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CHAPTER 1

Introduction

The advances in technology and emerging applications and services define the era

of a wireless world. There is a huge and increasing demand for data transmission

but a fixed and scarce radio resource (the electromagnetic spectrum). In addition,

energy/power is a system resource that is limited. Low energy/power consumption is

desirable in many applications. These constraints make the design of wireless systems

a challenge.

The concept of radio resource sharing is a key to the efficient use of the wireless

spectrum. Multiple-access schemes are designed to achieve the goal of sharing radio

resource. In multiple-access schemes, multiple transmissions often take place simulta-

neously over a common communication medium (channel), which causes interference

to one another, and degrades the reliability of the communication links. Interference

is one of the major factors that degrade the performance of a communication system.

Various types of interference in different scenarios result in different effect on the sys-

tem performance. It is important to design systems to combat interference in order

to assure the desired performance. Most existing systems deal with the interference

problem by coordinating users so that the transmissions are orthogonal in time or fre-

quency, or through coding. By adjusting transmission power, it may be possible to

control the received interference power at individual receivers to achieve the link qual-

ity goals. Another issue in modern wireless (mobile/cellular) communication systems is
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the ability to provide versatile broadband services (voice/data/media streaming) simul-

taneously through the limited radio resource with quality of service (QoS) and possibly

energy/power constraints. In this scenario, a simple coding and modulation scheme

deployed at the transmitter and a smart receiver to recover data of different levels of

QoS requirements is necessary. These two problems motivate our research presented in

this thesis.

There exists a rich body of previous research to solve these problems. In general,

they are treated from two aspects:

• From the physical layer point of view, interference can be managed and suppressed

through signal processing. Multiple users can access the limited radio resource

through coding and modulation techniques.

• From the network layer point of view, protocols for power control, routing, and

scheduling can be used to optimize the system in different ways.

Traditionally, physical and network layer solutions are considered separately. How-

ever, this is not the most efficient way to design wireless systems. A more general

concept to deal with the issue is to consider both physical and network layers when

designing systems. Cross-layer design is a promising way for future wireless systems.

In this thesis, we consider the interference management at the physical layer. In

order to enhance the performance (bit error rate, throughput, link quality, complexity,

etc.), the receiver needs to have knowledge about the interference, such as the prob-

ability distribution, the signal-to-interference ratio, etc. By exploiting the knowledge

about interference (such as the statistical properties), it can be suppressed to enhance

the link quality.

This thesis contains two main topics: multilevel coding (MLC) for unequal error

protection (UEP) and receiver design for ultra-wideband (UWB) communications to

suppress interference. Both topics deal with interference in different ways, and face

2



different design challenges. In the next two sections, we describe the two topics and

address the issues we are facing and problem we try to solve. In the final section of this

chapter, we outline the organization of this thesis.

1.1 Multilevel Coding and Unequal Error Protec-

tion

As mentioned earlier, an issue in modern wireless (mobile/cellular) communication

systems is the ability to provide different services simultaneously through a limited radio

resource with different QoS and energy/power constraints. In order to overcome the

time-varying effect of the wireless channel, channel estimation at the receiver and the

feedback between the transmitter and the receiver regarding the channel information is

useful. With the channel information, the transmitter can adaptively adjust the coding

and modulation scheme to match the channel condition to make the communication

efficient. However, the feedback link from the receiver to the transmitter costs extra

energy. In order to process the channel information and update coding and modulation

schemes, a complex transmitter structure is expected. For some applications, it is

desired to have a simple transmitter structure to satisfy an energy/power constraint,

and have a powerful receiver to handle most of the processing. This motivates us to

find a different solution to this problem.

The idea is to design a fixed coding and modulation scheme at the transmitter with

fixed transmitting power. In this case, the receiver has to be smart enough to get the

most information out of the received data depending on the channel situation and the

SNR. The design of the coding and modulation scheme has to be able to handle different

data streams with different QoS requirements for transmission. With careful design on

the coding and modulation scheme, the receiver is able to extract information from the

received signal at different rates and data quality by adaptively using different decoding
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and demodulation strategies according the current channel condition.

A similar problem to ours is the multilevel multicast transmission in wireless net-

works [1][2][3][4][5][6][7] and the unequal error protection (UEP) problem [8][9][10]. The

key idea in these proposed methods is to provide different levels of protection to dif-

ferent classes of data. This is essential when different portions of the source data do

not contribute evenly to the overall quality of the decoded information. In a broadcast

wireless network, the system is designed to provide reliable transmission to different

users which may use various types of equipment and be located at distinct sites. Due

to the different reception capabilities of the intended receivers suffering from varying

severity of fading channels, it is necessary to design a transmission scheme that guar-

antees the reliable reception at a minimum transmission rate to the “disadvantaged”

users and higher transmission rate for other users. The UEP technique is a simple and

efficient method to achieve such requirement. The basic idea is to use constellations

with non-uniformly spaced signal points in the modulation scheme. The non-uniform

nature of such constellation results in different distances between sets of signals and

provide different levels of capability against noise and hence unequal error protection

for different bits of the symbol.

Multilevel coding (MLC) [11] is another way to provide unequal error protection for

different streams of information with different levels of importance in a communication

system. In multilevel coding, the system performance is optimized by choosing the

specific coding and modulation scheme. The idea of MLC is to protect each bit of a

signal point in the modulation constellation by an individual binary code. The various

choices of the component codes enable different strategies for creating a UEP capable

system.

The major goal of our work is to design and analyze the system performance of a

DS-CDMA system with asymmetric phase-shift-keying (PSK) modulation and MLC in

the AWGN channel. The analysis includes probability of bit error of different levels
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of the UEP and MLC schemes, and the capacity and throughput of the MLC scheme

combined with 8-PSK modulation.

1.2 Interference Mitigation in UWB Communica-

tions

Considerable amount of research has focused on analyzing and mitigating interfer-

ence caused from UWB to other existing systems (such as 802.11 Wireless LANs, GPS,

etc.). However, the existing systems can also cause strong interference to UWB. It is

important to investigate the impact of the interference to UWB, and design algorithms

to mitigate interference for UWB. In designing algorithms to suppress interference,

there are two major concerns:

1. Understanding the interference

In order to successfully combat interference, it is necessary to understand the

structure of the interference. Random interference can be described by its proba-

bility density function (PDF). For theoretical analysis, interference can be mod-

eled according to the application and the exact PDF can be obtained. In practice,

interference is unknown and varies with time (non-stationary). Thus, its PDF has

to be estimated and adaptively updated.

2. Implementing the algorithm – the complexity issue

When designing and analyzing the optimum receiver based on the maximum a

posteriori probability (MAP) criterion, the knowledge of the PDF of the interfer-

ence is required. With this knowledge, if the PDF is complicated, it is difficult to

utilize it for the receiver design in the practical sense. In this case, suboptimum

receivers with low complexity that can perform nearly as well as the optimum

receiver are desirable.
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There are several types of interference we should consider in the design of UWB

communication systems – intersymbol interference (ISI) due to the multipath channels,

multiple-access interference (MAI) in multiuser scenario, narrowband interference (NBI)

from existing systems, possible jamming signal, and lastly, additive white Gaussian

noise (AWGN) in the system. All these types of interference mentioned above degrade

the UWB system performance in different ways and to different levels. This points out

the importance of interference mitigation in UWB communications.

In this work we analyze the performance of UWB communications in the presence

of MAI and jamming interference. We consider a nonlinear interference suppression

technique for time-hopping (TH) pulse-position modulation (PPM) UWB systems. We

consider the synchronous single path AWGN channel, and the transmitted signal is

corrupted by interference. In practice, the interference is not Gaussian distributed,

and hence the total interference plus noise is not Gaussian, and the optimum receiver

can be very complex and quite difficult to realize physically. Previously the Gaussian

approximation to the interference is used when evaluating the system performance.

Since Gaussian interference is actually the worst case, substantial improvement can be

made when the actual non-Gaussian interference is properly taken into account. In our

work, we find the probability distribution of the total interference by computing the

exact probability density function (PDF). Therefore the exact bit error rate (BER) can

be evaluated. Furthermore, this PDF can be used in a locally optimum Bayes detector

(LOBD) to derive the suboptimum receiver with less complexity. In the first part of

this work, we derive the PDF of the total interference in a multiple access TH-PPM

UWB system. By applying the conventional pulse correlation receiver, a closed-form

PDF of the total interference of the correlator output is found for the special case

when the impulse signal is rectangular. Next, we apply the LOBD algorithm using

the interference PDF to derive the nonlinearity for interference suppression. Lastly, we

apply this locally optimum detector at the receiver to evaluate the system performance,
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and compare the results with the performance of the traditional linear receiver. In the

second part of the work, we apply the same procedures to deal with the Gaussian on-off

jamming interference. The last part of this work is to adaptively estimate and update

the interference PDF for the LOBD receiver for the real-time processing of the receiver.

1.3 Thesis Outline

This thesis contains two major parts. The first part is composed of Chapter 2

through Chapter 4 with a focus on multilevel coding for unequal error protection.

Asymmetric modulation and multilevel coding are considered to achieve the goal of un-

equal error protection. The second part of the thesis is composed of Chapter 5 through

Chapter 7 with an emphasis on the receiver design for ultra-wideband communications

in the presence of interference. The goal is to design receivers with low complexity for

practical implementation while performance asymptotically approaches the optimum

receiver performance. Each chapter in this thesis is briefly described in the following.

In Chapter 2, we analyze a quaternary DS-CDMA system with asymmetric QPSK

modulation. We derive the exact BER performance of the system by analyzing the

probability density function of the multiple-access interference utilizing the character-

istic function method. We also approximate the BER using Gaussian approximation to

the interference. Lastly, we investigate the near-far problem by generalizing the system

model to the case where users have different transmitting power. The results show that

the less protected data bits are more sensitive to the near-far effect in a multiple-access

environment.

In Chapter 3, we extende the analysis of a DS-CDMA system QPSK modulation

studied in Chapter 2 to the 8-PSK modulation case in combination with multilevel

coding to further achieve the goal of an unequal error protection system. In the proposed

system, we analyze the performance of multilevel coding and multistage decoding with
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BCH codes as component codes, and derive the approximate BER by approximating

the multiple-access interference as a Gaussian random variable and assuming the use

of random signature sequences for spreading.

In Chapter 4, we analyze the capacity and throughput of the 8-PSK multilevel

coding scheme using BCH codes of various block length and error correcting capability.

The results show that the MLC scheme outperforms the regular scheme in the low SNR

region. However, in the high SNR region, MLC scheme has a lower throughput than

the regular scheme due to the low reliability on the low level.

In Chapter 5, receiver design for multiple-access ultra-wideband communications

is investigated. We examine the performance of the suboptimum linear receiver, and

design the suboptimum nonlinear receiver to suppress interference based on the LOBD

algorithm. The results show the effectiveness of the proposed nonlinear receiver to

mitigate strong interference.

In Chapter 6, we apply the technique described in Chapter 5 to receiver design for

ultra-wideband communications to suppress Gaussian on-off jammer. We examined

the optimum receiver and compare it to the proposed suboptimum receiver. Various

jamming scenarios are examined to show the interference suppression capability of the

proposed receiver structure.

In Chapter 7, implementation of the LOBD receiver proposed in Chapters 5 and 6 is

discussed. A LOBD receiver with real-time processing is implemented by continuously

monitoring the interference and adaptively estimate and update the interference density

function and the signal processing function of the LOBD receiver. The adaptive LOBD

algorithm makes the proposed receiver implementation practical to deal with different

types of interference.

This thesis is concluded in Chapter 8.
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CHAPTER 2

Analysis of a DS-CDMA System with Asymmetric

QPSK Modulation

2.1 Introduction

In the design of a wireless communication system, feedback between the transmitter

and receiver regarding the channel condition is useful for adapting the radio trans-

mission rate to match the channel conditions [12][13][14][15][16]. When the channel

condition is good, the data rate is increased, while when the channel condition is bad,

the data rate is decreased. However, in some cases the transmitter does not know the

condition of the channel and still desires to match the data rate to the channel. In this

case, modulation and demodulation techniques are needed that allow more data to be

transmitted when the channel is good and less when the channel is bad, without the

transmitter knowing in advance the condition of the channel.

Consider for example the transmission of an image. Suppose that there are two

modes of operation at the receiver with respect to high and low signal-to-noise ratios

(SNRs). The two modes have different demodulation and decoding strategies according

to two different rates and image qualities. In the high SNR mode, the receiver can

demodulate and decode the data at high rate (or full rate) and recover the image

with its high quality. In the low SNR mode, the protection available with coding and
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modulation is not adequate to protect all the data. However, it may be possible to

decode only a subset of the bits that have higher error protection. In this case, the

receiver demodulates and decodes the data at a lower rate, and recovers the image with

lower quality as compared to the high-quality image.

In a wireless network, the channel condition can vary for several reasons. One reason

is just the change in the distance between the transmitter and the receiver. Another

reason is that the multiple-access interference produces time-varying channel conditions.

The key idea in designing such a system is to introduce modulation and coding

schemes that provide different error protection to different classes of data. The earlier

work on multicasting [1][2][3][4][6][5][7] and unequal error protection (UEP) [8][9][10]

examined such a system in the case of a mobile network downlink. This idea is essential

when different portions of the source do not contribute evenly to the overall quality of

the decoded information. The UEP technique is a simple and efficient method to

satisfy such a requirement. The basic idea is to use a constellation with non-uniformly

spaced signal points in the modulation scheme. The non-uniform nature of such a

constellation results in different distances between sets of signals and provides different

levels of reliability against noise and interference and, hence, unequal error protection

on different bits of a symbol. An asymmetric quadrature phase-shift-keying (AQPSK)

constellation can be regarded as the simplest modulation scheme to provide the system

with UEP capability. A comparison of QPSK and AQPSK is shown in Figure 2.1. As

can be seen, in the example shown in Figure 2.1b, the I-channel data (bit) is better

protected than the Q-channel data.

In [17], a quaternary direct-sequence code-division multiple-access (DS-CDMA) sys-

tem is analyzed and an expression for the SNR is determined. However, the exact bit-

error rate (BER) performance is not derived. In [18] and [19], the case of binary DS-

CDMA with random signature sequences is investigated for binary phase-shift-keying

(BPSK). Also, the Gaussian approximation to the interference is used to approximate
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Figure 2.1: Comparison of QPSK and AQPSK.

the performance. In this chapter, we derive the exact BER for a quaternary DS-CDMA

system and also derive the approximate BER using a Gaussian approximation to the

interference for AQPSK. We consider a direct-sequence spread-spectrum modulation

technique with asymmetric QPSK modulation that allows higher data rate transmis-

sion if the channel is good and a lower transmission rate when the channel condition

is poor. We analyze the performance of a quaternary DS-CDMA communication using

AQPSK modulation over an additive white Gaussian noise (AWGN) channel, with a

correlation receiver that is coherent to the desired user. We look at both the cases of

specific and random signature sequences being used in the system.

This chapter is organized as follows. In Section 2.2, the system model is intro-

duced. In Section 2.3, we derive the exact BER performance of the system. This also

includes the derivation of the probability density function (pdf) of the multiple-access

interference (MAI). A numerical example is given to illustrate the performance using

a specific set of signature sequences. In Section 2.4, the random signature-sequence

case is considered. The Gaussian approximation is used to model the MAI, and the

approximate BER performance is obtained. In Section 2.5, we generalize the signal

model and examine the nearfar effect on the system performance.
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2.2 System Model

In this section, we describe the mathematical model of an asymmetric QPSK mod-

ulation system and characterize the receiver output. We consider an extension of the

model described in [17] for asynchronous quaternary DS-CDMA. The model is shown

in Figure 2.2. The difference from [17] is that we consider asymmetric QPSK so that

the in-phase (I)-channel and quadrature-phase (Q)-channel bits have unequal energy.

Suppose there are K users in the system. The quaternary signal of the kth user is given

by

sk(t) = sIk(t) + sQk (t) (2.1)

where

sIk(t) =
√

2P · cos(β) · aIk(t)bIk(t) cos(2πfct+ θk), (2.2)

sQk (t) =
√

2P · sin(β) · aQk (t)bQk (t) sin(2πfct+ θk). (2.3)

In the above expressions, P is the transmitted power, β is the angle of the signal points

in the asymmetrical constellation, aIk(t) and aQk (t) are the spreading signals for the I

and Q channels, bIk(t) and bQk (t) are the user information being transmitted in the I

and Q channels, θk is the initial phase of the kth user and is assumed to be uniformly

distributed over the interval [0, 2π]. The modulation constellation is shown in Figure

2.3. In this scheme, we choose 0 < β < π
4
.

The information being transmitted by user k is represented by

bIk(t) =
∞∑

j=−∞

bIk,j · pT (t− jT ) (2.4)

bQk (t) =
∞∑

j=−∞

bQk,j · pT (t− jT ) (2.5)
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Figure 2.2: A quaternary DS-CDMA communication system model.

where bIk,j, b
Q
k,j ∈ {±1}, T is the symbol duration, and

pT (t) =





1, 0 ≤ t ≤ T

0, otherwise.
(2.6)

The spreading signals are expressed as

aIk(t) =
∞∑

j=−∞

aIk,j · ψ(t− jTc) (2.7)

aQk (t) =
∞∑

j=−∞

aQk,j · ψ(t− jTc) (2.8)

where aIk,j, a
Q
k,j ∈ {±1} are the signature sequences for the I and Q channels, Tc is the

chip duration such that T = NTc, and ψ(t) is the chip waveform which is nonzero for

0 ≤ t ≤ Tc. In general we can choose any pulse shape as the chip waveform. However,

to simplify the analysis, in the following we will assume the rectangular pulse is used

13



I

Q

00

01

10

11

β
P2

βsin2P

βcos2P

Figure 2.3: Asymmetric QPSK constellation.

as the chip waveform, i.e. ψ(t) = pTc(t).

The receiver is assumed to consist of a simple correlator matched to the desired

signal. We examine both the time synchronous and asynchronous cases. Even though

the asynchronous case is the more realistic case of the two, the synchronous case is

more easily analyzed than the asynchronous case. When considering channel coding

using linear block codes, it is very difficult to analyze the asynchronous case due to the

dependency of bit errors within one block.
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2.2.1 Asynchronous System

We first consider the asynchronous case. The received signal is given by

r(t) =
K∑

k=1

sk(t− τk) + n(t)

=
K∑

k=1

√
2P cos(β)aIk(t− τk)bIk(t− τk) cos(2πfc(t− τk) + θk)

+
K∑

k=1

√
2P sin(β)aQk (t− τk)bQk (t− τk) sin(2πfc(t− τk) + θk) + n(t)

=
K∑

k=1

√
2P cos(β)aIk(t− τk)bIk(t− τk) cos(2πfct+ φk)

+
K∑

k=1

√
2P sin(β)aQk (t− τk)bQk (t− τk) sin(2πfct+ φk) + n(t) (2.9)

where n(t) is an additive white Gaussian noise with zero mean and two-sided power

spectral density N0/2. The time delay of the kth signal is represented by τk and

φk = θk − 2πfcτk (mod 2π).

The analysis here basically follows the methods in [17] and [20]. Consider the output

of the correlation receiver for the first user. The output of the I-channel correlator for

the data bit bI1,0 can be decomposed into terms corresponding to the desired signal, the
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interference, and noise as follows:

ZI
1 =

∫ T

0

r(t)aI1(t) cos(2πfct)dt

=

∫ T

0

√
2P cos(β)aI1(t)bI1(t) cos(2πfct)a

I
1(t) cos(2πfct)dt

+

∫ T

0

√
2P sin(β)aQ1 (t)bQ1 (t) sin(2πfct)a

I
1(t) cos(2πfct)dt

+
K∑

k=2

∫ T

0

√
2P cos(β)aIk(t− τk)bIk(t− τk) cos(2πfct+ φk)a

I
1(t) cos(2πfct)dt

+
K∑

k=2

∫ T

0

√
2P sin(β)aQk (t− τk)bQk (t− τk) sin(2πfct+ φk)a

I
1(t) cos(2πfct)dt

+

∫ T

0

n(t)aI1(t) cos(2πfct)dt. (2.10)

In the above expression, the output due to the desired signal is

A =

∫ T

0

√
2P cos(β)bI1(t)

(
aI1(t)

)2
cos2(2πfct)dt

=
√

2P cos(β)bI1,0

∫ T

0

1

2
[1 + cos(4πfct)]dt

= T
√
P/2 cos(β)bI1,0 (2.11)

where the double frequency term is negligible since we assume fc >> (Tc)
−1. Because of

the assumption of coherent reception, the component of the I-channel correlator output

due to the Q-channel signal is

B =

∫ T

0

√
2P sin(β)aQ1 (t)bQ1 (t) sin(2πfct)a

I
1(t) cos(2πfct)dt

=
√

2P sin(β)bQ1,0

∫ T

0

aQ1 (t)aI1(t) sin(2πfct) cos(2πfct)dt

= 0. (2.12)

The interference component of the I-channel correlator output due to a I-channel inter-
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ferer is given by

Ck =

∫ T

0

√
2P cos(β)aIk(t− τk)bIk(t− τk) cos(2πfct+ φk)a

I
1(t) cos(2πfct)dt

=
√

2P cos(β)

∫ T

0

bIk(t− τk)aIk(t− τk)aI1(t) cos(2πfct+ φk) cos(2πfct)dt

=
√

2P cos(β)

∫ T

0

bIk(t− τk)aIk(t− τk)aI1(t)
1

2

[
cos(φk) + cos(4πfct+ φk)

]
dt

=
√
P/2 cos(β) cos(φk)

∫ T

0

bIk(t− τk)aIk(t− τk)aI1(t)dt

=
√
P/2 cos(β) cos(φk)

[
bIk,−1R

II
k,1(τk) + bIk,0R̂

II
k,1(τk)

]
(2.13)

where the time cross-correlations RII
k,i(τ) and R̂II

k,i(τ) are defined as [17]1

RII
k,i(τ) =

∫ τ

0

aIk(t− τ)aIi (t)dt (2.14)

R̂II
k,i(τ) =

∫ T

τ

aIk(t− τ)aIi (t)dt. (2.15)

Letting

IIIk,i(b
II
k , τ, φ) = T−1

[
bIk,−1R

II
k,1(τk) + bIk,0R̂

I
k,1(τk)

]
cos(φ), (2.16)

then Equation (2.13) can be written as

Ck = T
√
P/2 cos(β)IIIk,1(bIk, τk, φk). (2.17)

The total I-channel interference is then

K∑

k=2

Ck = T
√
P/2 cos(β)

K∑

k=2

IIIk,1(bIk, τk, φk) (2.18)

where bI = (bI2,−1, b
I
2,0, · · · , bIK,−1, b

I
K,0). Similarly, the component of the I-channel cor-

1Note that the “hat” notation on the cross-correlation functions is used to denote the correlation
over the complementary (with respect to the symbol duration) portion of the integration interval.
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relator output due to a Q-channel interferer is

Dk =

∫ T

0

√
2P sin(β)aQk (t− τk)bQk (t− τk) sin(2πfct+ φk)a

I
1(t) cos(2πfct)dt

=
√

2P sin(β)

∫ T

0

bQk (t− τk)aQk (t− τk)aI1(t) sin(2πfct+ φk) cos(2πfct)dt

=
√

2P sin(β)

∫ T

0

bQk (t− τk)aQk (t− τk)aI1(t)
1

2

[
sin(φk) + sin(4πfct+ φk)

]
dt

=
√
P/2 sin(β) sin(φk)

∫ T

0

bQk (t− τk)aQk (t− τk)aI1(t)dt

=
√
P/2 sin(β) sin(φk)

[
bQk,−1R

QI
k,1(τk) + bQk,0R̂

QI
k,1(τk)

]
(2.19)

where, analogously to Equations (2.14) through (2.16), we define

RQI
k,i (τ) =

∫ τ

0

aQk (t− τ)aIi (t)dt (2.20)

R̂QI
k,i (τ) =

∫ T

τ

aQk (t− τ)aIi (t)dt (2.21)

and

IQIk,i (b
Q
k , τ, φ) = T−1

[
bQk,−1R

QI
k,1(τk) + bQk,0R̂

QI
k,1(τk)

]
sin(φ). (2.22)

Then Equation (2.19) can be written as

Dk = T
√
P/2 sin(β)IQIk,1(bQk , τk, φk) (2.23)

and hence the total Q-channel interference is

K∑

k=2

Dk = T
√
P/2 sin(β)

K∑

k=2

IQIk,1(bQk , τk, φk) (2.24)

where bQ = (bQ2,−1, b
Q
2,0, · · · , bQK,−1, b

Q
K,0). The noise component of the I-channel correlator

output is

nI1 =

∫ T

0

n(t)aI1(t) cos(2πfct)dt. (2.25)
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Note that nI1 is Gaussian with zero mean and variance N0T/4. In summary, we have

ZI
1 = T

√
P

2
cos(β)bI1,0 +

K∑

k=2

T

√
P

2
cos(β)IIIk,1(bIk, τk, φk)

+
K∑

k=2

T

√
P

2
sin(β)IQIk,1(bQk , τk, φk) + nI1

= T

√
P

2

{
bI1,0 cos(β) + cos(β)

K∑

k=2

IIIk,1(bIk, τk, φk)

+ sin(β)
K∑

k=2

IQIk,1(bQk , τk, φk)

}
+ nI1

= T

√
P

2
cos(β)(bI1,0 + II) (2.26)

where

II =
K∑

k=2

IIIk,1(bIk, τk, φk) + tan(β) · IQIk,1(bQk , τk, φk) (2.27)

Similarly, for the Q-channel correlator output we have

ZQ
1 = T

√
P

2

{
bQ1,0 sin(β) + cos(β)

K∑

k=2

IIQk,1(bIk, τk, φk)

+ sin(β)
K∑

k=2

IQQk,1 (bQk , τk, φk)

}
+ nQ1

= T

√
P

2
sin(β)(bQ1,0 + IQ) (2.28)

where

IQ =
K∑

k=2

IQQk,1 (bIk, τk, φk) + cot(β) · IIQk,1(bQk , τk, φk) (2.29)

IIQk,i (b
I
k, τ, φ) = T−1

[
bIk,−1R

IQ
k,1(τk) + bIk,0R̂

IQ
k,1(τk)

]
sin(−φ) (2.30)

IQQk,i (bQk , τ, φ) = T−1
[
bQk,−1R

QQ
k,1 (τk) + bQk,0R̂

QQ
k,1 (τk)

]
cos(φ) (2.31)
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and

RIQ
k,i (τ) =

∫ τ

0

aIk(t− τ)aQi (t)dt, (2.32)

R̂IQ
k,i (τ) =

∫ T

τ

aIk(t− τ)aQi (t)dt, (2.33)

RQQ
k,i (τ) =

∫ τ

0

aQk (t− τ)aQi (t)dt, (2.34)

R̂QQ
k,i (τ) =

∫ T

τ

aQk (t− τ)aQi (t)dt. (2.35)

Also, nQ1 is Gaussian with zero mean and variance N0T/4.

2.2.2 Synchronous System

For the synchronous case wherein τk = 0 for all k = 1, 2, · · · , K, the received signal

is given by

r(t) =
K∑

k=1

sk(t) + n(t). (2.36)

With arguments similar to those in the asynchronous case, we have the correlation

receiver outputs

ZI
1 = nI1 + T

√
P/2 · cos(β)

[
bI1,0 +

K∑

k=2

IIk,1(bk, θk)

]
(2.37)

ZQ
1 = nQ1 + T

√
P/2 · sin(β)

[
bQ1,0 +

K∑

k=2

IQk,1(bk, θk)

]
(2.38)

where nI1 and nQ1 are Gaussian with zero mean and variance N0T/4, bk = (bIk,0, b
Q
k,0),

and

IIk,1(bk, θk) = IIIk,1(bIk,0, θk) + tan(β) · IQIk,1(bQk,0, θk) (2.39)

IQk,1(bk, θk) = IIQk,1(bIk,0, θk) + cot(β) · IQQk,1 (bQk,0, θk) (2.40)
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with

IIIk,1(bIk,0, θk) = T−1 · bIk,0 ·RII
k,1(0) · cos(θk), (2.41)

IQIk,1(bQk,0, θk) = T−1 · bQk,0 ·RQI
k,1(0) · sin(θk), (2.42)

IIQk,1(bIk,0, θk) = T−1 · bIk,0 ·RIQ
k,1(0) · sin(−θk), (2.43)

IQQk,1 (bQk,0, θk) = T−1 · bQk,0 ·RQQ
k,1 (0) · cos(θk). (2.44)

Since there is no delay between users, we have

RII
k,1(0) =

∫ T

0

aIk(t)a
I
1(t)dt =

N−1∑

j=0

aIk,ja
I
1,j

∫ Tc

0

ψ2(t)dt, (2.45)

RQI
k,1(0) =

∫ T

0

aQk (t)aI1(t)dt =
N−1∑

j=0

aQk,ja
I
1,j

∫ Tc

0

ψ2(t)dt, (2.46)

RIQ
k,1(0) =

∫ T

0

aIk(t)a
Q
1 (t)dt =

N−1∑

j=0

aIk,ja
Q
1,j

∫ Tc

0

ψ2(t)dt, (2.47)

RQQ
k,1 (0) =

∫ T

0

aQk (t)aQ1 (t)dt =
N−1∑

j=0

aQk,ja
Q
1,j

∫ Tc

0

ψ2(t)dt. (2.48)

Furthermore, since we use a rectangular chip waveform, that is, ψ(t) = pTc(t), then
∫ Tc

0
ψ2(t)dt = Tc, and we can further simplify the above expressions as

RII
k,1(0) = Tc

N−1∑

j=0

aIk,ja
I
1,j, (2.49)

RQI
k,1(0) = Tc

N−1∑

j=0

aQk,ja
I
1,j, (2.50)

RIQ
k,1(0) = Tc

N−1∑

j=0

aIk,ja
Q
1,j, (2.51)

RQQ
k,1 (0) = Tc

N−1∑

j=0

aQk,ja
Q
1,j. (2.52)
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2.3 Exact Performance Analysis

Our goal is to analyze the bit-error rate (BER) of such a system. In order to find

the exact BER, we need to find the probability distribution of the interference. In this

section, we derive the pdf of the interference for both synchronous and asynchronous

cases.

