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CHAPTER I

Introduction

1.1 Summary

Many of the new products and systems being designed today require the design of both

a physical system, or artifact, and a controller. A significant number of such systems ex-

hibit coupling between the artifact and its controller, i.e., the performance of the artifact

itself may depend upon the controller, and the performance of the controller may depend

on the physical configuration of the device. In designing the complete system via opti-

mization, this coupling between the product and its controller can be critical for achieving

the best system performance. Previous research has shown that, when coupling is present,

optimal system design presents special challenges. In particular, failure to address coupling

appropriately results in sub-optimal systems.

This chapter introduces the motivation for the dissertation research work in Section

1.2. The concept of coupling is defined, and existing measures used to quantify coupling

are explained in Section 1.3. Examples of coupled systems are then given in Section 1.4,

and optimization methods in the existing literature are discussed in Section 1.5. The use

of controllability in system design is summarized in Section 1.6. Section 1.7 lists the

dissertation’s original contributions to the literature. The chapter concludes in Section 1.8

with an outline of the contents of the dissertation.
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1.2 Motivation

New technologies and ‘smart’ products have the potential to improve life dramatically

and to transform our understanding of the world. New technologies at the smallest scale

promise to radically change people’s lives. Nanotechnology and biological microelectrical

mechanical systems (bioMEMS) carry the potential to allow people with a wide variety of

medical conditions, such as epilepsy, diabetes, and high cholesterol, to monitor and control

their health with minimal intrusion into their ability to live a normal life. Hearing aids,

pacemakers, and many other devices can be drastically improved, allowing our aging pop-

ulation to remain active and productive. Scientific instruments utilizing these technologies

in the hands of talented researchers will facilitate new discoveries.

On a larger scale, smart systems address challenges in our society’s needs for energy

and transportation. Smart electrical grids, intelligent hybrid cars, and smart appliances can

improve the reliability of our infrastructures, reduce wasted energy, and limit our impact on

the environment. Achieving these revolutions, however, requires a change in engineering

design practices. All of these applications require the design of both an artifact and a con-

troller, and it can be reasonably asserted that optimal designs of artifact and controller are

required in order to realize the full benefit of these technologies. The problem of designing

both the artifact and its controller for such smart products will be referred to here as the

co-design problem. Coupling between the artifact and controller has been demonstrated to

be critical in the proper co-design of many systems. The existence of such coupling seems

to indicate that a simultaneous problem formulation is preferable to a sequential one in

order to achieve a system-optimal design. However, the simultaneous formulation presents

challenges. Computationally, it is a larger problem and is more difficult to solve. Even if

the problem is tractable, though, formulating it requires multiple areas of expertise. It is

unlikely that a single person, or even a single group within an organization, would pos-

sess all of the necessary expertise. Multiple groups need to be involved in the design of

a typical artifact. Thus, separation of the two problems, design and control, and solution

2



in some sequential or iterative manner is very appealing in engineering practice. Various

methods have been proposed to address these design problems, but none is totally satis-

factory. Therefore, a new approach is needed. By formulating a method of co-design that

considers coupling in a sequential design method, practical design of artifacts for control

can be improved, resulting in better designs and bringing about advances in knowledge and

quality of life.

1.3 Definition and Quantification of Coupling

Prior to discussing the solution of coupled design and control, or co-design, problems,

it is necessary to define exactly what constitutes a co-design problem, and what is meant by

coupling. A co-design problem will be defined as an optimization problem in which both

a controlled system, called the artifact, and a controller are to be optimized. The artifact

objective function, denoted as fa, is to be minimized subject to a set of inequality and

equality constraints, denoted as ga and ha, respectively.

min fa (da,dc) (1.1)

subject to ga (da,dc)≤ 0 (1.2)

ha (da,dc) = 0 (1.3)

Likewise, the control objective function, denoted as fc, is to be minimized subject to in-

equality and equality constraints, gc and hc.

min fc (da,dc) (1.4)

subject to gc (da,dc)≤ 0 (1.5)

hc (da,dc) = 0 (1.6)

3



In the most general problem formulation, all of the functions fa, ga, ha, fc, gc and hc may

be functions of both da and dc, where da is the vector of artifact design variables and dc

is the vector of control design variables. Coupling is said to exist if the solution of the

bi-objective co-design problem given by Eqs. (1.19) - (1.23)) is a Pareto set, rather than a

single point solution. This can occur if any of the artifact objective function or constraints

are functions of dc, or if any of the control objective or constraint functions depend on da.

1.3.1 Bi-Directional and Uni-Directional Coupling

As previously stated, in the most general case, all of the objective and constraint func-

tions may depend on both da and dc. In this case, coupling is described as bi-directional.

However, there exists a large class of problems in which none of the artifact objective func-

tion and constraints are functions of dc, i.e., fa = fa (da), ga = ga (da), and ha = ha (da).

These problems are said to exhibit uni-directional coupling. Of course, if the artifact objec-

tive function and constraints are functions only of da and the controller objective function

and constraints are functions only of dc, then the problem does not exhibit coupling at all,

and is said to be uncoupled. There are special cases in which a problem can become un-

coupled despite the appearance of the artifact design variables da in the control objective

function and constraints, and this shall be discussed later in this dissertation.

1.3.2 Measures of Coupling

If coupling does exist, then it is useful to know whether it is ‘strong’ or ‘weak’. If

coupling is weak, then it may be possible to neglect it. In contrast, if coupling is strong,

then neglecting it will result in solutions that are far from optimality. Coupling has been

measured by the presence or absence of interaction, or coupling, variables, but this measure

does not indicate how strong the dependence on those coupling variables might be [Reyer

(2000)]. One might define a system to be more strongly coupled if it exhibits a greater

number of coupling variables, but this is not necessarily a useful definition if the func-
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tional dependence on those coupling variables is weak. Several researchers have presented

measures of coupling that account for the sensitivity of objective functions to the coupling

variables, and these measures shall be discussed briefly.

Sensitivity of the Control Objective

Haftka and co-workers considered structural problems with uni-directional coupling and

proposed to characterize coupled systems by two types of sensitivity [Haftka et al. (1986)].

The first type of sensitivity, used as a measure of the robustness of the design, was computed

as the sensitivities of the control objective and constraints to the artifact design variables

at the nominal optimum design, i.e., the sensitivities
∂ fc

∂da
(d∗a,d

∗
c) and

∂gc

∂da
(d∗a,d

∗
c). The

second type of sensitivity measures the change in the optimum control as the structure is

modified:
∂ f ∗c
∂da

=
∂ fc

∂da
−

m

∑
j=1

µ j
∂gc j

∂da
(1.7)

where the number of active control constraints is equal to the number of artifact design

variables, µ is the vector of Lagrange multipliers, m is the size of the constraint vector

gc, and j is its component index [Haftka et al. (1986)]. The sensitivity of the control

design variables to the artifact design variables was also computed. For the linear structural

applications considered,
∂d∗c
∂da

=−
(
NT)−1 ∂gc

∂da
(1.8)

where the matrix N =
∂gc

∂dc
[Haftka et al. (1986)].

Coupling Vector

Fathy and co-workers quantified the strength of coupling in the case of uni-directional

coupling, assuming a particular co-design problem structure, and considered the special

circumstances in which it vanishes [Fathy et al. (2004)]. In this work, it was assumed that

the system objective function was defined as a linear combination of the artifact and control
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objective functions, i.e.,

minda,dc f = wa fa (da)+wc fc (da,dc) (1.9)

subject to ga (da)≤ 0 (1.10)

ha (da) = 0 (1.11)

gc (da,dc)≤ 0 (1.12)

hc (da,dc)≤ 0 (1.13)

The coupling measure is a vector quantity given by

Γv =
wc

wa

(
∂ fc

∂da
+

∂ fc

∂dc

ddc

dda

)
(1.14)

where wa and wc are the weights assigned to the artifact and control objectives, respectively,

with wa + wc = 1. The Euclidean norm of this vector, evaluated at the system optimal so-

lution, was used to characterize the overall coupling strength for a system. In general, this

will be a non-zero value, indicating that the system is coupled. The special cases in which

a system decouples are termed objective decoupling and constraint decoupling. In the case

of objective decoupling, the coupling vector is zero. In constraint decoupling, the coupling

vector is non-zero, but active constraints prevent the system from achieving a zero coupling

vector. This may occur in regions of the Pareto frontier where constraint activity changes,

or where redundant constraints are satisfied [Frischknecht et al. (2009)].

Local Normalized Sensitivities

One definition of coupling strength is a matrix of local normalized sensitivities [Bloebaum

(1995)]. Given two sub-systems SSA and SSB, the design variables in these sub-systems

are denoted as XA and XB, respectively, as shown in Fig. 1.1. Each system has an

output, denoted as YA and Y B, which is passed to the other. The matrix of sensitivities is
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then computed as [Bloebaum (1995)]

 ∂YA
∂XA

0

0
∂Y B

∂XB

=

 1 −∂YA
∂Y B

−∂Y B
∂YA

1


 dYA

dXA
dYA

dXB
dY B

dXA
dY B

dXB

 (1.15)

which are then scaled using the relations

∂YA′

∂Y B
=

Y B
YA

∂YA
∂Y B

(1.16)

∂Y B′

∂YA
=

YA
Y B

∂Y B
∂YA

(1.17)

where A′, B′ are the scaled outputs.

Figure 1.1: Subsystem Configuration (after [Bloebaum (1995)])

Note that, while the equations are presented here for only two sub-systems, this cou-

pling metric can be used in systems with more than two sub-systems. Furthermore, it is

applicable to problems with bi-directional coupling.

Coupling Matrix

Another metric used to quantify coupling is a matrix developed by Alyaqout and co-

workers, which incorporates optimality conditions into the global sensitivity equations
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[Alyaqout et al. (2005)]. This matrix takes the form of

Γm =



∂F
∂ f1

∂ f1

∂y11
...

∂F
∂ fN

∂ fN

∂y1N
...

∂F
∂ f1

∂ f1

∂yN1
...

∂F
∂ fN

∂ fN

∂yNN



T 

dŷ11

dx1

dŷ11

dx2
· · · dŷ11

dxN
...

...
dŷ1N

dx1

. . . dŷ1N

dxN
...

...
dŷN1

dx1

. . . ...

...
...

dŷNN

dx1
· · · · · · dŷNN

dxN



+


∑

N
j=1

∂F
∂x j

dx̂ j

dx1
...

∑
N
j=1

∂F
∂x j

dx̂ j

dxN


T

+


∑

N
p=1 ∑

N
j=1

(
∂F
∂ fp

∂ fp

∂x j

dx̂ j

dx1

)
...

∑
N
p=1 ∑

N
j=1

(
∂F
∂ fp

∂ fp

∂x j

dx̂ j

dxN

)


T

.

(1.18)

where N is the number of sub-systems present indexed as j = 1, . . . ,N, F is the overall sys-

tem objective, y jp are coupling variables, fp are the individual system objective functions

indexed as p = 1, . . . ,N, x j are the variables in the total problem, x̂ j are local copies of

x j, and ŷ jp are local copies of y jp [Alyaqout (2006), Alyaqout et al. (2005)]. An uncou-

pled system would be characterized, in this case, by a zero matrix. It is useful to note that

this formulation is extremely general; not only can it be used in the case of bi-directional

coupling, but it can be used with multiple sub-systems. Thus, it is applicable to design prob-

lems more general than co-design. The functional form of F is not specified. Therefore,

Γm is not limited to a simple linear combination of sub-system objectives. Furthermore,

this measure allows both ‘global’ and ‘local’ copies of variables, and lends itself to more

complex decomposition strategies.
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1.4 Examples of Coupled Systems

The literature on coupled systems is extremely rich, and presents examples from di-

verse areas such as aeronautical structures, machine tools, automotive engineering, micro-

electrical mechanical systems (MEMS), mechanisms, and chemical processing [e.g., Kaji-

wara and Haftka (2000), Chen and Cheng (2006), Fathy et al. (2003), Carley et al. (2001),

Tilbury and Kota (1999), Wan et al. (2002), Shabde and Hoo (2008)]. Several broad areas

shall be discussed here. These areas are structural systems, robotics and mechatronics, and

MEMS.

1.4.1 Structural Systems with Active Control

Some of the first systems in which coupling was studied were in the field of aerospace

engineering. A typical example of this would be an aerospace structure subject to active

control. There may be a high cost associated with weight, particularly for a structure that

is to be flown or placed in orbit [Hale et al. (1985)]. Thus, specifications for these struc-

tures typically emphasize minimum weight, which results in a more flexible structure that

can be more difficult to control. It has, therefore, been recognized by many researchers

that a sequential optimization, in which the structure itself is first optimized and then the

optimal controller is designed for that structure, may not produce an optimal system. The

structure may be very light, but it could require an unacceptably large control effort. Heavy

control actuators may be necessary in order to meet other specifications such as displace-

ments, buckling, vibration, and stress [Khot and Abhyankar (1993), Maghami et al. (1996),

Messac (1998)].

Experimental and analytical studies have been carried out, demonstrating the potential

for both detrimental and advantageous interactions between a structure and its controller

(e.g., Haftka et al. (1986), Rao and Pan (1990)). The problem of simultaneous design of a

structure and its controller is made easier by the linear models typically used for the struc-

ture. However, it still presents significant challenges, as discussed by numerous researchers
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[Ou and Kikuchi (1996), Kosut et al. (1990), Milman et al. (1991), Sobieszczanski-Sobieski

and Haftka (1997)]. Some of the issues addressed in the literature are the effect of coupling

on the stability of the control system, the large number of modes of vibration present, and

a variety of techniques that can be used to design a ‘controllable’ structure [Haftka (1990),

Onoda and Watanabe (1989)]. These techniques include locating the open-loop eigenval-

ues in ‘desirable’ areas of the complex plane and the use of the controllability Grammian

matrix, which shall be discussed further in Section 1.6, to place actuators.

1.4.2 Robotics and Mechatronics

In contrast to the structural co-design problem, robotic systems are typically non-linear.

Furthermore, while a structure is intended to have fixed relationships between its compo-

nents, the components of a robotic system are expected to move relative to one another.

However, like structural systems, robots often exhibit coupling between the physical robot

and its controller [e.g., Ravichandran et al. (2006), Zhu et al. (2001), Zhang et al. (1999)].

In a typical robotics application, an end-effector must track a particular path or achieve a

specified final position, possibly with specified velocity [Li et al. (1999)]. The robot may

be either an open kinematic chain, as in [Ravichandran et al. (2006), Zhu et al. (2001)] or

a closed kinematic chain [Zhang et al. (1999)]. Typical objectives for the artifact design

are minimizing weight or minimizing deflection. Controller objectives may be minimizing

tracking errors for a particular trajectory, overshoot, or settling time [Ouyang et al. (2002)].

In these problems, speed and accuracy are in conflict; mechanisms with lower inertia are

more flexible, resulting in a fast response but lower accuracy, while a higher inertia will

produce a stiffer mechanism that is more accurate but results in lower speeds [Li et al.

(1999), Zhu et al. (2001)]. Many applications, however, require both high speed and high

accuracy, and therefore design of these systems must consider the coupling between the

artifact and control objectives [Park and Asada (1992)]. The robotics co-design problem

may also be complicated by the expectation that the robot will perform multiple tasks with
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different specifications.

Robotics may be considered to be part of the field of mechatronics, an area which has

grown out of the union of mechanical and electrical systems. By its very nature, it re-

quires multidisciplinary optimization [Isermann (1996a), Isermann (1996b), Youcef-Toumi

(1996)]. Since it covers a wide range of applications, it is not possible to specify typ-

ical objectives for artifact and control design. There is a number of case studies in the

literature, showing that, in at least some cases, the artifact and control designs are cou-

pled. These cases include machine tools, automotive suspensions, and elevators [Chen and

Cheng (2005), Fathy et al. (2003), Fathy et al. (2002)].

Because of the non-linear nature of many of these problems, techniques that have been

successfully used in structural applications are not generally applicable. In addition, the

specifications and constraints are typically different than those in structural co-design prob-

lems. In the design of aerospace structures, the size of actuators is typically subject to

restrictive limits. In robotics and mechatronics, the actuators are still limited in size, but

accuracy is weighted more heavily in the overall system performance. Many of the meth-

ods used for co-design in robotics and mechatronics are based on either experimentation,

as in [Pil and Asada (1996)], or on heuristics, as in [Li et al. (2001)].

1.4.3 MEMS

Yet another area in which the artifact and control design problems can be coupled is

the field of microelectrical mechanical systems (MEMS). MEMS devices are typically

made of silicon, or a silicon-based polymer such as polydimethyl siloxane (PDMS), with

their mechanical and electrical components integrated as they are created on a silicon

wafer. These devices may be used in applications such as positioning of mirrors in op-

tical switches, magnetic storage devices, acceleration sensors, and gyroscopes, to name a

few [Chu et al. (2005), Carley et al. (2001), Oldham et al. (2005), Wolfram et al. (2005),

Park and Horowitz (2003)]. The MEMS device typically must be designed to have a certain
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range of motion for an actuator or sensing range for a sensor, with a controller designed to

give a fast response and high accuracy. These objectives are often conflicting. In addition,

MEMS devices may experience an instability problem known as pull-in. In this condition,

for higher voltages, there is no stable position for the device. The voltage at which this

occurs is a function of the physical configuration of the device, and therefore couples the

artifact design and control design problems. This phenomenon has been a subject of con-

cern in many devices, including comb drives [Legtenberg et al. (1996)] and microbeams

[Abdalla et al. (2005)].

1.5 Optimization Methods for Coupled Systems

While some systems are weakly coupled or uncoupled, many systems do exhibit strong

coupling. In particular, it has been shown that both uncertainty in system parameters and

more demanding performance requirements are associated with strongly coupled systems

[Youcef-Toumi (1996)]. Similarly, uncertainty and increased performance requirements are

associated with coupling in the related problem of modeling and controller design [Brusher

et al. (1997a), Brusher et al. (1997b)]. The demonstrated existence of coupled systems, and

their prevalence, quite naturally leads to the question of how to design such systems most

effectively. A number of strategies have been developed, both sequential and simultaneous,

as shown in Fig. 1.2 [Fathy (2003)].

1.5.1 Sequential Optimization

The sequential approach is the traditional practical means of optimizing co-design prob-

lems. In the simplest sequential strategy, the artifact is first optimized. In the case of

uni-directional coupling, the controller architecture is completely ignored. If bi-directional

coupling exists, then the control design variables are assumed to take on certain values,

which are parameters in the initial optimization. Once this design is complete, the artifact

design variables are treated as parameters in the design of the controller. This approach
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Figure 1.2: Solution Methods for Coupled Systems (after [Fathy (2003)])

works well in many cases. However, it will only find the system optimum when coupling

does not exist. When uni-directional coupling is present, the solution found will be optimal

for the artifact objective, fa, but not for the control objective, fc. In fact, it may prove

to be impossible to find a feasible solution for the controller design. In the case of bi-

directional coupling, the solution found may not be optimal for either objective function.

This method of solution does not provide the designer with any information on the nature

of tradeoffs present between the artifact and controller objectives, and thus even in the case

of uni-directional coupling, where the solution lies at an endpoint of the Pareto frontier, the

designer is unable to consider the merits of different designs on the Pareto frontier.

Because of the disadvantages of a simple sequential optimization, a modified sequential

formulation has been utilized for a number of systems. This strategy includes one or more

constraints on the artifact design that are intended to predispose the resultant design to

effective control and ensure that a feasible control design will exist. The most commonly
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used constraint is based on open-loop eigenvalues. In the design of the artifact, the system’s

open-loop eigenvalues are required to fall into a certain region of the complex plane. This

method is typically used in structural applications, and in certain cases it can be quite

effective. The combined artifact and control problem can be formulated to use this type

of approach to avoid areas of high sensitivity and move the eigenvalues into acceptable

regions when the structure is designed, thus predisposing the structure to effective control

[Bodden and Junkins (1985)]. These methods are not always applicable, however, and they

can also present some difficulties. The problem can become of very high dimensionality

due to the large number of structural vibration modes and is often non-linear [Bodden and

Junkins (1985)]. Some difficulties with this approach were overcome by Yee and Tsuei,

who developed a more efficient method of effectively locating the eigenvalues [Yee and

Tsuei (1991)]. This method, however, locates the open-loop eigenvalues, while the system

behavior is controlled by the closed-loop eigenvalues. The literature has shown that in some

cases, the locations of the closed-loop eigenvalues will not fall into acceptable regions when

this approach is used [Belvin and Park (1990), Eastep et al. (1987)]. At this point, there is

no sequential method of design that effectively locates closed-loop eigenvalues.

As previously stated, methods of design that may be effective for structural applications,

such as the location of open-loop eigenvalues, are typically not applicable to non-linear

problems such as robotics and mechatronics, and researchers have developed methods with

these types of problems in mind. One method of modifying the design problem in order to

account for coupling, specifically intended for mechatronic applications, is described in [Li

et al. (2001)]. It emphasizes finding a simple dynamic model of the system of interest and

the selection of parameters in the artifact design problem in order to facilitate control. Since

mechatronic applications have not typically been given any kind of a standard formulation,

there is a great deal of variety in the design problems that could arise, and the method

described is quite general in nature.
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1.5.2 Iterative Optimization

In this approach, the system is repeatedly solved, first for the artifact design, then for

the controller design. The solution from each iteration becomes the starting point for the

new iteration [Grigoriadis and Skelton (1998)]. One advantage of this approach is that it

maintains the smaller sub-problems of the sequential optimization. It does converge to a

solution in some cases, but not in others, and it cannot be guaranteed to converge to an

optimal solution [Reyer (2000)].

1.5.3 Simultaneous Optimization

In simultaneous optimization, an overall system objective is defined as a function of

the individual sub-system objective functions, fa and fc. Typically, this is a linear com-

bination. However, due to the inherent limitations of this type of system objective, such

as the inability to find points on a non-convex Pareto frontier, other formulations may be

used [Athan (1994), Athan and Papalambros (1996), Das and Dennis (1997)]. The con-

straints and design variables for the simultaneous problem are the union of the individual

constraints and variables for the individual sub-problems. Thus, the problem is formulated

as in Eqs. (1.19) - (1.23).

minda,dc f = f ( fa (da,dc) , fc (da,dc)) (1.19)

subject to ga (da,dc)≤ 0 (1.20)

gc (da,dc)≤ 0 (1.21)

ha (da,dc) = 0 (1.22)

hc (da,dc) = 0 (1.23)

This approach has the advantage that, if a solution is found, it will be system optimal. How-

ever, this approach has some disadvantages. It may be operationally inconvenient, since the

problem requires two disparate objectives from different disciplines to be formulated and
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combined. The problem cannot be solved until both the artifact and control objectives have

been formulated, so it requires the choice of controller architecture to be made early in

the design process, prior to the final design of the artifact. The simultaneous problem is

also computationally intensive due to its larger size, and may be non-convex, even if the

individual objectives fa and fc are convex [Balling and Sobieszczanski-Sobieski (1996)].

1.5.4 Partitioned Optimization

In partitioned optimization strategies, a large problem is broken up into sub-problems.

These sub-problems are then solved, with some form of coordination to ensure that the

various sub-problems are consistent with one another. This type of strategy is frequently

used in the multidisciplinary optimization field, and a number of different methods have

been developed to implement this type of strategy for optimization problems that exhibit

coupling, including Analytical Target Cascading [e.g., Allison et al. (2005)]. In the con-

text of co-design problems, separate sub-problems are maintained for the artifact and the

controller, with a master problem governing the interactions between the two. The system

is then optimized by coordinating the optimization of the artifact, controller, and interac-

tions. Reyer advocated this type of strategy as a way to accommodate the coupled nature

of co-design problems, while still taking advantage of particular techniques developed for

specific disciplines [Reyer (2000)]. For the problem considered by Reyer, in which the

control optimization problem was formulated as an optimal gains problem, it was shown

that system-level optimality was guaranteed. It is important to note that this approach is

able to solve co-design problems with bi-directional coupling.

1.5.5 Nested Optimization

In the nested (or bilevel) approach, the combined system is first optimized by varying

only the artifact design variables. Next, the controller is optimized, and then the process

repeats. Again, the results of each iteration become the starting point for the next iteration.
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It has been shown that, in the case of uni-directional coupling, this approach will yield

system-optimal solutions [Fathy (2003)], but in bi-directional coupling it may not [Reyer

(2000)].

1.6 Use of Controllability in System Design

As discussed in Sections 1.4.1 and 1.5.1, open-loop eigenvalues have been used as a

measure of a system’s ‘ease of control’. In addition to these efforts, other control charac-

teristics have been used in system design, particularly to locate actuators and sensors [Roh

and Park (1997), Lim and Gawronski (1993), Junkins and Kim (1993)]. In these efforts,

researchers have considered how to link the concepts of controllability and observability to

the output of a physical system [e.g., Muller and Weber (1972), Brown (1966)]. Muller and

Weber examined this issue in detail, considering several candidates for physically mean-

ingful metrics based on the inverse of the controllability Grammian matrix, W−1
c
(
t f
)
,

where t f is the final time of the interval of interest. Their candidates were the maximum

eigenvalue of W−1
c
(
t f
)
, the trace of W−1

c
(
t f
)
, and the determinant of W−1

c
(
t f
)
. Their

analysis indicated that any of these three measures could be used to formulate some ‘mea-

sure of quality’ of a time-varying system [Muller and Weber (1972)]. Furthermore, they

showed that optimization of a system using such a measure can produce a system that is

amenable to control. This dissertation will make use of this concept in the development of

the Control Proxy Function (CPF) problem formulation in Chapter IV, with several CPFs

based on the controllability Grammian matrix, which is further discussed in Section 3.2.

