length estimator will give 

a lower variance estimate of the scalar flux than the collision estimator.  

 
 

Figure 3.1 Generating sub-tracks from a single track. 
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Tracks are continuous between two events 1c −  and c, where the events are collisions or 

surface crossings. However, for KDE tallying, scores need to be assigned to a point. 

Since tracks can be long, assigning the entire track to a single point is unrealistic, and it is 

also not clear where this point should be assigned. Therefore, it was decided to divide 

each single track into n  uniform sub-tracks, where n  is a user-defined quantity, and 

randomly select points from each sub-track and give that point a weight equal to the 

length of the sub-track. Figure 3.1 illustrates the process, where a track of length d  is 

divided into 4  uniform sub-tracks. One point is extracted randomly from each sub-track 

and a weight / 4d  is assigned to that point. If the weight of the particle tracing a track 

between events 1c −  and c  is ,i cw , then each extracted point from that track is given a 

weight , . /i c i cd w n , where ,i cd is the length of the track between event 1c −  and c . 

Proceeding in a similar fashion with the derivation of the KDE collision tally in Section 

3.3.1, the KDE track length tally and its variance are obtained:   

 , ,, ,

1 1 1

1 1( ) ,
iCN n

i c ji c i c

i c j

x Xw d
x k

N n h h
φ

= = =

− 
=  

 
∑∑ ∑  (3.26) 

 

 
{ }

2
2, ,, ,

1 1 12
( )

1 1 ( )
,

1

iCN n
i c ji c i c

i c j
x

x Xw d
k x

N n h h
Nφσ

= = =

 −   − Φ  
   =

−

∑ ∑ ∑
 (3.27) 

 
where , ,i c jX is the extracted point from the sub-track j of track ,i cd , between events 1c −  

and c  for the thi particle history. 

 
Like the KDE collision estimator, the KDE tracklength estimator is also mesh-free, 

independent of the material or tally surfaces in the problem geometry. 

3.3.3 Multi-D KDE Collision and Track Length Estimators and Their Variances 
 
The 1-D KDE collision and track length tallies can be easily extended to three 

dimensions by using the 3-D weighted KDE given by Eq. (3.18). The 3-D KDE collision 

tally and its variance are given by 
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, , ,

1 1 , , ,

,

1 1 1( , , )
( , , )

1 ,

icN
i c i c i c

i c t i c i c i c x x y y

i c

z z

w x X y Y
x y z k k

N X Y Z h h h h

z Z
k

h h

φ
= =

 − − 
=     Σ    

− 
 
 

∑∑
 (3.28) 

 

 

( )

,2
( , , )

1 1 , , ,

2

, , ,

2

1 1
( 1) ( , , )

1 1 1

, , .

icN
i c

x y z
i c t i c i c i c

i c i c i c

x x y y z z

w
N N X Y Z

x X y Y z Z
k k k

h h h h h h

x y z

φσ

φ

= =

 =  − Σ 

 − − −   
            

− 

∑ ∑

 (3.29) 

 
( ), , ,, ,i c i c i cX Y Z  is the location of the thc  collision of the thi history in a three dimensional 

region. The bandwidth in each direction can be calculated by using Eq. (2.59) and all the 

recorded collision locations. For criticality calculations the bandwidth from the previous 

cycle can be used to eliminate the storage requirement. In a similar exercise we can 

derive the 3-D KDE track length flux tally and its variance: 

 

, ,, ,

1 1 1

, , , ,

1 1( , , )

1 1 ,

icN n
i c ji c i c

i c j x x

i c j i c j

y y z z

x Xw d
x y z k

N n h h

y Y z Z
k k

h h h h

φ
= = =

− 
=  

 
 − − 
       

∑∑ ∑
 (3.30) 

 

 

( )

( )( )

, ,, ,2
, ,

1 1 1

2
2, , , ,

1 1 1
1

1 1 , , .

icN n
i c ji c i c

x y z
i c j x x

i c j i c j

y y z z

x Xw d
k

N N n h h

y Y z Z
k k x y z

h h h h

φσ

φ

= = =

  − =    −   
 − −  −         

∑ ∑ ∑
 (3.31) 
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3.4 Numerical Results for 1-D KDE Collision and Track Length Estimators  
 

 
Figure 3.2 1-D example 1: One-dimensional and one energy group representation of a 

fuel pin.  
 
In all the following 1-D examples, the Epanechnikov kernel is used as the kernel function 

k . This kernel function is given by Eq. (2.24). The bandwidths for all the following 

problems are calculated by using Eq. (2.21). All the following numerical examples of 

KDE tallies are one energy group. The energy variable is not a concern in this research, 

as the primary goal is to test the effectiveness of KDE tallies for extracting the shape 

information from Monte Carlo simulation. KDE has problems at boundaries due to the 

potential overlapping of an individual kernel and the boundary. To remedy this, we have 

used the boundary kernel method, thoroughly discussed in Chapter 2, as the boundary 

correction for the KDE tallies. Note that we could also use the reflecting boundary 

correction method, as all the 1-D examples have reflecting boundaries.    
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Figure 3.3 One energy group flux distribution inside a 1-D fuel region surrounded by 

water by collision estimators.  

 
Figure 3.4 One energy group flux distribution inside a 1-D fuel region surrounded by 

water by track length estimators. 
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Figure 3.2 illustrates the first 1-D example, where the scalar flux is estimated inside a 

pure fuel region (material properties are given in Figure 3.2) surrounded by water and 

with reflecting boundaries to represent an infinite lattice of fuel pins. The simulation used 

10,000 particles per batch for 150 batches with the first 50 batches discarded.  

 
The flux in Figure 3.3 is calculated by the KDE collision tally, given by Eq. (3.21), and is 

averaged over the active cycles. The KDE and FET [1] flux is calculated by banking all 

the collision points during a cycle and using those points as observations from the actual 

flux distribution. The basic concepts of FET will be discussed in the convergence 

analysis section of this chapter. It is clear from Figure 3.3. that qualitatively the 

performance of KDE is better than FET. The KDE track length estimator is implemented 

in Figure 3.4 with 2n =  (2 sub-tracks) and with Eq. (3.26). Figure 3.4 also confirms the 

effectiveness of the KDE track length estimator for depicting the flux distribution inside a 

1-D fuel pin region.  

 
 

Figure 3.5 1-D example 2: One-dimensional and one energy group representation of a 
fuel lattice containing a strong absorber. 

 
In the second 1-D example, an array of 6 1-D fuel regions, each surrounded by water and 

with reflecting external boundaries to represent an infinite lattice, is used to estimate the 

scalar flux using KDE and FET. At the center of the array there is a strong neutron 

absorber, which is used to simulate a control pin. Figure 3.5 illustrates the problem 

geometry and specifies the material properties.   
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Figure 3.6 One group flux distribution inside a 1-D array of fuel and water with a strong 

neutron absorber using the track length estimator. 

 
Figure 3.7 KDE track length scalar flux estimator without storing the points from the 

tracks in a neutron cycle. 
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For a reference solution, a one energy group MCNP5 [12] kcode calculation is used with 

500 cycles (200 inactive) and 200,000 histories per cycle. The scalar flux is estimated by 

employing the FMESH tally with 140 fine meshes in the x-direction. The KDE and FET 

estimations employed 30,000 histories per cycle for 200 cycles with the first 100 cycles 

discarded. The number of sub-tracks n  is equal to 4  for all the KDE track length tallies. 

Twelve Legendre expansion coefficients are used for the FET calculation. 

 
In Figure 3.6 the KDE-track-length estimator is calculated by using a single (global) 

bandwidth over the entire problem domain. In this case all the points extracted from the 

tracks during an active cycle need to be stored in order to calculate the bandwidth. It is 

evident from Figure 3.6 that global KDE tallies can handle material discontinuities inside 

the tally region. 

 
At the end of each active cycle, the bandwidth is calculated from the stored data and is 

then used for the subsequent KDE flux calculation for that cycle. The plotted flux is the 

average over the active cycles. That means at each cycle we need to store the data points, 

either collision points or points from tracks, and their weights, in order to calculate the 

bandwidth at the end of the cycle. This storage requirement can be eliminated during a 

neutron cycle by using the bandwidth from the previous cycle. As the bandwidth depends 

mainly on the standard deviation of the data and number of data points, the bandwidth 

can be calculated in a cycle without storing the data points and that bandwidth can be 

used to score the KDE flux in the next cycle. The KDE-track-length tally without storing 

the points is illustrated for the same problem in Figure 3.7. The KDE estimators can be 

slightly improved by using region-based bandwidths instead of one global bandwidth. 

The KDE collision and KDE track-length estimators with region-based bandwidths,  

where σ  and N  in Eq. (2.21) are calculated for each region, are illustrated in Figures. 

3.8 and 3.9. The reference solution for the collision tally is obtained with a benchmark 

calculation with 140 histogram bins in the x-direction, with 100,000 histories per cycle 

with 400 cycles and 200 discarded cycles. Note that for KDE estimation the internal 

shape of the flux is not dependent on placing bins within the material regions. The 

boundary correction for the KDE estimators is only used for the external boundaries and 

not for the internal material boundaries. 
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Figure 3.8 KDE collision scalar flux estimator without storing the collision points in a 

neutron cycle and with region-based bandwidths.  

 
Figure 3.9 KDE track length scalar flux estimator without storing the collision points in a 

neutron cycle and with region-based bandwidths. 
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3.5 Numerical Results for 2-D KDE Collision and Track Length Estimators 
 
For testing purposes, both KDE track length and collision estimators are used to create 

the 2-D flux across the face of a pin cell. Figure 3.10 illustrates the top view of the 

problem geometry, with a fuel pin of radius 0.603cm placed in a square cell of pitch 

1.875cm. The fuel pin has the same fissile material as in the previous 1-D problems and 

it is surrounded by water with the same cross sections as in the 1-D problems. The 

Epanechnikov kernel is used as the kernel function in both x  and y  directions. The 

bandwidth is calculated by using Eq. (2.59). The KDE collision and track length flux is 

compared with a highly resolved MCNP5 [12] FMESH calculation with 1600 mesh tally 

regions ( 40  in x  direction and 40  in y direction). The KDE and MCNP5 simulations 

employed 20,000 histories per cycle for 400 cycles with the first 200 cycles discarded. 

The number of sub-tracks n  is equal to 4  for the KDE track length tallies. In this case, 

global KDE is used with one bandwidth for the entire tally region and the boundary 

kernel method is used as the boundary correction for the four external boundaries. 

 
 

Figure 3.10 2-D Example 1: Two dimensional representation of fuel pin cell.  
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Figure 3.11 MCNP5 flux distribution by plotting isofluxes over the face of the pin cell.    

 
Figure 3.12 KDE collision flux distribution by plotting the isofluxes over the face of the 

pin cell. 
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Figure 3.13 KDE track length flux distribution by plotting the isofluxes over the face of 

the pin cell. 
 
Figure 3.11 illustrates the MCNP5 solution and Figures 3.12 and 3.13 present the KDE 

collision and track length solutions, respectively. For all three cases MATLAB7 [13] 

contour plot option is used, which plots the equal flux contours, or isofluxes, from a 

matrix. From the 2-D flux plot we can conclude, for the same number of histories, a 

smoother flux distribution is obtained by using global KDE collision and track length 

tallies. Even the KDE collision tally produces a smoother flux than the MCNP5 FMESH 

tally, which is basically a histogram tally with track length estimator. It is important to 

note that the KDE tallies do not require a 2-D bin structure and the KDE tallies are 

obtained without storing any points and by using a bandwidth from the previous 

criticality cycle. 

 
In order to provide a more challenging test of the capabilities of the 2-D KDE track 

length tally, a problem was developed to simulate a realistic PWR fuel assembly. A two-

dimensional representation of a quarter 16 16×  assembly is shown in Figure 3.14. The 

fuel assembly shown in Figure 3.14 has 6 strong absorber pins (control elements) that are 

shown in yellow.  
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Figure 3.14 Two dimensional representation of a PWR fuel assembly with all 6 control 
rods inserted. Reflecting boundary conditions are applied to all sides in order to simulate 

a repeating lattice of assemblies. 
 
The neutron absorber material (yellow pins) has the same properties as the neutron 

absorber used in the 1-D lattice problem. The fuel pins and the surrounding moderator 

also have the same cross sections as in the 1-D cases. The quarter assembly illustrated in 

Figure 3.14 contains 64 individual fuel and poison elements. With this many separate 

regions, it may not be expected that the global KDE track length tally with a single global 

bandwidth for the entire assembly will produce an acceptable flux distributions. But 

surprisingly it does produce good results – with the global KDE it is possible to 

distinguish the individual pins. Figure 3.15 illustrates the MCNP5 FMESH solution. The 

KDE flux approximations are shown in Figure 3.16. Figure 3.15 shows the flux 

depressions inside the control pins and shows the movement of the peak flux away from 

the control pins.  For the last case, which is illustrated by Figure 3.17, 4 of the control 

rods are removed from the assembly and the guide channels are filled with water. The 

corresponding MCNP5 and KDE flux plots are shown by Figures 3.18 and 3.19, 

respectively.  All the quarter assembly cases used 50,000 histories per cycle for 400 

cycles with the first 200 cycles discarded and the number of sub-tracks n  was equal to 4 . 
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Figure 3.15 2-D MCNP5 flux distribution across the face of the fuel assembly with all 

the control rods inserted. 

 
Figure 3.16 2-D global KDE flux distribution across the face of the fuel assembly with 

all the control rods inserted. 
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Figure 3.17 Two dimensional representation of a PWR fuel assembly with only 2 control 
rods inserted. Reflecting boundary conditions are applied to all sides in order to simulate 

a repeating lattice of assemblies. 

 
Figure 3.18 2-D MCNP5 flux distribution across the face of the fuel assembly with 4  of 

the control rods removed from the assembly. 
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Figure 3.19 2-D global KDE flux distribution across the face of the fuel assembly with 4  

of the control rods removed from the assembly. 

3.6 Convergence Analysis 
 
The Mean Integrated Square Error ( MISE ) is used as a measure of the discrepancy 

between the actual and the estimated density. MISE  will be used in this section to 

compare the convergence of three Monte Carlo tallying techniques, namely KDE, FET, 

and histogram. The MISE was defined in Chapter 2 as follows 

 { } { }2 2ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) var ( ) .MIS Ef E f x f x d x Ef x f x d x f x d x= − = − +∫ ∫ ∫  (3.32) 

 
The actual density is given by ( )f x , and the estimated density is denoted ˆ ( )f x . The term 

E is the expectation operator and the limit of the integration, if not explicitly given, is 

from negative infinity to positive infinity, which has been assumed for simplicity. All the 

analyses are also applicable to the boundary kernels used for correcting the boundary bias 

for KDE. These analyses are easily extended to multi-variate densities as was discussed 

in Chapter 2.  
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3.6.1 Convergence Analysis of the Global KDE Tally 
 
Convergence properties for KDE are discussed in Chapter 2. In this section the important 

results related to the KDE convergence will be reviewed without going into the details. 