2.3.1 Average Probability of Error

The average probability of bit error is given by

Pe =
1

2

(
P I
e + PQ

e

)
(2.53)

where P I
e and PQ

e are the average probabilities of bit error of the I and Q channels,

respectively, and are evaluated as follows:

P I
e =

1

2

{
Pr
(
ZI

1 ≤ 0|bI1,0 = +1
)

+ Pr
(
ZI

1 > 0|bI1,0 = −1
)}

=
1

2

{
Pr
(
T
√
P/2 cos(β)(1 + II) + nI1 ≤ 0

)

+Pr
(
T
√
P/2 cos(β)(−1 + II) + nI1 > 0

)}

=
1

2

{
Pr

(
nI1

T
√
P/2 cos(β)

≤ −1− II
)

+ Pr

(
nI1

T
√
P/2 cos(β)

> 1− II
)}

=
1

2
{Pr (nI + II ≤ −1) + Pr (nI + II > 1)}

=
1

2
{1− Pr (−1 < nI + II ≤ 1)} (2.54)

where nI = nI1/(T
√
P/2 cos β) is Gaussian with zero mean and variance (2EI

b /N0)−1,

EI
b = PT cos2 β = Es cos2 β, and Es = PT . Similarly, we have

PQ
e =

1

2

{
1− Pr (−1 < nQ + IQ ≤ 1)

}
(2.55)
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where nQ = nQ1 /(T
√
P/2 sin β) is Gaussian with zero mean and variance (2EQ

b /N0)−1,

EQ
b = PT sin2 β = Es sin2 β.

In order to evaluate P I
e and PQ

e , we use the characteristic function method in [20] to

compute these probabilities. In order to compute Pe, we need to know the probability

distribution of the sum of the noise and interference. We first obtain the characteristic

functions of the random variables, and then derive P I
e and PQ

e from the characteristic

functions.

Let ΦnI (v), ΦII (v), and ΦI(v) be the characteristic functions of nI , II , and I =

nI + II . Note that they are even functions (Φ(v) = Φ(−v)), and ΦI(v) = ΦnI (v)ΦII (v)

by the independence of nI and II . The probability needed to compute P I
e is obtained

as

Pr (−1 < nI + II ≤ 1) =

∫ 1

−1

fI(x)dx

= 2

∫ 1

0

fI(x)dx

= 2

∫ 1

0

(
1

2π

∫ ∞

−∞
ΦI(v)e−jvxdv

)
dx

=
2

π

∫ 1

0

(∫ ∞

0

ΦI(v) cos(vx)dv

)
dx

=
2

π

∫ ∞

0

ΦI(v)

(∫ 1

0

cos(vx)dx

)
dv

=
2

π

∫ ∞

0

ΦI(v)v−1 sin(v)dv. (2.56)

The characteristic function of the interference in the I-channel, ΦI(v), can be written

as

ΦI(v) = ΦnI (v)ΦII (v) = ΦnI (v)−ΦnI (v) + ΦnI (v)ΦII (v) = ΦnI (v)−ΦnI (v)
[
1−ΦII (v)

]

(2.57)
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thus

Pr (−1 < nI + II ≤ 1) =
2

π

∫ ∞

0

ΦnI (v)v−1 sin(v)dv

− 2

π

∫ ∞

0

v−1 sin(v)ΦnI (v)
[
1− ΦII (v)

]
dv (2.58)

where

ΦnI (v) = exp

(
− N0

4EI
b

v2

)
. (2.59)

The average probability of error of the I-channel is then given by

P I
e =

1

2
− 1

2
P (−1 < nI + II ≤ 1)

=
1

2
− 1

π

∫ ∞

0

v−1 sin(v)ΦnI (v)dv +
1

π

∫ ∞

0

v−1 sin(v)ΦnI (v)
[
1− ΦII (v)

]
dv

= Q



√

2EI
b

N0


+

1

π

∫ ∞

0

v−1 sin(v)ΦnI (v)[1− ΦII (v)]dv (2.60)

where

Q(x) =
1√
2π

∫ ∞

x

e−t
2/2dt, x ≥ 0. (2.61)

Similarly, let ΦnQ(v), ΦIQ(v), and ΦQ(v) be the characteristic functions of nQ, IQ, and

Q = nQ + IQ. ΦQ(v) = ΦnQ(v)ΦIQ(v). Then we have

Pr (−1 < nQ + IQ ≤ 1) =
2

π

∫ ∞

0

v−1 sin(v)ΦnQ(v)dv

− 2

π

∫ ∞

0

v−1 sin(v)ΦnQ(v)[1− ΦIQ(v)]dv (2.62)

and

PQ
e =

1

2
− 1

π

∫ ∞

0

v−1 sin(v)ΦnQ(v)dv +
1

π

∫ ∞

0

v−1 sin(v)ΦnQ(v)[1− ΦIQ(v)]dv

= Q



√

2EQ
b

N0


+

1

π

∫ ∞

0

v−1 sin(v)ΦnQ(v)[1− ΦIQ(v)]dv. (2.63)
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Therefore, the average probability of error is given by

Pe =
1

2

{
Q



√

2EI
b

N0


+Q



√

2EQ
b

N0



}

+
1

2π

∫ ∞

0

v−1 sin(v)
{

ΦnI (v)[1− ΦII (v)] + ΦnQ(v)[1− ΦIQ(v)]
}
dv. (2.64)

Note that by representing the error probability in this way it is clear what the contri-

bution to error probability is from noise and interference. When there is no MAI, i.e.,

the single user case, the MAI term in the above expression is zero, and the probability

of error is the same as in the case of an AWGN channel. In general, the MAI term in

the above expression does not have a closed-form solution and needs to be evaluated

numerically. However, in order to evaluate it numerically, we need to find expressions

for ΦII (v) and ΦIQ(v).

2.3.2 Asynchronous Case

Here we begin to derive the characteristic function of the interference in the asyn-

chronous case. The I-channel interference is given by

II =
K∑

k=2

IIIk,1(bIk, τk, φk) + tan(β)IQIk,1(bQk , τk, φk). (2.65)

where

IIIk,1(bIk, τk, φk) =
cos(φk)

T

[
bIk,−1R

II
k,1(τk) + bIk,0R̂

II
k,1(τk)

]
, (2.66)

IQIk,1(bQk , τk, φk) =
sin(φk)

T

[
bQk,−1R

QI
k,1(τk) + bQk,0R̂

QI
k,1(τk)

]
. (2.67)

Now consider lTc ≤ τk ≤ (l + 1)Tc. In this case, we have

RII
k,1(τk) = CII

k,1(l −N)R̂ψ(τk − lTc) + CII
k,1(l + 1−N)Rψ(τk − lTc), (2.68)

R̂II
k,1(τk) = CII

k,1(l)R̂ψ(τk − lTc) + CII
k,1(l + 1)Rψ(τk − lTc) (2.69)
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where R̂ψ(τ) and Rψ(τ) are the autocorrelation functions of the chip waveform defined

as

R̂ψ(τ) =

∫ Tc

τ

ψ(t)ψ(t− τ)dt, (2.70)

Rψ(τ) =

∫ τ

0

ψ(t)ψ(t+ Tc − τ)dt. (2.71)

Similarly,

RQI
k,1(τk) = CQI

k,1(l −N)R̂ψ(τk − lTc) + CQI
k,1(l + 1−N)Rψ(τk − lTc), (2.72)

R̂QI
k,1(τk) = CQI

k,1(l)R̂ψ(τk − lTc) + CQI
k,1(l + 1)Rψ(τk − lTc). (2.73)

In the above expressions, CII
k,i(l) and CQI

k,i (l) are the aperiodic cross-correlation functions

defined as

CII
k,i(l) =





∑N−1−l
j=0 aIk,ja

I
i,j+l, 0 ≤ l ≤ N − 1

∑N−1+l
j=0 aIk,j−la

I
i,j, 1−N ≤ l < 0

0, |l| ≥ N

(2.74)

CIQ
k,i (l) =





∑N−1−l
j=0 aIk,ja

Q
i,j+l, 0 ≤ l ≤ N − 1

∑N−1+l
j=0 aIk,j−la

Q
i,j, 1−N ≤ l < 0

0, |l| ≥ N

(2.75)
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Here {aIk,j} and {aQk,j} are the spreading sequences of the I and Q channels of the kth

user. The characteristic function of II is given by

ΦII (v) = E {exp(jvII)}

= E

{
exp

[
jv

(
K∑

k=2

IIIk,1(bIk, τk, φk) + tan(β)IQIk,1(bQk , τk, φk)

)]}

=
K∏

k=2

E
{

exp
[
jv
(
IIIk,1(bIk, τk, φk) + tan(β)IQIk,1(bQk , τk, φk)

)]}

=
K∏

k=2





1

2π

1

T

1

4

1

4

∑

bIk

∑

bQk∫ 2π

0

∫ T

0

exp
[
jv
(
IIIk,1(bIk, τ, φ) + tan(β)IQIk,1(bQk , τ, φ)

)]
dτdφ

}

=
K∏

k=2





1

32πT

∑

bIk

∑

bQk

∫ 2π

0

N−1∑

l=0

∫ (l+1)Tc

lTc

exp

[
jv

cos(φ)

T

[
bIk,−1

(
CII
k,1(l −N)R̂ψ(τ − lTc)

+ CII
k,−1(l + 1−N)Rψ(τ − lTc)

)

+ bIk,0

(
CII
k,1(l)R̂ψ(τ − lTc) + CII

k,1(l + 1)Rψ(τ − lTc)
)]

+ jv tan(β)
sin(φ)

T

[
bQk,−1

(
CQI
k,1(l −N)R̂ψ(τ − lTc)

+CQI
k,−1(l + 1−N)Rψ(τ − lTc)

)

+ bQk,0

(
CQI
k,1(l)R̂ψ(τ − lTc) + CQI

k,1(l + 1)Rψ(τ − lTc)
)]]

dτdφ
}
.(2.76)

With further simplification (see Appendix A), we obtain

ΦII (v) =
K∏

k=2

{
1

8N

N−1∑

l=0

(
8∑

i=1

f(v; l, gi(l), hi(l), αi)

)}
(2.77)
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where

f(v; l, g(l), h(l), α) , 1

2πTc

∫ 2π

0

∫ Tc

0

cos
{ v
T

[
(cosφ · g(l) + α sinφ · h(l)) R̂ψ(τ)

+ (cosφ · g(l + 1) + α sinφ · h(l + 1))Rψ(τ)
]}
dτdφ (2.78)

and

g1(l) = θIIk,1, h1(l) = θQIk,1, α1 = + tan β, (2.79)

g2(l) = θIIk,1, h2(l) = θ̂QIk,1, α2 = − tan β, (2.80)

g3(l) = θIIk,1, h3(l) = θ̂QIk,1, α3 = + tan β, (2.81)

g4(l) = θIIk,1, h4(l) = θQIk,1, α4 = − tan β, (2.82)

g5(l) = θ̂IIk,1, h5(l) = θQIk,1, α5 = − tan β, (2.83)

g6(l) = θ̂IIk,1, h6(l) = θ̂QIk,1, α6 = + tan β, (2.84)

g7(l) = θ̂IIk,1, h7(l) = θ̂QIk,1, α7 = − tan β, (2.85)

g8(l) = θ̂IIk,1, h8(l) = θQIk,1, α8 = + tan β. (2.86)

If we consider a rectangular chip waveform, we can further simplify equation (2.78) as

(see Appendix A)

f(v; l, g(l), h(l), α) =
1

2π

∫ 2π

0

sinc
{ v

2πN

(
cosφ((g(l + 1)− g(l))

+ α sinφ((h(l + 1)− h(l))
)}

· cos
{ v

2N

(
cosφ((g(l + 1) + g(l))

+ α sinφ((h(l + 1) + h(l))
)}
dφ. (2.87)

This expression is simple to evaluate numerically, which allows us to compute the

characteristic function and the average error probability. From the above expression,

we see that the characteristic function of the interference does not depend on the signal
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energy or SNR. The advantage is that we need to compute the characteristic function

of the interference only once, and it can be applied to different SNR values to compute

the probability of error.

2.3.3 Synchronous Case

For the synchronous case, the derivation is similar to the asynchronous case. The

expressions for the bit-error probability for the I and Q channels are the same as for

the asynchronous case. The only difference is in the expressions for the characteristic

functions of the interference. These are given by

ΦII (v) =
K∏

k=2

{
1

4π

∫ 2π

0

cos
( v
T

[cosφ ·RII
k,1(0) + tan β · sinφ ·RQI

k,1(0)]
)

+ cos
( v
T

[cosφ ·RII
k,1(0)− tan β · sinφ ·RQI

k,1(0)]
)
dφ
}
, (2.88)

ΦIQ(v) =
K∏

k=2

{
1

4π

∫ 2π

0

cos
( v
T

[cosφ ·RQQ
k,1 (0) + cot β · sinφ ·RIQ

k,1(0)]
)

+ cos
( v
T

[cosφ ·RQQ
k,1 (0)− cot β · sinφ ·RIQ

k,1(0)]
)
dφ
}
. (2.89)

2.3.4 Numerical Examples

Here we present a numerical example for the asynchronous case. In [20], the average

error probability for a direct-sequence spread-spectrum multiple-access (DS-SSMA) sys-

tem with symmetric QPSK modulation is investigated. The performance is evaluated

using auto-optimal, least side-lobe energy (AO/LSE) sequences [21] as the spreading

codes for the users in the system. For the quaternary system, the spreading factor is

chosen to be N = 127, and there are 9 pairs of codes listed. In each pair of codes,

the I- and Q-channel sequences are the reverse of each other. The AO/LSE codes for

N = 127 are listed in Table 2.1.

Each row represents a pair of codes. The generator polynomial coefficients are
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Table 2.1: AO/LSE codes (N = 127).

H α0 H−1 α−1
0 M̂ L̂ S

211 0010000 221 1001101 17 6 2183
217 0000101 361 1111111 15 12 2015
235 0001100 271 1000101 17 10 2283
247 0010111 345 0110001 17 8 2255
277 1110001 375 0101010 19 4 2295
357 1110010 367 0110101 17 4 2563
323 1110111 313 1000111 17 4 2203
203 1101101 301 0010010 17 4 2087
325 0000101 253 1101100 19 6 2483

denoted by H and H−1 in octal. The initial values in the shift registers are denoted

by α0 and α−1
0 . The in-phase interference characteristic function from the second user

to the first user using the above spreading codes with β = π/4 is shown in Figure

2.4. Since in the symmetric constellation the I- and Q-channel signals have the same

power, the resulting characteristic functions of the I- and Q-channel interference are

the same. Therefore, we show only the characteristic function of the I channel. For

β = π/8, even though we use mutually reversed spreading codes for in-phase and

quadrature-phase components, the characteristic functions are different. This is due

to the unequal power of the I- and Q-channel signals in the asymmetric constellation

and the cross-correlation nature of the spreading codes. The characteristic functions

of the interference from the second user to the first user when β = π/8 are shown in

Figure 2.5. The average probability of error when the number of users varies from 1 to

9 is shown in Figure 2.6. The performance is worse than the symmetric case as shown

in [20]. This is because the performance is dominated by the Q-channel performance,

which is bad due to the low transmitted power.
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Figure 2.4: In-phase interference characteristic function (N = 127, β = π/4).
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Figure 2.5: Interference characteristic functions (N = 127, β = π/8).
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2.4 Approximate Performance Analysis

As seen in the previous section, the expressions for the interference are very compli-

cated, and the evaluation for the exact performance is computationally tedious. Also, as

in the numerical example, the results are for a specific set of signature sequences. One

way to solve this problem is to use a Gaussian approximation to model the interference

and to use random signature sequences in the analysis. Then a simple approximate

expression for the BER can be obtained involving only the signal-to-interference-plus-

noise ratio (SINR) and the Q function. In this section, we approximate the interference

as a Gaussian random variable and assume random signature sequences. We find the

variance of the interference and examine the approximate system performance.

2.4.1 Asynchronous Case

In order to find the approximate BER performance, we approximate the interfer-

ence as a Gaussian random variable and find its variance. We first find the conditional

variance of the interference, and then average over the random variables to find the vari-

ance. Therefore, we can obtain an expression for the SINR, and thus the approximate

BER.

The decision statistics at the output of the correlation receiver for user 1 are

ZI
1 = nI1 + T

√
P

2
· cos β · bI1,0 +

√
P

2

K∑

k=2

cos β ·W II
k · cos(φk) + sin β ·WQI

k · sin(φk)

(2.90)

ZQ
1 = nQ1 + T

√
P

2
· cos β · bQ1,0 +

√
P

2

K∑

k=2

sin β ·WQQ
k · cos(φk)− cos β ·W IQ

k · sin(φk)

(2.91)
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where

W II
k = bIk,−1 ·RII

k,1(τk) + bIk,0 · R̂II
k,1(τk), (2.92)

WQI
k = bQk,−1 ·RQI

k,1(τk) + bQk,0 · R̂QI
k,1(τk), (2.93)

WQQ
k = bQk,−1 ·RQQ

k,1 (τk) + bQk,0 · R̂QQ
k,1 (τk), (2.94)

W IQ
k = bIk,−1 ·RIQ

k,1(τk) + bIk,0 · R̂IQ
k,1(τk). (2.95)

To find the variance of the multiple access interference (MAI) of ZI
1 and ZQ

1 , we start

by writing ZI
1 in the form

ZI
1 = nI1 + T

√
P/2 · bI1,0 · cos β +W (2.96)

where

W =
√
P/2 ·cos β

K∑

k=2

W II
k ·cos(φk)+

√
P/2 ·sin β

K∑

k=2

WQI
k ·sin(φk) = W I +WQ (2.97)

with

W I =
√
P/2 · cos β

K∑

k=2

W II
k · cos(φk), (2.98)

WQ =
√
P/2 · sin β

K∑

k=2

WQI
k · sin(φk). (2.99)

The variances of W I and WQ are given by (see Appendix B)

Var[W I ] =
(K − 1)NPT 2

c cos2(β)

6
(2.100)

Var[WQ] =
(K − 1)NPT 2

c sin2(β)

6
. (2.101)
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Hence the variance of the MAI in ZI
1 is given by

Var[W ] = Var[W I ] + Var[WQ] =
(K − 1)NPT 2

c

6
. (2.102)

The SINR of ZI
1 is then

SINRI =
T 2P/2 · cos2 β

N0T
4

+ (K−1)NPT 2
c

6

=
6Es · cos2 β

3N0 + 2Es
(K−1)
N

=
12Eb · cos2 β

3N0 + 4Eb
(K−1)
N

(2.103)

where Es = NPTc is the symbol energy, and Eb = (1/2)Es is the average bit energy.

Similarly, for the Q-channel, the SINR of ZQ
1 is given by

SINRQ =
6Es · sin2 β

3N0 + 2Es
(K−1)
N

=
12Eb · sin2 β

3N0 + 4Eb
(K−1)
N

. (2.104)

Then the approximate BER can be expressed as

P I
e,GA = Q

(√
12Eb · cos2 β

3N0 + 4Eb
(K−1)
N

)
, (2.105)

PQ
e,GA = Q

(√
12Eb · sin2 β

3N0 + 4Eb
(K−1)
N

)
. (2.106)

2.4.2 Synchronous Case

The analysis for the synchronous case is similar to that for the asynchronous case

presented in the previous subsection. We can rewrite the decision statistic as

ZI
1 = nI1 + T

√
P/2 · cos(β) · bI1,0 +W (2.107)
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where

W =
K∑

k=2

W I
k (2.108)

and

W I
k =

√
P/2

(
cos β · bIk,0 ·RII

k,1(0) · cos(θk) + sin β · bQk,0 ·RQI
k,1(0) · sin(θk)

)
(2.109)

We want to find the variance of the MAI W I
k . Note that RII

k,1(0) and RQI
k,1(0) are both

functions of {aI1,j}. Thus the variance of W I
k conditioned on {aI1,j} and θk is

Var
[
W I
k | {aI1,j}, θk

]
= Var

[√
P/2 · cos β · bIk,0 ·RII

k,1(0) · cos θk | {aI1,j}, θk
]

+Var
[√

P/2 · sin β · bQk,0 ·RQI
k,1(0) · sin θk | {aI1,j}, θk

]

=
P

2

(
cos2 β · cos2 θk · Var[bIk,0 ·RII

k,1(0) | {aI1,j}]

+ sin2 β · sin2 θk · Var[bQk,0 ·RQI
k,1(0) | {aI1,j}]

)
. (2.110)

Because we assume random signature sequences, given {aI1,j}, RII
k,1(0) and RQI

k,1(0) are

independent identically distributed (i.i.d.) with PDF

pR(rTc) =

(
N
r+N

2

)
2−N (2.111)

for r = −N,−N + 2, · · · , N − 2, N . Since both bIk,0 and RII
k,1 have zero mean and they

are independent, we have

Var
[
bIk,0 ·RII

k,1(0) | {aI1,j}
]

= E
[(
bIk,0 ·RII

k,1(0)
)2 | {aI1,j}

]

= E
[(
bIk,0
)2
]
E
[(
RII
k,1(0)

)2 | {aI1,j}
]

= 1 ·NT 2
c

= NT 2
c (2.112)
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Note that even though RII
k,1(0) depends on {aI1,j}, the mean and variance do not depend

on the particular realization of {aI1,j}. This is different from the asynchronous case.

However, this property helps reduce the complexity of analysis. Similarly, we have

Var
[
bQk,0 ·RQI

k,1(0)|{aI1,j}
]

= NT 2
c . Therefore the conditional variance of W I

k is

Var
[
W I
k | θk, {aI1,j}

]
=
NPT 2

c

2

(
cos2 β · cos2 θk + sin2 β · sin2 θk

)
(2.113)

Let Θ = (θ1, · · · , θK). Then the conditional variance of W is given by

Var
[
W | Θ, {aI1,j}

]
=

K∑

k=2

Var
[
W I
k | θk, {aI1,j}

]

= (K − 1)
NPT 2

c

2

(
cos2 β · cos2 θk + sin2 β · sin2 θk

)
.(2.114)

Note that the above expression now depends only on θk. By averaging over θk, the

variance of W is

Var [W ] =
K∑

k=2

Eθk
[
Var

[
W I
k | θk

]]

= (K − 1)Eθk

[
NPT 2

c

2

(
cos2 β · cos2 θk + sin2 β · sin2 θk

)]

=
(K − 1)NPT 2

c

2

(
cos2 β · Eθk [cos2 θk] + sin2 β · Eθk [sin2 θk]

)

=
(K − 1)NPT 2

c

2

(
cos2 β · 1

2
+ sin2 β · 1

2

)

=
(K − 1)NPT 2

c

4
. (2.115)
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Therefore, the SINR is

SINRI =
T 2P/2 · cos2 β

N0T/4 + (K − 1)NPT 2
c /4

=
2NTcEs cos2 β

N0NTc + (K − 1)TcEs

=
2Es cos2 β

N0 + (K−1)
N

Es
(2.116)

=
4Eb cos2 β

N0 + 2(K−1)
N

Eb
(2.117)

By approximating the MAI as Gaussian with variance (K − 1)NP/4, the approximate

I-channel average probability of bit error is

P I
e,GA = Q

(√
SINRI

)
= Q

(√
4Eb cos2 β

N0 + 2(K−1)
N

Eb

)
. (2.118)

Similarly, it can be shown that, for the Q channel, the approximate average probability

of bit error is

PQ
e,GA = Q

(√
4Eb sin2 β

N0 + 2(K−1)
N

Eb

)
. (2.119)

2.5 A Generalized Model and the Near-Far Prob-

lem

In this section, we consider a general model for the AQPSK DS-CDMA system.

The main difference from the model in the previous sections is that the users can have

different transmission power. This causes what is referred to as “the near-far problem”.

We are interested in the near-far effect on system performance.
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2.5.1 Analysis

In the general model, the in-phase and quadrature components are given by

sIk(t) = Ak cos(β)aIk(t)b
I
k(t) cos(2πfct+ θk) (2.120)

sQk (t) = Ak sin(β)aQk (t)bQk (t) sin(2πfct+ θk) (2.121)

where A1, A2, · · · , AK can be different. Without loss of generality, let user 1 be the

desired user. The correlation receiver output of the in-phase and quadrature phase

channels are

ZI
1 =

1

2
A1T

{
bI1,0 cos(β) + cos(β)

K∑

k=2

Ak
A1

IIk,1(bIk, τk, φk)

+ sin(β)
K∑

k=2

Ak
A1

IQIk,1(bQk , τk, φk)

}
+ nI1, (2.122)

ZQ
1 =

1

2
A1T

{
bQ1,0 sin(β) + cos(β)

K∑

k=2

Ak
A1

IIQk,1(bIk, τk, φk)

+ sin(β)
K∑

k=2

Ak
A1

IQk,1(bQk , τk, φk)

}
+ nQ1 . (2.123)

The average probability of error is given by

Pe =
1

2

(
P I
e + PQ

e

)
(2.124)

with

P I
e =

1

2

{
1− P

(
−1 <

2nI1
A1T cos β

+ II1 ≤ 1

)}
(2.125)

PQ
e =

1

2

{
1− P

(
−1 <

2nQ1
A1T sin β

+ IQ1 ≤ 1

)}
(2.126)
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where

II1 =
K∑

k=2

Ak
A1

[
IIIk,1(bIk, τk, φk) + tan βIQIk,1(bQk , τk, φk)

]
(2.127)

IQ1 =
K∑

k=2

Ak
A1

[
IQQk,1 (bQk , τk, φk) + cot βIIQk,1(bIk, τk, φk)

]
. (2.128)

The characteristic function of II1 is

ΦII1
(v) =

K∏

k=2

ΦIIk,1
(v) (2.129)

where

ΦIIk,1
(v) =

1

8N

N−1∑

l=0

8∑

i=1

f

(
v; l, gIk,i(l), h

I
k,i(l), α

I
i ,
Ak
A1

)
(2.130)

and

f(v; l, g(l), h(l), α, γ) =
1

2π

∫ 2π

0

sinc
{
γ

v

2πN
(cosφ(g(l + 1)− g(l))

+ α sinφ(h(l + 1)− h(l)))}

· cos
{
γ
v

2N
(cosφ(g(l + 1) + g(l))

+ α sinφ(h(l + 1) + h(l)))} dφ

(2.131)
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with

gIk,1(l) = θIIk,1, h
I
k,1(l) = θQIk,1, α

I
1 = + tan β, (2.132)

gIk,2(l) = θIIk,1, h
I
k,2(l) = θ̂QIk,1, α

I
2 = − tan β, (2.133)

gIk,3(l) = θIIk,1, h
I
k,3(l) = θ̂QIk,1, α

I
3 = + tan β, (2.134)

gIk,4(l) = θIIk,1, h
I
k,4(l) = θQIk,1, α

I
4 = − tan β, (2.135)

gIk,5(l) = θ̂IIk,1, h
I
k,5(l) = θQIk,1, α

I
5 = − tan β, (2.136)

gIk,6(l) = θ̂IIk,1, h
I
k,6(l) = θ̂QIk,1, α

I
6 = + tan β, (2.137)

gIk,7(l) = θ̂IIk,1, h
I
k,7(l) = θ̂QIk,1, α

I
7 = − tan β, (2.138)

gIk,8(l) = θ̂IIk,1, h
I
k,8(l) = θQIk,1, α

I
8 = + tan β. (2.139)

Similarly, we have

ΦIQ1
(v) =

K∏

k=2

ΦIQk,1
(v) (2.140)

where

ΦIQk,1
(v) =

1

8N

N−1∑

l=0

8∑

i=1

f

(
v; l, gQk,i(l), h

Q
k,i(l), α

Q
i ,
Ak
A1

)
(2.141)

and

gQk,1(l) = θQQk,1 , h
Q
k,1(l) = θIQk,1, α

Q
1 = − cot β, (2.142)

gQk,2(l) = θQQk,1 , h
Q
k,2(l) = θ̂IQk,1, α

Q
2 = + cot β, (2.143)

gQk,3(l) = θQQk,1 , h
Q
k,3(l) = θ̂IQk,1, α

Q
3 = − cot β, (2.144)

gQk,4(l) = θQQk,1 , h
Q
k,4(l) = θIQk,1, α

Q
4 = + cot β, (2.145)

gQk,5(l) = θ̂QQk,1 , h
Q
k,5(l) = θIQk,1, α

Q
5 = + cot β, (2.146)

gQk,6(l) = θ̂QQk,1 , h
Q
k,6(l) = θ̂IQk,1, α

Q
6 = − cot β, (2.147)

gQk,7(l) = θ̂QQk,1 , h
Q
k,7(l) = θ̂IQk,1, α

Q
7 = + cot β, (2.148)

gQk,8(l) = θ̂QQk,1 , h
Q
k,8(l) = θIQk,1, α

Q
8 = − cot β. (2.149)
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2.5.2 Numerical Examples

Here we show some numerical examples. To see the near-far effect on the error

probability, we consider the cases where there are five users in the system and the

desired users power is four times the power of the interferers, while the interferers have

the same power, that is, P1 = 4P2 = 4P3 = 4P4 = 4P5. Here the total interference

power is the same as P1. We compare it with the case when there are two users having

the same power, i.e., P1 = P2. In this case also, the total interference power is P1.

AQPSK modulation is used by all the users. The spreading codes are the AO/LSE

codes listed in Table 2.1.