1.7 Original Contributions

This chapter introduced the co-design problem, described the ways in which coupling

can be measured in this type of problem, and presented some examples from the literature

demonstrating the existence of coupling. It also presented a brief survey of the optimiza-
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tion methods available to solve the co-design problem. Despite the depth and breadth of

previous work in this area, there are still important unanswered questions and issues that

have not yet been resolved. This dissertation answers some of these questions. Specifically,

it makes the following original contributions:

1. Derivation of relationships between coupling measures, with the extension of the

coupling vector to bi-directional cases

The existence of multiple coupling measures quite naturally raises the question of

how they might relate to one another. Since these various measures allegedly are

measuring the same thing, one might expect that there will be some relationship

between them. This dissertation shows that there are indeed relationships between

different coupling measures. Furthermore, in the case of one coupling measure, the

coupling vector Γv, it is possible to extend the range of application of the measure,

from uni-directional coupling only to also include bi-directional coupling, and this is

also presented.

2. Derivation of relationships between coupling and controllability for several important

classical control problems

One weakness of the currently used coupling measures is the need to evaluate them at

an optimal solution. In other words, the co-design problem must first be solved before

the strength of the coupling can be determined with certainty. However, knowing

the strength of the coupling prior to attempting a solution would be desirable, since

that information could be used in the selection of a method of solution. In several

important classical control problems, it is possible to obtain an expression for the

coupling vector, Γv, that is independent of the controller architecture. Thus, it is

possible to study the coupling prior to solving the co-design problem. There are

several conditions under which coupling can be shown to vanish, prior to the problem

solution, and these conditions are discussed.
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3. Development of a modified sequential method using a Control Proxy Function (CPF)

for cases of uni-directional coupling

As discussed in Section 1.5.1, there have been a number of attempts to design a

system for ‘ease of control’. This dissertation introduces a particular formulation

of the co-design problem, using a Control Proxy Function (CPF), to predispose the

artifact to ease of control. Guidelines are given for the choice of an effective CPF,

a condition to guarantee Pareto optimality is presented, and a measure of the quality

of the CPF solution is derived. It is important to note that this quality measure,

which indicates the ‘distance’ from Pareto optimality, can be evaluated without any

information about the true Pareto frontier.

4. Categorization of problems according to the nature of coupling and appropriate solution

methods

As discussed in Section 1.5, there is a variety of solution methods available. Choice

of an appropriate method is critical in the efficient and effective solution of a co-

design problem. Guidelines are presented for the categorization of co-design prob-

lems based on the existence and nature of the coupling (bi-directional, uni-directional,

or uncoupled), and appropriate solution methods are indicated for each case. These

guidelines include the evaluation of whether the new CPF method is suitable for a

given problem, and if it is, what type of CPF should be selected.

5. Application of new method to case studies

A co-design problem is formulated using a MEMS actuator, and solved with the new

CPF method. Two different problem formulations are presented, and it is shown that

in each case, an appropriate CPF can be chosen which yields Pareto optimal results.
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1.8 Dissertation Outline

The following chapters describe the above contributions in further detail. Chapter II

shows the relationships between the coupling vector, Γv, and each of the other coupling

metrics presented in Section 1.3.2. It also shows the relationship between Γv and the slope

of the Pareto frontier, and extends the range of applicability of Γv to problems in which the

system objective function is a non-linear combination of fa and fc, and to problems that

exhibit bi-directional coupling. Chapter III presents the relationships between coupling, as

measured by Γv, and the controllability Grammian matrix, Wc. The relationship between

Γv and Wc
(
t f
)

is derived for two classical control problems, that of minimizing control

effort and that of minimizing time subject to a constraint on control effort. In addition,

a relationship between Γv and the steady-state controllability Grammian, W∞
c , is derived

for Linear Quadratic Regulator (LQR) control. In Chapter IV, the Control Proxy Function

(CPF) method is formulated for problems with uni-directional coupling. The characteristics

of an effective CPF are given, and a metric is provided for the evaluation of a CPF. The

given conditions are then used to derive several CPFs that are effective for specific problem

formulations. In Chapter V, a method is presented for the evaluation of co-design problems

to determine the nature of coupling and to choose an appropriate solution method. This

method is then demonstrated through the solution of two co-design problems for a MEMS

actuator. The thesis concludes in Chapter VI with a summary, concluding remarks, and

discussion of future work.

The appendices provide additional details on the proofs of certain theorems (Appendix

A) and the optimization model formulation used in Chapter V (Appendix B).
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CHAPTER II

Relationships Between Coupling Measures

2.1 Introduction

As discussed in Section 1.3.2, there are several measures of coupling proposed in the

literature. This raises questions about whether these metrics are measuring the same quan-

tity, how they may be related, and how to choose among them in a given problem. In this

chapter, it will be shown that various measures of coupling are related. However, they are

not equivalent, and they are not necessarily commensurate. This will be illustrated with a

simple example. One of these measures, the coupling vector Γv, is specifically chosen for

use in this work. Its physical interpretation shall be addressed, and extensions to its range

of applicability will be derived.

2.2 Relations between Coupling Measures

In this section, relationships will be derived between the coupling vector, Γv, and each

of three other coupling measures. These three coupling vectors are the sensitivity of the

control objective, normalized sensitivities, and the coupling matrix, Γm. It will be shown

that the coupling vector and the sensitivity of the control objective are commensurate, while

the coupling vector is not commensurate with either the normalized sensitivities or the

coupling matrix, Γm.
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2.2.1 Coupling Vector, Γv, and Sensitivity of the Control Objective

Consider a co-design problem with uni-directional coupling that takes the form of Eqs.

(2.1) - (2.3).

min
da,dc

fa (da)+
wc

wa
fc (da,dc) (2.1)

subject to ga (da)≤ 0 (2.2)

wc

wa
gc (da,dc)≤ 0 (2.3)

The Karush-Kuhn-Tucker (KKT) conditions [Papalambros and Wilde (2000), Kuhn and

Tucker (1950)] may be written as

[
∂ fa

∂da
+

wc

wa

∂ fc

∂da

wc

wa

∂ fc

∂dc

]
−
[
µ1 µ2

] ∂ga

∂da
0

wc

wa

∂gc

∂da

wc

wa

∂gc

∂dc

= 0 (2.4)

The vector Γv was defined in [Fathy (2003)] as the difference between the KKT conditions

for a coupled and uncoupled system, and is found to be

Γv =
wc

wa

(
∂ fc

∂da
−µ2

∂gc

∂da

)
(2.5)

evaluated at the system optimum, which can then be written in terms of the sensitivity

metric introduced in Section 1.3.2 as

Γv =
wc

wa

∂ f ∗c
∂da

. (2.6)

Therefore, Γv will be parallel to
∂ f ∗c
∂da

. These two measures will be consistent in determining

whether or not a system is coupled, and in determining which of two systems is more

strongly coupled.
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2.2.2 Coupling Vector, Γv, and Coupling Matrix, Γm

As noted in Section 1.3.2, the coupling vector Γv and coupling matrix Γm do not have

the same range of applicability. Therefore, in order to examine the relationship between

the two coupling measures, certain assumptions are necessary.

1. The system has two objective functions, one for the artifact and one for the controller.

2. Coupling is unidirectional.

3. The overall objective function is a weighted sum of the individual objectives.

4. There are no local copies of variables.

The system in question, then, can be represented by the diagram given in Fig. 2.1.

From assumptions 1–4, the following substitutions can be made in Eq. (1.18):

N = 2

f1 = fa

f2 = fc

x̂1 = x1 = 0

x̂2 = x2 = dc

ŷ12 = y12 = da

ŷ21 = y21 = da

ŷ11 = y11 = 0

ŷ22 = y22 = 0

These substitutions give a simplified coupling matrix

Γm =

 0

wa
∂ fa

∂da

dda

ddc
+wc

∂ fc

∂da

dda

ddc
+wc

∂ fc

∂dc


T

. (2.7)
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Figure 2.1: Subsystem Structure for Simplified System

It is then possible to relate Γv and Γm:

Γm =

 0

wa

(
d fa

ddc
+
(

Γv−
wc

wa

∂ fc

∂dc

ddc

dda

)
dda

ddc
+

wc

wa

∂ fc

∂dc

)


T

. (2.8)

If the problem is unconstrained, then Eq.( 2.8) simplifies to

Γm =

 0

wa
d fa

ddc
+waΓv

dda

ddc


T

. (2.9)

The derivative dda
ddc

can be calculated either analytically, from the KKT conditions, or nu-

merically.

The following observations can then be made:

1. Γm captures information about the interactions between variables in each sub-problem

that is not contained within Γv. This is consistent with the differing origins of the

metrics. Since Γm was derived from the GSEs, it can be expected to contain infor-

mation about the sensitivity of one variable to another within the same sub-system.

2. In a problem with active constraints, it is possible for Γm to be non-zero when Γv = 0.

This would indicate that relations between the design variables in a sub-system are

highly significant, and the solution will be sensitive to small changes in the variables.

3. In both a constrained and an unconstrained problem, it is possible for Γm and Γv to
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disagree on when a system is more strongly coupled. This will happen in the case of

high sensitivity in the relations between the variables.

4. For the case where constraints are active, but there is only one artifact design variable

and one controller design variable, Eq.(2.8) simplifies to Eq.(2.9), just as it does for

the unconstrained case. This reflects the fact that there are no possible interactions

between variables within a sub-system. The same situation will occur when all active

constraints consist of simple bounds.

5. If an unconstrained system is uncoupled, then fa = fa(da) and fc = fc(dc). In this

case,
d fa

ddc
= 0 since, by definition of an uncoupled system, the artifact objective

function fa does not depend on the controller variables dc. Also, Γv = 0, since the

equations representing the KKT conditions will be identical for both sequential and

simultaneous solutions of the system. This results in Γm = 0, and therefore the two

criteria will be consistent in having zero value for uncoupled problems.

2.2.3 Coupling Vector, Γv, and Normalized Sensitivities

In evaluating the application of normalized sensitivities

 ∂ fa

∂da
0

0
∂ fc

∂dc

=

 1 −∂ fa

∂ fc

−∂ fc

∂ fa
1


 d fa

dda

d fa

ddc
d fc

dda

d fc

ddc

 (2.10)

The coupling vector, Γv, can be expressed as

Γv =
wc

wa

d f ∗c
dda

(2.11)
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and thus Eq. (2.10) can be seen to contain Γv, as shown below.

 ∂ fa

∂da
0

0
∂ fc

∂dc

=

 1 −∂ fa

∂ fc

−∂ fc

∂ fa
1


 d fa

dda

d fa

ddc
wa

wc
Γv

d fc

ddc

 (2.12)

These metrics are not commensurate, since the normalized sensitivities contain terms that

do not appear in Γv.

2.3 Illustrative Example: Positioning Gantry

In this section, the coupling vector and coupling matrix are applied to a simple system,

and it is shown that they agree on the presence of coupling in some cases and disagree in

others. The system shown here shall be used also as an illustrative example in Chapter III.

Figure 2.2: Configuration of Positioning Gantry

Consider a simple model of a positioning gantry, as shown in Fig. 2.2. In this system,

a mass M is connected to a fixed surface by a linear spring with constant ks. A flexible
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Figure 2.3: Schematic of System Controller

inelastic belt is connected to the mass and wraps around a pulley with radius r, which is

mounted on a DC motor with armature resistance Ra and motor constant kt . It is assumed

that the rotor inertia of the motor and the inertia of the pulley are negligible. The motor will

be actuated by a voltage signal. The displacement of the mass from its original position is

Z. The system can be modeled by the following equations:

ẋ = Ax+Bu (2.13)

Z = Cx (2.14)

x =

 Z

Ż

 (2.15)

A =

 0 1

− k
m
− b

m

 (2.16)

B =

 0
1
m

 (2.17)

C =
[

1 0

]
(2.18)
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where u is the voltage, V , and the terms m, b, and k are given by

m =
MrRa

kt
(2.19)

b =
kt

r
(2.20)

k =
ksrRa

kt
(2.21)

A state-feedback controller with a precompensator G and gainsK = [K1 K2] is applied

to the system, as shown in Fig. 2.3. This system will be optimized twice. The artifact

objective function fa will remain the same, but the artifact design variables da and artifact

constraint g1 will be changed to produce both an uncoupled and a coupled optimization

problem. The artifact objective is to maximize the steady-state displacement of the mass,

Zss. The controller objective function fc, controller design variables dc, and controller con-

straint g2 take the same form in both formulations. The controller objective is to minimize a

combination of the maximum voltage Vmax and the settling time ts. The relative importance

of Vmax and ts are specified by weighting parameters.

2.3.1 Uncoupled System Optimization

The system optimization formulation is:

min
r,kt ,K1,K2,G

wa fa +wc fc (2.22)

subject to g1 = c1 +
(

ktVss

rRa
− c2

) 1
2

− r ≤ 0 (2.23)

g2 = Mp−Mp,all ≤ 0 (2.24)

h1 = Zss−Zr = 0 (2.25)
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Table 2.1: Parameters for Optimization of Uncoupled System

Parameter Value
M 2.00 kg
ks 0.75 N/mm
Ra 10.00 kΩ

Vss 10.00 V
Mp,all 5%
c1 2.50
c2 4.00
a1 15.00
a2 0.25

The individual objectives fa and fc are given by

fa = −Zss =− ktVss

rRaks
(2.26)

fc = a1Vmax +a2ts (2.27)

where Zss is derived by setting ẋ= 0 in Eq. (2.13). and the position overshoot Mp is given

by

Mp = e−πς/
√

1−ς2
(2.28)

ς =
b+K2

2
√

m(k +K1)
(2.29)

where Vss is the steady-state voltage applied to the motor, Vmax is the maximum applied

voltage, ts is the 1% settling time, Mp,all is the limit imposed on the overshoot, and Zr is the

reference signal entering the controller. The artifact weight wa and the controller weight wc

have strictly positive values between 0 and 1. The constraint g1 is formulated to ensure that

the pulley radius r is appropriate for the thickness of belt required for the forces present.

The constraints were determined to be active by monotonicity analysis and were used to

eliminate the variables kt , G, and K1, which creates a problem where Eq. (2.9) is applicable.

Using the values shown in Table 2.1, the optimum solution and both coupling metrics were
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Table 2.2: Results of Optimization of Uncoupled System

Quantity Value

da =
[

r
kt

] [
2.50 cm

10.00 N-m/A

]
dc =

 K1
K2
G

  0.72
1.23
2.59


Zss 5.33 cm
ts 8.79 s
Vmax 13.83 V

calculated. The optimal values of the design variables and of Zss, Vmax, and ts are given

in Table 2.2. For all values of wa and wc in the specified range, Γv = 0 and Γm = [0 0],

and, therefore, both measures were consistent in indicating that the system is uncoupled.

These coupling measures are also consistent with the results of the system optimization

itself; identical results were found for both sequential optimization and for simultaneous

optimization with various combinations of weights.

This co-design problem can be solved without eliminating constraints, however. Con-

sider the case where the variables kt and K1 are retained, but the variable G is eliminated

by substitution. In this case, the coupling vector, Γv, is given by the relation

Γv =
wc

wa


 ∂ fc

∂ r
∂ fc

∂kt


T

+

 ∂ fc

∂K1
∂ fc

∂K2


T  ∂K1

∂ r
∂K1

∂kt
∂K2

∂ r
∂K2

∂kt


 (2.30)

The problem is still uncoupled, as determined by Γv; at the solution,

Γv =
[

0 0

]
. (2.31)

However, the problem is not uncoupled when the coupling matrix, Γm, is used. For this
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form of the problem,

Γm =


0

wa

 ∂ fa

∂ r
∂ fa

∂kt


T  ∂ r

∂K1

∂ r
∂K2

∂kt

∂K1

∂kt

∂K2

+wc


 ∂ fc

∂ r
∂ fc

∂kt


T  ∂ r

∂K1

∂ r
∂K2

∂kt

∂K1

∂kt

∂K2

+

 ∂ fc

∂K1
∂ fc

∂K2


T

 .

(2.32)

For the weights wa = 0.5, wc = 0.5, the matrix Γm is computed as

Γm =

 0 0

−0.162 −0.183

 (2.33)

Note, then, that if constraints are active, Γv and Γm may disagree on whether or not a prob-

lem is coupled. Furthermore, Γm can indicate that the same problem is either coupled or

uncoupled, depending on the formulation of that problem. This indicates that, if parametric

uncertainty in the constraints is neglected, the problem will be uncoupled; however, Γm is

capable of capturing information on the parametric uncertainty of the constraints, and this

uncertainty will affect the control objective of the co-design problem [Alyaqout (2006)].

2.3.2 Coupled System Optimization

Now, consider a different formulation of the system optimization. In this case, the

design variables are ks, Ra, G, K1, and K2, the objective functions and constraints g2 and h1

are unchanged, but constraint g1 is changed. The new constraint g1 is formulated to ensure

that the spring is sized appropriately for the loads present.
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Table 2.3: Parameters for Optimization of Coupled System

Parameter Value
M 2.00 kg
kt 10.00 N-m/A
r 2.50 cm
Vss 10.00 V
Mp,all 5%
c3 1.50
c4 1.00
a1 15.00
a2 0.20

min
ks,Ra,K1,K2,G

wa fa +wc fc (2.34)

subject to g1 =
(

Vsskt

rRa
+ c4

)1.5

− c3− ks ≤ 0 (2.35)

g2 = Mp−Mp,all ≤ 0 (2.36)

h1 = Zss−Zr = 0 (2.37)

where fa and fc are given by Eq.( 2.26) and ( 2.27), respectively.

Again, monotonicity analysis was used to determine that all constraints were active,

and therefore used to eliminate the variables ks, G, and K1 and produce an unconstrained

system. Again, this creates a problem in which Eq. (2.9) is applicable. The problem was

solved for the parameters in Table 2.3 and several sets of weights. Results for two sets of

weights are given in Table 2.4. The first set given corresponds to point “A” and the second

set of weights to point “B” in Fig. 2.4.

In this case, both coupling measures are non-zero. This agrees with the results of the

system optimization; assigning different weights to the objectives fa and fc in the simulta-

neous system solution yields different results. The sequential problem cannot be solved in

this case without additional constraints, since it is unbounded.
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Table 2.4: Results of Optimization of Coupled System

Value for Given Weights
Point A Point B

Quantity wa = 0.4, wc = 0.6 wa = 0.7, wc = 0.3

da =
[

Ra
ks

] [
28.60 kΩ

2.21 N/mm

] [
38.75 kΩ

1.40 N/mm

]
dc =

 K1
K2
G

  −1.43
15.81
14.40

  −2.15
16.50
11.38


Zss 0.63 cm 0.74 cm
ts 6.64 s 8.70 s
Vmax 10.26 V 10.27 V
Γv 0.058 0.113

Γm

[
0

0.0039

]T [
0

−0.0033

]T

Figure 2.4: Pareto Points for Coupled System Optimization
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Note that, while both coupling metrics agree that the system is coupled, they do not

agree on the coupling strength. The value of Γv is positive for both points considered, but

the non-zero component of Γm experiences a sign change between points A and B. The two

measures are clearly not commensurate, even when they agree on the existence of coupling.

2.4 Choice of Coupling Metric

It has been shown that, of the four coupling metrics considered, only two of them are

commensurate. The coupling vector, Γv, is commensurate with the sensitivity of the control

objective. However, the coupling vector is not commensurate with either the coupling

matrix, Γm, or with the normalized sensitivities. Therefore, it is necessary to consider

which of these measures is most appropriate for this work. In this thesis, the coupling

vector, Γv, is chosen to represent coupling. This measure is judged to be most appropriate

due to its simpler form and applicability to the problems of interest, i.e., co-design problems

with uni-directional coupling.

2.5 Physical Significance of Coupling Vector

While the coupling vector, Γv, is derived from the KKT conditions, it also has a physical

interpretation as a component of the slope of the Pareto frontier for a co-design problem

that exhibits uni-directional coupling. For the coupled co-design problem described here,

it is possible to describe the relation between the optimum values of the two objectives as

follows:

f ∗c = f ( f ∗a ) (2.38)

By differentiating Eq. ( 2.38) and making appropriate substitutions, the slope of the Pareto

frontier can be expressed as
d f ∗c
d f ∗a

=
wa

wc
Γv

dda

d fa

∗
. (2.39)
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The physical significance of the coupling vector Γv, therefore, is that it contributes to the

slope of the Pareto frontier, leading to the following observations:

1. If the coupling vector vanishes at one particular point, then the Pareto frontier will

have zero slope at that point. If this point is not an end point of the Pareto frontier,

then the curve will either be non-convex or discontinuous at this point.

2. It is possible for a non-zero coupling vector to be present at a point of zero slope. In

this case, the coupling vector would be orthogonal to the derivative
dda

d fa

∗
.

3. Large changes in the direction of the coupling vector, while not definitive, may be a

warning sign of a non-convex or discontinuous Pareto frontier, particularly when the

derivative vector
dda

d fa

∗
does not experience similar changes in its direction.

Information about the nature of the Pareto frontier can be useful. As noted in Section

1.5.3, if the Pareto frontier is determined to be non-convex, then a linear combination of

objectives is not an effective formulation and another formulation, such as an exponential

weighted criteria function [Athan (1994)], will be required. If the Pareto frontier is both

convex and continuous, then it could be approximated by fitting a convex continuous curve

to a relatively small number of points. This can be useful when the designer wishes to

find points in a particular area of the Pareto frontier. Methods do exist for finding points

in specific areas of the Pareto frontier, such as the normal-boundary intersection method

to find the “knee” [Das (1999)]. However, the ability to approximate the curve is useful

when another area of the Pareto frontier is considered to be desirable. Determination of

the approximate curve has the potential to reduce the computational requirements to solve

a problem.

2.6 Extensions of Coupling Vector, Γv

As stated in Section 1.3, the coupling vector, Γv, was derived based on certain as-

sumptions. These assumptions impose limitations on the types of problems for which it is
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applicable. Here, it will be shown that the scope of Γv may be extended in two ways. One

extension, to problems in which the objective function is not a linear combination of fa and

fc, will be directly relevant to this dissertation. The second extension, to problems with

bi-directional coupling, will not be used for this work. However, it may be useful for later

extension of this work to co-design problems with bi-directional coupling.

2.6.1 Extension of Coupling Vector to Non-Linear Objective Combination

Assume that a co-design problem is formulated as the sum of two functions, F1 and F2,

as in Eqs. (2.40) - (2.44). The functions F1 ( fa) and F2 ( fc) are any functions that satisfy

the conditions given in Eqs. (2.45) - (2.46).

min
da,dc

F = F1 ( fa (da))+F2 ( fc (da,dc)) (2.40)

subject to ga (da)≤ 0 (2.41)

ha (da) = 0 (2.42)

gc (da,dc)≤ 0 (2.43)

hc (da,dc) = 0 (2.44)

argmin(F1 ( fa (da))) = argmin( fa (da)) (2.45)

argmin(F2 ( fc (da,dc))) = argmin( fc (da,dc)) (2.46)

Furthermore, assume that the control design variables, dc, can be expressed as a function

of the artifact design variables, da, i.e., dc = dc (da). Then, the KKT conditions can be
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written as 
∂ fa

∂da
+

∂F2
∂ fc
∂F1
∂ fa

(
∂ fc

∂da
+

∂ fc

∂dc

dc

∂da

)
∂F2
∂ fc
∂F1
∂ fa

∂ fc

∂dc

+λT

 ∂ha

∂da
∂hc

∂dc

+µT

 ∂ga

∂da
∂gc

∂dc

= 0(2.47)

µT

 ga (da)

gc (da,dc)

= 0 (2.48)

λ 6= 0 (2.49)

µ≥ 0 (2.50)

It is then possible to equate a generalized coupling vector, Γ′
v, with the difference between

the KKT conditions for the coupled and the uncoupled problem.

Γ′
v =

∂F2/∂ fc

∂Fa/∂ fa

(
∂ fc

∂da
+

∂ fc

∂dc

∂dc

∂da

)
(2.51)

Note that the vector Γ′
v is parallel to the vector Γv. Therefore, any statement based on the

direction of Γv will also apply to Γ′
v. The original coupling vector Γv is a special case of

Γ′
v, where F1 ( fa) = wa fa and F2 ( fc) = wc fc. Note that Γ′

v is not valid if a non-separable

function of both fa and fc is considered.

As an example of a non-linear combination of fa and fc, consider the exponential

weighted criteria formulation [Athan (1994)]. This formulation is given by

f = (enwa−1)e fa +(enwc−1)e fc (2.52)

where n is a parameter, and wa and wc are the relative weights of fa and fc. For this

formulation,

Γ′
v =

(enwc−1)e fc

(enwa−1)e fa

(
∂ fc

∂da
+

∂ fc

∂dc

∂dc

∂da

)
(2.53)
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Since Γ′
v ‖Γv, any derivations based on the direction of Γv will apply to problems in which

the formulation in Eq. (2.52) is used.

