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CHAPTER I

Introduction

Information is one of the most valuable commodities in business, as the products

of many companies today are simply bits of information. The business models of

these companies require explosive amounts of data collection and storage. Useful

information must be extracted from these vast amounts of data, and methods for

transmitting the data in a manageable way need to be developed. In this dissertation,

we propose methods for information delivery and procurement in order to address

these important issues.

In this introduction, we describe three problems arising from uncertainty in infor-

mation delivery and procurement systems. Specifically, we describe one problem in

network routing and two problems in prediction markets. We outline the contribu-

tions of this dissertation, addressing each problem through the design and analysis

of robust algorithms and protocols that account for uncertainty.

• Problem 1: Finding optimal routing polices in data networks that ac-

count for router based active congestion control. Most traffic on current

backbone networks is transmitted, end-to-end, using Transmission Control Pro-

tocol (TCP). TCP inherently incorporates congestion control by resending lost

packets from the sender to the receiver. Due to its inherent congestion control

1
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methods, TCP is too slow to accommodate services such as Internet Protocol

telephony, Internet Protocol television, and Instant Messaging, all growing in

popularity. Such services use protocols like the User Datagram Protocol (UDP)

that do not have built-in congestion control. In order to manage throughput

across a network, congestion control must come from network components such

as the routers. Classically, router based congestion control has been addressed

by the Random Early Drop (RED) [34] algorithm. However, such routing pro-

tocols do not account for both routing and congestion control at the same time,

severely limiting the network throughput. We propose a mathematical model

to generate improved routing policies, while also taking into account congestion

control. The proposed model is not only easily extended to incorporate RED,

but can also take into account demand uncertainty when generating routing

policies. According to our computational experiments, the resulting polices are

at least 20% better than those currently used in a real world network [2].

• Problem 2: Analyzing and alleviating the impact of non-myopic actions

of risk neutral traders in prediction markets. Prediction markets are an

information aggregation tool in which participants trade on the outcome of a

future event. Some forms of subsidized prediction markets have been proven

to accurately aggregate traders’ beliefs [42, 63]. Subsidized prediction markets

have grown in popularity, and a number of Fortune 500 companies are using

them to aid in decision making [24]. When introduced, subsidized prediction

markets were only proven to accurately aggregate the beliefs of risk neutral

traders that do not take into account future payoffs, i.e., are myopic. However,

we show that if traders are allowed to take into account future payoffs and have

complementary information (meaning that a trader can earn a greater profit
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from knowing the other traders’ private information in addition to her own), the

incentive to not fully reveal information exists. We design a prediction market

that adjusts non-myopic traders’ incentives, leading to all traders revealing their

true beliefs.

• Problem 3: Analyzing and alleviating the impact of risk averse traders

in prediction markets. In practice people are not risk neutral, but tend to be

risk averse. Therefore, accurately aggregating the beliefs of risk averse traders

is key to creating practical prediction markets. We show that current prediction

market mechanisms do not accurately aggregate the beliefs of risk averse traders,

and propose one prediction market mechanism that does. Unfortunately, the

reward distributed by this mechanism decreases exponentially with the number

of traders. We prove that this exponential decrease is unavoidable by showing

that for any subsidized prediction market mechanism to aggregate the beliefs of

risk averse traders, it must exponentially decrease trader rewards.

1.1 Contributions

The contributions of this dissertation are:

Problem 1: Finding routing policies that maximize the amount of information received at

destinations subject to a standard active congestion control method. For the

network routing problem, we propose an optimization model that incorporates

active congestion control in a multi-commodity network. We show that in gen-

eral the problem is NP-hard. However, using a robust instance of the problem,

we show that a routing policy generated by applying a standard nonlinear pro-

gramming optimization software to the robust instance outperforms the routing

polices currently used in a real world network.
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Problem 2: What happens when traders in a prediction market take into account future

payoffs? For this problem, we show that when traders have complementary

information, they have an incentive to bluff, meaning that they will not fully

reveal their information when they trade in a market with an unlimited number

of trades. We then propose a new prediction market to curb these incentives,

resulting in traders fully revealing their information as the number of trades

increases.

