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sion model; (i) Univariate näıve, (ii) p-value sum, (iii) 2-df Wald test. Panel iv
compares the three joint tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.1 Type 1 error for per-metabolite tests using a significance threshold of α = 0.05
without multiple testing adjustments. 1000 datasets were simulated assuming
within pathway correlation of 0.2 for each metabolites and genes. Unweighted
(Raw) p-values and the three weight functions (F, θ̂k = (η̃k − 1)/ηk, brown; G,
θ̂k = |ρ|, yellow; A, θ̂k = 0, green) are depicted with increasing between element
correlation, ρ ∈ (0, 0.10, 0.15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

B.2 Type 1 error for per-metabolite tests as in Figure B.1 except that the within
pathway correlation is 0.6 for each metabolites and genes and the between element
correlation is increased as high as 50%; ρ ∈ (0, 0.10, 0.15, 0.25, 0.50). Unweighted
(Raw) p-values and the three weight functions (F, θ̂k = (η̃k − 1)/ηk, brown; G,
θ̂k = |ρ|, yellow; A, θ̂k = 0, green) are depicted. . . . . . . . . . . . . . . . . . . . . 140

B.3 Average receiver operating characteristic (ROC) curves (n=100) depict the
sensitivity and specificity for each test method and weight function when applied
to per-metabolite tests. Data are simulated assuming within pathway correlation
of 0.2 for each metabolites and genes and between element correlation of 0.1. Ten
of fifty pathways were simulated as enriched where differential test statistics have
mean of two and three for metabolites and genes, respectively. The mean area
under the curve (AUC) estimate and associated standard error are provided in the
table below each plot. Here ηk = 3 and η̃k = 10. . . . . . . . . . . . . . . . . . . . . 141

B.4 Average receiver operating characteristic (ROC) curves (n=100) as in Fig-
ure B.3 except that data are simulated assuming within pathway correlation of 0.6
for each metabolites and genes and between element correlation of 0.15. . . . . . . 142

xi



LIST OF TABLES

Table

2.1 Genes are matched between gene expression array platforms using Uni-
gene ID numbers. For the permutation testing, all common genes between the in
vitro experiment [10] and each in vivo experiment were considered (prostate [23],
breast [67], lung [4], respectively). The classification of a set of in vivo samples
was done based on only the CSR genes identified in that data set. Permutation
sample size was determined based on the effective number of independent genes in
the CSR signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Cox regression results for the classified samples. Cox regression was run
on the samples that were classified as serum induced or serum independent by the
CSR gene signature. Unclassified samples are excluded from this analysis. The
hazard ratios are relative to the serum independent classification. . . . . . . . . . . 21

2.3 Classification of metabolomic samples The first three prinicpal components
were used to generate a classifier from the differentially expressed genes. This
classifier predicted the metabolite sample dianosis with 91.7% sensitivity and 81.3%
sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Four gene-set enrichment tests are considered. The competitive hypergeo-
metric and weighted Kolmogorov-Smirnov tests compare the level of differentiation
in the set of interest to all other sets. The self-contained binomial and sum of
squared statistics tests are global tests of differentiation within the set. Threshold-
ing of per-gene tests prior to enrichment testing is required for the hypergeometric
and binomial tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 The classification of genes that underlies the gene set enrichment testing.
Competitive tests consider the entire table whereas self-contained tests focus on the
first row. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Fifteen metabolites were chosen to be differential. These metabolites are
associated with up to five pathways, of which up to two pathways are simulated as
enriched. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Percentage of times the metabolites are detected to be differential in the
remaining 500 datasets from Simulation II. The fifteen differential metabolites are
listed by the number of pathways (enriched) in which each is included. An adaptive
and a fixed estimation of µ̃ are compared to the unweighted results. Median and
maximum Type I error rates for the 132 non-differential metabolites are given in
the bottom rows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xii



4.1 The general scheme for a hypergeometric test of differential genes A set
of G genes is divided by the criteria of inclusion in the set of interest (S) and
inclusion in the set of differential genes (D). . . . . . . . . . . . . . . . . . . . . . . 79

4.2 An example of the relative estimation problem in competitive tests Con-
sider testing a set A in which half of the genes are differential (D). Table (i) uses
set B as the reference set and table (ii) uses set C as the reference group, where
sets B and C switch labels D and D’. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 The data are generated from 10 multivariate distributions with the follow-
ing correlation structures and differential patterns. Twenty genes and four metabo-
lites are drawn from each distribution (h = 1, . . . , 9). Background genes (n=820)
and metabolites (m=164) are simulated to be non-differential and without correla-
tion, see distribution h = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Simulated pathways to be tested for enrichment. Each pathway p contains
NGp genes and NMp metabolites drawn such that π- percent of the elements are
from a differential distribution h ∈ (1, 2 . . . , 9) and the remainder are from the null
distribution h = 0.Pathways 25–29 are constructed by random draws across all 10
distributions, h ∈ (0, 1, . . . , 9). Pathways 30 – 70 are a disjoint partition of the null
set, h = 0, so that each element in this set contributes to at least one pathway. . . 99

4.5 This matrix represents an example mkp matrix for 200 metabolites (rows)
and 70 pathways (columns) with pathway size NMk

= 4. The metabolite number,
k, and the distribution from which it was drawn, h ∈ (0, 1, . . . , 9), are listed to the
left of the indicator matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6 The pathways identified by enrichment testing These 15 pathways were
identified by at least one of the five enrichment tests run on the logistic regression
analysis with the threshold α ≤ 0.05. The pathway ranks are presented in paren-
theses. The number of metabolites NMp

and genes NGp
measured per pathway are

provided for reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.1 Frequency of mutliple probe measures. (i) There are 4240 unique KEGG gene
ID numbers represented by 9491 probes on the Affymetrix HU133Av2 array. (ii)
There are 4161 unique gene ID numbers represented by 6566 probes. One geneID
(hsa:6144, RPL21) is represented by 14 probes. . . . . . . . . . . . . . . . . . . . . 129

A.2 Pathway overlap for genes. (i) Over half (54.5%) of the 4020 unique KEGG
gene ID values on the Affymetrix array contribute to a single pathway. (ii) Over half
(55.0%) of the 4161 unique KEGG gene D values on the Agilent array are associated
with a single pathway. On both platforms, two genes (hsa:5594, MAPK1; hsa:5595,
MAPK3) contribute to 33 pathways. . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.3 Pathway overlap for metabolites. There are 147 compound ID numbers mea-
sured that can be associated with a KEGG HSA pathway. Less than half (38.8%)of
these are associated with a single pathway, whereas, one metabolite (cpd:C00025,
Glutamate) is associated with 18 pathways. . . . . . . . . . . . . . . . . . . . . . . 130

xiii



A.4 Overlap for genes in the pathways shared with metabolites. (i) There
are 100 pathways, represented by 2375 genes, shared by the metabolites and genes
on the Affymetrix array. (ii) There are 99 pathways, represented by 2296 genes,
shared by the metabolties and the genes on the Agilent array (pathway hsa:00364,
“Fluorobenzoate degradation” is not represented). A slightly higher percentage
of the genes are now associated with a single pathway (see Table A.2). On both
platforms there is now one gene (hsa:218, ALDH3A1) associated with 16 pathways.
The two MAPK genes, previously associated with 33 pathways, are reduced to only
11 pathways each. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.5 Number of elements measured per pathway. (i) Of the 100 pathways for
which both metabolite and Affymetrix gene expression information are available 89
of have at least 10 elements. Two pathways contain only two measured elements
– a gene and a metabolite. (ii) Of the 99 pathways for which both metabolite and
Agilent gene expression information are available 86 have at least 10 elements and
one pathway contains only two measured elements. On both platforms there are
three pathways with over 200 elements in each (path:hsa04810, Regulation of actin
cytoskeleton ((i) 206, (ii) 205), path:hsa04080, Neuroactive ligand receptor ((i) 263,
(ii) 250), and path:hsa05200, Pathways in cancer ((i) 330, (ii) 323) . . . . . . . . . 131

A.6 Number of genes measured per pathway. (i) Two pathways contains only a
single measured gene each from the Affymetrix data. (ii) One pathway contains
only a single measured gene from the Agilent data. On both platforms the highly
poplulated (> 200 genes) pathways include “Pathways in cancer” (path:hsa05200,
(i) 327, (ii) 320), “Neuroactive ligand-receptor interaction” (path:hsa04080, (i) 254,
(ii) 241), and “Regulation of actin cytoskeleton” (path:hsa04810, (i) 205, (ii) 204). 131

A.7 Number of metabolites measured per pathway. Seventy-five percent of the
pathways are represented by at least two metabolites with as many as 26 metabo-
lites in one pathway (path:hsa02010, ABC transporters - General - Homo sapiens). 132

xiv



LIST OF APPENDICES

Appendix

A. Mapping genes and metabolites in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.1 Gene mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.2 Metabolite mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
A.3 Integrative pathway mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B. P-value weighting incorporating gene expression and metabolite information . . . . . 133

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
B.2 The two-component weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
B.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xv



CHAPTER I

Introduction

In the last decade the high-throughput assessment of gene expression, i.e. tran-

scriptomics, in a sample has grown to measure the whole genome with over 40,000

probes per microarray (e.g. Varambally et al. (2005) [68]). Microarray technology

uses complementary DNA fragments (Agilent Technologies, www.chem.agilent.com)

or oligonucleotide probes (Affymetrix, www.affymetrix.com) fixed on a slide to as-

sess mRNA abundance via the complementary binding of single-stranded nucleotide

sequences [49]. The reproducibility of the quantitative and qualitative assessment

has been demonstrated within platforms and, to a lesser extent, between platforms

[42]. Gene profiles resulting from gene expression analysis have even been translated

to clinical application (e.g. Wigelt et al. (2009) [72]).

An area of high-throughput analysis that has recently emerged is metabolomics,

the assessment of the small molecules in the sample [3, 25]. The data are generated by

mass spectrometry (MS) preceded by either gas or liquid chromatography (GC or LC)

[26, 69]. The initial chromatography step separates the molecules so that they can be

identified by their mass spectrum. When this separation step is skipped the metabolic

activity of the cell is measured as a metabolic fingerprint, but metabolites are not

measured individually [18]. In this work we consider all molecules under 10,000

1
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KDa. This includes such classes as amino acids, fatty acids, simple carbohydrates,

and exogenous drugs within the cell. Metabolomic studies currently detect between

one hundred and one thousand metabolites [21, 70, 60].

Small samples sizes and potentially high variance between samples can lead to low

power in the analysis of metabolomic intensity changes between human populations.

Specifically, the metabolome is affected by diurnal rhythms, diet, drugs and thera-

peutics, and other environmental factors beyond disease [38]. However, we know that

the global snapshot of any one molecular component is an isolated view of a larger

picture [31]. Thus we turn to data integration through systems biology to provide a

broader view of the disease while enhancing power and providing new insights.

This work has been motivated by a study of metabolomics in prostate cancer by

Sreekumar et al. (2009) [60]. Here 626 metabolites are detected across 42 prostate

tissue samples of increasing cancer severity; 16 benign adjacent prostate, 12 localized

prostate tumor, and 14 metastatic prostate tumors. Gene expression data were

also measured for 40 of these samples (excluding two metastatic samples); data

unpublished. Additionally, we consider another cancer progression dataset from the

the same group [68]; 4 benign adjacent prostate, 5 localized prostate tumor, and

4 metastatic prostate tumors. Though data are available for metastatic disease we

focus on the comparison of benign prostate and local prostate tumor tissues.

We integrate the data by mapping the two platforms to the metabolic pathways of

the Kyoto Encyclopedia of Genes and Genomes (KEGG) [35, 36, 34]. These pathways

represent the current literature for metabolomic biosynthesis and degredation. Genes

are mapped to the pathways via the enzymes with which they are associated. For

details on this mapping please refer to Appendix A.

In this dissertation we explore three analysis methods that are able to combine
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gene expression and metabolite intensity data. In Chapter II, we examine a classi-

fication method that allows us to utilize a differential list of elements from a prior

study to make prognostic or diagnostic predictions about samples in a current study.

A prognostic application is demonstrated using gene expression datasets of various

cancer samples. The method is then applied to the Sreekumar et al. (2009) [60]

metabolite data using a gene profile from the Sreekumar-matched gene expression

data to build the classifier. In Chapter III, we explore the power gain available to

per-metabolite tests of differential intensity when the tests are weighted according

to a per-pathway ranking constructed from the gene expression data. We summarize

the information in the gene expression data using set enrichment scores on the KEGG

pathways. The methods are explored through two simulation models; one simplistic

and one motivated by the Varabmally et al. (2005) [68] gene expression data and

the Sreekumar et al. (2009) [60] metabolite data. Chapter IV considers the joint

enrichment testing of differential results from the metabolomic and gene expression

datasets. We extend two different set enchriment tests to allow multi-dimensional in-

put. Through simulation we compare these methods to their univariate counterparts,

the Fisher’s exact test, and to two simple meta-analysis approaches. An additional

statistical goal of this dissertation is to define the null hypothesis under considera-

tion in each test so that appropriate testing measures can be defined. This will be

discussed for each chapter in turn.



CHAPTER II

Statistical issues and analyses of in vivo and in vitro
genomic data in order to identify clinically relevant profiles

Integration of in vitro studies, i.e. experimental studies, with human “in vivo”

gene expression studies is an area that is being considered more frequently in the

functional genomic analysis of cancer. Hypotheses about cancer development, pro-

gression, and risk factors are difficult to test directly in a patient population. How-

ever, in experimental studies on tissue cultures and model organisms, conditions can

be specifically controlled to allow biological hypotheses to be tested. Integrating the

results from such controlled experiments with in vivo cancer signatures holds the

potential to both infer activity of specific oncogenic pathways in vivo and to identify

relevant effectors of oncogenic pathways.

This biologically directed analysis of two gene expression data sets holds potential

for the integration of omics data. Consider that transcriptomic studies are more

readily available and currently more robust than metabolomic studies. Thus, we can

use transcriptomic data in place of the controlled in vitro studies and metabolomic

data in place of the in vivo data. We explore the ability to use this methodology

to use gene expression data to make predictions about the metabolomic profiles of

tumor tissues.

We begin with a description of the integration task at hand and a review of recent

4
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work in in vitro and in vivo integration. We outline an approach for quantifying the

predictive ability of a gene expression profile determined from an in vitro experiment

based on the tissue similarity approach of Sandberg and Ernberg (2005) [56]. We

describe the application of the proposed methodology using in vitro data from a

wound healing study conducted by Chang et al. (2004) [10] and in vivo data from

Glinsky et al. (2004) [23], van’t Veer et al. (2002) [67], and Beer et al. (2002) [4]. We

follow-up with the integration of the Sreekumar et al. (2009) [60] metabolomic data

and matched gene expression data (unpublished).

2.1 Integrating in vitro and in vivo studies

To understand the mechanisms by which oncogenes cause cancer, studies have

used gene-expression profiling to identify downstream targets of oncogenic pathways

in cell-culture systems. Conceptually, this involves manipulating a gene in an in

vitro system, measuring the global profile using gene expression technology and then

trying to relate the in vitro gene expression profile to an in vivo gene expression

profile. Such an approach was taken by Lamb et al. (2003) [39] to determine the

direct transcriptional effects of the oncogene Cyclin D1. In vitro experiments were

performed in which the Cyclin D1 was both over and under expressed, and global

gene expression profiles were determined. Lamb et al. (2003) [39] found that there

was a significant correlation between the targets found in vitro and the ordered gene

list in a human tumor dataset thus suggesting the role of Cyclin D1 regulation in

tumorigenisis. Another example of in vitro/in vivo gene expression data integration

appears in the study of Huang et al. (2003) [32]. They developed distinct in vitro

oncogenic signatures for three transcription factors: Myc, Ras and E2F1-3. These

signatures were able to predict the Myc and Ras state in mammary tumors that
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developed in transgenic mice expressing either Myc or Ras, suggesting that specific

oncogenic events are encoded in global gene-expression profiles.

Additionally, studies have used gene-expression profiling of cancerous growths in-

duced in model organisms to examine tumor development or progression. Though

model organism studies have the added difficulty of mapping orthologous genes be-

tween organisms, a difficulty not shared with tissue and cell cultures of human origin,

there have been promising applications. For example, Sweet-Cordero et al. (2005)

[62] defined a KRAS induced lung cancer signature by comparing lung tumors gener-

ated from a spontaneous KRAS mutation mouse model to normal mouse lung tissue.

They then correlated this KRAS lung cancer signature with gene expression profiles

in human lung cancer studies and found that the mouse signature shared significant

similarity with human lung adenocarcinoma but not with other lung cancer types.

Next, Sweet-Cordero et al. (2005) [62] looked for evidence of the KRAS signature

in human tumors carrying activating KRAS mutations relative to wild-type tumors.

Although no individual genes were significantly associated with the KRAS muta-

tion status in human tumors, the mouse KRAS signature was significantly enriched

among genes rank-ordered by differential expression in human tumors with a KRAS

mutation.

2.1.1 Background and Review

One class of methods that has been popular in the literature for in vitro/in vivo

genomic data analysis is the following. First, one generates ordered lists of genes

using the in vivo expression data. One then generates a differentially expressed gene

list using the in vitro data and studies the overlap between the two lists. The seminal

examples of this are in Mootha et al. (2003) [44] and Lamb et al. (2003) [39], which

were then used as the basis of the Gene Set Enrichment Analysis (GSEA) method
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[61]. We describe the GSEA methodology by briefly reviewing what was done in the

Lamb et al. (2003) [39] study.

First, a list of differentially expressed genes was generated based on the compar-

ison of Cyclin D1 overexpressing relative to wildtype (no Cyclin D1 manipulation)

mammary epithelial cell lines. Next, each gene’s expression in vivo, from 190 human

tumor samples of various origins, was correlated to that of Cyclin D1 and the genes

were ranked accordingly. Then, a Kolmogorov-Smirnov (KS) statistic was used to

determine if the in vitro differential expression list clustered within the correlation-

ordered in vivo list. Since there was significant evidence of clustering, Lamb et al.

(2003) [39] determined that the in vitro-defined targets of Cyclin D1 were correlated

with their respective levels in vivo. This suggests that the direct regulatory effects

of Cyclin D1 may play an important role in tumorigenesis.

There are some desirable features of the GSEA method. First, it utilizes all the

information available in the in vivo gene expression data; no thresholding is done

in that dataset. Second, a Kolmogorov-Smirnov statistic is used for the analysis,

which is a nonparametric method and thus provides some robustness. However,

there are several disadvantages to GSEA as well. For instance, note that there is

thresholding done in the in vitro gene expression dataset to select the differentially

expressed gene set. A potential improvement to the GSEA method, to avoid this

thresholding, would be the following. First, one determines the common genes in

the in vivo and in vitro datasets. One then takes the scores of differential expression

from the in vitro data, finds the corresponding correlation scores (correlation with

Cyclin D1) in the in vivo data and examines a scatterplot of the two variables. If

the association is linear, then one tests for association using the Pearson correlation

coefficient between the two variables. If instead the association appears nonlinear,
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then one could use a smoothing-spline based test [40]. Such an approach would

give a direct test of association between the correlations in vivo and the differential

expression measurement in vitro without requiring thresholding of any datasets and

would still allow for a nonlinear relationship between the two variables.

Before going further, let us consider the null hypothesis under consideration in

the GSEA method, or the variants proposed above. Specifically, in the Lamb et al.

(2003) [39] study they test:

H0: There is no association between differential expression of Cy-

clin D1-overexpressed, relative to non-overexpressed, cell lines and

correlation with Cyclin D1 in human tumors.

The alternative hypothesis is that there is an association. In specifying the null

hypothesis we uncover a more subtle disadvantage of the GSEA method - the deter-

mination of the distribution of the KS test statistic under the null hypothesis.

Two variants of permutation testing have been proposed by Subramanian et al.

(2005) [61] to elucidate the distribution of the KS test statistic assuming the null

hypothesis is true. In the first, the sample labels in the in vitro data are permuted,

the differentially expressed gene signature is redefined, and the Kolmogorov-Smirnov

statistic is recomputed based on this new signature; see Figure 2.1A, red. Here the

implication is that the correlation between the two Cyclin D1 levels in the cell line

experiment is removed by the permutation. However, this addresses the differential

expression in the in vitro samples but does not address a null association with the

in vivo samples. In the second version, the sample labels in the in vitro and in vivo

datasets are permuted, both the in vitro differential expression signature and the in

vivo correlations are redefined, and the Kolmogorov-Smirnov statistic is recomputed;

see Figure 2.1A, blue. Again, the implication is to remove the association within the
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Figure 2.1: Schematic representations of the GSEA-type and TSI-type algorithms (A)
The GSEA-type algorithm is depicted along with the two suggested permutation tests
(red = permutation 1, blue = permutation 2). Details of the Lamb et al. (2003) [39]
study are included for illustration. (B) The TSI-type algorithm is depicted along with
the suggested permutation test (red). Details of the Chang et al. (2004) [10] Core Serum
Response signature classification are included for illustration.

in vitro and in vivo experiments. Yet this permutation scheme still does not address

the association between the in vitro differential expression and the in vivo correlation.

The role of permutation testing is to simulate the distribution of the test statistic

assuming that H0 is true; however, the two permutation schemes developed in the

GSEA method do not do this. Permutation of the sample labels fails because the null

hypothesis pertains to the population of genes in the two studies and not the relation

of samples within a study. Additionally, Shedden (2004) [58] suggests that permuting

the sample labels of both the in vitro and in vivo data sets is not appropriate.

Simply, if the permutation does not correctly model the null hypothesis, then we are

answering a different question than the one asked.

There is an alternative approach to the GSEA method for integrative analysis of

in vitro and in vivo data, the implementation of which is the focus of this chapter.
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It is based on ideas of classification and clustering since the goal in many genomic

studies utilizing high-throughput expression technologies is to develop a signature

that can discriminate between relevant classes or groups of samples. In general,

demonstration of the predictive or prognostic ability of a classification signature

on independent data sets is a crucial step in the validation of that signature [52].

Thus, differential expression signatures discovered in vitro are often “validated” on

independent in vivo data sets, such that the in vitro data is the training dataset and

the in vivo data is the testing dataset. In this validation setting, the null hypothesis

that we wish to test is the following:

Hclass
0 : There exists no set of genes derived from the in vitro gene

expression that can predict clinical outcome in the in vivo expression

data.

The alternative is that at least one set of genes derived from the in vitro data is

predictive. Notice that this null hypothesis is different from the null hypothesis de-

scribed for the GSEA method. For clarity, we will refer to Hclass
0 as the classification

null hypothesis.

An advantage of the classification null hypothesis is that permutation testing

becomes possible here. In particular if Hclass
0 is true, then any set of genes derived

from the in vitro expression profile data will have no ability to separate samples in

the in vivo expression dataset with regard to a clinical outcome. Thus, we can take

random sets of genes from the in vitro data and apply the classification algorithm of

interest. If the classification null hypothesis is true, then all sets of genes, including

the derived signature, should provide equal prediction performance.

The classification null hypothesis has motivated the following algorithm that we

have used in our previous work [68]. Here we are considering the genes common to
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the in vitro and in vivo expression datasets.

1. Derive a gene signature (i.e. interesting gene list) from the in vitro gene expres-

sion data;

2. Select those genes from the in vivo expression data that are included in the in

vitro signature and cluster the samples from the in vivo expression data into

two groups using hierarchical clustering with average linkage clustering and

Euclidean distance;

3. Calculate the log-rank statistic for survival between the two groups of patients;

4. Let L denote the size of the gene list in 1. Randomly choose L genes from the

in vitro data as the gene signature. Continue with steps 2 and 3 above.

5. Repeat steps 2-4 1000 times. Calculate the proportion of datasets in which the

log-rank statistic is greater than the one calculated initially from the signature

in step 1.

The proportion calculated in step 5 will be the permutation p-value under the

classification null hypothesis. This permutation scheme will form the basis of as-

sessing significance for our proposed analytical scheme described in the next section.

We note that one could also modify the GSEA procedure in a similar way, as shown

in Lamb et al. (2003) [39], such that we randomly draw the gene set from the in

vitro data rather than assessing differential expression based on permuted sample

labels. Unfortunately, Shedden (2004) [58] shows that when one does not account

for gene-gene correlation, the resulting test statistic can be too liberal by as much

as 10 times.

