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2.1 Behavioral task and performance. a) Depiction of operant chamber, with five nose-
poke holes opposite food delivery port. b,c) Task event sequence, for correct perfor-
mance. Each trial began with illumination of one of the three most central nosepoke
holes (“Light On”, event 1). The rat had to place his nose in the illuminated hole
(“Nose In”, event 2) and stay there (total hold duration = 900-1250 ms). During
the hold window, a 250 ms instruction cue was played (“Tone”, event 3), followed
after a variable delay (600-950 ms) by a Go cue (125 ms white noise burst; “Go”,
event 4). The rat then pulled his nose out of the center hole (“Choice”, event 5)
and poked an immediately adjacent hole (“Side In” event 6). If the direction of
movement matched the instructional tone (learned arbitrary mapping: 1kHz, go
left, 4kHz go right) then a sugar pellet was immediately delivered with an audible
food hopper click, and could be collected by moving out of the side hole (”Nose
Out”, event 7) and to the food port on the rear wall (”Reward”, event 8). Brackets
indicate time epochs used to measure reaction time (RT), movement time (MT),
and time to reward (TTR). d) Distribution of RT, MT, and TTR times (10 ms
bins) and session performance (5% bins) from all animals. The mean time between
events 6 and 7 was 337 ms (SD 311 ms). All four subjects had bimodal RT dis-
tributions, consistent with rats sometimes anticipating, and sometimes reacting to,
the Go cue (Figure 2.3 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Unilateral striatal injection of a GABA-A agonist causes a selective, reversible
deficit in contraversive responding. Results shown are from each of four succesive
daily behavioral sessions in which rats (n=6) were tethered to an injection cannula
but not infused (“MOCK” infusion, session 1), infused with artificial cerebral spinal
fluid (“ACSF”, Sessions 2,4) or infused with 0.05 µg muscimol (“MUSC”, session
3).“Contraversive-Cued Trials”, “Ipsiversive-Cued Trials” indicate whether the rat
received an instruction cue to move to the nosepoke hole contralateral or ipsilateral
to the injection side, respectively. Error bars, S.E.M. . . . . . . . . . . . . . . . . . 15

2.3 Reaction time, movement time, time to reward, and percent correct for each subject
of the electrophysiology experiments. Behavioral data shown is only for those ses-
sions for which we included neurons in the electrophysiological analyses. Note the
prominent bimodal distribution in the reaction times. Regression analysis revealed
that short RTs (< 300ms) inversely varied with the hold time (“Go” - “Nose In”;
p=0.00004, regression t-test), while long RTs did not (p=0.39, regression t-test)
This suggest that that the rats were sometimes anticipating the Go cue (short RT
peak) and sometimes reacting to it (long RT peak). The percent correct session
histograms are divided into 5% bins. . . . . . . . . . . . . . . . . . . . . . . . . . . 16
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2.4 Classification of neurons. a) Example of wide-band recording (1-9,000 Hz) from
a tetrode (four wires, w1-4) in striatum (arrow = arrival at food port; blue color
highlights spikes from a presumed MSN, red highlights spikes from a presumed FSI).
Scale bars: 0.5mV,10ms. b) Single unit identification based on peak filtered spike
voltage; three of the four tetrode wires shown. The red, blue clusters correspond to
the spikes in a). c-e) Scatter plots of mean spike waveform durations (x, peak half-
maximum; y, peak-to-valley time) for each single-unit. c) Striatal cells. Presumed
MSNs are in blue, FSIs in red, O cells in green. d) M1 cells. Darker color indicates
possible interneuron population. e) GP cells; all had brief spike durations. f)
Mean wide-band spike waveforms for nine representative striatal cells. Numbers
(1-9) correspond to cells indicated in c. For comparison to prior studies, digitally
filtered versions of the waveforms are also shown (gray, 600-6,000 Hz Butterworth
filter). g) All wide-band waveforms for the FSI, O, and MSN striatal cell classes,
superimposed to show inter-cell variability. Vertical dashed bar = mean time of
detected valleys. h) Phasic vs. tonic activity of striatal cell types. Histograms show,
for each cell, the proportion of time spent in long interspike intervals (ISI>2s).
Inset: Presumed FSIs were more common in sensorimotor (lateral/dorsal/caudal)
striatum. Bars show proportion of each cell type by distance from an origin point
near the medial-ventral-rostral tip of the striatum [AP 3.13, ML 0, DV 8 mm below
bregma; compare to (Berke et al., 2004)]. . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Analysis of peak firing rate and movement selectivity. a-d) Examples of movement-
related cells. In each case mean wide-band spike waveform is at top right and
recording location at bottom right. Center panels show spike rasters for all trials,
aligned on movement onset (event 5) and separated by movement direction (con-
traversive on top, ipsiversive on bottom). Epochs with a significant (p < 0.01)
contra/ipsi firing rate difference are indicated by color shading (contraversive =
gold, ipsiversive = green). Vertical black lines indicate the 100 ms period with the
most significant contra/ipsi difference (peak directional selectivity is shown above
bin). Bottom panels show corresponding peri-event time histograms (PETHs) for
contraversive (gold), ipsiversive (green), and all trials (black). Bin size = 30 ms,
with 3-point moving average smoothing. Above the histograms, the point of max-
imum firing rate across all PETHs is shown with a vertical tick, and the period
of greater than half-maximal response (i.e. > (mean rate + peak rate)/2) by a
horizontal colored bar. The selectivity index value is shown above the rasters, on
the right side. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Locations of electrophysiological recordings and drug infusions. Locations are shown
as projections onto sagittal (left) and coronal (right) stacked atlas sections (Paxi-
nos and Watson, 2005). Area of circles is proportion to number of simultaneously
recorded cells, segment colors indicate the class of cells from each location. The
location of each muscimol injection in the separate behavioral experiment is indi-
cated with an “x”. Note that the GP cells were recorded from caudal parts of that
structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
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2.7 FSIs preferentially increase firing rate during choice execution. a) Peri-event time
histograms (PETHs) for each cell, aligned on each of the eight events. For each
cell, firing rate is shown by a color scale ranging from blue (zero) to red (peak
rate), and within each class of cells neurons are rank ordered by time of peak
firing.To be included, a cell had to have a firing rate of at least 5Hz in at least
one PETH (using 30 ms bins). For display purposes, only a portion of each 3 s
PETH window is shown (see Methods). For additional cell classes, see Fig. 2.8.
b) Events associated with peak firing rate. Order of cells is the same as (a). As
in Fig. 3, vertical tick marks indicate the time bin with peak firing rate, and
horizontal lines indicate the epoch for which firing rate was elevated more than half-
way between mean rate and peak rate (shown only for the PETH containing peak
rate). c) Mean normalized firing rate for each cell population in (a). Normalization
before averaging helps to emphasize the population response, by minimizing the
contribution of particular cells with especially strong responses. Bin size = 30 ms,
smoothed with 3-point moving average. Shaded region = S.E.M., and bold lines
indicate that population mean is outside 5% and 95% confidence intervals (see
Methods). d) Proportions of MSN and FSI cells with peak firing for each event.
The choice execution event was associated with a significantly different proportion
of FSI and MSN peak firing (*** p=0.0002, two-sample proportion test, adjusted
for multiple comparisons). All other events did not show a significant difference
(p>0.05, adjusted for multiple comparisons). The inclusion criterion of at least
5Hz peak firing did not substantially change our results: with all neurons included,
a significantly higher proportion of FSIs than MSNs still showed peak firing in
association with the“choice” event (Z=3.48, p=0.0009, two-sample proportion test,
corrected for multiple comparisons). . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 Analysis of O, M1P , and M1I neuronal classes. (a-d) Additional cell classes using
analysis described in Fig. 2.7. O cells may represent an additional class of striatal
interneurons [see (Berke, 2008)], M1P and M1I are motor cortex presumed projec-
tion and interneuron populations (see Fig 2.4d). Presumed cortical interneurons
did not show the same pattern of event preference as striatal FSIs, and there were
no significant differences in the events that cortical M1I and M1P populations pre-
ferred (p>0.05 for all comparisons; note however that the number of cells analyzed
is not large). As in previous work (Berke, 2008), O cells preferred the rewarding
event, although slightly less uniformly in this task. . . . . . . . . . . . . . . . . . . 22

2.9 |Z-score| normalized response profile. Format is identical to Figure 2.7a, except that
instead of firing rate the absolute value of the firing rate Z-scores are used instead
(see Methods). This serves to highlight both potential increases and decreases in
firing rate. PETHs are displayed as a heat map from blue (no change from baseline)
to red (maximum change from baseline, either positive or negative). Using this
variant of the analysis, the difference between the proportion of FSIs and MSNs
responding to the choice execution event remained significant (p=0.00065, two-
sample population proportions test, adjusted for multiple comparisons), and all
other pairs remained not significant (p>0.05, adjusted for multiple comparisons). 23
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2.10 Selective PETH response profiles. Format is identical to Figure 2.7a, except that
the peak firing rates were calculated using subsets of trials, during which (1) High
tone played, (2) Low tone played, (3) the subject moved contraversive, or (4) the
subject moved ipsiversive. This serves two purposes. First, it helps to includes
cells for which the 5Hz peak inclusion criterion was reached, but only on a subset
of trials. Secondly, it helps to find the preferred event for some neurons, in which
firing rate increases on one subset of trials were matched by decreases on another
subset. Under these conditions, the choice execution event remained associated
with a significantly different proportion of FSI and MSN peak firing (* p=0.012,
two-sample proportion, adjusted for multiple comparisons), and all other pairs
remained not significant (p>0.05, adjusted for multiple comparisons). . . . . . . . . 24

2.11 Location of cells with peak activity during the “choice” or “reward” epochs. (a,b)
Sagittal (left) and coronal (right) view of cell locations of FSI cells (a) and MSN
cells (b). c) Location histogram of reward- and choice-related cells for FSI (top)
and MSN (bottom) populations. Histological locations are given relative to bregma
in the ML (left), AP (center), and DV (right) directions.. The choice-related FSIs
and MSNs did not show a significant relationship to position (p>0.05, regression t-
test for both choice and reward preference regressed against the recording location:
ML, DV, AP, and distance from origin). . . . . . . . . . . . . . . . . . . . . . . . . 27

2.12 Regression Analysis of Choice Event. Maximum T-statistics are displayed for four
cell classes (M1, MSN, FSI, GP) for six regression coefficients: Direction (βd),
Position (βp), Tone (βt), Outcome (βo), Reaction Time (βRT ), Movement Time
(βMT ). Only the maximum t-stat for each cell is plotted. Solid markers indicate
that the coefficient was significant (p<0.01, regression t-test, corrected for multiple
comparisons). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.13 Directional selectivity around choice execution. a) Normalized PETHs for con-
traversive (leftward) and ipsiversive (rightward) movements for four cell classes.
To be included, a cell had to have a peak firing rate of at least 5Hz within 1s of
movement onset (toward either direction). For each cell class, the top plot shows
normalized PETHs for individual neurons (rank ordered by the time of peak fir-
ing) and the bottom plots show population PETH. Grey lines indicate the 5th and
95th centile of confidence intervals; portions of the mean line that extend outside
of this interval for at least two consecutive bins are indicated by increased thick-
ness. Shaded area = S.E.M. b) Time epochs of significant directional selectivity.
For each cell class, the top plots indicate epochs for which each neuron fired at
a significantly higher rate on trials with contraversive (gold) or ipsiversive (green)
movements (p<0.01, based on t-stat of regression βd; see Methods); bottom plots
indicate the instantaneous percentage of cells showing significantly higher firing
rates for each movement direction (time bin = 5ms with 3-point smoothing). c)
Selectivity index values for different cell classes. Vertical line indicates mean. d)
Scatter plot of directional selectivity vs spatial (i.e. which of the three central
holes) selectivity. Filled circles indicate that either the peak directional or spatial
selectivity was significant (p<0.01). . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.14 Nearby FSI-MSN cell pairs have opposite direction selectivity a,b) Examples of two
simultaneously recorded MSN cells (a) and a MSN and FSI cell pair (b). Raster for-
mat is the same as in Fig. 3. Note the inverse relationship between peak directional
selectivity (above rasters, right) in the MSN/FSI pair. c,d) Selectivity directions
for all 15 simultaneously recorded MSN-MSN pairs (c) and all 8 MSN-FSI pairs
(d) for which both cells showed direction selectivity within 1s of choice execution.
Double asterisks indicates significance, p=0.0039. n/s, not significant: p=0.0592. . 32
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3.1 Behavioral Task and Recordings. a) Depiction of operant training box showing
the position of the 5 nosepokes and food receptacle. b) Design of early (delayed
task) and late (choice task) tone delivery versions of the reaction time tasks. Seven
events are marked with numbers that were used in this analysis, a subset of events
are shown in (c). d) Behavioral results of the two tasks. Time measurements as in
(b): RT=Reaction Time, MT=Movement Time. Error bars, SEM. e-f) Example of
tetrode recordings from one session. e) The location of one wire from each tetrode
f) Downsampled LFP data, numbers indicate position in (e). . . . . . . . . . . . . 53

3.2 Characteristics of Local Field Potentials in four brain regions. a) Individual LFP
channel (thin lines) and mean of all channels (colored) for all channels recorded
in the two versions of the task. Error bars = SD b) Spatial distribution of β20 to

γ50 (P (β20)−P (γ50)
P (β20)+P (γ50)

) across 4 axes: (left) mediolateral (left center) anterioposterior

(right center) dorsoventral (right) distance from the origin from the striatum (AP
3.13 mm anterior, ML 0, DV 8 mm below bregma). c) Same as (a), however power
spectra are from hold period only (events 2-5). Arrows indicate peaks in β20 in all
regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Beta Oscillations during hold period. a) Left: An isolated ∼7 cycle β20 epoch
from a striatal recording site [see (c) for location] during task performance. Right:
Overlay of 15 randomly selected epochs aligned to maximum peak. b) LFP traces
from one recording site across all trial hold periods, event (2) to event (5), during
the delayed task. Identified β20 epochs are highlighted in red. Trials are ordered
by tone onset (green ticks). Blue ticks indicate “go” cue. In the data shown, the
mean (SD) cycles/epoch was 5.11 (2.17) Range: 3.01−15.38. Ninety-two % of trials
had at least one epoch, averaging 1.62 epoch/trial. c-d) spectral activity during
the hold period from striatal channels during the (c) choice and (d) delayed task.
Left: estimated recording location. Data from (a-b) is from same channel and
session shown in (d). Right: Event triggered scalograms from epochs 1−7. The
“Tone/Go” event for the choice task is repeated twice for comparison. Note the
prominent β20 activity after the instructional cue (i), the increase in β20 activity
(ii) during the hold period, and similar β20 desynchronization timescale after the
hold period. Channel locations of (c) and (d) are [3.7,-1.0,5.5] and [4.3,-1.3,6.8] in
[ML,AP,DV] (mm), respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Population comparison of β20 power during performance of the choice and delayed
tasks. a-b) Mean activity in the 15−25 Hz range of the scalograms triggered on the
six shared events of the (a) choice and (b) delayed version of the task. Channels
are normalized by dividing each event by the session mean of β20 power. For each
channel, β20 power is shown by a color scale ranging from blue (a decrease in power
by 40%) to red (a increase of β20 power by 60%). Within each class, channels are
rank ordered by time of peak β20 activity. Note the increase in activity during the
hold period of the delayed task. c) Tone event (event 3) from the delayed task.
Same time scale as in (a-b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
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3.5 Population summary of β20 between the choice and delay tasks. a) Median 15-25 Hz
oscillation activity of LFPs across 4 regions. Data are normalized by the baseline
activity of each channel from the entire session. Solid lines = choice task. Broken
line = delay task. Shaded region indicates ±1 s.e.. Gray vertical lines indicate the
95% confidence intervals of the population. Regions of data that fall outside the
confidence intervals are bold. Note the significant increase in β20 activity across
all regions before the go cue is only for the delayed version of the task (i). Beta
becomes desynchronized 250 ms after choice execution onset (ii) in both tasks. b)
Comparison of β20 onset. The choice task is aligned to “go” (4) event, while the
delayed task is aligned to the tone (3) event. In both versions of the task, these
events denote the onset of directional information. Note the close time evolution
of the onset (iii) across the two tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 β20 is coherent across the striatum and motor cortex. a) Simultaneous field poten-
tials recorded from 6 locations during the delayed task. Reconstructed locations
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ABSTRACT

The basal ganglia (BG) have been proposed as a possible neural substrate for action

selection in the vertebrate brain. This hypothesis has been developed primarily

through pathological observations. Human neurological disorders of the basal ganglia

can result in movements that are slowed or eliminated (bradykinesia/akinesia in

Parkinson’s Disease) or conversely, uncontrolled or unwanted (e.g. in Huntington’s

Disease and Tourette Syndrome). However, the precise mechanisms by which BG

circuits influence behavior remain to be understood. In this thesis, I have focused

on determining the role of BG circuits in selection of well-trained actions, and how

these findings can be applied for use in neuroprosthetic devices.

In the first study, I investigated one proposed mechanism to help resolve competi-

tion between actions in the BG: feedforward inhibition of striatal medium spiny cells

(MSNs) by fast-spiking interneurons (FSIs). I recorded single unit activity from pre-

sumed MSNs and FSIs together with motor cortex and globus pallidus (GP), in rats

performing a simple choice task. My findings support the idea that FSIs contribute

to action selection processes within striatal microcircuits, but suggest that the feed-

back pathway from GP to FSIs may be particularly important for the suppression

of highly trained yet unwanted actions.

In my second study, I examined the role of large neuronal ensembles of the BG and

motor cortex during two variations on a simple action selection task. Analysis of local

field potential (LFP) oscillations revealed that ∼20Hz rhythms (β20) were prominent

during the hold period, but only if subjects were instructed on which direction to

move during the hold period. This finding is consistent with the hypothesis that β20
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is involved with withholding specific selected actions, and agrees with pathological

observations of increased β20 in Parkinson’s Disease.

In the third study, I examined how action selection circuitry can be exploited to

aid in the development of a neuroprosthetic system. This system is one solution to a

long standing problem in neural engineering: central nervous system neurons do not

regenerate after traumatic injury, and can lead to paralysis. By bypassing injured

neurons, we can allow for direct motor control from non-injured neurons. I developed

an algorithm that observes the pattern of activity in cortical ensembles and allows

both the subjects and control system to co-adapt their behavior to allow näıve rats

to use a neuroprosthetic device. The results of this study show that subjects can

learn to select discrete actions in real-time using the neural activity of the cortex.

By developing a deeper understanding of the mechanisms behind selecting motor

actions, we will provide further insight into such neurological diseases as Parkinson’s

Disease or Tourette Syndrome. In this thesis, I investigate action selection at the

single-unit and multi-unit levels, while studying neural ensembles both within and

across brain structures. Further knowledge in this field will also yield more sophisti-

cated, yet more natural control of neuroprosthetic devices which will rely on native

BG and cortical roles in action selection.

xvii



CHAPTER I

Introduction

The chief function of the body is to carry the brain
around.

Thomas Edison: Inventor, Scientist, Businessman, fellow
Michigander

The brain is one of least understood entities in science. Packed into this 1.4kg

organ of fatty tissue lies the hopes, dreams, and desires that make us human. The

brain provides us the ability to coordinate movements, generate speech, internalize

thoughts, and solve complex problems. We are just beginning to understand the

brain, and the plethora of functions that it serves. While Mr. Edison may be

correct, one could argue that the chief function of the brain is to move the body.

The brain survives (as do we) by generating movements that avoid predators, gather

food, and eventually reproduce. Intentional communication using motor actuators in

the tongue, lips and jaw allow us to repair failed communication, teach or persuade

others, and build shared goals that help us to live in community. Motor output is

the brain’s only communication to the outside world, and it is most readily available

for scientific understanding.