Problem 3: What happens when traders are risk averse? In studying this problem, we first

characterize the desired properties all subsidized prediction market mechanisms

should satisfy. Second, we observe that the reward distributed to traders with

arbitrary risk averse preferences must be non-negative (this is not the case

for current subsidized prediction market mechanisms). Third, we propose a

prediction market mechanism that satisfies the desired properties. However,

this mechanism exponentially reduces the rewards distributed to traders as the

number of traders increases. Finally, we show that for any prediction market

to satisfy the desired properties in the presence of traders with arbitrary risk

averse preferences, the reward must decrease exponentially with the number of

traders.

1.2 Outline of the Dissertation

In Chapter II, joint work with Marina Epelman and Dushyant Sharma, we de-

scribe the routing model used to generate routing polices while taking into account

current active congestion control methods, and apply the model to the Abilene net-

work. Further, we show that a routing policy that takes into account natural demand

fluctuation performs better than the currently deployed routing policies. In Chap-
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ter III we introduce prediction markets, some of the related work, and mention the

overlap that exists between Chapters IV and V. In Chapter IV, joint work with

Rahul Sami, we show that under certain information settings, prediction markets

using the log market scoring rule do not reach a market equilibrium because traders

bluff, i.e., never fully reveal their true beliefs. In order to address the issue of bluff-

ing, we propose a discounted log market scoring rule and show that this market

converges to the truthful prediction at an exponential rate as the number of trades

in the market increases. In Chapter V, joint work with Marina Epelman and Rahul

Sami, we present a summary of desirable properties of subsidized prediction market

mechanisms, and propose a mechanism that possesses these properties even when

risk averse players are present. In the same chapter we show that all prediction

markets that satisfy the desirable properties must exponentially decrease the reward

distributed to players as the number of players increases. In Chapter VI, we leave

the reader with concluding remarks and future work.

The work presented in this dissertation is based on joint work with coauthors

indicated above. As such, each chapter is intended to be a self contained exploration

of the problem addressed. This means that the notation may differ across chapters

and there is some overlap across introductory sections. In particular, Chapter III

introduces prediction markets, discusses some related work, and introduces some of

the notation used in Chapters IV and V. However, Chapters IV and V address

two different problems in prediction markets. Therefore, the introductions of Chap-

ters IV and V do refer to some of the same background material, and the notation

introduced in Chapter III is modified in the subsequent chapters to appropriately

present the results discussed in each of the chapters.



CHAPTER II

New Models of Network Routing under Active Congestion
Control

This chapter is based on joint work with Marina Epelman and Dushyant Sharma.

This work is submitted for publication at the time of this writing.

2.1 Introduction

In this chapter we consider network routing under congestion control. We focus

on active congestion control. We say that a congestion control method is active if

the amount of flow sent into a network component, such as an arc, is a function of

the network status; for example, in computer networks, some routers are designed

for congestion control and as information is passed through the routers some packets

may be dropped. (Contrast this with a congestion control method that preserves the

amount of flow on every component of the network; for instance, a road network, in

which cars travel slower on a congested highway, but remain in the network until they

reach their destinations.) Though the proposed model and techniques easily extend

to most networks with congestion control, we focus on computer networks with active

congestion control. In the remainder of this section we first present background

required to understand the current routing policies and congestion control techniques

used in computer networks, and then describe the question we address in this chapter.

6
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In Section 2.2 we present our mathematical model for determining routing policies

in a network with a particular type of congestion control and show, in Section 2.3,

that it is NP-hard. In Section 2.4 we present a real world computer network, and

discuss the performance of different routing policies generated using locally optimal

solutions of the model in Section 2.5. Finally, in Section 2.6 we propose a robust

formulation of the model and present its performance relative to the routing policy

currently used.