Notice that a limitation of the classification null hypothesis is that the alternative

hypothesis states that there exists at least one signature from the in vitro expression
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data that is predictive in the in vivo expression data. In fact the experimentally

derived gene list need not be a unique classifier. It has been recently noted that

there are likely many gene signatures that have similar predictive power [14, 15]. It

may be due in part to genetic redundancy or to the high correlation of genes within

a pathway. Yet if the in vitro gene signature is able to predict prognosis better

than a randomly selected set of genes we expect that there is biological significance

to that signature. Thus permutation testing helps us to determine if the gene set

derived from the in vitro experiments is of interest for further study of its biological

relevance.

2.1.2 Proposed methodology for in vitro/in vivo analyses

The paper of Sandberg and Ernberg (2005) [56] considers the relationship between

the gene expression of in vitro cell cultures and their respective in vivo tumor samples.

To that end they developed an algorithm for comparing gene expression values across

experiments that they call the tissue similarity index (TSI). We use that algorithm

here to compare the in vivo tumor samples to the in vitro samples of a lab experiment.

The algorithm of Sandberg and Ernberg (2005) [56] is as follows; see Figure 2.1B.

Principal component analysis is run on the covariance matrix of gene expression for

genes in the in vitro dataset. Data are scaled across arrays so that each gene has a

mean expression of zero and a unit standard deviation. The resulting Eigenarrays

(Eigenvectors) are stored. To project the in vitro gene expression into the reduced

dimensional space, created by the Eigenarrays, calculate the correlation between

each Eigenarray and each in vitro sample array. The consensus signature for each

experimental condition (serum induced and serum independent) is represented by its

median centroid in the reduced space.

To integrate the in vivo data, first map the in vivo samples into the same reduced
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space of the in vitro samples by again calculating the correlation between each Eige-

narray and in vivo sample array. To maintain scale in this correlation, the tumor

samples are also standardized so that each gene has a mean expression of zero and

a unit standard deviation. The distance between the in vivo tumor sample and each

of the two consensus signatures, ie centroids, is calculated using Pearson correla-

tion. Samples are classified with the experimental condition with whose centroid

they correlate best.

There are several differences between their and our implementations of TSI. First,

in contrast to Sandberg and Ernberg (2005) [56], we use positive statistical signifi-

cance of the TSI to determine classification, thus allowing some samples to remain

unclassified. In their paper they used an ad-hoc threshold value for TSI score, delin-

eating moderate and high correlation groups. It is natural to believe that some of the

in vivo samples will not correlate well with the in vitro conditions. These unclassified

samples may actually be informative in that they define a subset of cases which do

not meet our expectation as developed in the hypotheses tested in vitro. Second, the

goal of the Sandberg and Ernberg (2005) [56] paper was qualitative assessment of

cell line gene expression relative to in vivo tumor gene expression, thus they do not

address the issue of statistical significance of their method. However, the classifica-

tion provided by the TSI can be tested for prognostic or diagnostic value depending

upon the study goal.

Since the gene signature on which the classification is based is determined from

the in vitro data, and does not use the in vivo data, the statistical significance of any

tests on the in vivo data can be accepted without bias. This is an example of using

the in vitro data for the training dataset and the in vivo data for the testing dataset.

Indeed, if this in vivo validation is not marginally significant it is not of interest to
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proceed further to test the classification null hypothesis.

Here the TSI method develops a classification scheme from the in vitro signature.

The null hypothesis of interest is again the classification null hypothesis as presented

above. We thus propose the use of a permutation test to determine the utility of

the gene signature in its classification ability. In the following we slightly modify

the permutation test procedure described in the previous section to account for

gene-gene correlation within the in vitro gene signature. Specifically, as it is likely

that genes within a pathway are correlated, it is reasonable to assume that the

significantly differentially expressed genes that comprise the in vitro signature are

correlated. Shedden (2004) [58] showed that this correlation can lead to liberal p-

values. Additionally, in the classical genetics setting, Nyholt (2004) [50] shows that

permutation tests that do not account for this correlation can be misleading and

proposes a simple adjustment. In essence, rather than randomly selecting L genes

in each cycle of the permutation test, only M (M < L) genes are selected, where M

is calculated to be the effective number of independent genes in the gene signature

[50]; see Figure 2.1B.

Finally, the permutation test for the TSI analysis has two interesting attributes

against which the classification signature is compared. Specifically, in permuting

the data, the TSI scores are recalculated using the randomly selected gene list and

with each randomly selected set of genes there is a possibility of unclassified samples.

Thus the classification is compared to: (1) the measure of association with predictive

factors in vivo, and (2) the percentage of unclassified samples in vivo.
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2.2 Gene expression data acquisition and preparation

For the purpose of demonstration we use, as the in vitro derived signature, the

wound healing signature of Chang et al. (2004) [10]. Derived from cultured fibroblasts

in the presence and absence of serum components, the wound healing signature is

composed of 573 genes that are differentially expressed in response to serum. We

consider the wound healing signature, or Core Serum Response (CSR), as the in

vitro basis of classification of in vivo tumor samples - prostate tumor samples [23],

breast tumor samples [67], and lung tumor samples [4] - into good and bad prognosis

groups.

The fibroblast gene expression data [10] were downloaded from the Stanford Mi-

croarray Database (SMD, http://smd.stanford.edu/cgi-bin/publication/

viewPublication.pl?pub_no=293) (platform: cDNA microarray, 50 samples). The

data were normalized using loess normalization by print block within array [74].

Inter-array variability was accounted for by scaling using the MAD (median absolute

deviation). Missing data were imputed using KNN (K-nearest neighbors) imputation

as implemented in the pam.r package [27, 65].

Localized prostate tumor probe-set level expression measures and recurrence free

survival information [23] were obtained from the Sidney Kimmel Cancer Center web-

site (no longer posted at time of submission) (platform: Affymetrix U95Av2, 295

samples). Lung adenocarcinoma probe-set level expression measures and overall sur-

vival information [4] were obtained from http://dot.ped.med.umich.edu:2000/

pub/Lung/index.html (platform: Affymetrix HUgenFL, 86 samples). Sporadic

breast cancer expression data and recurrence free survival information [67] were ob-

tained from http://www.rii.com/publications/2002/vantveer.html (platform:
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Table 2.1: Genes are matched between gene expression array platforms using Unigene
ID numbers. For the permutation testing, all common genes between the in vitro
experiment [10] and each in vivo experiment were considered (prostate [23], breast [67],
lung [4], respectively). The classification of a set of in vivo samples was done based on
only the CSR genes identified in that data set. Permutation sample size was determined
based on the effective number of independent genes in the CSR signature.

Unigene maped Genes Unigene Effective number
genes per common with mapped of independent

Samples microarray in vitro samples CSR genes genes

In Vitro 20414 - 484 -
Prostate Cancer 11772 9753 367 345
Breast Cancer 17168 13600 421 399
Lung Cancer 4705 3891 158 136

Aglient Hu25K, 78 samples). Each of these experiments was normalized by global

scaling per array. No imputation was done for missing data in the tumor sample

data sets.

Unigene Cluster ID number was used to map genes between platforms. Annota-

tion information was acquired from SOURCE [12]. If, for a given platform, multiple

measurements were represented by the same Unigene Cluster ID, these expression val-

ues were averaged within array, thus allowing one-to-one mapping of genes between

platforms. Genes were mapped to Unigene Cluster ID from GenBank Accession

number if available [10, 23, 67] or from Unigene Symbol [4].

2.3 Application of the TSI based classifier

The classifier was built using the CSR in vitro signature and the TSI algorithm,

described in the previous section and in Figure 2.1B. The classifier was built for

each of the three in vivo experiments using only those genes in the CSR signature

that were common to both the in vivo and in vitro experiments; see Table 2.1 and

Figure 2.2. All 50 Eigenarrays were used for the TSI classification algorithm and

classification is based on significant positive correlation with one of the two CSR



17

A B C D

Figure 2.2: Heatmap of core serum response genes in each of the four data sets consid-
ered. Red are serum induced samples, blue are serum independent samples, and tan
are unclassified samples. (A) Expression of 484 Unigene mapped core serum response
genes in the 50 in vitro samples of the primary experiment [10]. (B) Expression of the
376 core serum response genes in the 295 prostate tumor samples [22] (C) Expression
of the 421 core serum response genes in the 78 v’ant Veer samples [67] (D) Expression
of the 158 core serum response genes in the 86 Beer samples [4]
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group centroids. Figure 2.3 plots the first two dimensions of this reduced space for

each of the three tumor types. The cell cultures that were grown in the presence

of serum were considered to be serum induced, whereas those grown without serum

components were serum independent. In vivo samples that correlate significantly

(p < 0.05) with the composite serum induced signature, ie centroid, are classified

as serum induced. Likewise, those in vivo samples correlating significantly with the

centroid of the serum independent samples are labeled serum independent. In vivo

samples that do not correlate significantly with either centroid remain unclassified.

In Figure 2.3, the tumor samples are colored according their classification and the

in vitro samples and centroids are included for reference.

According to Hclass
0 , we wish to see if the in vitro derived CSR signature has

prognostic ability in vivo. Thus the prognostic ability of the CSR signature as a

classifier was tested using univariate Cox regression; see Table 2.2. The TSI score

was incorporated through its discrete classification of the in vivo samples, as de-

scribed above. Figure 2.4 contains the Kaplan-Meier survival curves for this discrete

classification. The red and blue curves represent the serum activated and serum

independent classifications, respectively. Log rank statistics on the Kaplan-Meier

estimates indicate that there is a significant separation between the curves for the

prostate tumors (p < 0.0001), the breast tumors (p = 0.0207), and the lung tumors

(p = 0.0352). The tan curve shows the survival of those samples that did not signif-

icantly correlate with either the serum activated or serum independent profiles and

are thus left unclassified by the TSI algorithm. When this unclassified group was

included in the Log-rank test of survival curve separation the prostate cancer and

breast cancer samples remained significant (p < 0.0001 and p = 0.0078, respectively)

whereas the lung cancer samples were marginally significant (p = 0.0789).
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Figure 2.3: In vitro samples and tumor samples are plotted for the first two dimensions
of Eigenspace. (A) 55% of the prostate tumor samples are classified: 78 as serum
induced, 83 as serum independent (B) 69.3% of the breast tumor samples are classified:
27 as serum induced, 27 as serum independent. (C) 48.9% of the lung tumor samples
are classified: 18 as serum induced, 24 as serum independent.
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Figure 2.4: Survival of tumor samples by classification. These plots demonstrate that patients
with samples in the serum induced class are likely to have a worse prognosis. Both the
classified and unclassified samples are included in these plots. The log-rank statistic p-
values from Kaplan Meier estimation are given for the separation of the classes without
and with inclusion of the unclassified samples in the model (A) recurrence free survival
in prostate cancer: p < 0.0001; p < 0.0001, (B) recurrence free survival in breast cancer:
p = 0.0207; p = 0.0078, (C) overall survival in lung cancer: p = 0.0352; p = 0.0789
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Table 2.2: Cox regression results for the classified samples. Cox regression was run on the
samples that were classified as serum induced or serum independent by the CSR gene
signature. Unclassified samples are excluded from this analysis. The hazard ratios are
relative to the serum independent classification.

Number Classified
Serum Serum Percent Hazard χ2 Test Empirical

Samples Induced Independent Unclassified Ratio Statistic p-value p-value

Prostate 78 83 45.4% 3.35 20.9 <0.0001 0.0040
Breast 27 27 30.8% 2.96 4.80 0.0284 0.0783
Lung 18 24 51.2% 3.40 3.94 0.0471 0.0111

As depicted in Figure 2.2, the simple dichotomization of in vivo samples by hi-

erarchical clustering is far from optimal. By the nature of hierarchical clustering,

dichotomization can be achieved by splitting samples at the first node. In Figure 2.2

we have color coded the samples by their TSI predicted classification (red = serum

activated, blue = serum independent, tan = unclassified) and we see that there is het-

erogeneity in the classification suggested by dichotomization at the first node of the

dendrogram. This heterogeneity is apparent in the Kaplan Meier plots of Figure 2.4.

Notice that the prostate samples appear to be least heterogeneous, see Fig-

ure 2.2B, in that most of the serum activated samples are clustered on the left

and most of the serum independent samples are clustered on the right with the

unclassified samples interspersed among both branches. The Kaplan Meier plot in

Figure 2.4A suggests that those samples which can be classified by their serum re-

sponse have the best and worst recurrence free survival with the unclassified samples

having intermediate recurrence free survival. The intermediate nature of the unclas-

sified samples may be due to a third class of tumors with moderate serum response or

it may be due to a blending of high risk and low risk samples that were not separated

by the CSR signature.

The breast cancer samples appear to be have a more well defined subset of un-
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classified samples, see Figure 2.2C. The far right branch of the dendrogram (as split

on the second node) contains a high percentage of unclassified samples. In the Fig-

ure 2.4B, the unclassified samples are associated with a recurrence free survival curve

that is worse than for the serum activated samples. In the lung cancer data it is not

clear that classification on any of the first three nodes of the dendrogram would

result in homogeneous classification based on the CSR signature; see Figure 2.2D.

However, using the TSI classification we are able to significantly split the samples

into good and bad prognosis groups based on overall survival; see Figure 2.4C.

2.3.1 Permutation testing of Hclass
0

Accepting the above significant separation of the Kaplan-Meier curves as valida-

tion of the CSR signature in vivo, we proceed to test the classification null hypothesis

using 1000 random samples from the genes in common between the in vivo and in

vitro samples, see Table 2.1. The size of the randomly drawn set of genes was deter-

mined by the correlation in the original CSR genes, such that the randomly drawn

sets contained an equivalent number of effectively independent genes as the CSR set.

The TSI score was recalculated on each of these 1000 random gene sets. It was then

used to classify the in vivo samples and predict survival.

Figure 2.5 depicts the classification and prediction ability of the 1000 random

sets for each of the three in vivo data sets. The CSR gene predictor is colored red

in these plots. The vertical axis plots the predictive ability of the gene set as the

chi-squared test statistic associated with univariate Cox regression on the classifier.

If we look at the vertical margin we arrive at the permutation p-value as depicted by

the marginal histogram. However, we have additional information about the utility

of the CSR signature as a classifier. The horizontal axis provides the percentage of

the samples that remained unclassified in each of the 1000 random sets. In each
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case, the classifier based on the CSR genes has a lower percentage of unclassified

samples than any of the randomly drawn gene sets. Finally, note that for some of

the randomly drawn gene sets, see Figures 2.5B and 2.5C, the samples were classified

into only one group and thus the chi-squared test statistic could not be calculated.

This occurred when the percentage of unclassified samples was high.

The three plots of Figure 2.5 carry a lot of interesting information regarding the

utility of the CSR gene signature as a predictor of survival among the three tumor

types. First, consider the horizontal axes of Figures 2.5A-C. It is intriguing that for

all three tumor types the CSR signature has the lowest percentage of unclassified

samples. Yet we see that percentage of classified samples is not the sole predictor of

significant separation in the survival curves since there are randomly selected gene

sets that have higher percentages of unclassified samples but also have higher test

statistics.

Next, consider the empirical p-value for testing Hclass
0 . In the prostate samples,

Figure 2.5A, the empirical p-value is 0.0040, whereas the p-value obtained from

a simple training/testing strategy is very small (chi-squared test statistic = 20.89,

p < 0.0001). In fact from the scale on the vertical axis we see that most of the random

permutation samples were able to predict a significant separation in the survival

of the prostate cancer patients. Thus had we relied only on the training/testing

strategy we could not distinguish that the CSR signature is superior to 99.6% of

the randomly selected signatures. The range of scale of the test statistics for the

breast cancer and lung cancer samples are less dramatic. In fact the empirical p-

value for the lung cancer dataset behaves we would normally expect, showing that

a minimally significant test statistic in the training/testing setting (p = 0.0352) is

indeed superior to test statistics generated under the classification null hypothesis
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Figure 2.5: The Cox regression test permutation results by percentage unclassified. The
Cox regression statistic is plotted against the percentage of unclassified samples for each
of the 1000 permutations. The circle filled in red denotes the original classification. A
test statistic listed as ‘NA’ indicates that there samples were classified in only one
class and thus no test statistic could be calculated. The empirical p-value from the
chi-squared statistics is depicted as a histogram in the left margin. (A) Glinsky et al.
(2004) [23] prostate tumor samples. P < 0.0001; (B) van’t Veer et al. (2002) [67] breast
tumor samples, p = 0.0783; (C) Beer et al. (2002) [4] lung tumor samples, p = 0.0111.
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(empirical p = 0.0111).

2.3.2 Differences in array configurations may reduce utility of the in vitro signature

One problem encountered in this analysis was the integration of gene expression

data across microarray platforms. We attempted to compensate for this numeri-

cally by global standardization that centered the array-wise median values at zero.

Furthermore, in the TSI algorithm genes were standardized to zero mean and unit

standard deviation before being mapped into the reduced space. An additional com-

plication, beyond numerical scaling, is that the differing array configurations between

the in vitro and in vivo experiments mean that only those genes with Unigene ID

numbers common to both data sets can be considered. This initially excludes ESTs

from the in vitro signature as well as other features that do not have Unigene ID

numbers. The signature is further reduced by focusing on only the common genes

between data sets as determined by Unigene ID. We expect that there is correlation

between the genes within the CSR signature and thus the loss of some genes from

this signature will be tolerable.

The most dramatic decrease in CSR genes available for the analysis was for the

Beer et al. (2002) [4] lung samples which measured only 32.6% of the 484 Unigene

mapped CSR genes; see Table 2.1. It is possible that the high observed percentage

of unclassified samples, 51.2%, is related to this diminished in vitro signature. Also,

notice that in Figure 2.3C, that the mapping of the in vitro samples into the reduced

space appears to have flipped about horizontal axis from what we saw for the other

two in vivo data sets. Since the reduced space is determined by the in vitro data we

expect that this inversion is a result of the diminished in vitro signature. However,

this inversion does not affect the association of the classification with prognosis. As

shown in Figure 2.4C the serum induced class has worse overall survival than the
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serum independent class, as expected. This change in the reduced space mapping

highlights the necessity to calculate the TSI classifier independently for each in vivo

dataset, or particularly for each different array platform and configuration used by

the in vivo experiments.

2.4 Application of the TSI based classifier to integrate gene expression
and metabolomic data

In the interest of data integration between transcriptomics and metabolomics we

applied this classification method to these data. Specifically we used the Sreekumar-

matched gene expression data to build the TSI classifier for benign versus cancer

samples. We then used this classifier to predict the sample diagnosis of the Sreekumar

et al. (2009) [60] metabolomics data.

Integrating these data sources for this purpose requires a means of mapping the

genes and metabolites. We used enzymes as the common variable for genes and

metabolites, obtaining this information from the Kyoto Encyclopedia of Genes and

Genomes (KEGG, version 50) [35, 36, 34]. That is the genes whose products compose

an enzyme were matched to the metabolites on which the enzyme acted. This resulted

in between 1 and 205 gene probes from the Agilent Whole Human Genome microarray

mapped per metabolite. There were 133 metabolites that mapped to at least one

enzyme. We reduced the list of genes to a 1:m mapping by selecting the gene probe

with the maximum variation across the samples for each metabolite. It is not a 1:1

mapping because multiple metabolites are associated with only a single gene. The

duplication was as much as 6 for one gene but the mapping was 1:1 for a majority of

the metabolites. Duplications in the data may cause stability issues in the principal

components analysis but did not appear to cause problems in this analysis.

We were also concerned that the metabolomic data is measured by mass spec-
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trometry, and thus will have a dynamic range different from data collected by gene

expression microarray. As for the differing microarray platforms used in the above

work, we standardized each gene and metabolite to have a mean expression of zero

and a unit standard deviation.

In the above work we used the CSR gene list to build the classifier. Here we used

the set of genes that were differential (p ≤ 0.05) by a two-sided two-sample Welch’s

t-test between benign and local cancer samples (n=16 and 12, repectively). This set

has 39 genes mapping to 43 metabolites. Interestingly when the set size is corrected

for correlation the effective sample size is estimated at 38 genes.

The TSI classifier is built using the 39 differential genes and then applied to the

metabolite data. We see in Figure 2.6 that the first two principal components do

well separating the two diagnostic classes. For the classification of the metabolites

we use the first three principal components. The choice to use three components

was made a priori but post hoc analysis finds that this may be an optimal choice.

Classification was made by the absolute TSI score, that is the sample is classified

with the centroid with which it correlates best. Requiring a significant correlation

did not result in any samples being classified.

The classification of the metabolomic samples resulted in 91.7% sensitivity and

81.3% sensitivity; see Table 2.3. The one undetected cancer sample has a Gleason

grade of 3+4 so it is of moderate severity, however, this patient also contributed

an adjacent benign sample. Of the three misdiagnosed benign samples, one was

contributed by a patient who also contributed a moderate (4+3) cancer sample and

a high grade (4+4) cancer sample. No information was available regarding the tumor

grade of patients contributing the other two misclassified bengin samples.

A feature of the TSI analysis presented above is the ability to test the classification
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Figure 2.6: Metabolite prediction by gene classifier Samples are plotted by their mapping to
the first two Eigenarrays either by their gene expression measures (circles) or metabolite
intensities (squares).

Table 2.3: Classification of metabolomic samples The first three prinicpal components were
used to generate a classifier from the differentially expressed genes. This classifier pre-
dicted the metabolite sample dianosis with 91.7% sensitivity and 81.3% sensitivity.

Classification
Diagnosis Benign Cancer Total

Benign 13 3 16
Cancer 1 11 12

Total 14 14 28
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Figure 2.7: Comparison of differential gene classifier to random sets The sunflower plot
adds one ‘petal’ for every observation and shows highest petal density around 50%
specificity and 50% sensitivity as expected for these 1000 randomly drawn sets. The
observed value is plotted with a red triangle.

null hypothesis. Here we are interested in the sensitivity and specificity obtained by

the classifier. For this integrative analysis we can write Hclass
0 : There exists no set

of genes derived from the in gene expression data that can predict diagnosis in the

metabolite intensity data. To test this null hypothesis we generate 1000 random sets

of 43 genes from the 133 gene set and compare their classification ability to that of

our differential gene list. We did not adjust for the correlated data by drawing the

effective sample size of 38 genes since there is likely to be correlation in any randomly

drawn set given that we are selecting approximately one-third of the data with each

draw.
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Figure 2.8: Histograms of (A) sensitivity and (B) specificty as achieved by random sets of
genes. P-values can be computed by a count of the random sets that are exceed the
observed value plotted in red. The observed sensitivity, 91.7%, has p = 0.001 and the
observed specificity, 81.3%, has p = 0.006.

Figure 2.7 shows that a majority of the 1000 randomly drawn sets have sensitivity

and specificity around 50% as expected. We can marginally assess how likely it is

that a random set would meet or exceed the sensitivity and specificity seen by the

original differential gene set. One set achieves the same sensitivity; a p-value of

0.001. There are 5 sets that achieve and one set that exceeds the observed specificty;

a p-value of 0.006. No random sets achieve the same levels of both sensitivity and

specificity. The marginal results can also be seen in the histograms in Figures 2.8 i

and ii, respectively.

The low p-values recommend that we reject the null hypothesis Hclass
0 . This

means that there is at least one set of genes that can predict the diagnosis of the

metabolite samples. Caution should be exercised however since the gene expression

and metabolite intensity data were measured from the same set of 40 samples. This

is an ideal situation and classification may be more difficult for data from different

samples or from different labs. However, these results show give evidence that gene
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expression data can be used to make predictions in metabolite data.



CHAPTER III

Pathway-directed weighted testing procedures for the
integrative analysis of gene expression and metabolomic data

3.1 Introduction

Currently we are experiencing an explosion of high-throughput technology for

assessing global snap-shots of the molecular behavior of cells. Global assays exist

for measuring DNA sequence and copy number, mRNA transcript levels, protein

presence and abundance, as well as metabolite abundance in biological samples of

healthy and diseased tissues [43].

Transcriptomics is the high-throughput study of the transcriptome, the cellular

complement of gene transcripts. Gene expression microarrays use complementary

DNA fragments or oligonucleotide probes fixed on a slide to assess the mRNA abun-

dance in a sample using the complementary binding of single-stranded nucleotide se-

quences. A gene may be represented by one or more probes targeting varying regions

of the gene. Commercially available gene expression microarrays, such as Affymetrix

(www.affymetrix.com) and Agilent Technologies (www.chem.agilent.com) can mea-

sure the full complement of known and estimated genes and gene elements with over

40,000 elements per array. Moving away from fixed array technology, Next Gener-

ation Sequencing Digital Gene Expression is able to measure gene expression at a

much greater dynamic range than available by microarrays [63], and it detects all

32
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transcripts without the need for a priori probe development.