1.1 Overview

The chief goal of this dissertation is to explore the underlying mechanisms behind

the output of brain’s decision making process: action selection. I will investigate

1
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the decision-making ability using micro-scale (cell-to-cell), aggregate-scale (neurual

ensembles), and macro-scale (brain region-to-brain region) levels. By understanding

the neural mechanisms of action-selection, next-generation neuroprosthetics can be

developed that exploit the brains innate ability to quickly switch between actions.

Towards this end, I employee engineering principles to develop a control paradigm

that allows for arbitrary output states to be selected quickly using electrophysiolog-

ical signals.

1.2 The Action Selection Problem

The basal ganglia were first implicated in motor actions in 1912 when S. A. Kinnier

Wilson described a disease with pathological changes in the liver and basal ganglia

that was characterized by tremors, muscular rigidity, and weakness (Wilson, 1912).

Wilson made the observation that these motor deficits occurred in the absence of

damage to the corticospinal (“pyramidal”) motor system, and therefore were the

result of an “extrapyramidal” motor system dysfunction. He postulated that the

basal ganglia comprised a large portion of this extrapyramidal motor system and

that it was independent of the pyramidal system. Wilson developed monkey models

of basal ganglia impairment (Wilson, 1914), and would eventually hypothesize that

the extrapyramidal motor system was evolutionarily “old” and used primarily for

automatic, non-modifiable movements; while the “new” corticospinal system was

responsible for voluntary and modifiable movements (Wilson, 1928)1.

Further evidence for the basal ganglia’s involvement in movements came with the

advent of modern anatomical techniques. Researchers found that a vast majority

of the basal ganglia output went via thalamus to motor cortical areas (for review,

1Coincidentally, this paper was the first neurology paper to use the term “déjà vu” when describing an experience
of familiarity (Eadie, 1998).
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see: Nauta and Mehler, 1966). And while other output pathways have been found

that are directed to the more-cognitive frontal lobes (Middleton and Strick, 1994)

and brain stem (Parent and Bellefeuille, 1982), the motor control centers appear to

dominate in volume, and will be the focus of this dissertation.

When discussing motor control, we need to address the “action selection problem”

that arises whenever two or more competing motor programs seek simultaneous ac-

cess to a restricted resource (Redgrave et al., 1999). Effective behavior requires that

the conflicts between “selected” actions are resolved uniquely from the many pos-

sible actions, and that these disputes are resolved rapidly. An eloquent example of

this conflict resolution is described by Jonathan Mink (1996) in his review of action

selection:

Consider as an example the act of reaching to pick an apple from a tree. If

asked to describe the movement, most observers would describe the reach-

ing movement. Yet, during the reach, multiple other motor mechanisms

act together to maintain the upright posture of the rest of the body. Prior

to the reach, these mechanisms were also active in the reaching arm to

maintain its posture. When the arm reaches toward the apple the postural

mechanisms must be turned off selectively in the arm while they remain

active in the rest of the body. When the reach is completed, the reaching

motor pattern generators must be turned off and the postural mechanisms

must be turned back on. If the competing posture-holding and reaching

mechanisms were inappropriately active at the same time, the result might

be instability of posture or slowing of movement, or both.

A number of different architectures have been proposed to deal with the selec-

tion problem in motor output of a specific action. One attractive way to implement
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action selection is to have all motor plans inhibit other motor plans with compet-

ing resources (Fukai and Tanaka, 1997). This recurrent reciprocal inhibition can

support a “winner-take-all” functionality making only one action viable at a time.

Over time, the strengths of incoming excitatory links, and of the inhibitory links

between competitors, can be tuned to support a complex patterns such that resource

allocation among the competitors can be optimized. However, this flexibility comes

at a high cost. For n competing actions, a fully connected cortical network with

reciprocal inhibition requires n(n − 1) connections (assuming one neuron for every

action) and adding a new competitor costs a further 2n connections (McFarland,

1965). Another candidate architecture is a centralized selection mechanism that has

overall behavioral control of the output motor system. Snaith and Holland (1991)

demonstrated that McFarland’s n competing actions requires only two connections

for each competitor, resulting in a total of 2n connections [<< n(n − 1)] when an

architecture with centralized selection is used. Since evolution should normally pre-

fer architectures which achieve comparable functionality with fewer connections (at

lower levels of activity), the centralized selection mechanism has been posited to

mediate competing actions. The basal ganglia, due to the recurrent connections to

the motor cortices, are hypothesized to provide the brain with a specialized, cen-

tral selection mechanism to resolve conflict between competing systems at different

functional levels (Redgrave et al., 1999).

1.3 Possible mechanisms for Action Selection in the BG

Clues as to how the BG may function to serve a conflict resolution role come

from both anatomical and physiological studies. As the main input structure of the

basal ganglia, the striatum receives massive excitatory glutamatergic inputs from all
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regions of the cortex (Gerfen and Wilson, 1996; Voorn et al., 2004). This cortical

information is integrated and “compressed” by the striatum which in turn generates

activities that eventually disinhibit premotor nuclei in the thalamus and brainstem.

The striatum is almost entirely composed of inhibitory GABAergic neurons. The

vast majority of these, at least 95%, are medium-sized spiny projection neurons

which also serve as the only source of output from the nucleus (Wilson, 2004). The

remaining cell types are comprised of large aspiny cholinergic interneurons, and at

least 3 distinct types of GABAergic interneurons.

To avoid conflicts, the striatum should suppress (inhibit) all but strong, focally

converging cortical inputs. There are two potential sources of the GABAergic in-

hibition in striatum: feedforward inhibition from the GABAergic interneurons and

feedback inhibition from the axon collaterals of the spiny neurons themselves. MSNs

were found to create a large number of GABAergic synapses onto nearby MSNs (Bo-

lam et al., 1983). This lead to the suggestions that MSNs form a mutual inhibitory

network in which each output neuron makes symmetric reciprocal inhibitory synapses

onto its neighbors. With such a configuration, action selection could be achieved via

“winner-take-all” interactions. However, the axon collaterals do not appear to have

a noticeable effect on nearby cells /emin vivo/em. Jaeger et al. (1994) used sharp

electrode intracellular recordings, but were unable to detect collateral inhibitory

postsynaptic potentials (IPSPs) resulting from antidromic activation of neostriatal

spiny neurons in vivo or in vitro. They also were unable to detect synaptic inter-

actions between simultaneously recorded pairs of nearby spiny neurons in striatal

slices, even when their axonal and dendritic fields were seen to overlap.

The lack of lateral inhibition of spiny cells has increased interest in the contri-

butions of other elements of intrastriatal circuitry. Striatal parvalbumin-containing
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fast-spiking interneurons (FSIs) receive cortical inputs, and form strong perisomatic

GABAergic synapses onto hundreds of surrounding MSNs (Bennett and Bolam,

1994). This FSI-mediated feed-forward inhibition has been argued to make an impor-

tant contribution to action selection and execution, via the broadly tuned, distributed

suppression of MSNs representing unwanted actions (Kita et al., 1990; Parthasarathy

and Graybiel, 1997). In Chapter 2, I will investigate the role that FSIs play during

the selection of (and consequently, the suppression of other) actions.

1.4 Oscillations in the Basal Ganglia

The action potentials of single cells are not the only signal captured by micro-

electrodes placed in the brain. Local Field Potentials (LFP), which correspond to

the lower frequency range of the extracellular signal, can carry information about

a large number of neurons. Historically, it is the LFP that preceded all other elec-

tophysiological signals in neuroscience. On July 6, 1924 Hans Berger was able for

the first time to record, with a small Edelmann galvanometer, the electrical brain

potentials directly from the cortical surface in a 17-year-old young man undergoing

an operation for a suspected brain tumor. The results of this early work would be

published 5 years later (Berger, 1929), after Berger painstakingly re-examined his

data and obtain further recordings to verify his results2. The first human electroen-

cephalographic (EEG) pattern described was a smooth, regular electrical oscillation

at 8−12 Hz, which Berger called an alpha wave. This early work was followed by a

barrage of intensive clinical and basic research. From scalp recordings, investigators

identified various further oscillatory patterns that were particularly obvious during

a resting state and while asleep, and discovered that these oscillations would change

as the subjects became conscious and awake.

2Including 73 electroencephalograms from his own son, aged 15-17 years, and 56 from himself.
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It was clear from even these early studies that neural oscillations are dependent

on the brain state and brain region. In more recent years, biophysical studies have

revealed that even single neurons are endowed with complex dynamics, including

their intrinsic abilities to resonate and oscillate at multiple frequencies (Llinás, 1988;

Hutcheon and Yarom, 2000). This finding suggested that the precise timing of cell ac-

tivity within neuronal networks could represent information. Around the same time,

the neuronal assembly structures of the oscillatory patterns found during sleep were

related to the experiences of the previous awake period (Wilson and McNaughton,

1994). These results led to the idea that perception, memory, and even conscious-

ness could be the result from synchronized networks (Engel et al., 2001; Varela et al.,

2001).

If synchronized activity is required for information processing, then diseases that

eliminate or exaggerate oscillation mechanisms could have devastating effects. Such

is the case with Parkinson’s Disease (PD). Recordings in humans as a result of func-

tional neurosurgery have revealed a tendency for basal ganglia neurons to oscillate

and synchronize their activity, giving rise to a rhythmic population activity, mani-

fested as oscillatory local field potentials in the beta band (β, 13-30 Hz) (Kühn et al.,

2005). These exaggerated oscillations in PD are reduced with therapeutic interven-

tions that restore motor abilities (Brown et al., 2001; Levy et al., 2002; Kühn et al.,

2006). Accordingly synchronization in the beta band has been hypothesized to be

essentially antikinetic in nature and pathophysiologically relevant to bradykinesia.

The lack of motor output in PD can be put in terms of an inability to perform

action selection. In Chapter 3, I will investigate the role that β activity plays during

the suppression of a cued actions. I will compare this to a similar antikinetic “idle”,

or waiting, state to determine if β-band activity is associated specifically with general
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absence of action, or (as I hypothesize) the suppression of a specific selected action

plan.

1.5 Exploiting Action Selection in Motor Neuroprosthetics

Research on Neuroprosthetics (NPs), also known as Brain-Machine Interfaces, has

seen a revival over the last decade, and these efforts can roughly be divided into four

categories (Sanchez et al., 2009). First is the most common NP, the sensory NP,

which substitutes for natural sensory inputs such as visual (Chelvanayagam et al.,

2008; Zrenner, 2002) or auditory (Rouger et al., 2007). More than 120,000 people

have been implanted worldwide with cochlear implants. Motor NPs (Serruya et al.,

2002; Taylor et al., 2002) substitute for parts of the body to convey intent of motion

to prosthetic limbs; while cognitive NPs that repair communication between brain

areas such as the hippocampus (Berger et al., 2001) that mediates short term to long

term memories. Finally, there are clinical NPs that stimulate specific brain areas to

repair normal function, such as deep brain stimulation for Parkinsons disease (Lozano

and Mahant, 2004) or to avoid or abort epileptic seizures (Ludvig et al., 2005).

Motor neuroprosthetics have have improved steadily since the pioneering work of

Fetz (1969) that showed it was possible to operantly condition single neurons, and

by Chapin et al. (1999) that demonstrated a real-time, one-dimensional, goal-driven

NPs that extracted intended movements using electrodes in the brain. Within a few

years, this would be extended into two-and three dimensional control (Serruya et al.,

2002; Taylor et al., 2002; Carmena et al., 2003; Shenoy et al., 2003).

I wished to expand this body of work by developing a motor NP that would

exploit the cortical ability to perform action selection. In chapter 4, I demonstrate a

novel cortical control paradigm that allows the motor neurons to develop their own
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internal strategy to achieve discrete output states. These output states are decoded

in real-time to allow feedback to modify the brain’s behavior on a trial-by-trial basis.

1.6 Dissertation Organization

This dissertation covers three components of action selection: the role that striatal

fast spiking interneurons play during the selection of actions (chapter 2), β20 oscil-

lations during the withholding of selected actions (chapter 3), and a neuroprostetic

control model to select discrete actions (chapter 4). At the time of this dissertation

completion, chapter 2 has been submitted and is in the review process, chapter 3 is

in preparation for manuscript submission, and chapter 4 has been published in the

Journal of Biomedical Engineering (Gage et al., 2005).



CHAPTER II

Selective Activation of Striatal Fast Spiking Interneurons
during Choice Execution

Abstract

Basal ganglia circuits are thought to participate in decision-making by facilitating

one option while suppressing alternatives. One proposed mechanism to help resolve

competition between actions is feedforward inhibition of striatal medium spiny cells

(MSNs) by fast-spiking interneurons (FSIs). To test this, we recorded presumed

MSNs and FSIs together with motor cortex and globus pallidus (GP), in rats per-

forming a simple choice task. MSN activity was broadly distributed across the task

sequence, especially near rewards. By contrast, FSIs were preferentially active as

subjects initiated their chosen action, in conjunction with a sharp decrease in GP

activity. Both MSNs and FSIs were movement-selective, but neighboring MSNs and

FSIs showed opposite selectivity. Our findings support the idea that FSIs contribute

to action selection processes within striatal microcircuits, but suggest that the feed-

back pathway from GP to FSIs may be particularly important for the suppression

of highly trained yet unwanted actions.

10
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2.1 Introduction

Effective action requires unequivocal decision-making—the prompt and appro-

priate selection of one alternative while others are suppressed. The neurobiological

mechanisms of choice behavior have been intensely investigated, and many brain

areas appear to contribute [for review, see (Gold and Shadlen, 2007)]. However, the

basal ganglia (BG) are thought to play an especially critical role, for a wide range

of decision types (Redgrave et al., 1999; Samejima and Doya, 2007). Human neu-

rological disorders of the basal ganglia can result in movements that are slowed or

eliminated (bradykinesia/akinesia in Parkinson’s Disease) or conversely, uncontrolled

or unwanted (e.g. in Huntington’s Disease and Tourette Syndrome). Despite much

experimental and theoretical progress (Lo and Wang, 2006; Leblois et al., 2006), the

precise mechanisms by which BG circuits influence behavior remain less than clear.

A number of attempts to relate BG structure to function have focused on mi-

crocircuitry within the largest BG nucleus, the striatum. The great majority of

striatal neurons are medium-spiny projection neurons (MSNs) that integrate many

convergent cortical and thalamic inputs and also provide the striatal output to other

BG nuclei (Wilson, 2004). MSNs form a mutually inhibitory network, that may

achieve action selection via “winner-take-all” interactions [for reviews see (Wilson,

2000; Wickens et al., 2007)]. However, MSN-MSN synapses are typically weak and

far from the cell body (Jaeger et al., 1994; Koós et al., 2004), which has increased

interest in the contributions of other elements of intrastriatal circuitry. Striatal

parvalbumin-containing fast-spiking interneurons (FSIs) receive cortical inputs, and

form strong perisomatic GABAergic synapses onto hundreds of surrounding MSNs

(Bennett and Bolam, 1994). This FSI-mediated feed-forward inhibition has been
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argued to make an important contribution to action selection and execution, via

the broadly tuned, distributed suppression of MSNs representing unwanted actions

(Kita et al., 1990; Parthasarathy and Graybiel, 1997). Consistent with such a role,

a reduced number of striatal FSIs has been found in a rodent model of paroxys-

mal dystonia [co-contractions of opposing muscle groups; (Gernert et al., 2000)] and

in postmortem tissue from human Tourette Syndrome patients [who have difficulty

suppressing unwanted, highly learned actions (Kalanithi et al., 2005)].

Despite these ideas, few studies have investigated the activity of likely striatal

FSIs in awake behaving animals (Berke et al., 2004; Schmitzer-Torbert and Redish,

2008; Berke, 2008). Recently it was observed that FSIs had highly individualized

patterns of responding, and did not appear to act as a coordinated population in

rats performing a radial maze task (Berke, 2008). However, this maze task was not

ideal for investigating the fine temporal evolution of decision-related neural activity.

We therefore examined patterns of FSI activity in rats performing a simple choice

task, in which the timing of key events was closely monitored. To gain greater insight

into these patterns we compared them to other, simultaneously recorded elements of

cortical-BG circuits: striatal MSNs and neurons in primary motor cortex (M1) and

globus pallidus (GP).

2.2 Results

To study striatal FSI contributions to choice behavior, we designed a simple con-

ditional discrimination task (Fig. 2.1) that we expected to require intact function

of the lateral (sensorimotor) striatum. Lateral striatum is involved in the acquisi-

tion and expression of cue-guided responses (McDonald and White, 1993; Adams

et al., 2001; Berke et al., 2009), particularly movements to contraversive space (Cook
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Table 2.1: Distinct properties of neuronal populations. Data are presented as mean (SD). Firing
rate is the session-wide mean.

n Firing Rate / Hz Peak Width /µs Peak to Valley /µs

MI 72 2.7 (4.4) 250.3 (68.5) 695.7 (246.5)

MSN 257 1.1 (4.5) 270.7 (48.7) 873.2 (120.0)
FSI 38 18.3 (18.3) 128.1 (31.8) 259.9 (86.7)
O 7 22.1 (15.4) 231.8 (29.8) 423.8 (50.4)

GP 25 17.8 (13.4) 153.3 (47.8) 294.0 (96.6)

and Kesner, 1988; Carli et al., 1989; Brown and Robbins, 1989; Brasted et al., 1997;

Packard and McGaugh, 1996), and this subregion also has the highest density of FSIs

[e.g.(Kita et al., 1990; Berke et al., 2004)]. Hungry rats were placed in an operant

box with five nosepoke holes, and each trial began with the illumination of one of the

three more-central holes. The rat placed and held its nose in that hole while a brief

instruction tone played, then performed a rapid nosepoke to one of the immediately

adjacent holes, on either the left or right side depending on the instruction tone.

To verify that the striatum is important for the left-right choice in this task,

in a group of well-trained rats (n=6), we performed unilateral striatal infusions of

the GABAA agonist muscimol, or artificial cerebrospinal fluid (ACSF) as a control

(Fig. 2.2). Infusion of ACSF did not affect task performance (p=0.926; all compar-

isons ANOVA with Tukey post hoc test). Infusion of muscimol caused a selective,

reversible reduction in cued contraversive responding (responses towards the side

opposite to the infusion, p<0.001) without interfering with ipsiversive performance

(p=0.990). Hence the lateral striatum is preferentially involved in contraversive

responding in this task, and GABAA receptor stimulation in this subregion can pow-

erfully affect choice behavior.