2.1.1 Model Idea

We design a routing policy in a computer network using a generalization of a

multi-commodity network flow model described, for instance, by Ahuja et al. [4].

In our model, every origin and destination (OD) pair in the network constitute a

commodity, and every commodity has a fixed amount of demand that is sent from

the origin node to the destination node. The main difference from the generalized

multi-commodity network flow model, as we discuss later, is that the amount of flow

of each commodity received at the head of an arc is a function of the total flow on

that arc. After introducing some background, we will revisit the model and explain

it, and its relation to previous work, in greater detail.

2.1.2 Computer Network Background

In this section we discuss some of the current network protocols used in computer

networks and point out which ones will be captured by the proposed mathematical

model. In a telecommunications network, one has to make two decisions: one is what

path(s) the information is going use from the source to the destination, using a rout-

ing protocol, and the other is what type of flow management will be used to improve

quality of service in the network, using a network end-to-end protocol. In particular,
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we will describe Open Shortest Path First (OSPF) and Multiprotocol Label Switch-

ing (MPLS) routing protocols, and the implications of each one for finding routing

policies used in the network. We will then describe Random Early Detection (RED),

an active congestion control method currently available in computer networks, and

the implications of taking RED into account when generating an optimal routing

policy.

As a notational issue, it is important to note that computer networks transmit

information in packets, or discrete blocks of information. However, in a network flow

model each commodity is thought to be continuous and as such we can think of each

commodity’s flow in the proposed model as the rate of packets for that commodity

in the computer network.

Network Protocols

Computer networks tend to use a variant of one of two end-to-end transmission

protocols. One is the transmission control protocol (TCP) and the other is the user

datagram protocol (UDP).

A packet sent using TCP is acknowledged by the receiver and, if a sender does not

receive the acknowledgment in a given timeframe, the packet is re-sent after waiting

an exponentially increasing amount of time. As one would expect, TCP inherently

slows down the throughput due to the constant acknowledgments that are sent back

to the senders. A network using TCP, by definition of the protocol, has built-in

active congestion control in that it modifies the transmission rate, i.e., the effective

demand of each commodity, in response to congestion in the network.

UDP is a protocol commonly used to transmit Voice Over Internet Protocol

(VoIP), Internet Protocol Television (IPTV), and Instant Messaging (IM) services

traffic. It does not have built-in acknowledgment for every received packet, and all
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packets are sent once, with no guarantee of being received. If UDP is used without

any congestion control, severe congestion could occur in the network. Moreover, a

network using UDP without congestion control is susceptible to a denial of service

attack during which an attacker floods the network with UDP packets. With the

growing prominence of VoIP, IPTV and IM traffic on the Internet, examining the

impact of active congestion control on computer networks with UDP traffic is of

interest.

Routing Protocols

Open Shortest Path First (OSPF)

The Open Shortest Path First routing protocol, OSPF, was first proposed in 1989

and has been modified four times since the original request for comments (RFC)

was posted. The RFC for the current version of OSPF was posted in April of 1998

[61]. OSPF is a routing policy used in intranet networks, i.e. Autonomous Systems,

which are networks administered by a single organization. Abstractly OSPF can be

described as routing demand along a single path for every origin and destination (OD)

pair in the network, namely, the shortest path between those origin and destination

nodes. As a rule of thumb, Cisco Systems recommends the arc weights used in the

shortest path calculation to be set to the inverse of the arc capacities [70]. In practice,

since arc capacities seldomly change, the paths between nodes are updated rather

infrequently. As most networks, specifically the ones we examine in Section 2.4,

are still using OSPF, we will use network performance under OSPF routing as a

benchmark for assessing network performance under Multiprotocol Label Switching,

which we will describe next.

Multiprotocol Label Switching (MPLS)

Multiprotocol Label Switching, MPLS, was proposed in January of 2001 [55].
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MPLS differs from OSPF in that each OD pair in the network has multiple paths,

which may or may not be disjoint, simultaneously able to carry positive flow from

the origin to the destination.