2.6.2 Extension of Coupling Vector to Bi-Directional Coupling

As previously stated, the coupling vector Γv was derived based on the assumption of

uni-directional coupling. While there are many systems which exhibit uni-directional cou-

pling, bi-directional coupling is also common. Therefore, it is useful to extend the coupling

vector to these cases. The extended coupling vector Γvb can be found by comparing the

KKT conditions for the coupled and uncoupled cases. The system objective given as

min
da,dc

f = wa fa (da,dc)+wc fc (da,dc) (2.54)

can be re-written as

min
da,dc

f = fa (da,dc)+
wc

wa
fc (da,dc) , (2.55)

subject to

g (da,dc) ≤ 0 (2.56)

h(da,dc) = 0. (2.57)

The solution will be system-optimal if d∗a minimizes not fa but fa +
wc

wa
fc; likewise, d∗c

must minimize not fc but fa +
wc

wa
fc. The optimizers for the full problem, therefore, satisfy

the relations

d fa

dda
+µT

a
dga

dda
+λT

a
dha

dda
+

wc

wa

d f ∗c
dda

= 0 (2.58)

d fc

ddc
+µT

c
dgc

ddc
+λT dhc

ddc
+

d f ∗a
ddc

= 0 (2.59)
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For an uncoupled problem, the KKT stationarity condition is:

d fa

dda
+µT

a
dga

dda
+λT

a
dha

dda
= 0 (2.60)

d fc

ddc
+µT

c
dgc

ddc
+λT dhc

ddc
= 0 (2.61)

The difference between Eqs. (2.58 - 2.59) and (2.60 - 2.61) quantifies the coupling for

the bi-directional problem. Using the chain rule, this leads to the following bi-directional

coupling vector Γvb:

Γvb =
[

wc

wa

(
∂ fc

∂da
+

∂ fc

∂dc

ddc

dda

)
∂ fa

∂dc
+

∂ fa

∂da

dda

ddc

]
, (2.62)

where the constraints containing both da and dc provide the relation between da and dc.

Note that the uni-directional coupling vector in Eq. (1.14) appears within Eq. (2.62), which

can be re-written as

Γvb =
[

Γv
∂ fa

∂dc
+

∂ fa

∂da

dda

ddc

]
. (2.63)

As with the uni-directional coupling vector Γv, the strength of the coupling can be quanti-

fied by evaluating the vector norm ‖Γvb‖2.

2.7 Summary

In this chapter, four coupling measures have been compared, and relationships between

them have been derived. It has been shown that only two measures are commensurate with

each other. For two of these metrics, the coupling vector, Γv, and the coupling matrix, Γm,

the differences in their description of coupling in a given problem were illustrated through

an example. The coupling vector, Γv, was chosen as the metric to be used in this thesis,

and its physical interpretation was examined. Its range of applicability was also studied,

and two extensions were derived. In Chapter III, relationships will be derived between the

coupling vector, Γv, and the controllability Grammian matrix of a system.
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CHAPTER III

Relationship Between Coupling and Controllability

3.1 Introduction

As discussed in Chapter I, knowledge of coupling is important in choosing an appropri-

ate method of solution for a particular co-design problem. Although the solutions found via

simultaneous optimization are system-optimal, this approach is computationally intensive,

organizationally challenging, and precludes the use of many specialized techniques devel-

oped for optimization in specific disciplines [Balling and Sobieszczanski-Sobieski (1996)].

A sequential approach, while simpler and easier to solve, does not typically find the system

optimum. It would, therefore, be useful to identify and quantify coupling prior to choosing

a solution method for the problem. However, as discussed in Chapter II, existing methods

used to determine coupling require knowledge of the system solution. Therefore, coupling

cannot be calculated until the problem has been solved. In this chapter it is shown that for

some problem formulations, representing important classical control problems, coupling

can be determined a priori using the controllability Grammian, which offers a significant

advantage in choosing appropriate methods of solution.
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3.2 Metrics Used for Coupling and Controllability

Several metrics have been developed for quantification of coupling, as discussed in

Chapter II. The coupling vector, Γv, will be used in this work. This metric is preferred

for co-design problems with uni-directional coupling for its relatively simple form and

suitability to the problem being considered [Peters et al. (2009)]. The coupling vector,

which is given by Eq. (1.14), must be evaluated at the optimal solution to Eqs. (1.9) - (1.13).

Consequently, the coupling cannot be determined a priori, i.e., before the simultaneous co-

design problem in Eqs. (1.9)-(1.13) is solved.

There is a variety of ways to determine controllability. One metric which is particu-

larly useful is the controllability Grammian matrix. A characteristic of the controllability

Grammian which makes it useful in this work is that it can be used to calculate the opti-

mal controller performance based only on the dynamics of the uncontrolled system, i.e.,

independently of the controller architecture chosen.

For a linear system expressed in the form

ẋ=Ax+Bu (3.1)

y =Cx (3.2)

the controllability Grammian is the matrix

Wc
(
t f
)

=

t f∫
0

Φ(τ)B (τ)B (τ)T ΦT (τ)dτ (3.3)

where Φ(τ) is the state transition matrix [Skogestad and Postlethwaite (2005)]. If the

matricesA andB are time-invariant, thenWc
(
t f
)

is given by

Wc
(
t f
)

=

t f∫
0

eAτBBT eAT τdτ (3.4)
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In the case where the final time t f → ∞, the steady-state controllability Grammian, W∞
c ,

can also be found by solving the Lyapunov equation

AW∞
c +W∞

c A
T =−BBT . (3.5)

The controllability Grammian is often used to determine simply whether or not a system is

controllable; if it is singular, the system is not controllable. However, it can also be used

to determine the minimum control effort required to move a system from the origin to a

final state x f at some final time t f . Consequently, it can provide a measure of how easy or

difficult a system is to control. The minimum possible value of the control effort is given

by [Skogestad and Postlethwaite (2005)]:

E∗ = xT
fWc

(
t f
)−1

x f . (3.6)

Note that E∗ is independent of the controller and thus is a function only of da. The control

effort, E, is given by

E =

t f∫
0

(u(t))2 dt. (3.7)

Since u(t) is a function of both the artifact and the controller, E is a function of da and dc.

Thus, the control effort can be related to the controllability Grammian by

E (da,dc)≥ E∗ (da) (3.8)

and E∗ (da) is a lower bounding function for the control effort, E (da,dc) [Papalambros

and Wilde (2000)].

It is important to note that this minimum control effort in Eq. (3.6) is independent of

the control architecture; it depends only on the dynamics of the uncontrolled system, i.e.,

A and B, the final state x f , and the final time t f . The optimal controller performance
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depends on the controllability Grammian, which is independent of the control architecture

and variables. Thus, in cases where the controller objective, fc (da,dc), or the active con-

troller constraints, hc (da,dc) and gc (da,dc), are based on control effort, the Grammian

can be used to determine coupling a priori. Three such situations will be presented here.

3.3 Relationships Between Γv andWc

Here, a relationship is developed between Γv andWc for some engineering problems of

interest. Consider three types of objectives representing several classical control problems.

In the first case, representing the case of fixed terminal time, energy is of primary interest,

and the problem is formulated to minimize control effort [Bryson and Ho (1975)]. In the

second case, the speed of response is of importance; a constraint is placed on control effort,

but the control objective is to minimize the response time. This is representative of the

class of unspecified terminal time problems [Bryson and Ho (1975)]. In the third case, the

control problem is formulated as a classical Linear Quadratic Regulator (LQR) problem, in

which a weighted combination of control effort and the system state errors is minimized.

All of the cases considered here have the following characteristics:

1. The system exhibits uni-directional coupling, as in (1.9) - (1.13), and the matricesA

andB may be functions of the artifact design variables da.

2. The objective function for the optimization is a weighted sum of the two individual

objectives, where the weights wa and wc are strictly positive.

3. The system can be modeled in state-space form as linear and time-invariant.

4. The artifact objective function, fa (da), and constraints, ha (da) and ga (da), are ar-

bitrary functions of da.
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3.3.1 Case I: Control Effort as Objective

In Case I, the primary concern in controller design is energy. The system is to be moved

from the origin to a state x f at time t f , where t f is a parameter. In the most general case,

the final state x f may be a function of da. The control objective function to accomplish

this is selected as the control effort required to move the system from the origin to a state

x f at some specified time t f .

fc =

t f∫
0

u(t)2dt (3.9)

Using (3.6) and (3.9), the controller objective function fc will satisfy the relation

fc ≥ xT
fWc

(
t f
)−1

x f (3.10)

where the equality applies if an optimal controller that minimizes control effort is chosen.

The coupling vector is computed from (1.14) as follows:

Γv =
wc

wa

∂

∂da

(
xT

fWc
(
t f
)−1

x f

)
(3.11)

Γv =
wc

wa



xT
f

∂Wc
(
t f
)−1

∂da1

x f +2xT
fWc

(
t f
)−1 ∂x f

∂da1

xT
f

∂Wc
(
t f
)−1

∂da2

x f +2xT
fWc

(
t f
)−1 ∂x f

∂da2
...

xT
f

∂Wc
(
t f
)−1

∂dan

x f +2xT
fWc

(
t f
)−1 ∂x f

∂dan



T

(3.12)

where da is indexed as i = 1, . . . ,n and n is the number of artifact design variables. Given

a particular system, then, it is possible to express the coupling in terms of the artifact

design variables da, constants, and parameters in the problem. Given the known values

of constants and parameters, and the range of allowable values for da, it is possible to
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determine whether coupling will exist, and whether it will be weak or strong. If the ith

term in the coupling vector vanishes, then it is known that the ith artifact design variable

will not participate in the coupling. If all terms in the coupling vector vanish, then the

problem is known to be uncoupled. A particular coupling term will vanish under one of

two conditions:

1. The vectors x f and

(
2Wc

(
t f
)−1 ∂x f

∂dai

+
∂Wc

(
t f
)−1

∂dai

x f

)
are orthogonal.

2.
∂x f

∂dai

=−1
2
Wc
(
t f
) ∂Wc

(
t f
)−1

∂dai

x f .

The second condition can occur when the variables da result in changes in the control

effort that counteract the effects of the changes in x f . As an example, a change in da

might simultaneously cause an increase in x f and an increase in mechanical advantage.

The improvement in mechanical advantage would balance the increase in the final state,

resulting in constant control effort for the optimal controller.

Within the class of problems denoted here as Case I, there are two sub-classes that are

of interest.

Case Ia: Final State as a Parameter: If the final state x f is a specified parameter, then

the expression given in (3.12) can be simplified to

Γv =
wc

wa



xT
f

∂Wc
(
t f
)−1

∂da1

x f

xT
f

∂Wc
(
t f
)−1

∂da2

x f

...

xT
f

∂Wc
(
t f
)−1

∂dan

x f



T

(3.13)

If Wc is not a function of da, then
∂Wc

(
t f
)−1

∂da
= 0 for any value of da. In this case,

each of the components in this relation will vanish. Therefore, Γv = 0, and the system

is uncoupled. Note, however, that while this is a sufficient condition for decoupling, it is
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not necessary and sufficient. It is still possible for the system to decouple if
∂W−1

c
∂da

6= 0.

Specific values of x f may cause particular terms to drop out of the final result, or the vector
∂W−1

c
∂da

x f may be orthogonal to x f .

Case Ib: Constant Controllability Grammian: Assume that the controllability Gram-

mian Wc is not dependent on da. This may occur when the variables da represent conver-

sions from one form of energy to another, which will not change the total effort required to

control the system. Then, the coupling vector Γv can be expressed as

Γv =
wc

wa



2xT
fWc

(
t f
)−1 ∂x f

∂da1

2xT
fWc

(
t f
)−1 ∂x f

∂da2
...

2xT
fWc

(
t f
)−1 ∂x f

∂dan



T

(3.14)

In this case, a term in the coupling vector will vanish in either of two conditions. The

first condition,
∂x f

∂dai

= 0, represents the case where neither x f nor Wc
(
t f
)

is a function

of da, and thus E∗ is independent of da. In the second condition, the vectors
∂x f

∂dai

and

Wc
(
t f
)−1

x f are orthogonal.

Positioning Gantry Example: For the positioning gantry described in Chapter II, the

following objectives and constraints are selected:

min
kt ,r

fa =−Z f (kt ,r) (3.15)

subject to simple bounds 2.5≤ r ≤ 7.5 (3.16)

5≤ kt ≤ 20 (3.17)

where the final displacement Z f represents the peak displacement, with a 10% overshoot

over the steady-state displacement, Zss. The equation for the steady-state displacement, Zss,
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is derived in Chapter II. Thus,

Z f = 1.1Zss =
1.1usskt

rRaks
(3.18)

The final state, x f , is therefore given by

x f =

 Z f

0

 . (3.19)

It is desired to minimize the control effort required to move the system to this position at a

specified time, t f = 0.5s, and thus the controller objective is

min
K1,K2,G

fc =

t f∫
0

(u(t))2 dt. (3.20)

This optimization problem fits the description for a Case I problem. The controllability

GrammianWc
(
t f
)

of this system is given by

Wc
(
t f
)

=

 Wc11

(
t f
)

Wc12

(
t f
)

Wc21

(
t f
)

Wc22

(
t f
)
 (3.21)

where the individual terms are as follows:

Wc11

(
t f
)

=
1

2bk
− 2me−

b
m t f

b(4mk−b2)
+

e−
b
m t f

2k
√

4mk−b2
sin
(√

4mk−b2 t f

m

)
+

e−
b
m t f

2k (4mk−b2)
cos
(√

4mk−b2 t f

m

) (3.22)

Wc12

(
t f
)

=
e−

b
m t f

4mk−b2

(
1− cos

(√
4mk−b2 t f

m

))
(3.23)
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Wc21

(
t f
)

=
e−

b
m t f

4mk−b2

(
1− cos

(√
4mk−b2 t f

m

))
(3.24)

Wc22

(
t f
)

=
1

2bm
− 4ke−

b
m t f

b(4mk−b2)
+

e−
b
m t f

m(4mk−b2)3/2 sin
(

t f

m

√
4mk−b2

)

− be−
b
m t f

m(4mk−b2)
cos
(

t f

m

√
4mk−b2

) (3.25)

Expressions for m, b, and k are given by Eqs. (2.19) - (2.21). Using these expressions, it

can be shown that Wc
(
t f
)

is a function of r and kt , as is x f . Taking derivatives of both

x f and Wc
(
t f
)

with respect to da, it can be shown that there are no feasible values of

r and kt for which Γv = 0. Therefore, it is concluded that the problem will be coupled,

and an appropriate solution method for a coupled problem should be chosen. When the

simultaneous co-design problem is solved, it is indeed seen to be coupled, with the expected

tradeoff between the objectives shown in Fig. 3.1.

3.3.2 Case II: Time as Objective

In Case II problems, the primary concern is the speed with which the system responds;

or, alternatively, the final time at which the system reaches the state x f is to be minimized.

Control effort is constrained to be less than some maximum value, Emax, where Emax is a

parameter. The controller objective function and constraint are as follows:

min
da,dc

fc = t f (3.26)

subject to gc (da,dc) =

t f∫
0

u(t)2dt−Emax ≤ 0 (3.27)

It can be assumed that the constraint will be active, since a linear system could have an

arbitrarily small response time if infinite control effort were available. Assuming that the
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Figure 3.1: Pareto Frontier for Positioning Gantry Example of Case I

constraint is active and that an optimal controller is chosen,

xT
fWc

(
t f
)−1

x f = Emax. (3.28)

Taking derivatives of (3.28) and solving for
∂ t f

∂dai

,

∂ t f

∂dai

=−
2xT

fWc
(
t f
)−1 ∂x f

∂dai

+xT
f

∂Wc
(
t f
)−1

∂dai

x f

2xT
fWc

(
t f
)−1 ∂x f

∂ t f
+xT

f
∂Wc

(
t f
)−1

∂ t f
x f

(3.29)
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the coupling can be expressed as

Γv =− wc

waT



2xT
fWc

(
t f
)−1 ∂x f

∂da1

+xT
f

∂Wc
(
t f
)−1

∂da1

x f

2xT
fWc

(
t f
)−1 ∂x f

∂da2

+xT
f

∂Wc
(
t f
)−1

∂da2

x f

...

2xT
fWc

(
t f
)−1 ∂x f

∂dan

+xT
f

∂Wc
(
t f
)−1

∂dan

x f



T

(3.30)

where T = 2xT
fWc

(
t f
)−1 ∂x f

∂ t f
+xT

f
∂Wc

(
t f
)−1

∂ t f
x f .

Note that the coupling vector is parallel to that seen for Case I, and the conditions for

decoupling in this problem are mathematically identical. This indicates that the physical

conditions under which the problems decouple are also the same. As in Case I, therefore,

one situation which would result in decoupling is that in which changes in da produce both

a greater displacement x f of the system and a more efficient use of the available control

effort. Within this class of problems, there are two sub-classes of interest, similar to those

discussed for Case I.

Case IIa: Final State as a Parameter: If the final state x f is a parameter, then the

coupling simplifies to

Γv =− wc

wa

(
xT

f
∂Wc

(
t f
)−1

∂ t f
x f

)



xT
f

∂Wc
(
t f
)−1

∂da1

x f

xT
f

∂Wc
(
t f
)−1

∂da2

x f

...

xT
f

∂Wc
(
t f
)−1

∂dan

x f



T

(3.31)

and the coupling vector is parallel to that seen in Case Ia, with identical conditions for

decoupling.

Constant Controllability Grammian: Assume that the controllability Grammian matrix
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Wc
(
t f
)

is not dependent on da. As in Case I, this can happen when da represents the

conversion of energy with no loss. Then, the coupling vector Γv can be expressed as

Γv =− wc

wa

(
xT

fWc
(
t f
)−1 ∂x f

∂ t f

)


xT
fWc

(
t f
)−1 ∂x f

∂da1

xT
fWc

(
t f
)−1 ∂x f

∂da2
...

xT
fWc

(
t f
)−1 ∂x f

∂dan



T

(3.32)

and, in this case, the coupling vector is parallel to that seen in Case Ib, with identical

conditions for decoupling.

Positioning Gantry Example: Assume, in this case, that the artifact design objective

and constraints are as given in Eqs. (3.15) - (3.17). The controller design objective and

constraints are as follows:

min
K1,K2,G

fc = t f (3.33)

subject to

g1 (K1,K2,G) =

t f∫
0

(u(t))2 dt−Emax ≤ 0 (3.34)

Monotonicity analysis indicates that the constraint g1 will be active, and therefore this prob-

lem meets the conditions established for Case II. The controllability Grammian is given by

Eqs. (3.21)-(3.25). In this case, the coupling is again non-zero for every allowed value of r

and kt . When the problem is solved, the anticipated tradeoff between fa and fc is evident,

as shown in Fig. 3.2.

3.3.3 Case III: Linear Quadratic Regulator (LQR)

The infinite-time LQR problem is designed to find the optimal control signal u(t) to

transition a system from an initial state x0 = x(0) to the zero state. The optimal control
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Figure 3.2: Pareto Frontier for Positioning Gantry Example of Case II

signal is defined as the one which minimizes the cost function

J =
∞∫

0

(
x(t)T Qx(t)+u(t)T Ru(t)

)
dt. (3.35)

It is well-established that the optimal solution is [Skogestad and Postlethwaite (2005)]:

u(t) = −Kx(t) (3.36)

K = R−1BTX (3.37)

with the precompensator G, shown in Fig. 2.3, vanishing due to the reference state being

defined as the zero state. The matrixX is the positive semi-definite solution of the algebraic

Riccati equation

ATX+XA−XBR−1BTX+Q= 0 (3.38)
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and the optimal value of J is given by the equation

J∗ = xT
0Xx0. (3.39)

If the system is controllable, then it has also been proven that there exists a reduced equiv-

alent transformation of the system, and the symmetric matrix X satisfies the Lyapunov

equation [Ionescu et al. (1999)]:

ATX+XA+Q= 0 (3.40)

In the most general case, whereQ can be selected as any positive semidefinite matrix, there

is no explicit relation between J∗ and W∞
c , and thus no explicit relation between Γv and

W∞
c . However, if the matrixQ is selected as

Q= γBBT , (3.41)

as is common in loop-transfer recovery design [Skogestad and Postlethwaite (2005)], then

by comparing Eq. (3.5) and (3.40), it can be shown that the matrix X can be expressed in

terms of the controllability Grammian as [Skogestad and Postlethwaite (2005)]:

X = γA−TAW∞
c (3.42)

and, therefore, the optimal performance is

J∗ = γxT
0A
−TAW∞

c x0. (3.43)
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This allows the coupling to be derived as

Γv = γ
wc

wa



∂
(
xT

0A
−TAW∞

c x0
)

∂da1
∂
(
xT

0A
−TAW∞

c x0
)

∂da2
...

∂
(
xT

0A
−TAW∞

c x0
)

∂dan



T

(3.44)

This expression for Γv is, again, a function only of the artifact design variables. It is

important to note that this expression is only valid for the specific form of Q given by Eq.

(3.41). For other forms of Q, Eq. (3.42) is not valid. It is conjectured that more complex

relations between X and W∞
c may be found for some other forms of Q, and thus other

relationships between coupling and controllability may hold for other cases of the LQR

problem.

While Eq. (3.44) is a complex expression, in general, depending on the problem in

question, it can simplify under certain circumstances. One particular situation is detailed

below, in which it takes on a considerably simpler form.

Case IIIa: State x0 as a parameter and A independent of da: If the forced response

of a system is a function of da but the free response is not, then the B matrix will be a

function of da but A will be independent of da. If, in addition, the state x0 is a parameter,

the coupling relation is given by

Γv = γ
wc

wa



xT
0A
−TA

∂W∞
c

∂da1

x0

xT
0A
−TA

∂W∞
c

∂da2

x0

...

xT
0A
−TA

∂W∞
c

∂dan

x0



T

(3.45)

Note that, in this case, there are several conditions in which decoupling will occur.
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1. For all artifact design variables da, the derivative
∂W∞

c
∂dai

= 0.

2. The matrix productA−TA
∂W∞

c
∂dai

= 0 for all artifact design variables da.

3. The vectors x0 and
(
A−TA

∂W∞
c

∂dai

x0

)
are orthogonal for all artifact design vari-

ables da.

Positioning Gantry Example: Consider, again, the positioning gantry system shown in

Chapter II. In this case, the artifact objective function is assumed to be the system’s total

weight. The weight depends on a number of system parameters, which shall be grouped

into three constants for simplicity. The artifact objective then takes the form of

min
r,kt

fa = c1 + c2k1.5
t + c3r2 (3.46)

where c1 = 10, c2 = 5, and c3 = 0.1, subject to the bounds given in Eqs. (3.16) - (3.17).

Note that the pulley was assumed, in Section 2.3, to possess negligible rotational inertia;

however, it is not assumed to be massless, and thus it appears in the calculation of system

weight. The controller optimization problem is formulated as an LQR problem with con-

troller objective fc = J, where J is given by Eq. (3.35) with x0 =

 3.5

0

, R = 1, and

Q=

 0 0

0 1

. It can be shown that this choice of weighting matrixQ satisfies Eq. (3.41),

with γ = m2. Using Eq. (3.44), the coupling can be computed for this problem. In this case,

the coupling can be shown to vanish for all values of r and kt , indicating that the problem

is uncoupled and that J∗ is independent of these variables. Note that this is not a result

that could be easily seen, though it can be explained physically; the variable r, the pulley

diameter, represents a conversion of energy without loss, and the variable kt , the motor

torque constant, represents a tradeoff between the motor’s speed and torque, which entails

no loss of energy. When the co-design problem is solved for the values of parameters given

55



Table 3.1: Parameters for Optimization of Gantry Using LQR Control

Parameter Value
Ra 2.0 kΩ

M 2.0 kg
ks 2.0 N/mm
Vss 10 V

Table 3.2: Results of Optimization of Gantry Using LQR Control

Quantity Value
r 2.5 cm
kt 5.0 N-m/A
K1 -0.368
K2 -7.696
G 0.132
f ∗a 66.53
f ∗c 5.78

in Table 3.1, no tradeoff is seen. For all values of wa and wc, the variables and objectives

are found to have the values shown in Table 3.2.

3.4 Physical Demonstration: Positioning Gantry

The positioning gantry system described in Chapter II, and used to illustrate the con-

cepts in this chapter and in Chapter II, was built and used for an experimental demon-

stration. The demonstration was designed to show that it is possible to predict, a priori,

whether a problem will be coupled. In this section, the apparatus used for the demonstra-

tion will be described. The intention of the demonstration will be described, and results

will be shown.

3.4.1 Description of Apparatus

The apparatus for the physical demonstration was constructed using a Quanser En-

gineering Trainer DC Motor Control Trainer (QET-DCMCT), as shown in Fig. 3.3. The
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QET-DCMCT unit consists of a motor, encoder, associated electrical components, and soft-

ware (item 1). A plate, item 2, was mounted to the QET-DCMCT unit. A linear rail, item

3 was mounted to the plate, and an angle bracket, item 4, was mounted to the block that

mates with the rail. A spring, item 5, was attached at one end to item 4 and at the other end

to a fixed bracket, item 6. A synchronous belt, item 8, was clamped to item 6 and driven

by a pulley, item 7, which was mounted to the QET-DCMCT motor.

Figure 3.3: Apparatus for Physical Demonstration of Gantry Example (Item 1: QET motor
assembly, Item 2: mounting plate, Item 3: linear rail, Item 4: angle bracket,
Item 5: extension spring, Item 6: fixed mounting bracket, Item 7: pulley)

The spring corresponds to the spring with constant ks shown in Fig. 2.2. The bracket

and linear block correspond to the mass, M. The timing pulley corresponds to the pulley of

radius r, and the QET-DCMCT unit corresponds to the motor with armature resistance Ra

and torque constant kt . It was assumed that the inertia of the pulley is negligible, and that
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the friction between the block and rail is negligible.

The system was run by means of the supplied QET-DCMCT software. This software

allows the user to specify the gains integral gain ki, derivative gain kd , and proportional

gain kp, as shown in Fig. 3.4. This controller is different from the controller shown in Fig.