To examine the activity of FSIs during the performance of this choice task, ad-
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Figure 2.1: Behavioral task and performance. a) Depiction of operant chamber, with five nosepoke
holes opposite food delivery port. b,c) Task event sequence, for correct performance.
Each trial began with illumination of one of the three most central nosepoke holes
(“Light On”, event 1). The rat had to place his nose in the illuminated hole (“Nose In”,
event 2) and stay there (total hold duration = 900-1250 ms). During the hold window,
a 250 ms instruction cue was played (“Tone”, event 3), followed after a variable delay
(600-950 ms) by a Go cue (125 ms white noise burst; “Go”, event 4). The rat then pulled
his nose out of the center hole (“Choice”, event 5) and poked an immediately adjacent
hole (“Side In” event 6). If the direction of movement matched the instructional tone
(learned arbitrary mapping: 1kHz, go left, 4kHz go right) then a sugar pellet was
immediately delivered with an audible food hopper click, and could be collected by
moving out of the side hole (”Nose Out”, event 7) and to the food port on the rear
wall (”Reward”, event 8). Brackets indicate time epochs used to measure reaction time
(RT), movement time (MT), and time to reward (TTR). d) Distribution of RT, MT,
and TTR times (10 ms bins) and session performance (5% bins) from all animals. The
mean time between events 6 and 7 was 337 ms (SD 311 ms). All four subjects had
bimodal RT distributions, consistent with rats sometimes anticipating, and sometimes
reacting to, the Go cue (Figure 2.3 ).
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Figure S1: Unilateral striatal injection of a GABAA agonist causes a selective deficit 
in contraversive responding. Results shown are from four successive daily behav-
ioral sessions in which rats (n=6) were tethered to an injection cannula but not 
infused ("Mock", session 1)  or injected with either artificial cerebral spinal fluid 
("ACSF", sessions 2,4) or muscimol ("MUSC", session 3). Task is as shown in Fig. 
1b, but without the additional delay between the instruction cue and go cue. 
"Contra", "Ipsi" trials are those in which the rat received an instruction cue to move 
to the nosepoke hole contralateral, or ipsilateral, to the injection side respectively. 
Note that the only significant change occurred on the contralaterally cued trials in 
which MUSC was injected. Asterisks indicate p<0.001 (two-way ANOVA, Tukey 
post hoc test). Error bars indicate SD.
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Figure 2.2: Unilateral striatal injection of a GABA-A agonist causes a selective, reversible deficit
in contraversive responding. Results shown are from each of four succesive daily behav-
ioral sessions in which rats (n=6) were tethered to an injection cannula but not infused
(“MOCK” infusion, session 1), infused with artificial cerebral spinal fluid (“ACSF”, Ses-
sions 2,4) or infused with 0.05 µg muscimol (“MUSC”, session 3).“Contraversive-Cued
Trials”, “Ipsiversive-Cued Trials” indicate whether the rat received an instruction cue to
move to the nosepoke hole contralateral or ipsilateral to the injection side, respectively.
Error bars, S.E.M.

ditional well-trained rats (n=4) were implanted with tetrodes into multiple target

regions simultaneously (Fig. 2.4). Most tetrodes were aimed towards lateral portions

of striatum (Fig. 2.6), though for comparison we also recorded neurons in other stri-

atal subregions (including nucleus accumbens, NAc), GP, and “neck” regions of M1

(Sanes et al., 1990). To help distinguish between sensory and motor aspects of neural

coding, the task variant used in the electrophysiological studies had a brief, variable

delay between the instruction cue and a “go” cue for movement onset (as shown

in Fig. 2.1). From the intended targets a total of 437 distinct, well-isolated cells

(striatum, 339; M1, 73; GP, 25) were obtained from 39 sessions (mean number of

trials/session:125.8; mean % correct: 74.4, range: 64.3 - 87.1, Fig. 2.1e).

Examination of striatal neuron waveforms revealed distinct clusters of cell prop-

erties that closely resembled those seen in our previous studies of striatum [in dif-
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Figure 2.3: Reaction time, movement time, time to reward, and percent correct for each subject of
the electrophysiology experiments. Behavioral data shown is only for those sessions for
which we included neurons in the electrophysiological analyses. Note the prominent
bimodal distribution in the reaction times. Regression analysis revealed that short RTs
(< 300ms) inversely varied with the hold time (“Go” - “Nose In”; p=0.00004, regression
t-test), while long RTs did not (p=0.39, regression t-test) This suggest that that the
rats were sometimes anticipating the Go cue (short RT peak) and sometimes reacting
to it (long RT peak). The percent correct session histograms are divided into 5% bins.
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Figure 2.4: Classification of neurons. a) Example of wide-band recording (1-9,000 Hz) from a
tetrode (four wires, w1-4) in striatum (arrow = arrival at food port; blue color high-
lights spikes from a presumed MSN, red highlights spikes from a presumed FSI). Scale
bars: 0.5mV,10ms. b) Single unit identification based on peak filtered spike voltage;
three of the four tetrode wires shown. The red, blue clusters correspond to the spikes
in a). c-e) Scatter plots of mean spike waveform durations (x, peak half-maximum; y,
peak-to-valley time) for each single-unit. c) Striatal cells. Presumed MSNs are in blue,
FSIs in red, O cells in green. d) M1 cells. Darker color indicates possible interneuron
population. e) GP cells; all had brief spike durations. f) Mean wide-band spike wave-
forms for nine representative striatal cells. Numbers (1-9) correspond to cells indicated
in c. For comparison to prior studies, digitally filtered versions of the waveforms are
also shown (gray, 600-6,000 Hz Butterworth filter). g) All wide-band waveforms for
the FSI, O, and MSN striatal cell classes, superimposed to show inter-cell variability.
Vertical dashed bar = mean time of detected valleys. h) Phasic vs. tonic activity of
striatal cell types. Histograms show, for each cell, the proportion of time spent in long
interspike intervals (ISI>2s). Inset: Presumed FSIs were more common in sensorimotor
(lateral/dorsal/caudal) striatum. Bars show proportion of each cell type by distance
from an origin point near the medial-ventral-rostral tip of the striatum [AP 3.13, ML
0, DV 8 mm below bregma; compare to (Berke et al., 2004)].
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Figure 2.5: Analysis of peak firing rate and move-
ment selectivity. a-d) Examples of
movement-related cells. In each case
mean wide-band spike waveform is at
top right and recording location at
bottom right. Center panels show
spike rasters for all trials, aligned on
movement onset (event 5) and sep-
arated by movement direction (con-
traversive on top, ipsiversive on bot-
tom). Epochs with a significant (p
< 0.01) contra/ipsi firing rate dif-
ference are indicated by color shad-
ing (contraversive = gold, ipsiversive
= green). Vertical black lines in-
dicate the 100 ms period with the
most significant contra/ipsi differ-
ence (peak directional selectivity is
shown above bin). Bottom panels
show corresponding peri-event time
histograms (PETHs) for contraver-
sive (gold), ipsiversive (green), and
all trials (black). Bin size = 30 ms,
with 3-point moving average smooth-
ing. Above the histograms, the point
of maximum firing rate across all
PETHs is shown with a vertical tick,
and the period of greater than half-
maximal response (i.e. > (mean rate
+ peak rate)/2) by a horizontal col-
ored bar. The selectivity index value
is shown above the rasters, on the
right side.
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Figure S2: Lesion and Electrophysiological  
Recording Locations.  Locations are shown as 
projections onto sagittal (left) and coronal (right) 
stacked atlas sections (Paxinos and Watson, 
2005). Area of circles is proportion to number of 
simultaneously recorded cells, segment colors 
indicate the class of cells from each location. 
The location of muscimol injections in the 
separate behavioral experiment are indicated 
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Figure 2.6: Locations of electrophysiological recordings and drug infusions. Locations are shown
as projections onto sagittal (left) and coronal (right) stacked atlas sections (Paxinos
and Watson, 2005). Area of circles is proportion to number of simultaneously recorded
cells, segment colors indicate the class of cells from each location. The location of each
muscimol injection in the separate behavioral experiment is indicated with an “x”. Note
that the GP cells were recorded from caudal parts of that structure.

ferent rats; (Berke et al., 2004; Berke, 2008)]. The largest class of striatal cells

(n=257) had relatively long duration waveforms (Fig. 2.4g; Table 1) and typically

also had phasic firing patterns (Fig. 2.4h); these were presumed to be MSNs, which

comprise the great majority of striatal neurons. The second most numerous group

(n=38) had the very brief waveforms (Kawaguchi et al., 1995; Mallet et al., 2005) and

graded intrastriatal distribution [Fig. 2.4h inset; (Kita et al., 1990)] characteristic of

parvalbumin-positive fast-spiking interneurons [FSIs; for discussion see (Berke et al.,

2004)]. Compared to the MSN population, these cells had higher firing rates (Table

2.1) and were usually tonically active (Fig. 2.4h). A final class of striatal cells also

had high baseline firing rates, but a characteristic waveform shape with intermedi-

ate peak and valley widths; as before (Berke, 2008) we labeled these as “O” cells

for other, currently unknown phenotype. Because they were few in number (n=7),
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O cells were excluded from most analyses. Distinct clusters were also observed for

waveforms from motor cortex cells (Fig. 2.4d). The briefer waveforms are very likely

to be interneurons (Barthó et al., 2004; Cardin et al., 2009), though for our analy-

sis M1 cells were treated as one group except where noted below. GP cells all had

high firing rates and relatively narrow waveforms (Fig. 2.4e), consistent with prior

observations [e.g.(Turner and Anderson, 1997)].

2.2.1 FSIs are disproportionately active around choice execution

We next wished to determine if FSIs are preferentially active at any particular

moment during the performance of the choice task, in comparison to other neuronal

populations. To generate a temporal response profile for each neuron we calculated

perievent time histograms (PETHs; see Fig. 2.5 for examples) around each task

event, and normalized this event-related firing by the peak response across all PETHs.

Figure 2.7a shows this profile for all task-responsive cells of each class, sorted by

moment of peak response. Since there are variable delays between task events, the

highest firing rate obtained across all PETHs allows us to determine which task

event produces the strongest response for each neuron. This epoch of peak response

is shown for each cell in Fig. 2.7b.

Each studied brain area contained many cells with task-related changes in firing

rate, especially near arrivals at the baited food port. In this study we did not

attempt to distinguish between motoric and hedonic aspects of reward retrieval and

consumption, but simply refer to all cells with maximal firing around reward receipt

as “reward-related”. However, in marked contrast to the MSN population, FSIs

were disproportionately active around the earlier time at which the rats initiated

their left/right choice (“choice execution”; event 5). For units active during task

performance, 35.1% (13/37) of FSIs showed maximal firing when aligned to this
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Figure 2.7: FSIs preferentially increase firing rate during choice execution. a) Peri-event time his-
tograms (PETHs) for each cell, aligned on each of the eight events. For each cell, firing
rate is shown by a color scale ranging from blue (zero) to red (peak rate), and within
each class of cells neurons are rank ordered by time of peak firing.To be included, a
cell had to have a firing rate of at least 5Hz in at least one PETH (using 30 ms bins).
For display purposes, only a portion of each 3 s PETH window is shown (see Methods).
For additional cell classes, see Fig. 2.8. b) Events associated with peak firing rate.
Order of cells is the same as (a). As in Fig. 3, vertical tick marks indicate the time
bin with peak firing rate, and horizontal lines indicate the epoch for which firing rate
was elevated more than half-way between mean rate and peak rate (shown only for the
PETH containing peak rate). c) Mean normalized firing rate for each cell population
in (a). Normalization before averaging helps to emphasize the population response, by
minimizing the contribution of particular cells with especially strong responses. Bin size
= 30 ms, smoothed with 3-point moving average. Shaded region = S.E.M., and bold
lines indicate that population mean is outside 5% and 95% confidence intervals (see
Methods). d) Proportions of MSN and FSI cells with peak firing for each event. The
choice execution event was associated with a significantly different proportion of FSI
and MSN peak firing (*** p=0.0002, two-sample proportion test, adjusted for multiple
comparisons). All other events did not show a significant difference (p>0.05, adjusted
for multiple comparisons). The inclusion criterion of at least 5Hz peak firing did not
substantially change our results: with all neurons included, a significantly higher pro-
portion of FSIs than MSNs still showed peak firing in association with the“choice” event
(Z=3.48, p=0.0009, two-sample proportion test, corrected for multiple comparisons).
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Figure 2.8: Analysis of O, M1P , and M1I neuronal classes. (a-d) Additional cell classes using
analysis described in Fig. 2.7. O cells may represent an additional class of striatal
interneurons [see (Berke, 2008)], M1P and M1I are motor cortex presumed projection
and interneuron populations (see Fig 2.4d). Presumed cortical interneurons did not
show the same pattern of event preference as striatal FSIs, and there were no significant
differences in the events that cortical M1I and M1P populations preferred (p>0.05 for
all comparisons; note however that the number of cells analyzed is not large). As in
previous work (Berke, 2008), O cells preferred the rewarding event, although slightly
less uniformly in this task.
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Figure 2.9: |Z-score| normalized response profile. Format is identical to Figure 2.7a, except that
instead of firing rate the absolute value of the firing rate Z-scores are used instead
(see Methods). This serves to highlight both potential increases and decreases in firing
rate. PETHs are displayed as a heat map from blue (no change from baseline) to
red (maximum change from baseline, either positive or negative). Using this variant
of the analysis, the difference between the proportion of FSIs and MSNs responding
to the choice execution event remained significant (p=0.00065, two-sample population
proportions test, adjusted for multiple comparisons), and all other pairs remained not
significant (p>0.05, adjusted for multiple comparisons).
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Figure 2.10: Selective PETH response profiles. Format is identical to Figure 2.7a, except that the
peak firing rates were calculated using subsets of trials, during which (1) High tone
played, (2) Low tone played, (3) the subject moved contraversive, or (4) the subject
moved ipsiversive. This serves two purposes. First, it helps to includes cells for which
the 5Hz peak inclusion criterion was reached, but only on a subset of trials. Secondly, it
helps to find the preferred event for some neurons, in which firing rate increases on one
subset of trials were matched by decreases on another subset. Under these conditions,
the choice execution event remained associated with a significantly different proportion
of FSI and MSN peak firing (* p=0.012, two-sample proportion, adjusted for multi-
ple comparisons), and all other pairs remained not significant (p>0.05, adjusted for
multiple comparisons).
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event - a significantly higher proportion than the 4.1% (3/74) of MSNs (Z=4.39,

p=0.0002, two-sample proportion test corrected for multiple comparisons). Since

we were interested in both increases and decreases in firing rate, we repeated these

analyses using an alternative form of PETH normalization, based on the absolute

value of firing rate Z-scores; very similar results were obtained (Fig. 2.9). Although

there are several other movement-aligned events in this task (nose in, side in, nose

out), only choice execution showed a significantly higher proportion of FSIs active

over MSNs (Fig. 2.7d). We note that this is the moment at which the sequence

of actions performed within a trial bifurcates along two highly learned paths. This

produces a need to suppress an alternative action, that is prepotent and brought

close to execution “threshold”, yet unintended on this trial. Thus enhanced FSI

activity at this time is at least consistent with a role in the inhibition of alternative

actions.

We considered several other reasons why FSIs might be more likely to show this

“choice-related” firing than MSNs. Firstly, FSIs and MSNs have very different aver-

age firing rates - could this be affecting our analyses? We think not, since both GP

cells and presumed cortical interneurons had similar high firing rates to FSIs, yet

neither group showed a comparable preference for the choice event (Figs. 2.7 and

2.8). Secondly, FSIs tend to be found more often in lateral striatum. We therefore

examined whether the preferential activity of FSIs with choice execution was simply

a reflection of the information processing occurring in that brain subregion. While

the small number of choice-related MSNs were all found in dorsal-lateral striatum,

choice-related FSIs were much more broadly distributed (Fig. 2.11). This indicates

that the different balance of choice-related and reward-related firing for FSIs and

MSNs is not caused by the increased FSI density in lateral striatum, and suggests
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that a choice-related increase in striatal FSI activity may act as a relatively global

signal. Finally, averaging across the whole session may diminish some strong MSN

responses that occur only on certain trial types. To assess this possibility we repeated

our analysis, this time assigning cells to events on the basis of the strongest PETH

response during either low tone trials, high tone trials, leftward trials or rightward

trials. Although this did change the assignation of some specific neurons to events,

FSIs still disproportionately preferred the choice execution event (Fig. 2.10).

Assigning neurons to a single event actually underestimates the proportion of

FSIs that increase firing around choice execution, since many such FSIs showed even

greater activity at another point in the trial . When we examined the overall response

of each neuronal population a clear “pulse” of enhanced FSI activity was observed

around choice execution, while peak MSN population activity was instead found

around reward retrieval (Fig. 2.7c). This population level analysis further revealed

a striking pattern of opposite changes in the FSI and GP populations. GP cells

tended to have elevated firing rates as the rats maintained their head-fixed position

while waiting to make their choice; as they finally initiated an action, GP population

activity fell sharply as FSI activity increased. This result is especially interesting

as there is a specific direct GABAergic projection from GP to striatal FSIs (Bevan

et al., 1998), suggesting that disinhibition may contribute to the FSI pulse.

2.2.2 FSIs are selective for movement direction

A coordinated pulse of striatal FSI activity is, by itself, consistent with theories

that view these cells as providing broadly-tuned, blanket suppression of MSNs via

feed-forward inhibition [e.g. (Wickens and Arbuthnott, 1993; Parthasarathy and

Graybiel, 1997)]. However, individual FSIs clearly have diverse patterns of firing

rate change, both in the present data and in our prior results (Berke, 2008). To
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explore information processing by individual FSIs, we next examined selectivity for

one chosen action over the other. The great majority of FSIs had high movement

selectivity, and both contraversive and ipsiversive-preferring neurons were observed

in similar numbers (Fig. 2.13). To tease apart other factors that may contribute to

the firing rate of FSIs and other subpopulations during action selection, we performed

multiple regression analysis using a range of variables including the instruction tone,

movement direction, the spatial position at which the choice was executed, reaction

time, movement time, and trial outcome (Fig. 2.12). For each of the MSN, FSI, M1

and GP populations, movement direction was the most common dominant factor,

with very few cells more concerned with other task aspects such as the specific tone

or the rat’s spatial position (e.g. Fig. 2.13d. In particular, among FSIs that had

significant factors in the multiple regression 11/14 (78.6 %) were most concerned

with the specific movement direction. These results indicate that, rather than FSIs

acting constantly as a single global signal, the transient coordination of FSI activity

is superimposed on a background of idiosyncratic individual firing rate time courses

(Berke, 2008) that are highly influenced by movement direction.

2.2.3 Nearby FSIs and MSNs show opposite selectivity, but weak interactions

The muscimol injection experiment indicates that the lateral striatum is particu-

larly important for contraversive movements in our task. Yet, both contraversive- and

ipsiversive-preferring neurons were found intermingled in lateral striatum (and other

striatal subregions) in similar numbers, and there was no gross relationship between

recording location within striatum and direction preference (p>0.05 for both MSNs

and FSIs, regression t-tests for directional selectivity vs. each [AP,ML,DV] dimen-

sion of recording location). On a finer scale, MSNs and FSIs are each components of

local microcircuits (Gustafson et al., 2006) that may be functional modules (Wilson,
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2000). Since FSIs provide GABAergic input to nearby MSNs they might be expected

to have opposite direction preferences (Diester and Nieder, 2008). To test this, we

examined all pairs of cells recorded simultaneously from the same tetrode, for which

both neurons had significant direction selectivity. Consistent with an inhibitory role

of FSIs within local microcircuits, all such FSI-MSN pairs had opposite direction

preferences (8/8 pairs opposite; p=0.0039, 50% binomial distribution). This was not

the case for MSN-MSN pairs, which tended to have the same direction preference

(4/15 pairs opposite).

Finally, we looked for additional evidence of the inhibitory influence of FSIs on

MSNs using crosscorrelograms. A suppression in target cell firing for 2-3 ms after

a reference cell spike has been used to identify presumed monosynaptic GABAA-

mediated inhibition (Barthó et al., 2004). Once again we focused on FSI-MSN pairs

recorded from the same tetrode, since for these pairs the MSN was likely to be in

range of the FSI axonal field (Berke, 2008). Although in many cases we had limited

power to detect inhibition due to the low baseline firing rates of MSNs, of 91 such

pairs none showed evidence of FSI inhibition of MSNs in session-wide crosscorrelo-

grams (data not shown). This absence of obvious spike suppression suggests that

FSI:MSN interactions in awake, behaving animals may operate differently to the

strong shunting inhibition of MSNs seen following direct somatic current injection

into single FSIs in vitro (Koós and Tepper, 1999).