 
For each x , ˆ ( )f x  in Eq. (2.8) can be considered as a random variable that depends on 

the observations 1,........., NX X . The bias and variance of the estimator are given by 

 ( )2 3
2

1 ( ) ,
2

bias h f x k O h′′≈ +  (3.33) 

 

 21 1ˆvar ( ) ( ) ( ) .f x f x k z d z O
Nh N

 ≈ +  
 ∫  (3.34) 

 
2k  is defined by Eq. (2.9). The MISE can be approximated easily by combining Eqs. 

(3.32), (3.33), and (3.34) to find: 

 ( ) ( ) ( )2 24 2
2

1 1ˆ .
4

MISE f h k f x dx k z dz
Nh

′′≈ +∫ ∫  (3.35) 

 
The basic assumption here is that the true density f is such that its second derivative f ′′  is 

continuous and square integrable. It is straightforward to derive the optimum bandwidth 

by minimizing the MISE: 

 
( ){ }
( ){ }

1
2 5

1
5

12 2 55
2

.opt

k z dz
h N

k f x dx

−=
′′

∫

∫
 (3.36) 

 
A natural approach for calculating the bandwidth h is to use a standard family of 

distributions, like the Gaussian distribution, to obtain a value of the term ( )2f x dx′′∫  in 

the Eq. (3.36). We can derive an expression for the bandwidth h  by also using a 

Gaussian function as the kernel function k :  

 
1

51.06 .h Nσ −=  (3.37) 
 
The quantity 2σ is the variance of the normal distribution and can be estimated by the 

usual standard deviation of the data or by some more robust estimators. Inserting the 
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optimum bandwidth into the MISE equation (Eq. (3.35)) we can arrive at the final 

approximate expression for MISE: 

 
( ) ( ) ( ){ }

( )

1 42 5 5

4
5

5ˆ
4

,

KDE
MISE f C k f x dx N

O N

−

−

′′=

=

∫
 (3.38) 

 
where 

 ( ) ( ){ }
42 2 55

2 .C k k k z dz= ∫  (3.39) 

 3.6.2 Convergence Analysis of the FET Tally 
 
This analysis is a variation on the analysis performed by Griesheimer et al. [7]. If [ ]αψ 0n  

is a complete orthogonal set with respect to some weighting function )(xρ in )(2 ΓρL , 

which is the space defined by all square integrable functions over some bounded 

domainΓ , then any )()( 2 Γ∈ ρLxf can be written as 

 ( ) ( )
0

,n n n
n

f x a k xψ
∞

=

=∑  (3.40) 

 
where na is the nth expansion coefficient defined by (using the orthogonality properties of 

the basis functions) 

 ( ) ( ) ( ) ,n na x x f x d xψ ρ= ∫  (3.41) 
 
and nk  is the normalization constant for the nth basis function [7]. As it is not possible to 

calculate an infinite number of terms, the estimator ( ( )f̂ x ) of the true function f is 

always truncated to some finite number M : 

 ( ) ( )
0

ˆ ˆ ,
M

n n n
n

f x a k xψ
=

=∑  (3.42) 

 
where 

 ( ) ( )
1

1ˆ .
N

n n i i
i

a X X
N

ψ ρ
=

= ∑  (3.43) 

 
It is easy to derive the first term of the MISE  expression in Eq. (3.32): 



 

 64 

 

( ){ } ( ) ( ) ( )

( ) ( ) ( )

2
2

1

1 1

2

1

ˆ ( )

.

n n n
n M

n m n m n m
n M m M

n n
n M

Ef x f x x dx k a x x dx

k k a a x x x dx

a k

ρ ψ ρ

ψ ψ ρ

∞

= +

∞ ∞

= + = +

∞

= +

 
− =  

 
 

=  
 

=

∑∫ ∫

∑ ∑∫

∑

 (3.44) 

 
Equation (3.44) is obtained by using the orthogonality property of the basis functions. 

The true expansion coefficients converge at a rate determined by κ [1, 14] 

 1 .na O
nκ

 =  
 

 (3.45) 

 
The value of κ , which is called the algebraic index of convergence, is generally equal to 

the number of derivatives of the true density function f  that are square integrable [1, 

14]. Using Eqs. (3.44) and (3.45) the integral of the square bias term can be written as  

 
( ) ( ){ } ( ) [ ]

2

2
1

2 2

1 2 1ˆ , for Legendre polynomials
2

1 .

n M

nEf x f x x d x O
n

O
M

κ

κ

ρ
∞

= +

−

+ − ≈  
 

 ≈  
 

∑∫
(3.46) 

 
The last line in Eq. (3.46) is obtained by using an infinite series summation [15]. The 

second term of the MISE in Eq. (3.32) can be written as [7] 

 ˆvar ( ) ( ) .Mf x x dx O
N

ρ  ≈  
 ∫  (3.47) 

 
Finally, the results from Eqs. (3.46) and (3.47) can then be used to write the MISE of 

FET as 

 ( ) 2 2

1ˆ .
FET

MMISE f O O
M Nκ −

   = +   
   

 (3.48) 

 
The MISE of FET can be minimized over M by simple calculus 

 ( )1
2 1 .optM O N κ −=  (3.49) 

 
Substituting the optimum M into Eq. (3.48) we obtain 
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 ( )
2 2
2 1ˆ .k

FET
MISE f O N

κ −
−

−
 

=  
 

 (3.50) 

3.6.3 Convergence Analysis of the Histogram Tally 
 
Let us assume bN  is the number of observations in bin b  and M  is the total number of 

bins. Also, N  is the total number of observations and Lx M∆ ≡ (where L is the length of 

the domain) is the width of each bin. The width of the bins is taken constant for this 

analysis. The bias of the histogram estimator for bin b  can be written as 

( ) ( ) ( ) ( ) ( ) ( )

( )

1

, ,

2
1/ 2

1/ 2 1/ 2 1/ 2 1/ 2 1/ 2

ˆ ( )

1 ( ) ( )

1 ...
2

.

b

b

hist
M b M b

x

x

b
b b b b b

bias Ef f x

f x d x f x
x

x x
xf x f x x x f x f x

x

O x

−

−
− − − − −

= −

= −
∆

 − ′ ′′≈ ∆ − + − + + ∆   
≈ ∆

∫

 (3.51) 
 
It is now simple to obtain an expression for the first term of the MISE in Eq. (3.32) for 

the histogram estimator: 

 ( ) ( )
3

2 2
3 3 2

1 1 1

1 1 .
M M M

b b b

Lbias x dx O x x O O O
M M M= = =

     ≈ ∆ ∆ ≈ ≈ =     
    

∑ ∑ ∑∫  (3.52) 

 
The histogram estimator can be expressed as 

 ( ) { } [ ]1
1

1ˆ , , .
N

hist
i b b

i
f x I X b x x x

N x −
=

= ∈ ∈
∆ ∑  (3.53) 

 
The random variable { }iI X b∈ is associated with Bernoulli’s distribution, whose 

variance is given by (1 )p p−  [8], where p can be written as 

 
1

( ) .
b

b

x

x

p f x dx
−

= ∫  (3.54) 

 
The variance of the histogram estimator can be calculated as 
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( )

( )

( )

1 1

2 2
1

2 2

1/ 2

1ˆvar var

1 1 ( )

1 .

b b

b b

N
hist

i

x x

x x

b

f x I
N x

N f x dx f x dx
N x

f x
N x

− −

=

−

=
∆

   = −   ∆    

≈
∆

∑

∫ ∫  (3.55) 

 
It is now straightforward to calculate the second term of MISE in Eq. (3.32) for a 

histogram: 

 ( ) ( )1/ 2
1ˆvar .hist

b
Mf x dx f x dx O

N x N−
 ≈ ≈  ∆  ∫ ∫  (3.56) 

 
Equations (3.32), (3.52) , and (3.56) yield 

 ( ) 2

1ˆ .
hist

MMISE f O O
M N

   = +   
   

 (3.57) 

 
By simple calculus we can easily derive the optimum number of bins, yielding 

 ( )1
3 .optM O N≈  (3.58) 

 
Substituting the value of M from Eq. (3.58) into Eq. (3.57) we find 

 ( )
2
3ˆ .

hist
MISE f O N

− 
=  

 
 (3.59) 

3.6.4 Comparison Among KDE, FET, and Histogram Results 
 
The KDE, FET, and histogram approximations of the true distribution converge at 

different rates dependent on the problem parameters. However, for most of the cases the 

KDE tally outperforms the FET tally, which in turn outperforms the histogram tally. If 

we consider 2κ = , that means the underlying true density function f has two integrable 

derivatives, then from Eqs. (3.38) and (3.50)  it is easy to conclude that the ( )ˆ
KDE

MISE f  

has a faster convergence rate than ( )ˆ
FET

MISE f . Although the KDE MISE calculation 

assumed that the second derivative f ′′of the true density is continuous and square 

integrable, it is evident from the figs. 3.6 – 3.9, 3.12, 3.13, 3.14, and 3.16 that a global 
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KDE tally can estimate the material discontinuity within the domain much more 

effectively than a global FET tally. For FET estimation the material discontinuity can 

only be taken care by piecewise FET approximation. A significant feature of the KDE 

tally, which is shared by the FET tally, is that internal structure within the bin can be 

obtained without resorting to bin refinement. However, the FET tally requires a 

knowledge of the bin boundaries since the expansion functions are defined over the bin 

while the KDE tally is independent of the bin boundaries because the kernels are defined 

only at the interaction point. Because of this, we believe that the KDE tally will allow the 

pathlength estimator to be used when Woodcock tracking [16] is employed. Finally, the 

KDE performance can be improved further by using higher order kernels. In this analysis 

we assume k2 (second moment of the kernel k) in Eq. (2.9) is not equal to zero. However 

if we relax this restriction, it is possible to construct k with 2 0k = , which will further 

reduce the bias of the estimator. This has not been studied and is a topic for future 

research. 

3.7 Numerical Verification of Convergence 
 
We now present a series of numerical experiments to verify the convergence analyses of 

the three tallies discussed above. The following trial distribution ( )f x is used for each 

numerical experiment, 

 
[ ]
[ ]
[ ]

2 1

/ 2 1/ 4

cos( ) , 1, 1/ 2 ,
1( ) cos( ), 1/ 2,1/ 2 ,

1.51985
cos( ) , 1/ 2,1 .

x

x

x e x

f x x x

x e x

+

− +

 ∈ − −
= ∈ −


∈

 (3.60) 

 
Figure 3.20 illustrates the shape of the trial distribution ( )f x . This distribution is 

specifically chosen to simulate many Monte Carlo particle transport features encountered 

during the simulation [1]. In the first set of experiments the integrated bias square and the 

integrated variance for each of the estimators are calculated for the trial 

distribution ( )f x . The integrated square bias and the integrated variance for KDE are 

plotted separately in Figure 3.21 vs. bandwidth h  where 10,000  observations from the 

trial distribution are used. The entire domain [ ]1,1−  is divided into ( )50B  bins and the 



 

 68 

density is estimated at the mid point of each bin. The calculation is repeated ( )50n  times 

to estimate the expectation. The sum of the integrated square bias and the integrated 

variance, which is the MISE, is also plotted in the same plot. The MISE of the KDE has a 

minimum point which corresponds to the optimum bandwidth. The integrated bias for all 

three estimators is calculated as follows 

 ( ) ( ){ } ( ) ( ){ }2 2

1

ˆ ˆ
B

i i
i

Ef x f x d x Ef x f x x
=

− ≈ − ∆∑∫  (3.61) 

 
where x∆ is the bin width. The variance is calculated as the sample variance. 

 
The same experiment is carried out for FET and histogram tallies and results are 

illustrated in Figures 3.22 and 3.23. The minimum point of the MISE  in Figure 3.22 

corresponds to the optimum number of expansion coefficients for FET. The optimum 

number of bins for the histogram is predicated by the minimum MISE  in Figure 3.23.  

 
Finally, the MISE  is plotted versus the number of histories in Figure 3.24 and is 

calculated as follows 

 
{ }2

,
1 1

ˆ
n B

b j b
j b

f f x
MISE

n
= =

− ∆
=
∑∑

 (3.62) 

 
The optimum values of the bandwidth (KDE), the number of terms (FET), and the 

number of bins (histogram), which vary with the number of histories, are used in this plot 

(Figure 3.24). Figure 3.24 confirms that for the given trial distribution f , ( )ˆ
KDE

MISE f  

converges faster than both FET and histogram tallies.  
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Figure 3.20 Plot of the trial distribution ( )f x used for numerical verification of the 

convergence of KDE, FET, and histogram (from Griesheimer [1]). 
 

 
Figure 3.21 Plot of integrated variance, integrated bias square, and MISE vs. bandwidth 

for KDE. 
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Figure 3.22 Plot of integrated variance, integrated bias square, and MISE vs. number of 

expansion coefficients for FET. 
 

 
Figure 3.23 Plot of integrated variance, integrated bias square, and MISE vs. number of 

bins for histogram. 
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Figure 3.24 Plot of MISE vs. number of histories N  for KDE, FET, and histogram 

tallies.  
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CHAPTER 4 

Kernel Density Estimation Method for Monte Carlo Tallies with 
Unbounded Variance 

4.1 Introduction 
 
For many nuclear engineering applications, for example in shielding calculations, it is 

important to calculate the scalar flux or equivalent quantities at a point. The conventional 

point detector estimator, also known as the next-event estimator, is an analytical 

estimator which contributes to a scalar flux estimator at the location of the point detector 

for every source or collision event [1]. This estimator has a 2r  term in the denominator, 

where r  is the distance from the source or collision point to the detector point, which 

results in a singularity that makes the theoretical variance of this estimator infinite [2]. 

The infinite variance implies that the Central Limit Theorem is not valid and cannot be 

used to form a confidence interval for convergence to the true scalar flux at the detector 

point. The impact of this singularity on a Monte Carlo simulation is that estimates of the 

flux and its variance may not be reliable, depending on the number of source particles or 

collisions close to the detector point.  

 
Similarly, the surface crossing flux tally, which gives an estimate for the average flux 

over a surface, has a 1/ µ  singularity , where µ is the cosine of the angle between the 

direction of flight and the surface normal, again yielding an unbounded variance [3]. 

 
Kalos [2] proposed the once-more-collided estimator to remedy the unbounded variance 

in the point detector tally. This method employs the sampling of an imaginary 

intermediate collision point for every real collision. By forming a suitable probability 

density function (pdf) for sampling the intermediate points, an estimator with only 1/ r  

singularity can be achieved. Kalli and Cashwell [4] studied point detector estimators 

extensively. Steinberg and Kalos [5] proposed a method to bias the selection of the 
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collision points in the random walk toward the point detector. Rief et. al. [6] proposed a 

method of tallying the flux at the detector location using neutron flight paths as line 

sources, resulting in a 1/ r  singularity for the estimator. The theoretical variance of this 

estimator is also unbounded due to an angular singularity. However, it was claimed that 

the convergence of this estimator was similar to a bounded estimator, this is 1/ N . 