2.3. The QET-DCMCT controller has integral control instead of a precompensator. The

gain kp is equivalent to the gain K1, and kd is equivalent to K2. However, the controllability

Grammian is still capable of predicting whether or not the system will be coupled, since it

is independent of the control architecture.

3.4.2 Demonstration Procedure

This system corresponds to the positioning gantry shown in Fig. 2.2. As discussed in

Sections 2.3.2 and 3.3, the co-design of this system will be a coupled problem for certain

choices of artifact design variables. In particular, the spring constant, ks, shall be studied for

this demonstration. An optimization problem of the type described as Case I is formulated.

It can be shown from Eq. (3.12) that this problem will be coupled. The results of this

demonstration confirm this result.

The spring strength was varied by operating the system once with a single spring with

ks = 0.81 lbs/in, and a second time with two springs in series, as shown in Fig. 3.5. This

has the effect of decreasing the spring constant by a factor of 2, to ks = 0.40 lbs/in. The

position command to the controller was a step input with a fixed terminal time for the

system. The terminal time, t f , was held constant at t f = 2.5 sec.

The control objective function fc, was the control effort, which was to be minimized.

The final position of the system, Z f , was a parameter with the value of Z f = 0.3 in. The

control objective, then, can be expressed as

min
kp,kd ,ki

fc = E =

t f∫
0

(V (t))2 dt (3.47)
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Figure 3.4: Control Screen for QET-DCMCT Software
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Figure 3.5: Apparatus with Modified Spring Configuration

where E is the control effort required to move the system to the desired final position.

If the system is uncoupled, then tuning the controller to different values of kp, ki, and

kd would yield the same minimum value of fc for both spring configurations. If the system

is coupled, however, then this will not be possible. When ks is changed, then the minimum

value of fc would not be the same, regardless of how the gains were tuned. Since the

controllability Grammian is a function of the spring constant ks, it is expected that this

system will exhibit coupling when the spring constant ks is selected as a design variable.

3.4.3 Results of Demonstration

First, the system was operated with a single spring and the gains were manually tuned

to be kp = 2.50, kd = 0.060, and ki = 9.0. The control effort required was computed

numerically and was found to be E = 6.63 V2− s. Next, the system was operated with two
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Figure 3.6: Voltage for Single and Dual Spring Configurations

springs, and the gains were tuned to minimize the control effort. The resulting gains were

found to be kp = 1.20, kd = 0.030, and ki = 6.5. The control effort required was computed

numerically and was found to be E = 5.74 V2−s. The voltage and position graphs for both

configurations are given in Fig. 3.6 and 3.7, respectively.

Since the gains were tuned manually, no guarantee of optimality can be given. How-

ever, it can be seen from Fig. 3.7 that the position responses are very similar for both spring

configurations, and thus the voltage required for each case can be compared on an equal

basis. The control effort is the area under the curve; from Fig. 3.6, it can be seen that this

area will be larger for the single spring configuration than for the dual spring configuration.

Therefore, the control objective function, fc, is a function of the spring constant, ks. Thus,

coupling is present, as predicted based on Eq. (3.12). It can thus be seen that the relation-

ships presented between coupling and controllability are an effective tool in the analysis of

a co-design problem prior to optimization.
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Figure 3.7: Position Response for Single and Dual Spring Configurations

3.5 Summary

As shown in this chapter, it is often possible to determine a priori whether or not a

co-design problem exhibits coupling. If the control objective, fc (da,dc), or the active con-

troller constraints, hc (da,dc) or gc (da,dc), depend on control effort, then that objective or

constraint can be related to the controllability Grammian matrix. This allows the coupling

to be determined, without solving the co-design problem or even specifying the controller

architecture, due to the relationship between the controllability Grammian and the optimal

control performance. Three specific classical optimal control problem formulations were

presented here; it is anticipated that other problem formulations can be found in which cou-

pling can be similarly related to controllability. The experiment conducted on the gantry

example showed that these relationships can be used to predict whether or not a co-design

problem will be coupled.

If the problem is uncoupled, then a sequential strategy can be used and will find the
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system optimal solution. If the problem is coupled, then an appropriate solution strategy

can be chosen. A variety of solution strategies for coupled problems have been proposed,

as discussed in Chapter I. A new strategy for co-design problems with uni-directional

coupling will be proposed in the following chapter, utilizing the concept of a Control Proxy

Function. The relations between coupling and controllability developed in this chapter will

also be useful in the development of the Control Proxy Functions that will be proposed for

solving the co-design problem.
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CHAPTER IV

Design for Ease of Control Using Control Proxy Functions

4.1 Introduction

In Chapter III, the issue of identifying coupling a priori in co-design problems was

addressed. If coupling is not present, then a sequential solution strategy will produce a

system-optimal solution. However, if coupling is present, this is not the case. A simultane-

ous formulation, if it can be solved, will produce system-optimal results, but this approach

has some significant disadvantages due to computational and organizational complexity.

An ideal approach would produce the same results as those found with the simultaneous

formulation, but would exhibit the simplicity of the sequential formulation. Therefore, in

this chapter a modified sequential solution strategy is proposed, in which the original arti-

fact objective function, fa, is augmented by a Control Proxy Function (CPF), representing

the system’s ease of control. The CPF, denoted as χ , is a function only of the artifact de-

sign variables da and not of the control design variables dc. The bi-objective artifact design

problem with the two functions fa (da) and χ (da) may be solved in a variety of ways, as

discussed in the multi-objective optimization literature [e.g., Das and Dennis (1997), Mes-

sac and Puemi-Sukam (2000), Kitayama et al. (2009), Steuer (1986)]. In this chapter, a

weighted linear combination will be used to demonstrate the proposed method.

The modified sequential problem formulation, termed the CPF problem, is expressed
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as

min
da

f ′a (da) = w1 fa (da)+w2χ (da) (4.1)

subject to ga (da)≤ 0 (4.2)

ha (da) = 0 (4.3)

followed by the control design problem

min
dc

fc (d∗a,dc) (4.4)

subject to gc (d∗a,dc)≤ 0 (4.5)

hc (d∗a,dc) = 0 (4.6)

where d∗a = argmin f ′a (da). The problem formulation can also be represented graphically,

as in Fig. (4.1)

Figure 4.1: Control Proxy Function Problem Formulation

Of course, the goal in solving the modified sequential problem illustrated in Fig. 4.1
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is to select the CPF, χ (da), in such a way that the solution to this problem is ‘close’ to

the system optimal solution that would be obtained by solving the original simultaneous

problem in Eq. (1.9) - (1.13).

4.2 Characteristics of Effective Control Proxy Functions (CPFs)

The choice of an appropriate control proxy function (CPF), χ (da), is critical in formu-

lating the modified sequential optimization problem. A well-chosen CPF, which effectively

captures the fundamental physical limitations of the system, will result in solutions that are

close to the Pareto optimal points found by a simultaneous formulation, while a poorly

chosen CPF will yield solutions that are far from system optimality. Clearly, the selected

CPF must not require knowledge of the controller design.

This raises the questions of how to determine the ’closeness’ of a CPF solution to

the Pareto frontier, and how to formulate an appropriate CPF. The closeness of the CPF

solution should be determined without solving the simultaneous formulation for Pareto

optimal points, since the motivation for the CPF formulation is to eliminate the need to

solve the simultaneous problem. A suitable measure of the CPF solution’s closeness can

be found by evaluating the angle ξ between two vectors that can be calculated at any point

of the CPF solution set. The two vectors which define ξ are ∇χ =
∂ χ

∂da
, the gradient

of the CPF, and Γ̂v, the estimate of the coupling vector. The equation for calculating Γ̂v

is identical to that for Γv; however, since the coupling vector is valid only at an optimal

solution to the system, the vector found at a CPF point is an estimate. It is then shown

that this measure of closeness to optimality can be used to justify two conditions that an

effective CPF will satisfy. The issues of evaluating a CPF and of selecting an appropriate

CPF are summarized in the four items listed below.

1. If Γv is parallel to ∇χ at all points, then the CPF solution set will coincide with the

Pareto frontier.
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2. CPF solution points will approach the Pareto frontier as ξ , the angle between the

estimate of the coupling vector Γ̂v and ∇χ in the da-space, approaches zero; i.e.,

CPF solution points will be close to the Pareto frontier when the angle ξ is small.

3. If the control objective function, fc (da,dc), is monotonic with respect to some ele-

ment of da, then an effective CPF, χ (da), will have the same coordinate-wise mono-

tonicity as fc with respect to that element of da.

4. If the control objective function, fc (da,dc), has an unconstrained minimum in the

da-space, then an effective CPF, χ (da), will obtain its minimum close to it.

Each of these four items will be discussed in more detail in the following subsections,

with mathematical examples given to illustrate the concepts. The items are stated as theo-

rems; proof of each theorem is given in Appendix A.

4.2.1 Characterization of a Perfect CPF

A CPF will be described as ‘perfect’ if every solution of the CPF problem is also a

solution to the simultaneous problem given in Eq. (1.9) - (1.13), i.e., every CPF point will

coincide with the Pareto frontier. The condition which ensures that this will occur is stated

as a theorem, followed by an example. The proof of the theorem is given in Appendix A.

THEOREM 4.1: If Γv ‖∇χ for all solutions to the CPF problem given in Eq. (4.1) - (4.3),

then all solutions to the CPF problem will also be solutions to the simultaneous problem

given in Eq. (1.9) - (1.13).

EXAMPLE: To illustrate the relationship between Γv and ∇χ , consider the following
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coupled optimization problem:

minwa fa (da)+wc fc (da,dc) (4.7)

fa (da) = 0.5d2
a1

+d2
a2
−da1da2−7da1−7da2 (4.8)

fc (da,dc) = (da1−da2)
2 +

1
9

(da1 +da2 +dc−10)2 +(dc−5)2 (4.9)

subject to ga (da) = 4d2
a1

+d2
a2
−900≤ 0 (4.10)

A CPF of

χ (da) = 11d2
a1

+11d2
a2
−18da1da2−10da1−10da2 +25 (4.11)

is chosen, and the system is optimized both sequentially and simultaneously.

The coupling vector Γv is given by the relation

Γv =
2wc

9wa

 10da1−8da2 +dc−10

−8da1 +10da2 +dc−10


T

da = d∗a

dc = d∗c

(4.12)

and the CPF has the gradient

∇χ =

 22da1−18da2−10

−18da1 +22da2−10


T

(4.13)

Since there are no controller constraints gc (da,dc) or hc (da,dc),
∂ fc

∂dc
= 0, and therefore

dc = 5.5−0.1da1−0.1da2 . (4.14)
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Substituting into Eq.(4.12),

Γv =
2wc

wa

 1.1da1−0.9da2−0.5

−0.9da1 +1.1da2−0.5


T

da = d∗a

dc = d∗c

(4.15)

It can be readily seen that, at any da that solves the simultaneous problem,

Γv = 10
wc

wa
∇χ (4.16)

and therefore it is anticipated that the use of this CPF will duplicate the Pareto frontier.

This is indeed the case, as shown by the numerical results in Fig. 4.2.

Figure 4.2: Comparison of Simultaneous and CPF Solutions for Γv ‖ ∇χ

69



4.2.2 Quantification of the ‘Closeness’ of a CPF Point to the Pareto Frontier

As stated above, a perfect CPF is characterized by ∇χ ‖ Γv, i.e., when the angle ξ

between ∇χ and Γv is zero. This suggests that ξ may serve as a means of evaluating

the fidelity of a given CPF in modeling the behavior of fc. If a CPF is not perfect, but it

provides near-optimal results, then it can be useful when achieving true optimality would

take significant additional computational effort. The condition which allows the use of ξ

to characterize the closeness of a CPF is stated as a theorem, with the proof given in Ap-

pendix A. Note that the proof is valid only if no artifact constraints ga (da), ha (da) are

active. However, it can be shown that the relation is true for some problems with active

constraints on the artifact. Since constraints act to reduce the degrees of freedom present in

an optimization problem, it is conjectured that, in the presence of constraints, the angle ξ

will represent an upper bound on the ‘distance’ between a CPF point and the Pareto fron-

tier. An example is given following the statement of the theorem.

THEOREM 4.2: If a co-design problem, as given in Eq. (1.9) - (1.13), is convex and no

artifact constraints ga (da), ha (da) are active, then the angle ξ between ∇χ and the esti-

mated coupling vector Γ̂v at a CPF point will be monotonically related to ε , the distance

between that CPF point and the nearest Pareto optimal point, measured in the da-space.

EXAMPLE: Consider the following problem:

minwa fa (da)+wc fc (da,dc) (4.17)

fa (da) = 0.5d2
a1

+d2
a2
−da1da2−7da1−7da2 (4.18)

fc (da,dc) = (da1−da2)
2 +

1
9

(da1 +da2 +dc−10)2 +(dc−5)2 (4.19)

A CPF of

χ1 (da) = (da1−5)2 +d2
a2
−25 (4.20)
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is chosen, and the system is optimized both sequentially and simultaneously. The angle ξ

is compared with the distance ε to the nearest point on the true Pareto frontier in Fig. (4.3),

and it can be seen that, for this example, this angle is an effective measure of the distance to

the frontier. Using this measure, the accuracy of a CPF can be evaluated without knowing

the true Pareto frontier.

Figure 4.3: Comparison of angle ξ and distance ε

4.2.3 Monotonicity of Controller Objective and CPF

A function is said to be coordinate-wise monotonic if it is either always increasing

or always decreasing with respect to a given variable, e.g., if the partial derivative of a

continuous function does not change sign [Papalambros and Wilde (2000)]. Monotonicity

analysis is a useful tool in optimization problems. For example, it can be used to determine

constraint activity, to study the behavior of composite functions, and to give insight into

the tradeoffs present in optimization problems [Papalambros and Wilde (2000)]. Here, we

use monotonicity to characterize effective CPFs.

If a controller objective fc (da,dc) is monotonic with respect to an element of da, then
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it seems logical that χ (da) should have the same monotonicity with respect to that element

of da in order to effectively model the behavior of fc. This is the case, as stated in Theorem

4.3 below. An example follows the theorem, and the proof is given in Appendix A.

THEOREM 4.3: If fc (da,dc) is monotonic with respect to some element of da, and that

element of da does not appear in any active constraint, then a CPF with the same mono-

tonicity will produce closer solutions than a CPF with the opposite monotonicity.

EXAMPLE: Consider the following problem:

minwa fa (da)+wc fc (da,dc) (4.21)

fa (da) = 0.5d2
a1

+d2
a2
−da1da2−7da1−7da2 (4.22)

fc (da,dc) = da1 +da2−dc (4.23)

subject to

ga (da) = 10−da1−da2 ≤ 0 (4.24)

gc (da,dc) =
(

da2−
dc

2

)2

−25≤ 0 (4.25)

where da = {da : da ≥ 0}.

A CPF of

χ (da) = da1 +0.25d0.5
a2

(4.26)

is chosen. It is evident that fc and χ are both monotonically increasing with respect to da1

and da2 . Solving both the simultaneous optimization and the CPF problem, it can be seen in

Fig. 4.4 that the CPF solution models the tradeoff between fa and fc, though imperfectly.

In contrast, consider a CPF of

χ (da) =−da1 +0.25d0.5
a2

(4.27)
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Figure 4.4: Comparison of Simultaneous and CPF Solutions for Appropriate Monotonicity

In this case, the monotonicity of χ and fc with respect to da1 does not match. Solving the

new CPF problem, it can be seen in Fig. 4.5 that this CPF does not model the tradeoff

between fa and fc.

4.2.4 Locations of Unconstrained Minima of fc and χ

In the previous section, fc was assumed to be monotonic with respect to some element

of da. Here, we consider the case where fc is not monotonic, but rather has an uncon-

strained minimum. Intuitively, it seems likely that the values taken by da at the minimum

of fc should also minimize χ , and that a CPF will become less effective if the minimum

of χ is farther from the minimum of fc in the da-space. This can be proven for an uncon-

strained problem, and it is conjectured that it will also be true for constrained problems.

This condition is stated as a theorem, with the proof given in Appendix A. The theorem is

followed by an example.
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Figure 4.5: Comparison of Simultaneous and CPF Solutions for Inappropriate Monotonic-
ity

THEOREM 4.4: Assume that fc (da,dc) has an unconstrained minimum, and that χ (da)

is chosen such that it has an unconstrained minimum. Then, the distance between a CPF

point and the Pareto frontier will increase as the distance increases between the minima of

fc and χ .

EXAMPLE: Consider the following problem:

minwa fa (da)+wc fc (da,dc) (4.28)

fa (da) = 0.5d2
a1

+d2
a2
−da1da2−7da1−7da2 (4.29)

fc (da,dc) = (da1−da2)
2 +

1
9

(da1 +da2 +dc−10)2 +(dc−5)2 (4.30)

subject to

ga (da) = 4d2
a1

+d2
a2
−900≤ 0 (4.31)

gc (da,dc) =
1

50
d2

a1
+

1
5

d2
a2
−48≤ 0 (4.32)
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Table 4.1: Comparison of Minima of Objective Functions and Control Proxy Functions

da1 da2

fa 21 14
fc 2.5 2.5
χ1 5 0
χ2 1 -10

This problem is solved twice, with two different CPFs, which will then be compared.

χ1 (da) = (da1−5)2 +d2
a2
−25 (4.33)

χ2 (da) = (da1−1)2 +(da2 +10)2−10 (4.34)

The unconstrained minima of the functions fa, fc, χ1, and χ2 are given in Table 4.1.

The solutions found by solving the two CPF sequential problems are shown in Fig. 4.6. It

can be seen that χ1, which obtains its minimum closer to that of fc than does χ2, produces

a closer match to the simultaneous solution than χ2.

Figure 4.6: Comparison of Simultaneous and CPF Solutions for Two Choices of CPF
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4.3 Control Proxy Functions for Specific Co-Design Problem Formu-

lations

Given the characteristics of effective CPFs that have been developed in Section 4.2, we

can formulate potential CPFs for specific problem formulations and evaluate them. In this

section, we will show that a perfect CPF exists for each of several problem formulations.

Of course, the formulations considered here are not exhaustive. There are many co-design

problem formulations that are not considered here, and it is anticipated that future work

will identify additional CPFs that would be useful for additional problem formulations.

The CPFs evaluated here will be based on either the natural frequency of the system or

on the controllability Grammian matrix. The natural frequency is considered as the basis for

a CPF because previous work has shown that, in some cases, it can be used as an effective

proxy for a system’s ease of control [e.g., Peters et al. (2008), Hale et al. (1985), Khot and

Abhyankar (1993), Bodden and Junkins (1985), Yee and Tsuei (1991)]. The controllability

Grammian matrix, Wc, will be considered as the basis for a CPF because previous work,

as described in Chapter III and in [Peters et al. (2010)], has shown that, for some problem

formulations, there is a relationship betweenWc and the coupling vector Γv. Since there is

also a relationship between Γv and an effective CPF, this suggests that a CPF based onWc

will be effective for some problems.

4.3.1 Natural Frequency as a Control Proxy Function

Since the natural frequency of a system depends only on the artifact and can be used, in

some cases, to model the system’s ease of control, there will be problems for which an ef-

fective control proxy function χ (da) will be a function of the natural frequency. This raises

the question of when a CPF of this type would be effective. There are several necessary

conditions for a CPF based on natural frequency to be effective. Those that are common to

all of the cases discussed in this section are listed below.
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1. The co-design problem is formulated as in Eq. (1.9)-(1.13).

2. The system is linear and dominated by second-order dynamics. This system can be

described, then, in the form

mz̈+bż+ kz = u(t) (4.35)

where m, b, and k are functions of the design variables da, parameters, and constants.

or alternatively in state-space form as

ẋ=Ax+Bu (4.36)

where

A=

 0 1

− k
m
− b

m

 (4.37)

B =

 0
1
m

 (4.38)

x=

 z

ż

 (4.39)

The open-loop system is underdamped, i.e., the open-loop eigenvalues are complex.

3. The matrixB is independent of the artifact design variables da, i.e.,

∂m
∂da

= 0. (4.40)

4. A state-feedback controller, possibly with a precompensator, is applied to the system,

as shown in Fig. 2.3.
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5. There are no active controller equality constraints hc (da,dc) or strongly active con-

troller inequality constraints gc (da,dc) present. Weakly active controller inequality

constraints may be present, where a weakly active constraint is one which is not sat-

isfied as a strict equality but whose removal will affect the system optimum [Pomrehn

and Papalambros (1994)].

In a second-order system, there are two eigenvalues, which are complex conjugates.

These eigenvalues can be fully described by the frequency ω and damping coefficient ζ of

the system.

λ1,2 =−ζ ω±ω

√
ζ 2−1 (4.41)

Here, we will denote the natural frequency, or frequency of the open-loop system, as ωn and

the damping coefficient of the open-loop system as ζn. The frequency of the controlled, or

closed-loop, system will be denoted as ωc and the damping coefficient of the closed-loop

system will be denoted as ζc. The open-loop and closed-loop frequencies and damping

coefficients for the second-order system subjected to state-feedback control are given by

the following equations [Franklin et al. (1994)]:

ωn =

√
k
m

(4.42)

ζn =
b

2
√

mk
(4.43)

ωc =

√
k +K1

m
(4.44)

ζc =
b+K2

2
√

m(k +K1)
(4.45)

These equations will be used to define three specific problem formulations where χ (da) =

χ (ωn). In each case, additional necessary conditions are specified, relating to the damping

of the system. These three problem formulations are stated and proved below using Theo-

rem 4.1.
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Control Objective Independent of Damping: If the control objective fc is a function of

the closed-loop frequency ωc of the system but is independent of the closed-loop damping

coefficient ζc, then the CPF χ = χ (ωn) will yield system-optimal solutions to the simulta-

neous optimization problem. An example of this control objective is fc = tr, where tr =
1.8
ωc

is the rise time of the system [Franklin et al. (1994)].

(e.g., fc = tr, where tr is the rise time of the system)

For a second-order system, ωn is given by Eq. (4.42), and therefore the gradient of χ is

given by

∇χ =
∂ χ

∂ωn

∂ωn

∂da
=

∂ χ

∂ωn

(
1
2

√
1

km
∂k

∂da

)
(4.46)

where k is a function of da. The closed-loop frequency of the system is given by Eq. (4.44).

Using Eq. (1.14), the coupling is found to be

Γv =
w2

w1

∂ fc

∂ωc

(
1
2

√
1

(k +K1)m
∂k

∂da

)
(4.47)

It is possible, then, to express the coupling vector Γv at the CPF solution as

Γv =
w2

w1

√
k

k +K1

(
∂ fc

∂ωc

)
/

(
∂ χ

∂ωn

)
∇χ (4.48)

and it can be seen that the coupling vector at the CPF point must be parallel or anti-parallel

to the gradient of the CPF, depending on the sign of the scalar term. If the CPF χ is selected

such that sgn
(

∂ χ

∂ωn

)
= sgn

(
∂ fc

∂ωc

)
, then the two vectors will be parallel. From Theorem

4.1, then, the CPF points will be Pareto optimal for the co-design problem.

Control Objective Independent of Imaginary Component of Eigenvalues: If the con-

trol objective fc is a function of the product ωcζc, i.e., of the real part of the closed-loop

eigenvalues (e.g., fc = ts, where ts is the settling time of the system), and the damping ra-

tio ζn of the open-loop system is independent of da, then the CPF χ = χ (ωn) will yield
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system-optimal solutions to the simultaneous optimization problem.

The condition that the damping ratio of the open-loop system is independent of da can

be expressed mathematically as
∂ζn

∂da
= 0. (4.49)

The gradient ∇χ is, once again, given by Eq. (4.46). Using Eq. (4.44) - (4.45), Γv is

computed from Eq. (1.14) as

Γv =
w2

w1

∂ fc

∂ (ωcζc)

(
ζc

∂ωc

∂da
+ωc

∂ζc

∂da

)
(4.50)

By differentiating Eq. (4.43) and substituting Eq. (4.49), it is found that

Γv =
w2

w1

∂ fc

∂ (ωcζc)
b

4km
∂k

∂da
(4.51)

and therefore the coupling vector can be expressed in terms of the gradient ∇χ as

Γv =
w2

w1

∂ fc

∂ (ωcζc)
b

2
√

km

(
1/

∂ χ

∂ωn

)
∇χ (4.52)

and it can again be seen that the coupling vector at the CPF point must be parallel or anti-

parallel to the gradient of the Control Proxy Function, depending on the sign of the scalar

term. If the open-loop system is stable, b > 0, and the function χ should be chosen such

that sgn
(

∂ χ

∂da

)
= sgn

(
∂ fc

∂ (ωcζc)

)
. If this condition is met, then the two vectors will be

parallel. From Theorem 4.1, then, the CPF points will be Pareto optimal for the co-design

problem.

Damping Term b Independent of da: If the controller objective fc is an arbitrary func-

tion of the closed-loop eigenvalues of the system, and the damping term b in the system
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description is independent of da, i.e.,

∂b
∂da

= 0 (4.53)

then the CPF χ = χ (ωn) will yield system-optimal solutions to the simultaneous optimiza-

tion problem.