Metabolomics is the high-throughput study of the metabolome, the cellular com-

plement of small molecules. In this work we consider all molecules under 10,000

KDa. This includes such classes as amino acids, fatty acids, simple carbohydrates,

and exogenous drugs within the cell. Metabolomic data are generated by mass spec-

trometry (MS) preceded by either gas or liquid chromatography (GC or LC) [26, 69].

The initial chromatography step separates the molecules so that they can be iden-

tified by their mass spectrum. When this separation step is skipped the metabolic

activity of the cell is measured as a metabolic fingerprint, but metabolites are not

measured individually [18].

Metabolomic studies currently detect between one hundred and one thousand

metabolites [21, 70, 60], compared to the tens of thousands of genes probed on a

microarray [68]. Additionally, unlike a gene expression array, there is no pre-defined

set of metabolites measured in each experimental run. This allows for metabolite

discovery but adds another dimension of missing data in that it is not clear if the

metabolite was not present or simply not detected. Similarly to the estimated se-

quence tags (ESTs) on a gene expression array not all metabolites detected will be

identified [19].

In the classic dogma of biology DNA gives rise to mRNA transcripts as genes are

expressed which direct the construction of proteins. From this view the metabolites

are the functional elements upon which the proteins act. Proteins construct, degrade

or alter metabolites in predictable patterns for energy transfer or other functions

vital to the cell. These reactions can be classified into metabolic pathways and

provide a means for connecting genes to metabolites. Though we know now that

information transfer is not strictly passed from DNA to RNA to proteins this gives
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us an introductory view of the relationship between mRNA and metabolites.

Integration of gene expression and metabolomic data has been used in the study

of model organisms for gene function discovery as well as sample class differentiation.

Unsupervised classification methods are predominantly used and even recommended

by Weckwerth and Morgenthal (2005) [71] who suggest that supervised analyses may

be particularly biased by choices in data preprocessing. Hirai et al. (2004 [29], 2005

[28]) use principal components analysis and self organizing maps (SOM) to predict

gene function by correlation with metabolite profiles in time series experiments on

Arabidopsis. Unsupervised methods are also commonly used for discrimination of

classes with results of concatenated gene expression and metabolomic datasets often

performing better than either individually [66, 45, 59].

Metabolomic studies in human populations that include gene expression data are

fewer [33, 71]. Most recently, Spicker et al. (2008) [59] looked separately at data

reduction models for genes and metabolites and then jointly from a concatenated

list, finding that the joint model is more interpretable. They discuss the risks of

concatenating such distinct data sets and recommend either block scaling or hier-

archical modelling where the results of the first model (e.g. principal components

analysis) are used to construct a second model. Additionlly, Ferrara et al. (2008) [17]

combined metabolomic and gene expression data with genomic markers to construct

hypotheses regarding causal relationships between genes and metabolites.

Most of the current methods are based on correlation matrices [45, 59, 9]. As

expected, correlation within a platform, such as between metabolites, is higher than

correlations between platforms [17, 9]. Carrari et al. (2006) [9] states that correlation

is low between gene and metabolite and which is supported by Urbanczyk-Wochniak

et al. (2003) [66] who found only 2% of the pairs to have correlation estimates signifi-
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cantly different from zero. However, the magnitude and prevelance of the correlation

varies between studies and may be dependent upon data pre-processing steps chosen.

For instance, Camacho et al. (2004) [8] found that most metabolite-metabolite pairs

had low correlation whereas Ferrara et al. (2008) [17] found a high percentage of

metabolite pairs with correlation over 0.5.

Our motivation is to discover biomarkers in case-control studies. Thus, supervised

methods are of primary interest. We are encouraged by the previously described un-

supervised results that demonstrate better separation of classes when gene expression

and metabolite data are considered jointly. Though, a simple approach to supervised

integration is to analyze the data from each platform independently and then assess

the concordance of the results by looking at unions and intersections of the elements

highlighted in each experiment, we posit that it is more powerful to use a higher

level of data in the integration. We propose that p-value weighting, the method of

adjusting the p-value or threshold of a test according to some a priori importance

measure, is a viable method for the integration of differential analysis. Under the

proper conditions p-values can be weighted without an increase in type I error [20]

and even minimally informative weights can provide power enhancement [54].

In this work we extend the use of p-value weights to a systems biology data

integration. We find that gene expression data can be used to construct weights for

per-metabolite tests providing a boost in power to detect differential metabolites.

We begin with a brief description of the motivating data sets (Section 3.2). In

Section 3.2.2 we discuss p-value weighting and its use in genomics. We follow with a

description of the weighting methods that we consider (Section 3.3). Two simulations

are employed to study these weights in Sections 3.4.1 and 3.4.2. In Section 3.5 we use

the Sreekumar-matched gene expression data to construct weights for the Sreekumar
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et al. (2009)[60] metabolite data. We conclude in Section 3.6 with some discussion

and recommendations.

3.2 Background

3.2.1 Gene expression and metabolic profiling data used

For this work, we use metabolomic data and gene expression data. Metabolomic

data can be derived from mass spectra techniques or other means of high through-

put measurement. Unlike metabolic fingerprinting, which uses the spectral intensities

directly, metabolomics requires an identification step that matches the spectral in-

tensities to distinct compounds, though not all compound will be known. Thus the

data can be represented in an M×NM matrix with M metabolites and NM samples.

Gene expression data is derived from microarrays or other high-througput assess-

ment. The gene expression data can be represented in a G × NG matrix with G

genes and NG samples. For motivation we consider the metabolic profiling data of

Sreekumar et al. (2009 [60]; NM = 28, M = 518) the gene expression data of the

matched samples (GEO number GSE8511, unpublished, NGS
= 28, GS > 40, 000),

and the gene expression data of Varambally et al. (2005 [68]; GEO number GSE3325,

NGV
= 9, GV > 40, 000).

Each of these motivating examples compares prostate cancer tumor tissues sam-

ples to adjacent benign tissue samples. Tissues are collected from prostate glands

extracted by prostatectomy. Benign adjacent tissue is removed from histopatholog-

ically determined non-tumor sections of the extracted prostate. In the Sreekumar

metabolic data and matched gene expression data, seven men contributed both a

tumor sample and a benign sample. One man contributed three samples; a high

grade tumor sample (Gleason Major: 4, Gleason Minor: 4), a moderate grade tumor

sample (Gleason Major: 4, Gleason Minor: 3), and a benign sample. As not all
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tumor samples have a matched benign sample, we chose to ignore this matching in

our analysis and we treat the samples as independent between case and control.

The metabolomic data set is pre-processed as described in Sreekumar et al. (2009)

[60] and two-sample testing per-metabolite is conducted using Wilcoxon rank-sum

tests with an emprically calculated p-value to assess differences between tumor and

benign tissues [60]. The Varambally dataset was preprocessed using LOESS models

for standardization, as described in Varambally et al. (2005) [68]. The Sreekumar-

matched gene expression was globally standardized by subtracting the median and

dividing by the interquartile range of each sample. The gene expression datasets were

assessed for differential expression using per-gene Welch t-tests. In the following we

consider only the p-value per metabolite, PM = (PM
1 , . . . , PM

M ), and we use either

the test statistic, TG = (TG1 , . . . , T
G
G ), or p-value, PG = (PG

1 , . . . , P
G
G ), per gene.

For integration, the gene expression and metabolomic datasets are mapped to

the pathways defined in the Kyoto Encyclopedia of Genes and Genomes (KEGG

[34, 36, 35]. The mapping between gene and metabolite is not one-to-one, i.e. a

single metabolite may be associated with several genes and likewise a single gene

may be associated with several metabolites (see Appendix A for details). To build

per-metabolite weights, we must summarize the gene information related to each

metabolite. In this chapter we use gene-set enrichment tests to capture the infor-

mation in the gene expression data regarding the differential characteristics of the

genes in a pathway. Specifically, we use either the p-value or test statistic from the

gene set enrichment tests to construct p-value weights for the per-metabolite tests.

3.2.2 Weighted multiple testing and applications to genomic analysis

P-value weighting was suggested by Holm (1979) [30] as a method for control-

ling error while retaining power in multiple testing situations. Consider a set of
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m tests in which a positive constant weight, wi, is applied to each p-value, Pi, for

test i = 1, . . . ,m, according to its perceived importance. Holm then showed that

the sequentially rejective Bonferroni test (now referred to as Holm’s test) could be

generalized to use the new p-value, P ∗i = Pi/wi, to assess significance. Specifically,

if the ordered weighted p-values are written as P ∗(1) ≤ · · · ≤ P ∗(m) then we reject H∗(i)

when

(3.1) P ∗(j) ≤
α∑m

k=j w
∗
(k)

, j = 1, . . . , i

where H∗(i) and w∗(i) are the hypothesis and weight associated with weighted p-value

P ∗(i). The weighted Holm’s test (wHT) is designed to control the family-wise error

rate (FWER), i.e. the probability that at least one null hypothesis is falsely rejected,

and does not require that the multiple tests be independent. Holm’s only requirement

for wHT is that wi ≥ 0.

More recently Genovese et al. (2006) [20] proposed p-value weighting with ap-

plication to genomics studies. Instead of Holm’s test, they use the Benjamini-

Hochberg (BHT) step-down test Benjamini and Hochberg (1995) [5] as the basis

of their method. With the BHT, H(1), . . . , H(i) are rejected for maxi=1,...,m{P(i) :

P(i) ≤ iα/m} where H(i) is the hypothesis associated with ordered p-value P(i). The

BHT controls the false discovery rate (FDR), i.e. the expected rate of incorrectly

rejected null hypotheses among all rejected null hypotheses. For testing hundreds,

or thousands, of hypotheses controlling the FDR is less conservative than control-

ling the FWER. Yet, when all null hypotheses are true the FDR and FWER are

equivalent [6].

As with the work of Holm (1979)[30], Genovese et al. (2006) [20] consider the

weight wi ≥ 0 for test i resulting in the weighted p-value, P ∗i = Pi/wi. Again, there

is no requirement on the independence of the tests. However, they allow that the
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set of weights W = {w1, . . . , wm} be random variables and they additionally require

that w̄ = m−1
∑m

i=1wi = 1 to maintain control of the FDR. Then the weighted-

BHT (wBHT) rejects the null hypotheses, H∗(1), . . . , H
∗
(i) for maxi=1,...,m{P ∗(i) : P ∗(i) ≤

iα/m}, where H∗(i) is the hypothesis associated with ordered weighted p-value P ∗(i),

while controlling the FDR at level α.

With only two requirements on the weights, Genovese et al. (2006) [20] note

that p-value weighting is quite flexible. In fact they show that for binary weighting

schemes, where all hypotheses are either up-weighted by w1 or down-weighted by w0,

the power is improved for informative weight choices and is only minimally reduced

for completely non-informative weights [53]. The concern for power loss stems from

the required balancing of the weights across all tests such that, w̄ = m−1
∑m

i=1wi = 1.

Here all up-weighting must be balanced by equal down-weighting. If the up-weighting

is sparse, the weight can be strong as the down-weight is spread over many tests. In

contrast, broadly applied up-weights must be more moderate to reduce the effect of

the down-weights. More recently, Roeder et al. (2009) [55] showed this to be true and

found that the power can be greatly increased when sparse weights are well assigned,

yet, they also show that the power loss is small for poorly assigned weights. For

broad coverage of up-weighting they show that there is only small power loss for

poorly specified weights and that in most cases the weighted tests have more power

than the un-weighted tests.

Roeder et al. (2006) [53] applied the wBHT to large-scale genomic studies where

thousands of tests are performed and controlling the error rates leads to a loss of

power. Multiple testing adjustments are particularly problematic for the identifica-

tion of subtle changes that are of most interest. In their work, Roeder used linkage

studies to construct p-value weights to improve the power to identify disease variants
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in genome wide association studies (GWAS).

Consider the linkage test statistic zi at locus i where Zi ∼ N(µ, 1) with µ = 0

for unlinked loci and µ > 0 for linked loci. Here the information from the linkage

test is contained in the parameter µ. They define two functional relations between

µ and the test statistic zi to use for weight construction. First they consider the

posterior odds that a locus is linked which is proportional to vi = exp(ziµ). They

also consider the standard normal cumulative distribution function (CDF), Φ(·) ,

such that vi = Φ(zi − µ). In both cases the values vi must be standardized to form

weights wi = vi/v̄ that meet the requirement that w̄ = m−1
∑m

i=1wi = 1. The

strength of the weights is determined by the choice of µ̃ to estimate µ.

By simulation, Roeder et al. (2006) [53] found that both continuous weighting

schemes were near to one when no linkage signal was simulated. With stronger

linkage signals the weights increased. The posterior odds weights increased more

dramatically and had high variance resulting in spikes in the informative regions.

The CDF weights showed less intensity and lower variance. They had broader peaks

but that resulted in deeper down weights due to the average weight constraint. For

highly informative data the posterior odds weighting is ideal since they provide sparse

weights. The cumulative weights are preferred when there is less certainty in the prior

data, however, the up-weighting must be moderate to avoid strong down-weighting.

There are no restrictions on the weighting functions and others may be used [51].

However, the choice of weighting function should have a meaninful interpretation and

Roeder et al. (2006) [53] wisely advise that they should be chosen prior to analysis

of the data to be weighted.

In the context of metabolomic profiling we have hundreds of tests, not thousands,

and we are concerned with improving the power of the per-metabolite tests regardless
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of multiple test correction. Low sample numbers and high inter- and intra-person

variation due to diurnal rhythm, diet, and other environmental factors contribute to

low power to detect differential metabolites. Yet, metabolites do not act in isolation

within the cell. Here we use p-value weights to add information about the behavior

of other molecular components such as gene transcripts in an effort to add power to

nominate metabolites of interest. Through simulations described in Sections 3.4.1

and 3.4.2 we find that the power can be improved without raising the Type I error

rates relative to the unweighted tests.

3.3 Proposed weight functions

Let us denote the metabolomic data by ylm, for samples l = 1, . . . , NM and

metabolites m = 1, . . . ,M . Likewise denote the gene expression data by xjg for

samples j = 1, . . . , NG and genes g = 1, . . . , G. We integrate these two datasets

using the KEGG pathway maps k = 1, . . . , K. As the genes and metabolites do not

have a one-to-one mapping we must summarize the information in the gene expres-

sion data to construct the weights. Here we use enrichment testing to capture the

information about the differential gene expression data per pathway. That is, each

gene is assessed for its ability to differentiate diagnostic classes, say by a two-sample

t-test, as captured by the statistic TGg , g = 1, . . . , G. An enrichment test assesses

the level of differential ability within a pathway k.

As listed in Table 3.1 we consider four different enrichment test types. First we

consider tests based on either binary or continuous differential expression results.

Binary tests require that the per-gene tests are thresholded to categorize each gene

as “differential” (e.g. |TGg | ≥ τ) or “non-differential” (e.g. TGg < τ), for a given

threshold τ . Continuous tests use the per-gene test statistic, TGg , in its continuous
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form. The benefit of the continuous tests is that does not rely on an arbitrarily

defined threshold.

Second, we consider the null hypothesis style of the test, namely competitive ver-

sus self-contained [24]. A competitive test compares the genes in the set of interest,

say set ξ, to all other genes, say set ξc. The null hypothesis is that ξ contains the

same proportion of differential genes, say π, as ξc. A self-contained test considers

only the genes within the set of interest, ξ, and ignores the genes in ξc. The hypoth-

esis is that there are no more differential genes than expected where the expected

value is determined a priori, i.e. 5% based on an α = 0.05 error rate, or by sample

permutation. Competitive tests allow selection of a “best” set, that is one that is

enriched above the rest, but they are limited such that a given set ξ′ with π percent

differential genes will receive a different test statistic depending upon the proportion

of differential genes, say πc, in the set (ξ′)c. Self-contained tests will always give the

same result for the same set of data since the test of ξ does not depend on ξc. How-

ever, if differential genes are uniformly distributed across all pathways, that is πk = π

for all k = 1, . . . , K, then all pathways will be called enriched by a self-contained

test if π is great enough.

Each of the four enrichment tests listed in Table 3.1 will be described in Section

3.3.1. The enrichment tests capture the gene expression information in each pathway

k, k = 1, . . . , K, by a test statistic Sk or its corresponding p-value PE
k . To utilize this

information as a weight we first transform it using one of five weighting functions

described in Section 3.3.2.
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Table 3.1: Four gene-set enrichment tests are considered. The competitive hypergeometric
and weighted Kolmogorov-Smirnov tests compare the level of differentiation in the set of
interest to all other sets. The self-contained binomial and sum of squared statistics tests
are global tests of differentiation within the set. Thresholding of per-gene tests prior to
enrichment testing is required for the hypergeometric and binomial tests.

Competitive Self-contained

Binary Hypergeometric Binomial
Continuous Weighted Kolmogorov-Smirnov Sum of Squared Statistics

3.3.1 Enrichment test methods

Directional Hypergeometric Test

For a given pathway ξk, each gene tested (TGg , g = 1, . . . , G) is categorized by

its inclusion in the pathway (g ∈ ξk) and whether it is differentially expressed (e.g.

|TGg | ≥ τ , for a given τ). This categorization is depicted in Table 3.2. In the fol-

lowing we use two-sample t-tests for assessing per-gene differential expression. We

then threshold the test statistics at |TGg | ≥ τα where τα is chosen according to a t-

distribution with NG−2 degrees of freedom and α = 0.05. We use a directional test of

enrichment, Pr(X ≥ x|Gk = gk, G0 = g0, D = d), assuming X ∼ Hyper(Gk, G0, D),

where X, Gk and G0 are defined as in Table 3.2. Assuming a hypergeometric distri-

bution for this 2x2 table, we can get an exact p-value without permutation testing

and we use Sk = Xk as the statistic of interest. Because the hypergeometric test uses

the genes of ξck to define the null proportion of differential genes, this is a competitive

test. This test differs from the Fisher’s Exact test in that it does not consider the

depletion of differential genes in a pathway ξk as an interesting case.

Table 3.2: The classification of genes that underlies the gene set enrichment testing.
Competitive tests consider the entire table whereas self-contained tests focus on the first
row.

Differential Not Differential Total

In Pathway ξk X Gk −X Gk
In Pathway Complement ξck D −X G0 − (D −X) G0

Total D G−D G
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Binomial Test of Proportions

Also called Tukey’s Higher Criticism [24], the binomial test of proportions is self-

contained such that only genes contained in pathway ξk are considered for the test of

that pathway (i.e. the top row of Table 3.2). Specifically we test the null hypothesis

that X ∼ Bin(Gk, α) and we reject if X/Gk ≥ x where α is set a priori and X

and Gk are defined as in Table 3.2. In the following we set α = 0.05 as this is the

assumed error rate for each of the per-gene differential tests, TG = (TG1 , . . . , T
G
G ).

Significance is determined using permutation sampling of the NG sample labels to

construct the null distribution or, in the simulation, draws from the null distribution

of test statistics. The test statistic of interest is Sk = Xk/Gk for each pathway k.

Weighted Kolmogorov-Smirnov Test

A weighted Kolmogorov-Smirnov (K-S) test is used to compare the test statistics

of those genes in the pathway k, i.e. TGg : g ∈ ξk, against the statistics of those not in

the pathway and thus is a competitive test. The K-S test compares the two groups of

test statistics in a single ranked list, testing if they arise from the same distribution

by assessing the spread of the two sets throughout the ranked list. Specifically,

begin by ranking the vector of t-statistics TG as (TG(1), T
G
(2), . . . , T

G
(G)). Construct

a corresponding pathway inclusion indicator vector γ = (γ(1), γ(2), . . . , γ(G)) where

γ(g) = 1 if g ∈ ξk and 0 otherwise. The statistic Sk is then maximum deviation of

the empirical distributions

(3.2) Sk = maxh|P (ξk, h)− P (ξck, h)|

where

(3.3) P (ξk, h) =
∑
g≤h

νgγ(g)∑G
g=1 νgγ(g)

and P (ξck, h) =
∑
g≤h

1− γ(g)

G−Gk
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Here νg ∈ [0, 1] is the weight for gene g and an unweighted K-S test would have

νg = 1 for all g = 1, . . . , G. Additionally, Gk is the number of genes in ξk; see Table

3.2.

The weighted K-S test as proposed by Subramanian et al. (2005) [61] uses νg =

|corrj(xjg, ψj)|. That is, each gene g is weighted by the correlation across samples, j

between the expression value xjg and the case status ψj, where ψj = 1 for cases and

0 for controls. In this way tests that cluster in the tails of the ranked list are given

higher weight. In our simulations we define νk based on a function of the simulated

test statistic νg = |Zg|/(1 + |Zg|). We choose a Z-score based weight for conveience

in our simulation but the relationship between the Pearson’s correlation coefficient

in the Subramanian νk and Z score is monotonic so only the magnitude of the test

statistic will be affected. Significance is determined using permutation sampling of

the sample sample labels ψj to construct the null distribution or, in the simulation,

draws from the null distribution of test statistics.

Sum of Squared Test Statistics

The test statistic from the the sum of squared test statistics method is simply the

sum of the squared per-gene test statistics in the set ξk [1]. That is

(3.4) Sk =
∑
g∈ξk

TGg

Significance is determined using permutation sampling of the NG sample labels to

construct the null distribution or, in the simulation, draws from the null distribution

of test statistics. This is a self-contained test since Sk and its null distribtution

consider only the genes in ξk.
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3.3.2 Weight functions

The above enrichment tests provide a test statistic, Sk, and corresponding p-value,

PE
k , that summarize the level of differential expression in each pathway k = 1, . . . , Nk.

To utilize these data as p-value weights we must transform them to ensure that they

are positive and that they increase with increasing levels of differential expression,

that is they must be positively correlated with increasing importance. We may also

want to adjust the scale or distribution of the enrichment information for better

performance under the w̄ = m−1
∑m

i=1wi = 1 restriction.

We consider five functions of the enrichment test information, ωk. These are (A)

ωk = − log10(P
E
k ), (B) ωk = |Sk|, (C) ωk = |S̃k|, (D) ωk = Φ(S̃k − µ̃), and (E)

ωk = exp(S̃kµ̃) where Sk is the test statistic and PE
k is the p-value from the enrich-

ment test of gene expression values for pathway k. S̃k = (Sk−E(S0))/
√
V ar(S0) is a

standardized test statistic using the null distribution of the test statistic to determine

the mean, E(S0), and variance, V ar(S0), of S0. Here Φ(·) is the cumulative distribu-

tion function (CDF) for the standard normal distribution. We set the parameter µ̃

to 2 according to Genovese et al. (2006) [20]. Higher µ̃ results in more conservative

weights for the CDF function (D) by shifting the distribution of Sk. Higher µ̃ results

in stronger weights for the exponential function (E).

We chose to explore the weight functions suggested by Roeder et al. (2006) [53],

termed weights D and E here, as they present both bounded (D) and unbounded (E)

options for weight construction. We expect that the bounded weights of the CDF

function (D) will out-perform the strong peaks of the exponential function (E) in

this application to metabolomic data. Specifically, applying the same weight to all

members of a pathway is contrary to the sparse nature of the exponential function

weighting and strong downweighting is likely to arise. We also considered some more
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simplistic functions based directly on the enrichment p-value and statistic (weights

A, B, and C).

To apply these pathway level weight to the per-metabolite p-values, PM
m = 1, . . . ,

PM
M , we first associate the component ωk with each metabolite in the pathway, say

vi = ωk for metabolite i in pathway ξk. The weights must then be standardized

such that wi = vi/v̄ where v̄ =
∑m

i=1 vi to arrive at wi. Finally, we define PM∗
i =

PM
i /wi and PM∗

i can be assessed for significance in the usual way. As many of the

metabolites in the KEGG pathways are associated with more than one pathway,

additional summarization of the pathway weights ωk must be done such that vi =

f(ωkI(i ∈ k)) where I(i ∈ ξk) is an indicator function for metabolite i in pathway k

and f(·) is a summary function. In Section 3.4.2 we explore median and seventy-fifth

percentile summaries.

3.4 Numerical examples

The simulations were programmed using the R statistical software v 2.7 and

greater. SAS v. 9.1 was used for preparation of the real datasets. The gene

and metabolite information for each human pathway map in KEGG was acquired

from KEGG version 50 (April 2009) using perl scripts and the KEGG API [37].

The Varambally et al. (2005) [68] gene expression measures are from an Affymetrix

HU133Av2 genechip and the gene symbols were obtained from GEO (Gene Ex-

pression Omnibus, www.ncbi.nlm.nih.gov/geo, GSE3325, August 2009) using the

GPL570 platform information file. The Sreekumar-matched gene expression mea-

sures are from an Agilent Whole Human Genome Oligo Array (data: GSE8511 (pri-

vate), platform: GPL1708, March 2008). We use these gene expression data sets in

combination with the Sreekumar et al. (2009) [60] metabolomic data to construct two
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simulation situations. We begin with a simplistic model with disjoint pathways such

that every metabolite contributes to only one pathway. Following is a more complex

dataset with pathways modelled from the KEGG pathway mapping of the real data.