Figure 2.7 shows the average probability of error for both I and Q channels with

β = π/8 and N = 127. Due to the unequal error protection for the I and Q channels by

the modulation scheme, we can see that the I channel has much lower error probability

than that of the Q channel. Figures 2.8 and 2.9 show the average error probability

for the I and Q channels for the two cases when β = π/8 and N = 127. As can be

seen, in the case with the near-far effect, the performance is better as SNR increases.

This is because even though the total interference power is the same, the effect of each

interferer on the desired user is not the same due to the different correlation relations

of the spreading codes. In this case, the interference effect is not four times that of any

one interferer since it is unlikely that all interferers spreading codes have simultaneously

large correlation with the desired user.

2.6 Conclusions

In this chapter, the exact and an approximate BER performance were derived for

a quaternary asymmetric QPSK DS-CDMA system. The variance and pdf of the MAI

were analyzed. The results showed that the AQPSK scheme can provide a significant

difference in the amount of error protection for different bits of a symbol. Therefore,
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Figure 2.7: Probability of error for asymmetric QPSK DS-SSMA ( N = 127, β = π/8).

it is advantageous to use AQPSK when designing a UEP system for its simplicity and

efficiency. We also examined the nearfar problem by generalizing the system model

to the case where users have different transmit power. The results showed that the

Q-channel (less power) is more sensitive to the nearfar effect than the I-channel is in a

multiple-access environment.
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Figure 2.8: Probability of error for asymmetric QPSK DS-SSMA I-Channel(β = π/8,
N = 127).
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CHAPTER 3

Analysis of A Multilevel Coded 8-PSK CDMA

System with UEP Capability

3.1 Introduction

Multilevel coding (MLC) is a way to provide unequal error protection for different

streams of information with different levels of importance in a communication system.

MLC is based on the concept of coded modulation, which combines coding scheme and

modulation scheme in the system design to optimize the performance. Based on the

code structure, there are two basic types of coded modulation: trellis coded modulation

(TCM) and block coded modulation (BCM). TCM was first introduced by Ungerboeck

in 1982 [22], and BCM was first introduced by Imai and Hirakawa in 1977 [11]. In this

chapter, we focus on the use of BCM. However, the design and analysis demonstrated

in this work can easily be extended to the TCM case.

Imai and Hirakawa’s work was referred to as multilevel coding (MLC). The idea is

to protect each bit in the signal point in the modulation constellation by an individual

binary code. Originally it was proposed for one-dimensional signaling combined with

labeling by binary counting of the signal levels. In general, it can be applied to any

two-dimensional modulation scheme.
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3.1.1 MLC Encoding Scheme

Consider M information streams at the output of the source encoder. Each of them

has different levels of importance. The goal is to design the channel encoder using

MLC to provide different levels of error protection to these streams of data. Two main

parts in the system design for the transmitter employing MLC are the code construction

(MLC channel encoder) and how the codewords are mapped to the signal space (symbol

mapper).

MLC Channel Encoder

The MLC encoding scheme at the transmitter is shown in Figure 3.1. Let b1, b2, . . . , bM

denote the information streams. They are sent into the multilevel/UEP channel en-

coder. The encoder output is mapped to the signal point in the modulation constellation

by the mapping rule M, and then sent through the channel.

Source
encoder

Multilevel/UEP
channel
encoder

b1

b2

bM

...
Symbol
mapper Channel

c s
r

b bc s

C S

M

M

codeword
space

2M -ary modulation
signal set

Figure 3.1: Multilevel encoding system.

We consider block coded modulation, and in this case b1, b2, . . . , bM are encoded

with binary block codes C1, C2, . . . , CM , respectively. In the MLC setup, we refer the

level corresponding to bi as the ith level. Let Ci be a (ni, ki, di) code as the component

code of the ith level for i = 1, 2, . . . ,M . For the purpose of analysis, we assume all
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the codes have the same block length n. Thus the ith code has rate Ri = ki/n, and

the overall code rate is R =
∑M

i=1Ri. The overall MLC encoding process and the code

array for M = 3 is shown in Figure 3.2.

C1(n, k1, d1)(b11, b12, . . . , b1k1) (c11, c12, . . . , c1n)

C2(n, k2, d2)(b21, b22, . . . , b2k2) (c21, c22, . . . , c2n)

C3(n, k3, d3)(b31, b32, . . . , b3k3) (c31, c32, . . . , c3n)

c11 c12 c1n

c2n

c3n

c21

c31

c22

c32

bbb bbb bbb

bbb bbb bbb

bbb bbb bbb

c̄1

c̄2

c̄3

c1 c2 cn

s1

M
s2 sn

Level 1

Level 2

Level 3

MLC code array

Figure 3.2: MLC encoder and code array (M = 3).

Each information stream is first encoded by sending ki bits (bi1, bi2, . . . , biki) into

its corresponding encoder, and the encoder output is a codeword c̄i = (ci1, ci2, . . . , cin)

of block length n. These M codewords are arranged row by row to form a M -by-n

code matrix. Then each column of the matrix cj = (c1j, c2j, . . . , cMj)
T is sent to the

symbol mapper M to generate the corresponding signal point sj in the constellation

of the modulation scheme. For example, in Figure 3.2, the three bits (c11, c21, c31)

of c1 are mapped to s1 according to the mapping rule M. The code construction is

done by appropriately choosing C1, C2, . . . , CM to make the system suitable for various

channels while achieving the desired error protection levels. In the code array generation

described above, each row of the code array is a codeword generated from one of the

component codes, and all the codewords are generated in parallel. Thus, the codewords

c̄1, c̄2, . . . , c̄M are generated independently. It might be possible to add interdependency
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among codewords by encoding them in a different way. However, in this chapter we

only consider the case that there is no interdependency among component codewords

in the code array.

Symbol Mapping by Partitioning

There are many different strategies for the design of the symbol mapperM proposed

in the literature [22][11][23][24]. The basic idea is to map the codeword to the signal

space such that the minimum Euclidean distance of the coded sequences is maximized.

In Imai and Hirakawa’s paper [11], the mapping is very simple by binary counting off

the signal levels. This is shown in Figure 3.3 for the case of 8-PSK modulation.

000

001

010

110

111101

011

100

Figure 3.3: Imai and Hirakawa’s partitioning for 8-PSK constellation.

Ungerboeck’s approach is the mapping rule called “mapping by set partitioning”

[22]. This mapping follows from successive partitioning of a signal set into subsets with

increasing minimum distances between the signals of these subsets. Thus the minimum

intra-subset Euclidean distance is maximized. This partitioning strategy is widely used

in coded modulation. An example for 8-PSK modulation is shown in Figure 3.4.

Another mapping strategy is called “block partitioning” [23][24]. By using this rule,

at each partition level, all the signal points within a subset are contained in disjoint

half planes. This results in a small number of nearest neighbors. However, unlike
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Figure 3.4: Ungerboeck’s mapping by set partitioning for 8-PSK constellation.

Ungerboeck’s partitioning, the minimum intraset distance at each level of the partition

is a constant. An example of 8-PSK modulation using blocking partitioning is shown in

Figure 3.5. Note that in the 8-PSK case, the first level (most significant bit) determines

which of the horizontal half-plane the symbol lies in, and the second levels (the second

most significant bit) determines which of the vertical half-plane the symbol lies in. This

implies that the first and second level decoders can be implemented in parallel.

By combining Ungerboeck’s partitioning and block partitioning, a strategy called

“hybrid partitioning” [23][24] was proposed. It takes advantage of both the reduction of

error coefficients, achieved by block partitioning, and the increasing minimum intraset

distance associated with Ungerboeck’s partitioning. An example for 8-PSK modulation

is shown in Figure 3.6. The first partition level is identical to block partitioning, and

the remaining levels are partitioned using Ungerboeck’s rule.
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Figure 3.5: Block partitioning for 8-PSK constellation.

3.1.2 MSD Decoding Scheme

The decoding procedure for MLC is called “multistage decoding” (MSD). In gen-

eral, for basic MLC with independent component codes, each code Ci can be decoded

individually. However, due to the coded modulation structure, codeword bits of all

levels are related in the signal space. Thus, in the MSD scheme, the decoding pro-

cess starts at the first level codewords, and the decoding at a later level has to take

into account the decoder outputs of prior decoding stages. To be specific, consider

the transmission of one code array as shown in Figure 3.2. As mentioned earlier, each

column of the code array is mapped to a symbol, then sent through the channel. Let

cj = (c1j, c2j, . . . , cMj)
T be mapped to sj and transmitted, and rj is the received symbol

for j = 1, 2, . . . , n. Let f(rj|sj) be the conditional probability density function (PDF)

of the channel output rj given the channel input sj. Also define f(rj|c1j, c2j, . . . , cij) to

be the conditional PDF of rj given that the encoder outputs from the first to the ith

level are c1j, c2j, . . . , cij, respectively, for i = 1, 2, . . . ,M . Therefore, we have

f(rj|c1j, c2j, . . . , cMj) = f(rj|sj) (3.1)
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Figure 3.6: Hybrid partitioning for 8-PSK constellation.

where f(rj|c1j, c2j, . . . , cij) can be computed as

f(rj|c1j, c2j, . . . , cij) =
1∑

c(i+1)j=0

· · ·
1∑

cMj=0

f(rj|c1j, c2j, . . . , cMj)P (c(i+1)j, . . . , cMj) (3.2)

where P (c(i+1)j, . . . , cMj) is the joint probability of c(i+1)j, . . . , cMj. Define P (c1j|rj)

to be the conditional probability of c1j given the channel output rj. Also define

P (cij|rj, c1j, . . . , c(i−1)j) to be the conditional probability of cij given rj and c1j, . . . , c(i−1)j.

Let f(rj) be the PDF of rj and P (c1j, . . . , c(i−1)j) be the joint probability of c1j, . . . , c(i−1)j,

then we have

P (c1j|rj) =
f(rj|c1j)P (c1j)

f(rj)
(3.3)

P (cij|rj, c1j, . . . , c(i−1)j) =
f(rj|c1j, . . . , cij)P (c1j, . . . , cij)

f(rj|c1j, . . . , c(i−1)j)P (c1j, . . . , c(i−1)j)
(3.4)

for i = 2, . . . ,M and j = 1, 2, . . . , n.

To estimate cij when given rj and c1j, . . . , c(i−1)j, using MAP rule, we have

P (0|rj, c1j, . . . , c(i−1)j) ≥ P (1|rj, c1j, . . . , c(i−1)j) =⇒ c̃ij = 0 (3.5)

P (0|rj, c1j, . . . , c(i−1)j) < P (1|rj, c1j, . . . , c(i−1)j) =⇒ c̃ij = 1 (3.6)
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where c̃ij is from the detection of the received symbol rj before the decoding process,

and is called the intermediate estimate for cij, which might be different from the final

estimate ĉij after decoding.

In practice, the receiver does not know c1j, . . . , c(i−1)j. However, if ĉ1j, . . . , ĉ(i−1)j

are equal to c1j, . . . , c(i−1)j with high probability, then ĉ1j, . . . , ĉ(i−1)j can be used in

the above equations to replace c1j, . . . , c(i−1)j for the estimation of cij. The decoding

process can be described as the following.

• The first step is to estimate c1j by observing rj using P (0|rj) and P (1|rj) for j =

1, 2, . . . , n. At this point c̃1j is obtained. Then after the intermediate estimates

(c̃11, c̃12, . . . , c̃1n) are obtained, they are sent into decoder D1 for error correction

and form the final estimates (ĉ11, ĉ12, . . . , ĉ1n).

• The ith step is to estimate cij using the probabilities P (0|rj, ĉ1j, . . . , ĉ(i−1)j) and

P (1|rj, ĉ1j, . . . , ĉ(i−1)j). Then the intermediate estimates (c̃i1, c̃i2, . . . , c̃in) are sent

into decoder Di and form the final estimates (ĉi1, ĉi2, . . . , ĉin). This part is applied

for i = 2, . . . ,M .

If we assume that basic MLC scheme is used, then c1j, c2j, . . . , cMj are independent,

and P (cij|rj, ĉ1j, . . . , ĉ(i−1)j) can be replaced with f(rj|ĉ1j, . . . , ĉ(i−1)j, cij), which can be

computed by

f(rj|c1j, . . . , cij) =
1

2M−i

1∑

c(i+1)j=0

· · ·
1∑

cMj=0

f(rj|c1j, . . . , cMj) (3.7)

3.1.3 Outline of the Chapter

In this chapter, we analyze the performance of a code-division multiple-access (CDMA)

system with coded modulation. MLC is used at the transmitter with asymmetric 8-

PSK modulation to achieve unequal error protection (UEP). BCH codes are used in the

encoder and multistage decoding (MSD) is used at the receiver for data recovery. The
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approximate bit error performance is obtained by approximating the multiple-access

interference (MAI) as a Gaussian random variable. The rest of the chapter is organized

as the following. In Section 3.2, we introduce the system model. In Section 3.3, we

analyze the performance of MLC with 8-PSK modulation in the single-user case. In

Section 3.4, we analyze the overall system performance by combining the analysis of

8-PSK MLC with the quaternary DS-CDMA scheme. Then this chapter is concluded

in Section 3.5.

3.2 System Model

The overall system we consider is a direct-sequence code-division multiple-access

(DS-CDMA) system where each user employs MLC coded modulation to achieve UEP

for various data streams of different priorities/quality of service (QoS) requirements.

Specifically, we consider 8-PSK modulation where three data streams are multilevel

coded at the transmitter. The receiver employs multistage decoding (MSD). This is

shown in Figure 3.7. The detail information about each component in the system is

described in the following.

3.2.1 Multilevel/UEP Channel Encoder

In the proposed system, we consider three bit streams generated from the source

encoder to the input of the multilevel/UEP channel encoder as shown in Figure 3.7. The

multilevel encoder and the code array structure is shown in Figure 3.2 as an example.

The component codes used in the system are BCH codes since given a block length,

it is possible to find BCH codes with different error correcting capability, which suits

our needs well in the design of the UEP system. The shortest BCH codes [n, k, t]

with 3 different error correcting capability are [15, 11, 1], [15, 7, 2] and [15, 5, 3] BCH

codes where n is the block length, k is the message length, and t is the error correcting
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Figure 3.7: A MLC coded modulation quaternary DS-CDMA system with MSD.

capability of the code. These three codes have rates 0.73, 0.46, and 0.33 and can correct

1, 2, and 3 errors, respectively. We use these three codes as the component codes in

the MLC scheme in the proposed system.

3.2.2 Asymmetric 8-PSK Modulation

The modulation scheme we consider in the system is asymmetric 8-PSK constellation

as shown in Figure 3.8. The asymmetry of the constellation makes the system design

flexible for the UEP purpose. The partitioning scheme (symbol mapping) considered

in this system is block partitioning. The symbol mapper M maps every three coded

bits (c
(1)
k c

(2)
k c

(3)
k ) ∈ {0, 1}3 from ck column by column to one of the 8-PSK symbols.

As can be seen in Figure 3.8, the eight symbols are distributed non-uniformly around

the circle. The values α and β denote the angles corresponding to the symbols in the

constellation. In each quadrant, there are two symbols located symmetrically about the

angle β with an angle shift of either +α or −α. For the eight symbols, there are two
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possible values for the phase of the symbol φk, β−α and β+α, which is determined by

c
(3)
k . For example, in the first quadrant, when c

(3)
k = 0, φk = β − α, and when c

(3)
k = 1,

φk = β + α.

001

000

010

011

101

100

110

111

α

β

Figure 3.8: Asymmetric 8-PSK constellation.

Symbol Mapping at the Transmitter

In general, the symbol mapper output is not the angle of the constellation point but

the in-phase and quadrature phase components of the baseband complex signal. By

examining the modulation constellation, we have the following mapping as shown in

Table 3.1.

(c
(1)
k c

(2)
k c

(3)
k ) I Q

(000) +
√

2P cos(β − α) +
√

2P sin(β − α)

(001) +
√

2P cos(β + α) +
√

2P sin(β + α)

(010) +
√

2P cos(β − α) −
√

2P sin(β − α)

(011) +
√

2P cos(β + α) −
√

2P sin(β + α)

(100) −
√

2P cos(β − α) +
√

2P sin(β − α)

(101) −
√

2P cos(β + α) +
√

2P sin(β + α)

(110) −
√

2P cos(β − α) −
√

2P sin(β − α)

(111) −
√

2P cos(β + α) −
√

2P sin(β + α)

Table 3.1: In-phase(I) and quadrature-phase(Q) components of 8-PSK modulation.
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From Table 3.1, we can write the I and Q components in the general form

I-component:
√

2P cos(φk)d
(1)
k (3.8)

Q-component:
√

2P sin(φk)d
(2)
k (3.9)

where d
(i)
k = 1− 2c

(i)
k for i = 0, 1, and φk is determined by c

(3)
k .

Symbol Detection at the Receiver

We begin by considering optimum detection in an AWGN channel. The detection

rule is equivalent to the minimum distance rule for symbol detection. However, we can

divide the process into stages for detecting individual bits. The reason is because when

combining this modulation scheme with MLC, this detection scheme can be combined

nicely with MSD.

The detection of c
(1)
k and c

(2)
k is the same as QPSK modulation since for the trans-

mitted symbol, the I-component is solely determined by c
(1)
k and the Q-component is

solely determined by c
(2)
k . This is a result of block partitioning when designing the sym-

bol mapper. Let ZI and ZQ denote the I and Q components of the receiver correlator

output for one symbol. Then the detection rule for c
(1)
k and c

(2)
k can be summarized as

c̃
(1)
k =





0, ZI ≥ 0;

1, ZI < 0,
(3.10)

and

c̃
(2)
k =





0, ZQ ≥ 0;

1, ZQ < 0.
(3.11)

The detection of c
(3)
k requires a bit more work. From the modulation scheme, the

quadrant where the symbol is located is determined by c
(1)
k and c

(2)
k . Once the quadrant

is determined, c
(3)
k determines the symbol among the two. Thus, the detection of c

(3)
k
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is based on c̃
(1)
k and c̃

(2)
k . When considering coding combined with modulation, the

detection of c
(3)
k is based on the decoder output ĉ

(1)
k and ĉ

(2)
k . Within a quadrant, c

(3)
k

can be regarded as the case of BPSK modulation with two symbols along the line

determined by the angles β + α and β − α. Since the two symbols are centered around

the angle β, we can rotate the received symbol by the angle ±β to make it center around

angle zero, and the decision is based on the Q-component as in the BPSK case. To be

specifically, the detection of c
(3)
k can be made by a decision statistic Z based on ZI and

ZQ, which is given by

Z = ZQ cos β − (−1)|ec(1)
k −ec(2)

k | · ZI sin β. (3.12)

Based on Z, the detection of c
(3)
k is summarized in Table 3.2.

(c̃
(1)
k c̃

(2)
k ) Angle of rotation Z ≥ 0 Z < 0

(00) −β c̃
(3)
k = 1 c̃

(3)
k = 0

(01) +β c̃
(3)
k = 0 c̃

(3)
k = 1

(10) +β c̃
(3)
k = 1 c̃

(3)
k = 0

(11) −β c̃
(3)
k = 0 c̃

(3)
k = 1

Table 3.2: Detection of c
(3)
k in 8-PSK modulation.

3.2.3 Multiuser Scheme

We consider a multiple-user system withK users being active simultaneously. Multiple-

access is achieved by employing quaternary DS-CDMA as shown in Figure 3.9. The

transmitted signal of the kth user is given by

sk(t) = sIk(t) + sQk (t) (3.13)
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with

sIk(t) =
√

2P cos(φk(t))a
I
k(t)d

(1)
k (t) cos(2πfct+ θk) (3.14)

sQk (t) =
√

2P sin(φk(t))a
Q
k (t)d

(2)
k (t) sin(2πfct+ θk) (3.15)

where φk(t) is the phase of the constellation point in the modulation scheme, and θk is

the phase of the kth user’s carrier.

We consider the synchronous case (τk = 0 for all k), and the received signal can be

written as

r(t) =
K∑

k=1

sk(t) + n(t) (3.16)

where n(t) is an additive white Gaussian random process with zero mean and two-sided

power spectral density N0

2
.

Consider the correlator receiver of the first user for 0 ≤ t < T . Then we can write

φk(t) as φk. Assume θ1 is known to the first user’s receiver. Therefore the in-phase and

quadrature phase components of the receiver correlator output can be written as

ZI
1 =

∫ T

0

r(t)aI1(t) cos(2πfct)dt, (3.17)

ZQ
1 =

∫ T

0

r(t)aQ1 (t) sin(2πfct)dt. (3.18)

These two terms are used for symbol detection at the receiver as mentioned earlier.

However, in a multiple-access scheme, both ZI
1 and ZQ

1 contain multiple-access interfer-

ence (MAI) from other users in the system that can degrade the system performance.

A detailed analysis on ZI
1 , ZQ

1 , and the MAI terms will be conducted in Section 3.4 in

order to evaluate the overall system performance.
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Figure 3.9: A quartenary DS-CDMA communication system.

3.3 Multilevel Coding with BCH Codes

In this section, we analyze a single-user communication system using MLC with

8-PSK modulation and MSD at the receiver. The multiple-user case will be discussed

in the next section.

3.3.1 BCH Codes

In our proposed system, we apply MLC to the asymmetric 8-PSK constellation. The

code array is shown in Figure 3.2. As mentioned earlier, with BCH codes, it is possible

to find codes of the same block length with different error correcting capability, which

suits our needs well in the design of the UEP system. We choose the shortest BCH

codes of block length n = 15 as an example in the analysis. These codes are [15, 11, 1],
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[15, 7, 2] and [15, 5, 3] BCH codes. According to [25], the bit error probability for binary

BCH codes when used in a binary symmetric channel (BSC) with crossover probability

p is upper bounded by the probability that more than t errors occur, which is given by

Pb ≤
n∑

i=t+1

i+ t

n

(
n

i

)
pi(1− p)n−i. (3.19)

This quantity includes both the cases of undetected errors and failure to decode. In the

case that the BSC is from an AWGN channel with BPSK modulation and hard decision

demodulation, p = Q
(√

2E/N0

)
where E = Eb/r is the normalized bit energy, Eb is

the uncoded bit energy, and r = k/n is the code rate. To verify the upper bound,

we simulate the three codes with BPSK modulation in the AWGN channel. In the

simulation, the decoder first detects the number of errors in the received codeword with

hard decision detection. If the number of errors is within the error correcting capability

of the code, the decoder corrects the error bits and output the corrected codeword. If

the number of errors is beyond the error correcting capability of the code, the decoder

does nothing and outputs the received codeword. The simulation results and the upper

bounds for the three codes with BPSK modulation in the AWGN channel are shown in

Figure 3.10, 3.11, and 3.12.

It can be seen that the upper bound is very close to the actual performance, and

thus it is possible to use it as an approximation. Also for the [15,11,1] BCH code, the

upper bound is equal to the actual performance. This is because the [15,11,1] BCH

code is actually a Hamming code, which is a perfect code. In this case, the decoder

corrects exactly t or fewer errors in a codeword and cannot for more than t errors in a

codeword. Thus the upper bound mentioned above becomes exact. We are interested in

the performance of the three codes since we want to achieve unequal error protection by

using them. Figure 3.13 shows the performance of the three codes for comparison. We

can see that for codes with higher error correcting capability, the performance is worse.
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Figure 3.10: Performance of [15,11,1] BCH code.

This is because for codes with high error correcting capability, the message length k

is small and the rate R is low. Thus the energy used to transmit the whole block of

coded bits is low. However, when we apply the coding scheme with asymmetric 8-PSK

constellation, the symbol energy is distributed unequally to b
(1)
k , b

(2)
k , and b

(3)
k , thus the

performance of the codes combined with modulation can still be different. Our idea is

to apply the codes with larger t to bits of more importance. Thus we will apply [15,5,3]

code to b
(1)
k , [15,7,2] code to b

(2)
k , and [15,11,1] code to b

(3)
k and see what is the overall

coded modulation performance.
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Figure 3.11: Performance of [15,7,2] BCH code.

3.3.2 Upper Bound to the BER using BCH Codes – Single-

User Case

We first examine the BCH coded MLC scheme for the single-user case in AWGN

channel. Later the multiple-user case can be extended from this case. The detection

and decoding error probability of the ith level in the MLC scheme are defined as

Pdeti = P (c
(i)
k 6= c̃

(i)
k ), (3.20)

and

Pdeci = P (b
(i)
k 6= b̂

(i)
k ), (3.21)
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Figure 3.12: Performance of [15,5,3] BCH code.

respectively, for i = 1, 2, 3. The detection error probability is defined as the error prob-

ability between encoder output and decoder input, which occurs during transmission

over the AWGN channel with hard decision detector at the receiver. The decoding error

probability is defined as the error probability between the uncoded bits at the encoder

input and the decoded bits at the decoder output. Depending on the number of errors

occur in a codeword during transmission, the decoder may or may not be able to correct

the errors, which causes decoding error. For a [n, k, t] BCH code, the decoding error

probability can be upper bounded by equation (3.19), and the simulation results show

that for BCH codes, this upper bound is very close to the actual decoding error proba-

bility, and thus can be used as an approximation to Pdeci . Therefore, for the proposed

BCH coded 8-PSK UEP system, the upper bound of the overall bit error probability
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Figure 3.13: Comparison of BCH codes performance.

for the three levels can then be approximated by

Pdeci '
n∑

j=ti+1

j + ti
n

(
n

j

)
P j
deti

(1− Pdeti)n−j. (3.22)

In order to find the upper bound (approximation), we need to obtain the detection

error probability Pdeti . For level-1 (b
(1)
k ) and level-2 (b

(2)
k ), we have [26]

Pdet1 =
1

2


Q



√

4Es cos2(β + α)

N0


+Q



√

4Es cos2(β − α)

N0




 , (3.23)

Pdet2 =
1

2


Q



√

4Es sin2(β + α)

N0


+Q



√

4Es sin2(β − α)

N0




 . (3.24)
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where Es is the symbol energy. For level-3, the derivation of Pdet3 is more complicated

than that of Pdet1 and Pdet2 because of the multistage decoding (MSD). It can be shown

that (Appendix C)

Pdet3 = Q



√

4Es sin2 α

N0


 (1− Pdec1 − Pdec2)

+
1

2


1−Q



√

4Es sin2(2β − α)

N0


+Q



√

4Es sin2(2β + α)

N0




Pdec1

+
1

2


1 +Q



√

4Es sin2(2β − α)

N0


−Q



√

4Es sin2(2β + α)

N0




Pdec2 .

(3.25)

Therefore, from (3.22), (3.23), (3.24), and (3.25), we can obtain the approximate de-

coding error probability for Pdec1 , Pdec2 , and Pdec3 . It can be observed that Pdet3 (and

thus Pdec3) depends on Pdec1 and Pdec2 , which is due to the structure of MSD. The

independence of Pdec1 and Pdec2 is because of the block partitioning. Hence, when Pdec1

and Pdec2 are very small, Pdec3 is dominated by the value of α.

3.3.3 Numerical Examples

Now we demonstrate numerical examples of applying [15,11,1], [15,7,2], and [15,5,3]

BCH codes to the asymmetric 8-PSK multilevel coding (MLC) system and observe the

bit error performance of the three levels. In the simulation, the [15,5,3] code is applied

to the first level, the [15,7,2] code is applied to the second level, and the [15,11,1] code is

applied to the third level. We consider the single user case in the AWGN channel. Figure

3.14 shows the bit error probability of the three levels when β = 45◦ with α = 10◦,

15◦, 20◦, and 25◦. The solid lines are the simulation results and the dash lines are the

upper bound (3.22) shown in the previous section. For β = 45◦, the constellation is the

same as the case proposed in [24]. As can be seen, when α increases, the third level
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bit error probability decreases. This is consistent with (3.25) that the performance is

dominated by α when Pdet1 and Pdet2 are small. It can also be observed that the change

of α does not affect Pdec1 and Pdec2 very much. As to the upper bound, we can see that

it is very close to the actual performance and can be used as an approximation when

BCH codes are applied. Figure 3.15 shows the results when β = 35◦ with α = 5◦, 10◦,

15◦, and 20◦. As can be seen, by changing β, Pdec1 and Pdec2 can be further adjusted to

differentiate the level of unequal error protection. Note that when α = 20◦ and SNR is

greater than about 13 dB, the level-2 performance is worse than the level-3 performance.

Thus in the system design, in order to have distinguishable error protection levels, it is

important to choose the right values of α and β. Figure 3.16 shows the SNR required

to achieve a bit error probability of 10−5 for the three levels for different α and β. It

can be observed that for the third level, there is an optimal value of α that requires the

least SNR to achieve a bit error probability of 10−5. However, at the optimal point,

the level-2 performance is very close to the level-3 performance and is worse than the

level-3 performance when α goes beyond the optimal point. This result is also shown

in [24]. Thus, the optimal point of α for the third level might not be the optimal point

for the overall system.