2.3 Discussion

Cortical-basal ganglia circuits use multiple internal control signals, such as the

neuromodulators dopamine and acetylcholine, to achieve their overall functions of

action selection and reinforcement-based learning. Here we have found another po-
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tential internal control signal: a pulse of enhanced striatal FSI activity that occurs at

moments of choice execution. This FSI pulse did not occur in conjunction with every

performed action, but rather was specific to times at which an alternative, highly-

learned action required suppression. Additional studies will be required to further

delineate the circumstances that produce enhanced FSI activity. However, our re-

sults suggest a role for striatal FSIs in the suppression of unwanted actions, that

seems quite compatible with recent findings of an FSI deficit in Tourette Syndrome

(Kalanithi et al., 2005).

The specific firing rate time courses of individual FSIs during operant task per-

formance were reproducible from trial to trial, but highly variable between different

(even neighboring) FSIs. This is consistent with our prior work, in which we found

highly idiosyncratic FSI activity in a radial maze task (Berke, 2008). Both tasks

demonstrate that the patterns of FSI firing are far more complex than had been ex-

pected, given their interconnection by gap junctions and inhibition of many nearby

MSNs (Koós and Tepper, 1999). However, in the radial maze we found no clear

evidence for any moment of coordinated FSI firing rate change, despite related task

demands such as cue-guided decision-making. The most important difference may be

that the operant task used here was specifically designed to obtain greater temporal

definition of behavioral events, including the moment of choice execution. Unlike the

maze task, the operant task also includes an enforced hold period that helps to de-

fine just when the chosen action is initiated, and this may have introduced additional

demands for inhibitory control involving FSIs.

What accounts for these two aspects of striatal FSI firing - idiosyncratic individ-

ual activity time courses, but transiently coordinated firing rate increases at choice

execution? We propose that this reflects two different types of input to FSIs. On the
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one hand, FSIs are receiving complex combinations of sensory and motor information

from multiple cortical regions (Ramanathan et al., 2002). They seem to be active

participants in the fine details of information processing within striatal microcircuits,

influencing the spiking of MSNs in a subtle manner rather than by constant strong

inhibition. On the other hand, FSIs receive a continuous barrage of GABAergic

inputs from high-firing-rate GP neurons (Bevan et al., 1998). The pallidostriatal

pathway is more divergent than the striatopallidal pathway (Spooren et al., 1996),

allowing GP neurons to coordinate FSI activity over more widely distributed regions

of striatum. GP cells themselves receive inputs from subthalamic nucleus, which can

provide a broad brake over behavior (Aron and Poldrack, 2006), and increases in

GP activity have been previously noted under hold conditions, in which a specific

movement is programmed but not yet executed [e.g.(Turner and Anderson, 2005)].

The sharp reduction in GP firing at the end of the hold period is thus consistent

with the broad disinhibition of striatal FSIs. GP control of coordinated FSI firing

may also account for the transient nature of the FSI pulse, since FSI-MSN-GP-FSI

connections form a negative feedback circuit. Biophysically-accurate simulations of

such basal ganglia dynamics would be helpful for evaluating this proposal.

Within cortical microcircuits, the activity of excitatory projection cells and in-

hibitory interneurons is tightly linked by recurrent connections [e.g. (Shu et al.,

2003)]. This local feedback sculpts oscillatory activity (Cardin et al., 2009) and

allows maintenance of active representations without runaway excitation. Striatal

microcircuits have a distinct architecture, in which the projection cells (MSNs) do not

directly send recurrent connections to interneurons. Since the striatum receives exci-

tation exclusively from extrinsic sources and the MSN projection cells are GABAer-

gic, tightly coupled FSI activity is not required to prevent runaway excitation. This
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may help to explain the quite different population time courses of FSIs and MSNs in

the present experiments. Our findings are generally compatible with models in which

basal ganglia circuits serve as non-linear gating or threshold elements in decision-

making, rather than (for example) representing the accumulated evidence supporting

one decision over another [e.g. (Lo and Wang, 2006)].

Although our working hypothesis is that a broadly distributed FSI pulse helps to

suppress prepotent but currently inappropriate actions, some alternative possibilities

should be explored in future work. These include a network reset, that facilitates the

transition between ensembles representing distinct components of an action sequence

components (Wickens and Arbuthnott, 1993; Carrillo-Reid et al., 2008), and a role

in guiding striatal plasticity, as broad signals about overall population response can

assist reinforcement-based learning (Urbanczik and Senn, 2009). Nonetheless, our

results suggest a circuit arrangement in which specific complex patterns of informa-

tion feed-forward through largely parallel, segregated striatal-pallidal channels, while

less information-specific, divergent control signals flow in the opposite direction.

2.4 Methods

Experimental Procedures

2.4.1 Behavioral task and drug infusions

All animals were housed on a 12 hr:12 hr light/dark cycle, with experiments

performed during the light phase. For daily training sessions, adult male Long-Evans

rats (∼350 g) were placed in a recording chamber (MED-NPW-5L; Med Associates

Inc., St Albans, VT, USA; modified to accommodate large headstages) with stainless

steel grid floors, five nosepokes, a pellet dispenser, a speaker, and a video camera (Fig.

2.1a). Infrared photobeams detected the presence of the rat’s nose at each nosepoke

hole and the food port. Rats were initially trained to nosepoke an illuminated hole
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to receive a 45mg sucrose pellet delivered to a receptacle in the rear of the chamber.

Rats were then trained to hold in the nosepoke and wait for a brief burst of white

noise to get a reward. The time delay to the white noise was gradually increased

until the rats waited for 900-1250 ms for >85% of the trials. In the next phase of

training (see Fig. 2.1b,c), rats waited for the white noise cue as before; however, now

either a high (4 kHz) or a low (1 kHz) 250 ms tone was played during the hold period.

The time between nose in and tone onset (pre-tone delay) varied between 250-350

ms. The white noise burst instructed the animals that they were free to choose one

of the adjacent nosepokes. For the 1 kHz tone, trials were rewarded for leftward

movements, while 4 kHz tones rewarded rightward movements. The total hold time

required to correctly complete the trial was pseudo-randomly selected to be between

900-1250 ms (uniform distribution). If the rats failed to hold until the white noise

burst, trials were aborted and a 10-15 s timeout began (houselight on). To discourage

the development of a side preference, rats were cued to move in a given direction only

if at least one of the three previous responses was to the opposite side. Intertrial

intervals were selected pseudo-randomly from the range 15-30 s. Roughly 10% of

the session consisted of “free-choice” catch trials, in which both tones were played

simultaneously and left and right choices were each rewarded at p=0.5. Catch trials

were not analyzed here. After each training session rats were fed 14g of standard

chow, which kept them at approximately 90% of free feeding weight.

For drug infusions, six rats were trained to perform the behavioral task above,

with the exception that the 1 kHz or 4 kHz tone indicated the end of the hold

period (i.e. no separate “Go” cue). Once performance had asymptotically stabilized,

a guide cannula was implanted unilaterally into the striatum (target coordinates

AP +0.5, ML +3.5, DV 4.5 mm, including the additional 1mm ventral protrusion
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of the infusion cannula) on either the left (n=3) or right side (n=3). After two

weeks recovery rats resumed a series of behavioral testing sessions which included

(on different days, in order) a mock injection (in which the cannula was connected

to the infusion apparatus but without infusion); an injection of ACSF (0.5 µl over

5min; ion concentrations in mM: Na 150; K 3.0; Ca 1.4; Mg 0.8; P 1.0; Cl 155); a

muscimol injection (0.5 µg/0.5 µl over 5 min); and another ACSF injection.

Electrophysiological data were obtained from four rats, each implanted with 21

individually drivable tetrodes [four 12.5 µm Ni-Cr wires twisted together; (Wilson

and McNaughton, 1993)]. Tetrodes were directed toward the dorsal lateral striatum,

the nucleus accumbens, the globus pallidus, and toward the primary motor cortex

(M1, target region: +3.0mm AP, 3.0mm ML). All tetrodes were in the right hemi-

sphere. Three skull screws were placed in contact with frontal, parietal, and motor

cortical regions to record ECoG signals. Additional skull screws served as ground

(posterior lateral skull ridge) or as a reference for LFP/ECoG signals (on the mid-

line, approximately 1 mm posterior to lambda). Data acquisition was performed

using a 96 channel system built around custom amplifiers and labviewTM software

(National Instruments, Inc.). This system also acquired synchronized digital video

images (640x480 pixels, 15 frames/s). Neural signals were recorded in wide-band (1

to 9,000 Hz) to reduce distortions of waveform shape (Wiltschko et al., 2008) and

digitized continuously at 31,250 Hz. The digital signals that controlled the behav-

ioral chamber and detected nose pokes were also sampled at the same frequency (32

µs resolution). Following implantation and one week of recovery, recordings were

made for several weeks to several months during performance of the delayed choice

task. At the end of the experiment, each tetrode site was marked with a small lesion

by passing 25 µA of current for 10s. Following perfusion and Nissl staining, final



38

tetrode locations were mapped onto coordinates in a reference brain atlas (Paxinos

and Watson, 2005) using Sqirlz Morph software (Xiberpix, Inc.), and the location of

prior recording days were estimated from screw turns. Cells that were not unequivo-

cally in the motor cortex, striatum, or globus pallidus were not included in analyses.

To avoid introducing biases into the activity of neuronal subpopulations, we wished

not to repeat analysis of the same cells. Thus, neurons were only included from one

session for each tetrode, unless the tetrode had been moved by a minimum of 100µm

between sessions.

2.4.2 Spike Sorting and Classification

Spike-sorting was performed manually using Offline Sorter (Plexon Inc, Dallas

TX), following digital high-pass (512 Hz) filtering of the continuous data. Differences

in the waveform size and shape across the four tetrode wires were used for separating

single units. The reliability of spike cluster separation was quantitatively determined

by the refractory period in the auto-correlograms (Harris et al., 2000). Across all

cells in our database, the mean proportion of inter-spike-intervals <1 ms was 0.00073,

suggesting well-separated neurons. Once spike times were obtained for each single

unit, the mean wide-band waveforms were obtained simply as a spike-triggered av-

erage of the wide-band continuous signals. Striatal cells were further classified as

either a putative medium spiny cell (MSN), fast-spiking interneuron (FSI), or an

“other” presumed interneuron (O) based on three distinct clusters found in a scatter

plot of two measurements of the wide-band spike waveform: (1) the peak width at

one-half maximum (FSI: 50-200 µs; MSN: 150-450 µs; O: 200-300 µs), and (2) the

time from peak to valley (FSI: 100-455 µs; MSN: 560-1500 µs; O: 300-550 µs). All

cells are shown with negative voltage upward. Cells that were inverted (n=20) or

did not show a clear valley (n=14) were not classified.
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2.4.3 Data Analysis

All analyses were performed using MATLAB (Mathworks, Inc.; Natick, MA) or

SPSS (SPSS, Inc.; Chicago, IL). To measure the proportion of time spent in long

inter-spike intervals (ISIs), PropISI>Xs (Schmitzer-Torbert and Redish, 2008), for each

spike train we found all ISIs which exceeded a criterion (here X = 2 s), summed

those ISIs, and divided by the total session time. We characterized each neuron’s

responsiveness to task events by constructing peri-event time histograms (PETHs)

around each of the eight events shown in Fig. 2.1. For each PETH, we analyzed

a 3 s window with a bin size of 30 ms, followed by smoothing by a 3-point moving

average. To restrict the analysis to cells active during the task, we adopted an

inclusion criterion that the peak of at least one PETH must be greater than 5 Hz

(given the bin size, this roughly corresponds to a minimum of 1 spike every seven

trials, or more spikes on fewer trials). The peak firing rate for each neuron was

estimated from the maximum bin across all eight PETHs, and the peak response

period was determined as the time between half-peak maximums from the baseline

firing rate (horizontal line, Fig. 2.5). For Z-score-based analyses, PETHs were

normalized by subtracting the mean firing rate from each time bin, dividing by the

standard deviation of firing from the session, and taking the absolute value. For

contraversive and ipsiversive PETHs (Fig 2.13), a 2 s window was used centered

on the choice execution event, and the results were rank-ordered by peak time of

contralateral, then ipsilateral trials. The selectivity index (SI) was derived from

these contraversive and ipsiversive PETHs (Fig. 2.13c). The SI of the nth bin was

calculated by:

SIn =
Ipsin − Contran

Ipsin + Contran

,

and we report the maximum SI across all 30 ms bins.
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2.4.4 Statistical Analysis

For the muscimol manipulation data, we used a mixed-model ANOVA with a sub-

ject factor (RAT), and repeated measures factors of CUE (ipsi vs. contra), ACTION

(ipsi, contra, error), and SESSION (MOCK, ACSF1, MUSC, ACSF2). The OUT-

COME (proportion of trials selecting the action) was our dependent variable. The

analysis indicated significant main effects of ACTION (F=352.1, df=2, P<0.001)

but not of SESSION or CUE (F=0.0, P=1 for both). The results showed a sig-

nificant SESSION × ACTION interaction (F=17.7, df=6, P<0.001), a significant

CUE × ACTION interaction (F=531.1, df=2, P<0.001), and a significant three-way

interaction of SESSION × CUE × ACTION (F=10.107, df=6, P<0.001).

When comparing the proportion of cell classes, we used a two-sample test of

proportions (Crewson, 2006) in which the standard error (Sp1−p2) is

Sp1−p2 =
√
p̂q̂

√
n1 + n2

n1n2

, p̂ =
c1 + c2

n1 + n2

, q̂ = 1− p̂,

where c1 and c2 are the number of occurrences in the two groups, and n1 and n2

are the total number in each group. We then computed the test statistic of the

proportion difference,

Z =
(c1/n1 − c2/n2)

Sp1−p2
.

To correct for multiple comparisons, we simply multiplied the resulting p-value by

8 (the number of task events examined) and considered it significant if it remained

below 0.05.

For the multiple regression analysis, we analyzed the residual component, ε(i),

using the animal’s direction of movement d(i), the location of the starting position

of each trial p(i), the tone that played t(i), the trial outcome (correct/wrong) o(i),
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the reaction time RT(i), the movement time MT(i), and the trial number n(i). For

each bin from time t to t + ∆t, the magnitude of firing rate, F(i), for the ith trial

were fitted by the following multiple regression model:

F(i) = β0 + βd· d(i) + ΣN−1
n=1 βpn· pn(i) + βt· t(i) + βo· o(i) + βRT ·RT(i)

+βMT ·MT(i) + βn· n(i) + ε(i).

The regression slopes β0, βd, βp1 , βp2 , βt, βo, βRT , βMT , βn (for N = 3 positions) and

their t-values were estimated by the regstats functionof the matlab Statistical

Toolbox. Analysis was performed T = 380 times using a sliding time window of

∆t = 100 ms that stepped in 5 ms intervals from t = −1 s before execution of choice

movement to t = 1 s after. For each neuron, the peak movement selectivity was

defined as the maximum t-statistic for βd across all T timesteps (Fig. 2.5, black

rasters). Similarly, the peak position selectivity was defined as the maximum t-

statistic of βp1 and βp2 across T timesteps. For Figs. 2.5, 2.13, 2.14 the time bins in

which the t-statistic of βd were significant are shaded gold for negative (contraversive)

and green for positive (ipsiversive) selectivity. Confidence intervals for population

PETHs were constructed using a resampling method, with 100 shuffled datasets. In

order to obtain estimates that were not dominated by a few outlier cells, shuffling

was performed within each cell’s normalized PETH by randomizing the order of 30

ms bins. This preserved the peak event response of that cell while randomizing the

time at which this peak contributed to the population PETH. A given bin within

the population PETH was considered to be significant if the value from the real data

was either higher or lower than at least 95 of the shuffled data sets.

For identification of putative monosynaptic connections, short-latency and short-

duration sharp peaks in the cross-correlograms were used as described in (Csicsvari
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et al., 1998). To reduce the effect of random interactions, a shuffled cross-correlation

histogram was calculated by shifting the spike train of the second cell with a fixed

(100 ms) time interval. This operation retains the internal dynamics of spiking for

both trains while eliminating the causal relationship between them. The shuffled

histograms were then subtracted from the originals. Peaks (1 ms bin width) within

3 ms of the center bin were defined as significant excitatory interactions when at

least one of the bins exceeded 99.9th percentile of the mean. Similarly, short-latency

troughs were considered to be due to inhibition when at least two neighboring bins

were <0.1th percentile of the mean. For cell pairs recorded on the same electrode, the

artificial trough from 0 to 1 ms bin (created by our clustering method) was excluded

from the analysis.
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CHAPTER III

β-Band (15-25Hz) Oscillation Synchronize in Basal Ganglia
and Cortical Local Field Potential Activity of Rats During

the Selection of Motor Movements

Abstract

Beta oscillations (15-25Hz, β20) are exaggerated in the output of the Basal Ganglia

of Parkinson’s Disease (PD) patients. Mounting experimental evidence also point to

β20 oscillations forming a signal to “stop” movements in behaving animals. However,

it remains to be determined what the physiological role of β20 activity is in the sup-

pression of movements in normal subjects. We designed a task to test the hypothesis

that β20 is related to the suppression of a selected (but not yet executed) action

sequence. Nine rats were trained to hold in a nose poke for ∼1s and move quickly

to one of two side ports for a food reward. In 4 rats, we instructed the upcoming

direction within the hold period. The remaining 5 were given the instruction at the

end of the hold period. The onset of β20 synchronization was tightly coupled to the

onset of the instructional tone, independent of when it was delivered; and desynchro-

nized after the action had completed. Rats that were instructed early had a increase

in β20 power during the hold period that was coherent across the striatum, globus

pallidus and motor cortices. Well-isolated single units were found to be entrained

to the β20 rhythm in all recorded regions during active participation in the task.
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Taken together, these findings support the idea that beta oscillations accompany the

selection of a motor plan, and remain until the plan has been executed.

3.1 Introduction

Synchronized oscillations are known to be correlated with many behaviors and

brain states. Most investigations have focused on their role in the sensory domain,

but oscillations in local field potentials (LFPs) are also apparent at multiple levels of

the human and non-human motor system. In particular, rhythmic activity of Beta

oscillations (15−25Hz, β20) can be recorded from the motor cortex (Murthy and Fetz,

1992; Sanes and Donoghue, 1993; Baker et al., 1997), cerebellar system (Marsden

et al., 2000), and basal ganglia (Brown et al., 2001; Levy et al., 2002; Silberstein

et al., 2003; Courtemanche et al., 2003; Berke et al., 2004). The consequence of β20

is readily picked up in the peripheral nervous system through the synchronization

of motor units within and between muscles (Farmer et al., 1993; Baker et al., 1997;

Kilner et al., 1999). However, the function of such synchronization within the motor

system remains less understood.

One consistent finding is that β-band LFP activity is related to a decrease in move-

ment activity. During movements, β20 is desynchronized and replaced by higher fre-

quency oscillations (Sanes and Donoghue, 1993; Donoghue et al., 1998). Conversely,

patients with Parkinson’s Disease (PD); characterized by muscle rigidity, the slowing

(bradykinesia) or removal of movements (akinesia); have excessive β20 synchroniza-

tion in the cortex, subthalamic nucleus and globus pallidus (Brown, 2006; Hammond

et al., 2007). These exaggerated oscillations in PD are reduced with therapeutic in-

terventions that restore motor abilities (Brown et al., 2001; Levy et al., 2002; Kühn

et al., 2006). Applying stimulation at β20 frequencies directly to the cortex leads to
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a slowing of movement in healthy (Pogosyan et al., 2009) and PD subjects (Chen

et al., 2007). Taken together, these data point to β20 being related to a decrease in

motor activity.