The simplistic model allows us to explore properties of the different weight func-

tions in an easily interpretable setting. The complex model provides a more realistic

scenario with which to test our methods where the truth is still known.

3.4.1 Simulation I: Disjoint Pathways

Simulation Model I

Z-scores are simulated from a standard multivariate normal distribution to rep-

resent the per-gene test statistics of differential expression and per-metabolite test

statistics of differential intensity. A constant correlation between like elements, i.e.

gene-gene (ρGG) and metabolite-metabolite (ρMM), and a constant but lesser cor-

relation between gene and metabolite (ρGM) within a pathway are assumed. For

simplicity we assume that pathways are disjoint, that is no element appears in mul-

tiple pathways and there is no correlation between elements in different pathways.

The case of non-disjoint pathways will be considered in Simulation II.

We model each pathway to have NG
k genes and NM

k metabolites. We draw a vector

of z-scores (ZG, ZM), where ZG = (zG1 , . . . , z
G
NG

k
) and ZM = (zM1 , . . . , z

M
NM

k
), from

(ZG, ZM) ∼MVN((β, φ),Σ).
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The variance covariance matrix is defined per pathway as

Σ =



1 ρGG . . . ρGM ρGM

ρGG 1 ρGM

...
. . .

...

ρGM 1 ρMM

ρGM ρGM . . . ρMM 1


(NG

k +NM
k )×(NG

k +NM
k )

where ρGM < min(ρGG, ρMM). Under the null model (β, φ) is a vector of zeros.

Under the alternative model, z-scores are simulated from a multivarite normal

distribution with the same variance-covariance matrix, (Σ), of the null model but

with shifted means (β1 = · · · = βNG
k

= β > 0 and φ1 = . . . = φNM
k

= φ > 0). Genes

and metabolites are drawn from this alternative model according to a Bernoulli(π·k)

distribution thereby assigning some elements to be truly differential. The probability

of differential elements can differ for genes, πGk ∈ [0, 1], and metabolites, πMk ∈

[0, 1]. We also allow πGk and πMk to differ by pathway (k) thereby defining some

pathways to be enriched. We retain the simulated state of differential intensity for

each metabolite, i ∈ (i, . . . ,M) in the vector H where Hi = 0 for the null case and

Hi = 1 for the differential case. P-values are calculated from the simulated z-scores

using the standard normal distribution, i.e. p = 2Pr(|Z| ≥ zα/2).

We consider a scenario with 50 pathways and allow the following parameters to

vary:

• Alternative means (β, φ): (1.5, 2), (1.5, 3), (2,3)

• Pathway size (NM
k , NG

k ): (3, 20), (5, 40)

• Percentage of enriched pathways: 10%, 20%

• Correlation between like elements (ρMM , ρGG): 0.2, 0.4, 0.6
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• Correlation between gene and metabolite (ρGM): 0.0, 0.10, 0.15, 0.25, 0.50 where

ρGM < min(ρGG, ρMM)

To attain the desired level of enrichment, we set (πMk , π
G
k ) = (0.75, 0.50) for enriched

pathways and (πMk , π
G
k ) = (0, 0) for non-enriched pathways when (NM

k , N
G
k ) = (3, 20).

For the larger pathways, (NM
k , N

G
k ) = (5, 40), we set (πMk , π

G
k ) = (0.50, 0.25) for

enriched pathways and (πMk , π
G
k ) = (0, 0) otherwise.

Each of the four enrichment tests described in Section 3.3.1 was applied to the

gene expression z-scores for each of the 50 pathways. For tests requiring it, the

null distribution was simulated by the generation of 1000 null vectors of z-scores

(πGk = πMk = 0.05 for all k). The enrichment test statistic (Sk) and p-value (PE
k )

for each pathway (k = 1, . . . , 50) was retained. Each of the five weight functions of

Section 3.3.2 was then applied: (A) ωk = − log10(P
E
k ), (B) ωk = |Sk|, (C) ωk = |S̃k|,

(D) ωk = Φ(S̃k − µ̃), and (E) ωk = exp(S̃kµ̃). The standardized test statistic,

S̃k = (Sk − E(S0))/
√
V ar(S0), uses the 1000 null vectors to determine the null

mean, E(S0), and null standard deviation, V ar(S0). Estimates of the mean and

variance were determined from the hypergeometric distribution for the directional

hypergeometric test. Again, Φ(·) is the cumulative distribution function (CDF) for

the standard normal distribution and we set µ̃ = 2 unless otherwise noted.

With four enrichment scores and five weight functions we have twenty weights

constructed for each pathway, ωkj where j = 1, . . . , 20. The pathway level weights

can be applied to the simulated metabolite p-values for each pathway such that

vij = ωkj for metabolite i in pathway k and weight option j. The weights are then

standardized, wij = vij/v̄·j where v̄·j =
∑m

i=1 vij. The per-metabolite p-values are

determined from the z-score vector ZM by comparing the z-scores to a standard

normal distribution, i.e. PM
i = 2Pr(|ZM

i | ≥ zα/2). The weighted per-metabolite p-



51

value, PM∗
ij , is calculated by PM∗

ij = PM
i /wij. This results twenty weighted p-values

for each metabolite, i.e. an NM × 20 matrix.

To assess the Type I error rate for each method, with respect to metabolites,

we simulated the situation of completely null data by generating Z-scores under a

model where πGk = πMk = 0 for all k. We also simulated a second null setting in

which we assume that there are differentially expressed elements but that they are

not associated with the pathways. Here we set πGk > 0 and πMk > 0 to be constant

non-zero rates for all pathways, k ∈ (1, . . . , K), to generate differential elements

uniformly across all pathways. The second null model helps us to determine error

rates and to assess any power loss from the marginal weighting of the null pathways.

The power, or the probability of correctly identifying a differential result, is assessed

using the true state of metabolite differential intensity, Hi, as simulated by the

Bernoulli(πMk ) draws. We use receiver operating characteristic (ROC) curves, varying

the significance threshold for PM∗
i , and the associated area under the curve (AUC)

to compare the properties of the different methods.

Results for Simulation Model I

Graphical representation of the results are presented in a 2 × 2 grid mimicking

Table 3.1 with each enrichment test occupying a quadrant of the figure. Each of the

five weight functions is labelled A–E and color coded . This coloring is consistent

throughout the paper where the unweighted (raw) p-values are black, and the five

weight functions are (A), ωk = −log10(p), green; (B), ωk = |S|, blue; (C), ωk = |S̃|,

purple; (D), ωk = Φ(S̃ − µ̃), orange; and (E), ωk = exp(S̃µ̃), red. Average ROC

curves, across the simulation runs, are used to compare the sensitivity and specificity

of correctly identifying differential metabolites. Boxplots are used to demonstrate

differences in error rates under the null models.
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The null model in which no genes and no metabolites are selected to be differential

(πGk = πMk = 0 for all k) was simulated for varying correlations. Figure 3.1 shows

a representative plot of the error rates for 1000 replications of the simulation where

NG
k = 20, NM

k = 3, ρGG = ρMM = 0.20 and the correlation ρGM ∈ (0, 0.1, 0.15).

We see that the Type I error is near the nominal level when there is no correlation

between genes and metabolites. In some cases the error rate may increase slightly as

the correlation increases. However, the boxplots each overlap the nominal 0.05 error

rate (black horizontal line) except for the exponential weight function (E, red) which

is conservative. Additionally, we are simulating uniform correlation within pathways.

In reality we find from assessment of the Sreekumar metabolite and Sreekumar-

matched gene expression data that pairwise correlation of genes and metabolites

across matched samples are highly correlated for only about 8% of the pairs by

pathway. This result is supported by Urbanczyk-Wochniak et al. (2003) [66] who

find only 2% of the total pairs to be significantly correlated. Thus this Type I error

estimate is likely conservative and actual error may be lower.

Under the second null model we assume that there are differential metabolites

and genes in the dataset but that they are uniformly distributed across the dataset,

that is simulated without pathway enrichment. Figure 3.2 shows the Type I error

rates for 1000 replicates of the simulation with πGk = πMk = 0.1 for all k, NG
k = 20,

NM
k = 3, ρGG = ρMM = 0.20 and the correlation ρGM ∈ (0, 0.1, 0.15). Figure 3.3

shows the Type I error for the same settings except that ρGG = ρMM = 0.60 and the

correlation is explored up to ρGM = 0.50. We see more Type I inflation in these high

correlation cases. We do not expect such high correlations to exist in our data but

high correlations have been observed by others [9].

As expected, there is some power lost when there is no enrichment of the pathways,
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Figure 3.1: Type 1 error for per-metabolite tests using a significance threshold of α = 0.05 without
multiple testing adjustments. 1000 datasets were simulated assuming within pathway
correlation of 0.2 for each metabolites and genes. Unweighted (Raw) p-values and the
five weight functions (A, −log10(p); B, |S|; C, |S̃|; D, Φ(S̃−µ̃); E, exp(S̃µ̃)) are depicted
with increasing between element correlation, ρGM ∈ (0, 0.1, 0.15).
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Figure 3.2: Type 1 error, under uniformly distributed differential elements, for per-
metabolite tests using a significance threshold of α = 0.05 without multiple testing
adjustments. 1000 datasets were simulated assuming within pathway correlation of 0.2
for each metabolites and genes and πGk = πMk = 0.1 for all k. Unweighted (Raw) p-
values and the five weight functions (A, −log10(p); B, |S|; C, |S̃|; D, Φ(S̃− µ̃); E, e(S̃µ̃))
are depicted with increasing between element correlation, ρGM ∈ (0, 0.1, 0.15).
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Figure 3.3: Type 1 error, under uniformly distributed differential elements, for per-
metabolite tests using a significance threshold of α = 0.05 without multiple testing
adjustments. 1000 datasets were simulated assuming within pathway correlation of 0.6
for each metabolites and genes and πGk = πMk = 0.1 for all k. Unweighted (Raw) p-
values and the five weight functions (A, −log10(p); B, |S|; C, |S̃|; D, Φ(S̃− µ̃); E, e(S̃µ̃))
are depicted with increasing between element correlation, ρGM ∈ (0, 0.1, 0.15, 0.25, 0.5).
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i.e. the gene expression data is not informative by pathway. On average the loss is

between 5–15 points on the AUC scale, except for the exponential weight function

where the conservative error rates seen above are reflected in the poor power. Figure

3.4 shows the ROC curves and AUC levels for each method under this null model with

ρGM = 0.1. The loss is similar for other correlation values and for πGk = πMk = 0.05

(data not shown).
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Figure 3.4: Power loss under uniformly distributed differential elements is depicted by
the average ROC curve for 1000 simulated datasets with πGk = πMk = 0.1 for all k,
ρGG = ρMM = 0.2, and ρGM = 0.1.

When there is enrichment in a subset of the pathways three of the five weight
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functions show robust increases in power over the unweighted case (raw, black);

the p-value weight (A, green), the standardized test statistic (C, purple), and the

CDF transformation (D, orange). Figure 3.5 shows the average receiver operating

characteristic (ROC) curves from 100 simulated datasets where the alternative means

are (β, φ) = (2, 3). This representative plot is of data with pathway sizes (NM
k , N

G
k ) =

(3, 20) and correlations ρGG = ρMM = 0.2 and ρGM = 0.10. Ten of 50 pathways (20%)

are simulated to be enriched with at (πMk , π
G
k ) = (0.75, 0.50) for k ∈ (1, . . . , 10) and

(πMk , π
G
k ) = (0, 0) otherwise. Increasing the correlation to ρGG = ρMM = 0.6 and

ρGM = 0.15 provides only a marginal increase in the AUC for the absolute statistic

(B, blue) and exponential (E, red) weight functions, see Figure 3.6. The other weight

functions appear to have a minimal loss of power, e.g. AUC=98 versus AUC=96 for

the hypergeometric test p-value weight (A, green) in this higher correlation model.

When we reduce the effect size of the differential elements to have alternative

means (β, φ) = (1.5, 2) there is still a substantial increase in power for the p-value

weight (A, green), the standardized test statistic (C, purple), and the CDF transfor-

mation (D, orange) with AUC values of 90 or greater (see Figure 3.7).

As expected from the recommendations of Roeder et al. (2006) [53], the exponen-

tial weight function (Figure 3.5 – 3.7, E, red) is poorly suited for this application.

The exponential function, ωk = e(S̃µ̃), provides strong weights and is best suited for

defining sparse up-weights. The balancing down-weights are then spread across the

remaining tests. In the simulations presented thus far we have looked at situations in

which 20% of the pathways are enriched leading to approximately 20% up-weighting.

Given the small number of metabolites tested, compared to genomic studies, the cor-

responding down-weighting is only shared across a couple hundred metabolites. The

strength of the exponential weight is also amplified by the choice µ̃ which has been
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Figure 3.5: Average receiver operating characteristic (ROC) curves (n=100) depict the
sensitivity and specificity for each test method and weight function when applied to
per-metabolite tests. Data are simulated assuming within pathway correlation of 0.2
for each metabolites and genes and between element correlation of 0.1. Ten of fifty
pathways were simulated as enriched where differential test statistics have mean of two
and three for metabolites and genes, respectively. The mean area under the curve
(AUC) estimate and associated standard error are provided in the table below each
plot.



59

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e
Hypergeometric

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

AUC Raw A B C D E
Mean 85 96 20 95 96 69
(SEM) (0.62) (0.31) (0.75) (0.34) (0.28) (0.94)

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Binomial

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

AUC Raw A B C D E
Mean 85 96 40 95 96 86
(SEM) (0.62) (0.27) (0.87) (0.33) (0.28) (0.9)

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Kolmogorov−Smirnov

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

AUC Raw A B C D E
Mean 85 88 75 81 86 85
(SEM) (0.62) (0.57) (0.77) (0.77) (0.69) (0.69)

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e
Sum of Squared Statistic

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

AUC Raw A B C D E
Mean 85 95 35 95 97 65
(SEM) (0.62) (0.24) (0.86) (0.31) (0.24) (0.94)

Figure 3.6: Average receiver operating characteristic (ROC) curves (n=100) depict the
sensitivity and specificity for each test method and weight function when applied to
per-metabolite tests. Data are simulated assuming within pathway correlation of 0.6
for each metabolites and genes and between element correlation of 0.15. Ten of fifty
pathways were simulated as enriched where differential test statistics have mean of two
and three for metabolites and genes, respectively. The mean area under the curve
(AUC) estimate and associated standard error are provided in the table below each
plot.
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Figure 3.7: Average receiver operating characteristic (ROC) curves (n=100) under the
same simulation conditions as in Figure 3.5 except that differential test statistics have
mean of 1.5 and 2 for metabolites and genes, respectively.
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set µ̃ = 2 thus far. When we consider reducing the parameter to µ̃ = 1 we see that

the exponential weight method (E, red) is improved but not to the level of the CDF

transformation weights (D, orange; see Figure 3.8).
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Figure 3.8: Average receiver operator characteristic (ROC) curves (n=100) assuming
µ̃ = 1. The CDF transformation (D, orange) and exponential (E, red) weight functions
are shown for the sum of squared statistic enrichment test. For comparison, both µ̃ = 1
(solid lines) and µ̃ = 2 (dotted lines) are plotted (i) under low correlation conditions as
in Figure 3.5 and (ii) under high correlation conditions as in Figure 3.6.

The absolute value of the test statistic (Figure 3.5, B, blue) has poor AUC in most

scenarios. We expect that this is primarily because the unstandardized enrichment

test statistics vary so dramatically that the standardized weights must be very ex-

treme in order to sum to one. It is interesting to note that the absolute statistic (B,

blue) has appropriate error control (see Figures 3.1 and 3.2) and minimal power loss

(see Figure 3.4) in the null cases. Perhaps under the null the variability of the path-

way enrichment scores is low since no pathways are modelled as enriched resulting

in more stable weight values.

In contrast, the p-value weight (A, green), the standardized test statistic (C, pur-

ple), and the cdf of the test statistic (D, orange) are all consistently more powerful
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than the unweighted p-value (Figures 3.5 – 3.7). We consider the potential weak-

nesses of each in turn. First, like the exponential or absolute test statistic weights,

the p-value weight can become quite large when tests of pathway enrichment are

significant. Having one strongly enriched pathway could produce down-weighting in

the other pathways resulting in power loss. However, notice that for three of the

four set enrichment tests the p-value is determined by permutation test. Here we use

1000 permutations so the precision of the p-value cannot be lower than 1/1000 and

thus the negative log10 value will not be greater than 3. The hypergeometric test

is an exact test and the p-value precision is thus limited by the sample size. These

constraints put a ceiling on the range of the negative log10 p-values under which

restriction they appear to behave well.

The absolute standardized statistic (C, purple) and the CDF function (D, orange)

behave similarly. The standardized statistic reduces the magnitude of the statistic

and reigns in the extreme values that occur prior to standardization. The CDF

weight function is based on the standard normal density and thus it works well with

the standardized test statistic. The benefit to using the CDF function is that it

smooths out the test statistic thus reducing the effect of extreme test statistics. We

ran a set of simulations using a multivariate t-distribution for drawing test statistics

under the alternative hypothesis. The heavy tails of the t-distribution resulted in

reduced power with the standardized statistic weight (C, purple) but not the CDF

weight (D, orange) in the non-thresholded tests (see Figure 3.9). However, the power

was still above that of the unweighted test and continued to show comparable power

gains for both weight functions.and continued to show comparable power gains for

both weight functions. The thresholded tests were not affected as they do not use

the per-gene test statistics directly.
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Figure 3.9: Average receiver operator characteristic (ROC) curves (n=100) under a
multivariate t-distribution alternative. The standardized statistic (C, purple)
and the CDF transformation (D, orange) weight functions are shown for the sum of
squared statistic enrichment function. Results from per-gene test statistic simulation
models using both the t-distribution (solid lines) and the Normal distribution (dotted
lines) alternatives are plotted (i) under low correlation conditions as in Figure 3.5 and
(ii) under high correlation conditions as in Figure 3.6.

3.4.2 Simulation II: KEGG Based Pathways

Simulation Model II

This simulation makes use of the data structure of the KEGG pathways between

genes and metabolites to define the pathways. This introduces overlapping pathways

and pathways of varying sizes into the simulation. Rather than drawing the data

from a multivariate normal distribution we use bootstrap resampling of published

gene expression data to populate our vector of per-gene test statistics. The metabo-

lite data is modeled from Sreekumar et al. (2009) [60]. Here we have 12 prostate

cancer tissues from localized tumors of varying grade and 16 benign prostate tissues

taken from resected prostate tissues. The gene expression experiment was performed

by the same group (GEO:GSE3325 [68]) so we expect that the tissue diagnosis is

consistent between the two experiments. There are five localized prostate tumor
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Table 3.3: Fifteen metabolites were chosen to be differential. These metabolites are associ-
ated with up to five pathways, of which up to two pathways are simulated as enriched.

Metabolite 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Pathways 5 5 5 4 4 3 3 3 2 2 2 1 1 1 1
Number Enriched 2 1 0 2 0 2 1 0 2 1 0 1 1 0 0

samples and four benign prostate samples in the gene expression study. Further

sample information and mapping details can be found in Appendix A.

For the simulation we selected eight of 76 pathways that have between 10 and 100

genes measured to be enriched. We then selected 15 (10.2%) of the metabolites to be

differential. These metabolites were selected in such a way that they are members

of between one and five pathways with up to two of the pathways being enriched

(see Table 3.3). By examining metabolites in multiple pathways we can assess the

affect of weight summaries across pathways. By examining metabolites that are not

in enriched pathways we can examine potential power loss due to down-weighting.

The Varambally gene expression data were analyzed per gene using a two-sample

t-test with pooled variance. All 126 permutations of the samples were run and the t-

test recalculated to form the permutation null distribution. To prevent overcounting,

the t-statistics were averaged across probes by gene symbol prior to gene set enrich-

ment testing. All four enrichment tests, as described for Simulation I (Section 3.4.1)

were run on the gene expression data. Additionally, all five weight functions were cal-

culated (Section 3.3.2). To accomodate metabolites that belong to multiple pathways

we summarized the ωk values across pathways within metabolite, vij = f(ωjkI(i∈k)).

The weights were then standardized to average to one, wij = vij/v̄·j. We consider

both the median and the 75th percentile as the summary statistics, f(·).

The per-gene test statistic data are simulated by randomly sampling the 2375

mapped genes, with replacement, from the t-statistic matrix (t-statistic and 126
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permutation statistics). To induce enrichment, the genes in the enriched pathways

were randomly selected according to a Bernoulli(π) distribution from the subset of

genes that were differential (n=177 at α = 0.05), where π ∈ (0.2, 0.5). That is on

average 100π% of the genes in an enriched pathway were selected to be differential

with an effect size seen in the Varambally data.

The 147 metabolite p-values were drawn from a uniform distribution on [0,1].

Those 15 metabolites that were selected to be differential are chosen from a Beta(3,

37) distribution. The shape parameters were chosen for a mean of 0.075 and a

relatively narrow variance to provide the marginal p-values of interest. Specifically,

the probability of selecting a p-value less than 0.05 is approximately 31% whereas

the probability of selecting a p-value greater than 0.2 is less than 1%. The gene-

set enrichment tests, weight functions, and per-metabolite weights are calculated for

each of 1000 generated gene expression datasets and metabolite p-value vectors.

Results for Simulation Model II

Figure 3.10 shows the frequency of significant p-values (at α = 0.05) for each of the

15 differential metabolites across the 1000 simulated data sets under π = 0.2. The

color scheme and quadrant style figure is retained from the first simulation (Section

3.4.1). Additionally we denote the median summary weights by circles and the 75th

percentile weights by triangles. Notice that these weights are similar but not exact

for the four metabolites in a single pathway. Even though their vij measures will be

identical they are standardized against v̄·j which will vary depending on the other

vi′j values (i′ 6= i). The black squares represent the unweighted test p-value and, as

expected by the Beta(3,37) distribution used in simulation, they are significant in

about 30% of the datasets.

We quickly see in Figure 3.10 that there are a few metabolites that are weighted
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well by the pathway data and show great power increases; namely metabolite 5(2)

and the first 1(1) metabolite. Additionally, the CDF method (D, orange) appears

to increase success of identifying these metabolites in most situations. It does show

power loss for those metabolites that have no associated gene expression pathway en-

richment such as 3(0). As expected, the exponential weights (E, red) perform poorly

in most cases; performing well for only the two strongest metabolites and severely

downweighting the others. However the unstandardized absolute test statistic (B,

blue) does better than expected in some situations such as with the hypergeometric

test.

The 132 metabolites that were not chosen to be differential can be used to de-

termine false positive rates by considering the percentage of significant calls per

metabolite across the 1000 simulated data sets. In Figure 3.11 these percentages are

plotted as boxplots per weight function. The nominal 5% error rate is noted with a

black horizontal line. For most weight methods the majority of the metabolites have

error near the nominal line, i.e. the box contains 5%. The unweighted tests (black)

are tightly centered at 0.05 as expected by the simulation design. There are some

methods, however, that have high error rates for a handful of metabolites. Specif-

ically, the exponential function (red) behaves poorly with all four enrichment tests

with error rates reaching 50% for some metabolites. The p-value weighting method

(green) has higher error for the hypergeometric test and the Kolmogorov-Smirnov

test. Surprisingly, the absolute test statistic (blue) has low error in all cases except

for the binomial test. The CDF function (orange) has low error in the self-contained

tests (binomial and sum of squared statistic). There is no obvious difference between

the median summary and the 75th percentile summary with respect to the error

rates (see Figure 3.11). The 75th percentile may has a slight advantage in the rate
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Figure 3.10: The frequency of a significant call for each of the fifteen differential metabo-
lites. The metabolites are noted on the vertical axis by the number of associated path-
ways (enriched) for that metabolite. The weight functions are color coded as before
(A, green; B, blue; C, purple; D, orange; E, red) with the median summary denoted
by circles and the 75th percentile summary noted by triangles. The unweighted result
is noted by black squares.
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of true significant calls (see Figure 3.11).
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Figure 3.11: Boxplots of the frequency of falsely finding a null metabolite to be signif-
icant. Each method is presented by a boxplot and each point represents metabolite.
For instance, the exponential weights (E) tend to have low error rates overall, but a
handful of metabolites are called significant up to 500 times. The weight functions are
color coded as before with the median summary in the left box and the 75th percentile
summary in the right box.