 
The conventional approach to estimate the unbounded tallies is to break up the angular 

domain into two regions and use an approximate estimator near the singularity, yielding a 

bounded variance. The MCNP5 [7] point detector estimator (F5 estimator) is based on 

this approach. MCNP5 handles this problem by modifying the conventional point 

detector tally by defining a fictitious sphere surrounding the point of estimation, where it 

is assumed the scalar flux is constant and equal to its average value in the sphere. The 

average flux in this region is then used to estimate the uncollided flux at the point 

detector, which is known analytically. Defining this sphere requires some experience and 

experimentation, especially for energy-dependent problems. This method introduces a 

bias in the tally due to the constant flux approximation in the sphere. Another procedure 

[8] is to score 2
0/ 4t re rπ−Σ  for each collision inside a bounding sphere of radius 0r . The 

value of the constant 0r  may be estimated based on the expected approximate flux shape 

inside the bounding sphere. Lux and Koblinger [9] provide a comprehensive review of 

the point detector estimator in their book. 

 
MCNP5 modifies the surface crossing flux estimator (F2 estimator) by tallying the 

expected value of 1/ µ  for µ in the range 0 µ ε≤ ≤ , where typically 0 1.ε = . This 

method was originally proposed by Clark [10]. This approximate estimator yields a finite 

variance, and the Central Limit Theorem can be applied. However, this technique 

introduces a bias into the tally.   

 
This chapter discusses new methods to estimate both flux at a point and the surface 

crossing flux with KDE [11, 12]. The first part of the chapter discusses the direct 

application of the KDE tracklength and collision estimators to estimate flux at a point, 

using the fact that KDE provides a functional estimate of the flux that can be evaluated at 
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arbitrary points in the problem geometry. The next part of this chapter presents an 

alternative approach where KDE is incorporated into variance reduction methods to 

estimate both the point detector flux and the surface crossing flux, without making any 

approximations near the singularities. Both of these methods yield an unbiased (at least 

asymptotically) estimate of the mean and a bounded variance. The reason the variance 

reduction approach works is that KDE provides estimates of the underlying pdf's for the 

distribution (in r) of collisions and the distribution  (in µ ) of surface crossing angles and 

these approximate pdf's enable the variance reduction game to be played. To estimate the 

point detector scalar flux or the surface crossing flux, samples are drawn from altered 

(e.g., uniform) distributions (in or r µ ) and the scores are modified using the 

corresponding KDE-estimated pdf's. Both techniques of estimating Monte Carlo tallies 

with unbounded variance are illustrated with numerical examples. 

4.2 Point Detector Estimator 
 
The point detector estimator is a powerful but easily abused estimator for Monte Carlo 

particle transport. Fundamentally, it uses the point source kernel, which is the Green's 

function for a point source in an infinite medium, to estimate the scalar flux at a point due 

to an emission source, consisting of the known external source and a collision source that 

has itself been generated by the Monte Carlo simulation. The known source and the 

estimated collision source are used as emission sites for fictitious particles that contribute 

to the uncollided scalar flux at a point r . This idea, combining an analytical solution with 

a Monte Carlo estimate of some intermediate quantity, in this case the collision source, to 

then estimate another quantity of interest, in this case the scalar flux, may be applicable 

to other fields in addition to particle transport. 

 
The point detector estimator may be derived in two different ways. The first one is more 

intuitive and begins with an alternative, but fundamental, definition of scalar flux. The 

other is a formal mathematical derivation (actually, a correspondence) that makes use of 

the point source kernel (uncollided Green's function). 
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4.2.1 Physical Derivation of Point Detector Estimator 
 
The scalar flux ( )rφ  is defined by the distance traveled by all the particles in a unit 

volume at r  in a unit time. An alternative definition of scalar flux ( )rφ  at a point r  is 

given by 

 20
( ) lim ,Nr ε

ε
φ

πε→
=  (4.1) 

 
where Nε  is the total number of neutrons/second entering a sphere of radius ε  centered 

at r , schematically illustrated by Figure 4.1. One can view the scalar flux in Eq. (4.1) as 

an integration of the angular flux over all angles since particles can enter the sphere from 

any direction. 

 
Figure 4.1 Contribution of the source at dr′ about r′ to the sphere of radius ε  at r   

 
The idea is to compute ( )rφ  by adding up all the contributions from the external source 

and the collision source. By definition of the known source, the number of 

particles/second emitted in dr′  about r ′  is ( )S r dr′ ′  . Assuming the source is isotropic, 

the differential number SNδ  of these emitted particles that are emitted in the direction 
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defined by the sphere of radius ε  centered at r  (Figure 4.1) and make it to the sphere 

without a collision is given by 

 [ ]
2

( , )
2( ) .

4
r r

SN S r dr e
r r

απεδ
π

′−
 

 ′ ′=    ′−  
 (4.2) 

 
This equation can be expressed in words,  

 
[ ]
[ ]
[ ]

sN Number of particles/secemitted in

Probabilityof emission into thesolid anglesubtended by the sphere

Probabilityof getting from to without a collision ,

dr

r r

δ

ε

′= ×

×

′

 (4.3) 

 
where ( , )r rα ′  is the optical thickness or the number of mean free paths between r  and 

r ′ , 

 
0

( , ) .
r r r rr r r s dst r r

α
′−  ′−′ = Σ − ∫  ′− 

 (4.4) 

 
If the medium is uniform with total cross section tΣ , then ( , )r r r rtα ′ ′= Σ − . Now 

consider the collision source. The collision rate at r ′  is given by ( ) ( )t r rφ′ ′Σ  

collisions/cm3-s. Then the source of scattered neutrons is simply this rate times the 

probability of scattering at r ′ . Treating this like the known source above, the rate at 

which neutrons collide in dr′  and scatter into the direction subtended by the ε  sphere, 

and reach the sphere without collision is given by: 

 [ ]
2

( , )
2

( )( ) ( ) .
( ) 4

r rs
C t

t

rN r r dr e
r r r

απεδ φ
π

′−
  ′Σ  ′ ′ ′= Σ     ′Σ ′−    

 (4.5) 

 
In this case, the qualitative description becomes 

 

[ ]
[ ]
[ ]
[ ]

Number of collisions/secin

Probability that thecollision is a scatter

Probability the neutron isscattered into thesolid anglesubtended by the sphere

Probabilityof getting from to without a collision .

cN dr

r r

δ

ε

′= ×

×

×

′

(4.6) 

 
Then the total number of neutrons/s which make it to the ε  sphere is given by the sum of 

the two terms in Eqs. (4.2) and (4.5): 
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 .S CN N Nεδ δ δ= +  (4.7) 
 
Now associate these terms with the Monte Carlo random walk process and identify the 

term ( )S r dr′ ′  as the particle emitted by the source and ( ) ( )t r r drφ′ ′ ′Σ  as a particle that 

suffers a collision. To get the total number, sum over all the source particles 1, 2,....,i N=  

and all subsequent collisions to obtain the total number of particles per second which end 

up traveling towards the ε  sphere: 

 ( ) ,
2 2, ( , ),

2 2
1 1 ,

,

( )
,

( )4 4

i
i ci

CN s i c r rr r

i c t i ci i c

r
N e e

rr r r r

αα
ε

πε πε

π π

−−

= =

  Σ  = +  Σ− −    

∑ ∑  (4.8) 

 
where iC  is the number of collisions during history i . Then, using the definition of scalar 

flux from Eq. (4.1), we find 

 
,( , )( , )

,
2 2

1 1 ,
,

( )
( ) ,

( )4 4

i ci i
r rr r CN s i c

i c t i ci i c

re er
rr r r r

αα

φ
π π

−−

= =

  Σ  = +  Σ− −    

∑ ∑  (4.9) 

 
which is the desired scalar flux at r . 

4.2.2 Mathematical Derivation of Point Detector Estimator 
 
This derivation makes use of the fact that the first flight kernel, or uncollided Green's 

function, due to a point source in an infinite homogeneous medium, is given by the 

following: 

 
( , )

2( , ) .
4

r r

pt
eG r r

r r

α

π

′−

′ =
′−

 (4.10) 

 
Using Eq. (4.10) and the definition of the Green's function, by superposition one can 

obtain the scalar flux due to the known source term and the resultant emission source due 

to collisions: 

 
( , ) ( , )

2 2( ) ( ) ( ) ( ) .
4 4

r r r r

s
e er S r dr r r dr

r r r rV V

α α

φ φ
π π

′ ′− −

′ ′ ′ ′ ′= + Σ
′ ′− −∫ ∫  (4.11) 
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This is just the integral transport equation for isotropic scattering, which should be no 

surprise. This equation is exact for isotropic scattering. Now note that the Monte Carlo 

simulation yields source particles that estimate the term ( )S r dr′ ′  and collisions that 

estimate the term ( ) ( )t r r drφ′ ′ ′Σ . Therefore the integrals over volume become 

summations over source and collision sites: 

 
,( , )( , )

,
2 2

1 1 ,
,

( )
( ) ,

( )4 4

i ci i
r rr r CN s i c

i c t i ci i c

re er
rr r r r

αα

φ
π π

−−

= =

  Σ  = +  Σ− −    

∑ ∑  (4.12) 

 
where ,i cr = location of the thc collision for the thi particle and ir  = location of the source 

emission in history i . Eq. (4.12) indicates that for each history 1,2,....,i N= , an estimate 

iφ  of the scalar flux ( )rφ  due to the source "emissions" and collision "emissions" can be 

found: 

 
,( , )( , )

,
2 2

1 ,
,

( )
,

( )4 4

i ci i
r rr r C

s i c
i

c t i ci i c

re e
rr r r r

αα

φ
π π

−−

=

 Σ
 = +
 Σ− − 

∑  (4.13) 

 
where iC  is the number of collisions during history i , and "emissions" is in quotes to 

signify that these are fictitious emissions that are only used to estimate the point flux 

( )rφ  and are not followed in the random walk simulation. Every source sample and 

every collision launches a fictitious particle that results in a score. If a variance reduction 

game is being played, such as implicit capture or Russian Roulette or splitting [13], then 

the instantaneous weight ,i cw  of the particle i  at collision c  would be included in the 

partial score for iφ . 

4.2.3 Estimating the Uncertainty in the Point Scalar Flux Estimate 
 
To obtain the uncertainty in our estimates, compute the sample mean and variance by 

first accumulating the sum and the sum of the squares of the observations iφ : 

 
1

,
N

i
i
φ

=

Φ =∑  (4.14) 
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 2

1
,

N

SQ i
i
φ

=

Φ =∑  (4.15) 

 
where one must be careful not to compute 2

iφ  until the entire history i  is completed, 

including all progeny from non-analog games such as splitting, forced collisions, and 

implicit capture. Otherwise the iφ ’s will not be independent, identically distributed 

observations. 

 
The scalar flux is then estimated by the sample mean, which is the average of the 

N observations: 

 
1

1ˆ .
N

i
iN N

φ φ
=

Φ
= = ∑  (4.16) 

 
The sample variance for the estimate of the mean is  

 ( )22 2 2 2 2

1 1

1 1 1 1 1ˆ ˆ ,
1 1 1

N N

N i i
i i

s
N N N N N

φ φ φ φ φ φ
= =

   ≡ − = − = 〈 〉 − 〈 〉   − − − 
∑ ∑  (4.17) 

 
which is the familiar "average of the square – square of the average" divided by 1N − . 

Using a one-sigma error criterion, Eq. (4.17) results in the following uncertainty in the 

estimate of the scalar flux: 

 2 21ˆ .
1Ns

N
φ φ φ∆ = = 〈 〉 − 〈 〉

−
 (4.18) 

 
This yields the following estimate of the scalar flux at r  using the point source estimator: 

 ˆ ˆ( ) ,rφ φ φ≈ ± ∆  (4.19) 
 
where φ̂  is given by Eq. (4.16)and φ̂∆  is given by Eq. (4.18). 

4.2.4 Understanding the Point Detector Problem with an Example 
 
If the point detector is within a region that scatters or emits particles due to a source term, 

the 21/ r r ′−  dependence of the point detector estimator will result in a theoretical 

variance which is infinite. It is shown in this section that the mean is finite but the 

variance is infinite. This implies that the Central Limit Theorem [14] is not valid and one 
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cannot use estimates of the variance to deduce convergence to the true mean. It may be 

the case that sample variances will be finite for finite numbers of histories, but eventually 

collision or source point will be sampled arbitrarily close to the detector point and the 

estimate of the variance will diverge. 

 
While the point detector estimator is an unbiased estimator for the scalar flux at a point, 

the infinite variance does limit its usefulness in regions where collisions may occur. To 

illustrate this phenomenon, let us examine the behavior of the point detector estimator for 

the case of a purely absorbing sphere of radius R  with constant cross section aΣ  and a 

uniform volumetric source of neutrons emitting 0 1S =  neutron/s. The goal is to estimate 

the scalar flux 0 (0)φ φ≡ at the center of the sphere. The analytical solution to this 

problem is easily obtained from Eq. (4.11): 

 ( )
( , )

2
32 2 3

0

3 3 1( ) ( ') 4 1 .4 4 44 '

a
a

R rr r
R

aV

e er S r dr r dr eR r Rr r

α

φ ππ π ππ

′ −Σ−
−Σ      ′= = = −       Σ   −   

∫ ∫ (4.20) 

 
This is the exact solution to the problem and is the true mean for the experiment 

consisting of sampling a neutron uniformly within the sphere and estimating the scalar 

flux at 0r = : 

 ( )0 3
3 1 1 .

4
aR

a
e

R
φ

π
−Σ  = −   Σ  

 (4.21) 

 
The Monte Carlo simulation will consist of N histories, and each history yields an 

independent estimate of 0φ . Since the neutrons are sampled uniformly within the sphere, 

the pdf for the radial position of the sampled neutron is given by 

 
2

3
3( ) .rf r
R

=  (4.22) 

 

From Eq. (4.13), the point detector estimator will score the quantity 2( )
4

ar

pt
er

r
φ

π

−Σ

=   for 

every source neutron that is sampled. Since there are no further collisions for this pure 

absorber, this is the only contribution to the point detector score. Therefore, the mean 

point detector score is given by: 
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which is identical to the analytical solution given in Eq. (4.20), confirming that the point 

detector estimator is unbiased. The variance is given by 

 
2 22 2

0 0 02
0

2

( ) .
4

aR ref r dr
r

σ φ φ φ
π

−Σ 
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 
∫  (4.24) 

 
But the integral is unbounded, hence 2σ = ∞ . For this simple case, the point detector 

estimator is unbiased but has an infinite variance. The general case with scattering is 

likely to exhibit behavior similar to this idealized case. 

4.3 Estimation of Scalar Flux at a Point by KDE tallies 
 
The mesh-free KDE tallies, which are introduced in Chapter 3, are capable of estimating 

flux at a point by simply evaluating the KDE tally expressions at the detector point and 

the convergence within a scattering region was shown to be substantially better than the 

conventional point detector estimator. Moreover, in Chapter 2 it was found that the 

variance of the KDE tally is bounded and an asymptotic variance bound was derived.  