3.4 CDMA with 8-PSK Modulation

In this section, we analyze the performance of the proposed 8-PSK MLC system in

the multiple-user scenario employing DS-CDMA as the multiple-access scheme. From

the analysis in Section 3.4, the 8-PSK MLC performance for single-user case can be

evaluated using detection and decoding error probability at each level. In the multiple-

user case, there is MAI in the received signal, and the detection and decoding error

probability is different. In order to evaluate the performance, we first need to analyze

the MAI in the system.
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Figure 3.14: (a) β = 45◦, α = 10◦ (b) β = 45◦, α = 15◦
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Figure 3.14: (c) β = 45◦, α = 20◦ (d) β = 45◦, α = 25◦
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Figure 3.15: (a) β = 35◦, α = 5◦ (b) β = 35◦, α = 10◦
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Figure 3.15: (c) β = 35◦, α = 15◦ (d) β = 35◦, α = 20◦
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3.4.1 Correlator Receiver

We begin with the analysis on the correlator receiver output. Let user 1 be the user

of interest. Without loss of generality, we assume θ1 = 0. Recall in Section 3.2, the

correlator receiver output of user 1 of the quaternary DS-CDMA system is given by

ZI
1 =

∫ T

0

r(t)aI1(t) cos(2πfct)dt, (3.26)

ZQ
1 =

∫ T

0

r(t)aQ1 (t) sin(2πfct)dt. (3.27)
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If we expand (3.26), we have

ZI
1 =

∫ T

0

√
2P cos(φ1)aI1(t)d

(1)
1 (t) cos(2πfct)a

I
1(t) cos(2πfct)dt

+

∫ T

0

√
2P sin(φ1)aQ1 (t)d

(2)
1 (t) sin(2πfct)a

I
1(t) cos(2πfct)dt

+
K∑

k=2

∫ T

0

√
2P cos(φk)a

I
k(t)d

(1)
k (t) cos(2πfct+ θk)a

I
1(t) cos(2πfct)dt

+
K∑

k=2

∫ T

0

√
2P sin(φk)a

Q
k (t)d

(2)
k (t) sin(2πfct+ θk)a

I
1(t) cos(2πfct)dt

+

∫ T

0

n(t)aI1(t) cos(2πfct)dt

= A+B +
K∑

k=2

Ck +
K∑

k=2

Dk + nI1. (3.28)

For 0 ≤ t < T , we can write d
(i)
k (t) as d

(i)
k since they are constants throughout one

symbol duration. In the above expression, the output due to the desired signal is

A =
√

2P cos(φ1)d
(1)
1

∫ T

0

(aI1(t))2 cos2(2πfct)dt =
√
P/2T cos(φ1)d

(1)
1 . (3.29)

The output of the I-channel receiver due to the Q-channel signal is (assuming fcT � 1)

B =
√

2P cos(φ1)d
(2)
1

∫ T

0

aI1(t)aQ1 (t) sin(2πfct) cos(2πfct)dt = 0. (3.30)

The output of the I-channel interference is given by

Ck =

∫ T

0

√
2P cos(φk)a

I
k(t)d

(1)
k (t) cos(2πfct+ θk)a

I
1(t) cos(2πfct)a

I
1(t) cos(2πfct)dt

=
√

2P cos(φk)d
(1)
k

∫ T

0

aIk(t)a
I
1(t) cos(2πfct+ θk) cos(2πfct)dt

=
√
P/2 cos(φk)d

(1)
k cos(θk)

∫ T

0

aIk(t)a
I
1(t)dt

=
√
P/2 cos(φk)d

(1)
k cos(θk)R

II
k,1 (3.31)
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where

RII
k,1 =

∫ T

0

aIk(t)a
I
1(t)dt =

N−1∑

j=0

aIk,ja
I
1,j

∫ Tc

0

ψ2(t)dt (3.32)

and ψ(t) is the chip waveform. If we use a rectangular chip waveform, that is, ψ(t) =

pTc(t), then
∫ Tc

0
ψ2(t)dt = Tc, and RII

k,1 = Tc
∑N−1

j=0 aIk,ja
I
1,j. Similarly, the output of the

interference due to the Q-channel signal is

Dk =
√
P/2 sin(φk)d

(2)
k sin(θk)R

QI
k,1 (3.33)

where

RQI
k,1 =

∫ T

0

aQk (t)aI1(t)dt = Tc

N−1∑

j=0

aQk,ja
I
1,j (3.34)

assuming rectangular chip waveform. The noise at the receiver output is

nI1 =

∫ T

0

n(t)aI1(t) cos(2πfct)dt. (3.35)

Note that nI1 is Gaussian with zero mean and variance N0T
4

. In summary, we have

ZI
1 = T

√
P/2 cos(φ1)d

(1)
1 +

K∑

k=2

√
P/2 cos(φk)d

(1)
k cos(θk)R

II
k,1

+
K∑

k=2

√
P/2 sin(φk)d

(1)
k sin(θk)R

QI
k,1 + nI1

= T
√
P/2

{
d

(1)
1 cos(φ1) +

K∑

k=2

[
cos(φk)I

II
k,1(d

(1)
k , θk) + sin(φk)I

QI
k,1(d

(2)
k , θk)

]}
+ nI1

(3.36)

where

IIIk,1(d
(1)
k , θk) =

1

T
d

(1)
k RII

k,1 cos(θk), (3.37)

IQIk,1(d
(2)
k , θk) =

1

T
d

(2)
k RQI

k,1 sin(θk). (3.38)
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Since we only consider a single symbol transmission in the time interval [0, T ], we can

simplify the subscript for the data bits, and write ZI
1 as

ZI
1 = T

√
P/2

{
d

(1)
1 cos(φ1) +

K∑

k=2

[
cos(φk)I

II
k,1(d

(1)
k , θk) + sin(φk)I

QI
k,1(d

(2)
k , θk)

]}
+ nI1.

(3.39)

By similar arguments, we have

ZQ
1 = T

√
P/2

{
d

(2)
1 sin(φ1) +

K∑

k=2

[
cos(φk)I

IQ
k,1(d

(1)
k , θk) + sin(φk)I

QQ
k,1 (d

(2)
k , θk)

]}
+ nQ1

(3.40)

where

IIQk,1(d
(1)
k , θk) =

1

T
d

(1)
k RIQ

k,1 sin(−θk), (3.41)

IQIk,1(d
(2)
k , θk) =

1

T
d

(2)
k RQQ

k,1 cos(θk), (3.42)

and

RIQ
k,1 =

∫ T

0

aIk(t)a
Q
1 (t)dt = Tc

N−1∑

j=0

aIk,ja
Q
1,j, (3.43)

RQQ
k,1 =

∫ T

0

aQk (t)aQ1 (t)dt = Tc

N−1∑

j=0

aQk,ja
Q
1,j. (3.44)

As shown in the system model, we use hard decisions to obtain c̃
(1)
1 and c̃

(2)
1 . Thus

if ZI
1 ≥ 0, the receiver decides c̃

(1)
1 = 0, otherwise c̃

(1)
1 = 1. Similarly, if ZQ

1 ≥ 0, the

receiver decides c̃
(2)
1 = 0, otherwise c̃

(2)
1 = 1.
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3.4.2 Bit Error Probability

Let Pdet1 and Pdet2 be the detection error probability of c
(1)
1 and c

(2)
1 , respectively.

The bit error probability Pdet1 can be written as

Pdet1 =
1

2

{
P (ZI

1 < 0 | c(1)
1 = 0) + P (ZI

1 ≥ 0 | c(1)
1 = 1)

}

=
1

2

{
P
[√

P/2T (cos(φ1) + II1 ) + nI1 < 0
]

+P
[√

P/2T (− cos(φ1) + II1 ) + nI1 ≥ 0
]}

=
1

2

{
P

[
nI1√
P/2T

< − cos(φ1)− II1

]
+ P

[
nI1√
P/2T

≥ cos(φ1)− II1

]}

=
1

2

{
P

[
nI1√
P/2T

+ II1 < − cos(φ1)

]
+ P

[
nI1√
P/2T

+ II1 ≥ cos(φ1)

]}

=
1

2

{
1− P

[
− cos(φ1) ≤ nI1√

P/2T
+ II1 < − cos(φ1)

]}

= P (−1 ≤ nI + II < 1) (3.45)

where

nI =
2nI1√

P/2T cos(φ1)
, (3.46)

and

II =
K∑

k=2

cos(φk)

cos(φ1)
IIIk,1(d

(1)
k , θk) +

sin(φk)

cos(φ1)
IQIk,1(d

(2)
k , θk). (3.47)
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Let I = nI + II denote the total normalized interference plus noise, and fI(x) denote

its probability density function, then Pc1 can be written as

Pdet1 =

∫ 1

−1

fI(x)dx

= 2

∫ 1

0

fI(x)dx

= 2

∫ 1

0

(
1

2π

∫ ∞

−∞
ΦI(v)e−jvxdv

)
dx

=
2

π

∫ 1

0

∫ ∞

0

ΦI(v) cos(vx)dvdx

=
2

π

∫ ∞

0

ΦI(v)

∫ 1

0

cos(vx)dxdv

=
2

π

∫ ∞

0

ΦI(v)v−1 sin(v)dv (3.48)

where ΦI(v) is the characteristic function of I, which can be written as ΦI(v) =

ΦnI (v)ΦII (v), the product of the characteristic functions of nI and II . Since nI is

Gaussian with a known characteristic function, we need to derive ΦII in order to eval-

uate Pc1 .

Characteristic Function of II

If we expand the I-channel and Q-channel interference terms in II , we have

II =
K∑

k=2

cos(φk)

T cos(φ1)
d

(1)
k RII

k,1 cos(θk) +
sin(φk)

T cos(φ1)
d

(2)
k RQI

k,1 sin(θk). (3.49)
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The characteristic function conditioned on φ1 can be written as

ΦII |φ1(v) = E [exp (jvII)]

= E

[
exp

(
jv

T cos(φ1)

K∑

k=2

cos(φk) cos(θk)d
(1)
k RII

k,1

+ sin(φk) sin(θk)d
(2)
k RQI

k,1

)]

=
K∏

k=2

E

{
exp

[
jv

T cos(φ1)

(
cos(φk) cos(θk)d

(1)
k RII

k,1

+ sin(φk) sin(θk)d
(2)
k RQI

k,1

)]}

=
K∏

k=2

1

16π
(41 +42) . (3.50)

where

41 =
∑

d
(1)
k

∑

d
(2)
k

∫ 2π

0

exp

[
jv

T cos(φ1)

(
cos(β − α) cos(θk)d

(1)
k RII

k,1 + sin(β − α)d
(2)
k RQI

k,1

)]
dθk,

(3.51)

and

42 =
∑

d
(1)
k

∑

d
(2)
k

∫ 2π

0

exp

[
jv

T cos(φ1)

(
cos(β + α) cos(θk)d

(1)
k RII

k,1 + sin(β + α)d
(2)
k RQI

k,1

)]
dθk.

(3.52)

To further simplify 41, consider the four cases for the pair (d
(1)
k , d

(2)
k ). Then 41 can be

written as

41 =
4∑

i=1

∫ 2π

0

exp

(
jv

1

T
γi

)
dθk (3.53)
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where

γ1 =
cos(β − α)

cos(φ1)
cos(θk)R

II
k,1 +

sin(β − α)

cos(φ1)
sin(θk)R

QI
k,1, (3.54)

γ2 =
cos(β − α)

cos(φ1)
cos(θk)R

II
k,1 −

sin(β − α)

cos(φ1)
sin(θk)R

QI
k,1, (3.55)

γ3 = −cos(β − α)

cos(φ1)
cos(θk)R

II
k,1 +

sin(β − α)

cos(φ1)
sin(θk)R

QI
k,1, (3.56)

γ4 = −cos(β − α)

cos(φ1)
cos(θk)R

II
k,1 −

sin(β − α)

cos(φ1)
sin(θk)R

QI
k,1. (3.57)

As can be seen, γ1 = −γ4, and γ2 = −γ3. Therefore,

exp

(
jv

1

T
γ1

)
+ exp

(
jv

1

T
γ4

)
= 2 cos

( v
T
γ1

)
, (3.58)

exp

(
jv

1

T
γ2

)
+ exp

(
jv

1

T
γ3

)
= 2 cos

( v
T
γ2

)
, (3.59)

and we have

41 = 2

∫ 2π

0

cos
( v
T
W1

)
+ cos

( v
T
W2

)
dθk

= 2

∫ 2π

0

cos

[
v

T

(
cos(β − α)

cos(φ1)
cos(θk)R

II
k,1 +

sin(β − α)

cos(φ1)
sin(θk)R

QI
k,1

)]

+ cos

[
v

T

(
cos(β − α)

cos(φ1)
cos(θk)R

II
k,1 −

sin(β − α)

cos(φ1)
sin(θk)R

QI
k,1

)]
dθk.

(3.60)

Similarly,

42 = 2

∫ 2π

0

cos

[
v

T

(
cos(β + α)

cos(φ1)
cos(θk)R

II
k,1 +

sin(β + α)

cos(φ1)
sin(θk)R

QI
k,1

)]

+ cos

[
v

T

(
cos(β + α)

cos(φ1)
cos(θk)R

II
k,1 −

sin(β + α)

cos(φ1)
sin(θk)R

QI
k,1

)]
dθk.

(3.61)
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Therefore, the characteristic function of II condition on φ1 is given by

ΦII |φ1(v) =
K∏

k=2

1

8π

∫ 2π

0

{
cos

[
v

T

(
cos(β − α)

cos(φ1)
cos(θk)R

II
k,1 +

sin(β − α)

cos(φ1)
sin(θk)R

QI
k,1

)]

+ cos

[
v

T

(
cos(β − α)

cos(φ1)
cos(θk)R

II
k,1 −

sin(β − α)

cos(φ1)
sin(θk)R

QI
k,1

)]

+ cos

[
v

T

(
cos(β + α)

cos(φ1)
cos(θk)R

II
k,1 +

sin(β + α)

cos(φ1)
sin(θk)R

QI
k,1

)]

+ cos

[
v

T

(
cos(β + α)

cos(φ1)
cos(θk)R

II
k,1 −

sin(β + α)

cos(φ1)
sin(θk)R

QI
k,1

)]}
dθk.

(3.62)

Then, by averaging over φ1, we have

ΦII (v) =
1

2

(
ΦII |φ1=β−α(v) + ΦII |φ1=β+α(v)

)
. (3.63)

As can be seen, the expression for ΦII (v) is complicated, and it is difficult to find a

closed form solution. However, it can be computed numerically.

The error probability Pdet2 can also be computed in a similar way using the char-

acteristic function method. For the error probability Pdet3 of the third level, we can

follow similar analysis as shown in Section 3.3 utilizing the decoding error probability

Pdec1 and Pdec2 . However, we still have to analyze the effect of MAI using the charac-

teristic function analysis. As can be seen, the characteristic function method results in

complicated solutions that need to be evaluated numerically. This leads to the analysis

of approximating the MAI with Gaussian distribution.
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3.4.3 Gaussian Approximation to the MAI

Recall the correlator receiver output in equations (3.39) and (3.40). We can rewrite

them as

ZI
1 = T

√
P/2 · cosφ1 +W I

1 + nI1 (3.64)

ZQ
1 = T

√
P/2 · sinφ1 +WQ

1 + nQ1 (3.65)

where the MAI terms are represented by

W I
1 =

K∑

k=2

W I
k,1 =

K∑

k=2

√
P/2

(
cosφk · cos θk ·RII

k,1 + sinφk · sin θk ·RQI
k,1

)
(3.66)

WQ
1 =

K∑

k=2

WQ
k,1 =

K∑

k=2

√
P/2

(
sinφk · cos θk ·RQQ

k,1 − cosφk · sin θk ·RIQ
k,1

)
(3.67)

with the crosscorrelations of the signature sequences defined as in equations (3.32),

(3.34), (3.43), and (3.44). The noise terms nI1 and nQ1 are both Gaussian random

variables with zero mean and variance N0T/4. As can be seen, the MAI terms are com-

plicated, and as shown in the characteristic function analysis, the probability density

function of the MAI is also complicated. In order to simplify the analysis, we apply

Gaussian approximation to the MAI assuming the use of random signature sequences

[18].

In order to approximate the MAI as Gaussian, we need to find the variance of

the MAI. By assuming the use of random signature sequences and following similar

arguments for the QPSK case [26], it can be shown that (Appendix D) the variance of

W I
1 and WQ

1 is (K−1)NPT 2
c

4
.

Following the analysis of detection and decoding error probability of the MSD in the

single-user case, the approximated detection error probability in the first and second
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level can be written as

Pdet1 =
1

2

[
Q

(√
2Es cos2(β − α)

N0 + K−1
N
Es

)
+Q

(√
2Es cos2(β + α)

N0 + K−1
N
Es

)]
(3.68)

Pdet2 =
1

2

[
Q

(√
2Es sin2(β − α)

N0 + K−1
N
Es

)
+Q

(√
2Es sin2(β + α)

N0 + K−1
N
Es

)]
(3.69)

where Es = PT is the symbol energy. Then depending on what error correcting code

is used as the component codes, the decoding error probability Pdec1 and Pdec2 can be

obtained using Pdet1 and Pdet2 . For the third level, the approximate detection error

probability is given by

Pdet3 = Q

(√
2Es sin2 α

N0 + K−1
N
Es

)
(1− Pdec1 − Pdec2)

+
1

2

[
1−Q

(√
2Es sin2(2β − α)

N0 + K−1
N
Es

)
+Q

(√
2Es sin2(2β + α)

N0 + K−1
N
Es

)]
Pdec1

+
1

2

[
1 +Q

(√
2Es sin2(2β − α)

N0 + K−1
N
Es

)
−Q

(√
2Es sin2(2β + α)

N0 + K−1
N
Es

)]
Pdec2

(3.70)

Again, the approximate decoding error probability Pdec3 can then be obtained using

Pdet3 .

3.4.4 Numerical Examples

The average bit error probability of the overall system, denoted by Pav, is defined

as

Pav =
Pdec1 ·R1 + Pdec2 ·R2 + Pdec3 ·R3

R
(3.71)

where R1, R2, and R3 are the code rates of the component codes of the first, second, and

third level in the multilevel coding, respectively, and R = R1+R2+R3 is the overall rate.

Figure 3.17 shows the approximate average bit error probability for different number of
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users K from 1 to 5 with β = 45◦, α = 22.5◦ (symmetric 8-PSK), and N = 127 using

Gaussian approximation to the MAI and random signature sequences. The component

codes are [15,5,3], [15,7,2], and [15,11,1] BCH codes, and the decoding error probability

is approximated by the upper bound in equation (3.22). If we change β from 45◦ to 35◦,

then as shown in Figure 3.18, the overall performance gets worse than the symmetric

constellation case. This is because even though the first level bit has an improvement

in the bit error performance, it takes the least part among the three levels (R1/R) in

Pav and cannot compensate for the performance loss caused by the increment in the

second level bit error probability.
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Figure 3.17: Average bit error probability for different number of users.
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Figure 3.18: Average bit error probability for different number of users.

3.5 Conclusions

In this chapter, we consider the performance of a CDMA system with coded mod-

ulation. Multilevel coding (MLC) is used at the transmitter with asymmetric 8-PSK

modulation to achieve unequal error protection (UEP). BCH codes are used for en-

coding, and multistage decoding (MSD) is used at the receiver for data recovery. The

approximate bit error performance is obtained by approximating the multiple-access

interference (MAI) as a Gaussian random variable and assuming the use of random sig-

nature sequences for spreading. The numerical results show that the BCH code upper

bound is a good and simple approximation to the bit error performance. It also shows

that the symmetric constellation results in a better average bit error probability than

that of the asymmetric one. However, the tradeoff is the flexibility in the designing for

the UEP capability of the system, which can not be quantified.
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CHAPTER 4

Capacity of MLC with 8-PSK Modulation

4.1 Introduction

In this chapter, we analyze the capacity of the MLC scheme and compare it with

the case without MLC. From the analysis, we can find situations when substantial

performance gain can be obtained when applying MLC in the system.

4.2 Capacity Analysis

4.2.1 MPSK Capacity in AWGN Channel

Let s = {s0, s1, . . . , sM−1} be the set of symbols of a M -ary phase-shift-keying

(MPSK) modulation scheme. Consider an AWGN channel with zero mean and variance

σ2 along each dimension. According to [22], the capacity of MPSK with equiprobable

occurrence of channel input (p(Si) = 1/M ∀ i) is given by

C = log2(M)− 1

M

M−1∑

k=0

∫

w

log2

(
M−1∑

i=0

exp

(
−(sk + w − si)2 − w2

2σ2

))
dw (4.1)

and can be evaluated numerically. Figure 4.1 shows the capacity of MPSK for M=1

(BPSK), 2 (QPSK), and 3 (8-PSK).
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Figure 4.1: Channel capacity of MPSK modulation in AWGN channel.

4.2.2 Capacity of MLC

The MPSK capacity in (4.1) is a general formula for any set of MPSK signals s

(uniform or nonuniform). We are interested in evaluating the capacity of the MLC

scheme with nonuniform 8-PSK modulation. Consider the 8-PSK modulation with

block partitioning as shown in Figure 4.2.

Let X be the AWGN channel input and Y the output. Let (X1, X2, X3) be the three

bits corresponding to the symbol X. Assume all 8-PSK symbols are equiprobable. The

mutual information between X and Y is given by

I(Y ;X) = I(Y ;X1, X2, X3)

= I(Y ;X1) + I(Y ;X2|X1) + I(Y ;X3|X1, X2). (4.2)
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Figure 4.2: Nonuniform 8-PSK modulation with block partitioning.

It can be shown that (see Appendix E)

I(Y ;X1) =
1

2
g1

(√
Es · cos(β + α)

σ
,

√
Es · cos(β − α)

σ

)

+
1

2
g1

(
−
√
Es · cos(β + α)

σ
,−
√
Es · cos(β − α)

σ

)
(4.3)

I(Y ;X2|X1) =
1

2
g1

(√
Es · sin(β + α)

σ
,

√
Es · sin(β − α)

σ

)

+
1

2
g1

(
−
√
Es · sin(β + α)

σ
,−
√
Es · sin(β − α)

σ

)
(4.4)

where

g1(x, y) =
1

2
√

2π

∫ ∞

−∞

(
e−

(u−x)2

2 + e−
(u−y)2

2

)
·

log2




2
(
e−

(u−x)2

2 + e−
(u−y)2

2

)

e−
(u−x)2

2 (1 + e−2xu) + e−
(u−y)2

2 (1 + e−2yu)


 du (4.5)
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and

I(Y ;X3|X1, X2) =
1

2
g2

(√
Es · sinα
σ

)
+

1

2
g2

(
−
√
Es · sinα
σ

)
(4.6)

where

g2(x) =
1√
2π

∫ ∞

−∞
e−

(u−x)2

2 · log2

(
2

1 + e−2xu

)
du (4.7)

Figure 4.3 shows the capacity of the nonuniform 8-PSK MLC scheme when α = 22.5◦

and β = 45◦, 35◦, 25◦, and 22.5◦. The case β = 45◦ and α = 22.5◦ shown in Figure

4.3a is actually the uniform 8-PSK constellation and the result is the same as the

one shown in Figure 4.1. As can be seen, the nonuniform scheme might result in a

smaller capacity, but the capacity in individual levels might be improved compared to

the uniform scheme. Figure 4.4 shows the capacity with fixed β = 45◦ and various α

values. This is to demonstrate how level 3 (b3) capacity I(Y ;X3|X1, X2) varies with

α. It is observed that I(Y ;X3|X1, X2) is an increasing function of α, which intuitively

makes sense.

4.3 Throughput Analysis

The throughput analysis is complementary to the capacity analysis. The capacity

tells us the theoretical limit of the MLC scheme, and the throughput tells us when

various channel codes are applied to the MLC scheme, how the system performs in

terms of bits per transmission or bandwidth efficiency (bits/sec/Hz).

The throughput of the 8-PSK MLC system at each level is computed as the following.

For each level, the bit error probability of detection Pdeti is obtained in (3.23), (3.24),

and (3.25). With Pdeti , the packet error probability can be computed as

PEi =
n∑

j=ti+1

(
n

j

)
P j
ci

(1− Pci)n−j (4.8)

where ti is the error-correcting capability of the code, and n is the block length. This
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Figure 4.3: 8-PSK MLC capacity (α = 22.5◦) (a)β = 45◦ (b)β = 35◦.
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Figure 4.3: 8-PSK MLC capacity (α = 22.5◦) (c)β = 25◦ (d)β = 22.5◦.
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Figure 4.4: 8-PSK MLC capacity (β = 45◦) (a)α = 0◦ (b)α = 5◦.
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Figure 4.4: 8-PSK MLC capacity (β = 45◦) (c)α = 10◦ (d)α = 15◦.
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Figure 4.4: 8-PSK MLC capacity (β = 45◦) (e)α = 20◦ (f)α = 25◦.

93



−10 −5 0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5
Capacity versus SNR of 8PSK in AWGN channel (β=45°, α=30°)

SNR (dB)

C
ap

ac
ity

 (
bi

ts
/tr

an
sm

is
si

on
)

I(Y;X
1
)

I(Y;X
2
|X

1
)

I(Y;X
3
|X

1
,X

2
)

I(X;Y)
Shannon limit

(g)

−10 −5 0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5
Capacity versus SNR of 8PSK in AWGN channel (β=45°, α=35°)

SNR (dB)

C
ap

ac
ity

 (
bi

ts
/tr

an
sm

is
si

on
)

I(Y;X
1
)

I(Y;X
2
|X

1
)

I(Y;X
3
|X

1
,X

2
)

I(X;Y)
Shannon limit

(h)

Figure 4.4: 8-PSK MLC capacity (β = 45◦) (g)α = 30◦ (h)α = 35◦.
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Figure 4.4: 8-PSK MLC capacity (β = 45◦) (i)α = 40◦ (j)α = 45◦.
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quantity includes both the cases of undetected errors and failure to decode. The prob-

ability of successful transmission of a packet is then given by PSi = 1 − PEi , and the

throughput is given by

Si = RiPSi = Ri(1− PEi) (4.9)

where Ri is the rate of the channel code. The total throughput of the system is given

by

S = S1 + S2 + S3. (4.10)

We want to compare the throughput of the 8-PSK MLC system with the throughput

of system employing a regular coding scheme with 8-PSK modulation.

4.3.1 Throughput of 8-PSK with BCH Codes

The regular coding scheme for 8-PSK modulation with a (n, k, t) BCH code is to

group every k information bits into the encoder and the output is a block of n bits.

Then every three encoded bits are mapped to a 8-PSK symbol for transmission. The

receiver demodulates the received symbol and makes a hard decision for detecting the

three bits in the symbol. Then the demodulated bits are sent into the decoder for error

detection and correction.

For uniform 8-PSK (β = 45◦, α = 22.5◦) with Gray mapping, the exact bit error

probability of the AWGN channel can be evaluated [27]. Then from equations (4.8)

and (4.9), the throughput of each level can be computed. In the following, we plot the

throughput of the regular coding scheme with BCH codes of block length n = 15, 31,

and 63, and compare them with 8-PSK capacity and AWGN channel capacity.

Figure 4.5 shows the throughput with all possible BCH codes of length n = 15:

[15,11,1], [15,7,2], [15,5,3], and [15,1,7]. The first three codes are used in the 8-PSK

MLC system described in the previous sections. Notice that the cross-over of the

throughput of different codes suggesting that different codes should be used in different
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SNR region in order to achieve the maximum throughput.

A similar plot for BCH codes of length n = 31 is shown in Figure 4.6. With n = 31,

there are more codes for various error-correcting capabilities. Again, the crossover of

the throughput curves suggests the proper selection of codes depending on the SNR.

Figure 4.7 shows the throughput for BCH codes of length n = 63. It can be observed

that most of the throughput cross-overs happen between SNR of 5 to 12 dB.

The comparison of the maximum throughput (envelope of the throughput of various

codes) for n = 15, 31, and 63 BCH codes is shown in Figure 4.8. In the low SNR region,

short block length codes have higher throughput than codes of longer length. In the

high SNR region, the achievable rate actually depends on the code rate, in which case

codes with long block length tend to have high throughput due to more selections of

codes with higher rates.

Throughput of 8-PSK MLC with BCH Codes

The throughput of the MLC coded uniform 8-PSK scheme can be obtained in a

similar way as the regular coding scheme with different detection error probability and

the MSD decoding structure. Figure 4.9 shows the throughput of each level of the MLC

scheme with n = 15 BCH codes, and the total throughput is shown in Figure 4.10. The

comparison of the total throughput of the MLC scheme with the regular coding scheme

in shown in Figure 4.11. As can be seen, the MLC scheme outperforms the regular

coding scheme in the SNR region from about −6 dB to around 6 dB. At the rate of

0.5 bit/transmission, there is about 3.5 dB gain for the MLC scheme over the regular

coding scheme when the block length is 15.

Similar plots are shown in Figure 4.12, Figure 4.13, and Figure 4.14 when three

BCH codes of length n = 31 ([31,6,7], [31,16,3], and [31,26,1]) are chosen for the MLC

scheme. The MLC scheme outperforms the regular coding scheme from SNR of −4 dB

to abour 7.5 dB when comparing with n = 31 BCH codes, and from around −2 dB to
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Figure 4.5: Throughput of 8-PSK with n = 15 BCH codes.
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Figure 4.7: Throughput of 8-PSK with n = 63 BCH codes.
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Figure 4.8: Comparison of maximum throughput of 8-PSK with n = 15, 31, and 63
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Figure 4.9: Throughput of each level of 8-PSK MLC with BCH codes (n = 15).

4 dB when comparing with n = 15 BCH codes.

Finally, the comparison of the MLC scheme using n = 15 and n = 31 codes is shown

in Figure 4.15. Note that the total code rates of the two sets of codes are very close.

For the n = 15 codes, the total rate is (5+7+11)
15

= 1.533. For the n = 31 codes, the

total rate is (6+16+26)
31

= 1.548. As can be seen, the n = 15 codes have a higher total

throughput throughout the low SNR region up to around 12 dB, the in the high SNR

region there is very less difference. This is consistent with the results shown in Figure

4.8 in the regular coding scheme case.

Note that all the throughput plots shown are of the case of uniform 8-PSK con-

stellation. Further improvement of the total throughput may be improved by using

non-uniform constellation such that the first level (b(1)) bit error rate can be decreased
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Figure 4.10: Total throughput of of 8-PSK MLC with BCH codes (n = 15).

to increase the throughput in the low SNR region.