The gradient ∇χ is, once again, given by Eq. (4.46). Using Eq. (4.53), the coupling Γv

can be computed from Eq. (1.14) as

Γv =
w2

w1

(
∂ fc

∂ωc

∂ωc

∂da
+

∂ fc

∂ζc

∂ζc

∂da

)
(4.54)

Using the relations for ωc and ζc given in Eqs. (4.44) and (4.45), respectively,

Γv =
w2

w1

1√
m(k +K1)

(
∂ fc

∂ωc
− ∂ fc

∂ζc

b+K2

2(k +K1)

)
∂k

∂da
(4.55)

which can then be expressed in terms of ∇χ as

Γv =
w2

w1

√
k

k +K1

(
∂ fc

∂ωc
− ∂ fc

∂ζc

b+K2

2(k +K1)

)(
1/

∂ χ

∂ωn

)
∇χ (4.56)

and it can be seen, yet again, that the coupling vector at the CPF point must be parallel

or anti-parallel to the gradient of the Control Proxy Function, depending on the sign of

the scalar term in parentheses. If the function χ (da) is chosen such that the scalar term is

positive, then the two vectors will be parallel. From Theorem 4.1, then, the CPF points will

be Pareto optimal for the co-design problem.

In this section, it has been shown that there are at least three co-design problem for-

mulations in which natural frequency will serve as an effective CPF. In each of these for-

mulations, the system’s damping coefficient either does not affect the controller objective

function, or else it is subject to restrictions. It is anticipated that a CPF using both damping
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of the open-loop system and the natural frequency would be effective in some additional

cases, where these restrictions are not satisfied. Furthermore, all three of these problem for-

mulations require the system to be modeled by second-order dynamics. It is expected that

these results for a CPF using natural frequencies could be extended to systems of higher

order. It is also conjectured that a CPF based on open-loop eigenvalues would be valid with

some types of constraints, and it is anticipated that future research will develop such CPFs.

However, a CPF using open-loop eigenvalues will not be effective when the matrix B

is sensitive to the artifact design variables da, since open-loop eigenvalues cannot be used

to model that system behavior. For problems of this type, the CPF must be based on some

other fundamental metric of the system which is capable of modeling both the free and

forced response characteristics of the system. The next section will evaluate the use of the

controllability Grammian matrix Wc, which depends on both the A and B matrices, for

problems where the derivatives of the B matrix with respect to some components of da,
∂B

∂dai

, are significant.

4.3.2 Control Proxy Functions Based on the Controllability Grammian

As shown in the previous section, a CPF based on natural frequency can be effective

for problems in which the matrix B in Eq. (4.36) is not a function of the artifact design

variables, da. If B is a function of da, then the CPF must incorporate B in some way.

Since the controllability Grammian matrix Wc incorporates both the free and forced re-

sponse characteristics of a system, it is logical to consider its use in a CPF. Furthermore,

the physical meaning of the controllability Grammian matrix suggests that it might be ef-

fective as a CPF. The control effort required to move a system from one state to another is

a function of the controllability Grammian matrix. If the determinant of the controllability

Grammian matrices are compared for two systems, the system with the larger determinant

will require less control effort for the same state transition; or, alternatively, the system

with the larger determinant can be moved farther or faster with the same control effort. It
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is therefore evident that the controllability Grammian matrix can be used to predispose a

system to effective control, and may often be a good choice of CPF. This section will exam-

ine situations in which a CPF based on either the time-dependent controllability Grammian

matrix, Wc
(
t f
)
, or the steady-state controllability Grammian matrix, W∞

c , is perfect. In

all cases, it is assumed that:

1. The co-design problem is formulated as in Eq. (1.9)-(1.13).

2. The system dynamics are linear and can be described in state-space form as in Eq.

(4.36).

Control Proxy Function for the Case of Control Effort as Objective

Consider the case in which the control objective is to minimize control effort, as de-

scribed in Eq. (3.9). If an optimal controller is chosen, then as stated in Chapter III, the

control objective function fc can be found from Eq. (3.10) to be

fc = xT
fW

−1
c x f . (4.57)

This expression for fc depends only on da, and thus could serve as a CPF. Since the cou-

pling vector Γv was calculated from this relation, as in Eq. (3.12), it can easily be seen that,

for χ (da) = xT
fW

−1
c x f ,

Γv =
wc

wa
∇χ (4.58)

and thus, the CPF is perfect.

There are situations, however, when a simpler CPF would suffice. In Case Ia, as detailed

in Chapter III, the final state of the system, x f , is a parameter. Logically, one might expect

that when this is the case, a CPF based only on Wc may be effective, and in at least two

situations this is true, as shown below.
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Consider first the case where the components of x f are equal, i.e., x fq = α ∀ q =

1, . . . , p. In this case, a CPF of

χ (da) =
p

∑
q=1

p

∑
t=1

W−1
c (q, t) (4.59)

is chosen. It is shown here that this will be a perfect CPF.

The gradient of Eq. (4.59) is given by

∇χ =



∑
p
q=1 ∑

p
t=1 ∂W−1

c (q, t)

∂da1

∑
p
q=1 ∑

p
t=1 ∂W−1

c (q, t)

∂da2
...

∑
p
q=1 ∑

p
t=1 ∂W−1

c (q, t)

∂dan



T

(4.60)

The coupling vector Γv is found from Eq. (3.13):

Γv =
wc

wa



∑
p
q=1 ∑

p
t=1 x fqx ft

∂W−1
c (q, t)
∂da1

∑
p
q=1 ∑

p
t=1 x fqx ft

∂W−1
c (q, t)
∂da2

...

∑
p
q=1 ∑

p
t=1 x fqx ft

∂W−1
c (q, t)
∂dan



T

(4.61)

which can be re-written as

Γv =
wc

wa



α2
∂ ∑

p
q=1 ∑

p
t=1W

−1
c (q, t)

∂da1

α2
∂ ∑

p
q=1 ∑

p
t=1W

−1
c (q, t)

∂da2
...

α2
∂ ∑

p
q=1 ∑

p
t=1W

−1
c (q, t)

∂dan



T

(4.62)
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Thus,

Γv =
wc

wa
α

2
∇χ (4.63)

and, as stated, Eq. (4.59) will be a perfect CPF. Note that, if Wc
(
t f
)

is diagonal, the CPF

can be expressed as

χ (da) = tr
(
W−1

c
)

=
tr(Wc)

det(Wc)
(4.64)

In general, Wc
(
t f
)

is not diagonal. However, if the system’s balanced realization is used,

then Wc
(
t f
)

will be diagonal, regardless of the value of t f [Kailath (1980)]. This is there-

fore recommended, as it simplifies the expression for χ .

In contrast, consider a situation in which the parameter x f has as its only non-zero

component the jth element, i.e., x f j 6= 0, x fq = 0 ∀ q 6= j; this situation corresponds to

problems in which a system is to be moved to a final location where it is at rest. A CPF of

χ =W−1
c j j

(
t f
)

=
W ∗

c j j

(
t f
)

det(Wc)
(4.65)

is chosen, where W ∗
c
(
t f
)

is the adjoint matrix of Wc
(
t f
)
, and W ∗

c j j

(
t f
)

is the ( j j)th

element of W ∗
c
(
t f
)
. Note that, if the ( j j)th element of W ∗

c
(
t f
)

is not a function of da,

then this is equivalent to maximizing the determinant ofWc
(
t f
)
. It will be shown here that

this is a perfect CPF.

The gradient of Eq. (4.59) is given by

∇χ =



∂W−1
c j j

(
t f
)

∂da1
∂W−1

c j j

(
t f
)

∂da2
...

∂W−1
c j j

(
t f
)

∂dan



T

(4.66)
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The coupling vector Γv is found from Eq. (3.13):

Γv =
wc

wa



x2
f j

∂W−1
c j j

(
t f
)

∂da1

x2
f j

∂W−1
c j j

(
t f
)

∂da2
...

x2
f j

∂W−1
c j j

(
t f
)

∂dan



T

(4.67)

which can be re-written as

Γv =
wc

wa
x2

f j
∇χ (4.68)

Thus, as stated, Eq. (4.59) will be a perfect CPF for this situation.

In Chapter III, it was shown that the coupling vector was related to the controllability

Grammian matrix for the case, denoted Case II, where the control objective function is the

final time and a constraint on control effort is active. The coupling vector for that problem

formulation was found to be parallel to the coupling vector found for Case I. Therefore, it

can then be seen that the CPFs developed above will also apply to problems of Case II.

Control Proxy Function for the Case of Linear Quadratic Regulator (LQR):

As shown in Eq. (3.44), the coupling vector for the LQR problem can be related to the

controllability Grammian for a specific choice of the state weighting matrix Q = γBBT .

In the most general LQR case discussed in Chapter III, the initial state x0, W∞
c , and A all

depend on da, and a perfect CPF would take the form of

χ (da) = xT
0A
−TAW∞

c x0. (4.69)

As in previous cases, however, there are special circumstances where a simpler CPF may be

chosen. This may be desirable in extremely large problems where computational demands

must be minimized. Consider the situation in which the matrix A is not a function of da
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and the initial state x0 is a parameter with exactly one non-zero component, i.e., x0 j 6= 0,

x0q = 0 ∀ q 6= j,0 ≤ q ≤ p. Furthermore, the matrix W∞
c is diagonal, which will be the

case when a balanced realization is utilized.

For the system described above, select a CPF of

χ (da) =W∞
c j j

. (4.70)

The gradient of Eq. 4.70 is given by

∇χ =



∂W∞
c j j

∂da1
∂W∞

c j j

∂da2
...

∂W∞
c j j

∂dan



T

(4.71)

The coupling vector can be computed from Eq. (3.45) and is given by the relation

Γv =
wc

wa
γ



1
detA

x2
0 j

A2
j j

∂W ∞
c j j

∂da1

1
detA

x2
0 j

A2
j j

∂W ∞
c j j

∂da2
...

1
detA

x2
0 j

A2
j j

∂W ∞
c j j

∂dan



T

(4.72)

This leads to the relation

Γv =
wc

wa

γ

detA
x2

0 j
A2

j j∇χ (4.73)

and therefore the CPF is perfect for this problem.

In this section, it has been shown that a CPF based on the controllability Grammian ma-

trix,Wc
(
t f
)
, can be effective for many problems in which either fc or an active constraint

is dependent on control effort. This includes some problems in which the control objective,
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fc, is the response time of the system. For the specific problem formulations investigated

here, a perfect CPF can be formulated based on either the the time-dependent or steady-

state controllability Grammian matrix. As previously stated, these problem formulations

are not exhaustive. It is anticipated that future work will show that a CPF based on the

controllability Grammian matrix will be effective for additional co-design problem formu-

lations, particularly those in which the objective function or constraints are dependent on

control effort.

However, it may not always be possible to formulate a perfect CPF based on the control

Grammian. For example, consider the case where fc is the maximum control signal, rather

than control effort. A control signal with a high peak that quickly decays may result in a

lower control effort than a signal with a lower peak that does not decay as quickly. The

relationship between the maximum control signal and control effort, and the choice of an

appropriate CPF for problems in which the control objective, fc, is based on the maximum

control signal, requires further investigation. It is conjectured that a CPF based on the con-

trollability Grammian will produce results that are near-optimal for a variety of problems,

since it provides a measure of how easily a system is controlled.

4.4 Summary

In this chapter, a new method of solution for co-design problems was introduced, based

upon a sequential optimization using a Control Proxy Function (CPF). The intent of the

CPF method is to provide solutions that are identical with, or close to, the Pareto optimal

solutions to the co-design problem, while allowing the problem to be decomposed into an

artifact design problem and a control design problem. This decomposition allows the co-

design problem to be more easily formulated and solved by experts in each of the functional

areas of artifact design and control design. The key to the effectiveness of this method is

the choice of the CPF. Therefore, guidelines to choose a CPF and a metric to evaluate the

closeness of the solutions have been developed and presented in this chapter. Furthermore,
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CPFs based on natural frequency and on the controllability Grammian matrix have been de-

veloped for specific problem formulations. These CPFs are all based on the assumption that

the system of interest is linear and time-invariant. For a CPF based on natural frequency,

the system is also assumed to be second-order, though this assumption does not apply to

the use of the controllability Grammian matrix. The CPFs developed in this chapter are not

exhaustive; it is possible to formulate and evaluate additional CPFs, based on open-loop

eigenvalues, the controllability Grammian, and possibly other system metrics. CPFs for

systems that are non-linear or which are not time-invariant could be developed, since the

development of the mathematical basis for the use of a CPF did not require these assump-

tions. Of course, with a variety of possible CPFs, it is important to be able to determine

easily which, if any, will be effective for a given system. If a CPF were found only by trial

and error, or if the selection of a CPF were to require complex calculations, then the method

would offer few advantages over other available solution techniques. In the next chapter, a

set of tests will be given to determine whether a particular problem could be solved with a

CPF, and if so, which CPF should be chosen. The selection of an appropriate CPF will be

demonstrated by means of an example, and the computational effort required to solve the

problem by the CPF method versus the simultaneous method will be discussed.
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CHAPTER V

Application of the CPF Method

5.1 Introduction

In Chapter IV, the Control Proxy Function (CPF) method was developed and presented.

This method allows a designer to perform sequential optimization of a coupled co-design

problem, while producing optimal or near-optimal results. The CPF method offers sev-

eral advantages over other methods of optimizing co-design problems, including reduced

computational complexity and the ability to optimize the artifact before the controller con-

figuration has been defined. However, in order to take advantage of the CPF method, it is

necessary to easily identify or formulate an appropriate CPF. If it were intrinsically diffi-

cult to formulate the CPF problem, then it would not be useful in practice. Likewise, if the

formulation of the CPF problem were to require highly specialized knowledge or expertise,

its utility would be limited. Therefore, in this chapter we will present a simple procedure

which a designer can use to determine whether she should consider using the CPF problem

formulation, and if so, criteria to determine the type of CPF to be used.

An overview of the CPF selection process will be given in Section 5.2. In Section

5.3, the mathematical model of a MEMS actuator and its controller will be developed

and presented. Two different co-design problems for the MEMS actuator will then be

formulated and solved in Sections 5.4 and 5.5, using the approach presented in Section 5.2.

In both cases, uni-directional coupling is found to be present, and an appropriate CPF will
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be chosen for each case. In the first case, a suitable CPF can be formulated based on either

the natural frequency or the controllability Grammian. However, for the second problem

a CPF based on natural frequency is not suitable, while one based on the controllability

Grammian is effective. The actuator model and control architecture will be identical in

both cases, with changes made only to the objectives, constraints, and design variables.

5.2 Overview of Design Process Using a CPF

The process used to decide whether a CPF problem formulation is feasible for a given

co-design problem, shown in Fig. 5.1, is performed as follows:

STEP 1: Problem Formulation

The process begins with the formulation of the co-design problem in the form of Eqs.

(1.9)-(1.13). In this step, the artifact and control objectives, fa and fc, are chosen, the sys-

tem model is developed, artifact and control design variables, da and dc, are chosen, and

artifact and controller inequality and equality constraints, ga, ha, gc, and hc, are formu-

lated.

STEP 2: Evaluation for Bi-Directional Coupling

After problem formulation, the designer evaluates the co-design problem to determine

whether or not bi-directional coupling is present. If the artifact objective function, fa, or

any of the constraints, ga and ha, are functions of any of the control design variables, dc,

then bi-directional coupling exists, based on the definition given in Section 1.3.1. In this

case, the CPF method does not apply, and the optimization should be performed using one

of the methods discussed in Section 1.2.

STEP 3: Evaluation for Uni-Directional Coupling

If the co-design problem does not exhibit bi-directional coupling, then the designer
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evaluates the problem to determine whether it exhibits uni-directional coupling. This eval-

uation is a two-step process; first, the control objective function, fc, and constraints, gc

and hc, are examined to determine whether they are functions of any of the artifact design

variables, da. If they are not, i.e., if fc = fc (dc), gc = gc (dc), and hc = hc (dc), then the

problem is uncoupled, and should be solved with a simple sequential optimization.

If fc = fc (da,dc), gc = gc (da,dc), or hc =hc (da,dc), the problem may still decouple

under certain conditions. In Chapter III, conditions were presented under which a co-design

problem will decouple. It is, therefore, necessary to check the co-design problem to deter-

mine whether it satisfies any of these decoupling conditions, as discussed in Chapter III (see

Eqs. (3.12), (3.30), (3.44)). If it does satisfy one of these conditions, then the coupling will

vanish, and the problem can be solved using sequential optimization. If the problem does

not satisfy any of the decoupling conditions, then it is considered to exhibit uni-directional

coupling, and the CPF solution method can be considered.

STEP 4: Evaluation of Suitability of CPF Method

Any co-design problem with uni-directional coupling could be formulated as a CPF

problem. However, in order to formulate a CPF problem that is effective at finding optimal

(or near-optimal) solutions, one must be able to specify an appropriate CPF. This can be

done in one of two ways, as indicated in Fig. 5.1. First, the problem may be of a type for

which a CPF has already been developed. In this case, the designer simply has to determine

that the problem is of the appropriate type, and she can use that CPF. The CPFs that were

developed in Chapter IV are listed in Table 5.1, along with the conditions required to use

them. These CPFs and their conditions for use are briefly re-stated in this section. Since

this list is not exhaustive, it is anticipated that more CPFs will be developed, and the range

of problems amenable to solution with existing CPFs will increase.

If a CPF, such as those listed in Table 5.1, has not been developed for a given problem,

then the designer may consider formulating one. If the control objective function fc (da,dc)
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Figure 5.1: Choice of Solution Method for Co-Design Problems

is clearly monotonic, or is known to have an unconstrained minimum in the da-space, then

it may be possible to use this information to formulate a CPF for the problem based on

Theorems 4.3 and 4.4.

As stated in Chapter IV, all of the CPFs that have been developed assume that the sys-

tem dynamics can be modeled as linear and time-invariant. In the case of a CPF based

on natural frequency, there is an additional assumption that system is second-order. This
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Table 5.1: Control Proxy Functions (CPFs) and Conditions for Use (See Eqs. (4.38), (4.35),
(4.44), (4.45), (4.43), (3.4), and (3.5) for the definitions of B, b, ωc, ζc, ζn,
Wc
(
t f
)
, andW∞

c , respectively.)

Control Proxy Function, χ Conditions for Use
CPF Based on Natural Frequency (for second-order dynamics)

χ =
1

ωn
or χ =−ωn

∂B

∂dai

= 0 ∀ i = 1, . . . ,n

fc = fc (ωc)
∂B

∂dai

= 0 ∀ i = 1, . . . ,n

fc = fc (ωcζc)
∂ζn

∂da
= 0

∂B

∂dai

= 0 ∀ i = 1, . . . ,n

∂b
∂da

= 0

CPFs Based on Controllability Grammian Matrix

χ =
tr
(
Wc
(
t f
))

det
(
Wc
(
t f
))

fc =
∫ t f

0 (u(t))2 dt, where t f is a parameter
Wc
(
t f
)

is diagonal
x fi = α ∀ i = 1, . . . ,q, where α is a parameter
fc = t f

gc =
∫ t f

0 (u(t))2 dt−Emax ≤ 0
Wc
(
t f
)

is diagonal
x fi = α ∀ i = 1, . . . ,q, where α is a parameter

χ =
W ∗c j j

(
t f
)

det
(
Wc
(
t f
))

fc =
∫ t f

0 (u(t))2 dt, where t f is a parameter
Wc
(
t f
)

is diagonal
x fi = 0 ∀ i = 1, . . . ,q, i 6= j, x f j = α , where α is a parameter
fc = t f

gc =
∫ t f

0 (u(t))2 dt−Emax ≤ 0
Wc
(
t f
)

is diagonal
x fi = 0 ∀ i = 1, . . . ,q, i 6= j, x f j = α , where α is a parameter

χ =W∞
c j j

LQR control is to be applied
A 6=A(da)
x0i = 0 ∀ i = 1, . . . ,q, i 6= j, x0 j = α , where α is a parameter
W∞

c is diagonal
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assumption is not made for CPFs based on the controllability Grammian, which apply to

systems of arbitrary order. The CPFs derived in Chapter IV and given in Table 5.1 are

briefly summarized here.

CPF Based on Natural Frequency

As shown in Chapter IV, a CPF based on natural frequency can be effective in some

cases. Here, three sets of conditions are presented in which this type of CPF is appropriate.

If any of the three sets of conditions in Table 5.1 is satisfied, then a CPF of either χ =
1

ωn

or χ = −ωn will provide Pareto optimal solutions to the co-design problem. If any set of

conditions is ‘almost’ satisfied, then a CPF based on natural frequency can be expected to

yield solutions that are near-optimal.

The first set of conditions under which natural frequency is appropriate is the case where

the matrix B, as defined in Eq. (4.36), is invariant with respect to the design variables da

and the control objective function depends only on the frequency of the controlled system,

ωc. In this situation, the free response of the system is dependent on da, but the forced

response is invariant with da. One example of this type of objective would be the rise time

of a system, which is given by the relation tr =
1.8
ωc

.

In the second set of conditions under which natural frequency is appropriate, the matrix

B and the damping of the uncontrolled system, ζn, are invariant with respect to the design

variables da, and the objective function fc is a function of the real part of the eigenvalues

of the controlled system. One example of this type of objective would be the settling time

of a system, which is given by the relation ts =
4

ζcωc
.

In the third set of conditions for the use of natural frequency as a CPF, the matrix B

and the damping term b of the differential equation given by Eq. (4.35), are invariant with

respect to the design variables da. In this situation, the control objective can be an arbitrary

function of the controlled system frequency and damping, ωc and ζc.
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CPF Based on Controllability Grammian Matrix

Three distinct CPFs are presented in Table 5.1 based on the controllability Grammian

matrix. Two of those CPFs are valid for more than one set of conditions, while the third

CPF is only valid for one set of conditions. They are briefly summarized here.

A CPF based on the trace and determinant of the time-dependent controllability ma-

trix, χ =
tr
(
Wc
(
t f
))

det
(
Wc
(
t f
)) , can be used in either of two sets of conditions. In both sets of

conditions, the matrixWc
(
t f
)

is diagonal, which will occur when the balanced realization

is used. Also in both cases, the final state for the system is a parameter for which all of

its components are equal. This can occur when the states comprising the vector x f are all

positions, and every component of the system is to be moved to the same position. The

difference between the two sets of conditions for this CPF is seen in the role of the control

effort; in one set of conditions, the control objective function is the control effort, while

the other set of conditions is based on a constraint on the control effort. In that case, the

control objective is the final time at which the system reaches the state x f .

A CPF based on a single value of the adjoint matrix, W ∗
c
(
t f
)
, and on the determinant

of the time-dependent controllability Grammian matrix, Wc
(
t f
)
, is formulated as χ =

W ∗c j j

det
(
Wc
(
t f
)) . This CPF is also valid under two separate sets of circumstances. In both

sets of conditions, the matrix Wc
(
t f
)

is diagonal. Also in both cases, the final state of the

system is a parameter, where only one component of x f is non-zero. As an example of

this situation, consider the case where a system is to be moved to a specified location, at

which it is to be at rest. The location of the system is given by the non-zero component of

x f , while the remaining components represent velocities, which must be zero. Again, the

difference between the two sets of conditions for this CPF is seen in the role of the control

effort; in one set of conditions, the control objective function is the control effort, while

the other set of conditions is based on a constraint on the control effort. In that case, the

control objective is the final time at which the system reaches the state x f .

The final CPF developed in Chapter IV and given in Table 5.1 is valid only under one
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set of conditions, which includes the use of Linear Quadratic Regulator (LQR) control.

This CPF, which depends on the steady-state controllability Grammian matrix, is given by

χ = W ∞
c j j

. It is, again, required that the controllability Grammian matrix must be diagonal.

In addition, it is required that the matrixA in Eq. (4.36) is invariant with respect to da, and

that only one component of the initial system state, x0, is non-zero. This state must also be

a parameter. This would represent the situation where the forced response of the system is

dependent on the artifact design variables, while the free response is invariant, and where

the system starts at a given position at rest, and is to be brought to the zero position at rest.

Full details on the development of these CPFs were given in Section 4.3.

5.3 MEMS Actuator and Controller Case Study

The MEMS actuator considered in this case study was originally designed by Tung and

Kurabayashi [Tung and Kurabayashi (2005)] and is shown in Fig. 5.2. The actuator utilizes

four electrostatic comb-drive actuators to produce an out-of-plane displacement. The actu-

ator can be used to produce an angular deflection of the platform as well, but here only the

vertical displacement of the platform is considered. In order to produce this displacement,

each of the four comb drives is excited with a voltage, V , resulting in horizontal (in-plane)

movement (∆X) of the silicon shuttles. The micro-hinges on the polydimethyl siloxane

(PDMS) platform bend as shown in Fig. 5.3, and the platform moves vertically, or out-of-

plane (∆Z). The amount of movement resulting from the comb drives’ actuation depends

on both the applied voltage, V , and the physical dimensions of the actuator. Changing

the actuator’s dimensions results in a different output displacement for the same applied

voltage.

The displacement of the actuator, ∆Z, is given by the equation

∆Z = (h1 +h2)(1− cos∆θ)+(t + p)sin∆θ (5.1)
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Figure 5.2: MEMS Actuator Configuration

where p, t, h1, and h2 are the hinge dimensions shown in Fig. 5.4, and ∆θ is the angular

displacement of the hinge. Eq. 5.1 is derived in Appendix B.

Figure 5.3: Hinge Actuation

The angular displacement ∆θ can be found from the differential equation

M∆θ̈ +C∆θ̇ +K∆θ = A(∆θ)V 2 (5.2)

where M, C, K, and A(∆θ) are functions of the actuator geometry, as given in Eqs. (5.3)

- (5.6) below. Derivations, and the equations for the masses and stiffnesses MSi, MPDMS,
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Figure 5.4: Micro-Hinge Structure

Mhinge, KSi, and KPDMS, are given in [Tung and Kurabayashi (2005)] and in Appendix B.