4.3.1 KDE Collision and Track Length Tallies 
 
Three dimensional KDE Monte Carlo collision and track length tallies were derived in 

Chapter 3. The KDE tallies are directly employed in this chapter to evaluate flux at a 

point. In this section the equations for 3-D KDE collision and track length tallies and 

their variances will be reviewed with their asymptotic variance bound. The 3-D kernel 

density estimated collision and track length tallies and their variances are given by 

 

, , ,

1 1 , , ,

,

1 1 1( , , )
( , , )

1 ,

icN
i c i c i c

i c t i c i c i c x x y y

i c

z z

w x X y Y
x y z k k

N X Y Z h h h h

z Z
k

h h

φ
= =

 − − 
=     Σ    

− 
 
 

∑∑
 (4.25) 

 



 

 84 

 

( )

,2
( , , )

1 1 , , ,

2

, , ,

2

1 1
( 1) ( , , )

1 1 1

, , ,

icN
i c

x y z
i c t i c i c i c

i c i c i c

x x y y z z

w
N N X Y Z

x X y Y z Z
k k k

h h h h h h

x y z

φσ

φ

= =

 =  − Σ 

 − − −   
            

− 

∑ ∑

 (4.26) 

 

 

, ,, ,

1 1 1

, , , ,

1 1( , , )

1 1 ,

icN n
i c ji c i c

i c j x x

i c j i c j

y y z z

x Xw d
x y z k

N n h h

y Y z Z
k k

h h h h

φ
= = =

− 
=  

 
 − − 
       

∑∑ ∑
 (4.27) 

 

 

( )

( )( )

, ,, ,2
, ,

1 1 1

2
2, , , ,

1 1 1
1

1 1 , , .

icN n
i c ji c i c

x y z
i c j x x

i c j i c j

y y z z

x Xw d
k

N N n h h

y Y z Z
k k x y z

h h h h

φσ

φ

= = =

  − =    −   
 − −  −         

∑ ∑ ∑
 (4.28) 

 
All the notations in the above equations have their usual meaning. The Epanechnikov 

kernel is used for all our simulations and the bandwidth is calculated by using Eq. (2.59). 

The asymptotic variance bound of KDE is derived in chapter 2 (Eq. (2.55)), which is 

 
( ) ( )1 1

1ˆvar ,..., ,...,

1 .

d dd

d

f x x f x x
Nh

Nh

β≈

≈
 (4.29) 

4.3.2 Numerical Example 
 
Three concentric spheres with radii 0.1 , 0.5  and 1.0  cm respectively are used to 

demonstrate the ability of KDE flux tally to estimate flux at a point, that may be within a 

scattering region. The problem geometry is illustrated in Figure 4.2. For simplicity the 

detector point is placed at the center of the sphere. One of the reasons for selecting this 

simple problem is that it is easy to calculate the analytical flux at the center of the spheres 

if the three regions contain purely absorbing materials. A uniform isotropic source and 

isotropic scattering are assumed for this problem. 
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Figure 4.2 Three concentric spheres with uniform volumetric source. 
 

Table 4.1 Description of all the numerical cases 
 

Case Region 1 Region 2 Region 3 # histories 
1 1aΣ = ; 0sΣ =  1aΣ = ; 0sΣ =  1aΣ = ; 0sΣ =  15,000 
2 2aΣ = ; 0sΣ =  3aΣ = ; 0sΣ =  4aΣ = ; 0sΣ =  30,000 
3 0aΣ = ; 0sΣ =  1aΣ = ; 0sΣ =  1aΣ = ; 0sΣ =  15,000 
4 0aΣ = ; 0sΣ =  0aΣ = ; 0sΣ =  1aΣ = ; 0sΣ =  30,000 
5 0aΣ = ; 5sΣ =  0aΣ = ; 4sΣ =  1aΣ = ; 4sΣ =  106 

 
Table 4.2 Results for cases 1 and 2 

 
Estimators Case 1 Case 2 

Exact 0.15091 0.06982 
Conventional 
Point Detector 0.14374 ±  0.00580 0.07734 ± 0.00527 

KDE Collision 0.15188 ± 0.01085 0.07030 ± 0.00413 
KDE Track 

(n=3) 0.15129 ± .00918 0.06998 ± 0.00447 

 
Table 4.3 Results for cases 3 and 4 

 
Estimators Case 3 Case 4 

Exact 0.14181 0.10735 
Conventional 
Point Detector 0.14051 ± 0.00273 0.10765 ± 0.00036 
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KDE Collision 0.13754 ± 0.01008 0.0 ± 0.0 
KDE Track 

(n=4) 0.14246 ± 0.00938 0.10714 ± 0.00655 

 
Cases 1-4 are different purely absorbing (and void) configurations while case 5 includes 

scattering. Specific details of each case are documented in Table 4.1. Cases 1-4 compare 

the conventional point detector and KDE tallies with the exact solution. The results are 

tabulated in Tables 4.2 and 4.3. The exact solutions are obtained by solving the first 

integral of Eq. (4.11). Cases 3 and 4 are used to demonstrate that the KDE track length 

estimator compares well with the point detector estimator even when the detector is 

placed in a void region, a configuration that is ideal for the conventional point detector 

estimator. 

 
Highly scattering materials (case 5) are also used to fill the three spherical shells. A 

sphere of radius 0.01  cm surrounding the detector at the center is used with 910  particles 

and the conventional track-length estimator is employed to obtain an estimate of the flux. 

This flux is used as a benchmark solution for comparison with the point detector and 

KDE flux estimators. Results are tabulated in Table 4.4. 

 
Table 4.4 Results for case 5 

 
Estimators Case 5 
Benchmark 0.42650±0.00122 

Conventional Point Detector 0.41623±  0.00291 
KDE Collision 0.41978± 0.00285 

KDE Track (n=3) 0.42436± .00228 
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Figure 4.3 Relative error vs. number of particles for case 5. 

 
It is evident from all the above cases that KDE tallies are very effective for estimating 

flux at a point, especially the KDE track length tally. The relative error for case 5 as a 

function of number of particles is plotted in Figure 2. The estimated relative error is 

larger and its behavior is more irregular for the conventional point detector case than the 

KDE estimators, a consequence of the infinite variance for the point detector estimator. 

The variances of the KDE estimators converge as  
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 (4.30) 

 
The bandwidth in Eq. (4.30) is replaced by the number of observations from Eq. (2.59). 

The Figure 4.3 is confirming the convergence rate obtained by Eq. (4.30). Note that, as 

the kernel function has a finite support (for Epanechnikov kernel 5, 5 −  ), only 
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collision points in the neighborhood of the detector points are required to estimate the 

flux. Global bandwidth can be calculated “online” without storing all the collision points. 

Local bandwidth, calculated based on the collision points in the vicinity of the detector 

point, can also be employed. We used global bandwidth for the above numerical 

example. Boundary correction is only required for this application of KDE tallies for 

estimating flux at a point if the detector point is very close to the external boundary of the 

system. In Chapter 3, we have seen KDE tallies perform well near the internal material 

boundaries without any boundary correction.  

 
The result in Eq. (4.30) should not be compared with the usual 1/N convergence for 

variance of an estimator because this is a pointwise evaluation of the actual functional 

estimate of the flux. If one were to average this variance over a finite region, the resultant 

convergence will be 1/N.  

4.4 Alternative KDE approach for Point Detector Estimator 
 
In the previous chapter (Chapter 3), it has been shown that KDE can be used to estimate 

the scalar flux using modified collision and pathlength estimators, yielding continuous 

representations of the scalar flux without the need to impose a mesh. In the previous 

sections of this chapter, these mesh-free KDE tallies were shown to be capable of 

estimating flux at a point by simply evaluating the KDE tally expressions at the detector 

point and the convergence within a scattering region was shown to be substantially better 

than the conventional point detector estimator. However, the convergence rate for the 

variance of the pointwise evaluation of the KDE flux estimator was less than 1/N, so it 

did not compare well with the convergence of the variance for the conventional point 

detector estimator, which is 1/N for point detectors outside a scattering or source region. 

The desire to have a faster converging point estimate of the flux motivated this study. 

 
The rest of this chapter is devoted to an alternative approach in which KDE is combined 

with a variance reduction method to estimate the point detector flux and also the surface 

crossing flux, yielding an unbiased estimate of the mean and a bounded variance for both 

estimators. The important observation that enables our approach: KDE yields an implicit 

(functional) estimate of the probability density function (pdf) that governs each estimator. 
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This can be used in a variance reduction game by sampling from an altered pdf (with an 

associated weight that depends on the estimated pdf) that preserves the mean but yields a 

bounded variance. 

4.4.1 Methodology for Alternative Approach 
 
The idea is to apply the concept of importance sampling [1], which is used as a variance 

reduction tool. Let us consider x is a random variable with probability density function 

(pdf) ( )f x . Let ( )g x be a function of the random variable x . By definition, the 

expected value and the variance of ( )g x are given by 

 ( ) ( ) ( ) ,E g x g x f x d xµ  = =  ∫  (4.31) 
 
 ( ) ( ) ( )22 2var .g x g x f x d xσ µ= = −∫  (4.32) 
 
In Monte Carlo µ can be estimated by drawing samples from ( )f x  and scoring ( )g x . If 

1,....., NX X  are independent and identically distributed observations from ( )f x  

 ( )
1

1ˆ ,
N

i
i

g X
N

µ
=

= ∑  (4.33) 

 

 ( )22 2
ˆ

1

1 1 ˆ ,
1

N

i
i

g X
N Nµσ µ

=

 
= − −  

∑  (4.34) 

 
where µ̂ is the estimator for µ  and 2

µ̂σ  is the variance of µ̂ . We do not change the 

expected value in Eq. (4.31) by multiplying the integrand by unity, so we can re-cast Eq. 

(4.31) as 

 ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
*

*
* * ,

f x f x
g x f x dx g x f x dx

f x f x
µ

 
= =  

  
∫ ∫  (4.35) 

  
where ( )*f x  is a pdf, defined in the same domain as ( )f x . µ  can also be estimated by 

drawing samples from ( )*f x  and scoring the function ( ) ( )
( )*

f x
g x

f x
 
 
  

. Therefore, we can 

estimate the expected value of ( )g x  by sampling from any suitable pdf, *f . Although 
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this process does not affect the expected value, which is evident from Eq. (4.35), it does 

affect the variance. For the altered scheme, the variance is given by  

 ( ) ( )
( ) ( )

2

2 * 2
* ,

f x
g x f x dx

f x
σ µ

 
= − 

  
∫  (4.36) 

 
which is not same as the variance given by (4.32).  

 
This importance sampling concept is applied to the point detector estimator. First, the 

point detector equation is reviewed. The uncollided point flux at a point ( )r  due to a 

point source at r ′ is given by  

 ( )
( ),

2, ,
4

r r

pt
er r

r r

τ

φ
π

′−

′ =
′−

 (4.37) 

 
where ( ),r rτ ′ is the optical thickness between r  and r′ . Using Eq. (4.37), the scalar flux 

at r  due to a known source term ( )S r ′ and resultant emission source due to scatters can 

be obtained: 

 
( )

( )
( )

( )
( ) ( )

, ,

2 2

1 2

4 4
.

r r r r

s
V v

e er S r dV r r dV
r r r r

I I

τ τ

φ φ
π π

′ ′− −

′ ′ ′= + Σ
′ ′− −

= +

∫ ∫  (4.38) 

 
As discussed before, this is nothing but the integral transport equation for isotropic 

scattering. The conventional Monte Carlo point detector estimator generates realizations 

from the source distribution ( )S r dV′ and scores ( ),pt r rφ ′ . If there is a collision at r ′ , 

where we note that r ′ is distributed according to ( ) ( ) ( )' 'tf r dV r r dVφ′ ′ ′Σ , then 

( ) ( )( ) ( )/ ,s t ptr r r rφ′ ′ ′Σ Σ  is scored. We take advantage of the fact that KDE provides a 

functional estimate of the pdf governs the distribution of collisions. Assuming that the 

point detector is located at the origin, Equation (4.38) can be written as 
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( )
( )

( )
( )
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( ) ( )
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( )
( ) ( ) ( )
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( )
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2 2
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s
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r r
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τ τ

τ τ

τ

φ π φ π
π π

π φ π
π π

φ π
π

′ ′− −

′ ′− −

′−

′ ′ ′ ′ ′ ′ ′= + Σ
′ ′

   ′ ′ ′ ′ ′Σ
′ ′ ′ ′= +   ′ ′′ ′      

′ ′ ′ ′+ Σ
′

= + +

∫ ∫

∫ ∫

∫

 

  (4.39) 

 
For the first integral ( )1I , instead of generating samples from ( ) 24S r r drπ′ ′ ′and scoring 

the function ( )0,pt rφ ′ , the samples are drawn from the altered pdf ( )1f r′ , where 

0 r R′< < , and then those samples are used to score the entire function within the square 

bracket. This approach is independent of KDE and could be done for conventional Monte 

Carlo tallies. It works because the distribution of source particles, ( ) 24S r r drπ′ ′ ′ , is 

known. This is of course not known for particles emitted as a result of collisions, but 

KDE yields an estimate of this distribution and this can be used in a similar fashion as the 

source distribution. Specifically, the second integral ( )2I  is broken into two integrals ( 21I  

and 22I ). For the integral containing the singularity ( 21I ), instead of scoring the point 

kernel ( )0,pt rφ ′  at every collision event within P ( P  is an arbitrary point between 0  

and R ), the collision points are stored. Then at the end of the simulation Monte Carlo 

scores the entire function within the square bracket by generating samples from the 

altered pdf ( )2f r′ , where 0 r P′< < . An estimate of ( ) 24r rφ π′ ′ is obtained by using Eq. 

(3.21), which is the equation for the KDE collision flux tally, for all the stored collision 

points within radius P surrounding the point detector. The non-singular portion of the 

integral, 22I , is estimated using conventional methods. This method of altering the 

sampling distribution yields a bounded variance by removing the 21/ r singularity from 

the Monte Carlo scoring function. The distance P  is a user-defined parameter, like the 

radius of the fictitious sphere for the MCNP5 F5 tally, and can be used as a variance 

reduction tool.  
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In this case, the first derivative of the unknown function ( ( ) ( )24f r r rπ φ= ) at 0  

(detector point) is 0 . This means that a reflection boundary correction should be 

sufficient for the points close to the detector. However, it has been found that the 

reflecting boundary correction very close to the detector point ( 0r → ) yields nearly 

constant estimations of the unknown distribution, which converges to 0  with 0r →  very 

slowly. Therefore, a simple quadratic least squares fit is used as a boundary correction for 

KDE for points close to the detector point. The quadratic fit is used, because the shape of 

the unknown function ( )f r  near 0r →  is dominated by the 2r  factor. The fit is given 

by 

 2.y ar=  (4.40) 
 
First, y ’s are calculated at r ’s ( for our numerical case 70 equally spaced points on 

r axis at an interval 0.001 , starting from 0.01r = are used) by using usual KDE estimator 

with reflection boundary correction. Those y ’s  and r ’s are then used to calculate the 

least square coefficient a . For all 0.01r < , the least square fit is used as the boundary 

correction. For 0.01r ≥ , usual KDE estimator with reflection boundary correction (if 

required depending on the bandwidth) is used. For points close to P boundary kernels are 

used to take care of the boundary bias [15].  