3.5 Application

We wish to apply the method of p-value weighting to the motivating data example

of the Sreekumar et al. (2009) [60] metabolite data and matched gene expression data.

We begin by assessing the pathway enrichment of the gene expression data. Two-
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sample t-tests were used to assess the difference of gene expression between localized

prostate cancer and adjacent benign tissues, per gene. All four enrichment methods

(see Section 3.3.1) were then applied. When required, permutation p-values were

calculated from 1000 permutations of the sample labels.

Permutation p-values are limited in precision by the number of permutations used.

Here this resulted in little discrimination of pathways for the two self-contained tests;

binomial and sum of squared statistics. The statistic Sk, however, showed potential

for discriminating between the k pathways.

The results of Simulation I (Section 3.4.1) lead us to favor the CDF weighting

function (D, orange). The results of Simulation II (Secion 3.4.2) show the CDF

weighting function performing well for all but the K-S test. The hypergeometric test

appears to perform best here but it is not robust when the parameter π is reduced

from 0.5 to 0.2, unlike the two self-contained tests, data not shown. Interestingly in

this application Cor(Shyperk , SSSTk ) = 0.98 across k thus we chose to proceed with the

sum of squared test of enrichment.

In the simulations we set µ̃ = 2 for the CDF function as the presumed differential

effect under the alternative distribution. Yet, the distribution of S̃k across k shows

that this choice may not be optimal; see Figure 3.12. By assigning µ̃ = 2 we may be

severly tempering the upper range of test statistics and thereby reducing the ability

of the weights to differentiate pathway contributions. To assess this we look back at

the data of Simulation II under the sum of squared test. The range of the S̃k values

is less in the simulated data but still suggests that µ̃ = 2 may not be optimal.

Using the first 500 simulated data sets from Simulation II we assessed how varying

µ̃ affected the frequency of detection for each of the 15 simulated differential metabo-

lites; see Figure 3.13. In the upper panels we see that the detection rate increases
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expression data. Each of the four pathway enrichment tests is shown.
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at first and then decreases as µ̃ becomes large. In contrast the error rates shown in

the bottom panels decrease overall (boxes) but a handful of metabolites are falsely

discovered at increasing rates. It is interesting to note that when a median summary

is used for combining weights for a metabolite in multiple pathways (Figure 3.13

left) the frequency of detecting truly differential metabolites quickly decreases for

a majority of the metabolites. In contrast, if the seventy-fifth percentile is used to

combine the weights across pathways (Figure 3.13 right) then the power loss is less

and the error rates do not increase as quickly.
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Figure 3.13: The effect of adaptive estimation with respect to power in the 15 differential
metabolites (top) and Type I error in the remaining 132 metabolties (bottom). Both
median (left) and seventy-fifth percentile (right) summaries for metabolites involved
in multiple pathways are considered.

From these results we consider assigning µ̃ = P75(S̃), i.e., the 75-th percentile

of the Sk values accross all k. The median 75th percentile, across all 500 simula-
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tion datasets, is shown with a red dashed vertical line in Figure 3.13. The median

50th percentile (median) is shown by a blue dotted vertical line. The seventy-fifth

percentile appears to be the better choice according to Figure 3.13.

To test this adaptive µ̃ = P75(S̃) we analyzed the remaining 500 Simulation II

datasets. Weight construction used the sum of squares statistic, the CDF weighting

function with µ̃ = P75(Sk) across all k and the seventy-fifth percentile statistic was

used to summarize the pathway weight components (ωk) when a metabolite was

represented in multiple pathways.

Table 3.4: Percentage of times the metabolites are detected to be differential in the
remaining 500 datasets from Simulation II. The fifteen differential metabolites are listed
by the number of pathways (enriched) in which each is included. An adaptive and a
fixed estimation of µ̃ are compared to the unweighted results. Median and maximum
Type I error rates for the 132 non-differential metabolites are given in the bottom rows.

Metabolite µ̃ = P75 µ̃ = 2 Unwt.

5(2) 0.422 0.362 0.3
5(1) 0.568 0.394 0.32
5(0) 0.746 0.408 0.312
4(2) 0.424 0.4 0.312
4(0) 0.066 0.172 0.358
3(2) 0.356 0.37 0.312
3(1) 0.278 0.334 0.288
3(0) 0.23 0.314 0.304
2(2) 0.332 0.372 0.296
2(1) 0.538 0.392 0.292
2(0) 0.236 0.292 0.298
1(1) 0.328 0.368 0.308
1(1) 0.252 0.284 0.34
1(0) 0.694 0.398 0.302
1(0) 0.206 0.298 0.294

Median Error 0.041 0.050 0.050
Max Error 0.104 0.078 0.074

The fixed estimate of µ̃ = 2 shows more consistent, though marginal, increases

in detection rates among the fifteen differential metabolites. The adaptive estimate

of µ̃ = P75(S̃) shows stronger gains but they are balanced by stronger losses. Error

rates are near to the nominal 0.05 rate, however, the adaptive estimate gives a wider



73

spread of errors with one metabolite being falsely detected in up to 10.4% of the

datasets.

For the application to the Sreekumar et al. (2009) [60] metabolite data we accept

the potential losses of the adaptive method in favor of the potential for strong gains.

Thus we use the sum of squares enrichment test for gene expression with the CDF

weight function using µ̃ = P75(S̃). Additionally we use the seventy-fifth percentile

summary for metabolites that participate in multiple pathways. The resulting shift

in p-values can be seen in Figure 3.14.
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Figure 3.14: Scatterplot comparing weighted and unweighted p-values for each of the 147
mapped metabolties in the Sreekumar et al. (2009) [60] metabolite dataset. The
matched gene expression data were used to construct the weights.

Twenty-five metabolites were found to be significant at p < 0.05 by both the

weighted and unweighted p-values. There was a loss of eight metabolites by the
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weighted method; homocysteine, asparagine, bradykinin, cysteine, leucine, malate,

N-acetylaspartate, and oxalate. However, there was a gain of ten metabolites result-

ing in a net gain of two metabolites; N-acetylneuraminate, adenine, argininosucci-

nate, aspartate, glycerol, guanosine, hypoxanthine, orotidine-5’-phosphate, spermine

and xanthosine. In the original publication [60] leucine was listed as a metabolite up-

regulated from benign to metastatic disease so this loss is notable. Additionally there

was an enrichment of amino acids detected in the differential metabolites originally

and some are lost with the weighted analysis (e.g. leucine, cysteine) but aspartate is

gained. Finally, sarcosine, which was of primary interest originally, had a decreased

p-value in the weighted analysis (0.029 unweighted; 0.016 weighted) suggesting that

this finding is supported by gene-set enrichment results.

3.6 Discussion

Here we have explored the utility of p-value weighting to enhance the power to

detect differential metabolites. Gene set enrichment scores were used to summarize

the gene expression data. Four enrichment tests of varying style and five weight

functions were considered. As expected, the CDF function (D, orange) is better

suited to the integration of gene expression and metabolite data by pathways than the

exponential function (E, red) which is better suited for strong and sparse regions of

upregulation. The standardized enrichment test statistic (C, purple) also performed

well. Standardization of the enrichment test statistic makes the distribution of the

test statistic better behaved than if the absolute statistic (B, blue) were used directly.

However, the CDF function of the standardized test statistic is more robust when the

tails of the per-gene test statistics are long. The p-value weight (A, green) performed

well in Simulation I (Section 3.4.1) but had mixed results in the more complex second



75

simulation (Section 3.4.2). In contrast, the absolute test statistic (B, blue) performed

very poorly in Simulation I but performed moderately well in the second simulation.

Considering both simulations we recommend using the CDF function (ωk = Φ(S̃−

µ̃), with S̃ = S−E(S0)√
V ar(S0)

and µ̃ = 2) when the distribution of the per-gene test statistics

has long tails. Alternatively, a thresholded enrichment test can be used which ignores

the magnitude of the per-gene test statistics by classifying each test as differential

or not. In application we discovered that the use of µ̃ = 2 may not be optimal and

an adaptive method for estimating µ̃ was explored. This adaptive method produced

more consistent gains for some differential metabolites but also resulted in more

severe losses. The choice of a fixed or adaptive µ̃ should be made in consideration of

the study goals.

When a continuous enrichment test is desired, we prefer the self-contained sum of

squared statistic test to the weighted Kolmogorov-Smirnov (K-S) test. This may be

the difference between a self-contained and a competitive test for the application of

summarizing gene expression information for constructing weights. Alternatively, the

weighted K-S test has been receiving poor reviews in the recent literature (e.g. Ack-

erman and Strimmer, 2009) so perhaps a different continuous-measure competitive

test would have better performance.

Another appealing feature of the p-value weighting method is that all metabolites

can be considered in the analysis. Currently, as few as one third of the metabolites

measured are identified (Sreekumar, 2009). As mass spectrometry libraries are ex-

panded this number will increase but those metabolites that are unknown or are not

mapped to gene expression are simply awarded a weight of 1. This does not adjust

the p-value nor does it affect the requirement that the weights average to 1. Thus

the unidentified metabolites are tested as they would have been had weighting not
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been considered.

Moving forward, we plan to explore other methods of summarizing the gene ex-

pression data to construct weights for the metabolites. Combining the data on a

pathway level can lose power as the number of pathways to which the metabolite be-

longs increases. We are thus working on a method to summarize the gene expression

information on a per-metabolite basis.

We additionally considered two weighting functions that include the metabolite

data in the weight. The appeal of these weight functions is that the gene expression

information would not be allowed to dominate the metabolite data. Expanding

on the grouped weight method of Roeder et al. (2006) [53] we define groups using

the metabolic pathways and the weight as a mixture of the estimates of gene set

enrichment and metabolite enrichment. We hoped that inclusion of external gene

expression information would reduce the bias of an internal weight since the number

of metabolites per group is often smaller than the twenty recommended by Roeder

et al. (2006) [53] to engage the sieve principle. We used either the percentage of

metabolites measured per group or the correlation between the gene expression and

the metabolite data to determine the mixing parameter. However, in simulation

this method produced inflated type I error rates for both weight functions and the

method was abandonded. For clarity details are omitted here but interested readers

can see Appendix B.



CHAPTER IV

Integrative pathway enrichment testing methods for joint
assessment of multiple omics platforms

4.1 Introduction

In case-control studies we are interested in comparing two groups of samples on

a collection of measured variables possibly associated with case status. When the

variables of interest are measurements from a high-throughput molecular assessment,

such as from a gene expression microarray, the result is thousands of comparisons.

The resulting list of differential genes can be unwieldy with hundreds of entries.

Given this, researchers are often interested in grouping these lists into sets of genes

with common functionality. The area of enrichment testing looks at an a priori

defined gene set, such as from KEGG (Kyoto Encyclopedia of Genes and Genomes)

or GO (Gene Ontology), and asks if the number of differential genes in the set is

remarkable; either more or less than expected.

When the high-throughput assessment is metabolomics the number of molecules

measured is reduced by at least an order of magnitude compared to gene expression

assays [60, 70]. But the list of differential molecules can still be lengthy with respect

to the number of leads feasibly followed. Thus, the desire to elucidate common

functional patterns remains. The pitfall with a smaller list is that the sets of interest

may not be represented well for testing. For instance, if three molecules are measured

77
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from a given set and two are differential this is 67% enrichment but it may not be

statistically significant and it is not clear if it is biologically interesting.

Enrichment tests work by assessing the overall evidence of differential behavior

of the elements (e.g. genes, metabolites) within the set. Tests that do not depend

on dichotomizing the elements, into differential and not, are able to incorporate

even moderate changes [64]. When we have measured many molecular aspects, e.g.

gene expression, metabolites, proteins, it seems beneficial to assess their differential

tendencies jointly across platforms. Integration of omics technologies has proved

to be beneficial in other areas resulting in more interpretable results [45] and more

meaningful associations [17] than when the platforms are assessed separately. In

an effort to translate this success to the area of set enrichment we explore two set

enrichment tests and describe methods for their multivariate application.

We begin with an overview of enrichment testing theory in Section 4.2. The

methods of interest are described in Section 4.3 and the multivariate extensions are

detailed. We explore the properties of these methods by simulation as detailed in

Section 4.4. A metabolomics dataset [60] and related gene expression dataset [68]

are used in Section 4.6 for an application of the top methods to existing data. We

conclude with discussion and recommendations in Section 4.7.

4.2 Background on Enrichment Testing

Recently enrichment testing methods have been classified into two general flavors;

competitive and self-contained [24, 48, 64]. Additionally two resampling methods are

commonly used to assess the null hypotheses of these models [48]. In this section

we introduce these testing styles and their underlying null hypotheses. We describe

the resampling methods used for estimating the null distribution of the test statistic
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Table 4.1: The general scheme for a hypergeometric test of differential genes A set of G
genes is divided by the criteria of inclusion in the set of interest (S) and inclusion in the
set of differential genes (D).

Differential Non-differential
gene (D) gene (D′) Total

In the set (S) GSD GSD′ GS
Not in the set (S′) GS′D GS′D′ GS′

Total GD GD′ G

and discuss the pros and cons of each method. For clarity the following discussion

will use gene expression as the omics platform of interest, however these methods

are applicable to any omics platform whose elements can be classified into a priori

defined sets.

For reference we define the 2×2 classification depicted in Table 4.1. Here G genes

have been individually tested for differential expression, perhaps using two-sample

t-tests per gene. An interesting set of genes S has been defined. We can classify each

of the G genes by whether they are differential (D) and whether they are in the set

of interest (S).

4.2.1 Competitive Tests

For a set of genes, S, a competitive test assesses whether the amount of differential

expression differs from that of its complement S ′. The competitive null hypothesis,

Hcomp
0 , then assumes that

Hcomp
0 : genes within the set S show the same amount of association with

the phenotype as those in set S ′

[64, 24]. In this way each gene set competes against its complementary set of mea-

sured genes.

A popular competitive set enrichment test is the Fisher’s Exact test run on Table

4.1. The Fisher’s Exact test assesses independence of the columns and rows and a
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(i) (ii)

D D′ Total

In set A 4 4 8
In set B 6 2 8

Total 10 6 16

D D′ Total

In set A 4 4 8
In set C 2 6 8

Total 6 10 16

Table 4.2: An example of the relative estimation problem in competitive tests Consider
testing a set A in which half of the genes are differential (D). Table (i) uses set B as the
reference set and table (ii) uses set C as the reference group, where sets B and C switch
labels D and D’.

significant result suggests that the rate of differentially expressed genes is associated

with pathway status. Specifically, we test that Pr(GSD 6= gSD|GS = gs, GS′ =

gS′ , GD = gd), assuming GSD ∼ Hyper(GS, GS′ , GD), where GSD, GS and GS′ are

defined as in Table 4.1. As it is a two-sided test, a detected association may be

due to enrichment or depletion of differential genes. The Fisher’s Exact test is a

competitive test in that it uses information on the differential expression of genes

not in the set.

The chief complaint against enrichment tests based on relative enrichment estima-

tion is that the significance of a set S can differ depending upon the gene sets used

for the reference set S ′ [2]. Consider the gene sets A, B, and C as depicted in Table

4.2.1. Each of the three sets has eight genes with 50%, 75%, and 25% enrichment,

respectively. If we compare set A to set B, as in Table 4.2.1i, then the one-sided

hypergeometric test is Pr(GAD > 4|G = 16, GD = 10, GA = 8) = 0.69. However, if

we compare set A to set C, as in Table 4.2.1ii, then the one-sided hypergeometric

test is P (GAD > 4|G = 16, GD = 6, GA = 8) = 0.06. Clearly the significance of

the enrichment in set A is affected by the reference set though the number of genes

called differential in set A does not change.
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Though viewed as a limitation, critics concede that relative estimation is useful

when there is a large number of genes that are differential, as when comparing cancer

versus normal tissue [24, 48]. In essence, competitive test results can be used to rank

a series of gene sets of interest thereby distinguishing potentially interesting results

from those arising by chance.

An additional argument against competitive testing is that most rely on gene-

resampling to generate the null distribution [48, 24]. Essentially we can rewrite

Hcomp
0 to say that S has as many differential genes as if they were drawn by chance

from the set of all genes, S ∪ S ′. Empirical estimates of the null hypothesis are then

generated by randomly sampling GS genes from S ∪S ′ and repeating the test on the

random set S∗.

Arguments against gene-resampling methods are three-fold: lack of independence

between genes, improper p-value interpretation, and sample size inflation. First, un-

der gene-resampling we assume that the genes are independent with no distinction

other than the label of differential (D) or not, (D′). However, we know that it is

not accurate to assume that the expression levels of the full complement of genes

are independent. Thus, it is possible that evidence against the null hypothesis ac-

tually reflects the underlying correlation structure of the genes and does not reflect

a true enrichment of differential expression [64]. One may argue that identification

of strongly correlated genes may also be valuable but it is important to understand

that this may arise.

The second criticism of gene-resampling methods, as pointed out by Goeman

and Bühlmann (2007) [24], is that the generated p-value must be interpreted in

the context of gene sampling. We define a p-value to be the probability that a test

statistic as extreme, or more, is observed when the experiment is repeated hundreds of
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times and the null hypothesis is true. Under a gene sampling scheme the experimental

unit becomes the gene and the p-value indicates confidence that a new set of genes

would show similar association with the set of interest. No claims can be made,

however, about the association should a new set of biological samples be procured.

Finally, when constructing a test based on gene sampling, the “sample size” be-

comes the number of genes, G, which is often larger than the number of biological

samples by a few orders of magnitude. This leads to sample size inflation and an in-

flation of power [24]. In an extreme example, Breitling et al. (2004) [7] claim that the

2x2 table can be used to produce meaningful statistical results with only a single pair

of biological samples — one case and one control — used to determine differential

genes, say through a thresholded ranked list of ratios.

4.2.2 Self-contained Tests

In contrast to competitive tests, self-contained tests do not utilize S ′ in the as-

sessment of S. Specifically, we consider only the first row of Table 4.1 and ignore the

second row. The self-contained null hypothesis, Hsc
0 , assumes that

Hsc
0 : the gene set S does not contain any genes whose expression levels

are associated with the phenotype of interest

[64, 24].

In a simple example, we can test the cell GSD in Table 4.1 using a binomial test

of proportions based on GSD ∼ binomial(GS, α), where α is an expected rate of

differential genes which can be set to zero or the expected error rate, say α = 0.05.

Notice that, contrary to the relative estimation of the competitive hypergeometric

test, this self contained binomial test gives the same p-value for both Table 4.2.1i and

Table 4.2.1ii. Specifically, the one sided test of Pr(GAD > 4|GA = 8, α = 0.05) =
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1.5× 10−5.

An additional benefit of testing Hsc
0 is that it reduces well so that gene sets of

size one are treated as a differential expression test. At the other extreme it can

be used as a global test of differential expression using the entire microarray as

the set of interest [24]. Arguments against self-contained tests focus on the strong

null hypothesis in relation to its biological interpretation. In particular, a single

differential gene may be able to give enough evidence to reject the null hypothesis

depending upon the differential threshold used and the number of genes in the set,

however, this may not represent a biologically interesting result [24].

In their favor, self-contained tests primarily utilize subject-resampling methods

rather gene-resampling to determine the null distribution of the test statistic [48].

Subject-resampling assumes that the subjects are independent and that under the

null hypothesis the sample labels are meaningless and could have been assigned

randomly. Permutation testing is a common method of subject-resampling in which

the diagnostic class labels are shuffled between subjects and the test is repeated

under the new assignment.

In contrast to gene-resampling, subject-resampling follows the experimental de-

sign of most studies by assuming that the subjects are independent realizations of the

study population. By sampling the subjects the between-gene correlation structure

is maintained. Additionally, the sample size is reflective of the number of subjects

included and the p-value is generalizable to experiments with new subjects under

study.

Subject-resampling tests are not without objection though. First, while gene

sampling methods exaggerate the sample size, subject-resampling tests are limited

by their often small sample size. In this way, p-values derived from permutation
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testing may be coarse and the level of discrimination desired may not be available

[2, 48]. Second the null hypothesis being tested by subject sampling may be more

difficult to state, especially when it is used to assess competitive tests (see Section

4.2.1).

4.2.3 Other Tests and Recommendations

Nam and Kim (2008) [48] suggest that there is a third test style which uses a

null hypothesis intermediate to Hsc
0 and Hcomp

0 . This mixed null hypothesis, Hmixed
0 ,

states that

Hmixed
0 : none of the gene sets considered is associated with the phenotype

[44]. In essence it is a simultaneous test of all gene sets. Hmixed
0 is used by the GSEA

test [44, 61] and the GSA test [13]. However, rejection of Hmixed
0 only implies that

there is at least one set that is associated with the phenotype. Further steps are

required to make set-wise assessments.

Goeman and Bühlmann (2007) [24] note that tests of Hsc
0 are more sensitive than

Hcomp
0 for detecting changes within a set. However, Nam and Kim (2008) [48] show

by simulation that tests of Hsc
0 are not specific. The recommendation of Nam and

Kim (2008) [48] is vague such that a test should be chosen according to the interest

of the study, relying on Hmixed
0 as a moderate choice, but preferably testing all

three hypotheses simultaneously when possible as they each address slightly different

questions.

With respect to sampling methods, Nam and Kim (2008) [48] suggest that gene-

resampling methods be used when sample sizes are small. In contrast, Allison et

al. (2006) [2] suggests that both subject sampling and gene sampling methods be

considered as they are testing different hypotheses. Finally, some authors suggest a
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compromise that incorporates features of both gene sampling and subject sampling

such as in Erfon and Tibshirani (2007) [13]. In this work we consider both competi-

tive and self-contained methods. Gene-resampling and subject-resampling are used

according to the null hypothesis of the test.

4.3 Joint Assessment of Enrichment

We consider conducting tests of enrichment that incorporate both the gene ex-

pression and metabolite information. We begin with per-gene and per-metabolite

assessments of differential ability. Thus we have two vectors of test statistics, TG =

(TG1 , T
G
2 , . . . , T

G
g ) and TM = (TM1 , TM2 , . . . , TMm ), and their corresponding p-values,

PG = (PG
1 , P

G
2 , . . . , P

G
j ) and PM = (PM

1 , PM
2 , . . . , PM

j ), for the g genes and m

metabolites, respectively.

The univariate tests can be employed as a means of joint assessment by simply

concatenating the per-gene and per-metabolite test statistics to form a single vector

of data, e.g. T = (TG, TM). However, concatenation of the lists may lead to bias

favoring the larger dataset [59]. Additionally, the joined vectors must be made com-

parable before concatenation. For instance, if the different platforms have different

sample sizes, NG 6= NM , then two-sample t-tests per-element will not be comparable

as they have different degrees of freedom. Concatenating lists of p-values will resolve

this problem as they are comparable by design. However, p-values may not be as

precise if they were determined by empirical distributions and they lose directionality

that may be of interest.

Enrichment can be assessed separately for each of TG and TM and then combined

by considering intersections and unions of the individual enrichment test results.

This method may help with ranking sets of interest since sets that are enriched
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independently by both platforms are likely to be of interest. However, it does not

benefit by sharing of strength between the platforms. To arrive at a single statistic we

can join the two results using a p-value combining method such as Fisher’s method

[46]. Here we assume that −2× (logeP
M
S + logeP

G
S ) ∼ χ2

4 for the enrichment p-values

for metabolites and genes in set S. However, the χ2 distribution is not correct when

the tests being summed are dependent [73] which is likely the case here.

In the following we propose multivariate extensions of two univariate tests that use

the information from each platform to form a single test of enrichment. As described

below, we consider extending the competitive logistic regression test of Sartor et al.

(2009) [57] and the self-contained sum of squared statistics [1]. We compare our

multivariate extension to the univariate tests of each platform, the univariate test of

concatenated datasets, and the sum of p-values in Section 4.4.

4.3.1 Competitive test: Logistic regression analysis with 2-df Wald test

Logistic regression was introduced by Sartor et al. (2009) [57] as an alternative

test to the Fisher’s Exact test which does not require dichotomization of the genes

into differential and not. The logistic model proposed by Sartor et al. (2009) [57] is

logit(Pr(Gj ∈ S)) = γ0 + γ(−log10(p
G
j )) where pGj is the p-value from the per-gene

test of differential expression for gene j. The test ofHLR
0 : γ = 0 can be obtained from

standard statistical software using a 1-degree of freedom Wald test where rejection of

HLR
0 indicates enrichment or depletion of the set. This is a competitive test because

it takes an indicator of the genes inclusion in the set of interest, S, as the dependent

variable, thereby comparing genes in S to all other genes, i.e. S ′.