When a packet first enters the network, the incoming router looks at the desti-

nation of the packet and chooses which of the possible paths it should follow to its

destination. It then assigns the appropriate label to the packet and forwards it to

the first node in the determined path.

Associated with each intermediate router in the network is an MPLS routing table.

Each row of the table contains information that determines, given the neighbor the

packet came from and its current label, the next node on the packet’s path to its

destination, and a new label to attach to the packet (the new label can be interpreted

by the next router in the same manner). Once a packet is received by a router, the

router removes the current label of the packet, identifies the appropriate row of its

MPLS table, and attaches a new label and forwards the packet accordingly.

The proposed research is to find a routing policy which is feasible in a network

using MPLS while accounting for both active congestion control and demand un-

certainty. Though currently OSPF is used in intranet networks, most networks are

beginning to port to MPLS. Therefore, now is the time to address the issue of find-

ing good MPLS routing policies for networks facing congestion control and demand

uncertainty.

Random Early Detection (RED)

In a computer network, whenever a packet, or a datagram of information, is for-

warded from one router to another, that packet must be examined by the forwarding

router. If two or more packets need to be examined, then all packets not being ex-

amined are placed in a queue of finite capacity, say u, and serviced in a first in first



11

out (FIFO) manner. However, if the rate of incoming packets is greater than the

router service rate, the queue will reach capacity u and no incoming packets will be

enqueued. To address the issue of the resulting starvation, the Random Early Detec-

tion, RED, congestion avoidance mechanism was introduced [34]. The mechanism

separates the router queue capacity into three regions, characterized by parameters

0 ≤ β ≤ γ ≤ u. In the first region, between an empty queue and a queue length

of β, all incoming packets are enqueued to wait for service. In the second region,

with queue length between β and γ, the probability that a packet is enqueued is

determined by a decreasing linear function with a slope of −α, for α > 0. Finally, in

the third region, with queue length between γ and u, none of the incoming packets

are enqueued into the router queue. Since γ determines the effective capacity of the

queue, without loss of generality we will let γ = u for the remainder of this chapter.

2.1.3 Gain Functions

Though our work is motivated by an application to computer network routing,

the nominal problem being addressed is an extension of the generalized network flow

problem, as described by Ahuja et al. [4, Chapter 15]. In a single commodity setting,

we denote by xij the amount of flow sent from node i to node j on arc (i, j) and by

yij the amount of flow received at node j from node i on arc (i, j). In the classic

network flow model we would have yij = xij. In a generalized flow setting, however,

we have yij = xijµij, where µij > 0 represents the proportional loss or gain of flow on

arc (i, j). In a network with congestion control imposed by the RED algorithm, we

have yij = xijfij(xij). In this setting fij(xij) represents the loss, due to congestion

at router at node i, that takes place on arc (i, j). Since fij(xij) is a function of xij,

this new model is a further generalization of the generalized network flow model.

As noted in Section 2.1.2, we can define a function g(t), the probability of a packet
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being enqueued by the router as a function of the queue length t, as

g(t) =






1 0 ≤ t ≤ β,

1− α(t− β) β ≤ t ≤ u,

0 u ≤ t.

We chose α = 1
u−β to guarantee continuity of g(·). Note also that with this choice

of α the effective capacity of the arc is u, as desired. As defined, g(t) determines the

loss on an arc as a function of yij, because every enqueued packed will be serviced.

Therefore, the f(t) function satisfies f(t) = g(tf(t)). When g(t) is defined as above,

the resulting f(t) function is:

(2.1) f(t) =






1 0 ≤ t ≤ β,

1+αβ
1+αt β ≤ t.

We denote by h(t) = tf(t) the amount of flow received as a function of t. With f(t)

given by (2.1),

h(t) = tf(t)

=






t 0 ≤ t ≤ β

1+αβ
α − 1+αβ

α(1+αt) β < t,

and with α as above, h(t)→ u as t→∞, ensuring that the capacity is not exceeded.