4.4.2 MCNP5 Methodology for Point Detector Estimator 
 
MCNP5 point detector methodology is introduced in this section for the purpose of 

comparing the MCNP5 and KDE point detector tallies. MCNP5 uses a specified average 

flux region close to the detector to remove the singularity from the estimator. This region 

is defined by a fictitious sphere of radius 0R surrounding the point detector. Any 

collisions that occur outside this sphere are scored in the conventional way. For collisions 

inside the sphere, the factor ( )0,pt rφ ′  is scored using the assumption the collisions are 

uniformly distributed inside the sphere. The resultant score is therefore the analytical 

solution for the uncollided flux at the center of a sphere with a uniform source: 
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( )

0

0
0

33
00

1 .4 4 / 33

t

t

R
r

R

t

e dr
e

RR ππ

′−Σ
−Σ

′
−

=
Σ

∫
 (4.41) 

 
Isotropic scattering is assumed. Since uniform collisions are assumed within a sphere, it 

is not advisable to choose a value of 0R  that encompasses more than one material. This 

constraint is not an issue for the KDE point detector tally. 

4.4.3 Adjoint Calculation for Estimating Flux at a Point 
 
The adjoint calculation is used as a reference solution for the numerical examples. For 

most of the cases this is not the method of choice, because if there are several point 

detectors, the adjoint game would need to be repeated for each detector. Furthermore, the 

adjoint calculation is not possible at the current time for continuous energy Monte Carlo. 

Finally, if point sources are present, this method leads to the same kind of singularity as 

in the forward calculation. 

 
Let ( ), ,x Eψ Ω  satisfy the forward transport problem: 

 
, , 4 , 0 ,
, , . 0, 0 ,b

L Q x V E
x V n E

ψ π

ψ ψ

= ∈ Ω∈ < < ∞

= ∈∂ Ω < < < ∞
 (4.42) 

  
and let ( ), ,x Eψ ∗ Ω satisfy the adjoint transport problem: 

 
, , 4 , 0 ,

, , . 0, 0 .b

L Q x V E
x V n E

ψ π

ψ ψ

∗ ∗ ∗

∗ ∗

= ∈ Ω∈ < < ∞

= ∈∂ Ω > < < ∞
 (4.43) 

 
The operators L  and L∗  are forward and adjoint Boltzmann transport operators [16, 17] 

respectively. ( ), ,x Eψ Ω  and ( ), ,x Eψ ∗ Ω  are forward and adjoint angular fluxes and Q  

and Q∗  are forward and adjoint sources. The superscript b  stands for boundary. From the 

definition of adjoint the following identity can be derived: 
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( ) ( ) ( )

( ) ( ) ( )

0 . 0

0 . 0

, . , , , ,

, . , , , , .

b

V n

b

V n

Q n x E x E d dEdS

Q n x E x E d dEdS

ψ ψ ψ

ψ ψ ψ

∞
∗ ∗

∂ Ω <

∞
∗ ∗

∂ Ω >

+ Ω Ω Ω Ω

= + Ω Ω Ω Ω

∫ ∫ ∫

∫ ∫ ∫
 (4.44) 

 
Here ( )  represents inner product. The goal is to calculate the flux at the center of a 

sphere of radius R  with a uniform, isotropic source. For this particular case  the forward 

and adjoint problems become: 

 
, , 4 , 0 ,

0, , . 0, 0 ,
L Q x V E

x V n E
ψ π

ψ
= ∈ Ω∈ < < ∞

= ∈∂ Ω < < < ∞
 (4.45) 

 

 
( )0

1 , , 4 , 0 ,
4

0, , . 0, 0 ,

L x x x V E

x V n E

ψ δ π
π

ψ

∗ ∗

∗

= − ∈ Ω∈ < < ∞

= ∈∂ Ω > < < ∞
 (4.46) 

 
where δ  is the delta function [16]. For one energy group, combine Eqs. (4.44), (4.45), 

and (4.46) to find: 

 ( ) ( ) ( )0
4 4

1, , , .
4V

x Q x d dV x d
π π

ψ ψ
π

∗ Ω Ω Ω = Ω Ω∫ ∫ ∫  (4.47) 

 
The source Q  and scalar flux for this spherical problem can be defined by 

 ( ) ( ) 3

1 1 3, ,
4 4 4

Q x Q x
Rπ π π

Ω = =  (4.48) 

 
 ( ) ( )

4

, .x x d
π

φ ψ= Ω Ω∫  (4.49) 

 
Combine Eqs. (4.47), (4.48), and (4.49) to find 

 ( ) ( ) ( )0 .
V

x x Q x dVφ φ∗= ∫  (4.50) 

 
Multiplying the integrand of Eq. (4.50) by unity yields: 

 ( ) ( )
( ) ( ) ( )0 .t

tV

Q x
x x x dV

x
φ φ∗= Σ

Σ∫  (4.51) 

 
Hence the Monte Carlo collision estimate of the scalar flux at location 0x  is given by 
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 ( ) ( )
,

0 3
1 1 ,

1 3ˆ .
4

iCN
i c

i c t i c

w
x

N RX
φ

π= =

=
Σ∑∑  (4.52) 

 
All the symbols have their usual meaning and ,i cw  is the weight of the thi  adjoint particle 

before the thc  collision at ,i cX . In a similar fashion the adjoint track length estimator can 

be derived for the scalar flux at location 0x : 

 ( )0 , , 3
1 1

1 3ˆ ,
4

iCN

i c i c
i c

x w d
N R

φ
π= =

= ∑∑  (4.53) 

 
where ,i cd  is the track length between events 1c −  and c  for the adjoint Monte Carlo 

particle. Expand the adjoint operator in Eq. (4.46) to find 

 

( ) ( ) ( )

( ) ( ) ( )

( )

0
4

. , ,
1, . , , , 4

4

, 0, , . 0.

t

s

x x x

x x d x x x V

x x V n
π

ψ ψ

ψ δ π
π

ψ

∗ ∗

∗

∗

−Ω∇ Ω +Σ Ω

′ ′ ′= Σ ΩΩ Ω Ω + − ∈ Ω∈

Ω = ∈∂ Ω >

∫  (4.54) 

 
Now replace Ω  by −Ω , use the identity 

 ( ) ( ) ( ) ( )
4 4

. . ,f d f d
π π

ψ ψ′ ′ ′ ′ ′ ′−ΩΩ Ω Ω = ΩΩ −Ω Ω∫ ∫  (4.55) 

 
assume isotropic scattering, and substitute ( ) ( ), ,x xψ ∗ −Ω = Ψ Ω  into Eq. (4.54), to find 

 
( ) ( ) ( )

( ) ( ) ( )0
4

. , ,
1 1, .

4 4

t

s

x x x

x x d x x
π

δ
π π

Ω∇Ψ Ω +Σ Ψ Ω

′ ′= Σ Ψ Ω Ω + −∫
 (4.56) 

  
Equation (4.56) is identical to a forward transport equation. Moreover 

 

( ) ( )

( )

( )

( )

4

4

4

,

,

,

.

x x d

x d

x d

x

π

π

π

φ ψ∗ ∗= Ω Ω

= Ψ −Ω Ω

= Ψ Ω Ω

= Φ

∫

∫

∫
 (4.57) 
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Therefore, the same Monte Carlo forward transport routine can be used to solve this 

adjoint problem. The differences are a point source at 0x  instead of a volumetric source, 

and the tally region is now the entire sphere. Hence for this case the adjoint point flux 

calculation has no singularity since the scoring is over the entire sphere.  

4.4.4 Numerical Examples 
 
Two concentric spheres with radii 0.5cm , and 1.0cm respectively are used to 

demonstrate the ability of the KDE point detector tally within a scattering region. For 

simplicity the detector point is placed at the center of the sphere. The inner sphere 

consists of a purely scattering material with 10.0sΣ = , and the outer spherical shell 

contains highly scattering material with 4.0sΣ = , and 1.0aΣ = . Uniform volumetric 

source and isotropic scattering are assumed. 

 
An adjoint MC calculation is used as a reference solution since the adjoint solution for 

this simple spherical case has no singularity. The flux at the center of the sphere as a 

function of the number of histories is shown in Figures 4.4, 4.5, and 4.6 for the reference 

adjoint solution, the KDE modified tally with different P  values( 0.1, 0.15, 0.2cmP = ), 

and the MCNP tally with different 0R (radius of the fictitious sphere surrounding the 

detector point = 0.1,0.15,0.2cm ). Figures 4.7 and 4.8 depict the relative error as a 

function of number of histories with different P values and different spheres of exclusion 

for KDE and MCNP respectively. 
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Figure 4.4 Flux at the center of the problem sphere by adjoint (collision tally), MCNP 

( 0 0.1cmR = ) and KDE ( 0.1cmP = ). 

 
Figure 4.5 Flux at the center of the problem sphere by adjoint (collision tally), MCNP 

( 0 0.15cmR = ) and KDE ( 0.15cmP = ). 
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Figure 4.6 Flux at the center of the problem sphere by adjoint (collision tally), MCNP 

( 0 0.2cmR = ) and KDE ( 0.2cmP = ). 
 
The following conclusions are based on the results shown in Figures 4.4-4.8. First, it is 

evident that for the KDE point detector tally, the variance will decrease with increasing 

P but the mean will remain the same. However for the MCNP point detector tally, if the 

radius of the sphere of exclusion increases, the variance will decrease but with a 

corresponding increase in the bias in the mean. Therefore the P parameter for the KDE 

point detector tally can be used as a variance reduction tool, which is not the case for the 

MCNP tally. Note that, both for KDE with 0.0P >  and MCNP with 0 0.0R > the 

variance converges as 1/ N , which is higher than the direct evaluation of the KDE flux 

tallies for estimating flux at a point. Figure 4.8 also illustrates the consequence of using 

the unmodified MCNP point detector estimator (the yellow line – MCNP-Type-0.00) in a 

highly scattering medium. 



 

 99 

 
Figure 4.7 Relative error vs. number of histories for KDE point detector tally with 

different P  values. 
 

 
Figure 4.8 Relative error vs. number of histories for MCNP point detector tally with 

different spheres of exclusion. 
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4.4.5 Improvement in Computational Performance by Interpolation 
 
In the previous section, it was shown for the KDE point detector tally that the parameter 

P  has the effect of a variance reduction tool. Figure 4.7 illustrates that increase in P  will 

decrease the variance without changing the mean of a point detector estimator in a highly 

scattering media. This is a unique and valuable feature of KDE point detector tally, which 

other proposed modifications are not able to achieve. 

 
There is one drawback of this feature. In a highly scattering medium, if the parameter P  

is gradually increased, there will be more and more collisions inside the sphere defined 

by P  surrounding the point detector. The KDE tally depends on the KDE estimation at 

all those collision locations inside P . Therefore, if P  is sufficiently large in a highly 

scattering media, there will be hundreds of thousands of collisions inside P , and the KDE 

point detector tally requires estimation of the quantity ( ) 24r rφ π′ ′ for each collision and 

this in turn may increase computation time. An alternative approach is to estimate the 

quantity ( ) 24r rφ π′ ′   beforehand, by using KDE tally and the stored collision points 

inside P at a few hundred equally spaced points between 0  and P . The KDE point 

detector tally can be implemented by generating samples from the altered pdf, ( )2f r′ , 

and by evaluating the quantity ( ) 24r rφ π′ ′  at r′ by applying linear interpolation using the 

already banked ( ) 24r rφ π′ ′  values in the equally spaced points between 0  and P . The 

linear interpolation scheme used is given by 

 ( ) 1 0
0 0

1 0

,y yy y x x
x x
−

= + −
−

 (4.58) 

 
where y  is evaluated at x  from the given coordinates ( )0 0,x y  and ( )1 1,x y . The quantity 

( ) 24r rφ π′ ′  is calculated between 0 and P  at / 0.0005P equally spaced points for the 

following numerical examples. Figures 4.9 - 4.13 demonstrate that for the interpolation 

scheme the same accuracy is achieved as in the direct case without any interpolation.   
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Figure 4.9 Flux at the center of the problem sphere by adjoint (collision tally), and KDE 

point detector tally ( 0.1cmP = ) with interpolation scheme. 
 

 
Figure 4.10 Flux at the center of the problem sphere by adjoint (collision tally), and KDE 

point detector tally ( 0.15cmP = ) with interpolation scheme. 
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Figure 4.11 Flux at the center of the problem sphere by adjoint (collision tally), and KDE 

point detector tally ( 0.20cmP = ) with interpolation scheme. 
 

 
Figure 4.12 Flux at the center of the problem sphere by adjoint (collision tally), and KDE 

point detector tally ( 0.25cmP = ) with interpolation scheme. 
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Figure 4.13 Relative error vs. number of histories for KDE point detector tally (with 

interpolation scheme) with different P  values. 

4.5 Surface Crossing Flux Tally 
 
The surface crossing flux tally is used to estimate the average flux over a surface. This 

estimator, like the point detector estimator, has a singularity of the form 1/ µ , where µ  

is the cosine of the angle between the particle direction Ω  and the surface normal n . It is 

easy to see that the mean is preserved but the variance is infinite. As a result, the estimate 

of the variance for this tally is unreliable and cannot be used to gauge convergence to the 

true mean. The singularity is due to the fact that the score of a single particle event may 

approach infinity as the particle’s direction becomes tangent to the surface, . 0nΩ → . 

However, the contribution to the average flux over a surface from particles traveling 

tangent to the surface is generally small. An exception could be a parallel beam incident 

onto a surface at grazing angle. For convex surfaces on the exterior of the system 

geometry with vacuum boundary conditions, the flux tangent to the surface will be zero 

[3]. On the other hand, it would be preferable to have a surface crossing tally that is 

known to work for all situations and this motivated the application of KDE to this 

estimator. 
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4.5.1 Derivation of the Surface Crossing Flux Tally 
 
Consider the thi  Monte Carlo particle traveling in direction ,i kΩ , that crosses a surface of 

area A  at an angle ,i kθ  with respect to the local surface normal n ,  for the thk time. 

Assume that the thickness t  of the surface is sufficiently small, so that no particle will 

suffer a collision within the volume V . Then as illustrated by the Figure 4.14, the track 

length ,i kd  of the thi particle during thk crossing in the layer is 

 ,
,

,i k
i k

td
µ

=  (4.59) 

 
where  

 , , ,cos . .i k i k i k nµ θ= = Ω  (4.60) 
 

 
 

Figure 4.14 Surface crossing flux tally geometry. 
 