For the joint assessment we begin by modelling the genes and metabolites sep-

arately using the absolute value of the per-element t-statistic as the measure of

differential ability. We chose to use the absolute t-statistic instead of −log10(p) be-
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cause it appeared to be more stable in bootstrap resampling described below. Thus

for set S we fit the following two models:

(4.1) logit(Pr(Gj ∈ S)) = γ0 + γ(|TGj |)

(4.2) logit(Pr(Mk ∈ S)) = µ0 + µ(|TMk |).

We construct a joint test of HLR
02 : γ = 0, µ = 0 using a two degree-of-freedom

Wald test. Specifically, EV −1ET , where E = [γ̂, µ̂], and V is an estimated variance-

covariance matrix for γ and µ. We can obtain estimates of the variance of γ and µ

from the univariate model estimates. However we do not have a convenient estimate

of the correlation between the two parameters.

To estimate the correlation between the esimates γ̂S and µ̂S, for pathway S, we

construct the bootstrap distributions of the two parameters, say γ̃ = (γ̃1, γ̃2, . . . , γ̃B)

and µ̃ = (µ̃1, µ̃2, . . . , µ̃B). We use row-resampling which reflects the use of genes and

metabolites, not subjects, as input into the model. Through simulation we found

that subject-resampling, which does not reflect the use of genes and metabolites as

input into in the logistic regression model, dramatically underestimates the variance

of the parameters compared to the variance estimates obtained from the univariate

models of Equations 4.1 and 4.2. Additionally, when resampling the elements, we

stratify the sample by inclusion in S to retain a fixed number of elements in S in

each bootstrap sample. That is, for the set S we can split TG into TGS and TGS
′
.

We sample n(SG) genes from TGS with replacement, where n(SG) is the number of

genes in S. The remainder of the genes are sampled with replacement from TGS
′
.

The metabolite test statistics are then resampled in the same fashion. Stratification

is especially important for platforms that tend to have small set counts.
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Upon generation of B bootstrap estimates of γ and µ, γ̃ = (γ̃1, γ̃2, . . . , γ̃B) and

µ̃ = (µ̃1, µ̃2, . . . , µ̃B), we can compute an estimate of the correlation ργµ =corr(γ̃, µ̃).

To reduce convergence error associated with small samples sizes and logistic regres-

sion bootstrapping we use a one-step bootstrap procedure as described by Moulton

and Zeger (1991) [47]. Essentially the iterated weighted least-squares (IWLS) esti-

mation algorithm is seeded with the observed parameters values of (γ̂0, γ̂) for the

gene expression. Then, given the bth bootstrap resampled vector TGb, one step is

taken in the IWLS algorithm and the new estimate (γ̃0
b, γ̃b) is reported. The IWLS

algorithm is stopped here and not allowed to continue to convergence. One-step

estimation is particularly important for models on small sets where the full IWLS

can have problems of separation resulting in estimates nearing positive or negative

infinity. Such non-convergent estimates inflate the variance and in simulation the

variance estimates tended to be large compared to their model based counterparts

with some variances on the order of 103 and greater when n(S) = 4.

Through simulation we find that there is not strong correlation between the pa-

rameters γ̂ and µ̂ even in sets where the genes and metabolites were simulated to

be correlated. Figure 4.1 shows a histogram of N correlation estimates, each from

B = 500 bootstrap resamples, for a set S in which there is correlation between

genes, ρGG = 0.6, between metabolties, ρMM = 0.6, and between genes and metabo-

lites, ρMG = 0.25. The correlation in S ′ is not homogeneous and most genes and

metabolites are simulated to be independent. These correlations are defined further

in Section 4.4.2 where we have described our model for simulating data.

We see in Figure 4.1, i that the distribution of the estimates are fairly symmetric

about zero. If we perform Fisher’s transformation on the correlations to arrive at

standardized z-scores we see that the estimates are underdispersed compared to the
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Figure 4.1: Correlation of γ and µ (i) Correlation of the estimates of γ and µ do not differ much
from zero. (ii) They are under-dispersed compared to the expected normal distribution
under the Fisher’s z-score transformation.

quantiles of a standard normal distribution; see Figure 4.1, ii. The loss of correlation

is likely due to the row-resampling that is used for this bootstrap.

Given these findings, we assume that the correlation is zero between γ̂, and µ̂

for all sets. Thus V can be estimated as a diagonal vector with var(γ̂) and var(µ̂)

estimated from the univarite models. This reduces our test statistic to the sum of

the two one-degree-of-freedom tests. Specifically, the test statistic for set S can be

written as ULR
S = EV −1ET = γ̂2σ−2

γ +µ̂2σ−2
µ , where E = [γ̂, µ̂], and V = diag(σ2

γ, σ
2
µ).

We assume that ULR
S ∼ χ2

2 under the null hypothesis HLR
02 : γ = 0, µ = 0.

4.3.2 Self-contained test: Sum of squared statistics with 2-dimensional permutation
test

We begin with the test statistics measuring the differential ability TG = (TG1 ,

TG2 , . . . , T
G
g ) and TM = (TM1 , TM2 , . . . , TMm ), for each gene and metabolite, respec-

tively, separately. This enrichment test is simply the sum of all squared test statistics

within set S, WG
S =

∑g
i=j (TGj )2I(j∈S), for j = 1, . . . , g genes and I(a) is an indica-
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tor function where I(a) = 1 if a is true and 0 otherwise [1]. The statistic WM
S for

metabolites can be defined equivalently. Significance of WG
S and WM

S is determined

separately by generating the null distribution for each using permutation of sam-

ple labels to form null datasets. Notice that this is a self-contained test as it only

depends on the elements in the S but not S ′.

To obtain a two-dimensional test we must decide on a way to assess how ex-

treme the observed statistics (WG
S ,W

M
S ) are when compared to each pair of null

estimates (W̃G
S , W̃

M
S )h, h = 1, . . . , H. Marginally, we can simply estimate PG

S =

H−1
∑H

h=1 I((W̃G
S )h ≥ ŴG

S ) for genes and PM
S = H−1

∑H
h=1 I((W̃M

S )h ≥ ŴM
S ) for

metabolites. For a multivariate application we calculate the Mahalanobis distance

from the observed statistics (ŴG
S , Ŵ

M
S ) to the centroid of the cloud of permutation

statistic pairs.

The Mahalanobis distance on the H permutation statistics for set S can be written

as

(4.3) DSH =

√
((W̃

G

S , W̃
M

S )− 1(ψGH , ψ
M
H ))TV −1

H ((W̃
G

S , W̃
M

S )− 1(ψGH , ψ
M
H ))

where (ψGH , ψ
M
H ) are central measures of the H pairs (W̃G

S , W̃
M
S ) and VH is their

variance-covariance matrix [11]. The vector 1 is anH×1 vector of 1s. Given (ψGH , ψ
M
H )

and VH , the Mahalanobis distance can be calculated for any pair (WG
S ,W

M
S )

(4.4) DSH(WG
S ,W

M
S ) =

√
((WG

S ,W
M
S )− (ψGH , ψ

M
H ))TV −1

H ((WG
S ,W

M
S )− (ψGH , ψ

M
H ))

including the observed pair (ŴG
S , Ŵ

M
S ). Thus to calculate the joint permutation

p-value for (ŴG
S , Ŵ

M
S ) we calculate

(4.5) PGM
S =

1

H

H∑
h=1

I(DSH(W̃G
S , W̃

M
S )h ≥ DSH(ŴG

S , Ŵ
M
S )).

Figure 4.2 gives an example of the application of the Mahalanobis distance. Here

a cloud of points representing the null distribution is drawn from the bivariate normal
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Figure 4.2: Mahalanobis Distance (i) A contour plot overlaying the scatterplot of 100 random
draws from a bivariate normal distribution with mean zero, unit variance, and 50%
correlation. The centroid defined by the marginal means is noted by a blue square.
Three points of interest are added as the red triangle, orange diamond and purple circle
(ii) The distribution of the Mahalanobis distance from the centroid for each point in
the scatter with the three new points highlighted. Their rank can be used to determine
a p-value.

distribution, N2([0, 0], σ2
x = σ2

y = 1, σxy = 0.5). This hypothetical null distribution

is plotted with black circles in Figure 4.2i. The centroid (ψx, ψy), determined by

marginal means, is highlighted by a blue square. Though, in practice, each observed

pair of statistics would have a unique null distribution, we suggest three possible

observed pairs plotted here by a red triangle, purple circle, and orange diamond.

We chose to use the Mahalanobis distance metric since it accounts for the shape

or spread of the null distribution [11]. The utility of this become apparant when we

calculate the permutation p-values for each of the three hypothetical observations.

Figure 4.2ii provides a distribution for the distances of the null values (black circles)

from the centroid (blue square). The distance of each of the three hypothetical

observations to the centroid is marked by a like-colored vertical line. The orange

diamond, being near to the centroid (blue) is surpassed by most null values resulting
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in a p-value of 0.94. The red triangle is on the edge of the null distribution but is

still surpassed by a few null points so it is given a p-value of 0.04. The purple circle

is outside of the cloud of null points and thus results in a p-value < 1/H, where H

is the number of permutation datasets used.

Points such as the hypothetical purple observation in Figure 4.2 are of most in-

terest because they would be missed marginally. Additionally, had we not accounted

for the non-spherical shape of the null distribution, such as by using an Euclidean

distance measure, E(x, y) = (((x, y) − (ψx, ψy))
T ((x, y) − (ψx, ψy)))

1/2, the purple

point would not have been identified as extreme.

4.4 Simulation Models

We use simulation to assess the properties of our multivariate enrichment tests and

to compare them to various univariate methods. Two simulation models are used.

Each will be described in turn and results will be presented in the following section.

The pathway maps of the Kyoto Encyclopedia of Genes and Genomes (KEGG, [35,

36, 34]) were used as motivating examples; see also Appendix A. Thus in the following

we will use the term “pathway” instead of “set” to indicate an a priori defined

collection of genes and metabolites.

4.4.1 Disjoint Pathway Simulation

In this simulation model we assume that the genes and metabolites can be sep-

arated into fifty disjoint pathways. That is any gene or metabolite is included in

only one pathway. The correlation structure is the same for each pathway but no

correlation is assumed between pathways. Additionally, ten pathways are simulated

to have association with disease and the level of enrichment is consistent across these

pathways. This simple model with homogeneous pathways allows us to explore very



93

specific hypotheses about the properties of our methods.

Let Yij be the gene expression measurement for sample i and gene j. Likewise let

Zi′k be the metabolite intensity measure for sample i′ and metabolite k. The gene

expression measures and metabolite measures need not arise from the same subjects,

but it is possible for some or all samples to be matched by subject, i.e. i = i′. Define

Wi and Wi′ as the case-control status for samples i and i′, respectively, where

Wi,Wi′ =


1 case

0 control

We assume the data, Y and Z, can be sorted into P pathways. Let Ip be an

indicator for association of pathway p with case status,

Ip =


1 Associated pathway

0 otherwise

Furthermore, define the indicator variables gjp and mkp for the inclusion of gene j

and metabolite k, respectively, in pathway p,

gjp =


1 Gene j in pathway p

0 otherwise

; mkp =


1 Metabolite k in pathway p

0 otherwise

Define Dj and Ck as indicator variables of differential gene expression and dif-

ferential metabolite intensity, respectively, between cases and controls. We can use

pathway association to define Bernoulli distributions for Dj and Ck such that a gene

or metabolite has a chance d1 or c1 of being differentially expressed provided that

it is in at least one associated pathway, i.e. maxp(Ipgjp) = 1 and maxp(Ipmkp) = 1,
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respectively for genes and metabolites.

Dj ∼


Bern(d1), maxp(Ipgjp) = 1

Bern(d0), otherwise

; Ck ∼


Bern(c1), maxp(Ipmkp) = 1

Bern(c0), otherwise

Here d1, d0, c1, and c0 are fixed values and can be adjusted in simulation. To simulate

pathway enrichment we assign d1 > d0 and c1 > c0. Interestingly, as d1 → d0 (or

as c1 → c0) the effect of being in the pathway diminishes under the competitive

definition of enrichment because no pathway will be enriched above its complement.

However, this is not a concern for tests of the self-contained null hypothesis provided

that d1 and c1 are still sufficiently large, since they do not consider the elements in

the complement of the pathway

Let us then write the simulation model as:

(4.6)
Yij = α + βj + ωjD(Ipgjp)jWi + eYij

Zi′k = θ + φk + ηkC(Ipmkp)kWi′ + eZi′k

This additive model allows for a non-zero global mean expression (intensity) level

through α (θ). It assumes a mean expression (intensity) level per gene (metabolite)

as defined by βj (φk) which is modified for case samples by ωj (ηk) according to

the distributions D(Ipgjp)j (C(Ipmkp)k). We allow eYij
and eZi′k

to be correlated,

ρmg, in order to simulate matched samples. We also allow correlation between genes

ρgg = Corr(eYij
, eYij′

) and between metabolites ρmm = Corr(eZi′k
, eZi′k′

). In this

simulation model these correlations are limited to genes and metabolites within the

same pathway, thereby reducing the complexity of the simulated data structure.

The simulation of the data is then as follows:

1. Determine sizes Ngene, Nmetabolite, Nsample, Npathway

2. Determine case status Wi, i = 1, . . . , Nsample, fixing Ncase and Ncontrol
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3. Determine pathway associations Ip, p = 1, . . . , Npathway, fixing Nassoc and path-

way memberships gjp and mkp.

4. Determine correlation terms ρg,g, ρm,m, and ρm,g.

5. Jointly simulate the gene expression data matrix (size Ngene×Nsample) and the

metabolite data matrix (size Nmetabolite ×Nsample)

(a) Assume data is globally standardized per sample, α = 0 and θ = 0.

(b) Draw variance terms σ2
Yj
∼ χ−2

4 , for j = 1, . . . , Ngene and σ2
Zk
∼ χ−2

4 , for

k = 1, . . . , Nmetabolite.

(c) Draw element-wise mean terms βj ∼ N(0, 4σ2
Yj

), for j = 1, . . . , Ngene and

φk ∼ N(0, 4σ2
Zk

), for k = 1, . . . , Nmetabolite.

(d) Jointly draw y
′
ij and z

′

i′k from a multivariate normal distribution. Specifi-

cally,

(y
′

i
, z
′

i′) ∼MVN((β, φ),Σ
Y Z

),

where

Σ
Y Z

=



σ2
Y1

σY Y . . . σY Z σY Z

σY Y σ2
Y2

σY Z

...
. . .

...

σY Z σ2
ZNm−1

σZZ

σY Z σY Z . . . σZZ σ2
ZNm


and σ·· is chosen to retain the desired correlation ρ··.

6. Apply differential effects

(a) Draw mean effect sizes ωj ∼ Unif([−2.5,−0.5] ∪ [0.5, 2.5]), for j = 1, . . . ,

Ngene and ηk ∼ Unif([−1.5,−0.5] ∪ [0.5, 1.5]), for k = 1, . . . , Nmetabolite.
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(b) For fixed d1, d0, c1, and c0 draw Dj ∼ IpgjpBern(d1) + (1− Ipgjp)Bern(d0)

and Ck ∼ IpmkpBern(c1) + (1− Ipmkp)Bern(c0)

(c) Set yij = y
′
ij + ωjDjWi and zi′k = z

′

i′k + ηkCkWi′

For this simulation, we assume that the number of samples is the same for cases

and controls, with Nsample ∈ (30, 100). We allow the correlations to vary: ρY Y =

ρZZ ∈ (0.2, 0.6) and ρY Z ∈ (0.10, 0.25) where ρY Y = ρZZ > ρY Z . We consider

gene pathways with 20 measurements, i.e. NGp = 20, and metabolite pathways with

NMp ∈ (4, 20). The enrichment levels (d1, d0) and (c1, c0) are allowed to vary with

(d1, d0) = (c1, c0) ∈ [(0.5, 0), (0.25, 0), (0.10, 0), (0.25, 0.05), (0.05, 0.05), (0.10, 0.10),

(0, 0)] with the last three pairs representing null models.

4.4.2 Varying Pathway Simulation

This simulation model generates the same number of genes and metabolites in

total and per-pathway as for the disjoint simulation above. The simulation model

of Equation 4.6 is used as the basis of the data generation. However, mkp, gjp,

Dj, and Ck are fixed to construct clusters of genes and metabolites with varying

levels of association with disease. We also allow the pathways to overlap and to be

non-homogeneous in correlation structure and enrichment. This style of simulation

was used by Ackermann and Strimmer (2009) [1] in their review of various single-

platform enrichment tests. Here we can assess how well the methods are able to

detect various pathway types in a non-homogeneous setting. Null pathways are also

included providing a reference set for competitive tests and allowing us to estimate

false discovery.

The Ngene × Nsample gene expression matrix and Nmetabolite × Nsample metabolite

intensity matrix are drawn in blocks of NGp × Nsample genes and NMp × Nsample
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Table 4.3: The data are generated from 10 multivariate distributions with the following
correlation structures and differential patterns. Twenty genes and four metabolites are
drawn from each distribution (h = 1, . . . , 9). Background genes (n=820) and metabolites
(m=164) are simulated to be non-differential and without correlation, see distribution
h = 0.
Distribution (h) 0 1 2 3 4 5 6 7 8 9

% Differential Genes 0 100 100 100 100 100 100 0 0 0
% Differential Metabolites 0 100 100 100 0 0 0 100 100 100

ρY Y , ρZZ 0 0 r1 r1 0 r1 r1 0 r1 r1
ρY Z 0 0 0 r2 0 0 r2 0 0 r2

metabolites according to multivariate normal distributions h = 1, . . . , 9; see Table

4.3. These 9 distributions have varying levels of correlation and enrichment between

genes and metabolites. The remaining genes and metabolites required to reach size

Ngene and Nmetabolite, respectively, are drawn from distribution h = 0 to represent

the null elements.

The data are simulated as follows:

1. Set Ngene, Nmetabolite, Nsample, and Ncase, where Ncontrol = Nsample −Ncase.

2. Assume data is globally standardized per sample, i.e. α = 0 and θ = 0.

3. For each gene j, j = 1, . . . , Ngene, and each metabolite k, k = 1, . . . , Nmetabolite

(a) draw variance terms σ2
Yj
∼ χ−2

4 and σ2
Zk
∼ χ−2

4 ,

(b) draw element-wise mean terms βj ∼ N(0, 4σ2
Yj

) and φk ∼ N(0, 4σ2
Zk

), and

(c) draw mean effect sizes ωj ∼ Unif([−2.5,−0.5] ∪ [0.5, 2.5]) and

ηk ∼ Unif([−1.5,−0.5] ∪ [0.5, 1.5]).

4. Jointly draw yij and zik from each of the ten multivariate normal distributions

(h = 0, 1, . . . , 9, see Table 4.3). Specifically,

(a) for distribution h ∈ (1, 2, 3) containing NGp genes and NMp metabolites,

draw Ncontrol control samples from (y
i
, zi)h ∼ MVN((β, φ)h,Σh

Y Z
), and



98

Ncase case samples from (y
i
, zi)h ∼MVN((β + ω, φ+ η)h,Σh

Y Z
), where

Σh
Y Z

=



σ2
Y1

ρggσY1σY2 . . . ρmgσY1σZ3 ρmgσY1σZ4

ρggσY1σY2 σ2
Y2

ρmgσY2σZ4

...
. . .

...

ρmgσY1σZ3 σ2
Z3

ρmmσZ3σZ4

ρmgσY1σZ4 ρmgσY2σZ4 . . . ρmmσZ3σZ4 σ2
Z4


and (ρgg, ρmm, ρmg) are defined in Table 4.3.

(b) for distribution h ∈ (4, 5, 6) containing NGp genes and NMp metabolites,

draw Ncontrol control samples from (y
i
, zi)h ∼ MVN((β, φ),Σh

Y Z
), and

Ncase case samples from (y
i
, zi) ∼MVN((β+ω, φ)h,Σh

Y Z
), where Σh

Y Z
is

as defined above.

(c) for distribution h ∈ (7, 8, 9) containing NGp genes and NMp metabolites,

draw Ncontrol control samples from (y
i
, zi) ∼ MVN((β, φ)h,Σh

Y Z
), and

Ncase case samples from (y
i
, zi) ∼ MVN((β, φ+ η)h,Σh

Y Z
) where Σh

Y Z
is

as defined above.

(d) for distribution h = 0 containing Ngene − 9 × NGp genes and Nmetabolite −

9×NMp metabolites, draw Nsample samples, that is for ncases and ncontrols,

from (y
i
, zi) ∼MVN((β, φ),Σh

Y Z
), where Σh

Y Z
= diag(σ2

Y , σ
2
Z)h.

As in the disjoint simulation, Section 4.4.1, we setNGp = 20 andNMp to be either 4

or 20. This results in 1000 genes and either 200 or 1000 metabolites, according to the

simulation parameters. The data are correlated for some genes and some metabolites,

though not all are correlated, see Table 4.3. The overall rate of differential expression

is 12% for the genes and 12% for the metabolites in each dataset.

To assess various pathway structures we subset these data into various “pathways”
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Table 4.4: Simulated pathways to be tested for enrichment. Each pathway p contains NGp

genes and NMp
metabolites drawn such that π- percent of the elements are from a

differential distribution h ∈ (1, 2 . . . , 9) and the remainder are from the null distribution
h = 0.Pathways 25–29 are constructed by random draws across all 10 distributions,
h ∈ (0, 1, . . . , 9). Pathways 30 – 70 are a disjoint partition of the null set, h = 0, so that
each element in this set contributes to at least one pathway.

π Distribution (h) 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9
0.5 10 11 12 13 14 15 16 17 18
0.25 19 20 21 22 23 24 - - -

of interest. In particular, we are interested to know how well each test can find

the 24 pathways described in Table 4.4. We also construct five random pathways,

i.e. pathways 25-29, where the pathway membership is a random draw from all

simulated genes or metabolites. These five pathways allow us to consider the rate

of non-specific pathway identification since genes and metabolites are selected across

all distributions h = (1, 2, . . . , 9). Finally, the remaining 41 pathways, i.e. 30–70,

are a partitioning of the null elements, h = 0, so that each element participates in

at least one pathway. The null pathways allow us to look at false discovery error

rates. The pathway participation indicators, gjp and mkp for pathway p, gene j and

metabolite k, respectively, are determined at the start of the analysis. Random draws

as required for pathways 10 - 29 are done once so that pathway membership is not

changing throughout the analysis since we would not expect this in application to

non-simulated data.

For clarity, an example of the indicator matrix, mkp, for the inclusion of metabolite

k in pathway p, is given in Table 4.5. This matrix represents a dataset of 200

metabolites assigned to 70 pathways of size NMk
= 4. Notice that accoring to Table

4.4, 100% of the metabolites of pathway p = 1 are drawn from distribution h = 1.

Likewise 50% of the metabolites in pathway p = 10 are drawn from distritubion
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h = 1 and 50% are drawn from h = 0. The randomly drawn pathways p = 25

and p = 29 are shown. Notice that pathway p = 25 does not include any of the

differential metabolites, k ∈ (1, . . . , 36), where as one differential metabolite, k = 4,

was selected to be included in pathway p = 29. Pathways p ∈ (30, . . . , 70) are formed

by a partitioning of the null metabolites, h = 0 and k ∈ (37, . . . , 200).

4.5 Simulation Results

Using the simulation models above we explored several enrichment testing meth-

ods. We are particularly interested in the two multidimensional methods that we

devised; the 2-df Wald test for logistic regression and the 2-dimensional permutation

test for the sum of squared statistics. For comparison we also considered the univari-

ate counterparts for these methods testing enrichment based on the genes alone and

on the metabolites alone. We also consider joining the data via concatenation and

joining the tests via Fisher’s method of combining p-values, abbreviated in figures a

“p-sum”. Each of these methods is described in Section 4.3. Finally, given its contin-

ued popularity, we also consider the Fisher’s Exact test, though no multi-dimensional

extension was devised.

4.5.1 Varying pathway simulation results

Let us first consider some results from the variable pathway simulation of Section

4.4.2. These simulations provide an overview of the behavior of the methods. For

each simulation scenario, 100 datasets were generated and tested. In Figures 4.4 and

4.5 we depict the frequency with with each pathway, from 1 – 29, was determined to

be significant at α = 0.05 for each test considered. The symbol key for these plots

can be found in Figure 4.3. The average rate of false positives is computed across

each of the 41 null pathways per test. Boxplots of these error rates across the 100
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k h 1 2 · · · 10 11 · · · 25 · · · 29 30 · · · 45 46 47 · · · 70

1 1 1 0 · · · 1 0 · · · 0 · · · 0 0 · · · 0 0 0 · · · 0
2 1 1 0 · · · 0 0 · · · 0 · · · 0 0 · · · 0 0 0 · · · 0
3 1 1 0 · · · 0 0 · · · 0 · · · 1 0 · · · 0 0 0 · · · 0
4 1 1 0 · · · 1 0 · · · 0 · · · 0 0 · · · 0 0 0 · · · 0
5 2 0 1 · · · 0 1 · · · 0 · · · 0 0 · · · 0 0 0 · · · 0
6 2 0 1 · · · 0 0 · · · 0 · · · 0 0 · · · 0 0 0 · · · 0
7 2 0 1 · · · 0 1 · · · 0 · · · 0 0 · · · 0 0 0 · · · 0
8 2 0 1 · · · 0 0 · · · 0 · · · 0 0 · · · 0 0 0 · · · 0
...