4.4 Conclusions

In this chapter, we analyze the capacity and throughput of the proposed MLC

system with 8-PSK modulation. Numerical results show that the MLC scheme outper-

forms the regular scheme in the low SNR region by sacrificing the throughput in the

high SNR region due to the low reliability on the low level in the MLC scheme.
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Figure 4.11: Comparison of total throughput for regular coded and MLC coded 8-PSK
with BCH codes (n = 15).
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Figure 4.13: Total throughput of of 8-PSK MLC with BCH codes (n = 31).
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CHAPTER 5

Receiver Design for Multiple-Access

Ultra-Wideband Communications

5.1 Introduction

One form of ultra-wideband (UWB) communications, originally referred to as im-

pulse radio (IR), involves the transmission of signals that are short pulses with a rela-

tively large fractional bandwidth. These UWB signals possess a bandwidth from over

500 MHz to several GHz that is larger than 25% of the center frequency. The Federal

Communications Commission (FCC) and the International Telecommunication Union

Radiocommunication Sector (ITU-R) define UWB in terms of a transmission from an

antenna for which the emitted signal bandwidth exceeds 500 MHz or 20% of the cen-

ter frequency. Like a spread spectrum (SS) system, UWB systems use pulse trains to

spread energy over the ultra-wide bandwidth. The classical way to modulate data with

such signals is to use pulse-position modulation (PPM) on the low duty-cycle pulse

trains [28]. Figure 5.1 illustrates the bandwidth comparison of UWB PPM signals and

narrowband signals.

For multiple-access communications, assigning different random time-hopping (TH)

sequences to different users can be combined with PPM [29]. This TH-PPM scheme

was originally proposed for UWB communications. A nice property of this modulation
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UWB Communication

• Ultra-wideband is a radio technology for short-
range, high-bandwidth communication.

• FCC defines UWB as bandwidth > 500 MHz, or 20% 
fraction of the center frequency.

Impulse-Radio (IR) UWB signal Narrowband signal
Frequency

Spectrum

2

Figure 5.1: UWB vs narrowband signaling.

scheme is the excellent time resolution which comes from the fact that the pulse duration

is on the order of a nanosecond. In a multipath environment, this provides the system

with resolvable paths of differential delays on the order of the pulse duration. Therefore

with appropriate signal processing, the effect of multipath can be mitigated to achieve

high system performance.

Since UWB systems have a very large bandwidth, which overlays with other dedi-

cated frequency bands for existing narrowband and wideband systems, the signals from

UWB systems would interfere with narrowband and wideband radio systems, and vice

versa. The impact of UWB system interference on narrowband systems is examined

in [30]. To insure that UWB communications will not affect the already existing nar-

rowband and wideband systems, the FCC has released strict regulations on the power

spectral density, peak power, and bandwidth for UWB communication systems. More

specifically, the FCC allocated 7.5 GHz of contiguous spectrum (3.1 - 10.6 GHz) for

UWB communication systems with a minimum 500 MHz bandwidth regulation on UWB

signals of −41.3 dBm/MHz permissible power over the entire 7.5 GHz band. This is

shown in Figure 5.2

There are two problems arising from the FCC regulations. The first is that for the

assigned spectrum, UWB systems have to be carrier-based systems in order to have the

spectrum centered within the 3.1 to 10.6 GHz frequency band. The second problem

is that under the low power level regulation, UWB systems are vulnerable to signals

from co-existing narrowband and wideband systems, and subsequently encounter serious
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Figure 5.2: UWB spectrum allocation.

problems with the narrowband and wideband interference. This makes the interference

mitigation an important issue in UWB communications. In this chapter, we focus on

the mitigation of MAI in an AWGN channel.

For these different types of interference, there are different methods proposed in the

previous research to deal with them. ISI exists due to the multipath propagation chan-

nels. Since UWB systems have a high time resolution, there are more resolvable paths

in the receiver which can be utilized for different combining schemes to achieve a better

system performance. This leads to the Rake receiver design for UWB systems. The

performance of a Rake receiver for a PPM-based single-user UWB system is examined

in [31]. For narrowband interference, an interference rejection method based on UWB

pulse shape design was proposed in [32]. An interference suppression scheme based on

the estimation of interference was proposed in [33]. There is also a linear interference

suppression method based on the traditional Rake receiver investigated in [34]. The

performance analysis of the multiple-access UWB system is examined in [29], [35], and

[36]. In [36], the system performance is evaluated using the Gaussian quadrature rules

(GQR) technique, which can overcome the problem of exactly evaluating the probabil-

ity density function (PDF) of the MAI. For the MAI, an optimum multiuser detection

(MUD) scheme is proposed in [37]. As to jamming signal interference, the system per-
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formance is evaluated for a single-tone jammer in [38]. In [39], both cases of single-tone

and multiple-tone jamming are considered in the system performance analysis.

The problem for the MAI mitigation in the current work lies in the choice of suitable

probability model. Many previous research used the Gaussian approximation (GA) to

describe the probability model of the MAI. However, as mentioned in [29] and [30],

the GA for the distribution of the MAI is not always accurate. Thus the optimum

receiver designed using this GA is actually not optimum. Analyzing a system with a

GA will likely yield pessimistic results. The advantage of the GA is that the optimum

decision rule is simple and the analysis is straightforward. But for an accurate system

performance analysis and the actual optimum receiver design, we need to know the

actual probability model of the MAI.

The optimum receiver design for UWB communication systems could be complicated

due to the required accuracy of time synchronization and various sources of interference,

and might not yield a practical receiver. Therefore, we propose a suboptimum receiver

with nonlinear interference mitigation such that the complexity can be greatly reduced

while the performance is still comparable to the optimum receiver.

The goal of the suboptimum receiver design is to reduce the complexity while pre-

serving the performance very close to the optimum receiver. A suitable approach in

the design of the suboptimum receiver for a UWB system is to use the locally optimum

Bayes detection (LOBD) theory [40][41]. This is because the UWB signals generally

have very low power, which satisfies the small signal per chip assumption in the LOBD

algorithm. By using a locally optimum detection approach in a TH-PPM UWB system,

the receiver is designed with the structure of having the conventional correlator at the

first stage followed by a nonlinear processing element, which works to mitigate the in-

terference. This function depends on the density function of the interference. However,

it is not trivial to find the PDF of the total interference.

In this chapter, we look at the case of synchronous multiple-access time-hopping
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PPM UWB communication and investigate the suboptimum nonlinear receiver per-

formance by finding the exact PDF of the interference. The rest of the chapter is

structured as follows. In Section 5.2, we consider the system model of the TH-PPM

UWB system. In Section 5.3, we derive the PDF of the MAI. The receiver design is

considered in Section 5.4. We first evaluate the linear receiver performance and check

the validity of the Gaussian approximation to the MAI. Then we design the subopti-

mum receiver using the LOBD algorithm and evaluate the performance. In Section 5.5,

we show numerical examples. We state the conclusions in Section 5.6.

5.2 System Model

Consider a multiple-access (MA) time-hopping (TH) pulse position modulation

(PPM) ultra-wideband (UWB) communication system. The transmitted signal of the

kth user is

s(k)(t) =
∞∑

j=−∞

√
Ek
Ns

p(t− jTf − c(k)
j Tc − d(k)

bj/Nscδ) (5.1)

where Tf is the time duration of one frame (or say pulse repetition time), Ek is the

energy per bit of the kth user, p(t) is the transmitted pulse waveform of unit energy,
∫ Tp

0
p2(t)dt = 1, where Tp is the duration of p(t), {c(k)

j } ∈ {0, 1, · · · , Nc − 1} is the time

hopping sequence of the kth user, Tc is the chip duration for time hopping, {d(k)
bj/Nsc} ∈

{0, 1} is the binary data of the kth user, δ is the additional time shift due to PPM, and

each data bit is transmitted in Ns consecutive slots. An example of the UWB frame

structure is shown in Figure 5.3.

In our model, we assume Tp = Tc = δ. In general, Tf has to be at least (Nc + 1)Tc.

In the analysis, we assume Tf = Ns by rewriting equation (5.1) as

s(k)(t) =
∞∑

j=−∞

√
Ek
Ns

p(t− jTf − w(k)
j Tc) (5.2)
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Figure 5.3: UWB frame structure.

where

w
(k)
j = c

(k)
j + d

(k)
bj/Nsc mod Nc. (5.3)

In a single frame, only one pulse, or say chip, is transmitted. Therefore, it takes

NsTf seconds to transmit a single data bit. The bit energy Ek is equally distributed to

each chip, thus the power of a user is not increased when Ns increases. Assume there

are total Nu users in the system. Then the received signal with just additional white

Gaussian noise is

r(t) =
Nu∑

k=1

s(k)(t− τk) + n(t)

=
Nu∑

k=1

∞∑

j=−∞

Ak p(t− jTf − c(k)
j Tc − d(k)

bj/Nscδ − τk) + n(t) (5.4)

where Ak =
√
Ek/Ns, τk is the time delay of the kth user’s signal, and n(t) is the

AWGN with zero mean and one-sided power spectral density (PSD) N0. Furthermore,

we assume τk’s are i.i.d. and uniformly distributed in [ 0, Tf ]. The conventional receiver

for the TH-PPM UWB system is the correlator receiver as shown in Figure 5.4. At the

receiver of the kth user, the received signal r(t) is correlated with the template signal

v(k)(t) = p(t)−p(t−δ) in each frame. We assume the desired user’s receiver has perfect

knowledge of the time-hopping sequence of the desired user, but not other users. For

the detection of one bit (say d
(k)
0 ), the received signal is correlated with the template
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signal of the desired user over the bit duration NsTf . That is,

r(k) =

∫ NsTf

0

r(t)

[
Ns−1∑

j=0

v(k)(t− jTf − c(k)
j Tc)

]
dt =

Ns−1∑

j=0

r
(k)
j (5.5)

where r
(k)
j is the component in the jth frame

r
(k)
j =

∫ (j+1)Tf

jTf

r(t)v(t− jTf − c(k)
j Tc)dt = s

(k)
j + I

(k)
j + n

(k)
j (5.6)

where s
(k)
j , I

(k)
j , and n

(k)
j are the correlation of s(k)(t− τk),

∑Nu
l=1,l 6=k s

(l)(t− τl), and n(t)

with the template signal in the jth frame, respectively, and can be derived from the

following equations.

s
(k)
j =

∫ (j+1)Tf

jTf

s(k)(t− τk)v(t− jTf − c(k)
j Tc)dt (5.7)

I
(k)
j =

Nu∑

l=1,l 6=k

∫ (j+1)Tf

jTf

s(l)(t− τl)v(t− jTf − c(k)
j Tc)dt (5.8)

n
(k)
j =

∫ (j+1)Tf

jTf

n(t)v(t− jTf − c(k)
j Tc)dt. (5.9)

∫
r(t) rj

v(t)

cjTc δ

0

1

r(t)

p(t− jTf − cjTc)

p(t− jTf − cjTc − δ)

∫

∫
rj

+

−

Figure 5.4: Conventional correlator receiver.

At the kth user’s receiver, in order to decide if d
(k)
q is “0” or “1”, we need to observe
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r
(k)
j for j = qNs, qNs + 1, · · · , qNs +Ns − 1. That is, the decision is based on

{
r

(k)
j

}qNs+Ns−1

j=qNs
.

In order to find the decision rule for d
(k)
q , we need to know the characteristics of r

(k)
j .

First note that since n(t) is AWGN with zero mean and one-sided PSD N0, n
(k)
j is a

Gaussian random variable with zero mean and variance N0

2

[
2− 2

∫ Tf
0
p(t)p(t− δ)dt

]
.

To derive s
(k)
j and I

(k)
j , notice that they depend on {τk}Nuk=1, as well as on the

transmitted data of the users. Without loss of generality, we consider the receiver

for the first user (k = 1). We want to make a decision on d
(1)
0 (q = 0) by observing

{r(1)
0 , r

(1)
1 , · · · , r(1)

Ns−1}. We assume τ1 = 0 and consider the relative delay between user

1 and other users. We also assume perfect knowledge of the channel at the receiver.

Now the problem becomes to characterize the following:

r
(1)
j = s

(1)
j + I

(1)
j + n

(1)
j

for j = 0, 1, · · · , Ns − 1. By the above assumption,

s
(1)
j = A1

[
Rp

(
d

(1)
bj/Nscδ

)
−Rp

(
(1− d(1)

bj/Nsc) δ
)]

(5.10)

where we define Rp(τ) =
∫ Tf

0
p(t)p(t−τ)dt as the autocorrelation of the pulse waveform

p(t). There are many ways to choose the value of δ. Here we simply choose δ = Tp so

that the PPM pulses maintain orthogonality, i.e. Rp(δ) =
∫ Tf

0
p(t)p(t−δ)dt = 0. In this

case, Rp

(
d

(1)
bj/Nscδ

)
− Rp

(
(1− d(1)

bj/Nsc) δ
)

is either 1 (d
(1)
bj/Nsc = 0) or −1 (d

(1)
bj/Nsc = 1).

Thus, we have

s
(1)
j =





A1, d
(1)
bj/Nsc = 0

−A1, d
(1)
bj/Nsc = 1.

(5.11)

Note that in this case, the variance of n
(k)
j can be simplified as Var[n

(k)
j ] = N0, and
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therefore n
(k)
j is Gaussian with zero mean and variance N0. In the next section, we will

characterize the interference term I
(1)
j .

5.3 Synchronous Multiple Access UWB Communi-

cations

In this section we consider the synchronous multiple-access (MA) TH-PPM UWB

system, i.e., τ1 = τ2 = · · · = τNu = 0, and derive the probability distribution of the

interference. By assuming that all users are independent, the interference from all other

users to user 1 over the Ns frames {I(1)
k }Nuk=2 are independent and identically distributed

(i.i.d.), and thus we only need to consider the interference from a specific user k.

In order to simplify the analysis for the distribution of the MAI, we need to make

a further assumption, or equivalently, we look at a special case of this system. Assume

that Tf = NcTc and Tp = Tc = δ. Also assume that the pulse waveform is rectangular.

That is

p(t) =





1√
Tp
, 0 ≤ t ≤ Tp

0, otherwise.

(5.12)

Furthermore, in order to make the pulse waveform uniformly distributed within one

frame duration, we define

w
(k)
j = c

(k)
j + d

(k)
bj/Nsc mod Nc (5.13)

In this case, the transmitted signal of the user becomes

s(k)(t) =
∞∑

j=−∞

√
Ek
Ns

p(t− jTf − w(k)
j Tc) (5.14)

Here we use the rectangular pulse shape so that we can have a closed form solution
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of the interference PDF. The analysis shown here can be extended to other different

kind of pulses, such as a Gaussian monocycle.

Consider the communication during the time from 0 to NsTf , which is the time to

transmit a single bit. This time interval corresponds to the data bit d
(k)
0 of the kth user.

Since we only consider a single bit transmission, we eliminate the subscript 0 and simply

use d(k) to represent the data bit. For a given data bit d(k) of the kth user being trans-

mitted, there are Ns frames. The interference from these Ns frames I
(1)
0,k , I

(1)
1,k , · · · , I

(1)
Ns−1,k

are assumed to be identically distributed, but they are not independent since they all

contain the information of the same data bit d(k) being transmitted by the kth user.

However, they are conditionally independent when conditioned on d(k). In later analy-

sis, we will show that the identical distribution assumption of the interference terms is

not necessary.

We first consider the case when d(k) = 0. In this case, the total shift of the pulse in

the Ns frames of the kth user {w(k)
j }Ns−1

j=0 equals the time-hopping sequence of the kth

user {c(k)
j }Ns−1

j=0 . Therefore {w(k)
j }Ns−1

j=0 are uniformly distributed over [0, Nc − 1]. The

time shift of the template signal of user 1 is simply the time-hopping sequence of user

1, {c(1)
j }Ns−1

j=0 . Let Xj be the random variable of the time shift difference between user

1 and user k. That is, define

Xj = w
(k)
j − c(1)

j = c
(k)
j − c(1)

j . (5.15)

Note that c
(k)
j ’s are independent due to the randomness of the time hopping sequence.

Thus, Xj is a discrete random variable ranging from −(Nc − 1) to Nc − 1 with the

probability distribution

P (Xj = x) =





Nc−|x|
N2
c
, x = −(Nc − 1), · · · , Nc − 1

0, otherwise.
(5.16)
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Given that d(k) = 0, the pulses of the kth user will overlap with the template pulse of

user 1 only when Xj is either 0 or 1. Therefore, the conditional density function is then

given by

f
I

(1)
j,k |d(k)(x|0) =

1

Nc

δ(x− Ak) +
Nc − 1

N2
c

δ(x+ Ak) +

(
Nc − 1

Nc

)2

δ(x). (5.17)

Now define the total interference of user k to user 1 during the Ns frames as I
(1)
k =

∑Ns−1
j=0 I

(1)
j,k . Given d(k) = 0, I

(1)
j,k ’s are independent. Thus the characteristic function

(CF) of I
(1)
k is the product of the CF’s of I

(1)
j,k ’s, i.e.

Φ
I

(1)
k |d(k)(v) =

Ns−1∏

j=0

Φ
I

(1)
j,k |d(k)(v) =

[
Φ
I

(1)
0,k|d(k)(v)

]Ns
(5.18)

where the last equality comes from the fact that I
(1)
j,k ’s are identically distributed, there-

fore having the same CF. The CF of I
(1)
0,k given d(k) = 0 can be computed as

Φ
I

(1)
0,k|d(k)=0

(v) =
1

Nc

ejvAk +
Nc − 1

N2
c

e−jvAk +

(
Nc − 1

Nc

)2

. (5.19)

Thus, the CF of I
(1)
k given d(k) = 0 is

Φ
I

(1)
k |d(k)=0

(v) =
1

NNs
c

Ns∑

l=0

Ns−l∑

m=0

(
Ns

l,m

)
(Nc − 1)q

NNs−l
c

ejvAk(l−m) (5.20)

where q = 2Ns − 2l −m, and the conditional PDF of I
(1)
k is given by

f
I

(1)
k |d(k)(x|0) =

1

2π

∫ ∞

−∞
e−jvxΦ

I
(1)
k |d(k)=0

(v)dv. (5.21)

Similarly, when d(k) = 1, the conditional density function of I
(1)
j,k is given by

f
I

(1)
j,k |d(k)(x|1) =

Nc − 1

N2
c

δ(x− Ak) +
1

Nc

δ(x+ Ak) +

(
Nc − 1

Nc

)2

δ(x). (5.22)
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Then the CF of I
(1)
0,k given d(k) = 1 can be written as

Φ
I

(1)
0,k|d(k)=1

(v) =
Nc − 1

N2
c

ejvAk +
1

Nc

e−jvAk +

(
Nc − 1

Nc

)2

, (5.23)

and the CF of the total interference over the Ns frames is given by

Φ
I

(1)
k |d(k)=1

(v) =
1

NNs
c

Ns∑

l=0

Ns−l∑

m=0

(
Ns

l,m

)
(Nc − 1)q

NNs−m
c

ejvAk(l−m) (5.24)

where q = 2Ns − l − 2m, and then the conditional PDF of I
(1)
k can be computed.

Assume that P (d(k) = 0) = P (d(k) = 1) = 1
2
. Then the PDF of I

(1)
k is given by

f
I

(1)
k

(x) =
1

2
f
I

(1)
k |d(k)(x|0) +

1

2
f
I

(1)
k |d(k)(x|1) (5.25)

and the CF of I
(1)
k is given by

Φ
I

(1)
k

(v) =
1

2

(
Φ
I

(1)
k |d(k)=0

(v) + Φ
I

(1)
k |d(k)=1

(v)
)
. (5.26)

For the total interference I(1) =
∑Nu

k=2 I
(1)
k from the Nu − 1 users to user 1, we can

compute its PDF by convolving the PDF of I
(1)
k ’s

fI(1)(x) = f
I

(1)
2

(x) ∗ f
I

(1)
3

(x) ∗ · · · ∗ f
I

(1)
Nu

(x). (5.27)

The CF of I(1) is given by

ΦI(1)(v) =
Nu∏

k=2

Φ
I

(1)
k

(v). (5.28)

5.4 Receiver Design for UWB Communications

From the previous section, we have obtained the probability distribution of the MAI

in the synchronous MA-TH-PPM UWB system. The next question is how to design
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the receiver based on the MAI distribution to have the optimum system performance.

In this section, we design the receiver for the synchronous system with the MAI in

the AWGN channel. We first examine the optimum receiver. Then we design the

suboptimum receiver with less complexity and asymptotically approach the performance

of the optimum receiver.

5.4.1 Optimum Detection with MAI

Recall that to detect the desired user’s data bit (d
(1)
0 ), the conventional linear receiver

computes the correlation of r(t) with the template signal within a single frame. From

equation (5.6), we have

r
(1)
j = s

(1)
j + I

(1)
j + n

(1)
j = s

(1)
j + Z

(1)
j (5.29)

and makes the decision by checking if r(1) =
∑Ns−1

j=0 is greater or less than the threshold

0. Generally the optimal receiver is not linear since the interference component I
(1)
j is

not Gaussian. Note that I
(1)
j =

∑Nu
k=2 I

(1)
j,k , and the PDF and CF of I

(1)
j,k were derived in

the previous section. Therefore, the CF of I
(1)
j is given by

Φ
I

(1)
j

(v) =
Nu∏

k=2

[(
2Nc − 1

N2
c

)
cos(vAk) +

(
Nc − 1

Nc

)2
]
. (5.30)

The CF of Z
(1)
j is

Φ
Z

(1)
j

(v) = Φ
I

(1)
j

(v)Φ
n

(1)
j

(v)

=
Nu∏

k=2

[(
2Nc − 1

N2
c

)
cos(vAk) +

(
Nc − 1

Nc

)2
]
e−

N0
2
v2

(5.31)

and then the PDF of Z
(1)
j can be computed from the characteristic function.

121



Now in order to derive the optimum receiver in this case, consider the binary hy-

pothesis 



H0 : r(1) = s
(1)
0 + Z(1),

H1 : r(1) = s
(1)
1 + Z(1).

(5.32)

where Z(1) = [Z
(1)
0 , Z

(1)
1 , . . . , Z

(1)
Ns−1]. Here the underline on the signal denotes the vector

consists of correlator outputs of the signal indexed from 0 to Ns − 1. For example,

r(1) = [r
(1)
0 , r

(1)
1 , · · · , r(1)

Ns−1]. Then the optimal decision rule based on observing r(1) is

given by

Λ(r(1)) =
P (r(1)|H0)

P (r(1)|H1)
=
fZ(1)(r(1) − s(1)

0 )

fZ(1)(r(1) − s(1)
1 )

H0

≷
H1

1. (5.33)

To further simplify the above equation to obtain the final decision statistic, we need

to derive the PDF of Z(1). Even though we already know the PDF of Z
(1)
j , it is not

straightforward to obtain the PDF of Z(1) from it. Even knowing the PDF of Z(1), it

would still be very complicated to implement the optimum decision rule. This leads us

to the consideration of suboptimum receiver design for the system with MAI. The goal

here is to design a suboptimum receiver with simple decision rule and performance that

asymptotically approaches the performance of the optimum receiver (as the signal-to-

noise ratio becomes small or as Nc becomes large).

5.4.2 Suboptimum Design with the Linear Receiver

As mentioned earlier, Gaussian approximation to the MAI is not accurate. In order

to see that the Gaussian approximation is inappropriate, we first want to know the

system performance in the case when the Gaussian approximation is used. Then, we

compare the Gaussian approximation case with the case when the actual MAI distri-

bution is taken into account in the system performance evaluation.
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Performance of the Linear Receiver

Recall that the correlator receiver output of user 1

r
(1)
j = s

(1)
j +

Nu∑

k=2

I
(1)
j,k + n

(1)
j . (5.34)

If we collect the correlator output over Ns frames (j = 0, 1, · · · , Ns − 1), according to

equation (5.5), we have

r(1) =
Ns−1∑

j=0

r
(1)
j = s(1) +

Nu∑

k=2

I
(1)
k + n(1) (5.35)

where s(1) =
∑Ns−1

j=0 s
(1)
j ∈ {±NsA1}, I(1)

k =
∑Ns−1

j=0 I
(1)
j,k , and n(1) =

∑Ns−1
j=0 n

(1)
j ∼

N(0, NsN0). In the previous section, we derived the PDF and CF of I
(1)
k . By the

assumption that all the users are independent, the CF of I(1) =
∑Nu

k=2 I
(1)
k is the product

of the CF’s of I
(1)
k ’s. Let Z(1) =

∑Ns−1
j=0 Z

(1)
j = I(1) + n(1), then the CF of Z(1) is the

product of the CF’s of I(1) and n(1), and the PDF of Z(1) is given by

fZ(1)(x) =
1

2Nuπ

∫ ∞

−∞
e−jvx

Nu∏

k=2

gk(v)e−
NsN0

2
v2

dv (5.36)

where

gk(v) =

[
ejvAk

Nc

+
Nc − 1

N2
c

e−jvAk +

(
Nc − 1

Nc

)2
]Ns

+

[
Nc − 1

N2
c

ejvAk +
e−jvAk

Nc

+

(
Nc − 1

Nc

)2
]Ns

.

(5.37)

Now we have

r(1) = s(1) + Z(1) (5.38)
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and the PDF of Z(1) is given above. This is a typical binary hypothesis problem. Note

that Z(1) has zero mean and the PDF is symmetric about 0. Therefore under the

assumption that P (d
(1)
0 = 0) = P (d

(1)
0 = 1) = 1

2
, the BER is given by

Pe =
1

2

[
P (r(1) < 0|d(1)

0 = 0) + P (r(1) > 0|d(1)
0 = 1)

]

= P (r(1) < 0|d(1)
0 = 0)

=

∫ 0

−∞
fr(1)(x)dx

=

∫ −NsA1

−∞
fZ(1)(x)dx

=
1

2Nu−1

1

2π

∫ −NsA1

−∞

∫ ∞

−∞

e−jvx
Nu∏

k=2





[
1

Nc

ejvA2 +

(
1

Nc

− 1

N2
c

)
e−jvA2 +

(
Nc − 1

Nc

)2
]Ns

+

[(
1

Nc

− 1

N2
c

)
ejvAk +

1

Nc

e−jvAk +

(
Nc − 1

Nc

)2
]Ns
 e−

NsN0
2

v2

dvdx

(5.39)

With simplification, we have

Pe =
1

2Nuπ

∫ −NsA1

−∞

∫ ∞

−∞
e−jvx

Nu∏

k=2

gk(v)e−
NsN0

2
v2

dvdx (5.40)

which can be evaluated numerically.

Gaussian Approximation to the MAI

Now we look at the case if we evaluate the system performance by approximating the

MAI as Gaussian. The variance of the interference Var[I] can be computed numerically

from the interference PDF. The variance of the AWGN over Ns frames is Var[n] =
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Ns ·N0. Then the variance of the total interference plus Var[I + n] is given by

Var[I + n] = Var[I] +Ns ·N0. (5.41)

The actual signal-to-inteference plus noise ratio (SINR) can then be computed and the

approximated BER performance under the Gaussian approximation is given by

Pe ≈ Pe,GA = Q
(√

SINR
)
. (5.42)

When the number of users is large, the total interference is approximately Gaussian

distributed by the central limit theorem (CLT), and the Gaussian linear receiver is

approximately optimum. However, when the number of user is small, say 2 or 3, the

CLT does not apply, and the Gaussian linear receiver is not optimum. Thus, we need

to find other ways to design the suboptimum receiver which gives the approximate

optimality.

5.4.3 Locally Optimum Bayes Detector

The basic idea of the LOBD algorithm is to approximate the interference PDF using

the Taylor series expansion. As it is shown earlier, the optimum decision requires the

computation of the total interference plus noise PDF f
Z

(1)
j

(x). However, since this PDF

is a complicated function, the implementation complexity is high. Therefore, if we can

find a good approximation to this PDF, we can reduced the receiver complexity. This

can be done by first expanding the PDF into Taylor series, and then eliminating the

higher order terms. For this to be a good approximation, the interference should be

much stronger than the desired user’s signal. This is called the small signal assumption.
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For i = 0, 1, the Taylor series expansion of f
Z

(1)
j

(x) is given by

fZ(1)(r(1) − s(1)
i ) = fZ(1)(r(1))−

Ns−1∑

j=0

∂fZ(1)(r(1))

∂r
(1)
j

s
(1)
i,j

+
1

2

Ns−1∑

j=0

Ns−1∑

l=0

∂2fZ(1)(r(1))

∂r
(1)
j ∂r

(1)
l

s
(1)
i,j s

(1)
i,l + · · · .

(5.43)

Now under the small signal assumption, s
(1)
i,j ’s are small, thus the higher order terms

(order ≥ 2) should be small, and we have the approximation

fZ(1)(r(1) − s(1)
i ) ' fZ(1)(r(1))−

Ns−1∑

j=0

∂fZ(1)(r(1))

∂r
(1)
j

s
(1)
i,j (5.44)

where s
(1)
0,j = A1 and s

(1)
1,j = −A1. The suboptimum decision rule is then given by

Λ(r(1)) ' r∗ =
fZ(1)(r(1))− A1

∑Ns−1
j=0

∂f
Z(1) (r(1))

∂r
(1)
j

fZ(1)(r(1)) + A1

∑Ns−1
j=0

∂f
Z(1) (r(1))

∂r
(1)
j

H0

≷
H1

1. (5.45)

Note that Z
(1)
j ’s are identically distributed. If we define

h(x) = − d

dx
ln f

Z
(1)
j

(x), (5.46)
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we can rewrite equation (5.45) and substitute h(x) into it, and we have

r∗ =

f
Z(1) (r(1))

f
Z(1) (r(1))

− A1

∑Ns−1
j=0

∂f
Z(1) (r(1))

∂r
(1)
j

/fZ(1)(r(1))

f
Z(1) (r(1))

f
Z(1) (r(1))

+ A1

∑Ns−1
j=0

∂f
Z(1) (r(1))

∂r
(1)
j

/fZ(1)(r(1))

=
1− A1

∑Ns−1
j=0 − d

dx
ln f

Z
(1)
j

(x)

1 + A1

∑Ns−1
j=0 − d

dx
ln f

Z
(1)
j

(x)

=
1 + A1

∑Ns−1
j=0 h(r

(1)
j )

1− A1

∑Ns−1
j=0 h(r

(1)
j )

H0

≷
H1

1, (5.47)

and it can be further simplified to

Ns−1∑

j=0

h(r
(1)
j )

H0

≷
H1

0. (5.48)

Thus, by using the LOBD algorithm and under the small signal assumption, the decision

rule can be greatly simplified to a threshold detection rule, similar to the Gaussian

linear receiver. For different systems, the key point is to find the function h(x) =

− d
dx

ln f
Z

(1)
j

(x). Obviously to derive the function h(x) we need to know the distribution

of the interference, which is the difficult part when implementing the suboptimum

receiver.