Because of the absolute value of the cosine used in Eq. (4.59), the direction of the surface 

normal n  (inner or outer) is irrelevant. By using Eq. (4.59), the track length estimator of 

the flux in the small box for N particle histories is given by 

 
, ,

1 1

,
1 1 ,

1ˆ

1 ,

i

i

KN

i k i k
i k
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i k
i k i k

w d
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= =

= =

=

=

∑∑

∑∑
 (4.61) 
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where ,i kw  is the weight of the thi  particle just before thk  crossing of surface A . iK  is 

the total number of crossing of surface A  for the thi  particle. By taking the limit of 

0t →  (ensures no collision inside the region defined by t ) 

 ,

1 1 ,

1ˆ ,
iKN

i k

i k i k

w
NA

φ
µ= =

= ∑∑  (4.62) 

 
which is the surface crossing flux estimator. In conventional Monte Carlo simulation, this 

estimator is executed by observing surface crossings during the random walk process, 

and scoring /w A µ . 

 
A more formal and mathematical derivation of the surface crossing flux tally is presented 

in the book by Dupree and Fraley [3] and will be outlined here. The scalar flux can be 

defined from the angular flux, ( ),µ ϕΨ , by 

 ( )
1 2

1 0

, ,d d
π

φ µ ϕ µ ϕ
−

= Ψ∫ ∫  (4.63) 

 
Where µ  and ϕ  are the cosine of the polar angle the azimuthal angle respectively. 

Defining the azimuthally integrated flux, ( )ψ µ , by 

 ( ) ( )
2

0

, ,d
π

ψ µ µ ϕ ϕ= Ψ∫  (4.64) 

 
gives 

 ( )
1

1

.dφ ψ µ µ
−

= ∫  (4.65) 

 
The particle current ( )J µ+  is the number of particles per unit area crossing x-y  plane in 

a positive z  direction and is given by 

 ( ) ( ) ( ) , 0 1.J µ µψ µ µ ψ µ µ+ = = < <  (4.66) 
 
Similarly ( )J µ−  is given by 

 ( ) ( ) ( ) , 1 0.J µ µψ µ µ ψ µ µ− = − = − < <  (4.67) 
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Combining Eqs. (4.65), (4.66), and (4.67) we find 

 

( )

( ) ( )

( )

1

1

0 1

1 0

1

1

1 .

d

J J
d d

d

φ ψ µ µ

µ µ
µ µ

µ µ

µ ψ µ µ
µ

−

− +

−

−

=

= +

=

∫

∫ ∫

∫

 (4.68) 

 
This result must be normalized by the area of the surface in concern. 

4.5.2 MCNP5 Approach 
 
For small µ , where µ ε<  (ε  is small), MCNP assumes that the flux is linearly 

anisotropic and scores the expected values of 1/ µ , which is 2 /ε , instead of 1/ µ . A 

proof of this will be outlined here from Dupree and Fraley [3] and Clark [10]. Assuming 

the azimuthally integrated angular flux, ( )ψ µ , is linearly anisotropic: 

 ( ) 0 1 .a aψ µ µ≈ +  (4.69) 
 
The expected value of 1/ µ , for µ ε< , is given by 

 
( )

( )

1
1 .

d
E

d

ε

ε
ε

ε

µ ψ µ µ
µ

µ
µ ψ µ µ

−

−

 
= 

  

∫

∫
 (4.70) 

 
Replacing ( )ψ µ  in Eq. (4.70) by Eq. (4.69) and solving the integrals yields 

 1 2 .E
µ ε

 
= 

  
 (4.71) 

 
Therefore, when a particle strikes a surface detector at grazing angle with ε µ ε− < < , 

MCNP scores 2 /w Aε , instead of /w A µ , where w is the weight of the particle just 

before the surface crossing. MCNP uses 0.1ε = .  
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4.5.3 KDE Approach 
 
For the surface crossing flux tally, score 1/ µ , where µ  is the angle between the 

direction of flight and the surface normal. These µ ’s are in the range between 0  and 1, 

and are distributed by ( )dµ ψ µ µ , an implicit distribution function that is a 

consequence of the Monte Carlo simulation. The surface crossing flux estimator in Eq. 

(4.68) can be recast into the following form: 

 

( )

( )
( ) ( ) ( )

1

0

1

0

1 2

1ˆ

1 1

.

d

f d d
f

I I

ε

ε

φ µ ψ µ µ
µ

µ ψ µ
µ µ µ ψ µ µ

µ µµ
∗

∗

=

 
= + 

  
= +

∫

∫ ∫  (4.72) 

 
This approach is similar to that taken for the KDE point detector tally. As before, the 

non-singular portion of the integral, 2I , is estimated using conventional scoring method. 

For the integral containing the singularity, 1I , instead of scoring 1/ µ , where 0 µ ε< < , 

the µ ’s are stored. Then at the end of the simulation Monte Carlo scores the entire 

function within the square bracket by generating samples from the altered pdf, ( )f µ∗ , 

where 0 µ ε< < , and using the KDE estimate of ( )µ ψ µ   (Eq. (2.8)) for the stored µ  

between 0 and ε . This removes the 1/ µ  singularity from the Monte Carlo scoring 

function and yields a bounded variance.  As with the KDE point detector tally, ε  for the 

KDE surface crossing flux tally is user-defined and can be used as a variance reduction 

tool.  

 
The boundary kernel method is used as a boundary correction for ' sµ  close to 0  and ε . 

As ( ) ( )f µ µ ψ µ=  is 0  at 0 , boundary kernels may produce negative values, and 

more importantly the estimated function ( )f µ  converges slowly to 0 as 0µ → . 
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Therefore, a simple linear least squares fit is used as a boundary correction for KDE for 

points close to 0µ = . The fit is given by 

 .y a µ=  (4.73) 
 
The y ’s are calculated at µ ’s by using KDE with boundary kernels as boundary 

correction. For this numerical study, 25 equally spaced points on the µ  axis with 

spacing 0.0005, starting from 0.005 are used. Those y ’s and µ ’s are then used to 

calculate the least square coefficient a . For all 0.005µ <  the least square fit is used as 

boundary correction. For 0.005µ ≥ , the usual KDE with boundary kernels as boundary 

correction (if required depending on the bandwidth) is used.  

4.5.4 Numerical Example 1 for Surface Crossing Flux Estimators 

 
Figure 4.15 Spherical problem geometry for the surface crossing flux example 1. 

 
Three concentric spheres with radii 0.5 , 1.0 , and 2.0cm are used in example 1 to 

demonstrate the ability of the KDE surface crossing flux tally. Figure 4.15 illustrates the 

problem geometry. The inner most sphere (purple) consists of a purely scattering material 

with -110.0cmsΣ = , the first spherical shell (blue) also contains purely scattering material 

with -18.0cmsΣ = , and the outer spherical shell (yellow) contains highly scattering 
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material with -14.0cmsΣ = , and -12.0cmaΣ = . A uniform isotropic source inside the 

inner sphere (purple) and isotropic scattering are assumed. The average flux on the 

boundary surface between the blue and yellow shell is estimated.  

 
An adjoint MC calculation (see Section 4.4.3) is used as a reference solution as the 

adjoint solution for this simple spherical case with a volumetric source has no singularity 

and can be used for the surface crossing flux tally. The flux on the boundary surface 

between the blue and yellow shell is estimated by using that boundary surface as a source 

and the inner sphere (which is the source for the forward calculation) as the detector. The 

average surface flux as a function of the number of histories is shown in Figure 4.16 for 

the reference adjoint solution, the KDE surface crossing tally ( 0.1ε = ), and the MCNP 

tally ( 0.1ε = ). Figure 4.17 depicts the same case for 0.15ε = . Figures 4.18 and 4.19 

illustrate the relative error as a function of number of histories with different ε  values for 

MCNP and KDE tallies, respectively. It is evident from Figures 4.16 – 4.19 that for the 

KDE surface crossing tally, the variance will decrease with increasing ε  but the mean 

will remain the same. However for the MCNP type surface crossing tally, if ε  increases, 

the variance will decrease but with a corresponding increase in the bias in the mean. 

Therefore we can use the ε  parameter for the KDE surface crossing tally as a variance 

reduction tool, which is not the case for the MCNP tally. Note the above results indicate 

ε  is not as powerful a variance reduction tool as is P in the KDE point detector tally. 
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Figure 4.16 Surface crossing flux for example 1 by adjoint, MCNP ( 0.1ε = ), and KDE 

( 0.1ε = ) surface crossing tally.   
 

 
Figure 4.17 Surface crossing flux for example 1 by adjoint, MCNP ( 0.15ε = ), and KDE 

( 0.15ε = ) surface crossing tally. 
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Figure 4.18 Relative error vs. number of histories for MCNP surface crossing flux tally 

(F2 tally) for example 1 with different ε  values. 
 

 
Figure 4.19 Relative error vs. number of histories for KDE surface crossing flux tally for 

example 1 with different ε  values 
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4.5.5 Numerical Example 2 for Surface Crossing Flux Estimators 
 
A  31cm cube is used to test the surface crossing flux tally for numerical example 2. The 

averaged flux over a surface, which is parallel to the x-y plane with 0.5cmz = , is 

estimated. A very thin box source extending from 0.495cmz =  to 0.505cmz = , 

0.0cmx = to 0.3cmx = , and 0.0cmy =  to 1.0cmy = surrounding the tally surface is 

assumed with highly scattering material with -17.0cmsΣ = , and -13.0cmaΣ = inside the 

cube. The problem geometry is illustrated by Figure 4.20. Isotropic scattering is also 

assumed. An adjoint calculation is used as a reference solution for this problem as the 

adjoint calculation has no singularity. For the adjoint calculation the average flux over the 

surface is estimated by using that surface as the source and the thin box surrounding that 

surface (source for the forward calculation) as the detector. The average surface flux on 

the desired surface as a function of the number of histories is shown in Figure 4.21 for the 

reference adjoint solution, the KDE surface crossing tally ( 0.1ε = ), and the MCNP F2 

tally ( 0.1ε = ). Figure 4.22 depicts the same case for 0.15ε = . Figures 4.23 and 4.24 

illustrate the relative error as a function of number of histories with different ε  values for 

MCNP and KDE respectively. Note this example case also indicates that the ε  parameter 

is not as powerful variance reduction tool as is P in the KDE point detector tally. An 

interpolation scheme as discussed for the KDE modified point detector tally could be 

employed for the KDE surface crossing flux tally to improve the computational speed.  

 
 

Figure 4.20 Cubical problem geometry for the surface crossing flux example 2. 
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Figure 4.21 Surface crossing flux for example 2 by adjoint, MCNP ( 0.1ε = ), and KDE 

( 0.1ε = ) surface crossing tally. 
 

 
Figure 4.22 Surface crossing flux for example 2 by adjoint, MCNP ( 0.15ε = ), and KDE 

( 0.15ε = ) surface crossing tally. 
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Figure 4.23 Relative error vs. number of histories for MCNP surface crossing flux tally 

(F2 tally) for example 2 with different ε  values. 
 

 
Figure 4.24 Relative error vs. number of histories for KDE surface crossing flux tally for 

example 2 with different ε  values 
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CHAPTER 5 

Kernel Density Estimation Method for Monte Carlo Eigenvalue 
Calculations 

5.1 Introduction 
 
The multiplication factor of a system containing fissionable materials is used to describe 

the criticality of the system. The multiplication factor is the ratio of the number of 

neutrons in one generation to the number of neutrons in the previous generation. A 

generation is defined by the lifetime of a neutron. For finite systems, the multiplication 

factor is known as the effective neutron multiplication factor, effk . effk  can also be 

defined as a ratio of neutron production to neutron loss in the system. 1effk <  denotes that 

the system loses more neutrons that it produces. In this case, the system is subcritical and 

the neutron population dies off in time. The system is critical when 1effk =  and it 

maintains a constant average neutron population in time. In other words, the system is in 

steady state. A supercritical system with 1effk >  produces more neutrons than it loses. 

The neutron population will grow in time without any bound.  

 
Knowledge of criticality is essential for designing and operating nuclear reactors as well 

as dealing with criticality issues associated with fuel fabrication, fuel reprocessing, and 

spent fuel storage.  Experiments or prototypes are the best way to gather knowledge 

about the criticality of a system. However, experiments and prototypes are expensive and 

system specific. On the other hand, with the advent of modern computers, numerical 

methods, both deterministic and Monte Carlo (stochastic), are inexpensive and used 

frequently for criticality calculations. The Monte Carlo method is an emerging tool for 

performing reactor calculations because of its ability to handle complex geometry and 

complex physics. 
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However, for some systems Monte Carlo criticality calculations may take exorbitant 

computing time to complete. Monte Carlo criticality calculations depend on source or 

power iterations, and tallies should not be accumulated until the fission source has 

converged to its fundamental distribution within statistical fluctuations. Any tallies taken 

before the source distribution has converged to the fundamental mode will be biased. The 

rate of convergence of the source to the fundamental mode depends on the dominance 

ratio of the system, which is defined as the ratio of the second and first eigenvalues of the 

system. If the dominance ratio is close to unity, which is the case for large reactors with 

small leakage, heavy-water moderated or reflected reactors, and loosely-coupled systems, 

the convergence to the fundamental eigenfunction [1] is slow and the source iteration 

error will decrease slowly.    

 
This chapter discusses the application of KDE to Monte Carlo eigenvalue calculations for 

reactor analyses. KDE is used to estimate the shape of the fission source at the end of 

each neutron generation, and samples from this estimated source distribution are used as 

the starting particles for the next generation. The results for a large, loosely coupled 

system in 1D slab geometry and in 3D checkerboard geometry are promising: the 

converged fission source distribution is satisfactory, and there is a substantial increase in 

fission source convergence as measured by the relative source entropy [2].We also note 

that traditional sampling of the fission source introduces correlation among the source 

points between neutron generations, and it is thought that the KDE method will reduce 

this correlation by decreasing the propagation of the correlated source particles from 

generation to generation. 

 
Over the years the problems associated with fission source convergence have been 

studied extensively. Whitesides [3] in 1971 identified this source convergence issue in his 

famous “ effk  of the world” paper. Swaja [4] successfully accelerated Monte Carlo fission 

source convergence using source extrapolation. Urbatsch [5] in 1995 proposed three 

methods for improving source convergence in systems with dominance ratio close to 

unity, including  a fission matrix approach and a diffusion synthetic method, as well as a 

hybrid method for source convergence.  
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Kuroishi and Nomura [6] postulated a new source acceleration method based on matrix 

eigenvector calculations with different zoning method. Yamamoto and Miyoshi [7] has 

proposed a new algorithm for applying Wielandt’s method to Monte Carlo criticality 

calculations. Later in 2005, Yamamoto [8] has proposed a conjugate gradient scheme to 

accelerate Monte Carlo eigenvalue problems. Finch et al [9] has developed another new 

method, known as the vacation matrix method, to estimate the source distribution in 

Monte Carlo criticality calculations although definitive results were not presented. 

Another effective method to estimate the fission source distribution is developed by 

Larsen and Yang [10]. Their method is known as the functional Monte Carlo method. 

 
Griesheimer and Toth [11] proposed a novel technique for accelerating the convergence 

of iterative power method by modifying the fixed-parameter source extrapolation 

method. Their technique is known as smoothed residual acceleration. Another method by 

Griesheimer et al [12] applies functional expansion tallies (FET) to estimate functional 

approximations for the shape of the fission source distribution.  The KDE method [13], 

which is the topic for this chapter, is based on the same philosophy as the FET approach 

of estimating the shape of the fission source distribution.  