...
...

...
. . .

...
...

. . .
...

. . .
...

...
. . .

...
...

...
. . .

...
36 9 0 0 · · · 0 0 · · · 0 · · · 0 0 · · · 0 0 0 · · · 0
37 0 0 0 · · · 0 0 · · · 1 · · · 0 1 · · · 0 0 0 · · · 0
38 0 0 0 · · · 0 0 · · · 0 · · · 0 1 · · · 0 0 0 · · · 0
39 0 0 0 · · · 0 0 · · · 0 · · · 0 1 · · · 0 0 0 · · · 0
40 0 0 0 · · · 0 0 · · · 0 · · · 1 1 · · · 0 0 0 · · · 0
...

...
...

...
. . .

...
...

. . .
...

. . .
...

...
. . .

...
...

...
. . .

...
99 0 0 0 · · · 0 0 · · · 1 · · · 0 0 · · · 1 0 0 · · · 0
100 0 0 0 · · · 0 0 · · · 1 · · · 0 0 · · · 1 0 0 · · · 0
101 0 0 0 · · · 0 0 · · · 0 · · · 0 0 · · · 0 1 0 · · · 0
102 0 0 0 · · · 1 0 · · · 0 · · · 0 0 · · · 0 1 0 · · · 0
103 0 0 0 · · · 0 0 · · · 0 · · · 0 0 · · · 0 1 0 · · · 0
104 0 0 0 · · · 0 0 · · · 0 · · · 1 0 · · · 0 1 0 · · · 0
105 0 0 0 · · · 0 0 · · · 0 · · · 0 0 · · · 0 0 1 · · · 0
106 0 0 0 · · · 0 0 · · · 0 · · · 0 0 · · · 0 0 1 · · · 0
107 0 0 0 · · · 0 0 · · · 0 · · · 0 0 · · · 0 0 1 · · · 0
108 0 0 0 · · · 0 1 · · · 0 · · · 0 0 · · · 0 0 1 · · · 0

...
...

...
...

. . .
...

...
. . .

...
. . .

...
...

. . .
...

...
...

. . .
...

152 0 0 0 · · · 1 0 · · · 1 · · · 0 0 · · · 0 0 0 · · · 0
153 0 0 0 · · · 0 0 · · · 0 · · · 1 0 · · · 0 0 0 · · · 0

...
...

...
...

. . .
...

...
. . .

...
. . .

...
...

. . .
...

...
...

. . .
...

200 0 0 0 · · · 0 1 · · · 0 · · · 0 0 · · · 0 0 0 · · · 1

NMk
4 4 · · · 4 4 · · · 4 · · · 4 4 · · · 4 4 4 · · · 4

Table 4.5: This matrix represents an example mkp matrix for 200 metabolites (rows) and
70 pathways (columns) with pathway size NMk

= 4. The metabolite number, k, and
the distribution from which it was drawn, h ∈ (0, 1, . . . , 9), are listed to the left of the
indicator matrix.
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simulated data sets are presented in Figures 4.6 and 4.7. That is, one point on the

boxplot represents the average error rate for that test in one simulated dataset.

Univariate, Gene ●Univariate, Metabolite Univariate, Naive

*Fisher's Method Multivariate Test

Figure 4.3: The symbol key for Figures 4.4 – 4.7.

Looking at the univariate tests in Figure 4.4 (univariate gene, blue square; uni-

variate metabolite, purple circle) we see the behavior that we would expect for the

different test styles. The tests are able to detect pathways 1–9 according to their

enrichment. Genes but not metabolites are detected for pathways 4–6. Metabolites

but not genes are detected for pathways 7–9 but not perfectly in the competitive

Fisher’s exact and logistic regression tests (panels A and B). This is likely due to the

small pathway size, NMp = 4 in this simulation. In fact the Fisher’s exact test loses

all ability to detect metabolite enrichment beyond 100% enrichment. The logistic

regression model has about 50% detection of the metabolite pathways when they are

50% enriched, pathways 10–12 and 16–18. This distinction is likely due to the loss of

information in the Fisher’s exact test due to dichotomization of genes and metabo-

lites as differential or not. The logistic regression model does not require this and can

make use of even marginal effect sizes. The self-contained sum-of-squared statistic

(panel C) test only begins to have trouble detecting the metabolite enrichment at

25% enrichment, pathways 19-21.

When we turn our attention to the multivariate methods we see that the mul-

tivariate tests (red diamonds) show a similar pattern to the results from p-values

combined by p-value sum (i.e., Fisher’s method; black stars). For the competitive



103

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29Path
0

20

40

60

80

100

Frequency G+M G M G+M G M G+M G Random
100% Enriched 50% Enriched 25% Enriched Random

● ● ●

● ● ●

● ● ●

● ● ● ● ● ●
● ● ●

● ● ● ● ● ● ● ● ● ● ●

* * * * * * * * * * * * * * *

* *
*

* * * * * * * * * * *

A. Fisher's Exact Tests

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29Path
0

20

40

60

80

100

Frequency G+M G M G+M G M G+M G Random
100% Enriched 50% Enriched 25% Enriched Random

●
● ●

● ● ●

● ● ●

●
● ●

● ● ●

●

●
●

● ● ● ● ● ● ●
● ● ● ●

* * * * * * * * * * * * * * *

*
* * * * * * * * * * *

* *

B. Logistic Regression

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29Path
0

20

40

60

80

100

Frequency G+M G M G+M G M G+M G Random
100% Enriched 50% Enriched 25% Enriched Random

● ● ●

● ● ●

● ● ● ● ● ●

● ● ●

● ● ●

●
● ●

●
● ● ●

●

●
●

●

* * * * * * * * * * * * * * * * * * * * * * * *
*

* * * *

C. Sum of Squared Statistics

Figure 4.4: Simulation results for 1000 genes and 200 metabolites generated for 30 sam-
ples. Seventy pathways are assumed with pathways 31–70 representing null pathways.
The correlation values are ρGG = ρMM = 0.20, and ρMG = 0.10. Four metabolites
and 20 genes are included in each pathway. The symbols represent the frequency of
rejecting the null hypothesis in 100 simulated datasets. The symbol key can be found
in Figure 4.3.
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tests these two methods tend to follow the gene expression data results. There is

some improvement in the metabolite only pathways number 16–18. For the logis-

tic regression test they also show a moderate effect, between that of the gene and

metabolite only tests for pathways 19-24 (panel B). All methods appear to perform

maximally in the self-contained sum-of-squared statistics test. Increased power is

even provided to pathways 19-21 (panel C).
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Figure 4.5: Simulation results for 1000 genes and 1000 metabolites generated for 30
samples. Seventy pathways are assumed with pathways 31–70 representing null path-
ways. The correlation values are ρGG = ρMM = 0.20, and ρMG = 0.10. Each pathway
includes 20 metabolites and 20 genes. The symbols represent the frequency of rejecting
the null hypothesis in 100 simulated datasets. The symbol key can be found in Figure
4.3.
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In Figure 4.5 the metabolites now have large pathway memberships, NMp = 20,

to be more comparable to the gene pahtways of size NGp = 20. The metabolite

intensities are still generated with lower effect size than the gene expression values.

What stands out in this figure are the orange triangles representing the concatenated

data. In Figure 4.4 the Ngene = 1000 dataset dominated the Nmetabolite = 200 dataset

in the concatenated list. This is noticable by the orange triangles closely following

the pattern of the blue squares of the gene-only analysis. However, in Figure 4.5,

Ngene = Nmetabolite = 1000 so the concatenated list is showing more mixed results.

For the Fisher’s exact test (panel A) the strength of a single enriched platform gets

muddied by the non-enriched platform as in the gene-only and metabolite-only path-

ways numbered 13–18. Additionally, the pathway detection frequency is improved

for the 25% enrichment pathways numbered 19-21, showing rates exceeding either

single platform method. For the logistic regression tests (panel B) the concatenated

data is still more closely related to the gene expression data. This is likely due to

the higher effect sizes of the gene expression data compared to the metabolite data.

The other combined p-values (black star) and 2-df Wald test (red diamond, panel

B) appear to be improved for the low enrichment case of 25% enrichment for genes

and metabolites, pathways 19-21. This shows that the joint enrichment methods are

useful in these marginal cases.

The sum-of-squared statistics test (panel C) continues to perform maximally for

all tests. One other distinction between this self-contained method and the two

competitive tests (panels A and B) can be seen in pathways 25–29. These five

pathways were determined by random selection. Given that 12% of the genes and

metabolites are simulated to be differential in the full dataset these five pathways

will have 12% enrichment on average. These pathways are not detected by the
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competitive tests because the null hypothesis for the competitive test can be written

as Hcomp
0 : S has as many differential genes as if they were drawn by chance from the

set of all genes, S ∪ S ′.

To ensure that our power gains are real we must also look at the error rate of

these tests. Figures 4.6 and 4.7 are the corresponding error plots for Figures 4.4 and

4.5. The boxplots reflect 100 estimates of the average error rate across all 41 null

pathways. The striking feature of both plots is the high error rates for the näıve

concatenation of the data when using the Fisher’s exact test (panel A). This error

comes from a high rate of depletion calls. In essence these pathways are detected as

having too few differential elements. This problem is amplified when the pathway

size increases as in Figure 4.7. Given that there are now 40 elements per pathway in

the concatenated list, zero differential elements is significantly smaller than the 12%

expected by random selection.

The combined p-values also show inflated error rates for the competitive tests

(panels A and B) when the larger pathway size is considered, NMp = 20. This may

also be a symptom of detecting depleted pathways. Recall that in these competitive

tests the sample size for the test is based on the number of elements. The larger

pathway size may offer stronger depletion results that are then amplified by the

joining of the two tests.

We do not observe error inflation in the sum-of-squares statistic methods (panels

C). Firstly, the p-value is calculated for a one-sided test. Thus, as currently defined,

the sum of squares test cannot detect depletion. Second, the p-values are determined

by permutation so there is a limit on the level of precision for the p-values which

thus limits the precision of the p-value as combined by summation in the Fisher’s

method.
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Figure 4.6: Type I error associated with Figure 4.4. Each boxplot represents 100 measure-
ments of the error rate across the 41 null pathways.
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Figure 4.7: Type I error associated with Figure 4.5. Each boxplot represents 100 measure-
ments of the error rate across the 41 null pathways.
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4.5.2 Disjoint pathway simulation results

Now that we have the general pattern of operation for each of these methods let

us explore some specific hypotheses using the disjoint simulations of Section 4.4.1.

Recall that in these simulations we generate data for 50 disjoint pathways, of which

10 are designed to be enriched. The correlation structure is homogeneous in that

each pathway has the same structure. However, there is no correlation simulated

between pathways.

Here we use a different metric to assess the results of the methods. Specifically,

we ask, if we were to choose the top ten pathways by ranking p-values, would we

select the 10 associated pathways? Instead of looking at frequencies of being in the

top 10 we consider the sum of the ranks for the 10 associated pathways. When the

10 associated pathways form the top 10 pathways selected the sum of the ranks is

R =
∑10

x=1 x = 55. When there is no association between the pathway and disease

then the 10 pathways of interest should have a sum of the ranks distributed as

R ∼ Unif(55, 455) and we would thus expect R to fall near E(R) = 255.

Under the null model of no enrichment, that is d1 = d0 = c1 = c0 = 0, the rank

sum of the associated pathways fall nicely around E(R) = 255; see Figure 4.8. Under

the null model of uniform enrichment, that is d1 = d0 = c1 = c0 = δ we also see that

the rank sum of the associated pathways matches E(R) = 255 when δ = 0.05 as in

Figure 4.9 and when δ = 0.10 (data not shown).

To get a better understanding of the methods under specific scenarios we now

consider some non-null simulations. For reference we begin with Figure 4.10. This

simulation assumes that on average 25% of the elements in the associated pathways

are differential, that is d1 = c1 = 0.25 and d0 = c0 = 0. This results in a 5% rate of

differential elements within the datasets. We see that the sum-of-squares statistic,
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Figure 4.8: The sum of the ranks of the 10 associated pathways assuming no differential
elements were measured, that is d1 = d0 = c1 = c0 = 0. The correlation structure
ρGG = ρMM = 0.20, ρMG = 0.1 is assumed. Each of the 50 disjoint pathway were
simulated to contain 20 metabolites and 20 genes. Nsample = 30.
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Figure 4.9: The sum of the ranks of the 10 associated pathways assuming a constant
probability of differential elements across the pathways measured, that is d1 =
d0 = c1 = c0 = 0.05. The correlation structure ρGG = ρMM = 0.20, ρMG = 0.1 is
assumed. Each of the 50 disjoint pathway were simulated to contain 20 metabolites
and 20 genes. Nsample = 30.
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R, achieves nearly perfect rank sums for all tests. In the competitive tests we see

improvement in R when any of the joint tests are used compared to the univariate

gene or metabolite tests.

Under the higher correlation model shown in Figure 4.11, R is larger in the com-

petitive tests compared to the lower correlation model of Figure 4.10. The loss of

power is possibly due to loss of information attributed to the dependent measure-

ments. However, it is not likely that such high correlations will be homogenously

present in real applications [9, 66].

We next consider the behavior of the test in a scenario of few differential elements;

see Figure 4.12. Here we set d1 = c1 = 0.1 and d0 = c0 = 0. The overall enrichment

is 2% on average so the competitive tests still perform better than if the pathways

were randomly assigned. Since d1 and c1 are probabilities we expect that on average

10% of the elements of the associated pathways are differential. It may be the case

that one, or none of the elements are simulated to be differential. These low counts

likely contribute to the increase in R for the sum-of-squared statistics in Figure 4.12.

Finally, we consider the model where d1 = c1 = 0.25 but d0 = c0 = 0.05, that

is we simulate noise in the null pathways; see figure 4.13. It is in this scenario

that the sum-of-squared statistic begins to falter. In fact we see that, beyond an

increase in R, under this scenario the joint enrichment test performs more poorly

than the univariate tests of the gene or metabolites alone. It is not surprising that

this self-contained test performs poorly as this non-specific behavior is a criticism of

self-contained method. It is surprising, however, that the joint methods appear to

fare worse in this situation. However, notice that R is still less than E(R) = 255.



112

55 255 455

●

●●●

●● ●●

Univariate Gene

Univariate Metabolite

Univariate Naive

P−value Sum

100 200 300 400

Sum of ranks for 10 associated pathways

Fisher's Exact Tests

55 255 455

●

●

●●

●●●

●●●

Univariate Gene

Univariate Metabolite

Univariate Naive

P−value Sum

Multivariate Test

100 200 300 400

Sum of ranks for 10 associated pathways

Logistic Regression

55 255 455

●●● ●●● ●● ●● ●● ●●● ●●●●●

●● ● ●●●● ●●●●● ●● ● ●

●●

●●●●●●●

●●●

Univariate Gene

Univariate Metabolite

Univariate Naive

P−value Sum

Multivariate Test

100 200 300 400

Sum of ranks for 10 associated pathways

Sum of Squared Statistics

Figure 4.10: The sum of the ranks of the 10 associated pathways assuming 25% of the
elements are differential in these pathways, that is d1 = c1 = 0.25 and d0 = c0 = 0.
The correlation structure ρGG = ρMM = 0.20, ρMG = 0.1 is assumed. Each of the 50
disjoint pathway were simulated to contain 20 metabolites and 20 genes. Nsample = 30.
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Figure 4.11: The sum of the ranks of the 10 associated pathways assuming 25% of the
elements are differential in these pathways, that is d1 = c1 = 0.25 and d0 = c0 = 0.
The correlation structure ρGG = ρMM = 0.60, ρMG = 0.25 is assumed. Each of the 50
disjoint pathway were simulated to contain 20 metabolites and 20 genes. Nsample=30.
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Figure 4.12: The sum of the ranks of the 10 associated pathways assuming 10% of the
elements are differential in these pathways, that is d1 = c1 = 0.10 and d0 = c0 = 0.
The correlation structure ρGG = ρMM = 0.20, ρMG = 0.1 is assumed. Each of the 50
disjoint pathway were simulated to contain 20 metabolites and 20 genes. Nsample = 30.
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Figure 4.13: The sum of the ranks of the 10 associated pathways assuming 25% of the
elements are differential in these pathways, that is d1 = c1 = 0.25 and 5% of the
elements are differential in the remaining pathways, d0 = c0 = 0.05. The correlation
structure ρGG = ρMM = 0.20, ρMG = 0.1 is assumed. Each of the 50 disjoint pathway
were simulated to contain 20 metabolites and 20 genes. Nsample = 30.
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4.6 Application to prostate metabolomics and transcriptomic data

We apply these enrichment methods to the metabolomic data of Sreekumar et

al. (2009) [60] and the gene expression data from the same samples (unpublished).

There are 40 samples in this dataset; 16 adjacent benign prostate tissue, 12 localized

prostate tumors, and 12 metastatic prostate tumors. We consider the comparison

between localized tumor and benign tissues. We use the Kyoto Encyclopedia of Genes

and Genomes (KEGG, version 50, April 2009) to determine the pathway mapping.

Of 518 well measured metabolites, there are 147 metabolites that are named and

can be mapped to the KEGG pathways. Of the over 40,000 gene probes measured

on the Agilent Whole Human Genome microarray, there are 2169 genes that can be

mapped to KEGG. To prevent overcounting, probes representing the same gene are

averaged so that each gene is represented only once. There are 98 pathways in which

at least one gene and one metabolite are measured; see Appendix A.

Each of the enrichment methods is run on this data. As this is experimental data,

we do not know the true association of the genes and metabolites with the KEGG

pathways. To assess our results we compare the findings of each method. Figure 4.14

shows a selection of these comparisons. Here we consider the number of pathways

detected to be enriched at p < 0.05 using the logistic regression model. Additionally

the 15 pathways selected by at least one enrichment test are listed in Table 4.6.

Besides significance of the enrichment test (Y/N) the rank of the pathway by each

test is given in parentheses.

Considering the Venn diagrams of Figure 4.14 we see that only combining p-

values via p-value summation (i.e., Fisher’s method; panel ii) detects a pathway not

already detected by one or more of the univariate methods (panels ii – iii). However,
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Figure 4.14: Venn diagrams comparing enrichment methods Panels i, ii, and iii compare
the univariate methods to each of the joint enrichment tests for the logistic regression
model; (i) Univariate näıve, (ii) p-value sum, (iii) 2-df Wald test. Panel iv compares
the three joint tests.
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Table 4.6: The pathways identified by enrichment testing These 15 pathways were identified
by at least one of the five enrichment tests run on the logistic regression analysis with
the threshold α ≤ 0.05. The pathway ranks are presented in parentheses. The number
of metabolites NMp and genes NGp measured per pathway are provided for reference.

Pathway NMp
NGp

M G M +G P-sum 2-DF

ABC transporters 4 60 Y (1) N (15) N (67) Y (4) Y (4)
Neuroactive ligand-receptor 2 4 Y (2) Y (1) Y (2) Y (1) Y (1)
interaction
Nitrogen metabolism 12 140 Y (3) N (85) N (43) N (13) N (11)
Aminoacyl-tRNA biosynthesis 6 9 Y (4) N (67) N (36) N (12) N (13)
Arginine and proline metabolism 5 22 Y (5) N (19) N (8) Y (8) Y (8)
Autoimmune thyroid disease 1 40 N (32) Y (2) Y (1) Y (2) Y (2)
Asthma 1 26 N (73) Y (3) Y (3) Y (5) Y (5)
Biotin metabolism 26 38 N (46) Y (4) N (9) Y (7) Y (6)
Taste transduction 2 43 N (26) Y (6) Y (6) Y (6) Y (7)
Purine metabolism 9 205 N (6) Y (5) Y (4) Y (3) Y (3)
Fc epsilon RI signaling pathway 2 71 N (90) Y (7) Y (5) N (14) N (12)
Renal cell carcinoma 2 67 N (85) Y (8) Y (7) N (18) N (15)
Valine, leucine and isoleucine 11 31 N (98) Y (9) N (14) N (20) N (16)
biosynthesis
Glycerophospholipid metabolism 17 31 N (23) Y (10) N (10) N (10) N (10)
Fatty acid biosynthesis 6 5 N (9) N (11) N (86) Y (9) N (9)

the joint models provide a more refined list of pathways compared to using the

union of the results of the two univariate methods. It may be preferable to consider

those pathways with a significant joint association as preferred candidates for follow-

up. Panel (iv) of Figure 4.14 compares the results of these three joint enrichment

methods. We see that in this situation the sum of the p-values by Fisher’s method

selects nearly the same pathways as the 2-df Wald test. Since we are not assuming

correlation between γ and µ the 2-df Wald test is simply a sum of the univariate Wald

statistics so its behavior should be similar to the sum of −log(pγ) and −log(pµ) as

in the Fisher’s method. The similarity of these methods is also seen in their similar

pathway rankings given in Table 4.6.

Though we do not know the true result enrichment state in these observational

data it is interesting to consider the pathways listed in Table 4.6 according to current

knowledge of prostate cancer. First, in Sreekumar et al. (2009) [60] pathways of
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amino acid metabolism and nitrogen metabolism were identified as enriched. This is

supported by our analysis here with both the nitrogen metabolism and the arginine

and proline metabolism pathways detected by the metabolites alone. Valine, leucine

and isoleucine biosynthesis, another amino acid metabolism pathway, is detected by

the genes only but not by the joint tests.

The Fisher’s exact test methods behaved similarly to the logistic regression tests

shown in Figure 4.14. The sum-of-squared statistics tests were overly liberal identi-

fying over 90% of the pathways as enriched. This implies that there was a high rate

of differential elements throughout the datasets similar to the scenario of Figure 4.13.

Such background noise makes a competitive test the preferred choice of enrichment

test. Additionally this may suggest that the KEGG pathway maps, as applied, may

not accurately capture the co-regulation in the data.

4.7 Conclusion

In this work we have considered the application of two-dimensional set enrichment

testing methods for the joint analysis of transcriptomic and metabolomic datasets.

We consider two novel methods: the logistic regression 2-degree of freedom Wald

test and the 2-dimensional permutation p-value for the sum-of-squared statistics

test. Through simulation we explored the properties of these tests in relation to

their univariate counterparts and two simplistic joining methods, namely data con-

catenation and the Fisher’s method for combining p-values. We find that the joint

tests can improve our ability to detect results that are marginal univariately; see

Figures 4.4 and 4.5. We also find that joint tests improve the ranking of associated

pathways compared to their univariate counterparts; see Figures 4.10 and 4.11.

The various joint methods performed similarly for most simulations. The con-
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catenation of datasets and the Fisher’s method of combining p-values had inflated

error in the competitive test; see Figure 4.7. For the logistic regression test, the 2-df

wald test currently peforms similarly to the Fisher’s method for combining the two

p-values. This is likely due to the assumption that ργµ = 0 in the 2-df test. Non-

zero correlation would have provided a weighted sum in the 2-df test. Though we

were not estimating ργµ to be non-zero, the slightly inflated error rate of the Fisher’s

method test, see Figure 4.7, suggests that the independence assumption may not

always hold. In future work we will continue to explore if and when correlation may

be a contributing factor or if there are other methods for combining the tests in a

weighted fashion either at the level of the test statistic or p-value. Though perhaps

the most commonly known, Fisher’s method for combining p-values is only one of

many methods available [41].

One of the more attractive features of the 2-df Wald test and 2-dimensional per-

mutation test is that they can easily be extended to n-dimensions. This will allow

for the incorporation of multiple omics platforms such as proteomics, genomics, or

gene copy number. The data concatenation and sum of p-values methods can also

be extended, but this may compound their potential error.



CHAPTER V

Conclusions and future work

In this work we have explored three different avenues of omics integration impor-

tant to the area of cancer research; (1) the classification of samples, (2) biomarker

discovery, and (3) systems biology.