Observe also that h(t) is non-decreasing and concave.

In a multi-commodity setting that we will consider in this chapter, the flow con-

servation relationship becomes yk
ij = xk

ijf
(∑

l x
l
ij

)
for each arc (i, j) and each com-

modity k.

Shigeno [69] studied the problem of finding optimal routing polices for a single

commodity using congestion control. He refers to the function f(t) above as a gain
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function, and defines a concave gain function to be a gain function f(t) such that

h(t) = tf(t) is concave and non-decreasing. Note that the RED congestion function

f(t) given by (2.1) is less than or equal to 1 for all t, and thus represents a loss of

flow on an arc. However, to stay consistent with Shigeno we refer to f(t) as a gain

function.

2.1.4 Proposed Problem

In this chapter we propose a mathematical model for Internet routing under active

congestion control. We propose a continuous flow model (rather than a packet burst

model) that is motivated by computer networks using UDP with RED deployed in

the network. Though the proposed model is NP-hard, we show that routing policies

obtained by applying a nonlinear programming solver to the model improve network

performance over existing routing policies for a computer network.

2.1.5 Previous Research

Shigeno [69] introduced the concept of a concave gain function, and associated

a concave gain function with every arc in a network. He showed that in a single

commodity network flow problem with concave gains, a routing policy maximizing

the total flow received at the destination node can be found in polynomial time. As

our problem is a multi-commodity flow problem with concave gains, it helps to think

of the proposed problem as the multi-commodity flow generalization of Shigeno’s

work.

Several studies besides Shigeno have looked at generating routing policies in net-

works while taking into account congestion. For example, Sheffi [67] addresses the

issue of roadway congestion in optimal traffic selection. In his models he proposes a

convex function representing the travel time on a roadway (i.e. an arc of a network).



14

As the number of users of a roadway segment increases, so does their travel time on

that segment, until the capacity of the roadway is reached. The users of the roadway

are assumed to minimize their total travel time. This model is similar to the one

of interest; however, all passengers on a roadway remain on a roadway, while in our

model we can remove users. Studies addressing demand uncertainty using a robust

routing scheme will be discussed in detail in Section 2.6.

2.2 Multi-Commodity Network Flow Problem with Nonlinear Gains

We begin by defining the Multi-Commodity Network Flow problem with Nonlinear

Gains (MCFPNG). Let G = (N, A) be a directed graph with node set N and arc

set A, and (ok, dk) ∈ N ×N for k = 1, . . . , K be origin-destination node pairs for K

commodities. We consider the arcs to have infinite capacity, and let fa : R+ → R+

for a ∈ A be gain functions associated with each of the arcs. Let sk be the supply

of commodity k originating at its origin ok, and ck be the value per unit of this

commodity delivered to destination dk. We will use the following notation:

• xk
i ≡ amount of flow of commodity k present at node i ∈ N ;

• αk
ij ≡ the fraction of commodity k present at node i sent to node j, on arc

(i, j) ∈ A;

• δ+(v) and δ−(v) denote the sets of nodes in N that are end points of arcs coming

out of node v and coming into node v, respectively.

There are several possible ways of defining the MCFPNG; our version is, essentially,

a weighted maximum flow problem with multiple commodities and (nonlinear) gain

functions on each arc.
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Specifically, we define (MCFPNG) as:

max
α, x

K∑

k=1

ckxk
dk(2.2)

s.t. xk
ok = sk k = 1, . . . , K(2.3)

∑

(i,j)∈A

αk
ij = 1 k = 1, . . . , K, i ∈ N : i (= dk(2.4)

∑

(i,j)∈A

αk
ij = 0 k = 1, . . . , K, i = dk(2.5)

∑

i∈δ−(j)

αk
ijx

k
i fij

(
K∑

l=1

αl
ijx

l
i

)
− xk

j = 0 k = 1, . . . , K, j ∈ N : j (= dk(2.6)