5.4.4 LOBD Receiver for UWB Communications

As mentioned above, to design the suboptimum receiver using the LOBD algorithm

for the UWB system, first we need to find the total interference plus noise PDF of a

single chip. That is, for r
(1)
j = s

(1)
j +Z

(1)
j , where Z

(1)
j = I

(1)
j +n

(1)
j , we need to know the

PDF of Z
(1)
j . From (5.30) and (5.31), it is given by

f
Z

(1)
j

(x) =
1

2π

∫ ∞

−∞
e−jvx

{
Nu∏

k=2

fk(v)e−
N0
2
v2

}
dv (5.49)
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where

fk(v) =

(
2Nc − 1

N2
c

)
cos(vAk) +

(
Nc − 1

Nc

)2

. (5.50)

The derivative of f
Z

(1)
j

(x) is

f ′
Z

(1)
j

(x) =
1

2π

∫ ∞

−∞
−jve−jvx

{
Nu∏

k=2

fk(v)e−
N0
2
v2

}
dv (5.51)

and the function h(x) is

h(x) =

∫∞
−∞ jve

−jvx
{∏Nu

k=2 fk(v)e−
N0
2
v2
}
dv

∫∞
−∞ e

−jvx
{∏Nu

k=2 fk(v)e−
N0
2
v2
}
dv

. (5.52)

As can be seen, it is not easy to further simplify the above equation. However, we can

always compute it numerically. In general, the function h(x) is a nonlinear function.

Thus, the suboptimum receiver obtained in this way is also called a nonlinear receiver

in comparison to the Gaussian linear receiver. In the next subsection, we take a look

at a special case when there are only two users in the system (Nu = 2). In this case,

we can find a closed form expression for h(x).

5.4.5 Special Case: 2-User Synchronous UWB Communica-

tions

Here we look at the special case when there are only two users (Nu = 2) in the

system. In this case, Z
(1)
j =

∑Nu
k=2 I

(1)
j,k + n

(1)
j = I

(1)
j,2 + n

(1)
j has the PDF

f
Z

(1)
j

(x) =
1

2π

∫ ∞

−∞
e−jvxf2(v)e−

N0
2
v2

dv. (5.53)
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However, it is not easy to further simplify the PDF from this form. Another way to

compute the PDF is by convolving the PDF of I
(1)
j = I

(1)
j,2 and n

(1)
j . Then we have

f
Z

(1)
j

(x) =
1√

2πN0

[(
2Nc − 1

2N2
c

)
h1(x) +

(
Nc − 1

Nc

)2

e
− x2

2N0

]
(5.54)

where

h1(x) = e
− (x−A2)2

2N0 + e
− (x+A2)2

2N0 . (5.55)

By taking the derivative of f
Z

(1)
j

(x), we can obtain the following nonlinear function

h(x) =

(
2Nc−1

2N2
c

)
h2(x) +

(
Nc−1
Nc

)2 (
x
N0

)
e
− x2

2N0

(
2Nc−1

2N2
c

)
h1(x) +

(
Nc−1
Nc

)2

e
− x2

2N0

(5.56)

where

h2(x) =
(x− A2)

N0

e
− (x−A2)2

2N0 +
(x+ A2)

N0

e
− (x+A2)2

2N0 . (5.57)

Some plots of the density function and h(x) for different parameters are shown in

Figure 5.5 and 5.6. From these plots, we can see that the nonlinear function actually

“suppress” the interference by the nonlinear mapping, especially at amplitudes where

the “peak” happens in the interference PDF. Later it will becomes clear that this

interference mitigation is the key to improve the system performance compared to the

linear receiver performance.

5.4.6 Performance Analysis

In this section, we assume P (H0) = P (H1) = 1
2
. Let y

(1)
j = h(r

(1)
j ) for j =

0, 1, · · · , Ns − 1. The BER of this receiver is given by

Pe = P

(
Ns−1∑

j=0

y
(1)
j < 0

∣∣∣H0

)
. (5.58)
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Figure 5.5: h(x) for 2-user case.

To find the exact Pe, we need to find the probability distribution of
∑Ns−1

j=0 y
(1)
j under

H0. However, this is not easy since h(x) is quite complicated. A way to approximately

evaluate Pe is to apply the CLT. Assume r
(1)
j ’s are i.i.d under H0. Then y

(1)
j ’s are i.i.d

under H0 since they are functions of r
(1)
j ’s. By the CLT for large Ns, we have

Ns−1∑

j=0





y
(1)
j − E

[
y

(1)
j

∣∣H0

]

√
NsVar

(
y

(1)
j

∣∣H0

)




−→ N(0, 1). (5.59)
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Figure 5.6: h(x) for 2-user case.

Therefore, for large Ns,

P

(
Ns−1∑

j=0

y
(1)
j < 0

∣∣∣H0

)
−→ Φ


−

NsE
[
y

(1)
j

∣∣H0

]

√
NsVar

(
y

(1)
j

∣∣H0

)


 . (5.60)
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It can be shown that that mean of y
(1)
j conditioned on H0 is given by

E
[
y

(1)
j

∣∣H0

]
=

∫ ∞

−∞
y

(1)
j f(y

(1)
j )dy

(1)
j

'
∫ ∞

−∞
h(r

(1)
j )

[
f
Z

(1)
j

(
r

(1)
j

)
− A1f

′
Z

(1)
j

(
r

(1)
j

)]
dr

(1)
j

=

∫ ∞

−∞

f ′
Z

(1)
j

(
r

(1)
j

)

f
Z

(1)
j

(
r

(1)
j

)A1f
′
Z

(1)
j

(
r

(1)
j

)
dr

(1)
j

= A1

∫ ∞

−∞



f ′
Z

(1)
j

(
r

(1)
j

)

f
Z

(1)
j

(
r

(1)
j

)




2

f
Z

(1)
j

(
r

(1)
j

)
dr

(1)
j

= A1

∫ ∞

−∞
h2
(
r

(1)
j

)
f
Z

(1)
j

(
r

(1)
j

)
dr

(1)
j

= A1L (5.61)

where

L =

∫ ∞

−∞
h2(x)f

Z
(1)
j

(x)dx (5.62)

Similarly, we have

E

[(
y

(1)
j

)2 ∣∣∣H0

]
=

∫ ∞

−∞
h2
(
r

(1)
j

)[
f
Z

(1)
j

(
r

(1)
j

)
− A1f

′
Z

(1)
j

(
r

(1)
j

)]
dr

(1)
j

=

∫ ∞

−∞
h2
(
r

(1)
j

)
f
Z

(1)
j

(
r

(1)
j

)
dr

(1)
j

= L (5.63)

Therefore, the variance of y
(1)
j conditioned on H0 is given by

Var
(
y

(1)
j

∣∣H0

)
= L− A2

1L
2. (5.64)

Then we have the approximate error probability

Pe ' Q

(
NsA1L√

Ns(L− A2
1L

2)

)
= Q

(√
E1

L′ − E1

Ns

)
(5.65)
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where L′ = 1/L can be evaluated numerically. The quantity L represents the inter-

ference energy captured by the suboptimum receiver after passing the received signal

through the nonlinear function. Intuitively, with strong interference, L is large, and

thus L′ is small. Therefore, the argument of the Q function becomes large, and thus

Pe becomes small. For this approximate Pe to be valid, we need L′ > E1

Ns
. Therefore,

we need E1 to be small, which is the same as the small signal assumption in the LOBD

algorithm.

5.5 Numerical Example

In this section, we look at a special case when there are only two synchronized users

in the system (Nu = 2). This is an extreme case that the interference is far from the

Gaussian distribution. Let user 1 be the desired user and user 2 is the interfering user.

The bit energy of the two users are E1 and E2, respectively. Note that A1 =
√
E1/Ns

and A2 =
√
E2/Ns where Ns is the number of repetitions for transmitting one bit. We

will examine the performance of both the linear and nonlinear receivers.

5.5.1 Linear Receiver

Figure 5.7 shows the exact BER performance for the synchronous case of the linear

receiver for different Ns with E1 = E2. It is obtained by evaluating equation (5.40)

numerically. We can see that by increasing Ns, there is very limited performance

improvement when Ns is large, and there is a gap from the baseline AWGN performance.

Figure 5.8 shows the BER of the linear receiver for different interference energy E2 as

Ns changes. The SNR in this case is E1

N0
= 10 dB. As can be seen, when Ns increases

from 1 to 50, the BER improvement is not in proportion to the the increment of Ns.

Therefore, for the linear receiver, we can not improve the BER a great deal by increasing

Ns.

133



0 1 2 3 4 5 6 7 8 9 10
10

−4

10
−3

10
−2

10
−1

10
0

Theo. Linear Rx BER (N
c
=2, E

2
=E

1
)

E
1
/N

0
 (dB)

P
e

N
s
 = 1

N
s
 = 10

N
s
 = 20

N
s
 = 30

N
s
 = 40

N
s
 = 50

AWGN

Figure 5.7: Pe vs. SNR for different Ns.

5.5.2 Gaussian Approximation

The comparison between the actual performance with a linear receiver and the one

using Gaussian approximation is shown in Figure 5.8. It shows that by using Gaussian

approximation, most of the time we would over estimate the system performance. With

the interference plus noise variance, we can compare the PDF of the total interference

using Gaussian approximation with the actual PDF. Some examples are shown in Figure

5.10.

The Gaussian linear receiver is simply a threshold receiver, which gives a very low

complexity. However, from the numerical results, we can see that the linear receiver

does not perform well with the MAI in the system.
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5.5.3 LOBD Nonlinear Receiver

The performance of the suboptimum nonlinear receiver for different Ns in the 2-user

case is shown in Figure 5.11. We can see that the performance approaches the baseline

AWGN performance when E2 is large. This is consistent with the small signal assump-

tion. Note that this is totally opposite to the linear receiver case: the performance gets

worse as E2 gets larger. The performance of the suboptimum nonlinear receiver com-

pared to the linear receiver is shown in Figure 5.12 for the extreme case when Ns = 1.

We can see that the nonlinear receiver outperforms the linear receiver, and is able to

achieve the baseline AWGN performance when interference is strong. This is consistent

with the small signal assumption required in the derivation of the nonlinear receiver.
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Figure 5.9: Interference PDF and Gaussian approximation.
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Figure 5.10: Interference PDF and Gaussian approximation.
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Figure 5.11: Suboptimum nonlinear receiver: 2-user case (Nc = 2, Ns = 2).
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Figure 5.12: Linear v.s. nonlinear receiver: 2-user case (Nc = 2, Ns = 1).

5.6 Conclusions

In this chapter, we considered suboptimum receiver designs for UWB communica-

tions. The suboptimum linear receiver does not perform well with the MAI in the

system even when the interference is not strong and Ns is large. The suboptimum

nonlinear receiver designed according to the LOBD algorithm performs well and ap-

proaches the optimum performance when the interference is strong. The nonlinear

receiver structure is simply a threshold receiver as the linear receiver, except with the

extra complexity of mapping the received signal with a nonlinear function.
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CHAPTER 6

Performance of UWB in Jamming

6.1 Introduction

In a military or commercial communication system, intentional or unintentional

jamming interference can cause serious problems. Jammers emit noise-like interference

to disrupt the communication link and degrade the performance. It is not easy to design

a receiver that operates well in the presence of jammers, and it is necessary for a receiver

to have the ability to suppress interference in such a hostile environment. Since ultra-

wideband (UWB) communications co-exists with many narrowband systems, jamming

interference is a crucial issue. Some of the analysis of the impact of jamming interference

on UWB communications can found in [39][38][42][43][44].

The optimum receiver design for UWB communication systems in the presence of

jamming is complicated. Suboptimum receivers with low complexity that can per-

form nearly as well as the optimum receiver are desirable. One of the methods to

design suboptimum receivers is by using the locally optimum Bayes detection (LOBD)

algorithm[41][40][45]. The idea is to pass the received signal samples through a nonlin-

ear function designed according to the LOBD algorithm before the detection process.

The nonlinear function can suppress the interference in the received signal and hence

enhance the performance of the receiver. This technique is used in a direct sequence

spread spectrum (DS-SS) system in [46] for the case of continuous wave and Gaussian
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noise jamming in the system. An important assumption for the LOBD algorithm to

work well is the small signal assumption, which says that the desired signal should

be much smaller than the interfering signal. This is likely to be the case for UWB

communications. In [47], the LOBD algorithm is applied to a multiple-access UWB

system for multiple-access interference (MAI) suppression. In this chapter, we apply it

to an UWB system with pulsed Gaussian noise jamming, and compare the performance

of this suboptimum receiver with the performance of the optimum receiver and the

suboptimum linear receiver designed according to the Gaussian approximation to the

interference.

This chapter is organized as the follows. In Section 6.2, the system and signaling

model are described. For the proposed system, different types of receiver designs are

discussed in Section 6.3. In Section 6.4, we analyze the performance of different receivers

introduced in the previous section. Numerical examples and simulation results are

shown in Section 6.5. Finally, conclusions are presented in Section 6.6.

6.2 System Model

In this section, we consider an impulse radio (IR) based ultra-wideband (UWB)

communication system using time-hopping (TH) pulse-position modulation (PPM).

We consider the single-user case, an additive white Gaussian noise (AWGN) channel

coexisting with jamming signals in the system. The user’s signal s(t) is given by

s(t) =
∞∑

k=−∞

√
Eb
Ns

p(t− kTf − ckTc − dbk/Nscδ) (6.1)

where p(t) is the UWB pulse with unit energy and time duration Tp, Tf is the frame

duration or pulse repetition time, {ck} is the time hopping sequence known to both

transmitter and receiver, Tc is the chip duration, d ∈ {0, 1} is the binary data being

transmitted, Ns is the repetition code length, and δ is the PPM modulation index. The
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received signal is represented as

r(t) = s(t) + j(t) + n(t) (6.2)

where j(t) is the jamming signal, and n(t) is the Gaussian process with zero mean and

one-sided power spectral density (PSD) N0.

6.2.1 Jamming Signal Model

We consider pulsed Gaussian noise jamming in our system model. Assume the

jammer is synchronized with the communication system at the chip level. That is,

for any chip duration, the jamming signal j(t) is either on with probability ρ or off

with probability 1 − ρ. Let J be the average power of the jammer. Assume the

wideband Gaussian noise jammer spreads its power evenly over the total frequency

range of the spread bandwidth. That is, WJ = W where W is the spread bandwidth

of the signal. The equivalent single-sided PSD of the Gaussian noise jammer signal

j(t) is then NJ = J
WJ

. According to the assumptions, when the jammer is on, j(t) is

a continuous-time Gaussian random process with bandwidth WJ and single-sided PSD

NJ/ρ.

6.2.2 Correlator Receiver

The receiver correlates the received signal with the template signal

v(t) =
1√
Ns

[p(t− kTf − ckTc)− p(t− kTf − ckTc − δ)] (6.3)

and generates rk = r0k−r1k, where r0k and r1k are the correlator outputs corresponding

to the two PPM chip durations (0 and 1), respectively. Assume the receiver is synchro-

nized to the transmitter. Consider one frame of the signal starting at time 0. Then we
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have

r(t) =

√
Eb
Ns

p(t− c0Tc − d0δ) + j(t) + n(t) (6.4)

for 0 ≤ t ≤ Tf . The correlator output is

r0 =

∫ Tf

0

r(t)v(t)dt = s0 + j0 + n0 = s0 + z0 (6.5)

where z0 = j0 +n0 is the total interference plus noise. Since there are only two possible

chip durations containing the desired signal in binary PPM, the integration from 0 to

Tf is equivalent to integration from c0Tc to (c0 + 2)Tc assuming δ = Tp = Tc. The

desired signal part s0 in r0 is given by

s0 =

∫ (c0+2)Tc

c0Tc

√
Eb
Ns

p(t− c0Tc − d0δ)v(t)dt = (1− 2d0)

√
Eb
Ns

(6.6)

The noise part n0 in r0 is Gaussian with zero mean and variance N0/Ns. In any chip

duration, if the jammer is on, the correlator output due to the jammer is Gaussian

distributed with zero mean and variance NJ
2ρNs

. Within any frame duration Tf , the

receiver correlates two consecutive chip durations depending on the time hopping offset.

For the jammer, there are four different states during these two chip durations: (on,on),

(on,off), (off,on), (off,off) with probabilities ρ2, ρ(1−ρ), ρ(1−ρ), (1−ρ)2, respectively.

For the (off,off) state in which the jammer is off during these two chip durations, j0 = 0.

For the states (on,on), (on,off), and (off,on), the variance of j0 is NJ
ρNs

, NJ
2ρNs

, and NJ
2ρNs

,

respectively. Therefore, the probability density function (PDF) of j0 is given by

fj0(x) =
ρ2

√
2π NJ

ρNs

e
− x2

2NJ
ρNs +

2ρ(1− ρ)√
π NJ
ρNs

e
− x2

NJ
ρNs + (1− ρ)2δ(x). (6.7)
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Based on the assumption of the jammer, the PDF of the total interference plus noise

z0 is then given by

fz0(x) =
ρ2

√
2π
(
N0

Ns
+ NJ

ρNs

) e
− x2

2(N0
Ns

+
NJ
ρNs ) +

2ρ(1− ρ)√
2π
(
N0

Ns
+ NJ

2ρNs

) e
− x2

2(N0
Ns

+
NJ

2ρNs ) +
(1− ρ)2

√
2πN0

Ns

e
− x2

2
N0
Ns .

(6.8)

6.3 Receiver Design

In this section, we examine different designs of the receiver for the communication

system described in the previous section. We first design the optimum receiver to

give us an idea of the best possible performance of such a system. Then we design

suboptimum receivers with less complexity compared to the optimum receiver. The

performance analysis of these receivers will be discussed in the next section.

6.3.1 Optimum Receiver

The design of the optimum receiver is based on the maximum-likelihood decision

rule. The optimum receiver employs a maximum-likelihood diversity combining scheme

to process the correlator outputs from different frame durations. The idea is that the

correlator outputs that are corrupted by the interference are less reliable than those that

are interference free. Therefore when they are combined to form a decision statistic,

they should be weighted differently. The optimum receiver computes the weights for

each frame output and compares the weighted sum with an optimum threshold to make

the decision.

The receiver correlator outputs are {rik} where i = 0, 1 and k = 0, 1, · · · , Ns−1. The

subscript i indicates the output from the two binary PPM chip durations corresponding

to 0 and 1 being transmitted, respectively. The subscript k indicates the frame in which

the correlator outputs are generated. During the bit duration from time 0 to Tf , the
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correlator receiver generates the following outputs:

r =



r00 r01 · · · r0Ns−1

r10 r11 · · · r1Ns−1


 . (6.9)

Depending on the chip being jammed or not, we can find the conditional PDF of rik.

The conditional PDF of rik conditioned on the ith symbol being sent in the kth frame

with the jammer off is given by

P off
ik (x) =

1√
πN0

Ns

exp




−

(
x−

√
Eb
Ns

)2

N0

Ns




. (6.10)

The conditional PDF of rik conditioned on the ith symbol being sent in the kth frame

with the jammer on is given by

P on
ik (x) =

1√
π
(
N0

Ns
+ NJ

ρNs

) exp




−

(
x−

√
Eb
Ns

)2

N0

Ns
+ NJ

ρNs




. (6.11)

The conditional PDF of rik conditioned on the ith symbol not being sent in the kth

frame with the jammer off is given by

Qoff
ik (x) =

1√
πN0

Ns

exp

{
− x

2

N0

Ns

}
. (6.12)

The conditional PDF of rik conditioned on the ith symbol not being sent in the kth

frame with the jammer on is given by

Qon
ik (x) =

1√
π
(
N0

Ns
+ NJ

ρNs

) exp

{
− x2

N0

Ns
+ NJ

ρNs

}
. (6.13)

Let J0 be the set of frames in {r0k} with interference on, and J1 be the set of frames
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in {r1k} with interference on. Let |J0| and |J1| denote the cardinality of J0 and J1,

respectively. The joint PDF of r conditioned on 0 being sent is given by

f(r|0, J0, J1) =

(∏

k∈J0

P on
0k (r0k)

)(∏

k/∈J0

P off
0k (r0k)

)

(∏

k∈J1

Qon
1k(r1k)

)(∏

k/∈J1

Qoff
1k(r1k)

)
,

(6.14)

and the joint PDF of r conditioned on 1 being sent is given by

f(r|1, J0, J1) =

(∏

k∈J1

P on
1k (r1k)

)(∏

k/∈J1

P off
1k (r1k)

)

(∏

k∈J0

Qon
0k(r0k)

)(∏

k/∈J0

Qoff
0k(r0k)

)
.

(6.15)

Assume that 0 and 1 are equally likely being sent. Then the maximum-likelihood

decision rule is given by

f(r|0, J0, J1)

f(r|1, J0, J1)

H0

≷
H1

1. (6.16)

This rule can be further simplified to

r∗ = N0

[∑

k∈J0

r0k −
∑

k∈J1

r1k

]

+

(
N0 +

NJ

ρ

)[∑

k/∈J0

r0k −
∑

k/∈J1

r1k

]

H0

≷
H1

(|J1| − |J0|)
√
EbNJ

2ρNs

. (6.17)

Note that in the above equation, it requires the knowledge of J0, J1, N0, NJ , and ρ to

make the decision. It can be observed that the optimum receiver is a linear receiver
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comparing the weighted sum of the correlator outputs with a threshold. The correlator

outputs with and without interference are weighted differently. The frames without

interference are weighted more than the frames with interference. This is reasonable

since information from frames being jammed by the interference is less reliable than

those that are not jammed.

6.3.2 Suboptimum Receiver

As can be seen, the optimum receiver is complicated in practice since it requires the

knowledge of the channel and interference. Therefore, we seek suboptimum receivers

that are feasible with limited knowledge about the channel and interference. A common

way to design a suboptimum receiver is to model or approximate the interference as

Gaussian distributed. However, depending on the type of interference, a Gaussian ap-

proximation may not always be accurate. In that case, substantial improvement can be

made by considering a more accurate probability distribution of the interference. In the

following we consider two suboptimum receiver designs. The suboptimum linear receiver

is derived by employing a Gaussian approximation. Then we derive the suboptimum

nonlinear receiver by using the actual probability distribution of the interference.

Linear Receiver

From (6.8), it can be seen that the probability distribution of the total interference

plus noise is not Gaussian. By approximating the interference distribution as Gaussian,

it is equivalent to the case of a single user in an AWGN channel without interference.

In this case, the receiver is the simple threshold detector as shown in Figure 6.1. The

suboptimum linear receiver collects and sums up the correlator outputs, and compare

the sum with the threshold 0. This is given by

r∗ =
Ns−1∑

k=0

rk
H0

≷
H1

0. (6.18)
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This receiver structure is simple and easy to implement. However, due to the inaccuracy

of Gaussian approximation, the performance can be poor, leaving the possibility for

substantial improvement.

r(t) d̂Σ ≷ 0CMF

Figure 6.1: Suboptimum linear receiver.

Nonlinear Receiver

To further improve the suboptimum linear receiver, the accurate probability dis-

tribution of the interference has to be taken into consideration. However, by using

the actual PDF in (6.8) and the maximum-likelihood detection, the decision rule is

quite complicated. As mentioned in [47], under the small signal assumption, the LOBD

algorithm can be applied, and the decision rule can be simplified to the structure as

shown in Figure 6.2. The receiver structure is similar to the suboptimum linear receiver

except that the correlator outputs are passed through a nonlinear function before the

summation. According to the LOBD algorithm [41][40][45], the nonlinear function can

be computed by

h(x) = −f
′
z0

(x)

fz0(x)
(6.19)

where fz0(x) is given by (6.8) and the derivative of fz0(x) can be easily computed as

f
′

z0
(x) =

ρ2

√
2π
(
N0

Ns
+ NJ

ρ

) e
− x2

2(N0
Ns

+
NJ
ρ )

(
− x

N0

Ns
+ NJ

ρ

)

+
2ρ(1− ρ)√

2π
(
N0

Ns
+ NJ

2ρ

) e
− x2

2(N0
Ns

+
NJ
2ρ )

(
− x

N0

Ns
+ NJ

2ρ

)

+
(1− ρ)2

√
2πN0

Ns

e
− x2

2
N0
Ns

(
− x

N0

Ns

)
. (6.20)
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Let yk = h(rk) denote the nonlinear function output. Then the decision rule is given

by

r∗ =
Ns−1∑

k=0

yk =
Ns−1∑

k=0

h(rk)
H0

≷
H1

0. (6.21)

An example of the nonlinear function is shown in Figure 6.3 for Eb = 1, Eb/N0 = 5

r(t) d̂Σ ≷ 0CMF

Figure 6.2: Suboptimum nonlinear receiver.

dB, Eb/NJ = −10 dB, ρ = 0.3, and Ns = 10. It can be observed that the plot can be
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Figure 6.3: LOBD nonlinear function h(x).

divided into two regions: the linear region close to the origin passing through (0,0), and

the nonlinear (semi-linear) region. The linear region corresponds to the AWGN, and the
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nonlinear region corresponds to the interference. Under the small signal assumption, if

the interference is small, the AWGN dominates and the function operates in the linear

region. With strong interference, the function operates in the nonlinear region and

the interference is suppressed. As the interference gets weaker, the nonlinear region

becomes less nonlinear. In the extreme case, the system is interference-free, and the

nonlinear function becomes linear. Also note that the AWGN cannot be suppressed by

the LOBD receiver.

6.4 Performance Analysis

In this section we analyze the performance of the optimum and suboptimum re-

ceivers described in the previous section.

6.4.1 Optimum Receiver

Now we investigate the performance of the optimum receiver in terms of the bit

error probability. The decision rule of the optimum receiver derived earlier in (6.17)

can be rearranged and written as

R0 −R1

H0

≷
H1

(|J1| − |J0|)
√
EbNJ

2ρNs

(6.22)

where

R0 = N0

∑

k∈J0

r0k +

(
N0 +

NJ

ρ

)∑

k/∈J0

r0k (6.23)

and

R1 = N0

∑

k∈J1

r1k +

(
N0 +

NJ

ρ

)∑

k/∈J1

r1k. (6.24)

Without loss of generality, assume data bit 0 is sent. Conditioned on 0 being sent,

each term in the above expression is Gaussian distributed and all terms are independent.
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Then the mean (µRi) and variance (σ2
Ri

) of R0 and R1 can be computed as

µR0 =

√
Eb
Ns

[
|J0|N0 + (Ns − |J0|)

(
N0 +

NJ

ρ

)]
(6.25)

σ2
R0

= a|J0|+ b(Ns − |J0|) (6.26)

µR1 = 0 (6.27)

σ2
R1

= a|J1|+ b(Ns − |J1|) (6.28)

where a =
N2

0

2

(
N0

Ns
+ NJ

ρNs

)
and b = N0

2Ns

(
N0 + NJ

ρ

)2

. Therefore, the decision statistic

R = R0 −R1 is Gaussian with mean (µR) and variance (σ2
R) given by

µR =

√
Eb
Ns

[
|J0|N0 + (Ns − |J0|)

(
N0 +

NJ

ρ

)]
(6.29)

σ2
R = a(|J0|+ |J1|) + b(2Ns − |J0| − |J1|). (6.30)

A bit error occurs when R is less than the threshold

t(J0, J1) =
(|J1| − |J0|)

√
EbNJ

2ρNs

. (6.31)

Thus, given (J0, J1), the bit error probability can be computed as

Pb(J0, J1) =

∫ t

−∞

1√
2πσ2

R

exp

(
−(x− µR)2

2σ2
R

)
dx = Q

(
µR − t
σR

)
(6.32)

where Q(·) is defined as Q(x) =
∫∞
x

1√
2π

exp
(
−x2

2

)
dx. The average bit error probability

by averaging Pb(J0, J1) over (J0, J1) and is given by

Pb =
∑

|J0|

∑

|J1|

[(
Ns

|J0|

)(
Ns

|J1|

)
ρ(|J0|+|J1|) · (1− ρ)(2Ns−|J0|−|J1|)Q

(
µR − t
σR

)]
. (6.33)

Notice that this result can be easily computed.
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6.4.2 Suboptimum Linear Receiver

For the linear receiver, during one bit duration, the receiver combines 2Ns chip

correlator outputs to make the decision. Assume k out of these 2Ns chips are jammed.