This inverse relationship between β20 activity and the processing of movements

is, however, open to two very different interpretations. First, beta-band activity

may just be a passive characteristic of the cortical network when not engaged in

active processing. Pfurtscheller et al. (1996) demonstrated a post movement β20

synchronization following movements, which they interpreted as a sign of “idling”

in the motor cortex. Alternatively, β20 activity may impair movement by actively

promoting processes related to postural stability, including tonic holding contractions

(Androulidakis et al., 2007). Supporting this view, Gilbertson et al. (2005) found

that physiological periods of beta synchrony are associated with a cortical state in

which a postural set is reinforced and the speed of new movements impaired.

Here, we test the hypothesis that β20 activity becomes synchronized during the

active suppression of a selected motor action. By varying the delivery of an instruc-

tional cue in a simple reaction time task, we aim to separate the difference between

holding the suppression of a selected motor plan, and holding while awaiting the

selection of a motor plan.

3.2 Methods

3.2.1 Behavioral task

All animals were housed on a 12 hr:12 hr light/dark cycle, with experiments

performed during the light phase. For daily training sessions, adult male Long-Evans

rats (∼350 g) were placed in a recording chamber (MED-NPW-5L; Med Associates

Inc., St Albans, VT, USA; modified to accommodate large headstages) with stainless

steel grid floors, five nosepokes, a pellet dispenser, a speaker, and a video camera.
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Infrared photobeams detected the presence of the rat’s nose at each nosepoke hole

and the food port. Rats were initially trained to nosepoke an illuminated hole to

receive a 45mg sucrose pellet delivered to a receptacle in the rear of the chamber.

Rats were then trained to hold in the nosepoke and wait for a brief burst of white

noise to get a reward. The time delay to the white noise was gradually increased

until the rats waited for 900-1250 ms for >85% of the trials. In the next phase

of training, rats were divided into two groups. In the first set of rats, the white

noise “go” cue was replaced with a high (4 kHz) or a low (1 kHz) 250 ms tone.

The tone instructed the animals that they were free to choose one of the adjacent

nosepokes. For the 1 kHz tone, trials were rewarded for leftward movements, while 4

kHz tones rewarded rightward movements. The total hold time required to correctly

complete the trial was pseudo-randomly selected to be between 900-1250 ms (uniform

distribution). If the rats failed to hold until the white noise burst, trials were aborted

and a 10-15 s timeout began (houselight on). To discourage the development of a

side preference, rats were cued to move in a given direction only if at least one of the

three previous responses was to the opposite side. Inter-trial intervals were selected

pseudo-randomly from the range 15-30 s. A second set of rats was trained on a similar

task, however the high or low tone was played 250-350 ms (uniform distribution) into

the 900-1250 ms hold period, and a brief white noise burst indicated the end of the

hold period. Roughly 10% of the session consisted of “free-choice” catch trials, in

which both tones were played simultaneously and left and right choices were each

rewarded at p=0.5. Catch trials were not analyzed here. After each training session

rats were fed 14g of standard chow, which kept them at approximately 90% of free

feeding weight.
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3.2.2 Recordings and Histology

Electrophysiological data were obtained from nine rats, each implanted with 21

individually drivable tetrodes [four 12.5 µm Ni-Cr wires twisted together; (Wilson

and McNaughton, 1993)]. Tetrodes were directed toward the dorsal lateral striatum,

the nucleus accumbens, the globus pallidus, and toward the primary motor cortex

(M1, target region: +3.0mm AP, 3.0mm ML). All tetrodes were in the right hemi-

sphere. Three skull screws were placed in contact with frontal, parietal, and motor

cortical regions to record ECoG signals. Additional skull screws served as ground

(posterior lateral skull ridge) or as a reference for LFP/ECoG signals (on the mid-

line, approximately 1 mm posterior to lambda). Data acquisition was performed

using a 96 channel system built around custom amplifiers and labviewTM software

(National Instruments, Inc.). This system also acquired synchronized digital video

images (640x480 pixels, 15 frames/s). Neural signals were recorded in wide-band (1

to 9,000 Hz) to reduce distortions of waveform shape (Wiltschko et al., 2008) and

digitized continuously at 31,250 Hz. The digital signals that controlled the behav-

ioral chamber and detected nose pokes were also sampled at the same frequency (32

µs resolution). Following implantation and one week of recovery, recordings were

made for several weeks to several months during performance of the delayed choice

task. At the end of the experiment, each tetrode site was marked with a small lesion

by passing 25 µA of current for 10s. Following perfusion and Nissl staining, final

tetrode locations were mapped onto coordinates in a reference brain atlas (Paxinos

and Watson, 2005) using Sqirlz Morph software (Xiberpix, Inc.), and the location

of prior recording days was estimated from screw turns. Electrophysiological data

that were not unequivocally in the motor cortex, striatum, or globus pallidus were

excluded from analyses. To avoid introducing biases into the activity of neuronal
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subpopulations, we wished not to repeat analysis of the same cells. Thus, electro-

physiological data were included for analysis only if the tetrode had been moved by

a minimum of 100µm from a previously analyzed session.

3.2.3 LFP Analysis

The analysis for this study was performed using custom software developed in the

Matlab (MathWorks, Natick, MA; Version 7.9) environment. Local field potentials

were extracted from the original wide-band recording files by down-sampling the

31,250 Hz data by a factor of 61, resulting in a new sampling rate of ∼512.3 Hz.

Initial visual scanning allowed for the removal of noise events. Sites within the

striatum were classified into nucleus accumbens (NAcc) if locations were within the

core [as defined by Paxinos and Watson (2005)], and caudoputamen (CPu) if striatal

sites were further dorsolateral.

To estimate the length of beta oscillation events in the LFP data, we sought out

epochs of high power in the 15-25 Hz range using a method similar to the “temporal

spectral evolution” (Salmelin and Hari, 1994) as follows. The LFP signal was zero-

phase bandpass filtered from 15-25 Hz using digital 102-sample length equiripple

FIR filter with odd symmetry. These data were then squared (Siapas and Wilson,

1998) and smoothed using a 20-point moving average filter. Peaks in the time line

of the squared signal were detected when the data became greater than a defined

amplitude threshold for a minimal episode length of 150 ms (three cycles). The

threshold level was chosen heuristically and corresponded to the 60th percentile of

the range of values of the squared signal.

To determine the overall rhythmicity of the field potentials, we constructed full-

session power spectra and mean triggered scalograms around task events of interest.

Power spectra were calculated using the 512-point discrete Fourier transform (DFT).
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For time varying spectral analysis, we computed scalograms using the Gabor trans-

form (Antoine et al., 2000). While the DFT is a useful tool for understanding the

frequencies present in a digital signal, it can only indicate whether a frequency is

present in the signal, but not when it began or for how long it lasted. To examine

transient brain rhythms, there are many different time-frequency analysis techniques

may be used to visualize a signal’s time-varying frequency content. We chose the

Gabor analysis, which is optimized for simultaneous localization of spatial and fre-

quency information. In this transform, each frequency band is created by convolving

the original signal with a frequency-dependent Gabor kernel, which is a complex

sinusoid windowed by a Gaussian. The frequency of a kernel’s sine wave determines

its pass band, or center frequency. By constructing a bank of many Gabor kernels

with center frequencies evenly spanning the spectral range of interest (e.g. 120 ker-

nels between 1-120 Hz), we may reveal the sub-second timing of transient rhythms

in LFP data.

For an LFP segment of length n, the Gabor kernel (Gf,t) was defined for frequency

f (in Hz) as the 1× n array:

Gf,t =
1√

2πσ2
e
x2

2σ2 e2iπfx,(3.1)

where f ranges from 1 to 120, σ controls the width of the Gaussian (σ = 0.2 in our

analysis), and x is a 1× n time array ranging from -1 to 1. We then computed our

scaleogram as

Sf,t = Gf,t ∗ LFPt,(3.2)

where Sf,t is a 120 × n matrix, Gf,t is defined in 3.1, and LFPt is the LFP time-

domain data of length n.
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Average event-triggered scalograms were made for each channel and for each be-

havioral event within the trial. The scalograms were computed one-second around

50 randomly selected events of interest in the trail (e.g. 50 x “Nose In” events) and

the results were averaged together. To calculate the baseline activity of a channel we

performed the same procedure, only we averaged over 100 randomly selected epochs

within the recording session. When displaying the normalized scalograms in figure

3.4, we divided the mean power of the event-triggered scalograms between 15−25

Hz, by the mean power of the baseline-scalograms between 15−25 Hz. Confidence

intervals for population normalized β-band activity were constructed using a resam-

pling method, with 100 shuffled datasets. In order to obtain estimates that were not

dominated by a few outlier channels, shuffling was performed within each channel’s

normalized β20 activity by randomizing the time in which each bin appeared. This

preserved the peak amount of beta activity for that channel while randomizing the

time at which this peak contributed to the population average. A given time bin

within the median population beta was considered to be significant if the median

value from the real data was either higher or lower than at least 95 of the shuffled

data sets.

Coherence analysis, which measures whether oscillations in two sites show a con-

sistent phase relationship (Nunez and Srinivasan, 2006), was estimated using Welch’s

method from from 1 to 120 Hz with mscohere in Matlab. Comodulation analysis,

which measures the correlation in power of frequencies across trials, was calculated

as follows. For each trial, a power spectra was calculated using Welch’s method for

each wire during the hold time (events 2-5). For every pair of LFP channels, we

calculated the trial-by-trial correlation coefficient (corrcoef in Matlab) of the power

in each frequency from the first channel, to that of the power in each frequency of
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second channel. The results of this analysis produced a 120 × 120 matrix ranging

from -1 to 1, and were plotted using a pseudo-color heat map.

3.2.4 Unit Analysis

Spike-sorting was performed manually using Offline Sorter (Plexon Inc, Dallas

TX), following digital high-pass (512 Hz) filtering of the continuous data. Differences

in the waveform size and shape across the four tetrode wires were used for separating

single units. The reliability of spike cluster separation was quantitatively determined

by the refractory period in the auto-correlograms (Harris et al., 2000). Across all

cells in our database, the mean proportion of inter-spike-intervals <1 ms was 0.00021,

suggesting well-separated neurons. Once spike times were obtained for each single

unit, the mean wide-band waveforms were obtained simply as a spike-triggered av-

erage of the wide-band continuous signals. Striatal cells were further classified as

either a putative medium spiny cell (MSN), fast-spiking interneuron (FSI), or an

“other” presumed interneuron (O) based on three distinct clusters found in a scatter

plot of two measurements of the wide-band spike waveform: (1) the peak width at

one-half maximum (FSI: 50-200 µs; MSN: 150-450 µs; O: 200-300 µs), and (2) the

time from peak to valley (FSI: 100-455 µs; MSN: 560-1500 µs; O: 300-550 µs). All

cells are shown with negative voltage upward. Cells that were inverted or did not

show a clear valley were not classified (n=62) .

To determine the phase relationship between single cells and beta activity, we used

a Hilbert transform to get the instantaneous phase of the detected 15-25 Hz intervals

described above. Each action potential occurring between two successive peaks was

assigned a corresponding phase, and the cycles were superimposed to compute a mean

phase. The significance for each unit and for each population were calculated using

standard circular statistical methods (Durand and Greenwood, 1958; Zar, 1974).



53

3.3 Results
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Figure 3.1: Behavioral Task and Recordings. a) Depiction of operant training box showing the
position of the 5 nosepokes and food receptacle. b) Design of early (delayed task) and
late (choice task) tone delivery versions of the reaction time tasks. Seven events are
marked with numbers that were used in this analysis, a subset of events are shown in
(c). d) Behavioral results of the two tasks. Time measurements as in (b): RT=Reaction
Time, MT=Movement Time. Error bars, SEM. e-f) Example of tetrode recordings from
one session. e) The location of one wire from each tetrode f) Downsampled LFP data,
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We recorded single unit and LFPs from up to 21 tetrodes implanted in the stria-

tum, globus pallidus, and motor cortex to compare activity across two choice reaction

tasks (Fig 3.1a-f). In the first task (choice task), rats (n=5) were trained to hold

still in a operant nosepoke until a tone (1kHz or 4Khz) instructed them to move to

an adjacent nosepoke. Rats were rewarded with a sugar pellet in the rear of the cage

(Fig. 3.1a) if the selected nosepoke was in the direction that the tone instructed
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(left=1kHz, right=4kHz). A second group of rats (n=4) performed a similar task

(delayed task), however the instructional tone played during the hold period, and the

rats were signaled to begin movements with a white noise burst. The total hold time

was kept consistent across both groups of subjects (Fig. 3.1b 900−1250ms, uniform

distribution). Across the two tasks, the success rate was consistent (Fig. 3.1d) and

above chance [81.7% (SD 6.3%), choice; 71.1% (SD 6.1%), delayed] but the reaction

times and movement times were faster (p < 0.05, t-test) for the delayed group [RT:

407ms (333ms) choice vs. 339ms (288ms) delayed; MT: 418ms (155ms) choice vs.

355ms (172ms) delayed].

Local field potentials were recorded from 425 locations (237 choice task, 188 de-

layed task) across 68 recording sessions (32 choice, 36 delayed), see table 3.1. Across

these recording sessions, prominent episodes of β20 (15 − 25 Hz) and γ50 (45 − 55

Hz) oscillatory activity could be seen in some striatal and GP locations (Fig. 3.2a).

Low frequency (< 10 Hz) oscillations were also present in the signal but were not

analyzed in this study. The location of the recording electrode was a determining

factor on the ratio of β20 to γ50 (P (β20)−P (γ50)
P (β20)+P (γ50)

). Figure 3.2b shows the distribution of

ratio of β20 : γ50 power as a function of location. While the dorsoventral axis showed

weak correlations, the mediolateral and anterioposterior axes had significant trends

(p< 0.01, regression t-test). When measured on a rotated axes (Voorn et al., 2004),

defined by the distance to the striatal origin point (Berke et al., 2004), the ratio

favored γ50 ventromedially. If we analyzed the power spectrum only during the hold

period (events 2-5), the β20 peaks became more defined (Fig. 3.2c). For this study,

we concentrated on β20 both during the hold period and task performance.
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3.3.1 15-25 Hz oscillation epochs during task performance have similar properties
across regions.

We first investigated the properties of β20 during the task performance (events 2-

7). We identified periods of high β20 activity which revealed that 15-25 Hz oscillations

occurred in brief epochs lasting ∼250 ms, and were not a continuous part of the LFP

structure during the task. Figure 3.3a shows a typical β20 epoch from a striatal LFP

recording site, along with a representative sample of 15 overlaid epochs. The trial-

to-trial consistency can be seen in these epochs, as well as in 3.3b which depicts all
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of the hold periods for the session. Identified β20 epochs are highlighted in red. The

mean epoch length for this session was 255.5 ms (SD 108.5 ms), which was typical of

CPu locations (see Table 3.1). Note that the β20 events, while brief, occurred with

high probability (0.92) during a single trial and were likely to occur multiple times

within a given trial (averaging 1.62 epoch/trial in this example). Across the regions

recorded, epochs had similar properties (Table 3.1).

n Cycles/Epoch Epochs/Trial % of Trials

M1 (Choice) 59 4.54 (0.28) 1.34 (0.31) 78.3 (10.5)

M1 (Delayed) 34 4.59 (0.46) 1.61 (0.36) 80.7 (10.0)

M1 93 4.56 (0.35) 1.44 (0.35) 79.2 (10.3)

CPu (Choice) 113 4.81 (0.35) 1.42 (0.21) 82.3 (6.0)

CPu (Delayed) 77 4.96 (0.41) 1.52 (0.23) 85.7 (6.4)

CPu 190 4.87 (0.38) 1.46 (0.22) 83.7 (6.4)

NAcc (Choice) 35 5.34 (0.24) 2.16 (0.18) 96.2 (2.0)

NAcc (Delayed) 56 5.33 (0.55) 2.01 (0.32) 92.4 (4.8)

NAcc 91 5.34 (0.45) 2.06 (0.28) 93.8 (4.4)

GP (Choice) 30 4.97 (0.31) 1.58 (0.19) 86.3 (5.0)

GP (Delayed) 21 5.13 (0.59) 1.62 (0.19) 86.6 (4.6)

GP 51 5.04 (0.45) 1.59 (0.19) 86.4 (4.8)

Total Choice 237 4.84 (0.40) 1.44 (0.25) 82.8 (6.4)

Total Delayed 188 5.02 (0.54) 1.64 (0.36) 86.3 (7.0)

Total 425 4.92 (0.48) 1.53 (0.32) 84.3 (7.0)

Table 3.1: Properties of β20 epochs during trial performance. Data are presented as mean (SD). %
of Trials indicates the percentage of trials that contained at least one epoch during task
performance (event 2 − event 7).

3.3.2 LFP oscillations during delayed task have higher β20 power

To access the temporal evolution of the β20 epochs during behavior, we constructed

event triggered scalograms using the Gabor transform to reveal the frequency dy-

namics within the LFP. Figure 3.3c-d shows the average results of seven events from

the two behavior sessions. These channels were recorded from different animals, but

in similar striatal locations (1.4 mm separation across subjects) during the (3.3c)
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choice and (3.3d) delayed versions of the task. Since choice trials did not have an

early instructional tone (event 3), the go cue (event 4, the instructional tone for

the choice task) is repeated for event 3 here for comparison. The initiation of the

trial (and subsequent hold period) is shown in the second epoch, followed directly

by the tone delivery event. In both tasks, an increase synchronization in the 15−25

Hz range occurs ∼200 ms after the instructional tone onset (i). While the β20 onset

occurs simultaneously, it should be noted that these events occur at distinctly dif-

ferent times between the two tasks (temporal separation between 650 ms to 1,000

ms across tasks). This was clearly visible in the following set of go-event triggered

analyses, where there was sustained β-band activity leading up to the “go” signal for

the delayed task when compared to the choice (ii). Finally, the desynchronization of

β20 occurs simultaneously in these examples (iii), occurring ∼300 ms after the onset

of choice execution (event 5).

We next wished to determine if the sustained β20 after the tone onset, continuing to

the choice movement was prominent feature across our database of LFPs. To visualize

this, we generated a temporal response profile for each channel by calculating the

average change in 15−25 Hz power in each of the 7 event-triggered scalograms.

To compare across channels, we then normalized the β20 average of each event by

dividing through with the session background β20 activity. Figure 3.4a shows this

profile for all channels of each region for the choice version of the task. Each region

is sorted by moment of peak β20 activity. The population activity can visually

be compared to the delayed version of the task (Fig. 3.4b). The hold period is

displayed as a gray band beneath the response profiles of both tasks. There are

many similarities between the tasks. β-band activity desynchronized similarly after

the nose in and side in events. A burst of β20 activity can be seen around the “nose
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Figure 3.4: Population comparison of β20 power during performance of the choice and delayed tasks.
a-b) Mean activity in the 15−25 Hz range of the scalograms triggered on the six shared
events of the (a) choice and (b) delayed version of the task. Channels are normalized
by dividing each event by the session mean of β20 power. For each channel, β20 power
is shown by a color scale ranging from blue (a decrease in power by 40%) to red (a
increase of β20 power by 60%). Within each class, channels are rank ordered by time
of peak β20 activity. Note the increase in activity during the hold period of the delayed
task. c) Tone event (event 3) from the delayed task. Same time scale as in (a-b).

out” event in both cases. The striking difference is during the hold period, where

there is an increased probability of β20 activity during the delayed version of the

task. The onset of this synchronization is visible in the “tone” event of the delayed

task (Fig. 3.4c), and is similar to the “go” event of the choice task (Fig. 3.4a, third

column).