αk
ij ≥ 0 (i, j) ∈ A, k = 1, . . . , K.(2.7)

Here, the objective function (2.2) maximizes the weighted sum of flows of each com-

modity delivered to the destination nodes, while constraints (2.3) indicate the supply

of each commodity. Constraints (2.4) and (2.5), together with (2.7), ensure that the

entire amount of commodity k available at node i is routed along the edges emanating

from i, with the exception of the destination node for that commodity. Constraints

(2.6) calculate the amount of commodity k available at node j by tracking the flow

of that commodity routed, and lost, on each of the arcs coming into node j.

2.3 Complexity of MCNFCG

This section is dedicated to proving the following

Theorem II.1. MCFPNG is NP-hard.

The proof is done by reduction from the Set Cover problem:

Definition II.2. Set Cover in minimization form is defined as follows: given

• set U = {e1, e2, . . . , em} and

• collection of subsets Sj ⊆ U, j ∈ {1, 2, . . . , n},
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find a minimum set cover, i.e.set J ⊆ {1, 2, . . . , n} such that ∪j∈JSj = U , of minimum

cardinality.

Given a Set Cover instance, we construct the following directed graph G, as a 4

layer network:

Layer 1 consists of one node for every element, ei ∈ U, i ∈ {1, . . . ,m},

Layer 2 consists of one node for every subset, Sj, j ∈ {1, . . . , n},

Layer 3 consists of one node, I,

Layer 4 consists of one node, t.

The layers are connected in the following manner:

• For every i and j such that ei ∈ Sj there is a directed arc (ei, Sj),

• For every j there is a directed arc (Sj, I),

• There is a directed arc (I, t).

For example, consider the following instance of set cover:

U = {e1, e2, e3, e4, e5}

S1 = {e1, e2, e3}

S2 = {e1, e2, e3, e4}

S3 = {e1, e4}

S4 = {e1, e5}.

The corresponding directed graph constructed as described above is depicted in Fig-

ure 2.1.

To define an instance of MCFPNG, we define the following m + 1 commodities:
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Figure 2.1: Example of graph construction

Commodity 0 from origin node I to destination node t, i.e.o0 = I and d0 = t, with

s0 = 1 and c0 = 1;

Commodity i, for i = 1, . . . ,m from origin node ei to destination node t, i.e.oi =

ei and di = t, with si = 1 and ci = 0.

Finally, the gain function of each arc is

fa(t) = f(t) =






1 t < 1

1
t 1 ≤ t

for all a ∈ A, fitting the definition of a concave gain function. Though we can

consider the capacities of the arcs to be infinite, notice that the form of the gain

function f(t) above implies that the effective capacity of each arc is 1.

Note that the there were O(nm) steps required to transform the instance of set

cover into an instance of MCFPNG.

Given an instance of Set Cover, the corresponding MCFPNG instance resulting
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from this transformation is:

max
α, x

x0
t(2.8)

s.t. x0
I = 1(2.9)

xk
ek

= 1 k = 1, . . . ,m(2.10)

∑

(i,j)∈A

αk
ij = 1 k = 0, . . . ,m, i ∈ N : i (= dk(2.11)

∑

(i,j)∈A

αk
ij = 0 k = 0, . . . ,m, i = dk(2.12)

∑

i∈δ−(j)

αk
ijx

k
i fij

(
m∑

l=0

αl
ijx

l
i

)
− xk

j = 0 k = 0, . . . ,m, j ∈ N : j (= dk(2.13)

αk
ij ≥ 0 (i, j) ∈ A, k = 0, . . . ,m.(2.14)

Below we explore some of the properties of optimal solutions to this problem. For

convenience, we will use the following notation in the rest of this section:

(2.15) Xv =
m∑

i=1

xi
v, v ∈ N,

i.e.Xv denotes the total amount of flow of commodities 1 through m present at node

v.

Proposition II.3. A feasible solution (α, x) of (2.8) – (2.14) is optimal if and only

if it minimizes XI .