Then the variance of the total interference plus noise is given by N0 + kNJ
2ρNs

, and the

conditional bit error probability is given by Q

(√
Eb

N0+
kNJ
2ρNs

)
. The average probability

of bit error can then be derived by averaging the above expression over all possible

values of k and is given by

Pb =
2Ns∑

k=0

(
2Ns

k

)
ρk(1− ρ)2Ns−kQ

(√
Eb

N0 + kNJ
2ρNs

)
. (6.34)

6.4.3 Suboptimum Nonlinear Receiver

According to the decision rule obtained in (6.21), the bit error probability of the

nonlinear receiver can be computed as

Pb =
1

2
Pr(r∗ < 0|H0) +

1

2
Pr(r∗ > 0|H1) = Pr(r∗ < 0|H0), (6.35)

and the second equality is due to the assumption that 0 and 1 are equally likely to

be transmitted. In order to compute the above probability, we need to know the

probability distribution of r∗, and equivalently, the distribution of yk = h(rk). The

conditional mean of yk can be computed in a similar way as in equation (5.61), and is

given by [40]

E [yk|H0] =

∫ ∞

−∞
ykf(yk)dyk

∼=
∫ ∞

−∞
h(rk)

[
fZ0(rk)−

√
Eb
Ns

f
′

Z0
(rk)

]
drk

=

√
Eb
Ns

L (6.36)
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where

L =

∫ ∞

−∞
h2(x)fZ0(x)dx. (6.37)

Similarly to equation (5.63), we have

E
[
y2
k|H0

]
= L, (6.38)

and the conditional variance of yk is given by

Var [yk|H0] = L− Eb
N2
s

L2. (6.39)

Therefore, the conditional mean and variance of rk can be represented as

E [rk|H0] = E

[
Ns−1∑

k=0

y2
k|H0

]
=
√
EbL (6.40)

Var [rk|H0] =
Ns−1∑

k=0

Var [yk|H0] = NsL−
Eb
Ns

L2. (6.41)

In the ideal case, the interference is suppressed after passing the correlator outputs

through the nonlinear function. Thus, the nonlinear function output is interference

free and the same as the single-user AWGN channel case. In practice, the interference

suppression is not perfect and there is still residual interference in the nonlinear function

output. If Ns is considerably large, the output can be approximated as a Gaussian

random variable. The error probability can then be approximated by

Pb ' Q

(√
EbL2

NsL− Eb
Ns
L

)
= Q

(√
Eb

Ns
L
− Eb

Ns

)
. (6.42)

Note that in this expression, L depends on the PDF of the interference and has to be

evaluated numerically.
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6.5 Numerical Examples

In this section we present numerical examples of the performance of the different

receivers mentioned in the previous sections.

6.5.1 Optimum Receiver

Figure 6.4 shows the performance of the optimum receiver for Ns = 1, 2, · · · , 10 with

signal-to-interference ratio (SIR) Eb/NJ = −10 dB and jamming fractional probability

ρ = 0.3. It can be observed that when Ns increases, the performance gets closer to

the single-user AWGN channel case. However, there is a limitation of improvement

by increasing Ns. For the bit error probability (BER) of 10−5 and Ns = 10, there is

still a 2 dB performance gap to the single-user AWGN case. In Figure 6.5, the SNR

is fixed at Eb/N0 = 15 dB, and the BER is shown versus the SIR. The substantial

BER improvement by increasing Ns can be seen clearly in the low SIR region. The

BER versus jamming fraction is shown in Figure 6.6. It can be seen that ρ has a larger

impact on large value of Ns than small value. However, in full-band jamming (ρ = 1),

the performance is almost the same for any value of Ns.

6.5.2 Suboptimum Linear Receiver

For the suboptimum linear receiver, the BER performance versus SIR for ρ = 0.1

and 0.3 is shown in Figure 6.7. First note the crossover of the plots for Ns = 1 to

10 in both figures. The crossover divides the plots into two regions. In the high SIR

region, the BER decreases as Ns increases. However, in the low SIR region, increasing

Ns degrades the system performance. This is because when the signal to interference

plus noise ratio is small, a coded system can perform worse than the uncoded system.

Also note that the smaller jamming fraction has a higher impact on the performance

difference among different values of Ns.
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Figure 6.4: Performance of the optimum receiver.

6.5.3 Suboptimum Nonlinear Receiver

Figure 6.8 shows simulation results of the BER performance of the suboptimum

nonlinear receiver versus the SNR for the SIR at −10 dB and ρ = 0.3. Notice that as

the SNR increases, at some point, the BER bounces back and increases. Eventually

when SNR is large enough (say 30 dB), increasing Ns degrades the performance. There

are two main reasons for this phenomenon. First, within the Ns chips, not all of the

are jammed. However, those non-jammed chips are still passed through the nonlinear

function. For the non-jammed chips, the nonlinear function is not optimum since only

AWGN is presented. The other reason is that when SNR is large, for the non-jammed

chips, the small signal assumption does not hold, and the LOBD algorithm can not be

applied to enhance performance. This can be seen in Figure 6.9. In this figure, for high
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Figure 6.5: Performance of the optimum receiver.

SNR (say 25 dB), the linear region of the nonlinear function actually lies within the

desired signal’s amplitude. To demonstrate the ideas, if we pass the non-jammed chips

through the function matched to the AWGN distribution (which is linear) instead of

the original nonlinear function, the BER does not bounce back as SNR increases. This

is shown in the dotted lines in Figure 6.10. Figure 6.11 shows the performance of the

nonlinear receiver against the jamming fraction ρ. Note that for small ρ region, a large

value of Ns can have a substantial performance improvement.

6.5.4 Comparison

Figure 6.12 shows the comparison of the performance of the optimum receiver and

the suboptimum receivers for SIR = −10 dB, Ns = 10, and ρ = 0.3. It can be seen
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Figure 6.6: Performance of the optimum receiver.

that the nonlinear receiver outperforms the linear receiver in the low SNR region from

0 dB to about 17 dB. From 17 dB to 26 dB, the performance gap narrows down. This

is because of the effect of the non-jammed chips. For the BER at 10−2, there is still a

performance gap a bit more than 5 dB between the nonlinear receiver and the optimum

receiver. A more sophisticated coding scheme than the repetition code might be able

to narrow the gap.

6.6 Conclusions

In this chapter, we designed and analyzed receivers for the ultra-wideband commu-

nication system in the presence of jamming interference. We compared the optimum
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Figure 6.7: Performance of the suboptimum linear receiver.

receiver with two feasible suboptimum receivers. The suboptimum nonlinear receiver

outperforms the linear one, especially when the interference is severe. Numerical re-

sults show the effectiveness of the repetition coding scheme in different conditions. The

good thing about the suboptimum nonlinear receiver is that it has a simple threshold

detector structure. The complexity comes in finding the probability distribution of the

interference.

158



0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

P
ro

ba
bi

lit
y 

of
 b

it 
er

ro
r

E
b
/N

J
 = −10 dB, ρ = 0.3

N
s
 = 1

N
s
 = 10

Figure 6.8: Performance of the suboptimum nonlinear receiver.

159



−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−40

−30

−20

−10

0

10

20

30

40

E
b
 = 1, N

s
 = 10, SIR = −10 dB, ρ = 0.3

x

h(
x)

SNR = 0 dB

SNR = 5 dB

SNR = 10 dB

SNR = 15 dB

SNR = 20 dB

SNR = 25 dB

SNR = 30 dB

Figure 6.9: Nonlinear LOBD function of different SNR.

160



0 5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

P
ro

ba
bi

lit
y 

of
 b

it 
er

ro
r

N
s
 = 10, E

b
/N

J
 = −10 dB

ρ = 0.1

ρ = 0.3

ρ = 0.7

AWGN

Figure 6.10: Performance of the suboptimum nonlinear receiver.

161



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

ρ

P
ro

ba
bi

lit
y 

of
 b

it 
er

ro
r

E
b
/N

0
 = 15 dB, E

b
/N

J
 = −10 dB

Ns = 1
Ns = 2
Ns = 10
Ns = 100

Figure 6.11: Performance of the suboptimum nonlinear receiver.
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CHAPTER 7

Adaptive Receiver for UWB Communications

7.1 Introduction

The nonlinear receiver design based on the LOBD algorithm in Chapters 5 and

6 requires the knowledge of the PDF of the interference. In the previous chapters,

we demonstrated that in theory the receiver design can suppress interference with the

knowledge of the interference PDF. In practice, the interference PDF is unknown to the

receiver and needs to be estimated. For practical purpose, it is also necessary for the

receiver to keep tracking the PDF of the interference due to the time-varying nature

of the communication link. Therefore, for implementation, it requires the receiver to

estimate the PDF or the nonlinear signal processing function in real-time in order to

successfully suppress interference. The adaptive receiver structure for an impulse radio

based UWB system is shown in Figure 7.1. The receiver keeps taking interference

samples and updating the nonlinear function in order to ensure the suppression of the

interference.

There are many ways to estimate the PDF of a random signal. In general, the PDF

of a random signal can be estimated using parametric or nonparametric estimators.

Parametric estimation assumes the density to be some known parametric distribution.

By identifying the characteristics of the signal, an estimate of the parameters of that

distribution is made. This type of estimator can generate poor estimates if the dis-
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• When the channel is time-varying, it is almost impossible to 
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• The system must estimate the interference PDF and update 
the nonlinear function on the fly.
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Figure 7.1: Adaptive LOBD receiver.

tribution of the signal is unknown a priori, or if the signal distribution is not of the

form of the assumed distribution. Nonparametric estimation, on the other hand, does

not make any assumption about the distribution of the signal. An intuitive nonpara-

metric way to estimate the density function is to use the histogram of the signal. The

histogram of a set of samples of a random signal is a plot showing the proportion of

samples falling into adjacent, non-overlapping intervals called bins. The intervals are

generally of the same size (bin width). The histogram representation of the PDF runs

into difficulties when the signal is changing dynamically, and can not guarantee an effi-

cient description of the distribution [48]. Another problem of the histogram estimation

is that it is sensitive to the choice of bin width. Without careful selection of the bin

width, important information may be lost in the histogram representation. A general

form of nonparametric density estimation is kernel density estimation (KDE). The idea

is to extrapolate the set of samples of the signal to the entire range of the distribution.

To be specific, let x1, x2, . . . , xn be a set of i.i.d. samples of a random signal, then the

kernel density approximation of its probability density function is given by [49]

f̂(x) =
1

nh

n∑

i=1

K

(
x− xi
h

)
(7.1)

where K(·) is some kernel function and h is a smoothing parameter called the bandwidth.

Quite often K(·) is taken to be a standard Gaussian function with zero mean and
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unit variance. Thus the variance is controlled indirectly through the parameter h.

A histogram can be regarded as a collection of point samples from a kernel density

estimate for which the kernel is a uniform box the width of the histogram bin. As can

be seen from equation (7.1), the computation of the PDF requires the summation of

the kernel function evaluated over the set of samples. With a large size of samples, this

computation can take quite some time and this does not suit the needs of a real-time

estimator for the LOBD receiver.

In [48], cumulative distribution function (CDF) and quantiles are used for interfer-

ence PDF estimation, and combined with the LOBD algorithm for interference suppres-

sion. It is then applied in [46] in a direct-sequence spread-spectrum (DS-SS) system

with turbo coding for the continuous wave and Gaussian jamming interference cases.

The nice thing about using quantiles for PDF estimation is that it does not change

radically with the dynamic change of the signal. Quantile representation is also less

likely to cause the loss of important information with equal-bin-width histogram counts.

When combining quantile representation with LOBD algorithm, the computation of the

nonlinear function output can be very simple, and makes it suitable for the real-time

estimation purpose.

For IR-based UWB systems, interference PDF estimation might be done by collect-

ing interference samples during the non-PPM chip duration as shown in Figure 7.2 and

then form and update the CDF. Typically, the frame time or pulse repetition time may

be a hundred to a thousand times of the monocycle width, therefore a sufficient number

of interference samples can be obtained between two UWB pulses. The accuracy of the

PDF estimation depends on the number of interference samples in the CDF. Note that

the “interference sounding” process requires extra energy at the receiver. The more

samples are collected, the more energy is required.

In this chapter, we will investigate the quantile PDF estimation method, and apply

it to the adaptive receiver design for UWB communications to combat interference.
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Figure 7.2: Interference sounding for PDF estimation.

7.2 Quantile for PDF Estimation

The histogram of a signal can be regarded as representation of the PDF of the ran-

dom signal. The quantile representation can be thought of as the cumulative histogram,

which can be used to represent or estimate the CDF of a random signal. Once the CDF

is estimated from the quantile, the PDF can be estimated from the CDF by derivation.

Let x = {x1, x2, . . . , xNs} be the set of Ns samples of a random signal. We can

sort the samples so that they are in ascending order (x1 ≤ x2 ≤ . . . ≤ xNs). Let

A0, A1, . . . , AN represent the quantile of the samples where Ak is the sample xk ∈ x in

the k/N percentile position of the sample set x. For example, when k = N/2 (assume

that N is even), AN/2 is the median of x. When k = N , AN = xNs is the maximum

of the set x. For k = 0, we can set A0 = x1 to be the minimum of the set x with

the assumption that Ns � N in most cases. Thus, the empirical CDF is formed by

mapping Ak to k/N . Figure 7.3 shows the histogram and quantile representation of a

Gaussian distribution with zero mean and unit variance with Ns = 8192 samples and

N = 16 bins. As can be seen, the quantile is closely matched to the actual CDF of

a Gaussian distribution. The estimate of the PDF from the quantile representation

can be done by taking the ratio of the difference of the quantile bins (1/N) and the

difference of Ak’s. Figure 7.4 shows the estimated PDF from the quantile plot shown

in Figure 7.3b. As can be seen, the PDF estimate is not smooth and does not closely

match the actual PDF. However, it does have the general trend of the actual PDF. For

the case of increasing the number of bins to N = 64, the estimated PDF is shown in

167



Figure 7.5. It can be observed that the estimation is closer to the actual PDF in general

shape, but in detail it is spiky. Similar to the KDE method in which the selection of the

bandwidth can vary the smoothness of the estimate, when using quantile to estimate

the PDF, the number of bins can also affect the smoothness of the result. However, the

quantile method requires much less computation compared to the KDE method.
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Figure 7.3: Gaussian distribution N(0, 1) (a) histogram representation (b) quantile
representation.

7.3 Adaptive LOBD Receiver

In this section, we demonstrate how to apply quantile PDF estimator to the imple-

mentation of the LOBD receiver to estimate and update the nonlinear function. It is

shown in Chapters 5 and 6 that the signal processing function of the LOBD receiver is

nonlinear in general and is of the form

h(x) = −f
′
(x)

f(x)
(7.2)

where f(x) is the PDF of the interference. With the quantile representation of the CDF

at Ak, we have the estimate of the CDF Fk = k/N . To obtain f from the derivative of
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Figure 7.4: Estimated PDF from quantile representation.
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Figure 7.5: Estimated PDF from quantile representation.
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F , the technique used in [48] is to evaluate Fk at “half a quantile” from Ak.

fk =

(
dF

dA

)

k

=
Fk+ 1

2
− Fk− 1

2

Ak+ 1
2
− Ak− 1

2

=
1

N
(
Ak+ 1

2
− Ak− 1

2

) . (7.3)

To obtain f
′

from the derivative of f , we can compute in a similar way

f
′

k =

(
df

dA

)

k

=
fk+ 1

2
− fk− 1

2

Ak+ 1
2
− Ak− 1

2

=

1
N(Ak+1−Ak)

− 1
N(Ak−Ak−1)

Ak+ 1
2
− Ak− 1

2

. (7.4)

The LOBD nonlinear function is then given by

hk = −f
′
k

fk
= −

1
Ak+1−Ak

− 1
Ak−Ak−1

/N
(
Ak+ 1

2
− Ak− 1

2

)

1/N
(
Ak+ 1

2
− Ak− 1

2

) =
1

Ak − Ak−1

− 1

Ak+1 − Ak
(7.5)

Equation (7.5) provides the desired receiver output with simple computation. with

an input x to the LOBD function, it is first sorted to the nearest quantile Ak, and the

corresponding hk is the function output. In actual implementation, the receiver has to

maintain the quantile A0, A1, . . . , AN using the most recent samples of the interference.

For the input to the LOBD function, a sorting process is required to find the nearest

quantile value for generating the output. Due to the simple arithmetic of the output

computation, the most time consuming part in the processing is to perform sorting to

form the quantile and match it to the function input.

Receiver Implementation

The implementation of the adaptive LOBD algorithm at the receiver requires a

buffer of size Ns to store interference samples, and another buffer of size N to store

the quantile A1, A2, . . . , AN . For an IR-based UWB system with PPM modulation,

interference samples can be collected during the non-PPM chip durations. Initially,

the receiver collects Ns interference samples and store them in the interference buffer.
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The interference samples need to be sorted in order to generating the quantile. Let

x = {x1, x2, . . . , xNs} be the sorted samples (in ascending order) of interference stored

in the buffer. The quantile is formed by assigning the sample at the k/N percentile

position, xb kNs
N
c, to Ak. The quantile A1, A2, . . . , AN is stored in the quantile buffer.

The adaptive LOBD algorithm can be summarized in the following steps:

1. During the PPM chip duration, the correlator receiver output r is first sorted to

the nearest quantile Ak. Then the LOBD function output is computed according

to equation (7.5).

2. During the non-PPM chip duration, whenever the correlator receiver outputs

a interference sample, the interference buffer is updated by replacing the oldest

interference sample with the current one. Then the new set of interference samples

x = {x1, x2, . . . , xNs} is sorted and stored in the buffer.

3. The quantile A1, A2, . . . , AN is updated with the current interference buffer.

4. Go back to step 1.

7.3.1 Adaptive Receiver for MAI

For the multiple-access UWB system described in Chapter 5, consider the MAI in

the case shown in Figure 5.6 with the system parameters Nc = 2, Ns = 1, E1/N0 = 0

dB, E2/E1 = 20 dB. By taking 8192 samples from the MAI, the 16-bin histogram and

quantile representations of the PDF and CDF is shown in Figure 7.6. The estimated

LOBD function is shown in Figure 7.7 (solid line) compared with the theoretical LOBD

function (dash line). Both the histogram and quantile plots give us pretty good ideas

about the distribution. The estimated LOBD function does have three regions close to

the three linear regions in the theoretical function. Even though the “linear” region in

the estimated function is smaller than that in the original function, it can still suppress

interference since the function output is limited to roughly −1.5 to 1.5 as shown in the
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figure. Figure 7.8 shows the probability of bit error of the adaptive LOBD receiver for

the two-user case as shown in Figure 5.12. It can be observed that the performance

of the adaptive LOBD receiver is very close to the theoretical performance with the

perfect knowledge of the interference PDF. When the interference is strong, the adaptive

LOBD receiver is able to suppress interference and performance is comparable to the

interference-free single-user AWGN case. This is consistent with the results shown in

Chapter 5.
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Figure 7.6: MAI (Nc = 2, Ns = 1, E1/N0 = 0 dB, E2/E1 = 20 dB) (a) histogram
representation (b) quantile representation.

7.3.2 Adaptive Receiver for Gaussian On-Off Jamming

For the on-off Gaussian jammer in UWB communications described in Chapter 6,

one of the examples of the LOBD function is shown in Figure 6.3 with parameters

Eb/N0 = 5 dB, Eb/NJ = −10 dB, Ns = 10, and ρ = 0.3. The histogram and quantile

plots representing PDF and CDF using 8192 samples in 8 bins are shown in Figure

7.9. The estimated LOBD function is shown in Figure 7.10 (solid line) compared with

the theoretical LOBD function (dash line). Similar to the MAI case, the linear region

of the theoretical LOBD function is clearly shown in the estimated function. Again,
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Figure 7.7: Estimated LOBD function for MAI.

even though the estimated function does not follow the theoretical function exactly,

the interference suppression capability can still be observed. The probability of bit

error of the adaptive LOBD receiver is shown in Figure 7.11. The adaptive receiver

performance is very close to the theoretical LOBD receiver performance in the low

SNR region before the BER curve bounces back. In the high SNR region when the

theoretical BER bounces back, the adaptive receiver BER has a similar trend, but it

outperforms the theoretical LOBD receiver. This is because the adaptive algorithm

cannot perfectly estimate the theoretical LOBD function, which performs poorly in

the high SNR region where the small signal assumption does not hold as discussed in

Chapter 6. The adaptive algorithm is not able to create the estimate of the LOBD

function with sharp transition from the linear region to the nonlinear region as shown

in Figure 6.9, which unintentionally improved the BER performance. This is shown in

Figure 7.12 when SNR is 20 dB. Compare it Figure 7.10, it can be seen clearly that the

estimate of LOBD function when SNR = 20 dB does not match the theoretical one as
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Figure 7.8: Adaptive LOBD receiver for MAI suppression (Nc = 2, Ns = 1) (a)E2 = 5E1

(b)E2 = 10E1 (c)E2 = 20E1 (d)E2 = 30E1.
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well as the case when SNR = 5 dB.
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Figure 7.9: Gaussian on-off jammer (Eb/N0 = 5 dB, Eb/NJ = −10 dB, Ns = 10,
ρ = 0.3) (a) histogram representation (b) quantile representation.

7.4 Conclusions

In this chapter, we investigate a real-time PDF estimation technique that can be

applied to the LOBD receiver for UWB communications to adaptively estimate and

update the LOBD function for signal processing to suppress interference. Numerical

results show that the LOBD function can be estimated in an efficient way with small

number of quantile bins, and can be close to the theoretical LOBD function derived from

the actual interference PDF for the MAI and Gaussian on-off jammer. This adaptive

receiver scheme makes the suboptimum receiver design for UWB systems practical with

low complexity for easy implementation.
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Figure 7.10: Estimated LOBD function for Gaussian on-off jammer.
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CHAPTER 8

Conclusions and Future Research

In this chapter, we conclude this thesis by summarizing the content of this thesis

and discussing possible future research directions.

8.1 Summary of Contributions

The major goal and contributions of this thesis is present and analyze the design of

communication systems to combat interference. In Chapters 2 through 4, we investigate

the use of multilevel coding (MLC) and asymmetric modulation in a multiple-access

system to transmit data with various levels of importance and quality of service (QoS)

constraints. Although the capability of unequal error protection (UEP) of a system

cannot be easily quantified, we demonstrated that different QoS requirements (BER) of

different data streams can be achieved through the choice of asymmetric modulation and

MLC components codes combined into one simple coded modulation scheme. We con-

sidered MLC with asymmetric 8-PSK modulation using block partitioning, and apply

multistage decoding (MSD) for data recovery. The performance of the proposed scheme

using BCH codes is evaluated using the upper bound of decoding error probability of

BCH codes. In order to analyze the BER performance, we use characteristic functions

to derive the probability density function (PDF) of multiple-access interference (MAI)

of a quaternary DS-CDMA system. The capacity and throughput analysis shows that
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the MLC scheme (coded modulation) outperforms the regular coding scheme (indepen-

dent coding and modulation) in the low SNR region. This means that the MLC scheme

is an effective design for noisy environments. The combination of MLC and asymmetric

modulation also enables the flexibility in designing systems for the (UEP) purpose.

Another way to combat interference presented in this thesis is through the design of

the receiver to suppress interference. Specifically, in Chapters 5 through 7, we designed

receivers to mitigate interference for ultra-wideband (UWB) communications. We con-

sider impulse radio (IR) based UWB system with pulse-position modulation (PPM)

and time-hopping (TH) for multiple-access. The simple repetition coding is applied for

reliability enhancement. The goal is to design a simple, low-complexity receiver that

can perform asymptotically as well as the optimum receiver. The receiver design based

on locally optimum Bayes detection (LOBD) algorithm can effectively suppress inter-

ference while maintain a low complexity. It is demonstrated with the examples of MAI

and jamming interference. The LOBD algorithm requires the knowledge of the PDF

of the interference. For the MAI case, the PDF is derived using characteristic function

method. For the jamming interference, a Gaussian on-off jammer is considered and

PDF is obtained in a closed form. Numerical results show that the LOBD receiver

performance well under strong interference. An adaptive algorithm for estimating and

updating the interference PDF and the signal processing function of the LOBD algo-

rithm is presented to address the practical issues of the receiver implementation. The

use of quantile to represent the cumulative density function (CDF) results in simple

arithmetic of the signal processing function, which suits well with the purpose of a

simple, low-complexity receiver structure. Numerical results show that the adaptive

receiver performance is very close to the theoretical performance of the case when the

receiver has perfect knowledge of the interference PDF.

180



8.2 Future Research

8.2.1 Autonomous Radio with MLC and UEP

As mentioned in Chapters 2 and 3, we investigated techniques to equip a commu-

nication system with unequal error protection capability. One of the intentions is to

design an autonomous radio with simple transmitter using a fixed coding and modu-

lation scheme without feedback from the receiver. The receiver can demodulate and

decode the received signal successfully in different stages depending on the channel

condition.

The analysis in Chapters 2 and 3 assumes the channel is a simple AWGN channel.

Therefore, there is no need for channel estimation. For realistic modeling of a wireless

channel, we have take into account the effect of multipath fading and shadowing. In this

case, even without feedback from receiver to the transmitter, channel estimation can

still be done at the receiver for the decoder to improve the performance. One direction of

future research is to consider fading channel in the autonomous radio system employing

multilevel coding. At the receiver, channel estimation and decoding can be jointly

considered when designing the system in order to attain the optimum performance.

The channel estimator and the decoder can iteratively exchange information, and it

is crucial to find what information should be exchanged between the two entities to

enhance performance.

8.2.2 Impact of Interference Mitigation on Wireless Networks

Traditional wireless network design is based on the layering structure, and the phys-

ical and MAC layers are considered separately. Radio resource access is considered as

a MAC layer problem. It is shown in [50] that this might not be an efficient way to

design routing, scheduling, and power control for wireless ad hoc networks.

Most resource allocation algorithms considering cross-layer design use the receiver
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SINR as an indication of the link quality. Based on the SINR measurement, optimiza-

tion can be done to achieve the goals such as maximizing the throughput or minimizing

the power consumption. One key component in the design is to control interference so

that a desired link quality can be maintained to achieve a desired rate. Interference

control can be done through scheduling, power control, exclusion regions, etc. These

are MAC layer protocols and do not take into account interference mitigation that can

be done in the physical layer.

It is not straightforward to quantify the effectiveness of interference mitigation al-

gorithms. SINR seems to be a reasonable measurement. However, different interfer-

ence mitigation algorithms work differently in different aspects affecting the network.

Therefore, it is crucial to create a framework that abstracts the concept of interference

mitigation in order to understand its fundamental impact on a wireless network.

One of the possible directions to continue the research carried out in this thesis is to

examine the impact of interference mitigation to different network resource allocation

issues in UWB networks. For example, by considering interference mitigation through

physical layer signal processing, it is possible to achieve the same desired receiver SINR

with a lower transmission power. This can change the power control algorithms, enable

more different combinations of target link quality requirements, and increase the net-

work throughput. This can be beneficial for low-power, energy-constrained networks.

For networks without energy constraints, the gain in throughput might still worth the

extra signal processing in the physical layer. We can investigate the balance for energy

consumption and data rate for low-power systems such as UWB [51] through cross-layer

design. This concept can also be applied to general wireless network models.
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APPENDIX A

Characteristic Function of II

To further simplify Equation (2.76), we have

ΦII (v) =
K∏

k=2





1

32πT

N−1∑

l=0

∫ 2π

0

∫ T

0

∑

bIk

∑

bQk

exp

[
jv

1

T
(∆)

]
dτdφ



 (A.1)

where

∆ =
[

cosφ(bIk,−1C
II
k,1(l −N) + bIk,0C

II
k,1(l))

+ tan β · sinφ(bQk,−1C
QI
k,1(l −N) + bQk,0C

QI
k,1(l))

]
· R̂ψ(τ)

+
[

cosφ(bIk,−1C
II
k,1(l + 1−N) + bIk,0C

II
k,1(l + 1))

+ tan β · sinφ(bQk,−1C
QI
k,1(l + 1−N) + bQk,0C

QI
k,1(l + 1))

]
·Rψ(τ). (A.2)

To evaluate the summations over bIk and bQk , we note that there are 16 cases for (bIk, b
Q
k ) =

(bIk,−1, b
I
k,0, b

Q
k,−1, b

Q
k,0) as in Table A.1.
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Table A.1: Sixteen cases for (bIk,b
Q
k ).

Case bIk,−1 bIk,0 bQk,−1 bQk,0
1 1 1 1 1
2 1 1 1 -1
3 1 1 -1 1
4 1 1 -1 -1
5 1 -1 1 1
6 1 -1 1 -1
7 1 -1 -1 1
8 1 -1 -1 -1
9 -1 1 1 1

10 -1 1 1 -1
11 -1 1 -1 1
12 -1 1 -1 -1
13 -1 -1 1 1
14 -1 -1 1 -1
15 -1 -1 -1 1
16 -1 -1 -1 -1

Introducing the periodic cross-correlation functions

θIIk,i(l) = CII
k,i(l) + CII

k,i(l −N), (A.3)

θ̂IIk,i(l) = CII
k,i(l)− CII

k,i(l −N), (A.4)

θQIk,i (l) = CQI
k,i (l) + CQI

k,i (l −N), (A.5)

θ̂QIk,i (l) = CQI
k,i (l)− CQI

k,i (l −N). (A.6)

we evaluate ∆ for the above 16 cases with the following results.