A summary of the these analyses are shown in figure 3.5a. Here, the population

data is plotted as the median of the normalized β20 activity. The choice task is shown
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as a solid line, while the delayed task is a broken line. Bold lines indicate epochs

where the β20 signal was outside of the 95% confidence intervals, generated across

the population (see methods). Note that β20 significantly increased power during

the hold period in all recorded brain regions (3.5a,i). We also wish to test if the

timing of synchronization could be related to the onset of the movement instruction.

Figure 3.5b compares the trial events of the two tasks in which the information about

the upcoming movement (the tone) is presented. Note the timing that each region

increases β20 significantly is the same across the two versions of the task (3.5b,iii).

Similarly, the β20 decrease from both tasks is locked onto the end of the movement

action (3.5a,ii).

3.3.3 LFP activity is highly synchronous across striatum, globus pallidus and motor
cortex

We next looked to see if the increase in 15-25 Hz across the regions was the result

of one process, or of multiple and independent activity. We used coherence and

comodulation analysis to ask whether the phase and amplitude, respectively, were

related across brain structures. Figure 3.6a shows one trial from a recording session of

the delayed task. LFP traces from 6 recording channels and their respective locations

are shown. Synchrony of a brief β20 epoch can be seen across the motor cortex and

medial striatum. The presence of β20 can also be seen in the power spectra of the

channels during the hold period (Fig. 3.6b, top). The coherence of this epoch across

channels can be seen directly in the example (vertical lines), and across all trials by

the increase near 20Hz in the coherency plots (Fig. 3.6b, bottom).

These results were confirmed across the entire population of recordings. Figure

3.7 shows the results of the comodulation and coherence analysis for pairs of simul-

taneously recorded LFPs during the delayed task. During the hold period, there is
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intervals are bold. Note the significant increase in β20 activity across all regions before
the go cue is only for the delayed version of the task (i). Beta becomes desynchronized
250 ms after choice execution onset (ii) in both tasks. b) Comparison of β20 onset. The
choice task is aligned to “go” (4) event, while the delayed task is aligned to the tone
(3) event. In both versions of the task, these events denote the onset of directional
information. Note the close time evolution of the onset (iii) across the two tasks.

a prominent peak at ∼20 Hz both within and across regions in the comodulation

analysis, indicating that the power spectra in the β-band is correlated between the

two regions across trials. There were also ∼20 Hz peaks in the average coherence

analysis indicating that the β20 oscillations were phase-locked across the regions. The

choice task had similar results (data not shown).

3.3.4 The spiking activity of some neurons are entrained to β20 oscillations

To examine the relationship between the spike activity of single units and the

LFP 15-25 Hz oscillations recorded simultaneously, we analyzed the relative timing
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Figure 3.6: β20 is coherent across the striatum and motor cortex. a) Simultaneous field potentials
recorded from 6 locations during the delayed task. Reconstructed locations are shown
(left). Note epoch of β20 (15 Hz - 25Hz) is coherent across both structures and in EEG.
Gray vertical lines indicate peaks of β20 from recording site 5. b) Power spectrum of
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of spikes and LFPs for the well-isolated neurons in all regions recorded (n=205,

choice task; n=381, delayed task). The instantaneous phase angle of each β20 was

calculated using the Hilbert transform, with the peaks of the oscillation denoted as

0◦/360◦. We plotted phase histograms (30◦ bin size) of the probability of spike firing

as a function the phase within each oscillation cycle. We found 102 pairs of unit and

field potentials that were significantly entrained to β20 activity (p<0.05, Rayleigh’s

test for circular uniformity). Of these pairs, 43 were from unique units. Four units

(examples of cortical, striatal, GP neurons) are shown in Fig. 3.8 together with their

respective phase histograms. Entrained units were synchronous with 2.37 (SD 1.66)
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pairs of LFPs across structures. Note the peak in comodulation at ∼20 Hz across all
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Error bars indicate ± 1 s.e.m.

LFP channels on average. Of the 40/43 cells (93.02 %) that were entrained to a

remote LFP site, the mean distance was 3.89 mm (SD 1.78 mm) apart, and ranged

of from 0.74 mm up to 7.80 mm (GP LFP to M1 Unit). Cells entrained to multiple

LFP sites (n=24) maintained a similar phase relationship across the LFP channels,
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with a mean difference of −2.22◦ (SD 9.88◦).

The striatal neuron waveforms had distinct features that allow us to further clas-

sify them as either presumed FSI or MSN neurons. The waveforms and firing proper-

ties from these tasks closely resembled those seen in our previous studies of striatum

(Berke et al., 2004; Berke, 2008). The overall phase preference of striatal unit firing

was dependent of the cell-phenotype of unit recorded. Figure 3.9 shows the phase

summary of the 43 unique cells that showed entrainment. For this analysis, we used

the median value of phase angle when a cell was entrained to multiple LFPs. Mo-

tor cortical units (a), and GP units (d) did not show prominent phase preferences.

However, the population of recorded FSI-units (b) maximized their firing just before

the peak in beta activity at 0◦. The population of MSN cells (c) recorded from the

NAcc and CPu fired early in the phase cycle, just after the peak in the field potential

oscillation.

3.4 Discussion

To better understand the significance of physiological β oscillations seen during

decreases in movement activity, we adopted a combined ‘macrocircuit/microcircuit’

approach, investigating both relationships to activity in other, interconnected brain

regions and the participation of specific neuron types. Consistent with the idea that

β20 actively promotes neural processes related to maintaining tonic contractions, we

found that synchronization occurred during the hold period only if the upcoming

movement direction was known. However, this simple hypothesis does not explain

why β20 is up-regulated over a similar timescale after the instructional tone in the

choice task. Another hypothesis is that the β-band activity acts to “lock in” the

current motor plan and avoid switching to others until such time as the current
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sequence is executed (Brown and Marsden, 1998). The desynchronization seen ∼250

ms after movement execution could act as a neural “clutch” allowing the system to

change motor plans.

Consistent with this idea, studies of the motor cortex have found oscillations most

often occur before movement onset and are much less evident during motor actions

(Murthy and Fetz, 1996a,b; Sanes and Donoghue, 1993; Rubino et al., 2006). Promi-

nent epochs of β20 in the precentral gyrus (Donoghue et al., 1998) and the caudate

nucleus/putamen (Courtemanche et al., 2003) occur between the instructional pre-

cue and the go cue during tasks where a preparatory periods are provided. The β20

oscillations have been shown to travel in propagating waves across the primary motor

and dorsal premotor cortices and these waves contain information on the upcoming
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(planned) movements (Rubino et al., 2006).

One question that needs addressing is where the β oscillations come from in our

task. LFPs, in general, are somewhat ambiguous reflections of the underlying neu-

ronal activity, and often better reflect synchronized subthreshold postsynaptic poten-

tials (i.e., correlated input activity) than suprathreshold output activity (Mitzdorf,

1985). In our data, β20 was the weakest in the motor cortex (Fig. 3.2a,c). The

NAcc and CPu had higher power, but without the aide of a laminar structure that

can amplify postsynaptic potentials and generate large oscillations, these appears to

be a poor candidates. After dopamine loss, inappropriate reverberatory interactions

between GP and subthalamic nucleus (STN) have been shown to actively promote

the emergence of excessively synchronized β oscillations at the network level (Mallet

et al., 2008). It is possible, therefore, that GP-STN reciprocal connections may be

the source of the transient β20 epochs seen in our task. While figure 3.2 indicates

GP had the highest power in the β20 range; further studies will need to determine if

GP-STN contribute to physiological beta activity, or alternatively if they arise from

deeper laminar structures such as the piriform cortex (Litaudon et al., 2008; Chapuis

et al., 2009). Coherent β and γ activity have been in cortical and subcortical areas

prior to olfactory-guided movement initiation (Hermer-Vazquez et al., 2007).

Wether or not these rhythms are volume conducted from adjoining structures, the

fact that a number of cells were significantly entrained to β20 demonstrates they are

participating in the information processing in our recorded regions. Interestingly,

fast-spiking interneurons were shown to increase their spike probability earlier in the

β20 phase than the MSN projection neurons. Suggesting that β epochs may serve a

role in coordinating ensembles of striatal cells, perhaps maintaing the existing motor

plan.



CHAPTER IV

Näıve Coadaptive Cortical Control

Abstract

The ability to control a prosthetic device directly from the neocortex has been

demonstrated in rats, monkeys, and humans. Here we investigate whether neural

control can be accomplished in situations where (1) subjects have not received prior

motor training to control the device (näıve user) and (2) the neural encoding of

movement parameters in the cortex is unknown to the prosthetic device (näıve con-

troller). By adopting a decoding strategy that identifies and focuses on units whose

firing rate properties are best suited for control, we show that näıve subjects mutu-

ally adapt to learn control of a neural prosthetic system. Six untrained Long-Evans

rats, implanted with silicon micro-electrodes in the motor cortex, learned cortical

control of an auditory device without prior motor characterization of the recorded

neural ensemble. Single and multi-unit activity was decoded using a Kalman filter to

represent an audio “cursor” (90ms tone pips ranging from 250Hz−16kHz) which sub-

jects controlled to match a given target frequency. After each trial, a novel adaptive

algorithm trained the decoding filter based on correlations of the firing patterns with

expected cursor movement. Each behavioral session consisted of 100 trials and began

with randomized decoding weights. Within 7±1.4 (mean±SD) sessions, all subjects

68
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were able to significantly score above chance (P<0.05, randomization method) in

a fixed target paradigm. Training lasted 24 sessions in which both the behavioral

performance and signal to noise ratio of the peri-event histograms increased signifi-

cantly (P<0.01, ANOVA). Two rats continued training on a more complex task using

a bilateral, two target control paradigm. Both subjects were able to significantly dis-

criminate the target tones (P<0.05, Z-test), while one subject demonstrated control

above chance (P<0.05, Z-test) after 12 sessions and continued improvement with

many sessions achieving over 90% correct targets. Dynamic analysis of binary trial

responses indicated that early learning for this subject occurred on session 6. This

study demonstrates that subjects can learn to generate neural control signals that

are well suited for use with external devices without prior experience or training.

4.1 Introduction

There are over 250,000 cases of spinal cord injuries in the United States of Amer-

ica, with a majority of these injuries resulting in quadriplegia: the loss of movement

and sensation in both the arms and legs (Lucas et al., 2004). Electroencephalo-

graphic (Lacourse et al., 1999) and functional magnetic resonance imaging (Shoham

et al., 2001) studies have shown that spinal cord injured patients who imagine move-

ments in their paralyzed limbs can still produce activation of the motor cortex, even

after an extended period of time post trauma. Early studies demonstrating that

single units of the motor cortex could be operantly conditioned (Olds, 1965; Fetz,

1969; Fetz and Finocchio, 1971) led Edward Schmidt to propose in 1980 that unit

recordings from the motor cortex may constitute a viable control signal for external

devices (Schmidt, 1980). Recent technology advances have enabled several groups to

begin investigating the possibility of cortically controlled neural prostheses (Kennedy
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et al., 2000; Serruya et al., 2002; Taylor et al., 2002; Carmena et al., 2003; Shenoy

et al., 2003; Musallam et al., 2004; Olson et al., 2005). Many of the current cortical

control paradigms consist of analyzing the relationship between cortical activity and

measured motor parameters (Chapin et al., 1999; Wessberg et al., 2000; Sanchez

et al., 2004). This known relationship is then used to transform the neuronal popu-

lation signals into real-time prosthetic device movements. Unfortunately, such motor

information cannot be obtained in patients with traumatic spinal lesions or neuro-

logical disorders which prevent movement.

Several groups have investigated the possibility of neural prostheses that could

adapt to cell tuning properties (Taylor et al., 2002; Eden et al., 2004; Musallam et al.,

2004). One study (Musallam et al., 2004) built a database of cortical responses to

motor reaches that were subsequently used to decode brain-controlled tasks. Data

collected during brain-controlled reaches to targets were used to continually update

the database which eventually contained only brain-controlled trials. They reported

that this could be done without leading to a loss in performance. Taylor et al. (Taylor

et al., 2002) demonstrated that an a priori neural database was not required for an

adaptive algorithm to allow brain-controlled movements. By starting with random

tuning properties and allowing these estimates to be iteratively refined, subjects

could make long sequences of three-dimensional movements using a brain-controlled

cursor. These algorithms mutually adapted to the learning-induced changes in cell

tuning properties, thus creating a coadaptive neural prosthetic system.

One common thread in these neural prosthetic research models is that the animals

are first trained on a motor task. The experiment is then repeated with a brain-

controlled task that represents the trained motor control. It is not clear if this a

priori motor training is required to learn control of a neural prosthetic device. There
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may also be devices that do not have inherent correlates with physical motor control

(e.g. powered wheelchairs, trolleys, communication boards, and various adapted

vocational tools). Fine control of such neural prosthetic devices would not come

from motor training, but rather through adapting arbitrary control signals from the

neocortex.

Our objective in this study was to determine if untrained subjects were able

to learn control of an unfamiliar neural prosthetic device. We hypothesized that

by coadapting to the subject’s neuronal responses, we could allow previously näıve

subjects to gain control of a foreign neural prosthesis. Here we show that subjects

can learn one-dimensional neural control of a novel auditory device without prior

motor training.

4.2 Methods

4.2.1 Surgical Procedure

Six Long-Evans rats weighing 275-300g (Charles River Laboratories) were used

during this study. Animals were kept on a reversed light schedule and housed within

the animal facility of the University of Michigan. Subjects were handled before

surgery, however training did not occur until the cortical control experiments began.

Implantation methods have been discussed previously in more detail (Kipke et al.,

2003; Vetter et al., 2004) and will only briefly be described here. Prior to surgery,

anesthesia was induced through an intraperitoneal injection of a mixture of 50 mg/ml

ketamine, 5 mg/ml xylazine, and 1 mg/ml acepromazine at an injection volume of

0.125 ml/100 g body weight. Anesthesia was maintained with hourly intraperitoneal

injections of 0.1 ml ketamine (50 mg/ml). Subjects were placed in stereotaxic ear

bars (MyNeuroLab.com, St. Louis, MO) and an incision was made down the midline

of the head. Tissue was removed to reveal the reference fissures on the skull and 3
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bone screw holes were drilled using a surgical bit. A craniotomy was created over

the forelimb area of the primary motor cortex (MI) of the left hemisphere. The dura

was resected to allow insertion of the penetrating electrode. One 16-channel chronic

silicon-substrate microelectrode array (Kipke et al., 2003; Vetter et al., 2004) was

implanted by hand using fine forceps into the brain (see 4.1 for stereotaxic loca-

tions). Each electrode (Center of Neural Communication Technology, Ann Arbor,

MI; catalog 4x4 4mm200 chronic) had four separate shanks (200 µm inter-shank

spacing) with four recording sites spaced evenly along each shank (200 µm inter-site

spacing). The crshortciteaniotomy was filled with a hydrogel polymer (ALGELTM,

Neural Intervention Technologies, Ann Arbor, MI) to anchor the electrode, and a

silicone polymer (Kwik-SilTM, World Precision Instruments) was applied to protect

the electrode ribbon cable. Finally, a protective headcap was created using dental

acrylic (Co-Oral-Ite, Dental Mfg. Co., Santa Monica, CA). The animals were allowed

48-72 hours to recover from surgery. All surgical and animal care procedures were

in accordance with the National Institute of Health guidelines and were approved by

the University of Michigan Institutional Animal Care and Use Committee.

4.2.2 Data Acquisition

During each experimental session neural electrophysiological data from the 16

electrode channels were sampled at 40 kHz. These signals were simultaneously am-

plified and bandpass filtered (450−5000 Hz) on a Multichannel Neuronal Acquisition

Processor (MNAP; Plexon Inc, Dallas, TX). At the beginning of each recording

session, units on each electrode channel were separated and identified using online

thresholding, template matching, and principal component analysis. Spike times

were transmitted with nominal delays over a local TCP/IP connection to a second

computer running custom software (MATLAB, Mathworks Inc., Natick, MA) for
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Figure 4.1:
Behavioral Paradigm. Dark line indicates auditory tone frequency played back to the
subjects (initial cue followed by 90 ms feedback pips). Horizontal shaded regions rep-
resent the criterion windows for the baseline and response frequencies. Responses were
determined correct and were rewarded if the feedback frequency was maintained within
the response criterion of the target frequency, for the duration of a 540 ms sliding
window, incrementing in 90 ms steps. The unobserved ideal response or “intended”
response used during the training of the adaptive filter is indicated by a thin dotted
line. The result of the illustrated trial would be determined as a “correct target” trial.

neural decoding and the environmental hardware control (Tucker-Davis Technolo-

gies, Gainesville, FL). Spike times and waveshapes were stored to disk for offline

analysis. Event timings for target tone onset and food delivery were captured and

stored by pulse signals that synchronized the hardware events with spike timing.

4.2.3 Behavioral Paradigm

The cortical control system used in these experiments is a one-dimensional au-

ditory analog of the center-out reaching task (Georgopoulos et al., 1986; Schwartz

et al., 1988). In center-out reaching experiments, the hand (or cursor, in the case

of brain-controlled tasks) is held at the center of a circle until a target cue is placed

in one of a fixed number of points on the perimeter of the circle. The subject’s

task is to move the hand (cursor) into the target position and hold it for a fixed

amount of time. Target acquisition must be completed within an allowable response
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period. In our auditory version, an audio cursor is represented by 90ms sound pips

representing the one-dimensional location within the logarithmically-spaced 250Hz

to 16kHz frequency spectrum. Baseline firing rates were mapped to the center of the

frequency space, and trials began with the presentation of a target tone at a given

frequency. Subjects had a fixed amount of time to match the target frequency using

the auditory cursor. The movement of the auditory cursor was dependent on the

real-time decoding of the cortical firing rates as described below. As with the center-

out paradigm, trials are marked either as correct (held at correct target frequency for

the hold period), wrong (held at an incorrect target frequency for the hold period),

or late (no answer within the response period).

Subjects were kept at 85% of their free feeding weight and were tested using

either a fixed target task (10kHz tone, N=6) or a target discrimination task (1.5kHz

or 10kHz tone, N=2). The fixed target task was run for 2−3 sessions a day for 8

days. Each session consisted of 100 trials. 4.1 illustrates trial timing and sequence for

this task. Trials began when subjects held the auditory cursor within the criterion

window of the baseline level (4kHz) for 540ms. The criterion window was set as

±17% of the logarithmic workspace (1.5kHz-10kHz). Pilot studies determined that

this criterion window allowed näıve users to acquire the target in 15-20% of trials

by chance. An auditory cue (10kHz) was then presented for 900ms to indicate the

target frequency. Auditory feedback of the predicted cursor position was presented

to the subjects in 90ms pips. Subjects had a 4.5s response window to maintain the

cursor within the criterion window of the 10kHz target for 540ms. Correct responses

were reinforced with a food pellet (45mg; BioServe #F0021, Laurel, MD). A random

inter-trial interval (5−15s) separated each trial.

The behavioral trial for the target discrimination task was similar to the fixed
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target, with the exception of an additional target tone. The two target tones were

equally spaced (log scale) from the baseline tone. Baseline, target1, and target2

frequencies were set to 4kHz, 10kHz, and 1.5kHz respectively. Subjects of the dis-

crimination task were initially trained on a fixed target before being presented with

two targets. Experimental runs were constructed as either training or testing ses-

sions. Training sessions repeated missed targets up to 4 times, while testing sessions

pseudo-randomly presented an equal number of the 1.5kHz or 10kHz targets. All

sessions began with randomized weights and consisted of 200−300 trials. Subjects

ran 1 training session and 1−2 testing sessions per day. Only testing sessions were

used for analysis in this study. At the end of each day of training, supplemental dry

food was provided (if necessary) to maintain body weight near 85% ad lib.