5.2 Monte Carlo Criticality Calculation 
 
For steady-state reactor calculations, the neutron transport equation is given by  
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∫ ∫  (5.1) 

 
where ψ  is the angular neutron flux, which is defined by the product of the neutron 

speed and the angular number density, x  is the spatial coordinate vector, Ω  is unit vector 

towards the direction-of-flight, E  is the energy, tΣ  is the macroscopic total cross section, 
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sΣ  is the macroscopic differential scattering cross section, fΣ  is the macroscopic fission 

cross section, ( )p Eχ  is the prompt fission energy spectrum, υ  is the average number of 

neutrons generated per fission event. These equations always have the zero solution: 

0ψ = . The goal here is to find out the largest value of effk  such that a nonzero solution 

of ψ  exists. The largest effk  is called the fundamental eigenvalue of the system and the 

corresponding ψ  is called the fundamental eigenfunction. The steady-state k-eigenvalue 

neutron transport equation can be written in operator notation: 

 ( ) 1 ,
eff

L T S M
k

ψ ψ+ − =  (5.2) 

 
where 

 . ,Lf f= Ω∇  (5.3) 
 
 ( ) ,tTf E f= Σ  (5.4) 
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for any function ( ), ,f x EΩ . L  is the leakage, T  is the loss operator due to collisions 

and S  is the in-scattering operator. Define the transport-collision operator A L T S= + −  

and the fission source ( )Q x Mψ= . Manipulate Eq. (5.2) and use the transport-collision 

operator and fission source to obtain 

 11 .
eff

Q MA Q
k

−=  (5.7) 

  
Equation (5.7) is in a form that directly corresponds to Monte Carlo fission source 

iteration. Monte Carlo criticality calculations consist of outer iterations, which is nothing 

but a fixed source calculation. These outer iterations are called cycles or batches or 

generations. In Monte Carlo criticality procedures, the total number of neutron histories 

simulated is divided into M  batches, and each batch consists of N neutrons. The neutron 
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histories in one batch are used to estimate the neutron source in the next batch and the 

effk . The typical criticality calculation begins with an initial fission source guess, for 

example a uniform distribution over the entire system, a point source, or a source that 

could take advantage of the prior information about the system, and run enough batches 

to converge to the true fission source distribution within statistical fluctuations. These 

initial batches are called inactive batches. Monte Carlo criticality procedures start 

accumulating useful data only after the source is converged. The batches, run after the 

source convergence, are known as active batches. In this chapter KDE is applied to 

fission source iteration to reduce the number of inactive batches, yielding faster 

convergence to the true fission source distribution. 

 
In some Monte Carlo codes, the number of particles starting each batch is a constant. In 

other codes, the total weight W  starting each batch is constant. During a batch Monte 

Carlo tracks each particle through various random events, either collisions or boundary 

crossings, until the particle is absorbed or leaks from the system. If at a collision a fission 

event occurs, then Monte Carlo banks the location of that collision until the next batch. In 

Eq. (5.7) Q  is the fission bank, 1A−  is the inverted transport-collision operator (random 

walk plus collision analysis), M is the fission operator, which stores expected number of 

fission sites following a collision, and effk  is the multiplication factor. 

 
Define the index n  to be a fission generation. The solution of Eq. (5.7) by fission source 

iterations can be expressed as follows: 

 ( )
( )

( )1 11 , 1, 2,.....n n
nQ MA Q n

k
+ −= =  (5.8) 

 
where ( )0 1k =  and ( )0 theinitialsourceguessQ = . The actual Monte Carlo implementation 

of the operator ( )
11

n MA
k

−  in Eq. (5.8) consists of a random walk plus collision analysis 

resulting in the following number of fission sites for the next cycle:  
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f
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N W
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υ
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Σ

= +
Σ

 (5.9) 
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In Eq. (5.9), W is the weight of the neutron entering the collision, [ ]0,1ξ  is a random 

number, and ( )nk  is the estimate of effk  from the previous cycle. Equation (5.9) is scaled 

by ( )nk  to maintain roughly the same number of fission neutrons in each batch. This will 

eliminate the computational difficulties arise from an increasing (in the case of 

supercritical system) or decaying (subcritical) neutron population. However, this 

normalization will introduce a bias. The bias is usually insignificant as it is inversely 

proportional to the number of histories per batch [14, 15]. Sometime the factor, fac , is 

used to increase the source sites to be sampled from the next generation. For example 

0.8fac =  could be used to generate approximately 25 percent extra source sites for the 

next batch. 

 
At the end of the current generation, the eigenvalue must be updated. Integrate Eq. (5.7) 

over all volume to obtain 
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∫ ∫

 (5.10) 

 
The latest information available for Q  is used to estimate effk  at the end of the current 

generation: 

 ( )
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1 .
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−
+ = ∫

∫
 (5.11) 

 
Here ( )nQ  is used instead of ( )1nQ +  because ( )11 nMA Q +−  is not known and the numerator 

and denominator must be evaluated at the same time. By substituting Eq. (5.8) into Eq. 

(5.11) the following expression is obtained for the updated eigenvalue at the end of 

generation n : 

 ( ) ( )
( )

( )

1
1 .

n
n n

n

Q dV
k k

Q dV

+
+ = ∫

∫
 (5.12) 
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The ratio in Eq. (5.12) is simply the ratio of the new and old fission sources. 

Equivalently, one can use track length, collision or absorption estimators to estimate 

these quantities. The track length estimator of effk  is given by 

 , ,
1 1

1 . ,
iCN

path i c i c f
i c

k w d
N

υ
= =

= Σ∑∑  (5.13) 

 
where N  is the number of particles per batch, iC  is the total number of events 

(collisions, boundary crossing etc) for thi  history, ,i cw  is the weight of the particle 

between event 1c −  and c , and ,i cd  is the track length between event 1c −  and c . 

Similarly the collision and absorption estimators of effk  are given by 

 1 . ,f
coll i

all t
collisions

k w
N

υΣ
=

Σ∑  (5.14) 

 

 1 . .f
abs i

all a
absorptions

k w
N

υΣ
=

Σ∑  (5.15) 

 
The final effk  is calculated by taking the average over all the active cycles.  

5.3 Source Convergence Difficulties 
 
In this section the convergence of the effk  and the fission source iteration and their 

dependence on the dominance ratio will be discussed. This discussion is based on 

Brown’s [16] notes on Monte Carlo particle transport. Introducing 1MA F− =  in Eq. (5.7) 

yields 

 1 .
eff

Q FQ
k

=  (5.16) 

 
Q  can be expanded in terms of the eigenfunctions ( )iv x  of F to find 

 0 0 1 1 2 2
0

............i i
i

Q a v a v a v a v
∞

=

= = + + +∑  (5.17) 

 
Note the eigenfunctions are orthogonal: 
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 ,i k ikv v δ=∫  (5.18) 
 
where ikδ  is the Kronecker delta function. Orthogonality of the eigenfunctions yields 

 .i ia Qv dV= ∫  (5.19) 
 
Since the iv ’s are a complete set of eigenfunctions of the operator F  with eigenvalues 

ik ’s, the following can be written 

 1 .i i
i

v Fv
k

=  (5.20) 

   
Now expand the initial source guess in terms of the eigenfunctions, yielding 
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After applying recursion to Eq. (5.16), substituting the expansion of ( )0Q  from Eq. (5.21), 

and using Eq. (5.20), an expression for the updated fission source can be obtained: 
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Combining Eq. (5.12) and (5.22), the following expression for ( )1nk +  in terms of the 

dominance ratio can be derived: 
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 (5.23) 

 
where 
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 (5.24) 

 
As 0 1 2 .....k k k> > >  , after the initial transients both the source Q  and the effk  will 

depend mainly on the dominance ratio of the system, which is given by 1 0/k k . If the 

dominance ratio is low ( 1 0/ 1k k << ) then from Eq. (5.22) and (5.23), it is evident that the 

source Q  and the effk  will converge to the fundamental eigenfunction 0v and the 

fundamental eigenvalue 0k  respectively without much effort. For systems with 

dominance ratio close to unity the error in effk  may be small, since the factor ( )1 0/ 1k k −  

(in Eq. (5.23)) is small, but the same is not true for the source Q . Therefore, for problem 

with high dominance ratio effk  may appear converged even if the fission source 

distribution is not converged.  

5.4 Measurement of Fission Source Convergence 
 
The relative information entropy is employed to diagnose the stationarity of the Monte 

Carlo fission source distribution [2]. Let ( )BS i  and ( )BT i be two different binned 

sources that are normalized to unity. The relative entropy of BS w.r.t. BT  is defined by  

 ( ) ( ) ( )
( )2

1
|| log .

BB
B B B

B
i

S i
D S T S i

T i=

 
=   

 
∑  (5.25) 
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Relative information entropy can be viewed as the statistical distance between two 

distributions, BS  and BT . If B BS T= , then the relative entropy is zero, otherwise it is 

always positive. The posterior diagnosis is performed as prescribed by Ueki and Brown 

[2] by checking whether or not the relative entropy crosses the maximum stationary level 

(msl) downward before active cycles begin.  The msl is calculated following the method 

proposed by Ueki and Brown [2]. 

5.5 Conventional Fission Bank Sampling 
 
The goal is to select N  fission sites for the current generation from N ′  fission sites from 

the previous generation, which are in the fission bank. The following algorithm, which is 

taken from Knuth [17], is used for this purpose.  

Step 1: Initialize 0t =  and 0c = . c  represents the total number of fission sites from the 

fission bank we have dealt with and t  represents the number of fission sites selected so 

far. 

Step 2: Begin a loop with index i , where i  runs from 1 to N ′ , and select the thi  fission 

site from the fission bank. 

Step 3: Calculate N tp
N c

ξ− = + ′ − 
, where x    is the floor function (largest integer x< ), 

and ξ  is a random number uniformly distributed between zero and one. 

Step 4: Increase c  by one. 

Step 5: Select the thi  fission site from the bank p  times and also increase t  by one for p  

times. 

Step 6: If t N== , then exit the loop, otherwise continue. 

This algorithm is based on the probability of all the possible ways of choosing N  items 

from N ′  items such that t  items occur in the first c . The probability is given by 

 
1

,
1

N c N c N t
N t N t N c
′ ′− − −    −

=    ′− − − −   
 (5.26) 

 
where 0 N N ′< ≤ . 
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5.6 KDE Sampling of the Fission Bank 
 
KDE is used to estimate the shape of the fission source distribution at the end of each 

batch by using the fission sites from the fission bank. Samples from the estimated source 

distribution are used as the starting particles for the next batch. It is expected that this 

method will free the particles from spatial inter-generational correlation, since  samples 

from the estimated source distribution are used rather than the actual fission sites.  The 

estimator ˆ ( )f x  in Eq. (2.8) is a pdf, normalized to 1, since the kernel function 







 −

h
Xxk

h
i1  is normalized to 1. It is straightforward to sample from the estimator ˆ ( )f x .  

Realizations Y  from ˆ ( )f x  can be generated on-the-fly without constructing the whole 

density function as shown below [18]: 

1. Choose I uniformly with replacement from { }1,........, N by 1I Nξ= + , where ξ  is the 

random number between 0  and 1. 

2. Generate sample ε  from the kernel k (e.g., Box-Muller if k is Gaussian). 

3. Set εhXY I += . 

A multivariate version of the above sampling method is easily constructed and unequal 

bandwidths in the various coordinate directions can be accounted for using the 

corresponding transformation in step 3. As the product kernel estimator (see Eq. (2.47)) is 

used for the multivariate case, samples can be drawn individually in each dimension by 

using the above on-the-fly sampling scheme. The rescaled Epanechnikov kernel is used 

for all our simulations. Devroye and Gyorfi [19] proposed a very fast simulation from the 

rescaled Epanechnikov kernel 

 23( ) (1 ), 1
4

k x x x= − ≤  (5.27) 

 
as follows: 

1. Generate three uniform [ ]1,1−  random variates 1 2 3, ,V V V . 

2. If 21323 , VsetVVandVV =≥≥ ε . 

3. Otherwise 3set Vε = . 
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5.7 Boundary Correction 
 
Generating realizations from the boundary-corrected KDE is not straight forward and 

may  be expensive due to the need to employ a rejection sampling scheme. A density 

function for rejection sampling need to be constructed after each Monte Carlo generation 

and the procedure loses the advantage of on-the-fly sampling discussed earlier. This will 

be more serious in higher dimensions. It has been found that truncating the estimator at 

the boundaries and then renormalizing  ˆ ( )f x  to unity is the simplest and the best 

boundary correction for KDE-based Monte Carlo fission source iteration. This can be 

easily achieved by repeating the on-the-fly scheme, discussed earlier, until the sampled 

point is within the user domain. This scheme, called “renormalization” sampling, is used 

to sample source locations from the previous generation, which are used as the starting 

source locations in the current generation.  

5.8 Numerical Example 1 – Criticality of a Large 1-D Slab 
 
Monte Carlo criticality calculations with KDE and the conventional fission source 

method are carried out for a 100  mfp (mean free path) wide multiplying slab. The slab 

contains homogeneous material with the following properties. 
1
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Isotropic scattering is assumed. With KDE, the starting neutrons for each cycle are 

sampled from the estimated source distribution of the previous cycle using 

renormalization sampling and the bandwidth is calculated by Eq. (2.21).  Both 

simulations used 10,000  particles per batch and 1500  batches, and the first 500  batches 

were discarded.  

 
Figures 5.1 and 5.2 present the comparison between the conventional and KDE methods. 

The binned sources bT ,  are calculated with 100 bins by averaging the source 
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distributions over the final 500  cycles. This averaged source is used for the relative 

entropy calculation [2]. It is clear from Figure 5.2 that the KDE method has improved 

source convergence. 

 
Figure 5.1 Cyclewise k for conventional and KDE method for numerical example 1. 

 

 
Figure 5.2 Posterior relative entropy comparison between conventional and KDE for 

numerical example 1. 
 



 

 130 

5.9 Numerical Example 2 – Checkerboard 
 
Figures 5.3 and 5.4 (not to scale) present a one group isotropic checkerboard problem 

which is a 3D version of the checkerboard problem used by Ueki and Nease [20]. Monte 

Carlo criticality calculations with KDE and the conventional fission source method are 

implemented for this case. With KDE, the bandwidth is calculated by Eq. (2.21). Both 

simulations used 20,000  particles per batch and 1500  batches, and the first 500  batches 

were discarded. Figures 5.5 and 5.6 present the comparison between the conventional and 

KDE methods. 

 
The binned sources ( bT ) are calculated by averaging the source distributions over the 

final 500  cycles. 200  mesh tally regions (1 in the x-direction, 1 in the y-direction and 

200  in z-direction) are used to obtain the binned source, which is used to calculate the 

source entropy. Only the z coordinates of the starting neutrons for each cycle are sampled 

from the estimated source distribution (z coordinates only) of the previous cycle using 

renormalization sampling scheme. It is clear from Figure 5.6 that the KDE method has 

improved source convergence. 
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Figure 5.3 Top view of the one group 3-D isotropic checkerboard problem. 
 