M = MSi (h1 +h2)
2 +MPDMS (t + p)2 +

1
3

Mhinge

(
(h1 +h2)

2 +(t + p)2
)

(5.3)

C = 2ζ

√(
MSi (h1 +h2)

2 +MPDMS (t + p)2
)(

KSi (h1 +h2)
2 +2KPDMS

)
(5.4)

K = KSi (h1 +h2)
2 +2KPDMS (5.5)

A(∆θ) =
nεo (h1 +h2)

d
((h1 +h2)− (t + p)∆θ) (5.6)

where ζ is an experimentally determined parameter, n is the number of fingers in the comb

drive, εo is the permittivity of vacuum, and d is the width of a finger, as shown in Fig. 5.5.

Alternatively, the system dynamics may be written in state-space form as

 ∆θ̇

∆θ̈

=

 0 1

−K/M −C/M


 ∆θ

∆θ̇

+

 0

A(∆θ)/M

V 2 (5.7)

An integral controller with state feedback is applied to the system, as shown in Fig. 5.6.

It is assumed that the angle ∆θ and the angular velocity ∆θ̇ can be measured, and that the

angle ∆θ is to be controlled. The dynamics of the closed-loop system can then be written
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Figure 5.5: Plan View of Silicon Shuttle

as

M∆θ̈ +(C +K2A(∆θ))∆θ̇ +(K +K1A(∆θ))∆θ −KiA(∆θ)
t∫

0

(∆θr−∆θ)dτ (5.8)

Note that the controller output is u =V 2, and that the coefficient A in Eq. (5.2) is a function

of ∆θ . Thus, the resulting controller design problem is non-linear.

Figure 5.6: Control Architecture and System Dynamics
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5.4 Co-Design of MEMS Actuator for Steady-State Displacement and

Settling Time

Using the system described above, one can follow the procedure outlined in Fig. 5.1 to

formulate a co-design optimization problem and choose an appropriate method of solution.

STEP 1: Problem Formulation

In this problem formulation, the goal is to maximize the steady-state displacement of

the actuator, ∆Zss, and minimize the 1% settling time, ts, as given in Eqs. (5.9) - (5.10). The

artifact constraints, given by Eqs. (5.11) - (5.16), are based on manufacturability, stress,

kinematics, and mechanical and electrical stability. Detailed derivations of the relevant

equations are given in Appendix B. The control constraints, given by Eqs. (5.21) - (5.22),

are formulated to limit the overshoot, Mp, and the maximum voltage, Vmax. The control ob-

jective function and constraints are calculated by numerical integration and implemented in

a Simulink model. The artifact design variables, da, are selected to be the hinge dimensions

p, t, h1, and h2, as shown in Fig. 5.4. These artifact design variables are given the bounds

in Eqs. (5.17) - (5.20). The control design variables are the gains K1, K2, and Ki.

fa = −∆Zss (5.9)

fc = ts (5.10)

ga1 = t−5h1 ≤ 0 (5.11)

ga2 = 910− l1−
lp

2
−2t +

∆Xss

2
≤ 0 (5.12)

ga3 =
nεo (h1 +h2)V 2

ss
d

− kbπ2EPDMSw(2h1 +h2)
3

12p2 ≤ 0 (5.13)
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ga4 = ∆Xss−
(

lSi√
2
−

l fo

2

)
≤ 0 (5.14)

ga5 =
EPDMSh1∆θss

2p
−σPDMSmax ≤ 0 (5.15)

ga6 =
3∆XssESib

4l2
Si

−σSimax ≤ 0 (5.16)

where lp is the length of the platform, kb is the beam end condition coefficient, EPDMS is

Young’s modulus for PDMS, lSi is the length of the silicon springs, l f o is the initial finger

engagement, ESi is Young’s modulus for silicon, and σPDMSmax and σSimax are maximum

allowable stresses in PDMS and silicon, respectively.

1 µm ≤ p ≤ 1000 µm (5.17)

1 µm ≤ t ≤ 1000 µm (5.18)

6 µm ≤ h1 ≤ 1000 µm (5.19)

6 µm ≤ h2 ≤ 1000 µm (5.20)

gc1 = Mp−0.05≤ 0 (5.21)

gc2 = Vmax−25≤ 0 (5.22)

All other dimensions and physical properties of the actuator are parameters; in addition,

the steady-state voltage, Vss, is a parameter. Values of the parameters are given in Table 5.2.

STEP 2: Evaluation for Bi-Directional Coupling

The problem can be evaluated to determine whether bi-directional coupling is present.

The functions fa and ga (see Eqs. (5.9) and (5.11) - (5.16)) are not dependent on the control

design variables (i.e., K1, K2, Ki). Therefore, bi-directional coupling does not exist. Note,
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Table 5.2: Parameter Values for MEMS Actuator

Parameter Value
εo 8.854e-12 F/m

EPDMS 750 KPa
ESi 190 GPa

ρPDMS 1.05 g/cm3

ρSi 2.44 g/cm3

σSimax 1.5 GPa
σPDMSmax 2.24 MPa

n 50
d 3 µm
b 3 µm
lSi 500 µm
lp 350 µm
l f 50 µm
l1 700 µm
l2 70 µm
l3 75 µm
l4 50 µm
w 100 µm
ζ 0.1
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Table 5.3: Original Design of MEMS Actuator [Tung and Kurabayashi (2005)]

Variable Value (µm)
p 80
t 20

h1 20
h2 30

however, that an alternative problem formulation in which Vss was not fixed as a parameter

would exhibit bi-directional coupling.

STEP 3: Evaluation for Uni-Directional Coupling

Next, the problem is evaluated to determine whether uni-directional coupling exists.

While explicit relations for fc (see Eq. (5.10)) and gc (see Eq. (5.21) - (5.22)) are not

given, it is clear that the simulation which calculates them depends on M, C, K, and A(∆θ),

and through them, on the artifact design variables, da. Therefore, fc = fc (da,dc) and

gc = gc (da,dc).

The problem is then examined to determine whether or not any of the decoupling con-

ditions in Chapter III, as given by Eqs. (3.12), (3.30), and (3.44), are applicable. This prob-

lem formulation does not match the formulations in any of Cases I, II, or III, and therefore

these conditions do not apply. Thus, the problem is presumed to exhibit uni-directional

coupling, and is a candidate for solution with the CPF method.

STEP 4: Evaluation of Suitability of CPF Method

Now, consider whether one of the CPFs listed in Table 5.1 would be effective in solving

this problem. Begin this evaluation by noting that the MEMS actuator is modeled as a

second-order system. Since this is one of the necessary conditions for the use of natural

frequency, one can consider whether natural frequency will be an effective CPF.

For this problem, the matrix B for the state-space formulation described in Eq. (4.36)
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is given by

B =

 0

A(∆θ)/M

 (5.23)

and its derivatives relative to the artifact design variables are given by Eq. (5.24) - (5.27).

These derivatives are evaluated at the values of p, t, h1, and h2 given in Table 5.3, corre-

sponding to the original design [Tung and Kurabayashi (2005)]. This point is used because

it is known to be a feasible design.

∂B

∂ p
=

 0

46

 (5.24)

∂B

∂ t
=

 0

46

 (5.25)

∂B

∂h1
=

 0

−42

 (5.26)

∂B

∂h2
=

 0

20

 (5.27)

It is obvious that the values in Eqs. (5.24) - (5.27) are non-zero. However, if they are

small, then it may be reasonable to regard them as negligible. This raises the question of

what constitutes ‘small’ in a given problem. As an example, it is possible to change the

values of these derivatives by orders of magnitude simply by scaling the problem. There-

fore, some standard of comparison must be used to determine whether the derivatives of

the matrix B are negligible. In order to determine whether they can be considered small,

the derivatives of the matrix A are computed for the state-space formulation described in

105



Eq. (4.36), which is given by

A=

 0 1

−K/M −C/M

 (5.28)

These derivatives are also evaluated at the values in Table 5.3, and are given in Eqs.

(5.29) - (5.32).

∂A

∂ p
=

 0 0

3.5e6 6.8e4

 (5.29)

∂A

∂ t
=

 0 0

5.0e6 4.2e4

 (5.30)

∂A

∂h1
=

 0 0

−1.6e7 8.4e5

 (5.31)

∂A

∂h2
=

 0 0

−2.3e6 4.8e5

 (5.32)

The values of
∂B

∂dai

are several orders of magnitude smaller than
∂A

∂dai

. Therefore, it will be

assumed that they are negligible, and the possible use of natural frequency as a CPF will

be further evaluated.

The control objective function, fc = ts =
4.6

ζcωc
, as given in Eq. (5.10), is a function of

the product ζcωc, which is among the second set of conditions for use of natural frequency

as a CPF. Therefore, the derivatives of the open-loop damping are evaluated to determine

whether or not this set of conditions is satisfied.

The derivatives of the open-loop damping coefficient, ζn, are calculated for each of the

106



artifact design variables, and found to be

∂ζn

∂ p
= −1.3e−5 (5.33)

∂ζn

∂ t
= −7.0e−6 (5.34)

∂ζn

∂h1
= −2.3e−5 (5.35)

∂ζn

∂h2
= −8.0e−6 (5.36)

where the artifact design variables p, t, h1, and h2 are measured in microns. The values of

these derivatives may be considered negligible, and therefore the system closely approxi-

mates the second set of conditions for use of natural frequency as a CPF, as described in

Table 5.1. Based on this analysis, then, the co-design problem will be formulated as a CPF

problem utilizing the natural frequency of the system.

5.4.1 Optimization Using Natural Frequency

As stated in Section 4.1, there are a number of different ways to approach bi-objective

optimization problems. One simple approach is to treat one objective as a constraint, ex-

ploring the trade-off by varying the constraint bound in a parametric study [Papalambros

and Wilde (2000)]. This approach will be used to formulate the CPF problem, with the

additional constraint given by

ga7 = ωmin−ωn ≤ 0 (5.37)

where

ωn =

√
K
M

(5.38)

and the minimum allowable frequency, ωmin, will be set based on an operating frequency,

ωo [Peters et al. (2008)].

ωmin = 1.1ωo (5.39)
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Table 5.4: Sequential Optimization Results Using Natural Frequency

ωo (rad/s) p (µm) t (µm) h1 (µm) h2 (µm) K1 K2 Ki ∆Zss (µm) ts (ms)
500 599 30 6 53 4.01e5 48.4 1.54e9 6.79 0.568
750 400 30 6 51 3.62e5 34.4 1.81e9 4.93 0.470

1000 296 30 6 51 3.02e5 23.7 1.87e9 3.84 0.387
1250 234 30 6 52 2.88e5 15.3 2.55e9 3.11 0.248
1500 189 30 6 52 3.12e5 13.4 3.39e9 2.57 0.201
1750 155 30 6 54 2.87e5 11.2 3.49e9 2.15 0.182
2000 126 30 6 54 2.53e5 9.10 3.40e9 1.80 0.166
2250 100 30 6 54 2.36e5 8.17 3.41e9 1.50 0.158
2500 73 30 6 53 2.17e5 6.76 3.46e9 1.23 0.142

Therefore, the CPF problem will be formulated as

min
p,t,h1,h2

fa (5.40)

subject to ga (p, t,h1,h2)≤ 0 (5.41)

where fa =−∆Zss, as given by Eq. (5.9), and the constraints ga are given by Eqs. (5.11) -

(5.16) and (5.37); followed by

min
K1,K2,Ki

fc (5.42)

subject to gc ≤ 0 (5.43)

where fc = ts, as given by Eq. (5.10), and the constraints gc are given by Eqs. (5.21) -

(5.22). The optimization is carried out for different values of the minimum frequency, ωmin,

as presented in [Peters et al. (2008)]. The different designs produced by the optimization

are given in Table 5.4.

Once these points have been generated for the CPF problem, it is possible to consider

whether, as expected, they match the Pareto frontier of the co-design problem. The simul-

taneous problem was solved, as detailed in [Peters et al. (2008)]. The objectives fa and

fc were combined using the exponential weighted criteria method, as shown in Eq. (5.44)
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[Athan (1994)]. This method was used due to the non-convex nature of the Pareto frontier;

as stated in Section 1.5.3, a linear combination of objectives is not appropriate in this case.

However, as shown in Section 2.6.1, the relationships derived in Chapters III and IV are

still valid.

f = (ew1−1)e−∆Zss +(ew2−1)ets (5.44)

The results of the simultaneous optimization problem and of the CPF problem are com-

pared in Fig. 5.7. It can be seen that the CPF problem produces results that are indistin-

guishable from the Pareto frontier, visualized from the Pareto points generated by simulta-

neous optimization.

Figure 5.7: Comparison of CPF Points and Simultaneous Optimization Points for
Frequency-Based CPF

Note that the CPF problem formulation is a less computationally intensive method

to solve the problem. The computational cost of a simultaneous optimization formula-

tion is typically higher than a sequential formulation [Balling and Sobieszczanski-Sobieski

(1996)]. This problem provides an example of this. For a typical CPF point, 68 function
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calls are required for the artifact optimization, and 59 function calls for the control opti-

mization, with only the control optimization involving simulation. By contrast, generation

of a typical point for the simultaneous optimization problem requires 137 function calls

for both problems’ functions, all of which require simulation [Peters et al. (2008)]. The

CPF method, then, requires approximately half as many simulations as the simultaneous

optimization, resulting in a more computationally efficient process.

5.4.2 Optimization Using Controllability Grammian

While the use of natural frequency was clearly effective in this problem, it is important

to note that it is not necessarily the only possible CPF for the problem. Suppose that the

control objective had not yet been formulated when the CPF was chosen, and therefore the

CPF was chosen based only on the knowledge that the system would need to be control-

lable. Instead of constraining the natural frequency, consider the use of a constraint on the

determinant of the steady-state controllability Grammian, i.e.,

ga7 = D−detW∞
c ≤ 0 (5.45)

where the value of D is varied to produce a set of designs. Since there is no obvious

means to determine the appropriate value of D, its initial value can be chosen by finding

the controllability Grammian for the initial design, as given in Table 5.3. Then, D can be

varied about that value. The CPF problem is then formulated as

min
p,t,h1,h2

fa (5.46)

subject to ga (p, t,h1,h2)≤ 0 (5.47)

where fa =−∆Zss, as given by Eq. (5.9), and the constraints ga are given by Eqs. (5.11) -

(5.16) and (5.45); followed by
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min
K1,K2,Ki

fc (5.48)

subject to gc ≤ 0 (5.49)

where fc = ts, as given by Eq. (5.10), and the constraints gc are given by Eqs. (5.21) -

(5.22).

The results of this optimization are shown in Fig. 5.8. These CPF points are close to

the Pareto frontier, though they do not all lie exactly on the frontier.

While Table 5.1 does not indicate that a CPF based on the controllability Grammian

would be effective for this problem, its effectiveness could be predicted. Numerical sim-

ulations of the controlled system show that ts is monotonic with respect to p, the variable

which changes the most from one design to the next. Therefore, by Theorem 4.3, it can

be predicted that a CPF with the same monotonicity with respect to p could be effective.

The determinant of W∞
c , which was chosen as the CPF for this problem, has the same

monotonicity with respect to p as ts exhibits, suggesting that it may be effective. The

monotonicity of h2 is more difficult to analyze, but simulations show that the effect of h2

on both ts and detW∞
c is minimal. Therefore, this CPF would be expected to produce

near-optimal results, as verified by the results in Fig. 5.8.

5.5 Co-Design of MEMS Actuator for Final Displacement and Con-

trol Effort

In this section, a new optimization problem for the same system is formulated, again

following the procedure outlined in Fig. 5.1.
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Figure 5.8: Comparison of CPF Points and Simultaneous Optimization Points for
Controllability-Based CPF

STEP 1: Problem Formulation

In this problem formulation, the goal is to maximize the final displacement of the ac-

tuator, ∆Z f , at a given time t f , where ∆Z f is the peak displacement and is 5% higher than

the steady-state displacement, ∆Zss. We also wish to minimize the control effort used to

achieve this. The artifact and control objective functions are given in Eqs. (5.50) - (5.51).

fa =−∆Z f =−1.05∆Zss (5.50)

fc =

t f∫
0

(u(t))2 dt =

t f∫
0

(V (t))4 dt (5.51)

100 µm ≤ l1 ≤ 1000 µm (5.52)

where ∆Zss can be found from Eq. (5.1). The artifact constraints are identical to those for

the problem formulated in Section 5.4, and are given by Eqs. (5.11) - (5.16). No control

constraints are present. The artifact design variables, da, are selected to be p, t, and l1, and

112



are given the bounds in Eqs. (5.17), (5.18), and (5.52). The control design variables are,

again, the gains K1, K2, and Ki. Note that the artifact design variable l1 does not appear in

either the artifact objective function, fa, or in the artifact inequality constraints, ga. It is

expected, therefore, that it will either be irrelevant to the co-design problem or will appear

in the control objective function.

The parameters h1 and h2 are assigned the values of 20 µm and 30 µm, respectively,

based on the original design in [Tung and Kurabayashi (2005)]. The final time, t f , is a pa-

rameter and is given as t f = 0.25 ms. This value is chosen based on the system responses

seen in the first optimization. All other parameters have the values given in Table 5.2. Note

that, in the first problem formulation, the primary concern was the speed of response. In

this problem formulation, control effort is to be minimized.

STEP 2: Evaluation for Bi-Directional Coupling

The problem can then be evaluated to determine whether bi-directional coupling is

present. The functions fa and ga are not dependent on the control design variables. There-

fore, bi-directional coupling does not exist.

STEP 3: Evaluation for Uni-Directional Coupling

Next, the problem is evaluated to determine whether uni-directional coupling exists.

While explicit relations for fc and gc are not given, the simulation which calculates them

depends on M, C, K, and A(∆θ), and through them, on the artifact design variables, da.

Therefore, fc = fc (da,dc) and gc = gc (da,dc).

The problem is then evaluated to determine whether or not any of the decoupling con-

ditions in Chapter III (i.e., Eqs. (3.12), (3.30), (3.44)) are applicable. In this case, the

problem does match one of the formulations given in Chapter III, specifically the formu-

lation denoted as Case I. Evaluation of Eq. (3.12) indicates that this co-design problem

is coupled, since the coupling vector will not vanish for any feasible values of the artifact
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design variables. Therefore, the problem exhibits uni-directional coupling.

STEP 4: Evaluation of Suitability of CPF Method

Now, consider whether one of the CPFs listed in Table 5.1 would be effective in solving

this problem. While the B matrix is insensitive to the design variables, the remaining

conditions are not met for the use of natural frequency as a CPF. The control objective

function, fc, is not a function of only ωc, so the first set of conditions is not satisfied. The

second set of conditions is not satisfied, since fc is not a function of the product ωcζc. The

third set of conditions is not satisfied, since
∂b

∂da
6= 0. Therefore, the natural frequency is

not an appropriate choice of CPF for this problem.

The system does not satisfy the conditions for use of any of the controllability-based

CPFs listed in Table 5.1. However, one can easily formulate an appropriate CPF for this

problem. Since this problem matches Case I in Chapter III, we know that, for an optimal

controller,

fc = xT
fWc

(
t f
)−1

x f (5.53)

which, for this problem, can be expressed as

fc =
∆Z2

fWc22

(
t f
)

det
(
Wc
(
t f
)) . (5.54)

Therefore, the CPF χ1 is chosen to be the control objective function, fc, given by Eq.

(5.54).

The characteristics of the Pareto frontier are not known prior to solution of the problem.

Since the convexity of the Pareto frontier is not known, we will consider the possibility that

it may be non-convex, and therefore the bi-objective optimization of fa and χ is formulated

with the exponential weighted criteria function [Athan (1994)]. The CPF problem is given

by
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Table 5.5: CPF Optimization Results Using χ1

p (µm) t (µm) l1 (µm) K1 K2 Ki ∆Z f (µm) E
162 25 523 5.72e5 28.2 6.47e9 2.08 22.82
176 25 509 6.60e5 32.4 7.40e9 2.26 25.71
188 25 497 7.43e5 36.3 8.28e9 2.42 29.11
199 25 486 8.27e5 40.2 9.17e9 2.57 33.17
211 25 475 9.14e5 44.3 1.01e10 2.71 38.10
222 25 463 1.01e6 48.7 1.11e10 2.85 44.22
233 25 452 1.11e6 53.5 1.22e10 3.00 51.00
246 25 439 1.22e6 59.0 1.34e10 3.15 59.59
259 25 426 1.36e6 65.4 1.49e10 3.32 72.33

min
p,t,l1

((
e2w1−1

)
e2 fa +

(
e2w2−1

)
e2χ1

)
(5.55)

subject to the constraints given in Eqs. (5.11) - (5.16), followed by

min
K1,K2,Ki

E (5.56)

where

E =

t f∫
0

(V (t))4 dt. (5.57)

Results are given in Table 5.5, and the optimal values of −∆Z f and E are shown in Fig.

5.9. At each of the points shown, the angle ξ is calculated in order to determine whether

the point is optimal or near-optimal. For each point, ξ = 0, indicating that the CPF points

are Pareto optimal, as anticipated.

Again, it should be noted that this CPF is not necessarily the only one that would be

effective for this problem. Consider the case where we ignore the contribution of ∆Z f to

χ1, and use the CPF

χ2 =
Wc22

(
t f
)

det
(
Wc
(
t f
)) . (5.58)

The results of this optimization, as shown in Fig. 5.10, match the Pareto optimal set found
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Figure 5.9: CPF Points for Optimization of MEMS Actuator

using χ1 to formulate the CPF problem.

As previously mentioned, ∆Z f is not a function of l1. Therefore, since χ1 is monotonic

with respect to l1, χ2 must have the same monotonicity with respect to l1. Furthermore,

χ1 and χ2 each has an unconstrained minimum with respect to p, and these minima are

relatively close to each other. Thus, it can be seen, based on Theorems 4.3 and 4.4, that this

CPF is a reasonable choice, although this is not obvious at the outset.

5.6 Summary

In this chapter, a procedure for evaluating co-design problems based on the theory of the

previous chapters was presented and demonstrated. This procedure was used to categorize

co-design problems based on the type of coupling present. If the problem under considera-

tion exhibits uni-directional coupling, then it can be further evaluated to determine whether

an existing CPF would be effective.

The procedure was demonstrated using a MEMS actuator, with two co-design problem

formulations. In each of the formulations, an effective CPF was derived, and optimal solu-
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Figure 5.10: Comparison of CPF Points for Optimization with χ1 and χ2

tions were found with the chosen CPF formulation. It was also shown that in many cases

there are alternative choices of a CPF that will produce optimal, or near-optimal, results.

In the first example presented, one CPF was chosen from previously developed CPFs, as

documented Table 5.1, while the other was justified based on Theorem 4.3. In the second

example, one CPF was formulated by recognizing that the problem formulation matches

one of the formulations considered in Chapter III, while the other was justified based on

Theorems 4.3 and 4.4. In each case, the first CPF used to solve the problem could be seen

as the ‘obvious’ or ‘easy’ choice, which could be chosen without extensive analysis of the

system. Thus, it is seen that, in many cases, one can determine that the CPF problem for-

mulation will be appropriate and choose an effective CPF function, thereby realizing its

advantages of ease of solution and optimal or near-optimal results.
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CHAPTER VI

Summary, Conclusions and Future Work

6.1 Summary

The dissertation addressed several open issues relating to the optimal design of an ar-

tifact and its controller in the presence of coupling. As described in Section 1.4, there are

many examples of co-design problems in which coupling is significant, including many that

exhibit uni-directional coupling. The dissertation focused specifically on those co-design

problems which exhibit uni-directional coupling. Specifically, issues regarding coupling

and controllability in co-design problems were studied. The issues addressed were the

relationships between various coupling measures and their applicability to the co-design

problem, the relationships between coupling and controllability, and the development of a

new concept and solution strategy for co-design using the Control Proxy Function. The

contributions promised in Section 1.7 are discussed further in Section 6.2.

6.2 Conclusions

This dissertation has made five key contributions to the co-design literature. These

contributions are summarized here, and their significance and limitations are discussed.
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6.2.1 Derivation of Relationships Between Coupling Measures and Extension of Cou-

pling Vector to Bi-Directional Coupling

Previous contributions to the co-design and multi-disciplinary optimization literature

have presented a variety of different metrics which can be used to characterize coupling

in co-design problems. The previous literature has not fully addressed the relative advan-

tages and disadvantages of these measures for the co-design problem. This dissertation has

considered four measures of coupling and established previously unknown relationships

between them. The four measures considered were the coupling vector, Γv, the sensitivity

of the control objective, normalized sensitivities, and the coupling matrix, Γm. It has been

shown that only two of the metrics considered, the coupling vector and the sensitivity of the

sensitivity of the control objective, are commensurate. One measure, the coupling vector,

Γv, was chosen for this work, and its range of applicability was extended. In one extension,

it was shown that it can be applied to problems in which the objective function is not a lin-

ear combination of the artifact and controller objectives. This extension is important since

the linear combination of two objectives, while commonly used in many bi-objective opti-

mization problems, is not applicable to all co-design problems. The second extension of the

coupling vector was its formulation as a description of bi-directional coupling. While other

measures exist that can be used for problems that exhibit bi-directional coupling, the bi-

directional coupling vector is a simpler and more compact description. In addition, it may

be useful in broadening the range of applicability of the work presented in this dissertation.