Proof. Recall that

XI =
m∑

i=1

xi
I .

For any feasible solution (α, x), αk
It = 1 ∀k due to (2.11), as there is only one arc out

of I. In addition, x0
I = s0 = 1, and so XI +x0

I ≥ 1, implying that f(XI +x0
I) = 1

XI+x0
I
.

Moreover, x0
t = x0

I · f(XI + x0
I) = 1

1+XI
. Therefore, as the objective of (2.8) is to

maximize x0
t , a feasible solution is optimal if and only if it minimizes XI .
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Proposition II.4. There exists an optimal solution (α, x) which has integral values

(0 or 1) of variables α and x associated with all arcs from layer 1 to layer 2.

Proof. If in a feasible solution the values of α are integral (0 or 1) for all arcs from

layer 1 to layer 2, then, according to (2.11), this solution has positive flow on exactly

one arc (ei, Sj) for each i = 1, . . . ,m. Since the supply at each node ei is si = 1, the

amount routed on all arcs from layer 1 to layer 2 is 0 or 1. Thus, we only need to

show existence of a solution with integral values of α associated with all such arcs.

Let (α, x) be an optimal solution, and suppose that there is a node ei in layer 1

such that the α values at this node to layer 2 split commodity i between two or more

arcs. Without loss of generality, let the corresponding nodes in layer 2 be S1 and S2,

i.e.αei,S1 > 0 and αei,S2 > 0.

Recall that the total flow of commodities 1, . . . ,m present at node I is equal to

XI =
∑n

j=1 XSjf(XSj), by construction of G. Without loss of generality, assume

XS1 ≥ XS2 .

Consider solution (α̃, x̃) that is obtained from solution (α, x) by moving the flow of

commodity i from arc (ei, S2) to arc (ei, S1), i.e.α̃i
ei,S2

= 0 and α̃i
ei,S1

= αi
ei,S1

+αi
ei,S2

,

while all other α values at layer 1 nodes remains the same. It is easy to verify that

solution (α̃, x̃) is feasible. We will show that

n∑

j=1

X̃Sjf(X̃Sj) ≤
n∑

j=1

XSjf(XSj),

and thus, in view of Proposition II.3, (α̃, x̃) is optimal. In fact, it only needs to be

shown that

X̃S1f(X̃S1) + X̃S2,f(X̃S2) ≤ XS1f(XS1) + XS2f(XS2),

since the other values remain unchanged.
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Due to the supply constraint at node ei, xiαi
(ei,S1) + xiαi

(ei,S2) = xiα̃i
(ei,S1) +

xiα̃i
(ei,S2) ≤ 1. Therefore, by the definition of f(·), xi

S1
= αi

(ei,S1)x
i
ei
, xi

S2
= αi

(ei,S2)x
i
ei
,

x̃i
S1

= x̃i
ei

= xi
ei
(αi

(ei,S1) + αi
(ei,S2)) and x̃i

S2
= xi

ei
α̃i

(ei,S2) = 0.

Consider the following two cases:

Case 1: XS2 < 1. In this case XS2f(XS2) = X(S2,I) and X̃S2f(X̃S2) = X̃S2 = XS2 −

xi
S2

. Furthermore, X̃S1f(X̃S1) = (XS1 + xi
S2

) · f(XS1 + xi
S2

). Notice that the

function f(t) satisfies

(t + ∆) f(t + ∆) ≤ t f(t) + ∆ for all t ≥ 0 and ∆ ≥ 0,

and so

X̃S1f(X̃S1) + X̃S2,f(X̃S2) = XS2 − xi
S2

+ (XS1 + xi
S2

) · f(XS1 + xi
S2

)

≤ XS2 − xi
S2

+ XS1f(XS1) + xi
S2

= XS1f(XS1) + XS2f(XS2),

as desired.