Our behavioral paradigm provided a contingency between the stimulus (target

tone), the desired response (reaching the correct target), and the presentation of

a reinforcer (food pellet) which allowed subjects to associatively learn the cortical

control task. Initially, the probability of a correct response was low, but through this

operant conditioning paradigm, the number of correct trials occurred with higher

frequency.

4.2.4 Ensemble Decoding

To enable real-time neural control of the auditory cursor, we used a Kalman filter

to infer the cursor frequency from the neural recording data (Wu et al., 2004). A

detailed description of the Kalman filter can be found in Maybeck (Maybeck, 1979).

Briefly, the Kalman filter is a mathematical procedure that provides an efficient

computational means to estimate the state of a process based on noisy Gaussian ob-

servations. Here, the observations are the binned spike times, which can be assumed

to be Gaussian distributed provided that unit firing rates are sufficiently high. In our
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paradigm, the cursor frequency was modeled as a system state variable xtk, where t

is the trial index (t = 1, 2, ..., T ; where T is the total number of trials in the session),

and k is an index of time (k = 1, 2, ..., K; where K is the number of 90ms time steps

in trial t). For each trial, the cursor xtk was assumed to propagate in time according

to an unobserved difference equation

(4.1) xtk = Axt(k−1) + wt(k−1),

where A relates the prior cursor position to the current position (A = 1 in our

experiments) and wtk is a white noise term that was assumed to have a normal

probability distribution, wtk ∼ N(0,Wt). Note that xtk is a scalar in our one-

dimensional paradigm. However, similar equations to those that follow can be written

when xtk is a vector of multiple dimensions.

Unit firing times were collected in 90ms bins and modeled as an observed noisy

response to the unobserved state process 4.1. We define our measurement differ-

ence equation that describes the relationship between the cursor frequency (xtk) and

recorded spike bins (ztk) as:

(4.2) ztk = Htxtk + qtk

where ztk is a C × 1 vector of spike bins from C cells, Ht is a C × 1 vector that

linearly relates the frequency state to the neural firing. Again, we assume the noise

in the observations has zero mean and is normally distributed, i.e. qtk ∼ N(0,Qt).

As 4.2 illustrates, the Kalman filter uses the above state equations 4.1 and 4.2 as

a model to infer, or predict, the cursor position, x̂tk, given only the observed spike

bins, ztk, of a trial. In order to use this model, we must first define 3 parameters:

Ht, Wt, and Qt. It is with these parameters that we adapt the Kalman filter to the

neural response of our subjects.



77

( 1) ( 1)tk t k t k

tk t tk tk

    
    

x Ax w
z H x q

T
( -1)

T -1

 =  + 

= (  + )
ˆ ˆ ˆ( )

= (  - )

tk t k t

tk tk t t tk t t

tk tk tk tk t tk

tk tk t tk

    

P P A W

K P H H P H Q
x x K z H x
P I K H P

( 1) ( 1) ( 1)[ ] ( )t t t fH ,W ,Q X

ˆ tkxtkz

O
n

lin
e

A
d

ap
ta

ti
o

n
K

al
m

an
Fi

lt
er

Target Tone

Cursor Feedback

Speaker

Cursor
PredictionSpike Bins

90 ms

A

T

Z,

R
at

( 1)ˆ ˆtk t kx Ax

Figure 4.2:
Closed loop cortical control schematic. Spike bins (ztk) from the motor cortex were
decoded using a Kalman filter to predict the cursor frequency (x̂tk). The predicted
frequency was fed back to subjects via a speaker every 90ms of the response window.

4.2.5 Filter Adaptation

The challenge presented to a “näıve” prosthetic controller is to predict the cur-

sor position, while simultaneously estimating the weights that should be assigned to

an evolving neural ensemble experiencing learning-induced changes. For assistance

we turn to stochastic control theory, a well-established engineering discipline for

tracking non-stationary control signals (Åström, 1970; Maybeck, 1979). Stochastic

control theory offers many tools for dealing with parameter estimation of dynamical

state-space systems. Algorithms such as recursive least squares (RLS) or recursive

Newton-Raphson provide a way for filter coefficients and cursor predictions to be

simultaneously calculated on a bin-by-bin basis (Davis and Vinter, 1984). Addition-

ally, block estimation allows for standard system identification techniques to be used

on non-stationary signals (Haykin, 1996). In block estimation, the available data are

divided into individual blocks which are small enough to assume pseudo-stationarity.

The filter coefficients are then computed and updated on a block-by-block basis.
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We selected the block estimation approach as it allowed the filter coefficients to be

trained on select regions within the block that maximized our selection criteria (see

eq. 4.3). This selective training technique provided an opportunity to identify and

focus on units whose firing rate properties were best suited for control.

The blocks used in this study consisted of data obtained from the past 10 trials,

and were updated on a trial-by-trial basis. Data from new trials were added to a

block by selecting the appropriate time lag in the response window where the unit

firing rates had the largest correlation to the expected cursor movement. The time

lag at which this occurred was determined by calculating the correlation coefficient

of a sliding window of the recorded unit responses with a window of the “intended”

target frequency movement for the given trial. The lag chosen for training (l) was

calculated across C cells via the formula

(4.3) l = argmaxj
(
argmaxc∈(1,2,...,C)corr([xt(1:n) xt(j:j+n)], [zt(1:n),c zt(j:j+n),c])

)
,

where ztk,c is the spike bin count of cell c at time k, and j is the index of a sliding

window of length n across R response bins, j ∈ [1, 2, ..., R− n]. In our experiments,

R = 50 and n = 6. The colon operator indicates concatenation, for example a vector

containing the values of x for the first 5 time steps of trial t is written as xt(1:5) = [xt1

xt2 xt3 xt4 xt5]. The function corr is defined as:

(4.4) corr(x, z) =

∑
i(xi − x)(zi − z)√∑

i(xi − x)2
∑

i(zi − z)2
, x =

1

n

n∑
i=0

xi.

Note that the vector x of equation 4.3 does not refer to the predicted cursor position

of trial t, but rather to the ideal unobserved cursor movement (see dashed line of

4.1). The vectors used in the correlation function are a concatenation of the baseline

(1 : n) and response (j : j+n) windows of the trial, thus allowing for one-dimensional

movements. By correlating vectors of the ideal movements with vectors of the ob-
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served firing rates zt, we can adapt the decoding filter to focus on unit responses

that are potentially suited for control.

The lag calculated from 4.3 over the past M + 1 trials was used to train the

parameters of the decoding filter for the immediately upcoming trial (M = 9 in our

experiments). The transformation matrix H was estimated online by the regression

equation

(4.5) Ĥ(t+1) = (ZXT )(XXT )−1,

where X is the intended cursor block that concatenates Xt of the past M + 1 trials

(4.6) X = [Xt X(t−1) X(t−2) ... X(t−M)],

and Xt is defined as the ideal cursor movement from baseline to response

(4.7) Xt = [xt(1:n) xt(l:l+n)].

Similarly, the matrix Z of 4.5 is the observation block which is defined as the con-

catenation of the ensemble spike bins from the past M + 1 trials at their appropriate

lag, l, that best correlated to the ideal movement

(4.8) Z = [Zt Z(t−1) Z(t−2) ... Z(t−M)]

(4.9) Zt = [zt(1:n) zt(l:l+n)].

By using a trial-by-trial sliding block to obtain the least squared estimate of rela-

tionship between spike rates and cursor frequency (Ĥ) and by operantly rewarding

correct trials, we hypothesized that subjects would learn the behavioral task and

develop a strategy to control the auditory cursor.

The noise matrices Q̂(t+1) and Ŵ(t+1) were then estimated using the equations

(4.10) Ŵ(t+1) = (X1:(N−1) − AX1:(N−1))(X2:N − AX1:(N−1))
T/(N − 1),
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and

(4.11) Q̂(t+1) = (Z− Ĥ(t+1)X)(Z− Ĥ(t+1)X)T/N,

where N is the block length, N = (M + 1)2n.

The updated filter parameters were used to decode the cursor frequency for the

immediately following trial. The end of one trial was the beginning of the next, so

xt0 = x(t−1)K . On the initial trial of each session H1, Q1, and W1 were randomized.

4.2.6 Behavioral Performance

The behavioral performance for each subject was investigated by comparing the

percentage of correct targets with the percentage that would be expected by chance.

For the target discrimination task, late trials were discarded and each session was

treated as a two-state forced choice paradigm in which chance was 50%. However,

the fixed target paradigm consisted of trials that could not end in a “wrong target”

state. Therefore, a stimulus randomization method was employed to determine the

amount of correct targets that could have been selected by chance during the response

period.

The stimulus randomization method is described as follows. If the predicted fre-

quency (x̂) was not related to the stimulus (target) tones, then the tone times can be

randomized without affecting the chance that the rat meets the reward criterion. For

each training session, 300 sequences of random tone times were drawn. Each random

sequence had the same number of tone times and the same tone time distribution

as the experimental session. The number of times that the subject would have been

rewarded for each of the 300 sequences was used to determine the distribution of

chance. For each behavioral session, the percent correct above chance was calculated.

For the fixed target task, we defined the early learning session as the first session
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on which there was reasonable certainty (P<0.05) that the subject performed bet-

ter then chance. For the target discrimination task, we also performed a dynamic

analysis of learning using a state-space framework that analyzes binary observa-

tions (Smith et al., 2005). Correct and wrong trials from all testing sessions were

arranged to form a time series of binary trial responses and were used to compute

the learning curve and its confidence intervals using the state-space smoothing algo-

rithm described in Smith et al. (Smith et al., 2004). We defined the early learning

trial as the first trial on which there is reasonable certainty (P<0.05) that a subject

performs better than chance for the following 500 trials.

An additional measure of chance was estimated through the use of catch trials.

Catch trials consisted of stimuli in which the intensity of the tone and feedback were

set to 0 dB to determine the number of trials which reached the correct target by

chance.

4.2.7 Unit Analysis

To monitor the evolution of the tuning properties over sessions, we measured

the signal strength of the peri-event histograms (PEH) relative to background noise

for each unit for every session. The PEH, or signal histogram, was centered on

target tone onset and had the width of a full trial window (6.66s, 90ms bins). Noise

histograms were generated by selecting random times from the recording session, and

centering the trial window at this random location. We calculated the root mean

square (RMS) of both the signal and noise histograms as

RMSk =

√√√√ 1

N

N∑
n=1

(sk,n − µ)2,(4.12)

where k is a label, k ∈ {signal, noise}, N is the total number of bins for the histogram,

s is the firing rate value of the nth bin, and µ is the mean firing rate. Using the RMS
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calculations of both signal and noise histograms, we then calculated the signal to

noise ratio (SNR) as

SNR(dB) = 20log10

[
RMSsignal

RMSnoise

]
.(4.13)

To determine if a recorded unit showed a significant inhibitory or excitatory re-

sponse, confidence intervals were calculated for each target onset-centered PEH. The

computations for these intervals were based on the null hypothesis that spike trains

are the realization of independent Poisson-point processes as described in the litera-

ture (Abeles, 1982). Unit responses that crossed the upper 99% confidence interval

during the response window were labeled as excitatory while those that crossed the

lower 99% confidence interval during the response window were labeled inhibitory.

Responses crossing both confidence intervals were excluded from this analysis.

To test if discrimination had occurred in our subjects, we looked for distinct

changes in the unit response pattern for each target. Mean firing rates during the

response window of all trials were loaded into MATLAB (Mathworks Inc., Natick,

MA) and were separated and labeled according to the target for each trial. Trial

by trial analysis was then performed using a Support Vector Machine (SVM) clas-

sification toolbox (Ma et al., 2002). The SVM filter was used to predict the target

frequency given the test data from each trial using training data (mean firing rates

and target labels) from all other trials. This analysis was repeated for each trial

in the session (“leave-one-out” method) and the total percent correct was noted.

Sessions where the classification percent correct was significantly greater than the

calculated binomial distribution (P<0.05, Z-test) were labeled as demonstrating tar-

get discrimination.
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4.2.8 Histology

Upon completion of training, rats were transcardially perfused with 4% formalde-

hyde. The brains were removed, sectioned into 40 µm coronal slices, and stained

with a conventional cresyl violet Nissl stain. The sections were then analyzed using

a Leica MZFLIII light microscope (Leica Microsystems, Inc., Germany) to determine

probe placement.

4.3 Results

We summarize two sets of experiments. The first involves data from 6 näıve

subjects in which the task was to move an auditory cursor to a fixed target. Next,

we considered the case in which multiple targets were presented and the task was

to discriminate and move to the correct target. Two subjects from the initial study

were used during the later stage.

4.3.1 Fixed Target Task

After recovery from surgery, populations of 5−23 (mean, 11.5) single and multi-

unit clusters were discriminated from the recording electrodes and used for the fixed

target control task. Subjects were able to control the feedback cursor significantly

above chance (early learning session) within 7±1.4 (mean±SD) behavioral sessions

(P<0.05, stimulus randomization method, N=6). 4.3 shows the group performance

across 24 successive sessions. The 95% confidence intervals indicate 2 standard de-

viations above and below the mean chance distribution (randomization method).

Horizontal lines indicate the number of days that each subject participated in the

study. Tick marks indicate the early learning sessions for each of the subjects. Two

subjects were not included after session 9 due to illness (KCD−06) and the loss of

all recording units (KCD−03). The average percent of trials on which the target was
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Subject Coordinates(mm) Sessions Reg. Coeff. P

KCD−01 AP:+3.8 ML:2.0 20 1.6 < 0.001
KCD−03 AP:+2.5 ML:3.0 9 1.3 < 0.05
KCD−05 AP:+2.6 ML:2.5 24 2.4 < 0.02
KCD−06 AP:+3.0 ML:2.5 9 0.24 > 0.58
KCD−09 AP:+1.2 ML:2.9 23 1.1 < 0.02
KCD−10 AP:+1.5 ML:1.6 24 0.96 < 0.01

Table 4.1:
Electrode placement and performance for all subjects in a single target task. Total
number of sessions and the regression coefficients of subject’s performance as a function
of session number are given. P values <0.05 indicates that this coefficient was significant.

successfully acquired is shown for each day. This percentage increased from the first

session (21.7%±6.5%, mean±SD) to the last (69.6%±17.6%, mean±SD; P<0.01,

one-way ANOVA).

Regression coefficients of the subjects’ performance over chance as a function of

session number are given in 4.1. These coefficients were all positive and in 5 out of 6

subjects (83.3%) significant (P<0.05, one-way ANOVA), indicating that performance

increased with training. The coefficient for the entire group of subjects was 1.53

percentage points per session and was significant (P<0.01, one-way ANOVA).

4.4 shows a typical output of the fixed target experiments. Two trials (20-21) from

subject KCD−01 are shown from session 24. A raster of the spike train outputs (a)

from the 14 sorted single and multi-unit clusters are aligned with the behavioral

output (b). After each trial, the coadaptive algorithm updated the weights (c) of

the decoding matrix (Ĥ) to minimize the output frequency error based on the neural

ensemble responses from the past 10 trials. The processing time for this updating

algorithm to run is indicated in the figure (typically between 2-8s). PEHs averaged

across all 100 trials are shown in (d-g). Each PEH is centered at the time that the

10kHz tone was presented (indicated by arrows). Excitatory and inhibitory responses

can be observed in the response window in both the raster plot (a) and the averaged
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Figure 4.4:
Example of trial output aligned with neural ensemble response. a) Raster plot of spike
trains from 14 units over two trials. b) Behavioral output over two trials. The estimated
cursor frequency (x̂) is shown as a thick line, while the expected frequency (x) is shown
as a thin line. The criterion windows for the target and baseline frequencies are indicated
as horizontal dashed lines. The beginning of each target tone is marked with a black
vertical line, while gray vertical lines indicate when the subject produced a correct
response and was positively reinforced. c) Relatively weighted translation decoding Ĥ
matrix. d-g) Peri-Event Histograms over 100 trials, centered on target onset (indicated
by arrow). Bottom bar (R) indicates mean±SE of the reward distribution for the PEH
plots. Time scale for a and b is indicated by the 1s bar. Time scale for d-g is shown in
seconds.
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PEH (d-g), which allowed for control of the auditory cursor along a one-dimensional

frequency axis. Upon tuning, units that responded in an excitatory fashion to the

tone during the response window received high positive decoding weights, while in-

hibitive responses during the response window received larger negative weights. Units

that did not respond, or only responded outside the trial window (g), received low

weights as they were not useful for device control. During this session, the estimated

auditory cursor (x̂) was strongly correlated (ρ = 0.707, P<0.01) to the ideal target

and baseline frequencies (x).

To visualize the cursor across an entire session, we examined the distribution of

the cursor predictions during all of the baseline and response windows. 4.5 shows a

histogram of x̂ predictions in 100 logarithmically-spaced bins for both the baseline

window (4kHz, gray) and target response window (10kHz, black) from all trials (N =

100) of three sessions of KCD−01. During the first session (a), the distributions for

both the baseline and response are centered on the baseline frequency. The response

distribution begins to spread into the target window during the early learning session

(b) as the subject learns to control the cursor towards the target. By the late learning

session (c), the distribution becomes bimodal indicating that the subject was able

to hold the cursor at the baseline target (4kHz) during the baseline window, then

quickly acquire the target (10kHz) and hold it for the required criterion (540ms)

during the response period. The change in scaling of the response distribution is an

indication of the increased correct responses (thus shorter response windows) during

learning. The mean response window length was 4.02s, 2.82s, and 2.05s for the näıve

session, the early learning session, and the late learning session respectively.

To ensure that the subject’s behavior was based on the target and feedback tones,

we conducted an experiment using randomized intensities of these tones from a set
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Figure 4.5:
Histogram of auditory cursor frequency estimation (x̂) during two trial windows: base-
line (gray) and response (black), for three sessions: näıve, early learning, and late
learning of KCD−01. Baseline period was fixed at 1.2s, while the response window was
variable (up to 4.5s) depending on response time. Criterion windows for the baseline
and response frequencies are indicated by vertical bars on the x̂ axis.

of 5 levels (0, 17.5, 35, 52.5, and 70dB). 4.6 shows the mean behavioral results from

341 random intensity trials across 2 sessions (KCD−01). The results demonstrate

that the subject’s behavior was a function of the stimulus intensity, indicating that

the target stimuli (and not random fluctuations in cursor predictions) were driving

the observed behavior. The sigmoidal shape of 4.6 is consistent with psychophysi-

cal measurements of tone detection tasks (Thomas and Setzer, 1972). Furthermore,

the 0dB catch trials provided an alternative online determination of chance that we

could measure against the randomization method. During these sessions, 0dB tri-

als received almost no correct responses (5.1%±1.1%, mean±SD). Chance for this

task using the randomization method was calculated to be 19.9%±2.2% (mean±SD),

indicating that the randomization method provides a conservative method for deter-

mining chance.