Case 1:

∆1 =
[
cos(φ)θIIk,1(l) + tan(β) sin(φ)θQIk,1(l)

]
R̂ψ(τ)

+
[
cos(φ)θIIk,1(l + 1) + tan(β) sin(φ)θQIk,1(l + 1)

]
Rψ(τ). (A.7)
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Case 2:

∆2 =
[
cos(φ)θIIk,1(l)− tan(β) sin(φ)θ̂QIk,1(l)

]
R̂ψ(τ)

+
[
cos(φ)θIIk,1(l + 1)− tan(β) sin(φ)θ̂QIk,1(l + 1)

]
Rψ(τ). (A.8)

Case 3:

∆3 =
[
cos(φ)θIIk,1(l) + tan(β) sin(φ)θ̂QIk,1(l)

]
R̂ψ(τ)

+
[
cos(φ)θIIk,1(l + 1) + tan(β) sin(φ)θ̂QIk,1(l + 1)

]
Rψ(τ). (A.9)

Case 4:

∆4 =
[
cos(φ)θIIk,1(l)− tan(β) sin(φ)θQIk,1(l)

]
R̂ψ(τ)

+
[
cos(φ)θIIk,1(l + 1)− tan(β) sin(φ)θQIk,1(l + 1)

]
Rψ(τ). (A.10)

Case 5:

∆5 = −
([

cos(φ)θ̂IIk,1(l)− tan(β) sin(φ)θQIk,1(l)
]
R̂ψ(τ)

+
[
cos(φ)θ̂IIk,1(l + 1)− tan(β) sin(φ)θQIk,1(l + 1)

]
Rψ(τ)

)
. (A.11)

Case 6:

∆6 = −
([

cos(φ)θ̂IIk,1(l) + tan(β) sin(φ)θ̂QIk,1(l)
]
R̂ψ(τ)

+
[
cos(φ)θ̂IIk,1(l + 1) + tan(β) sin(φ)θ̂QIk,1(l + 1)

]
Rψ(τ)

)
. (A.12)
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Case 7:

∆7 = −
([

cos(φ)θ̂IIk,1(l)− tan(β) sin(φ)θ̂QIk,1(l)
]
R̂ψ(τ)

+
[
cos(φ)θ̂IIk,1(l + 1)− tan(β) sin(φ)θ̂QIk,1(l + 1)

]
Rψ(τ)

)
. (A.13)

Case 8:

∆8 = −
([

cos(φ)θ̂IIk,1(l) + tan(β) sin(φ)θQIk,1(l)
]
R̂ψ(τ)

+
[
cos(φ)θ̂IIk,1(l + 1) + tan(β) sin(φ)θQIk,1(l + 1)

]
Rψ(τ)

)
. (A.14)

The latter 8 cases are simply the negative of the first 8 and thus we have 8 pairs of

cases. For case 1 and case 16, we have

exp

(
jv

1

T
∆1

)
+ exp

(
jv

1

T
∆16

)
= ejv

∆1
T + e−jv

∆1
T = 2 cos

( v
T

∆1

)
(A.15)

with similar results for the other pairs of cases. Therefore, we have

ΦII (v) =
K∏

k=2

{
1

8N

N−1∑

l=0

(
8∑

i=1

1

2πTc

∫ 2π

0

∫ Tc

0

cos
( v
T

∆i

))}
. (A.16)

If we further define

f(v; l, g(l), h(l), α) , 1

2πTc

∫ 2π

0

∫ Tc

0

cos
{ v
T

[
(cosφ · g(l) + α sinφ · h(l)) R̂ψ(τ)

+ (cosφ · g(l + 1) + α sinφ · h(l + 1))Rψ(τ)
]}
dτdφ (A.17)

then the characteristic function can be written as

ΦII (v) =
K∏

k=2

{
1

8N

N−1∑

l=0

(
8∑

i=1

f(v; l, gi(l), hi(l), αi)

)}
(A.18)

187



where

g1(l) = θIIk,1, h1(l) = θQIk,1, α1 = + tan β, (A.19)

g2(l) = θIIk,1, h2(l) = θ̂QIk,1, α2 = − tan β, (A.20)

g3(l) = θIIk,1, h3(l) = θ̂QIk,1, α3 = + tan β, (A.21)

g4(l) = θIIk,1, h4(l) = θQIk,1, α4 = − tan β, (A.22)

g5(l) = θ̂IIk,1, h5(l) = θQIk,1, α5 = − tan β, (A.23)

g6(l) = θ̂IIk,1, h6(l) = θ̂QIk,1, α6 = + tan β, (A.24)

g7(l) = θ̂IIk,1, h7(l) = θ̂QIk,1, α7 = − tan β, (A.25)

g8(l) = θ̂IIk,1, h8(l) = θQIk,1, α8 = + tan β. (A.26)

As can be seen, in order to evaluate the characteristic function, we need to evaluate

f(v; l, g(l), h(l), α), which involves the computation of double integrals that can be

complicated. We can further simplify this by integrating over τ when considering the

chip waveform Ψ(t) to be the rectangular pulse. In this case, R̂ψ(τ) = Tc − τ and

Rψ(τ) = τ . Now the integrand can be written as

E = cos
{ v
T

[
(cosφ · g(l) + α sinφ · h(l)) R̂ψ(τ)

+ (cosφ · g(l + 1) + α sinφ · h(l + 1))Rψ(τ)
]}

= cos
{ v
T

[
(cosφ · g(l) + α sinφ · h(l)) (Tc − τ)

+ (cosφ · g(l + 1) + α sinφ · h(l + 1)) τ
]}

= cos
{ v
T

[
cosφ

(
(g(l + 1)− g(l))τ + g(l)Tc

)

+ α sinφ
(

(h(l + 1)− h(l))τ + h(l)Tc

)]}

= cos
{ v
T

[(
cosφ((g(l + 1)− g(l)) + α sinφ((h(l + 1)− h(l))

)
τ

+
(

cosφg(l) + α sinφh(l)
)
Tc

]}

= cos
(
Fτ +G

)
(A.27)
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where

F =
v

T

(
cosφ((g(l + 1)− g(l)) + α sinφ((h(l + 1)− h(l))

)
, (A.28)

and

G =
v

T

(
cosφg(l) + α sinφh(l)

)
Tc. (A.29)

Next, we integrate E over τ to obtain

1

Tc

∫ Tc

0

cos
(
Fτ +G

)
dτ =

1

FTc
sin
(
Fτ +G

)∣∣∣
Tc

0

=
1

FTc

{
sin
(
FTc +G

)
− sin

(
G
)}

=
1

FTc

{
2 sin

(1

2
FTc

)
cos
(1

2
FTc +G

)}

= sinc(
1

2π
FTc) cos

(1

2
FTc +G

)
(A.30)

where

sinc(x) =
sin(πx)

πx
, (A.31)

1

2π
FTc =

1

2π

v

T

(
cosφ((g(l + 1)− g(l)) + α sinφ((h(l + 1)− h(l))

)
Tc

=
v

2πN

(
cosφ((g(l + 1)− g(l)) + α sinφ((h(l + 1)− h(l))

)
, (A.32)

and

1

2
FTc +G =

v

2N

(
cosφ((g(l + 1)− g(l)) + α sinφ((h(l + 1)− h(l))

)

+
v

T

(
cosφh1(l) + α sinφh2(l)

)
Tc

=
v

2N

(
cosφ((g(l + 1) + g(l)) + α sinφ((h(l + 1) + h(l))

)
. (A.33)
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Therefore we have

f(v; l, g(l), h(l), α) =
1

2π

∫ 2π

0

sinc
{ v

2πN

(
cosφ((g(l + 1)− g(l))

+ α sinφ((h(l + 1)− h(l))
)}

· cos
{ v

2N

(
cosφ((g(l + 1) + g(l))

+ α sinφ((h(l + 1) + h(l))
)}
dφ.

(A.34)
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APPENDIX B

Variance of the Interference

The derivation here follows the work in [18]. According to Equations (2.68) and

(2.69), we can expand Equation (2.92) as

W II
k =

[
bIk,−1 · CII

k,1(γk −N) + bIk,0 · CII
k,1(γk)

]
R̂ψ(Sk)

+
[
bIk,−1 · CII

k,1(γk + 1−N) + bIk,0 · CII
k,1(γk + 1)

]
Rψ(Sk) (B.1)

where Sk = τk − γkTc and γk = bτk/Tcc. If we use Equation (2.74) to expand Equation

(B.1), we obtain

W II
k =

[
γk−1∑

j=0

bIk,−1a
I
k,j−γk+Na

I
1,j +

N−1∑

j=γk

bIk,0a
I
k,j−γka

I
1,j

]
R̂ψ(Sk)

+

[
γk∑

j=0

bIk,−1a
I
k,j−γk−1+Na

I
1,j +

N−1∑

j=γk+1

bIk,0a
I
k,j−γk−1a

I
1,j

]
Rψ(Sk) (B.2)

which can be further expanded to obtain

W II
k =

[
γk−1∑

j=0

bIk,−1a
I
k,j−γk+Na

I
1,j +

N−2∑

j=γk

bIk,0a
I
k,j−γka

I
1,j + bIk,0a

I
k,N−γk−1a

I
1,N−1

]
R̂ψ(Sk)

+

[
bIk,−1a

I
k,N−γk−1a

I
1,0 +

γk−1∑

j=0

bIk,−1a
I
k,j−γk+Na

I
1,j+1 +

N−2∑

j=γk

bIk,0a
I
k,j−γka

I
1,j+1

]
Rψ(Sk).

(B.3)
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Finally, the terms in Equation (B.3) can be rearranged to obtain

W II
k = bIk,−1

γk−1∑

j=0

aIk,j−γk+N

(
aI1,jR̂ψ(Sk) + aI1,j+1Rψ(Sk)

)

+bIk,0

N−2∑

j=γk

aIk,j−γk

(
aI1,jR̂ψ(Sk) + aI1,j+1Rψ(Sk)

)

+bIk,0a
I
k,N−γk−1a

I
1,N−1R̂ψ(Sk) + bIk,−1a

I
k,N−γk−1a

I
1,0Rψ(Sk). (B.4)

In order to reduce the complexity of evaluating Equation (B.4), we consider it condi-

tioned on the signature sequence of the first user {aI1,j} and the random variable γk,

which is uniformly distributed on the set {0, · · · , N −1}. We condition on γk = γ̂k and

{aI1,j} = {âI1,j}, and define a set of N + 1 random variables Ωj, 0 ≤ j ≤ N , by

Ωj =





bIk,−1a
I
k,j−γ̂k+N â

I
1,j, j = 0, · · · , γ̂k − 1

bIk,0a
I
k,j−γ̂k â

I
1,j, j = γ̂k, · · · , N − 2

bIk,0a
I
k,N−γ̂k−1â

I
1,N−1, j = N − 1

bIk,−1a
I
k,N−γ̂k−1â

I
1,0, j = N

(B.5)

Then Equation (B.4) can be simplified to

W II
k =

N−2∑

j=0

Ωj

[
R̂ψ(Sk) + âI1,j â

I
1,j+1Rψ(Sk)

]
+ ΩN−1R̂ψ(Sk) + ΩNRψ(Sk) (B.6)

where the random variables Ωj, 0 ≤ j ≤ N , are mutually independent and satisfy

Pr(Ωj = +1) = Pr(Ωj = −1) = 1/2. If we further define f(s) = R̂ψ(s) + Rψ(s),

g(s) = R̂ψ(s) − Rψ(s), the set Γ1 to be the set of all nonnegative integers i less than

N − 1 such that âI1,iâ
I
1,i+1 = 1 and the set Γ2 to be the set of all nonnegative integers i

less than N − 1 such that âI1,iâ
I
1,i+1 = −1, then Equation (B.6) can be written as

W II
k =

∑

j∈Γ1

Ωjf(Sk) +
∑

j∈Γ2

Ωjg(Sk) + ΩN−1R̂ψ(Sk) + ΩNRψ(Sk). (B.7)
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If we let XII
k =

∑
j∈Γ1

Ωj, Y
II
k =

∑
j∈Γ2

Ωj, ΠII
k = ΩN−1, and ΛII

k = ΩN , then we have

W II
k = ΠII

k R̂ψ(Sk) + ΛII
k Rψ(Sk) +XII

k f(Sk) + Y II
k g(Sk). (B.8)

Similarly, WQI
k can be written as

WQI
k = ΠQI

k R̂ψ(Sk) + ΛQI
k Rψ(Sk) +XQI

k f(Sk) + Y QI
k g(Sk) (B.9)

with ΠQI
k , ΛQI

k , XQI
k , and Y QI

k defined in a similar way.

At this point, in order to simplify the notation, we ignore the superscript of Wk,

Πk, Λk, Xk, and Yk. The random variables Πk and Λk are uniform on {−1, 1}, and Xk

and Yk have PDFs

pXk(i) =

(
L
i+L

2

)
2−L, i ∈ {−L,−L+ 2, · · · , L− 2, L} (B.10)

pYk(i) =

(
M
i+M

2

)
2−M , i ∈ {−M,−M + 2, · · · ,M − 2,M} (B.11)

where L = (N − 1 + U)/2, M = (N − 1− U)/2. The random variable U is defined as

U =
N−2∑

j=0

a1,j · a1,j+1 (B.12)

where {a1,j} is the signature sequence of user 1. By assuming random signature se-

quences, the PDF of U is given by

pU(i) =

(
N − 1
i+N−1

2

)
2−N+1, i ∈ {−N + 2,−N + 3, · · · , N − 3, N − 1}. (B.13)

If ψ(t) is a rectangular pulse, we have

Wk = PkSk +Qk(Tc − Sk) +XkTc + Yk(Tc − 2Sk). (B.14)
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Let S = (S1, · · · , SK) and Φ = (φ1, · · · , φK). Then the conditional variance of W I is

given by

Var [W | S,Φ,M ] = E



(
√
P/2 · cos β

K∑

k=2

Wk · cosφk

)2

| S,Φ,M




=
P

2
cos2 β

K∑

k=2

E
[
W 2
k | Sk,M

]
· E
[
cos2 φk | φk

]

=
P

2
cos2 β

K∑

k=2

1

2
[1 + cos(2φk)] · Var [Wk | Sk,M ] . (B.15)

The conditional variance of Wk can be computed as

Var [Wk | Sk,M ] = E
[
Π2
kS

2
k | Sk

]
+ E

[
Λ2
k(Tc − Sk)2 | Sk

]
+ E

[
X2
kT

2
c |M

]

+E
[
Y 2
k (Tc − 2Sk)

2 | Sk,M
]
. (B.16)

The random variables Πk and Λk have variances equal to 1. Then we have

E
[
Π2
kS

2
k | Sk

]
= S2

k , (B.17)

E
[
Λ2
k(Tc − Sk)2 | Sk

]
= (Tc − Sk)2, (B.18)

E
[
X2
kT

2
c |M

]
= T 2

c (N −M − 1), (B.19)

E
[
Y 2
k (Tc − 2Sk)

2 | Sk,M
]

= M(Tc − 2Sk)
2. (B.20)

Substituting Equations (B.17) through (B.20) in Equation (B.16) gives

Var [Wk | Sk,M ] = 2(2M + 1)(S2
k − TcSk) +NT 2

c , (B.21)

194



and thus from Equation (B.15),

Var [W | S,Φ,M ] =
P

2
cos2 β

K∑

k=2

1

2
[1 + cos(2φk)]

[
2(2M + 1)(S2

k − TcSk) +NT 2
c

]

=
P

2
cos2 β

K∑

k=2

[1 + cos(2φk)]

[
(2M + 1)(S2

k − TcSk) +
NT 2

c

2

]
.

(B.22)

By averaging over φk,

Var [W | S,M ] =
P

2
cos2 β

K∑

k=2

[
(2M + 1)(S2

k − TcSk) +
NT 2

c

2

]

=
P

2
cos2 β

[
K∑

k=2

(2M + 1)(S2
k − TcSk)

]
+

(K − 1)NPT 2
c

4
cos2 β.

(B.23)

By averaging over Sk, since E[S2
k − TcSk] = −T 2

c /6, we have

Var[W |M ] =
(K − 1)NPT 2

c

4
cos2 β − PT 2

c

12
cos2 β

K∑

k=2

(2M + 1). (B.24)

For random signature sequences, E[M ] = N−1
2

, thus we have

Var[W ] =
(K − 1)NPT 2

c

4
cos2 β − PT 2

c

12
cos2 β

K∑

k=2

(2
N − 1

2
+ 1)

=
(K − 1)NPT 2

c cos2 β

6
. (B.25)

Therefore, the variance of W I is given by

Var[W I ] =
(K − 1)NPT 2

c cos2 β

6
. (B.26)
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Similarly, it can be shown that

Var[WQ] =
(K − 1)NPT 2

c sin2 β

6
. (B.27)
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APPENDIX C

Probability of Detection Error of Pdet3

The detection error probability of c
(3)
k is defined as

Pdet3 = P (c
(3)
k 6= c̃

(3)
k ) (C.1)

= P (c
(3)
k 6= c̃

(3)
k , c

(1)
k = ĉ

(1)
k , c

(2)
k = ĉ

(2)
k ) (C.2)

+P (c
(3)
k 6= c̃

(3)
k , c

(1)
k = ĉ

(1)
k , c

(2)
k 6= ĉ

(2)
k ) (C.3)

+P (c
(3)
k 6= c̃

(3)
k , c

(1)
k 6= ĉ

(1)
k , c

(2)
k = ĉ

(2)
k ) (C.4)

+P (c
(3)
k 6= c̃

(3)
k , c

(1)
k 6= ĉ

(1)
k , c

(2)
k 6= ĉ

(2)
k ) (C.5)

The first term in the summation of (C.1) can be written as

(C.2) = P (c
(3)
k 6= c̃

(3)
k |c

(1)
k = ĉ

(1)
k , c

(2)
k = ĉ

(2)
k )P (c

(1)
k = ĉ

(1)
k , c

(2)
k = ĉ

(2)
k )

= P (c
(3)
k 6= c̃

(3)
k |c

(1)
k = ĉ

(1)
k , c

(2)
k = ĉ

(2)
k )(1− Pdec1)(1− Pdec2) (C.6)

The conditional probability in the above equation is given by

P (c
(3)
k 6= c̃

(3)
k |c

(1)
k = ĉ

(1)
k , c

(2)
k = ĉ

(2)
k ) = Q



√

4Es sin2 α

N0


 (C.7)
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Similarly, the second term in the summation of (C.1) can be written as

(C.3) = P (c
(3)
k 6= c̃

(3)
k |c

(1)
k = ĉ

(1)
k , c

(2)
k 6= ĉ

(2)
k )P (c

(1)
k = ĉ

(1)
k , c

(2)
k 6= ĉ

(2)
k )

= P (c
(3)
k 6= c̃

(3)
k |c

(1)
k = ĉ

(1)
k , c

(2)
k 6= ĉ

(2)
k )(1− Pdec1)Pdec2 (C.8)

The conditional probability in the above equation is given by

P (c
(3)
k 6= c̃

(3)
k |c

(1)
k = ĉ

(1)
k , c

(2)
k 6= ĉ

(2)
k ) =

1

2


1 +Q



√

4Es sin2(2β − α)

N0




−Q



√

4Es sin2(2β + α)

N0




 (C.9)

The third term in the summation of (C.1) can be written as

(C.4) = P (c
(3)
k 6= c̃

(3)
k |c

(1)
k 6= ĉ

(1)
k , c

(2)
k = ĉ

(2)
k )P (c

(1)
k 6= ĉ

(1)
k , c

(2)
k = ĉ

(2)
k )

= P (c
(3)
k 6= c̃

(3)
k |c

(1)
k 6= ĉ

(1)
k , c

(2)
k = ĉ

(2)
k )Pdec1(1− Pdec2) (C.10)

The conditional probability in the above equation is given by

P (c
(3)
k 6= c̃

(3)
k |c

(1)
k 6= ĉ

(1)
k , c

(2)
k = ĉ

(2)
k ) =

1

2


1−Q



√

4Es sin2(2β − α)

N0




+Q



√

4Es sin2(2β + α)

N0




(C.11)

Finally, the last term in the summation of (C.1) can be written as

(C.5) = P (c
(3)
k 6= c̃

(3)
k |c

(1)
k 6= ĉ

(1)
k , c

(2)
k 6= ĉ

(2)
k )P (c

(1)
k 6= ĉ

(1)
k , c

(2)
k 6= ĉ

(2)
k )

= P (c
(3)
k 6= c̃

(3)
k |c

(1)
k 6= ĉ

(1)
k , c

(2)
k 6= ĉ

(2)
k )Pdec1Pdec2 (C.12)
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The conditional probability in the above equation is given by

P (c
(3)
k 6= c̃

(3)
k |c

(1)
k 6= ĉ

(1)
k , c

(2)
k 6= ĉ

(2)
k ) = 1−Q



√

4Es sin2 α

N0


 (C.13)

By combining the above equations, we can obtain Pdet3 as

Pdet3 = Q



√

4Es sin2 α

N0


 (1− Pdec1)(1− Pdec2)

+
1

2


1 +Q



√

4Es sin2(2β − α)

N0




−Q



√

4Es sin2(2β + α)

N0




 (1− Pdec1)Pdec2

+
1

2


1−Q



√

4Es sin2(2β − α)

N0




+Q



√

4Es sin2(2β + α)

N0




Pdec1(1− Pdec2)

+


1−Q



√

4Es sin2 α

N0




Pdec1Pdec2

(C.14)

With further simplification, we have

Pdet3 = Q



√

4Es sin2 α

N0


 (1− Pdec1 − Pdec2)

+
1

2


1−Q



√

4Es sin2(2β − α)

N0


+Q



√

4Es sin2(2β + α)

N0




Pdec1

+
1

2


1 +Q



√

4Es sin2(2β − α)

N0


−Q



√

4Es sin2(2β + α)

N0




Pdec2

(C.15)
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APPENDIX D

Variance of the MAI

From (3.67), we know that W I
k,1 is a function of µk, θk, R

II
k,1, and RQI

k,1. The cross-

correlations are functions of the signature sequences {aI1,j}, {aIk,j}, and {aQk,j}. There-

fore, we can obtain the distribution of RII
k,1 and RQI

k,1 by conditioning on {aI1,j}. By

doing so, the conditional distribution is given by

pR(rTc) =

(
N
r+N

2

)
2−N (D.1)

where r = −N,−N + 2, · · · , N − 2, N . The conditional variance of W I
k,1 conditioned

on {aI1,j} and θk is given by

Var[W I
k,1|{aI1,j}, θk] = Var[

√
2P cosφk cos θkR

II
k,1|{aI1,j}, θk]

+Var[
√

2P sinφk sin θkR
QI
k,1|{aI1,j}, θk]

=
P

2
cos2 θkVar[cosφkR

II
k,1|{aI1,j}]

+
P

2
sin2 θkVar[sinφkR

QI
k,1|{aI1,j}] (D.2)

In the above equation, the variance of cosφkR
II
k,1 conditioned on {aI1,j} is given by

Var[cosφkR
II
k,1|{aI1,j}] = E[cos2 φk(R

II
k,1)2|{aI1,j}] = E[cos2 φk]E[(RII

k,1)2|{aI1,j}] (D.3)
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where the two terms in the product are

E[cos2 φk] =
1

2
(cos2(β − α) + cos2(β + α)) (D.4)

E[(RII
k,1)2|{aI1,j}] = NT 2

c (D.5)

and

Var[cosφkR
II
k,1|{aI1,j}] =

1

2
NT 2

c (cos2(β − α) + cos2(β + α)) (D.6)

Similarly,

Var[sinφkR
QI
k,1|{aI1,j}] =

1

2
NT 2

c (sin2(β − α) + sin2(β + α)) (D.7)

Thus we have

Var[W I
k,1|{aI1,j}, θk] =

NPT 2
c

4

{
cos2 θk[cos2(β − α) + cos2(β + α)]

+ sin2 θk[sin
2(β − α) + sin2(β + α)]

}
(D.8)

Average over θk, we have

Var[W I
k,1] = Eθk [Var[W I

k,1|θk]]

=
NPT 2

c

4

{
E[cos2 θk][cos2(β − α) + cos2(β + α)]

+E[sin2 θk][sin
2(β − α) + sin2(β + α)]

}

=
NPT 2

c

4

{
1

2
[cos2(β − α) + cos2(β + α) + sin2(β − α) + sin2(β + α)]

}

=
NPT 2

c

4
(D.9)

Therefore,

Var[W I
1 ] =

K∑

k=2

Var[W I
k,1] =

(K − 1)NPT 2
c

4
. (D.10)
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Similarly, we have

Var[WQ
1 ] =

(K − 1)NPT 2
c

4
. (D.11)
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APPENDIX E

8-PSK MLC Capacity

The AWGN channel output Y is complex and can be decomposed into I and Q

components YI and YQ, respectively. The mutual information of Y and X1 can be

written as

I(Y ;X1) = I(X1;Y ) = I(X1;YQ, YI) = I(X1;YQ) + I(X1;YI |YQ)︸ ︷︷ ︸
0

(E.1)

The last term I(X1;YI |YQ) = 0 is due to the fact of independence of X1 and X2 (I and

Q components) introduced by block partitioning. Similarly,

I(Y ;X2|X1) = I(X2;Y |X1) = I(X2;YQ, YI |X1) = I(X2;YQ|X1)︸ ︷︷ ︸
0

+I(X2;YI |YQ, X1)

= I(X2;YI) (E.2)

We start the analysis of I(Y ;X1) = I(X1;YQ) with the assumption that P (X1 =
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0) = P (X1 = 1) = 1
2
. Let ∆1 =

√
Es cos(β + α), ∆2 =

√
Es cos(β − α). Then we have

f(yQ) =
1

2
f(yQ|x1 = 0) +

1

2
f(yQ|x1 = 1)

=
1

2

{
1

2

1√
2πσ2

exp

(
−(yQ −∆1)2

2σ2

)
+

1

2

1√
2πσ2

exp

(
−(yQ −∆2)2

2σ2

)}

+
1

2

{
1

2

1√
2πσ2

exp

(
−(yQ + ∆1)2

2σ2

)
+

1

2

1√
2πσ2

exp

(
−(yQ + ∆2)2

2σ2

)}

(E.3)

The mutual information I(X1;YQ) can be computed as the sum of conditional mutual

information

I(X1;YQ) =
1

2

∫ ∞

−∞
f(yQ|x1 = 0) log2

(
f(yQ|x1 = 0)

f(yQ)

)
dyQ

+
1

2

∫ ∞

−∞
f(yQ|x1 = 1) log2

(
f(yQ|x1 = 1)

f(yQ)

)
dyQ (E.4)

Let

I(X1 = i;YQ) =

∫ ∞

−∞
f(yQ|x1 = i) log2

(
f(yQ|x1 = i)

f(yQ)

)
dyQ, i = 0, 1 (E.5)

we have

I(X1;YQ) =
1

2
I(X1 = 0;YQ) +

1

2
I(X1 = 1;YQ) (E.6)

When X1 = 0, I(X1 = 0;YQ) can be computed as

I(X1 = 0;YQ) =

∫ ∞

−∞
f(yQ|x1 = 0) log2

(
f(yQ|x1 = 0)

f(yQ)

)
dyQ

=
1

2
√

2πσ2

∫ ∞

−∞

(
e−

(yQ−∆1)2

2σ2 + e−
(yQ−∆2)2

2σ2

)
log2WdyQ (E.7)
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where

W =

1

2
√

2πσ2

(
e−

(yQ−∆1)2

2σ2 + e−
(yQ−∆2)2

2σ2

)

1

4
√

2πσ2

(
e−

(yQ−∆1)2

2σ2 + e−
(yQ+∆1)2

2σ2 + e−
(yQ−∆2)2

2σ2 + e−
(yQ+∆2)2

2σ2

)

=

2

(
e−

(yQ−∆1)2

2σ2 + e−
(yQ−∆2)2

2σ2

)

e−
(yQ−∆1)2

2σ2 + e−
(yQ+∆1)2

2σ2 + e−
(yQ−∆2)2

2σ2 + e−
(yQ+∆2)2

2σ2

(E.8)

Let u =
yQ
σ

, du
dyQ

= 1
σ
, dyQ = udu, then

W =

2

(
e−

(u−∆1
σ )2

2 + e−
(u−∆2

σ )2

2

)

e−
(u−∆1

σ )2

2 + e−
(u+

∆1
σ )2

2 + e−
(u−∆2

σ )2

2 + e−
(u+

∆2
σ )2

2

(E.9)

With the factorization

e−
(u+

∆1
σ )2

2 = e−
(u−∆1

σ )2

2 · e−2
∆1
σ
u (E.10)

and

e−
(u+

∆2
σ )2

2 = e−
(u−∆2

σ )2

2 · e−2
∆2
σ
u (E.11)

it can be simplified to

W =

2

(
e−

(u−∆1
σ )2

2 + e−
(u−∆2

σ )2

2

)

e−
(u−∆1

σ )2

2

(
1 + e−2

∆1
σ
u
)

+ e−
(u−∆2

σ )2

2

(
1 + e−2

∆2
σ
u
) (E.12)

Let

g1(x, y) =
1

2
√

2π

∫ ∞

−∞

(
e−

(u−x)2

2 + e−
(u−y)2

2

)
·

log2




2
(
e−

(u−x)2

2 + e−
(u−y)2

2

)

e−
(u−x)2

2 (1 + e−2xu) + e−
(u−y)2

2 (1 + e−2yu)


 du (E.13)
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Then we have

I(X1 = 0;YQ) = g1

(
∆1

σ
,
∆2

σ

)

= g1

(√
Es · cos(β + α)

σ
,

√
Es · cos(β − α)

σ

)
(E.14)

Similarly, we have

I(X1 = 1;YQ) = g1

(
−∆1

σ
,−∆2

σ

)

= g1

(
−
√
Es · cos(β + α)

σ
,−
√
Es · cos(β − α)

σ

)
(E.15)

Therefore,

I(X1;YQ) =
1

2
g1

(√
Es · cos(β + α)

σ
,

√
Es · cos(β − α)

σ

)

+
1

2
g1

(
−
√
Es · cos(β + α)

σ
,−
√
Es · cos(β − α)

σ

)
(E.16)

Similarly, it can be shown that

I(X2;YI) =
1

2
g1

(√
Es · sin(β + α)

σ
,

√
Es · sin(β − α)

σ

)

+
1

2
g1

(
−
√
Es · sin(β + α)

σ
,−
√
Es · sin(β − α)

σ

)
(E.17)

To compute the mutual information of Y and X3, we have to consider the four cases

of the pair (X1, X2). Thus,

I(Y ;X3|X1X2) =
1

4
[I(Y ;X3|X1X2 = 00) + I(Y ;X3|X1X2 = 01)

+I(Y ;X3|X1X2 = 10) + I(Y ;X3|X1X2 = 11)] (E.18)
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With similar derivation, we have

I(Y ;X3|X1X2 = 00) =
1

2
g2

(√
Es · sinα
σ

)
+

1

2
g2

(
−
√
Es · sinα
σ

)
(E.19)

where

g2(x) =
1√
2π

∫ ∞

−∞
e−

(u−x)2

2 · log2

(
2

1 + e−2xu

)
du (E.20)

Due to the symmetry of the constellation, I(Y ;X3|X1X2 = 00) = I(Y ;X3|X1X2 =

01) = I(Y ;X3|X1X2 = 10) = I(Y ;X3|X1X2 = 11), we have

I(Y ;X3|X1X2) =
1

2
g2

(√
Es · sinα
σ

)
+

1

2
g2

(
−
√
Es · sinα
σ

)
(E.21)
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