In Chapter II we utilized a classification method that allowed us to utilize a differ-

ential list of elements from a prior study to make prognostic or diagnostic predictions

about samples in a current study. We extended the classification method by providing

a testing scenario for the classifier. Though originally motivated by the integration

of in vitro and in vivo gene expression datasets we showed that it can be applicable

across omics platforms as well. We demonstrated our result on the metabolomic

and matched gene expression data of Sreekumar et al. (2009) [60]. We demonstrated

that the gene expression profile could be used to distinguish tissue diagnosis using

metabolomic intensities. Though the diagnosis of cancer in prostatectomy tissues is

not of clinical importance this same method could be used to derive classifiers for

biofluids in which classifiers are difficult to build because the true diagnostic state of

the patient is not fully realized.

In Chapter III we explored the use of p-value weighting to improve the power

of per-metabolite tests of differential intensity. Metabolites have the potential to be

121
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good biomarkers for screening, tracking disease progression, or for drug targeting [38].

However, metabolite levels can be affected by diurnal rhythms, diet, medications,

and other illnesses leading to noisy data and reduced effect sizes when comparing

populations [38]. We used the gene expression information per-metabolic pathway

to devise pathway-based weights. In this way, metabolites that are involved in a

pathway that is disregulated in its gene expression are given higher importance. With

many publicly available gene expression studies and the robustness of microarray

results we felt that this was an appropriate source of prior information. However,

the simulations were not platform-specific, and the recommendations in the chapter

can be applied to other omics platforms. In the future we would also like to consider

reaction-based models for the weights. A reaction-based approach will allow us

to derive a single weight per metabolite thereby removing the summarization step

currently needed when a metabolite participates in multiple pathways.

Finally, in Chapter IV we adopted a systems biology perspective to search for

sets of genes and metabolites that are coordinately differential. We extended two

univariate set enrichment tests to jointly test the gene expression and metabolite

data results. These tests readily expand to N-dimensions and may provide a means

for simultaneously testing a series of omics platforms. Further work will need to be

done to assess correlations between multiple omics pathways for the logistic regression

model as additional platforms are likely to contribute some redundant information.

Use of the score functions for the logistic regression model may prove helpful here.

Additionally, the simple meta-anaysis approach of the Fisher’s method for combining

p-values showed promise but any anti-conservative tendencies due to correlated tests

will be increased as more tests are added. Thus, going forward, we will consider

other meta-analysis techniques that either account for, or are robust to, correlations
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between tests.

Expanding on the work of this dissertation we see the potential for employing a

Bayesian approach. Hierarchical modelling may be used to assess importance of the

per-metabolite hypotheses from corresponding gene expression results as a Bayesian

corollary to the p-value weighting of Chapter III, lend themselves to hierarchical

modelling. In fact, Genovese et al. (2006) [20] allude to this extension in the future

work section of their paper. Concern arises with the minimal level of correlation

expected in a majority of the gene-metabolite pairs. However, the classificatory

ability of the gene signature on metabolite intensities in Chapter II strengthens the

idea that gene expression data could be used to develop a prior distribution for

the metabolomic data. Additionally, empirical Bayes approaches could possibly be

extended [16] in lieu of a fully Bayesian approach.

Additionally, an interesting experimental design question is whether or not to

assess the various omics on matched samples. Matching samples in a case-control

type comparative analysis certainly has its benefits since we can compare the case to a

measure of itself in a non-diseased state. However, the potential benefits of matching

samples are less obvious in omics integration. Some methods such as correlative

analysis are not possible without matched samples. However, methods such as the

enrichment tests of Chapter IV are less likely to be affected by sample matching since

summary measures of sample differentiation per element, e.g. two-sample t-statistics,

are used at the point of data integration. The variety of simulation models developed

in this thesis lend themselves to an exploration of this topic.
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APPENDIX A

Mapping genes and metabolites in the Kyoto Encyclopedia
of Genes and Genomes (KEGG)

To integrate the datasets we use the pathways maps of the Kyoto Encyclopedia

of Genes and Genomes (KEGG, www.genome.jp/kegg), [34, 36, 35]. These include

metabolic pathways, signalling pathways, and disease associated pathways. KEGG

has 200 pathways that are attributed to Homo sapiens (HSA). The pathway maps

are drawn to reflect the current literature at the time of the build (v. 50, April

2009). Of these, 165 pathways contain at least one compound ID. Gene information

can also be extracted from the pathways. All 200 HSA pathways include at least one

gene.

A.1 Gene mapping

There are 4686 unique geneIDs associated with the HSA pathways. Each gene ID

was associated with a single gene name except for seven that were associated with

two gene names (e.g., MYL10 and alias MYLC2PL). The gene IDs were mapped onto

the gene expression data using gene symbol as the index variable. The gene expres-

sion measures of Varambally et al. (2005) [68] were from an Affymetrix HU133Av2

genechip and the gene symbols were obtained from GEO (Gene Expression Omnibus,

www.ncbi.nlm.nih.gov/geo, August 2009) using the GPL570 platform information
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file. Of the 54675 probes on this array, 9491 probes mapped to a KEGG gene ID.

This translates to 4240 unique KEGG gene IDs represented on the array. Of the

gene IDs represented, 39.8% were represented uniquely (see Table A.1). The remain-

der were measured by multiple probes. The matched gene expression measures for

Sreekumar et al. (2009) [60] (unpublished data) were from an Agilent Whole Human

Genome Oligo Microarray and the gene symbols were obtained from GEO platform

information file number GPL1708 (March 2009). Of the 41675 non-control probes on

this array, 6566 probes mapped to a KEGG gene ID. This translates to 4161 unique

KEGG gene IDs represented on the array. Of the gene IDs represented, 59.9% were

represented uniquely (see Table A.1). The remainder were measured by multiple

probes.

Each of the 200 HSA pathways is represented on the Affymetrix array. The Aglient

array represents 198 of the pathways, excluding only “Fluorobenzoate degradation”

(pathway hsa:00364) and “1,4-Dichlorobenzene degradation” (hsa:00627). In Table

A.2 we consider the number of pathways to which a gene ID contributes to deter-

mine the ammount of overlap between pathways. On each array approximately 82%

of the genes are represented in three pathways at most. However, as almost half

(approximately 45%) of the genes are found in multiple pathways and this may need

attention in pathway based methods.

A.2 Metabolite mapping

There were 3076 unique compound IDs found among the HSA pathways. All

possible naming conventions for the molecule associated with the compound ID were

extracted from its description in KEGG (e.g. cpd:C00001 is named “H2O” or “Wa-

ter”). The compound name was used to map the KEGG compound ID numbers
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onto the metabolomics dataset [60]. The data were merged directly by compound

name and then additional curration was done by hand to resolve inconsistencies

in nomenclature. One hundred and eighty-seven (of 626) compounds were named

in the Sreekumar dataset; the remainder were labeled as unknown. Of these 187

named compounds, 13 were not found in KEGG and 3 were found only in non-

HSA pathways. Eleven metabolites had a KEGG compound ID that was not as-

sociated with any pathway. Approximately 15 metabolites could be mapped only

if either an isomeric form was chosen (e.g. cpd:C00303, Glutamine, is not mapped

whereas cpd:C00064, L-Glutamine, is associated with eight pathways) or an alternate

KEGG ID was used (e.g. cpd:C15571, Catechol (generic), is not mapped whereas

cpd:C00090, Catechol, is mapped). In total 160 named metabolites can be mapped

to at least one HSA pathway in KEGG. For analysis we consider only 147 of these 160

mapped metabolites, excluding 13 because they were poorly measured (see Sreeku-

mar et al, 2009).

The 147 compound IDs map to 100 pathways. Table A.3 shows the number

of pathways in which a compound ID is found. Only 38.8% of the compounds are

represented in a single pathway. As metabolites for one pathway likely feed into other

pathways this should not be surprising. Again, this overlap may need attention in

any pathway based methods.

A.3 Integrative pathway mapping

There are up to 100 pathways for which both gene and metabolite measures are

available. Since we are interested in the integration of gene and metabolite data we

focus our attention on these 100 pathways. As at least 100 pathways are removed

from consideration from the gene list we recalculate the pathway overlap for genes
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(Table A.2) in Table A.4. As expected, the amount of overlap is reduced with a

reduced pathway list.

Considering the 100 metabolite mapped pathways, Table A.5 shows the number

of elements measured in each pathway. Not surprisingly the pathway population

of Table A.5 is driven by the gene expression measures; see Table A.6. There are

multiple metabolite measures made for a majority (75%) of the pathways as well,

see Table A.7. However, this leaves 25 pathways in which only a single metabolite is

measured. Pathway based methods may need to take this into consideration.
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(i) (ii)

Number of
Probes Frequency Percent

1 1168 39.8%
2 1180 27.8%
3 703 16.6%
4 344 8.1%
5 167 3.9%
> 5 159 3.8%

Number of
Probes Frequency Percent

1 2492 59.9%
2 1223 29.4%
3 318 7.64%
4 86 2.1%
5 12 0.3%
> 5 30 0.7%

Table A.1: Frequency of mutliple probe measures. (i) There are 4240 unique KEGG gene
ID numbers represented by 9491 probes on the Affymetrix HU133Av2 array. (ii) There
are 4161 unique gene ID numbers represented by 6566 probes. One geneID (hsa:6144,
RPL21) is represented by 14 probes.

(i) (ii)

Number of
Pathways Frequency Percent

1 2312 54.5%
2 739 17.4%
3 436 10.2%
4 279 6.6%
5 131 3.1%
6 82 1.9%
7 62 1.5%
8 48 1.1%
9 39 0.9%
10 25 0.6%
> 10 87 2.2%

Number of
Pathways Frequency Percent

1 2289 55.0%
2 717 17.2%
3 417 10.0%
4 273 6.6%
5 129 3.1%
6 81 2.0%
7 57 1.4%
8 46 1.1%
9 43 1.0%
10 25 0.6%
> 10 84 2.0%

Table A.2: Pathway overlap for genes. (i) Over half (54.5%) of the 4020 unique KEGG gene
ID values on the Affymetrix array contribute to a single pathway. (ii) Over half (55.0%)
of the 4161 unique KEGG gene D values on the Agilent array are associated with a
single pathway. On both platforms, two genes (hsa:5594, MAPK1; hsa:5595, MAPK3)
contribute to 33 pathways.
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Number of
Pathways Frequency Percent

1 57 38.8%
2 37 25.2%
3 14 9.6%
4 15 10.3%
5 5 3.4%
6 6 4.1%
7 4 2.7%
> 7 9 6.2%

Table A.3: Pathway overlap for metabolites. There are 147 compound ID numbers measured
that can be associated with a KEGG HSA pathway. Less than half (38.8%)of these are
associated with a single pathway, whereas, one metabolite (cpd:C00025, Glutamate) is
associated with 18 pathways.

(i) (ii)

Number of
Pathways Frequency Percent

1 1396 58.8%
2 472 19.9%
3 265 11.2%
4 109 4.6%
5 60 2.5%
6 19 0.8%
7 23 0.5%
> 7 31 1.3%

Number of
Pathways Frequency Percent

1 1346 58.6%
2 458 20.0%
3 255 11.1%
4 105 4.6%
5 64 2.8%
6 16 0.7%
7 22 1.0%
> 7 30 1.3%

Table A.4: Overlap for genes in the pathways shared with metabolites. (i) There are
100 pathways, represented by 2375 genes, shared by the metabolites and genes on the
Affymetrix array. (ii) There are 99 pathways, represented by 2296 genes, shared by the
metabolties and the genes on the Agilent array (pathway hsa:00364, “Fluorobenzoate
degradation” is not represented). A slightly higher percentage of the genes are now
associated with a single pathway (see Table A.2). On both platforms there is now
one gene (hsa:218, ALDH3A1) associated with 16 pathways. The two MAPK genes,
previously associated with 33 pathways, are reduced to only 11 pathways each.
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(i) (ii)

Number of Frequency
Elements (of 100)

2 – 9 11
10 – 19 19
20 – 29 10
30 – 39 14
40 – 49 10
50 – 75 21
75 – 99 5
≥ 100 10

Number of Frequency
Elements (of 99)

2− 9 13
10− 19 15
20− 29 11
31− 39 15
40− 49 14
50− 74 18
75− 99 4
≥ 100 9

Table A.5: Number of elements measured per pathway. (i) Of the 100 pathways for which
both metabolite and Affymetrix gene expression information are available 89 of have
at least 10 elements. Two pathways contain only two measured elements – a gene and
a metabolite. (ii) Of the 99 pathways for which both metabolite and Agilent gene
expression information are available 86 have at least 10 elements and one pathway
contains only two measured elements. On both platforms there are three pathways with
over 200 elements in each (path:hsa04810, Regulation of actin cytoskeleton ((i) 206, (ii)
205), path:hsa04080, Neuroactive ligand receptor ((i) 263, (ii) 250), and path:hsa05200,
Pathways in cancer ((i) 330, (ii) 323)

(i) (ii)

Number of Frequency
Genes (of 100)

1 – 9 17
10 – 19 16
20 – 29 14
30 – 39 12
40 – 49 15
50 – 74 14
75 – 99 4
≥ 100 8

Number of Frequency
Genes (of 99)

1− 9 18
10− 19 14
20− 29 13
30− 19 14
40− 49 14
50− 74 14
75− 99 3
≥ 100 9

Table A.6: Number of genes measured per pathway. (i) Two pathways contains only a single
measured gene each from the Affymetrix data. (ii) One pathway contains only a single
measured gene from the Agilent data. On both platforms the highly poplulated (> 200
genes) pathways include “Pathways in cancer” (path:hsa05200, (i) 327, (ii) 320), “Neu-
roactive ligand-receptor interaction” (path:hsa04080, (i) 254, (ii) 241), and “Regulation
of actin cytoskeleton” (path:hsa04810, (i) 205, (ii) 204).
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Number of Frequency
Metabolites (of 100)

1 25
2 20
3 9
4 7
5 12
6 10
7 3
8 3
9 2
10 1
> 10 8

Table A.7: Number of metabolites measured per pathway. Seventy-five percent of the path-
ways are represented by at least two metabolites with as many as 26 metabolites in one
pathway (path:hsa02010, ABC transporters - General - Homo sapiens).
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APPENDIX B

P-value weighting incorporating gene expression and
metabolite information

The following is an extension of pathway-based weighting that we abandoned because

the type I error rate was substantially inflated compared to the methods presented

in Chapter III. Some results and discussion of this method are provided here for

interested readers. It is assumed that readers are familiar with the material in

Chapter III.

B.1 Introduction

An intriguing idea was presented by Roeder et al. (2007) [54] that uniform p-value

weights be assigned to per-element tests according to an a priori defined grouping.

The twist was that the elements being tested in a group, say k, would be used to

define the weight for the group, say ωk.

Consider a vector of elements E and a series of prior studies A1,A2, . . . ,AK each

of which results in a subset of E being selected, say Ai(E ) for study i. We can

then use results of these prior studies to subset E into disjoint sets, E1,E2, . . . ,EK+1.

To construct disjoint subsets of E Roeder et al. (2007) [54] suggest assigning set

membership based upon a hierarchy of the prior studies. Thus if we assume that

study A1 is most related to the current study then E1 = A1(E ). If study A2 is the
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second most interesting study then E2 = A2(E ) ∩A1(E )c, where the set Sc denotes

the complement of the set S. This subsetting is repeated for each of the prior studies

and the remaining elements of E form the subset EK+1.

Since the prior studies are used only to define the grouping, the weights are derived

from information from the elements of the set. That is for set k the pre-standardized

weight uk = f(TEk
), where T Ek

is some vector of statistics from set Ek and f(·) > 0 is a

function of that information. This weight component uk is assigned to every element

in Ek, vi = uk for all ei ∈ Ek. Finally the weights are standardized, wi = vi/v̄, where

v̄ = n(E )−1
∑n(E )

i=1 vi so that n(E )−1
∑n(E )

i=1 wi = 1.

A potential difficulty for using gene expression results to construct per-metabolite

p-value weights is that the gene expression result could dominate the analysis. That

is, the metabolite p-value may be upweighted or downweighed so heavily that the

significance of the test is determined solely from the weight, e.g. p∗i = pi/wi > 1. A

weighting method in which the metabolites contribute information in the construc-

tion of the weights is therefore appealing.

Using a single gene expression study we could rank the metabolites by gene set

enrichment of the KEGG pathways. That is A1,A2, . . . ,Ak would be a ranked

list of differential gene enriched pathways. Alternatively, we can simply group the

metabolites by pathway and use an average weight across overlapping pathways in

the definition of the per metabolite weight as in Chapter III. For either grouping

scheme, the drawback to using the Roeder et al. (2007) [54] grouped weighting

method is that the number of metabolites in the resulting sets, E1,E2, . . . ,EK+1, is

likely to be low; see Appendix A for the number of measured metabolites per KEGG

pathway in the Sreekumar et al. (2009) [60] metabolite data. The grouped weight

of Roeder et al. (2007) [54] relies on the sieve principle to maintain error control
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and thus must have relatively large set membership; Roeder et al. recommend at

least 20 elements per group. This group size requirement reduces that chance that

a groups weight is dominated by a single element. Thus to utilize grouped weights

in the context of metabolic pathways we propose an estimate for the weights that

utilizes both gene and metabolite information.

B.2 The two-component weight

Prior work by Genovese et al. (2006) [20] used per-element weighting. Essentially

this is a group size of one where the weight is determined solely by the prior data.

The work of Roeder et al. (2007) [54] defines grouped weights using only the current

data to define the weights. Thus we propose a two-component weight. Borrowing

information from related metabolites and prior knowledge from gene expression data

we consider a weight ωk for metabolic pathway k defined as

(B.1) ωk = θkω1k + (1− θk)ω2k

with ω1k representing the metabolic component for pathway k (ω1 ≥ 0) and ω2k

representing the component based on the gene expression analysis (ω2k ≥ 0).

We consider two estimates of the mixing parameter θk ∈ [0, 1]. First we estimate

θ̂k = (η̃k − 1)/ηk for pathway k. Here ηk is the number of metabolites with η̃k

measured. This has the nice property that θ̂k = 0 when η̃k = 1 so that ωk = ω2k

which is the weight of Chapter III. However, the disadvantage to this estimate is

that due to highly transient metabolites, ηk may never achieve η̃k and thus θ̂k will

never be 1. This means that even large pathways that would satisfy the 20 element

minimum of Roeder et al. (2007) [54] will contain gene information in the weights.

The alternative θk considered is θ̂k = 1−|ρk| where |ρk| is the absolute correlation
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between genes and metabolites within pathway k. The advantage of this estimate is

that the gene component, ω2k, will have little effect if the genes are not correlated with

the metabolites. The disadvantage is that ρk is difficult to estimate. Additionally,

pathways with minimal correlation will rely heavily on the metabolic component ω1k

regardless of the size ηk.

Finally, we define the components ω1k and ω2k of Equation B.1 as

ω̂1k = − log10(P
m
k )

ω̂2k = − log10(P
g
k )

where Pm
k and P g

k are the p-values from tests of pathway enrichment for metabolites

and gene expression, respectively, in pathway k. In this way, ω1k ≥ 0 captures the

metabolite information in the pathway k and ω2k ≥ 0 captures the gene expression

information in that pathway. A separate ωk is constructed for every pathway k =

1, 2, . . . , K+1 for which there is gene and metabolite data available. Notice that the

weight function A used in Chapter III can be written as ωk = ω2k.

To translate the pathway weight ωk to the per-metabolite weight, say wm, we first

assign an unstandardized weight vm = ωk for each metabolite m within the pathway

k. When a metabolite is present in more than one pathway we can use an average of

the pathway weights such that vm =
∑K

k=1 ω̂kI(m ∈ k)/
∑K

k=1 I(m ∈ k) where I(m ∈

k) is an indicator of association for metabolite m with pathway k. Additionally we

can use a rank-based summary such as the median or upper percentile, as in Chapter

III, to determine vm in cases of overlapping pathways. The standardized weight wm

can be obtained by standardizing the vm terms by their average, v̄ = 1
M

∑M
m=1 vm.

The condition that wm ≥ 0 for all m = 1, . . . ,M is satisfied by ωk ≥ 0. Finally,

unmapped metabolites are given the weight wm = 1 which gives no adjustment to
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the p-value. Thus the per-metabolite weight wm, for m = 1, . . . ,M , can be written

as

(B.2) wm =


vm/v̄ mapped metabolites

1 otherwise

B.3 Numerical results

This two-component weighting method was testing using the simulation model

of Section 3.4.1 (Chapter III). Here we simulate disjoint pathways under various

enrichment and correlation conditions. The same four enrichment test are also con-

sidered: a directional hypergeometric test, a binomial test of proportions, a weighted

Kolmogorov-Smirnov test, and a sum of squared test statistics test. Only a subset

of the simulation scenarios presented in Chapter III were run for the two-component

weight models.

Some results are presented here using the same four-panel graphic style of Chapter

III. The two-component weight using the coverage based estimate θ̂k = (η̃k − 1)/ηk

will be labelled weight function “F” and will be colored brown. The two-component

weight using the correlation-based estimate θ̂k = |ρk| will be labelled weight function

“G” and will be colored yellow (notice that the definition used in simulation is

reversed from that described above). Since weight function “G” reduces to weight

function “A”, ωk = − log10(P
g
k ) = ω2k when ρ = 0, we also include this function,

colored green, for comparison.

The primary concern with including a metabolic component in the weighting of

the metabolites is that the test will be biased. Under a null model of no differentially

expressed genes or differential metabolites we find that the coverage-based model (F,
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brown) has error rates is above the nominal level a majority of the time; see Figure

B.1. This is for the scenario of ηk = 3 and η̃k = 10 for all pathways k = 1, . . . , K+ 1.

The correlation-based model (G, yellow) is equivalent to the gene expression p-value

model (A, green) when the correlation is zero. However, it too shows increased error

when the correlation is non-zero. The weight function A (green) has error rates that

contain the nominal level in the box of the boxplot for each of these low correlation

scenarios.
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Figure B.1: Type 1 error for per-metabolite tests using a significance threshold of α = 0.05
without multiple testing adjustments. 1000 datasets were simulated assuming within
pathway correlation of 0.2 for each metabolites and genes. Unweighted (Raw) p-values
and the three weight functions (F, θ̂k = (η̃k−1)/ηk, brown; G, θ̂k = |ρ|, yellow; A, θ̂k =
0, green) are depicted with increasing between element correlation, ρ ∈ (0, 0.10, 0.15).
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When we look at a high correlation scenario, as in Figure B.2, we see that the error

rates continue to increase with increasing ρ. Again, the single-component weight (A,

green) maintains lower error rates except for the highest correlation scenario, ρ = 0.5.

We happened to define the correlation-based θ estimate counter-intuitively for the

simulation, θ̂k = |ρk|, such that the gene expression component ω2k is dominant

when the genes and metabolites are not correlated. However, we see here, that as

the correlation increases the amount of contribution of the metabolite component

ω1k increases and so does the bias. Thus this correlation-based θ is clearly not the

best choice for this model.

If we turn our attention to a non-null case we quickly see that the single-component

model (A, green) peforms almost equivalently to the two-component models in these

scenarios; see Figures B.3 and B.4. There is a power gain but this is without cor-

recting for the inflated type I error rates. Should error controlling measures, such as

a Bonferroni correction, be made this power would likely be reduced.

Given these issues we chose to abandon the two-component weights in favor of

a single-component weight. In our simulations we found stable single-component

pathway-based weights based on gene expression that did not dominate the metabolic

data; see Chapter III Section 3.6 for recommendations.
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Figure B.2: Type 1 error for per-metabolite tests as in Figure B.1 except that the within pathway
correlation is 0.6 for each metabolites and genes and the between element correlation
is increased as high as 50%; ρ ∈ (0, 0.10, 0.15, 0.25, 0.50). Unweighted (Raw) p-values
and the three weight functions (F, θ̂k = (η̃k − 1)/ηk, brown; G, θ̂k = |ρ|, yellow; A,
θ̂k = 0, green) are depicted.
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Figure B.3: Average receiver operating characteristic (ROC) curves (n=100) depict the
sensitivity and specificity for each test method and weight function when applied to
per-metabolite tests. Data are simulated assuming within pathway correlation of 0.2
for each metabolites and genes and between element correlation of 0.1. Ten of fifty
pathways were simulated as enriched where differential test statistics have mean of
two and three for metabolites and genes, respectively. The mean area under the curve
(AUC) estimate and associated standard error are provided in the table below each
plot. Here ηk = 3 and η̃k = 10.
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Figure B.4: Average receiver operating characteristic (ROC) curves (n=100) as in Figure
B.3 except that data are simulated assuming within pathway correlation of 0.6 for each
metabolites and genes and between element correlation of 0.15.
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