The adaptive algorithm selected units that showed potential for control based on

the criterion that they were able to modulate from their baseline firing rate during

the response window. This selection criterion resulted in changes to the signal to

noise ratio of the PEHs across behavioral sessions. The mean SNR increased sig-
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Figure 4.6:
Intensity randomization test. Behavioral results of a well trained subject (KCD−01)
from 341 trials across 2 sessions where the intensity of both target and feedback tones
was randomized between 0−70dB. Error bars indicate standard error.

nificantly for the unit PEHs of all rats (P<0.01, ANOVA), indicating that at least

one unit in the ensemble had developed the ability to control the system via changes

in the firing rates. Moreover, the median SNR also increased significantly (P<0.01,

ANOVA) across all subjects indicating that many units in the ensemble were active

in control, a desirable property for establishing a robust control signal. 4.7 shows

the distribution of SNR calculations for the PEHs of all units of KCD−05 across

24 training sessions. Median and mean are indicated, and increased significantly

with session number (P<0.001, ANOVA). Representative PEHs and the SNR values

are shown from sessions 2 and 23. Across all subjects, units from sessions in which

the subject did not show significant performance above chance had a mean SNR

of 1.7±2.1dB (mean±SD, N=377 units) with median 1.2dB, while units from ses-

sions where control was significantly above chance measured 3.7±4.0dB (mean±SD,

N=509 units) with a median of 4.4dB.
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Figure 4.7:
Signal to noise ratio (SNR) results for KCD-05 and examples of 8 units from 2 sessions.
Boxes indicate the upper and lower quartile of the distribution, whiskers indicate the
10th and 90th percentile. The regression coefficients of both the mean and median
SNR across sessions were positive and significant (mean, 0.26 dB/session, P<0.001,
ANOVA; median, 0.27 dB/session, P<0.001, ANOVA). Representative PEHs and their
99% confidence intervals are shown from sessions 2 and 23. The SNR calculation for
each PEH is shown in white.
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4.3.2 Target Discrimination Task

Two subjects (KCD−09 and KCD−10) were trained on a two target discrimina-

tion control task for 30 and 8 testing sessions, respectively. 4.8 shows the behavioral

results for both subjects. The gray band indicates the 95% confidence intervals of

chance as calculated from a binomial distribution based on the number of trials for

each session. KCD−09 showed a positive learning trend (0.8 percentage points per

session, P<0.01, ANOVA) which allowed for several sessions where >90% of aquired

targets were correct. KCD−10 remained at chance for most sessions, however offline

SVM classification (Ma et al., 2002) of the recorded unit activity was able to cor-

rectly classify trials above chance (P<0.05, Z-test) for both subjects indicating that

KCD−10 had learned to discriminate the targets, but had not yet learned control of

the cursor to select both targets. The behavioral performance of KCD−09 rises and

stays above the 95% confidence interval of chance for several sessions after session

12. However, dynamic analysis using the method of Smith et al. (Smith et al., 2004)

in which correct and wrong trials (N=3708) from all sessions were used as binary

observations of the unobservable learning state process indicated that early learning

occurred much earlier, on trial 715 (session 6). Dynamic analysis of KCD−10 trials

indicated that early learning had not occurred.

Three sessions from KCD−09 fell to chance after the early learning session. During

session 19, the units previously used for control could not be sorted from the noise.

Offline unit analysis showed that the subject was able to adopt an alternative strategy

involving units from other channels in the array on session 20, leading to a recovery

in performance.

In order for subjects to control the cursor to reach targets in opposite directions,

ideally the unit responses to each target should also be tuned to deviate from the
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Figure 4.8:
Performance of two subjects in discrimination control task. Gray band indicates the
95% confidence interval of chance as calculated from a binomial distribution based on
the total number of trials. Changes in band width are due to slight variations in the
number of trials per session. In sessions where both subjects are present, the gray band
indicates the larger of the two chance intervals.

baseline firing rate in opposite directions. Across the 39 behavioral sessions of both

subjects, 438 units were manually sorted and used for control (mean±SD, 11.1±2.4

units per session). Of these units, 235 (53.7%) showed significant responses im-

mediately following the 10kHz target tone. These responses were further classified

as either excitatory (135 units, 57.5%) or inhibitory (100 units, 42.6%). For the

1.5kHz tone, 228 units (52.1%) showed significant modulation during the response

window, where 176 (77.2%) of these were excitatory and 52 (22.8%) were inhibitory.

Of the units that responded significantly to either of the targets (371 units, 87.9%),

92 (24.8%) did not show a discrimination between the tones. These units were ei-

ther excitatory (71 units, 77.2%) for both of the presented targets, or inhibitory for

both (21 units, 22.8%). However, 232 units (62.5%) selectively showed a significant

response for one but not the other target tone. Moreover, 47 units (12.7% of all be-

haviorally responding units) selectively had significant excitatory responses for one
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Figure 4.9:
a) Raster and PEH plots of 3 units (selected from 10 units) from KCD−09 on session
17 of the two target task. All plots are centered on target onset (indicated by arrows).
The first 15 trials for both 1.5kHz target (gray) and 10kHz target (black) are shown
in the raster plots, the PEH includes all 200 trials of the session. Thickness of PEH
indicates standard error. Dashed lines indicate the upper and lower 99% confidence
intervals. b) Trajectory plot for 10kHz target (black) and 1.5kHz target (gray). Late
trials were ignored. Horizontal lines indicate the criterion window for the respective
target. Thickness indicates standard error.

target, while having significantly inhibitory responses for the other.

These bilateral target discriminating units, combined with units that responded

for only one of the targets, allowed one subject (KCD−09) to control the cursor

to both targets significantly above chance (P<0.05, randomization method) after 13

testing sessions. 4.9 shows the response of three units (selected from 10) in the target

discrimination task from session 17. Raster plots of the first 15 pseudo-random trials

for each target have been sorted into 10kHz (black) and 1.5kHz (gray). The PEHs

for all trials of both tones are plotted directly beneath. The arrow indicates when

the target was presented. One unit shows an excitatory response for the 10kHz tone

and inhibitory response for the 1.5kHz tone, while the other units show the opposite

response. The trajectory plot of all trials is shown in (b). The subject in this session

was able to reach the correct target in 93% of the trials.
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4.4 Discussion

This study demonstrates that näıve subjects can learn closed-loop, real-time con-

trol of one-dimensional cursor movements using single-unit and multi-unit activity

of the neocortex. Several investigators have demonstrated similar degrees of adap-

tation and robustness (Musallam et al., 2004; Wolpaw and McFarland, 2004; Taylor

et al., 2002). Previous studies have demonstrated that one-dimensional control sig-

nals could be inferred from simultaneously recorded neurons in rats that were first

trained on a lever task (Chapin et al., 1999; Olson et al., 2005). Our results suggest

that this initial training period may not be required for neural prosthetic control.

We did observe stereotyped motor behaviors in some animals performing the cor-

tical control task. We are unable to determine whether these stereotyped behaviors

were related to the recorded units’ firing rate modulation, or whether the motor

behaviors were merely superstitious behaviors. We can state however, that all feed-

back and rewards were based solely on the unit activity of the motor cortex. Other

neural prosthetic studies which have looked at EMG signals from the muscle groups

of the cortical region used for control, report that EMG modulations were eventually

absent in brain-controlled control tasks (Taylor et al., 2002; Carmena et al., 2003).

These and other studies (Fetz and Finocchio, 1971; Chapin et al., 1999) indicate that

cortical control is possible without direct motor movements.

Our model contains assumption violations that do not affect our conclusions but

should be addressed. First, the Kalman filter implicitly assumes a linear Gaussian

relationship between cursor movement and unit firing rate. While this assertion is

not exact, a linear assumption has been shown to be a reasonable approximation by

several investigators for real time control (Taylor et al., 2002; Serruya et al., 2002).
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The Gaussian assumption only holds for binned data when spike rates are sufficiently

high. An alternative approach to avoid this violation would be to use a filter based

not on binned data, but on the point process observations of spike times (Eden

et al., 2004). Additionally, the variance of the noise used in state equation 4.1 was

not an accurate representation of the feedback cursor, as this was determined by

regressing intended movements, which were specified as ideal (noiseless) movements.

Nonetheless, the resulting equations allowed our subjects to quickly learn control of

the modeled feedback cursor. Further work needs to be done to establish whether

decoding filters that remove these assumptions will assist subjects to learn faster or

achieve higher performance.

One limitation of our adaptive algorithm is that it is based on a supervised learning

paradigm in which both the intended target and neural activity were used to estimate

each neuron’s receptive field. This paradigm works well for goal-directed tasks but

has disadvantages for longer, free-ranging tasks where receptive fields may change or

new neurons become available after the training stage. Our work could be extended

to allow the adaptive algorithm to simultaneously predict the cursor estimates while

tracking the evolution of the receptive field parameters (Ĥ) on a bin-by-bin basis.

This technique would allow newly added neurons to contribute to the decoding, even

when they were not present during the encoding (training) stage. Eden et al. (Eden

et al., 2004) provide an example of receptive field tracking in their development of

an adaptive stochastic state point process filter for neural decoding.

Subjects were able to control the one-dimensional cursor in the fixed target task

using a few (11.5±3.5, mean±SD) MI units per session. This is comparable to similar

experiments in monkeys where 7-30 MI neurons were used for two-dimensional control

(Serruya et al., 2002) and 18 units for three-dimensional control (Taylor et al., 2002).
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While the number of units used per session did not increase or decrease significantly,

there were changes in the number of units sorted and used for control from session to

session (coefficient of variance = 30.1%). The regression coefficient of the subjects’

performance (percent over chance) as a function of the number of units used for

control was calculated to be an increase of 2.4 percent per unit, and was significant

(P<0.03, ANOVA). While this analysis indicates that performance increased with

the number of units, it does not mean subjects could not perform the task with

fewer units. There were sessions where subjects reached >90% of targets (>50%

above chance) using as few as 5 units.

Our control algorithm requires no prior knowledge of the recorded neuron’s tuning

properties for adequate system performance. For the initial trial of each session, ran-

dom weights were assigned to each recorded unit. Subsequently, the system adapted

based on stereotyped unit responses across the microelectrode array to enable con-

trol. This coadaptive process allowed the rats in our paradigm to learn neural control

within 3 days of training. These findings suggest that the described adaptive decod-

ing filter may be a means of training paralyzed human patients where motor tuning

properties of neurons are unobtainable. Several groups are investigating brain com-

puter interfaces in which human subjects must learn to derive control signals using

electroencephalographic recordings (Wolpaw and McFarland, 2004; Fabiani et al.,

2004), electrocorticographic recordings (Leuthardt et al., 2004a), cortical local field

potentials (Kennedy et al., 2004a), and single-unit activity (Serruya et al., 2004;

Kennedy et al., 2000). As each of these systems must derive tuning properties from

an initial näıve state, a coadaptive decoding filter (Taylor et al., 2002) may decrease

the time to learn brain control or may maximize control performance by allowing

the brain to explore all possible neural responses and to adopt the strategy that is
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the easiest for control.
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CHAPTER V

Conclusion

In this dissertation, I developed a further understanding of several key processes

involved in the generation of intended actions. As this work focused on the promi-

nent role the basal ganglia play in action selection, it is of no surprise that deeper

brain structures, including the striatum, have been implicated in generating motor

commands in non-invasive brain computer interface (BCI) experiments Hinterberger

et al. (2005). I wish to conclude my dissertation, by restating the major findings

of this thesis, and relating how these can help advance the development of the next

generation neuromotor prosthesis (NMP).

While the identification of cell types (as performed in the analysis of Chapter 2)

has yet to be performed for neuromotor prosthesis, there have been attempts to use

neural oscillations (Chapter 3) as a control signal. A number of studies (Wolpaw

et al., 1991; del R Millán et al., 2004; Cincotti et al., 2003) have shown that EEG

signals in humans can be used in a large range of applications, including the control

computer of cursors to rudimentary control of a wheelchair. The EEG signal on one

electrode represents the summed activity of thousands of neurons recordings and can

only resolve low frequencies of neural activity (for a review of recording character-

istics, see Buzsaki, 2004). These recordings suffer from a low signal-to-noise ratio

98
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and have very low spatial resolution (Schwartz et al., 2006). Electrocorticographic

(ECoG) recordings are made from direct contact with the surface of the brain, and

are therefore more robust and are a noise-free alternative to EEG recordings. ECoGs

have been used quite successfully for neuromotor prosthesis applications (Leuthardt

et al., 2004b; Schalk et al., 2007; Pistohl et al., 2008; Gunduz et al., 2009). However,

both EEG and ECoG may not be practical solutions for NMPs, since normal motor

activities such as eye movements, talking and chewing may cause high noise artifacts

in both signals.

Despite the many promising, high-profile results in the realm of intra-cortical

invasive NMP (Santhanam et al., 2006; Velliste et al., 2008), single unit recordings can

be difficult to maintain for long periods of time (Hochberg et al., 2006). Micromotion

of implanted micro-electrodes affects recording stability and insertion injury, chronic

inflammation and glial encapsulation increases electrode impedance and limits the

ability to record spikes over time (Schwartz et al., 2006). LFPs can be recorded

from intra-cortical electrodes even under low impedance conditions, and could be

used to supplement single unit decoders. Kennedy et al. (2004b) used the LFP to

control a computer cursor in one dimension and a virtual finger, with each LFP

channel controlling one degree of freedom. Mehring et al. (2003) used a support

vector machine to predict movement trajectories using LFP and showed that the

discriminatory power of the signal for a 2-D task was similar to that of single-unit

data. This work has lead to LFPs being used for several NMP devices (Rickert et al.,

2005; Scherberger et al., 2005).
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5.1 FSI and MSN cell identification for neuromotor prosthesis control

In the first study, I identified two major classes of cells using the shape of the

waveform of averaged spikes. A neuromotor prosthesis with the ability to distinguish

individual cell types, either based on waveshapes, or by other means (optogenetics,

for example) would be able to provide additional information to the neuromotorpros-

thetic controller. One finding that could be exploited is that when compared to other

neuronal populations, FSIs were preferentially active at moment of the choice event.

I also showed that at this event, FSI neurons were highly tuned to the direction of

the selected movement. Identified FSI cells recorded simultaneously could be pooled

together such that a coordinated pulse of activity could be detected indicating that

an action plan has been selected, and that the information is ready to be inferred

from their respective weights.

5.2 Detection of β20 oscillations to indicate neuromotor “pausing”

Local field potential control remains largely unexplored in the neuroprosthetic

community, though groups continue to show that the LFP is co-modulated along

with spikes during a given behavioral task (Mehring et al., 2003; Heldman et al.,

2006). Rickert et al. (2005) reported that movement direction (for a 2D center

out task) is encoded in the LFP in both the time and frequency domains. They

also found that the amplitude of the peaks of movement evoked potentials (mEPs)

and cue evoked potentials (cEPs) varied with direction. Evoked potentials are a

characteristic waveform that appears in an LFP signal when it is averaged over a

time-locked event. More recently, Rubino et al. (2006) demonstrated that amplitude

and phase of 15−45 Hz (β) predicted the directions of upcoming arm movements.

Rickert et al. (2005) reported two positive (P1, P2) and two negative (N1, N2) peaks
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in the mEP and cEP, and found that across all 419 LFP recordings over all sessions

in the contralateral and ipsilateral hemispheres, 16% of the mEPs were tuned during

P1, 38% during N1, 48% during P2 and 50% during N2. They also found that

three frequency bands (≤ 4, 6−13 and 63−200 Hz) were directionally modulated.

The spectra of the individual LFP signals were very similar on average in all of the

frequency bands. However, they did not report the percentage of LFP signals tuned

in the frequency domain, or the distribution of preferred directions in either the

frequency or time domains.

Heldman et al. (2006) also reported directional modulation in the 18−26, 30−80

and 60−200 Hz bands (10.5%, 12.5% and 14.9% of recorded M1 LFPs were signif-

icantly tuned), in a 3D reach task. Scherberger et al. (2005) showed that LFPs in

the posterior parietal cortex modulated with the direction of reaches and saccades

prior to execution.

In the second study of this dissertation (Chapter 3), I observed that beta oscil-

lations in the range of 15−25 Hz (β20) were related to the suppression of a selected

motor plan. This can immediately be put to use to solve one engineering issue facing

the development of practical neuroprosthetics: unintended movements. The presence

of unwanted movements in neuromotor prosthesic devices can cause usability or even

safety concerns. Currently, thresholding of the decoding algorithm is an often-used

method of eliminating uninitiated movements. However, this method is prone to

many sources of error, including the elimination of desired movements. By recording

the field potentials in addition to the spiking activity used for NMP control, real-

time information concerning the stopping of signals can be read out along side the

directional information. The finding that β20 oscillations was selectively active dur-

ing the suppression of an intended action can be applied directly to help address this
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problem. By digitally filtering the LFP in real-time, an instantaneous estimate of the

β20 could inversely be applied to the output speed of the NMP. Where as an absence

of β20 would allow for normal control at designed speeds, and the up-regulation of

β20 would cause the NMP to stop entirely. One could imagine this forming a graded

potential allowing for speed of motions to be controlled more easily.

One basic question remains to be explored: can we use LFP to control a NMP

on a single trial basis? The findings that demonstrated increased β20 oscillations

during motor plan suppression were based on the average of all trials taken together.

As shown in the raw traces of figure 3.3b, the β20 epoch is present on most trials,

but not all. It is not a continuous signal during the hold period that can easily

be detected above the background noise, rather it occurs in multiple brief ∼7 cycle

spindles. We may still be able to harness the observed modulation of β20 to predict

suppression of moments in a BMI. Further research may investigate the optimal

parameter set based on the delay post-detection of a beta event to allow an action to

occur. Each β20 epoch could reset an internal counter to release the next movement.

Each following epoch would delay the movement further until the suppression of

beta activity eventually releases the timer, to allow the pre-programmed movement

to occur.
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Schalk, G., Kubánek, J., Miller, K. J., Anderson, N. R., Leuthardt, E. C., Ojemann,

J. G., Limbrick, D., Moran, D. W., Gerhardt, L. A., and Wolpaw, J. R. (2007). De-

coding two-dimensional movement trajectories using electrocorticographic signals

in humans. J Neural Eng, 4(3):264–75.

Scherberger, H., Jarvis, M. R., and Andersen, R. A. (2005). Cortical local field

potential encodes movement intentions in the posterior parietal cortex. Neuron,

46(2):347–54.



119

Schmidt, E. M. (1980). Single neuron recording from motor cortex as a possible

source of signals for control of external devices. Ann Biom Eng, 8:339–49.

Schmitzer-Torbert, N. and Redish, A. D. (2008). Task-dependent encoding of space

and events by striatal neurons is dependent on neural subtype. J Neurosci,

153(2):349–60.

Schwartz, A. B., Cui, X. T., Weber, D. J., and Moran, D. W. (2006). Brain-controlled

interfaces: movement restoration with neural prosthetics. Neuron, 52(1):205–20.

Schwartz, A. B., Kettner, R. E., and Georgopoulos, A. P. (1988). Primate motor

cortex and free arm movements to visual targets in three-dimensional space. i.

relations between single cell discharge and direction of movement. J Neurosci,

8(8):2913–27.

Serruya, M. D., Caplan, A. H., Saleh, M., Morris, D. S., and Donoghue, J. P.

(2004). The braingate pilot trial: Building and testing a novel direct neural output

for patients with severe motor imparments. Program No. 190.22, 2004 Abstract

Viewer/Itinerary Planner, San Diego, CA, Society for Neuroscience, 2004.

Serruya, M. D., Hatsopoulos, N. G., Paninski, L., Fellows, M. R., and Donoghue,

J. P. (2002). Instant neural control of a movement signal. Nature, 416(6877):141–2.

Shenoy, K. V., Meeker, D., Cao, S., Kureshi, S. A., Pesaran, B., Buneo, C. A.,

Batista, A. P., Mitra, P. P., Burdick, J. W., and Andersen, R. A. (2003). Neural

prosthetic control signals from plan activity. Neuroreport, 14(4):591–6.

Shoham, S., Halgren, E., Maynard, E. M., and Normann, R. A. (2001). Motor-

cortical activity in tetraplegics. Nature, 413(6858):793.



120

Shu, Y., Hasenstaub, A., and McCormick, D. A. (2003). Turning on and off recurrent

balanced cortical activity. Nature, 423(6937):288–93.

Siapas, A. G. and Wilson, M. A. (1998). Coordinated interactions between hippocam-

pal ripples and cortical spindles during slow-wave sleep. Neuron, 21(5):1123–8.
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