6.2.2 Derivation of Relationships Between Coupling and Controllability for Several

Important Classical Control Problems

All of the coupling metrics studied in Chapter II are evaluated at a Pareto-optimal solu-

tion. In Chapter III, it was shown for the first time that it is sometimes possible to determine

the existence and strength of coupling prior to the solution of a co-design problem. The

controllability Grammian matrix, Wc, is related to the fundamental control limitations of
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a system, and can be used to determine the performance of an optimal controller, without

knowledge of the controller architecture. This key observation was used to derive relation-

ships between the controllability Grammian matrix and the coupling vector, Γv, for three

important classical control problems. These relationships between Wc and Γv can be used

to determine whether or not a given artifact design variable participates in coupling. This

insight can then be used to formulate the co-design problem and choose an appropriate

solution method. It is important to note, however, that the relationships between Wc and

Γv are only applicable for certain problems, those in which the control objective function

or an active control constraint can be expressed in terms of the control effort. In the case

of linear quadratic regulator (LQR) control, the relationship derived between Wc and Γv

required the choice of specific weighting matrices.

6.2.3 Development of a Modified Sequential Method Using a Control Proxy Function

(CPF) for Cases of Uni-directional Coupling

In Chapter IV, the Control Proxy Function (CPF) concept was introduced. The result-

ing method was designed to allow the problem to be solved sequentially by incorporating

a measure of the system’s ease of control into the artifact objective function. By solving

the problem sequentially, it is possible to design the artifact prior to formulating the full

control optimization problem. This facilitates the formulation of the individual artifact

design and control design problems by experts in each discipline, thus alleviating the or-

ganizational challenges outlined in Section 1.2. Furthermore, the sequential formulation

produces smaller problem sizes.

Conditions were derived which allow a CPF to be chosen in order to produce solutions

that coincide with, or are close to, the Pareto frontier. Furthermore, a measure of how close

a point is to the Pareto frontier was developed. This measure, the angle ξ between the

gradient of the CPF, ∇χ , and the coupling vector, Γv, is particularly useful because it can

be calculated without the necessity of knowing any points on the Pareto frontier. The CPF-
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based method, therefore, can be used to solve a co-design problem with uni-directional

coupling sequentially, and to determine the closeness of the solutions to optimality.

These conditions were then utilized to formulate CPFs for problems that satisfied spe-

cific conditions. It was shown that, for certain types of problems, a CPF based on natural

frequency will always be effective. In other types of problems, a CPF based on the control-

lability Grammian matrix will always be effective.

This method does have limitations. It has only been shown to be effective for co-

design problems with uni-directional coupling, and cannot currently be applied to problems

with bi-directional coupling. Constraint activity was severely restricted in the proof of the

key theorems defining an effective CPF and the derivation of the relationship between ξ

and the closeness to the Pareto frontier. Furthermore, the specific CPFs developed in this

thesis are not exhaustive. While a CPF based on the controllability Grammian matrix will

be effective for many problems, it is not guaranteed effective in all cases. In particular,

if neither the control objective function nor an active control constraint is a function of

control effort, then a CPF based on the controllability Grammian cannot be expected to

produce Pareto optimal solutions, though it may produce near-optimal results since the

controllability Grammian serves as a measure of the system’s controllability.

6.2.4 Categorization of Problems According to Nature of Coupling and Appropriate

Solution Methods

The dissertation presented a procedure for the analysis of a co-design problem in Chap-

ter V. In this procedure, a co-design problem is analyzed to determine what form of cou-

pling, if any, is present. If bi-directional coupling is present, then an appropriate solution

method can be chosen. If uni-directional coupling is present, then the problem can be fur-

ther analyzed to determine whether the CPF method is an appropriate technique, and what

type of CPF might be most useful. This procedure was formulated to provide a rigorous

approach to determine the solution method. Previously, solution methods were chosen pri-
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marily based on the designer’s experience with similar problems and intuition about the

problem at hand.

One limitation of this procedure is that it does not currently provide a means to choose

among the methods used for co-design problems with bi-directional coupling. The choice

of a simultaneous formulation or a decomposition and coordination strategy is left to the

designer, with no further guidance provided regarding which would be most efficient and

effective for a particular problem.

6.2.5 Application of New Method to Case Studies

The application of the CPF-based method to case studies demonstrated its utility. In

Chapter V, a MEMS actuator was used to demonstrate the CPF method. Two optimization

problems were formulated for the actuator, and each was analyzed with the solution proce-

dure presented in Section 5.2. This analysis, and the subsequent solution of the co-design

problem using the CPF method, showed that the procedure can be applied to problems of

interest. The use of this procedure can allow a designer to design an artifact effectively for

ease of control, resulting in optimal or near-optimal solutions using the CPF method.

6.3 Future Work

As discussed in Section 6.2, the work presented in this dissertation is subject to cer-

tain limitations, which presents opportunities for future research. These opportunities are

discussed in this section.

6.3.1 Further Investigation of Decoupling Conditions

In Chapter III, relationships between coupling and controllability were derived for three

classical control problems. These relationships were used to define conditions when decou-

pling would occur. The physical significance of these relationships, however, has not been
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fully defined. Research into the physical conditions under which these decoupling condi-

tions occur can yield new insights into the tradeoffs present in co-design problems of the

types discussed.

In addition, the classical control problems presented in Chapter III are not exhaustive.

Additional problem formulations should be investigated in order to define appropriate rela-

tionships between coupling and controllability for other situations. It may also be possible

to derive relationships between coupling and some other system metric representing ease

of control, such as modal controllability, and this is also a subject for future research.

6.3.2 Further Development of Control Proxy Function (CPF) Method

In Chapter IV, the Control Proxy Function (CPF) concept was developed. While the

CPF-based method can produce solutions that are optimal, or near-optimal, the robustness

of the method to parametric uncertainty has not been investigated.

In addition, the CPFs developed in Chapter IV are not exhaustive. Additional CPFs

should be developed for a variety of classical control problems, such as Linear Quadratic

Gaussian (LQG) control, vehicle steering applications, trajectory control, sensor place-

ment, and power management, in order to extend the range of applicability of the method.

Additional CPFs based on the controllability Grammian should be investigated. Other sys-

tem metrics, such as the observability Grammian matrix, could also be used to formulate

CPFs for various co-design problems.

It may also be possible to extend the CPF method to co-design problems with bi-

directional coupling, and this should be a subject of future research. Future work should

determine whether there are cases in which the CPF method can be used to yield optimal,

or near-optimal, solutions to co-design problems with bi-directional coupling.
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6.3.3 Consideration of Observability

Given the duality between controllability and observability, and previous work using

the observability Grammian matrix to locate sensors, it is reasonable to conjecture that an

Observability Proxy Function could also be formulated [Roh and Park (1997), Lim and

Gawronski (1993)]. Such a function could be used to determine optimal sensor configu-

rations in the design of an artifact. By determining optimal sensor locations, it would be

possible to address issues of state estimation, which are critical in the design of effective

control systems. Thus, using both the controllability Grammian and observability Gram-

mian matrices, this work could be extended to combined estimation and control.

6.3.4 Application of the CPF Method to Additional Case Studies

Given the range of co-design problems that have been identified, as discussed in Chapter

I, future research should include the application of the CPF method to a variety of additional

co-design problems. This research can focus both on further development of the CPF

method and on the insights it can yield into the optimal design of the case studies that are

carried out.
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APPENDIX A

Proofs for Theorems 4.1 – 4.4

Proof of Theorem 4.1

THEOREM 4.1: If Γv ‖∇χ for all solutions to the CPF problem given in Eq. (4.1) - (4.3),

then all solutions to the CPF problem will also be solutions to the simultaneous problem

given in Eq. (1.9) - (1.13).

PROOF: For the simultaneous problem stated in Eq. (1.9) - (1.13), the Karush-Kuhn-

Tucker (KKT) conditions can be stated as


∂ fa

∂da
+

wc

wa

(
∂ fc

∂da
+

∂ fc

∂dc

dc

∂da

)
wc

wa

∂ fc

∂dc

+λT

 ∂ha

∂da
∂hc

∂dc

+µT

 ∂ga

∂da
∂gc

∂dc

= 0 (A.1)

µT

 ga

gc

= 0 (A.2)

λ 6= 0 (A.3)

µ≥ 0 (A.4)

and, for the CPF problem stated in Eq. (4.1) - (4.3), the KKT conditions are
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 ∂ fa

∂da
+

w2

w1

∂ χ

∂da
w2

w1

∂ fc

∂dc

+λT

 ∂ha

∂da
∂hc

∂dc

+µT

 ∂ga

∂da
∂gc

∂dc

= 0 (A.5)

µT

 ga

gc

= 0 (A.6)

λ 6= 0 (A.7)

µ≥ 0 (A.8)

Assume that, for every set of weights wa and wc, there exists some set of weights w1 and

w2 such that the two formulations will have identical solutions. Then

∂ fa

∂da
+

wc

wa

(
∂ fc

∂da
+

∂ fc

∂dc

∂dc

∂da

)
=

∂ fa

∂da
+Γv =

∂ fa

∂da
+

w2

w1

∂ χ

∂da
(A.9)

Thus,

Γv =
w2

w1
∇χ . (A.10)

Such a set of weights will exist, and the modified sequential problem will produce the

Pareto optimal solutions, when the gradient of the CPF, ∇χ , is parallel to the coupling vec-

tor Γv. Thus, the theorem is proven.

Proof of Theorem 4.2

THEOREM 4.2: If a co-design problem, as given in Eq. (1.9) - (1.13), is convex and no

artifact constraints ga (da), ha (da) are active, then the angle ξ between ∇χ and the esti-

mated coupling vector Γ̂v at a CPF point will be monotonically related to ε , the distance

between that CPF point and the nearest Pareto optimal point, measured in the da-space.
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PROOF: The distance from optimality has been defined mathematically in several different

ways [Papalambros and Wilde (2000)]; in this case, it shall be defined as the distance

between a given point, da, and the nearest Pareto-optimal point, d∗a, in the da-space.

ε = ||da−d∗a| |2 (A.11)

where da is the vector of design variables, and d∗a denotes the vector of design variables at

an optimal solution to the co-design problem.

It is possible to express the optimal control design variables dc as a function of the

artifact design variables, as follows,

d∗c = dc (d∗a) , (A.12)

which allows the control objective fc to be transformed into a function only of da. This

shall be used later in the proof in order to find gradients of fc in the da-space. Note that it

is possible to incorporate any active controller constraints gc (da,dc), hc (da,dc) into Eq.

(A.12).

This co-design problem is also formulated as a CPF problem.

min
da

w1 fa (da)+w2χ (da) , (A.13)

followed by

min
dc

fc (dc) (A.14)

subject to

gc (dc)≤ 0 (A.15)

hc (dc) = 0. (A.16)
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Figure A.1: Gradients at Points A and B

The functions χ (da), fa (da) and the reduced-space function fc (da) are all assumed to be

convex functions. Consider a point A which solves the CPF problem. At this point, with

da = dA
a ,

w1∇ f A
a =−w2∇χ

A. (A.17)

The point B is chosen such that it is the nearest Pareto optimal solution to point A. Its

location in the artifact design variable space therefore satisfies the relation dA
a = dB

a + εv,

where v is a unit vector normal to ∇ f B
a and ε is the distance between A and B, as shown in

Fig. A.1.

Using a Taylor series expansion about point B, the artifact and controller objective
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functions at A can be expressed as

f A
a = f B

a +∇ f B
a εv+

1
2

ε
2vT

∇
2 f B

a v+ higher order terms (A.18)

f A
c = f B

c +∇ f B
c εv+

1
2

ε
2vT

∇
2 f B

c v+ higher order terms (A.19)

and therefore, neglecting higher-order terms, the gradients of fa and fc at A can be ex-

pressed in terms of the gradients at B as

∇ f A
a = ∇ f B

a + εvT
∇

2 f B
a (A.20)

∇ f A
c = ∇ f B

c + εvT
∇

2 f B
c (A.21)

The estimate of the coupling vector, computed from Eq. (1.14), is given by

Γ̂A
v =

w2

w1
∇ f A

c (A.22)

and the angle ξ can be found from the relation

cosξ =
ΓA

v •∇χA

‖ΓA
v ‖‖∇χA‖ =

∇ f A
c •∇χA

‖∇ f A
c ‖‖∇χA‖ (A.23)

From optimality conditions, it is known that

wa∇ f B
a = −wc∇ f B

c (A.24)

w1∇ f A
a = −w2∇χ

A (A.25)

Using Eq.(A.25), it is possible to re-write Eq.(A.23) as

cosξ =
−∇ f A

c •∇ f A
a

‖∇ f A
c ‖‖∇ f A

a ‖
(A.26)
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Using Eq.(A.20), (A.21), and (A.24), this can be further re-written as

cosξ =
(

wc

wa
∇ f B

c − εvT
∇

2 f B
a

)(
∇ f B

c + εvT
∇

2 f B
c
)T

/

((
wc

wa
∇ f B

c − εvT
∇

2 f B
a

)(
wc

wa
∇ f B

c − εvT
∇

2 f B
a

)T
)1/2

/
((

∇ f B
c + εvT

∇
2 f B

c
)(

∇ f B
c + εvT

∇
2 f B

c
)T
)1/2

(A.27)

Squaring both sides and cross-multiplying,

cos2
ξ

(
wc

wa
∇ f BT

c − ε∇
2 f BT

a v

)(
∇ f B

c + εvT
∇

2 f B
c
)

=
(

∇ f BT

c + ε∇
2 f BT

c v
)(wc

wa
∇ f B

c − εvT
∇

2 f B
a

) (A.28)

Expanding and post-multiplying by v,

cos2
ξ

(
wc

wa
∇ f BT

c ∇ f B
c v+

wc

wa
ε∇ f BT

c vT
∇

2 f B
c v− ε∇

2 f BT

a v∇ f B
c v− ε

2
∇

2 f BT

a ∇
2 f B

c v

)
=
(

wc

wa
∇ f BT

c f B
c v− ε∇ f BT

c vT
∇

2 f B
a v+

wc

wa
ε∇

2 f BT

c v∇ f B
c v− ε

2
∇

2 f BT

c ∇
2 f B

a v

)
(A.29)

Because of the definition of point B, v is orthogonal to ∇ f B
c , and therefore the product of

those two vectors will vanish.

cos2
ξ

(
wc

wa
∇ f BT

c
(
vT

∇
2 f B

c v
)
− ε∇

2 f BT

a v
(
vT

∇
2 f B

c v
))

=
(
−∇ f BT

c
(
vT

∇
2 f B

a v
)
− ε∇

2 f BT

c v
(
vT

∇
2 f B

a v
)) (A.30)

Further re-arranging leads to the relation

cos2
ξ

(
∇

2 f BT

a v− 1
ε

wc

wa
∇ f BT

c

)(
vT

∇
2 f B

c v
)

=
(

∇
2 f BT

a v− 1
ε

∇ f BT

c

)(
vT

∇
2 f B

c v
) (A.31)

131



Since the functions have been specified as convex,

vT
∇

2 f B
c v ≥ 0 (A.32)

vT
∇

2 f B
c v ≥ 0 (A.33)

As the value of ε increases, then, it is evident that cos2 ξ must decrease, and therefore ξ is

increasing. Given that an increase in ξ corresponds to an increase in ε , then, the angle ξ

is an appropriate measure of the distance between a CPF solution and the unknown Pareto

frontier, and the theorem is proven.

Proof of Theorem 4.3

THEOREM 4.3: If fc (da,dc) is monotonic with respect to some element of da, and that

element of da does not appear in any constraint that is always active, then a CPF with the

same monotonicity will produce closer solutions than a CPF with the opposite monotonic-

ity.

PROOF: Assume that, in a co-design problem, the controller objective function fc (da,dc)

is monotonic with respect to the jth component of the n-dimensional vector of artifact

design variables da. Two CPFs will be used to solve this problem, denoted as χ1 (da) and

χ2 (da). χ1 (da) and χ2 (da) are selected such that:

∂ χ1

∂dai

=
∂ χ2

∂dai

∀ {i : i 6= j,1≤ i≤ n} (A.34)

∂ χ1

∂da j

= − ∂ χ2

∂da j

(A.35)

sgn
(

∂ χ1

∂da j

)
= sgn

(
∂ fc

∂da j

)
(A.36)
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Figure A.2: Pareto-Optimal Point B and CPF Points A and C

Let the point A in the da-space be a solution to the CPF problem using χ1 (da), and let point

B in the da-space be the Pareto optimal solution to the co-design problem that is nearest to

point A. Assume that, at point B, da j does not appear in any active controller constraints

gc (da,dc) or hc (da,dc). Choose point C such that it is a solution to the CPF problem

using χ2 (da) and such that point B is the Pareto optimal point nearest to it, as shown in

Fig. (A.2).

If the distances from point B to points A and C, denoted as εA and εC, are sufficiently

small, then the functions fc, χ1, and χ2 can each be represented by first-order Taylor series
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approximations. Expanding about the point B,

f A
c = f B

c + ε
A
∇ f B

c v1 (A.37)

fC
c = f B

c + ε
C

∇ f B
c v2 (A.38)

χ
A
1 = χ

B
1 + ε

A
∇χ

B
1 v1 (A.39)

χ
C
2 = χ

B
2 + ε

C
∇χ

B
2 v1 (A.40)

where v1 and v2 are unit vectors such that v2 =±v1.

By taking gradients of Eq. (A.37) and (A.38), we can state that

∇ f A
c = ∇ f B

c (A.41)

∇ fC
c = ∇ f B

c (A.42)

The coupling vector estimates at points A and C are given by the relations

Γ̂A
v =

wA
2

wA
1

∇ f A
c (A.43)

Γ̂C
v =

wC
2

wC
1

∇ f A
c (A.44)

where wA
1 , wA

2 are the weights which produce point A, and wC
1 , wC

2 are the weights which

produce point C. Substituting Eq. (A.41) and (A.42) into Eq. (A.43) and (A.44),

Γ̂A
v =

wA
2

wA
1

∇ f B
c (A.45)

Γ̂C
v =

wC
2

wC
1

∇ f B
c (A.46)
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The gradients ∇χA
1 and ∇χC

2 are given by the relations

∇χ
A
1 = ∇χ

B
1 (A.47)

∇χ
C
2 = ∇χ

B
2 (A.48)

Using Eq. (A.43) - (A.48), the angle ξ can be found for both points A and C, as follows:

cosξ
A =

Γ̂A
v •∇χA

1∥∥∥Γ̂A
v

∥∥∥∥∥∇χA
1

∥∥ (A.49)

cosξ
A =

∑
n
i=1

((
∂ f B

c
∂dai

+
∂ f B

c
∂dc

∂dc

∂dai

)(
∂ χB

1
∂dai

))
(

∑
n
i=1

(
∂ f B

c
∂dai

+
∂ f B

c
∂dc

∂dc

∂dai

)2
)1/2(

∑
n
i=1

(
∂ χB

1
∂dai

)2
)1/2 (A.50)

cosξ
A =

∑
j−1
i=1

((
∂ f B

c
∂dai

+
∂ f B

c
∂dc

∂dc

∂dai

)(
∂ χB

1
∂dai

))
+
(

∂ f B
c

∂da j

∂ χB
1

∂da j

)
(

∑
n
i=1

(
∂ f B

c
∂dai

+
∂ f B

c
∂dc

∂dc

∂dai

)2
)1/2(

∑
n
i=1

(
∂ χB

1
∂dai

)2
)1/2

+
∑

n
i= j+1

((
∂ f B

c
∂dai

+
∂ f B

c
∂dc

∂dc

∂dai

)(
∂ χB

1
∂dai

))
(

∑
n
i=1

(
∂ f B

c
∂dai

+
∂ f B

c
∂dc

∂dc

∂dai

)2
)1/2(

∑
n
i=1

(
∂ χB

1
∂dai

)2
)1/2

(A.51)

cosξ
C =

Γ̂C
v •∇χA

2∥∥∥Γ̂C
v

∥∥∥∥∥∇χC
2

∥∥ (A.52)

cosξ
C =

∑
n
i=1

((
∂ f B

c
∂dai

+
∂ f B

c
∂dc

∂dc

∂dai

)(
∂ χB

2
∂dai

))
(

∑
n
i=1

(
∂ f B

c
∂dai

+
∂ f B

c
∂dc

∂dc

∂dai

)2
)1/2(

∑
n
i=1

(
∂ χB

2
∂dai

)2
)1/2 (A.53)
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cosξ
C =

∑
j−1
i=1

((
∂ f B

c
∂dai

+
∂ f B

c
∂dc

∂dc

∂dai

)(
∂ χB

2
∂dai

))
+
(

∂ f B
c

∂da j

∂ χB
2

∂da j

)
(

∑
n
i=1

(
∂ f B

c
∂dai

+
∂ f B

c
∂dc

∂dc

∂dai

)2
)1/2(

∑
n
i=1

(
∂ χB

2
∂dai

)2
)1/2

+
∑

n
i= j+1

((
∂ f B

c
∂dai

+
∂ f B

c
∂dc

∂dc

∂dai

)(
∂ χB

2
∂dai

))
(

∑
n
i=1

(
∂ f B

c
∂dai

+
∂ f B

c
∂dc

∂dc

∂dai

)2
)1/2(

∑
n
i=1

(
∂ χB

2
∂dai

)2
)1/2

(A.54)

Substituting Eq. (A.34) and (A.35) into Eq. (A.54),

cosξ
C =

∑
j−1
i=1

((
∂ f B

c
∂dai

+
∂ f B

c
∂dc

∂dc

∂dai

)(
∂ χB

1
∂dai

))
−
(

∂ f B
c

∂da j

∂ χB
1

∂da j

)
(

∑
n
i=1

(
∂ f B

c
∂dai

+
∂ f B

c
∂dc

∂dc

∂dai

)2
)1/2(

∑
n
i=1

(
∂ χB

1
∂dai

)2
)1/2

+
∑

n
i= j+1

((
∂ f B

c
∂dai

+
∂ f B

c
∂dc

∂dc

∂dai

)(
∂ χB

1
∂dai

))
(

∑
n
i=1

(
∂ f B

c
∂dai

+
∂ f B

c
∂dc

∂dc

∂dai

)2
)1/2(

∑
n
i=1

(
∂ χB

1
∂dai

)2
)1/2

(A.55)

It is then possible to relate ξ A and ξC.

cosξ
A = cosξ

C +
2

∂ f B
c

∂da j

∂ χB
1

∂da j(
∑

n
i=1

(
∂ f B

c
∂dai

+
∂ f B

c
∂dc

∂dc

∂dai

)2
)1/2(

∑
n
i=1

(
∂ χB

1
∂dai

)2
)1/2 (A.56)
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From Eq. (A.36), we know that

2
∂ f B

c
∂da j

∂ χB
1

∂da j(
∑

n
i=1

(
∂ f B

c
∂dai

+
∂ f B

c
∂dc

∂dc

∂dai

)2
)1/2(

∑
n
i=1

(
∂ χB

1
∂dai

)2
)1/2 > 0 (A.57)

and therefore,

cosξ
A > cosξ

C (A.58)

leading to the conclusion that

ξ
A < ξ

C (A.59)

Therefore, from Theorem 4.2, we know that χ1 (da) will produce solutions closer to the

Pareto optimal points than χ2 (da) will. Since χ1 (da) shares the same monotonicity as

fc (da,dc), the theorem is proven.

Proof of Theorem 4.4

THEOREM 4.4: Assume that fc (da,dc) has an unconstrained minimum, and that χ (da)

is chosen such that it has an unconstrained minimum. Then, the distance between a CPF

point and the Pareto frontier will increase as the distance increases between the minima of

fc and χ .

PROOF: Assume that in a co-design problem the control objective function fc (da,dc) has

an unconstrained minimum in the da-space, denoted as point D. The CPF χ (da) is chosen

such that it has an unconstrained minimum in the da-space. The minimum of χ (da),

denoted as point C, is located at a distance δ from point D, as shown in Fig. (A.3).

Let point A be a solution to the CPF problem using χ (da). The distance from point D
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Figure A.3: Unconstrained Minima of fc and χ
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to point A is denoted as σ , and the distance from point C to point A is denoted as β . The

vectors n, r, and s in Fig. (A.3) are unit vectors.

The function fc evaluated at point A shall be represented by a second-order Taylor

series expansion about its minimum, point D, as follows:

f A
c = f D

c +
1
2

σ
2sT

∇
2 f D

c s. (A.60)

The function χ evaluated at point A shall be represented by a second-order Taylor series

expansion about its minimum, point C, as follows:

χ
A = χ

C +
1
2

β
2rT

∇
2
χ

Cr. (A.61)

It is then possible to find the gradients of fc and χ , evaluated at point A, in the da-space.

∇ f A
c = σsT

∇
2 f D

c (A.62)

∇χ
A = βrT

∇
2
χ

C (A.63)

The unit vector r can be expressed as

r =
1
β

(σs−δn) (A.64)

and therefore Eq. (A.63) can be re-written as

∇χ
A = (σs−δn)T

∇
2
χ

C. (A.65)

From Eq. (A.23), it is known that

cosξ
A =

∇χA •∇ f A
c

‖∇χA‖‖∇ f A
c ‖

(A.66)
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which can be re-written as

cosξ
A =

(σs−δn)T
∇2χA∇2 f DT

c s(
(σs−δn)T

∇2χC∇2χCT (σs−δn)
)1/2 (

sT ∇2 f D
c ∇2 f DT

c s
)1/2

(A.67)

The unit vector s can be expressed in terms of the unit vector n by means of a rotation

matrix, R.

s=Rn (A.68)

which can be substituted into Eq. (A.67). Thus, Eq. (A.67) can be re-written as

cosξ
A =

nT
(

σRT ∇2χC∇2 f DT

c R−δ∇2χC∇2 f DT

c R
)
n

T1T2
(A.69)

where

T1 =
(
n
(

σ
2RT

∇
2
χ

C
∇

2
χ

CT
R−2σδ∇

2
χ

C
∇

2
χ

CT
R+δ

2
∇

2
χ

C
∇

2
χ

CT
)
n
)1/2

(A.70)

T2 =
(
nT
(
RT

∇
2 f D

c ∇
2 f DT

c R
)
n
)1/2

(A.71)

Note that, since χ (da) achieves its minimum at point C, ∇2χC must be a positive defi-

nite matrix. Likewise, since fc achieves its minimum at point D, ∇2 f D
c must also be positive

definite. The matrixR must also be positive definite.