 

 
 

Figure 5.4 Side view of the one group 3-D isotropic checkerboard problem. 
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Figure 5.5 Cyclewise k for conventional and KDE method for numerical example 2. 

 

 
Figure 5.6 Posterior relative entropy comparison between conventional and KDE for 

numerical example 2. 

5.10 Numerical Example 3 – Checkerboard 
 
Monte Carlo criticality calculations with KDE and the conventional fission source 

method are implemented for the checkerboard case with renormalized KDE sampling in 

all 3 coordinate directions. With KDE, the bandwidth in each coordinate direction is 
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calculated by Eq. (2.21). Both simulations used 135,000  particles per batch and 2000  

batches, and the first 1000  batches were discarded. The binned sources ( bT ) are 

calculated by averaging the source distributions over the final 500  cycles. 3200  mesh 

tally regions ( 4  in the x-direction, 4  in the y-direction and 200  in z-direction) are used 

to obtain the binned source for the source entropy calculation. The scaling factor σ  in 

Eq. (2.21) (more specifically xσ , yσ , and zσ  for 3 coordinate directions) is calculated 

for each material cell (there are 18 18 1 324× × =  material cells) and therefore the 

bandwidths are also calculated for each material cell and in each coordinate direction, and 

N  is the total number of samples (fission sites from previous batch) in Eq. (2.21). In this 

regard the bandwidths are local in this case instead of the global bandwidth used in 

example 2. 

 
Only the exterior vacuum boundaries are considered for the renormalized boundary 

correction.  Figures 5.7 and 5.8 present the comparison between the conventional and 

KDE methods. It is clear from Figure 5.8 that the KDE method has improved source 

convergence. 

 

 
Figure 5.7 Cyclewise k for conventional and KDE method for numerical example 3. 
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Figure 5.8 Posterior relative entropy comparison between conventional and KDE for 

numerical example 3. 

5.10 Numerical Example 4 – Checkerboard 
 
Monte Carlo criticality calculations with KDE and the conventional fission source 

method are carried out for the same checkerboard case with renormalized KDE sampling 

in all 3 coordinate directions. All the simulation parameters are same as those in example 

3 except with KDE, the bandwidth in each coordinate direction is calculated by Eq. 

(2.59) (with d = 3), which is the case for multivariate KDE. Figures 5.9 and 5.10 present 

the comparison between the conventional and KDE methods. It is clear from Figure 5.10 

that the KDE method has immensely improved source convergence. 
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Figure 5.9 Cyclewise k for conventional and KDE method for numerical example 4. 

 
Figure 5.10 Posterior relative entropy comparison between conventional and KDE for 

numerical example 4.
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5.11 Conclusions 
 
The use of KDE to implement fission source iteration in criticality problems has been 

shown to be successful in simple 1D slab geometry and also in more complicated 3D 

checkerboard geometry. KDE results in substantially faster source convergence than 

conventional Monte Carlo fission source iteration. Faster source convergence occurs 

mainly in large homogeneous regions (axial direction in most nuclear power reactors). 

This is due to the comparatively large bandwidth in the large homogeneous region, which 

increases communication between neutrons in a large loosely coupled system. The value 

of the bandwidth is extremely important for the proposed KDE sampling of the fission 

source distribution. With increasing number of histories per batch, the relative advantage 

of faster convergence with KDE reduces compared to conventional fission source 

iteration. This is because for loosely coupled systems, with the increasing number of 

histories per batch, the neutron communication is improving for the conventional fission 

source iteration while the bandwidth is decreasing for KDE sampling. This is also evident 

from examples 3 and 4. In example 3, the 1D bandwidth formula (Eq. (2.21)) was used, 

and this is slightly smaller than the multi-D bandwidth given by Eq. (2.59). Due to the 

slightly larger bandwidth in example 4, the KDE source convergence is faster than that of 

example 3. As faster convergence mainly depends on the KDE bandwidth, which is not a 

physics-based parameter, this remains a topic for future research.   

 
It is conjectured that KDE sampling of the fission source helps to minimize the 

intergenerational correlation in Monte Carlo k-eigenvalue calculation because KDE 

sampling uses fission sites sampled in the neighborhood of the previous cycle fission 

sites rather than the actual fission sites. 
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CHAPTER 6 

Summary and Future Work 

6.1 Global KDE Tally 
 
Monte Carlo radiation transport method is very efficient for estimating integral quantities, 

such as the volume averaged flux inside a region, and the corresponding uncertainties. 

However, if the shapes or the distributions of some quantities are of interest, then the 

traditional method is to employ histogram estimators. Histograms can be viewed as 

probability density estimators. Other sophisticated statistical density estimators can also 

be used to estimate the distributions of the important nuclear engineering quantities. In 

this thesis, the Kernel Density Estimator is used to represent Monte Carlo tallies. Two 

new neutron flux estimators and their variances are developed, namely the KDE-collision 

and KDE-track-length estimators. These new estimators are capable of estimating the 

flux at any point within a given domain without any bin structure. 

 
In Chapter 3, the advantages of the KDE flux tallies over the FET and histogram flux 

tallies have been shown with simple 1D geometries and also with more involved 2D 

geometries. KDE can be also used to depict other kind of Monte Carlo tallies with higher 

order shape information. The primary disadvantage of KDE for a criticality calculation is 

the requirement of storing all the points (e.g., collision points from each neutron 

trajectory) during a cycle for calculating the bandwidth (h) at the end of the cycle. That 

disadvantage has been successfully overcome by using the bandwidth from the previous 

batch for the criticality calculations. The bandwidth can be calculated online since it 

mainly depends on the standard deviation. So the remedy is to start calculating the 

bandwidth just before the active cycles begin as all the tallies are averaged only over the 

active cycles. This methodology works as the fission source is converged within 

statistical fluctuations before the active cycles begin. 
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A major advantage of the KDE tally is the elimination of internal bin structure to resolve 

the shape of the tally within a given region. KDE tallies have functional forms; therefore 

it is straightforward to estimate the flux at any point within the system without any 

binning. Also, we conjecture that the KDE path-length tally can be used with Woodcock 

tracking or delta tracking [1], which is a kind of rejection method for sampling distance 

to collision. Woodcock tracking allows one to ignore where the material boundaries are 

located while the neutron is being tracked through the geometry. It is very useful for 

problems where the total cross-section varies rapidly within the geometry. Woodcock 

tracking is also frequently used for tracking through reactor fuel assemblies, where the 

geometry is a regular lattice. As KDE tallies are mesh free, these tallies could be used 

with delta tracking to entirely eliminate the requirements of binning, both material and 

tally bins. 

 
Though in the convergence analysis part of the KDE tally we assume that the underlying 

true density is such that its second derivative is continuous and square integrable, KDE 

tallies can estimate quantities within the domain with material discontinuities. The KDE 

tallies are truly global and not piecewise approximations, and excellent results were 

obtained for a 2-D fuel assembly using one global bandwidth and no boundary 

corrections for the internal material boundaries.  

 
A convergence analysis indicates that KDE tallies compare favorably to the conventional 

histogram tallies as well as FET tallies. We have shown, both analytically and 

numerically, that KDE always converges faster than the conventional histogram tally and 

usually converges faster than the FET tally. 

 
In summary, the KDE global flux tally is a substantial improvement over the 

conventional histogram tally, which is a step approximation of the true distribution. Not 

only does it provide a higher order approximation to the underlying tally, KDE is a mesh-

free tally and can be implemented without a prescribed bin structure. Implementation of 

KDE tallies is very straightforward, and the computational cost is comparable with the 

traditional histogram tally, although storage costs may increase depending on the ultimate 

use of the KDE tally. 
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6.2 Monte Carlo Tallies with Unbounded Variance 
 
Flux at a point and average flux over a surface are important nuclear engineering 

quantities, especially in shielding calculations. Monte Carlo point detector and surface 

crossing flux tallies estimate these quantities, but these tallies have singularities due to 

the divergence in space for the point detector tally and the divergence in angle with the 

surface flux tally.  Due to these singularities, their variances are unbounded and cannot be 

used reliably to measure the convergence of these tallies to their true means. If the point 

detector is in a scattering or source region, the convergence of this tally is very slow or 

non-existent. Similarly, the surface crossing flux tally can be unreliable when particles 

cross the surface in grazing angles.  The KDE methodology provides an alternative 

approach to both of these tallies that greatly improves over current techniques to handle 

the singularities. Based on the observation that KDE estimates the underlying PDFs for 

the particle interactions (i.e., collisions or surface crossings) that are scored for both 

tallies, variance reduction methods have been developed for both tallies that yield 1/N 

convergence for their variances, while maintaining unbiased (at least asymptotically) 

estimators. 

 
The implementation of the variance reduction schemes for both estimators involves using 

the approximate (KDE-estimated) PDF for the domain near the singularity and allowing 

the width of this domain to vary. In essence, this parameter becomes a variance reduction 

tool. 

6.3 KDE Fission Source Iteration 
 
Monte Carlo criticality calculations sometimes suffer from slow fission source 

convergence. The slow fission source convergence occurs mainly in large loosely 

coupled systems with high dominance ratio. Dominance ratio is the ratio between the first 

and the fundamental eigenvalue of the system. A large number of inactive cycles may be 

required for this type of problem to converge the fission source distribution, which  is 

particularly important if local information like pin power is required. KDE has been 

shown to speed up the fission source convergence. KDE is applied to sample fission 
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locations from the fission bank which are then used as the starting source locations for 

the next generation. 

 
The use of KDE to implement fission source iteration in criticality problems has been 

shown to be successful in simple 1D slab geometry and also in more complicated 3D 

checkerboard geometry in Chapter 5. KDE results in substantially faster source 

convergence than conventional Monte Carlo fission source iteration. Faster source 

convergence occurs mainly in large homogeneous regions (axial direction in most nuclear 

power reactors). This is due to the comparatively large bandwidth in the large 

homogeneous region, which increases communication between neutrons in a large 

loosely coupled system. We found that the value of the bandwidth is extremely important 

for our proposed KDE sampling of the fission source distribution. We have seen with 

increasing number of histories per batch the advantage of faster convergence with KDE is 

decreasing compared to conventional fission source iteration. This is because for loosely 

coupled systems, with the increasing number of histories per batch, the neutron 

communication is improving for the conventional fission source iteration, while the 

bandwidth is decreasing for KDE sampling.  As faster convergence mainly depends on 

the KDE bandwidth, we need to study this effect in the future.   

 
We believe that KDE sampling of the fission source also helps to minimize the 

intergenerational correlation in Monte Carlo k-eigenvalue calculation, because KDE 

sampling uses neighboring source locations instead of the same source locations from the 

previous generation. This may reduce the bias in the variance introduced by the cycle to 

cycle correlation.  

6.4 Future Work 
 
We conclude this chapter with a brief summary of future work with KDE-based 

estimation methods for radiation transport Monte Carlo. 

 
KDE-track-length tally is implemented by dividing each track into some arbitrary number 

( n ) of sub-tracks. We used different n  for different problems. It is quite obvious that 

large n  yields a smoother flux distribution. However, excessively large n  is 
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computationally burdensome. An investigation should be performed to determine the 

optimum number of sub-tracks. This should take into account the underlying material 

regions because the typical use of path-length estimators is to tally reaction rates, and the 

accuracy and uncertainty of these reaction rates may depend on the number of sub-tracks. 

 
In two-dimensional fuel assembly problems, higher resolution could be obtained by using 

region-based bandwidths instead of one global bandwidth. We note here that the global 

bandwidth used for those problems yields a well-resolved flux distribution. However, it is 

expected that local bandwidths could perform better for the fuel assembly problems.  

 
The practical use of KDE tallies for production Monte Carlo codes will depend on the 

accuracy and efficiency of the methodology compared to conventional tallies. A 

promising approach may be to implement KDE with mesh tallies rather than with 

conventional tallies that are scored during the random walk. Since mesh tallies are 

performed with a mesh that overlays the geometry of interest, and KDE can be 

implemented with no knowledge of the eventual tally mesh, this may be a natural path to 

incorporate KDE tallies into a production Monte Carlo code. 

 
Conventional pathlength tallies cannot be implemented if Woodcock or delta tracking [1] 

is employed. For example, the production Monte Carlo code Serpent [2] uses Woodcock 

tracking but does not allow pathlength tallies. This is due to the fact that material 

boundaries are not known during the random walk when Woodcock tracking is used, so 

pathlength scores cannot be assigned to regions. However, since the KDE pathlength tally 

is a mesh-free tally, it can probably be implemented with Woodcock tracking.   

 
A mth-order kernel k  is the kernel whose first ( )1m −  moments are zero and the mth 

moment is nonzero. The mth moment of kernel k is defined as 

 ( ) ( ) .m
m k x k x dxµ = ∫  (6.1) 

 
In this thesis, we employ a second order kernel, which itself is a probability density 

function. If k  is constrained to be a probability density function, then 2 0µ >  is 

necessarily true. However, if we could relax this constraint, it is possible to construct k  
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with several vanishing moments. This will reduce the bias and improve the optimal 

convergence rate of MISE. We note here that for higher order kernels the resulting kernel 

density estimator will not be a normalized density function itself. We did not explore 

higher order kernels in this dissertation, but they should be investigated in future work. 

 
In this dissertation, we numerically demonstrate that the KDE modified point detector 

and surface crossing flux tallies are unbiased. For a simple setting with a constant scoring 

function, it is straightforward to show that this KDE modification is unbiased. It is also 

obvious that the KDE modified tallies are asymptotically unbiased as KDE itself is 

asymptotically unbiased. However, it is an open question whether a finite sample is 

unbiased. That is, is the expectation of a finite sample of KDE-based observations equal 

to the true mean? 

 
The conventional point detector flux tally was improved by employing a KDE-collision 

estimator. It may be possible to apply the KDE-track-length estimator and reduce the 

variance even further. 

 
The interpolation scheme, which is successfully implemented for the point detector 

estimator, should be extended to the surface crossing flux tally also. The interpolation 

scheme is applied to estimate the KDE collision flux at any sampled points, from the 

uniform distribution, by using previously estimated KDE flux at few equispaced points. 

This method is faster than the exact implementation of the KDE modified point detector 

tally.  

 
The renormalizing boundary correction is used for KDE fission source iteration, but this 

is not an order 2h  boundary correction. There remains room for improvement in this 

regard. 

 
We conjecture that KDE sampling scheme may reduce the cycle to cycle correlation in 

the criticality calculations. This should also be investigated in future. Another future 

work could be the development of a mathematical analysis to support fission source 

acceleration with KDE. 
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Bandwidth determination and boundary correction methods are very important for all 

KDE-based Monte Carlo methods. This could be another potential area for further 

research. In this thesis, bandwidths are calculated from the observed data. Perhaps 

bandwidth calculation based on the physics and intrinsic statistics of the problem could 

be a challenging research area. 

 
To handle more realistic problems, the KDE based Monte Carlo methods should be 

applied to continuous energy problems, including in the energy domain. There is no 

conceptual reason why this would not be successful. 
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