The monotonicity of cosξ A with respect to δ can now be established. If δ > 1, then an

increase in δ will result in a decrease of the numerator of Eq. (A.69). The denominator of

Eq. (A.69) will increase, and therefore, cosξ A will decrease.

If δ > 1, then an increase in δ will result in an increase in both the numerator and

denominator of Eq. (A.69). However, the denominator will increase at a slower rate than

the numerator due to the relative exponents, and therefore cosξ A will decrease. Since an

increase in δ will always result in a decrease in cosξ A, the function cosξ A is monotonically

decreasing with respect to δ .
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A decrease in cosξ A will result in an increase in ξ A; thus, we see that an increase in the

distance δ between the minima of fc and χ will result in an increase in the angle ξ A. From

Theorem 4.2, we can then state that an increase in δ will result in CPF solutions that are

farther from the Pareto optimal solutions to the co-design problem, and thus the theorem is

proven.
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APPENDIX B

Derivation of Artifact and Control Objective and

Constraints for MEMS Actuator

Formulation of Artifact Objective Function

The objective function chosen for the design problem was the negative of the verti-

cal displacement of the actuator, ∆Z. The negative was chosen in order to formulate the

problem as a minimization. From Eq. (4b) in Tung and Kurabayashi’s paper [Tung and

Kurabayashi (2005)], this is given by (see Fig. 5.2)

∆Z = l sinθo− l sin(θo−∆θ) (B.1)

where

l =
√

(t + p)2 +(h1 +h2)
2 (B.2)

tanθo =
h1 +h2

t + p
(B.3)

∆θss =
A(∆θss)V 2

ss
K

(B.4)
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A(∆θ) =
nεohl

d
(sinθo− cosθo∆θ) (B.5)

K = KSil2 sin2
θo +2KPDMS (B.6)

KSi =
2ESihb3

l3
Si

(B.7)

KPDMS =
EPDMSI

p
(B.8)

I =
wh3

1
3

(B.9)

h = h1 +h2 (B.10)

The dimensions t, p, h1, and h2 are shown in Fig. 5.4. The kinematics of the hinge

are modeled as though it were a link of length l, with an angle of θo when not actuated

[Tung and Kurabayashi (2005)]. The change in the angle of the hinge is ∆θ . The variables

K, C, and M represent the effective stiffness, damping, and mass of the entire system,

respectively. The stiffness of the the silicon springs is denoted by KSi and the stiffness of

the PDMS hinge by KPDMS. The constants ESi, EPDMS, and εo are Young’s modulus for

silicon, Young’s modulus for PDMS, and the permittivity of vacuum, respectively. The

dimensions d and w are shown in Fig. 5.5. The variables h, b, and n represent the overall

height of the comb drive, the thickness of the silicon springs, and the number of fingers in

the comb drive, respectively.

In the case of Eq. (B.9), the moment of inertia, I, was taken about the edge rather

than the centroid of the cross-section due to the nature of the hinge. The upper edge is not

restrained in the same way as the lower edge, which should have the result of shifting the

neutral axis from the centroid.
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Solving Eq. (B.4) and (B.5) for ∆θss yields Eq. (B.14), as shown below.

∆θss =
A(∆θss)V 2

ss
K

=
V 2

ss
K

(
nεohl

d
(sinθo− cosθo∆θss)

)
(B.11)

∆θss

(
1+

V 2
ssnεohl

Kd
cosθo

)
=

V 2
ssnεohl

Kd
sinθo (B.12)

∆θss
(
Kd +V 2

ssnεohl cosθo
)

= V 2
ssnεohl sinθo (B.13)

∆θss =
V 2

ssnεohl sinθo

Kd +V 2
ssnεohl cosθo

(B.14)

Substituting Eqs. (B.2), (B.3), and (B.6) - (B.10) into Eq. (B.1) and Eq. (B.14) yields

equations involving only ∆θ , ∆Z, the design variables t, p, h1, and h2, and the constants

and parameters of the problem.

∆θss =
V 2

ssnεo (h1 +h2)
2

Kd +V 2
ssnεo (h1 +h2)(t + p)

(B.15)

∆θss =
V 2

ssnεo (h1 +h2)
2(

KSil2 sin2
θo +2KPDMS

)
d +V 2

ssnεo (h1 +h2)(t + p)
(B.16)

∆θss =
V 2

ssnεo (h1 +h2)
2(

KSi (h1 +h2)
2 +2KPDMS

)
d +V 2

ssnεo (h1 +h2)(t + p)
(B.17)

Substituting Eqs. (B.7) - (B.8),

∆θss =
V 2

ssnεo (h1 +h2)
2((

ESib3

l3
Si

)
(h1 +h2)

3 +
(

EPDMSI
p

))
2d +V 2

ssnεo (h1 +h2)(t + p)
(B.18)

∆θss =
V 2

ssnεo (h1 +h2)
2((

ESib3

l3
Si

)
(h1 +h2)

3 + EPDMSwh3
1

3p

)
2d +V 2

ssnεo (h1 +h2)(t + p)
(B.19)
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∆Zss = l sinθo− l sin(θo−∆θss) (B.20)

∆Zss = l (sinθo− sinθo cos∆θss + cosθo sin∆θss) (B.21)

∆Zss = l
((

h1 +h2

l

)
−
(

h1 +h2

l

)
cos∆θss +

(
t + p

l

)
sin∆θss

)
(B.22)

∆Zss = (h1 +h2)(1− cos∆θss)+(t + p)sin∆θss (B.23)

The coefficients M, C, and K which appear in the state-space representation of the sys-

tem dynamics in Eq. (5.7) were given in [Tung and Kurabayashi (2005)]. The expressions

for C and K are used in this work, without modification; however, in this problem formu-

lation, an additional term was incorporated in M. The development of M in [Tung and

Kurabayashi (2005)] was based on the assumption that the mass of the hinge was small

compared to the mass of the silicon shuttle and the PDMS platform, but as the design

variables change, this may not always be the case; therefore the mathematical model was

modified to include this effect. The given expression for M was

M = MSil2 sin2
θo +MPDMSl2 cos2

θo. (B.24)

The contribution of the hinge is found following a similar procedure to that used in for

the contributions of the platform and shuttle [Tung and Kurabayashi (2005)]. The kinetic

energy of the moving hinge is given by

Thinge =
1
2

Mhingev2
cghinge

+
1
2

Ihinge∆θ̇
2. (B.25)

Assuming that the hinge is long and thin, it can be modeled as a rod, and its inertia is given

by

Ihinge =
1

12
Mhingel2. (B.26)
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The velocity of the center of gravity of the hinge satisfies the equation

v2
cghinge

= v2
cgx

+ v2
cgy

(B.27)

v2
cghinge

=
(

∆Ẋ− l
2

∆θ̇ sin(θo−∆θ)
)2

+
(

l
2

∆θ̇ cos(θo−∆θ)
)2

(B.28)

Since ∆X is given by

∆X = l cos(θo−∆θ)− l cosθo, (B.29)

its time derivative ∆Ẋ is found to be

∆Ẋ = l sin(θo−∆θ)∆θ̇ (B.30)

and therefore the kinetic energy of the hinge can be expressed as follows:

Thinge =
1
2

Mhinge

((
l
2

sin(θo−∆θ)∆θ̇

)2

+
(

l
2

cos(θo−∆θ)∆θ̇

)2
)

+
1
2

(
1
12

Mhingel2
)

∆θ̇
2

(B.31)

Thinge =
1
2

Mhinge∆θ̇
2
(

l2

4
(
sin2 (θo−∆θ)+ cos2 (θo−∆θ)

)
+

l2

12

)
(B.32)

Thinge =
1
6

Mhingel2
∆θ̇

2 (B.33)

The equation of motion was found by using the Lagrangian, as detailed in Eq. (14) of [Tung

and Kurabayashi (2005)]. The additional term in the system differential equation is given

by
d
dt

(
∂Thinge

∂∆θ̇

)
=

d
dt

(
1
3

Mhingel2
∆θ̇

)
=

1
3

Mhingel2
∆θ̈ (B.34)
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and therefore, for the mathematical model used in this work,

M = MSil2 sin2
θo +MPDMSl2 cos2

θo +
1
3

Mhingel2. (B.35)

The mass terms in Eq. (B.35) are as follows:

MSi = ρSi (h1 +h2)
(
0.5(wl1 +2l2l3 + l4 (nd +(n−1)3d))+ndl f

)
(B.36)

MPDMS =
1
4

ρPDMSl2
p (2h1 +h2) (B.37)

Mhinge = ρPDMSw(2h1t + p(2h1 +h2)) (B.38)

The dimensions used in Eq. (B.36) - (B.38) are shown in Fig. 5.4.

Note that, in the derivation of these equations, it is assumed that the device remains

small. If the optimization results were to indicate that the size of the actuator was substan-

tially larger than the original design, then then model developed here would no longer be

valid.

Formulation of Artifact Constraints

The stresses in the actuator are found from the theory of a beam under concentrated

end loading. For purposes of this analysis, it was assumed that the weight of the actuator is

much less than the externally applied forces. The maximum stress in the silicon spring is

given by [Bao (2005)]

σSimax =
6MoglSi

hb2 (B.39)

where Mo is the moment in the spring, and g is the acceleration due to gravity. The moment

in the spring, Mo, is related to the deflection, ∆X , by

∆X
2

=
4Mogl3

Si
ESihb3 , (B.40)
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yielding

σSimax =
3ESib∆X

4l2
Si

. (B.41)

The maximum stress in the PDMS micro-hinge is given by [Bao (2005)],

σPDMSmax =
Fth1

2I
, (B.42)

where the force F in the hinge, under static conditions, is given by [Tung and Kurabayashi

(2005)]

Ft =
EPDMSI∆θss

p
. (B.43)

This yields a relation for the maximum steady-state stress in the hinge of

σPDMSmax =
EPDMSh1∆θss

2p
. (B.44)

148



BIBLIOGRAPHY

149



BIBLIOGRAPHY

Abdalla, M., C. Reddy, W. Faris, and Z. Gurdal (2005), Optimal design of an electrostat-
ically actuated microbeam for maximum pull-in voltage, Computers & Structures, 83,
1320–1329.

Allison, J., M. Kokkolaras, and P. Papalambros (2005), On the impact of coupling strength
on complex system optimization for single-level formulations, in ASME 2005 Interna-
tional Design Engineering Technical Conferences & Computers and Information in En-
gineering Conference, ASME, Long Beach, CA, paper number DETC2005-84790.

Alyaqout, S. (2006), A Multi-System Optimization Approach to Coupling in Robust De-
sign and Control, PhD Thesis, University of Michigan, Ann Arbor, MI.

Alyaqout, S. F., P. Y. Papalambros, and A. G. Ulsoy (2005), Quantification and use of
system coupling in decomposed design optimization problems, in Proceedings of the
ASME IMECE 2005, pp. 95–103, ASME, Orlando, FL, paper number IMECE2005-
81364.

Athan, T. (1994), A quasi-Monte Carlo method for multicriteria optimization, PhD Thesis,
University of Michigan, Ann Arbor, MI.

Athan, T., and P. Y. Papalambros (1996), A note on weighted criteria methods for compro-
mise solution in multi-objective optimization, Engineering Optimization, 27, 155–176.

Balling, R., and J. Sobieszczanski-Sobieski (1996), Optimization of coupled systems: A
critical overview of approaches, AIAA Journal, 34, 6–17.

Bao, M. (2005), Analysis and Design Principles of MEMS Devices, Elsevier, San Diego,
CA.

Belvin, W., and K. Park (1990), Structural tailoring and feedback control synthesis: An
interdisciplinary approach, Journal of Guidance, Control, and Dynamics, 13, 424–428.

Bloebaum, C. (1995), Coupling strength-based system reduction for complex engineering
design, Structural Optimization, 10, 113–121.

Bodden, D., and J. Junkins (1985), Eigenvalue optimization algorithms for struc-
ture/controller design iterations, Journal of Guidance, Control, and Dynamics, 8, 697–
706.

150



Brown, R. G. (1966), Not just observable, but how observable?, Proceedings of the 1966
National Electronic Conference, 22, 709–714.

Brusher, G., P. Kabamba, and A. G. Ulsoy (1997a), Trade-offs between performance spec-
ifications, uncertainty and admissible models, in Proceedings of the American Control
Conference, pp. 3646–3651, ACC, Albuquerque, NM.

Brusher, G., P. Kabamba, and A. G. Ulsoy (1997b), Coupling between the modeling and
controller-design problems - part II: Design, Journal of Dynamic Systems, Measurement,
and Control, 119, 278–283.

Bryson, A., and Y. Ho (1975), Applied Optimal Control, Hemisphere Publishing Corpora-
tion, New York, NY.

Carley, L., G. Ganger, D. Guillou, and D. Nagle (2001), System design considerations for
MEMS-actuated magnetic-probe-based mass storage, IEEE Transactions on Magnetics,
37, 657–662.

Chen, C., and C. Cheng (2005), Integrated design for a mechatronic feed drive system of
machine tools, in IEEE/ASME International Conference on Advanced Intelligent Mecha-
tronics, Monterey, CA.

Chen, C., and C. Cheng (2006), 3D model-based design for control of a mechatronic ma-
chine tools system, Materials Science Forum, 505, 967–972.

Chu, P., et al. (2005), Design and nonlinear servo control of MEMS mirrors and their
performance in a large port-count optical switch, Journal of Microelectromechanical
Systems, 14, 261–273.

Das, I. (1999), On characterizing the “knee” of the Pareto curve based on normal-boundary
intersection, Structural and Multidisciplinary Optimization, 18(2), 107–115.

Das, I., and J. Dennis (1997), A closer look at drawbacks of minimizing weighted sums
of objectives for Pareto set generation in multicriteria optimization problems, Structural
Optimization, 14, 63–69.

Eastep, F., N. Khot, and R. Grandhi (1987), Improving the active vibrational control of
large space structures through structural modifications, Acta Astronautica, 15, 383–389.

Fathy, H. (2003), Combined Plant and Control Optimization: Theory, Strategies and Ap-
plications, PhD Thesis, University of Michigan, Ann Arbor, MI.

Fathy, H., S. Bortoff, G. Copeland, P. Y. Papalambros, and A. G. Ulsoy (2002), Nested
optimization of an elevator and its gain-scheduled LQG controller, in Proceedings of the
ASME IMECE 2002, pp. 119–126, ASME, New Orleans, LA, iMECE2002-34273.

Fathy, H., D. Hrovat, P. Y. Papalambros, and A. G. Ulsoy (2003), Nested plant/controller
optimization and its application to combined passive/active automotive suspensions, in
Proceedings of the American Control Conference, pp. 3375–3380, IEEE, Denver, CO.

151



Fathy, H., P. Y. Papalambros, and A. G. Ulsoy (2004), On combined plant and control
optimization, in 8th Cairo University International Conference on Mechanical Design
and Production, Cairo University, Cairo, Egypt.

Franklin, G., J. Powell, and A. Emami-Naeini (1994), Feedback Control of Dynamic Sys-
tems, Addison-Wesley Publishing Company, Reading, MA.

Frischknecht, B., D. L. Peters, and P. Y. Papalambros (2009), Pareto set analysis: Local
measures of objective coupling in multi-objective design optimization, in Proceedings
of the 8th World Congress on Structural and Multidisciplinary Optimization, Lisbon,
Portugal.

Grigoriadis, K., and R. Skelton (1998), Integrated structural and control design for vector
second-order systems via LMIs, in Proceedings of the American Control Conference, pp.
1625–1629, IEEE, Philadelphia, PA.

Haftka, R. (1990), Integrated structure/control optimization of space structures, in Pro-
ceedings of the AIAA Dynamics Specialists Conference, pp. 1–9, AIAA, Long Beach,
CA.

Haftka, R., Z. Martinovic, W. H. Jr., and G. Schamel (1986), An analytical and experimen-
tal study of a control system’s sensitivity to structural modifications, AIAA Journal, 25,
310–315.

Hale, A., R. Lisowski, and W. Dahl (1985), Optimal simultaneous structural and control
design of maneuvering flexible spacecraft, Journal of Guidance, Control, and Dynamics,
8, 86–93.

Ionescu, V., C. Oara, and M. Weiss (1999), Generalized Riccati Theory and Robust Control,
John Wiley & Sons Ltd., West Sussex, England.

Isermann, R. (1996a), Modeling and design methodology for mechatronic systems,
IEEE/ASME Transactions on Mechatronics, 1, 16–28.

Isermann, R. (1996b), On the design and control of mechatronic systems - a survey, IEEE
Transactions on Industrial Electronics, 43, 4–15.

Junkins, J., and Y. Kim (1993), Introduction to Dynamics and Control of Flexible Struc-
tures, American Institute of Aeronautics and Astronautics, Inc., Washington, D.C.

Kailath, T. (1980), Linear Systems, Prentice-Hall, Inc., Englewood Cliffs, NJ.

Kajiwara, I., and R. Haftka (2000), Integrated design of aerodynamics and control system
for micro air vehicles, JSME International Journal, 43, 684–690.

Khot, N., and N. Abhyankar (1993), Integrated optimum structural and control design, in
Structural Optimization: Status and Promise, edited by M. P. Kamat, Washington, D.C.

152



Kitayama, S., K. Yamazaki, M. Arakawa, and H. Yamakawa (2009), Quantitative trade-off
analysis and its application to the compromise solution in the multi-objective design op-
timization, in Proceedings of the 8th World Congress on Structural and Multidisciplinary
Optimization, WCSMO, Lisbon, Portugal.

Kosut, R., G. Kabuli, S. Morrison, and Y. Harn (1990), Simultaneous control and structure
design for large space structures, in Proceedings of the American Control Conference,
pp. 860–865, IEEE, San Diego, CA.

Kuhn, H. W., and A. W. Tucker (1950), Nonlinear programming, in Proceedings of the
Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–492,
University of California, Berkeley, CA.

Legtenberg, R., A. Groeneveld, and M. Elwenspoek (1996), Comb-drive actuators for large
displacements, Journal of Micromechanical Microengineering, 6, 320–329.

Li, Q., W. Zhang, and L. Guo (1999), Integrated design and control for a programmable
four-bar linkage, in Proceedings of the ASME Design Engineering Technical Conference,
ASME, Las Vegas, NV, paper number DAC99/DAC8663.

Li, Q., W. Zhang, and L. Chen (2001), Design for control - a concurrent engineering ap-
proach for mechatronic systems design, IEEE/ASME Transactions on Mechatronics, 6,
161–169.

Lim, K., and W. Gawronski (1993), Modal Grammian approach to actuator and sensor
placement for flexible structures, AIAA Journal, 31, 674–684.

Maghami, P., S. Gupta, K. Elliott, and S. Joshi (1996), Experimental validation of an inte-
grated controls-structures design methodology, Journal of Guidance, Control, and Dy-
namics, 19, 324–333.

Messac, A. (1998), Control-structure integrated design with closed-form design metrics
using physical programming, AIAA Journal, 36, 855–864.

Messac, A., and C. Puemi-Sukam (2000), Aggregate objective functions and Pareto fron-
tiers: Required relationships and practical implications, Optimization and Engineering,
1, 171–188.

Milman, M., M. Salama, R. Scheid, R. Bruno, and J. Gibson (1991), Combined control-
structural optimization, Computational Mechanics, 8, 1–18.

Muller, P. C., and H. I. Weber (1972), Analysis and optimization of certain qualities of
controllability and observability for linear dynamical systems, Automatica, 8, 237–246.

Oldham, K., X. Huang, A. Chahwan, and R. Horowitz (2005), Design, fabrication and
control of a high-aspect ratio microactuator for vibration suppression in a hard disk drive,
in Proceedings of the IFAC World Congress, Prague.

153



Onoda, J., and N. Watanabe (1989), Integrated direct optimization of struc-
ture/regulator/observer for large flexible spacecraft, AIAA Journal, 27, 1336–1344.

Ou, J., and N. Kikuchi (1996), Integrated optimal structural and vibration control design,
Structural Optimization, 12, 209–216.

Ouyang, P., W. Zhang, and F. Wu (2002), Nonlinear PD control for trajectory tracking with
consideration of the design for control methodology, in Proceedings of the IEEE In-
ternational Conference on Robotics & Automation, pp. 4126–4131, IEEE, Washington,
D.C.

Papalambros, P., and D. Wilde (2000), Principles of Optimal Design: Modeling and Com-
putation, Cambridge University Press, Cambridge, NY.

Park, J., and H. Asada (1992), Integrated structure/control design of a two-link nonrigid
robot arm for high speed positioning, in Proceedings of the IEEE International Confer-
ence on Robotics & Automation, IEEE, Nice, France.

Park, S., and R. Horowitz (2003), Adaptive control for the conventional mode of operation
of MEMS gyroscopes, Journal of Microelectromechanical Systems, 12, 101–108.

Peters, D. L., K. Kurabayashi, P. Y. Papalambros, and A. G. Ulsoy (2008), Co-design
of a MEMS actuator and its controller using frequency constraints, in Proceedings of
the ASME Dynamic Systems and Control Conferences, ASME, Ann Arbor, MI, paper
number DSCC 2008-2212.

Peters, D. L., P. Y. Papalambros, and A. G. Ulsoy (2009), On measures of coupling between
the artifact and controller optimal design problems, in Proceedings of the ASME Design
Engineering Technical Conference & Computers in Engineering Conference, ASME,
San Diego, CA, paper number DETC 2009-86868.

Peters, D. L., P. Y. Papalambros, and A. G. Ulsoy (2010), Relationship between coupling
and the controllability Grammian in co-design problems, in Proceedings of the American
Control Conference, ASME, Baltimore, MD, (submitted).

Pil, A., and H. Asada (1996), Integrated structure/control design of mechatronic sys-
tems using a recursive experimental optimization method, IEEE/ASME Transactions on
Mechatronics, 1, 191–203.

Pomrehn, L., and P. Papalambros (1994), Global and discrete constraint activity, Journal
of Mechanical Design, 116, 745–748.

Rao, S., and T. Pan (1990), Modeling, control, and design of flexible structures: A survey,
Applied Mechanics Review, 43, 99–117.

Ravichandran, T., D. Wang, and G. Heppler (2006), Simultaneous plant-controller design
optimization of a two-link planar manipulator, Mechatronics, 16, 233–242.

154



Reyer, J. (2000), Combined Embodiment Design and Control Optimization: Effects of
Cross-Disciplinary Coupling, PhD Thesis, University of Michigan, Ann Arbor, MI.

Roh, H., and Y. Park (1997), Actuator and exciter placement for flexible structures, Journal
of Guidance, Control, and Dynamics, 20, 850–856.

Shabde, V. S., and K. A. Hoo (2008), Optimum controller design for a spray drying process,
Control Engineering Practice, 16(5), 541–552.

Skogestad, S., and I. Postlethwaite (2005), Multivariable Feedback Control: Analysis and
Design, John Wiley and Sons, Ltd., West Sussex, UK.

Sobieszczanski-Sobieski, J., and R. Haftka (1997), Multidisciplinary aerospace design op-
timization: Survey of recent developments, Structural Optimization, 14, 1–23.

Steuer, R. E. (1986), Multiple Criteria Optimization: Theory, Computation, and Applica-
tion, John Wiley and Sons, Inc., New York, NY.

Tilbury, D., and S. Kota (1999), Integrated machine and control design for reconfigurable
machine tools, in Proceedings of the IEEE/ASME International Conference on Advanced
Intelligent Mechatronics, IEEE/ASME, Atlanta, GA.

Tung, Y., and K. Kurabayashi (2005), A single-layer PDMS-on-silicon hybrid microactua-
tor with multi-axis out-of-plane motion capabilities - part I: Design and analysis, Journal
of Microelectromechanical Systems, 14, 548–557.

Wan, J., Q. Li, and F. Wu (2002), Integrated design and control of a closed-chain mecha-
nism, in Proceedings of the Seventh International Conference on Control, Automation,
Robotics and Vision, pp. 1349–1353, IEEE, Singapore.

Wolfram, H., R. Schmiedel, K. Hiller, T. Aurich, W. Gunther, S. Kurth, J. Mehner,
W. Dotzel, and T. Gebner (2005), Model building, control design and practical imple-
mentation of a high precision, high dynamical MEMS acceleration sensor, in Society of
Photo-Optical Instrumentation Engineers, pp. 1–15, SPIE, Sevilla, Spain.

Yee, E., and Y. Tsuei (1991), Method for shifting natural frequencies of damped mechanical
systems, AIAA Journal, 29, 1973–1977.

Youcef-Toumi, K. (1996), Modeling, design, and control integration: A necessary step in
mechatronics, IEEE/ASME Transactions on Mechatronics, 1, 29–38.

Zhang, J., M. Wiecek, and W. Chen (1999), Local approximation of the efficient frontier in
robust design, in Proceedings of the ASME Design Engineering Technical Conferences,
ASME, Las Vegas, NV, paper number DETC99/DAC-8566.

Zhu, Y., J. Qiu, and J. Tani (2001), Simultaneous optimization of a two-link flexible robot
arm, Journal of Robotic Systems, 18, 29–38.

155