Case 2: XS1 ≥ XS2 ≥ 1. Notice that in this case XS1f(XS1) + XS2f(XS2) = 2. In

the new solution, X̃(S1,I) ≥ X(S1,I) ≥ 1, and hence X̃S1f(X̃S1) = 1. On the other

hand, due to the form of the gain function, X̃S2f(X̃S2) ≤ 1, and hence the total

amount of commodities 1 though m arriving at node I will not increase.

Modifications above removed the flow on one of the arcs between layers 1 and 2

without loss of optimality. Applying this procedure repeatedly will generate an

optimal solution with positive flow on exactly one arc (ei, Sj) for each i = 1, . . . ,m.

Finally, notice that each step of the above modification procedure takes a constant

amount of time to execute, and needs to be applied at most mn times.
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The procedure outlined in the above proof can be applied to any feasible solution

(α, x), producing a feasible solution (α̃, x̃) with integral values on arcs from layer 1

to layer 2 and with the same or better objective function value in at most mn steps.

Proposition II.5. A feasible solution of (2.8) – (2.14) with integral flow (0 or 1)

on each arc from layer 1 to layer 2 is optimal if and only if it minimizes the total

number of arcs from layer 2 to layer 3 with nonzero flow.

Proof. In any feasible solution (α, x) with integral flow (0 or 1) on each arc from

layer 1 to layer 2, XSj =
∑m

i=1 xiαi
(ei,Sj)

∈ Z+ for all j = 1, . . . , n. Therefore, for any

j,

XSjf(XSj) =






0 XSj = 0,

1 XSj > 0,

and hence

XI =
n∑

j=1

XSjf(XSj) =
n∑

j=1

I(XSj > 0),

which, in view of Proposition II.3, implies the conclusions of the proposition.

Proposition II.6. Suppose (α, x) is an optimal solution of (2.8) – (2.14) with in-

tegral flow (0 or 1) on each arc from layer 1 to layer 2. Then the set J = {j :

X(Sj ,I) > 0} is an optimal solution to the corresponding instance of the minimum set

cover problem.

Proof. First notice that any feasible solution of MCFPNG (2.8) – (2.14) with integral

flow on each arc from layer 1 to layer 2 corresponds to a set cover J constructed as

follows: j ∈ J if and only if αi
(ei,Sj)

= 1 for some ei, or equivalently, XSj > 0 (and

integral). Supply constraints at ei, i = 1, . . . ,m, imply that J is, indeed, a cover,

and we have

XI =
n∑

j=1

XSjf(XSj) =
n∑

j=1

I(XSj > 0) = |J |.
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Conversely, every minimal set cover J (i.e., one that does not contain a set cover of

smaller cardinality) can be represented by a feasible solution of the corresponding

MCFPNG with integral flow on each arc from layer 1 to layer 2 as follows: For each

i = 1, . . . ,m, pick any j ∈ J such that ei ∈ Sj and set αi
(ei,Sj)

= 1, i.e. direct 1 unit

of flow along the arc (ei, Sj) (since J is a set cover, such j can always be found).

Assign flows on arcs out of layer 2 and layer 3 nodes accordingly to satisfy flow gain

constraints for the arcs and flow balance constraints for the nodes. Again, we have

|J | =
n∑

j=1

I(XSj > 0) =
n∑

j=1

XSjf(XSj) = XI .

Thus, by Proposition II.5, the minimum set cover can be obtained by finding an

optimal solution to MCNFNG (2.8) – (2.14) with integer flows on arcs from layer 1

to layer 2.

To complete the reduction, in view of Proposition II.6, one only needs to recall

that an arbitrary optimal solution to (2.8) – (2.14) can be modified in at most mn

steps into one with integral flows from layer 1 nodes to layer 2 nodes.

We have thus established that the MCFPNG as modeled by (2.2) – (2.7) is NP-

hard. Nonetheless, a nonlinear programming solver can be used to successfully find

locally optimal solutions to instances of the MCFPNG. It is important to note that

the complexity proof hinged on the fact all of the flow present at any non-destination

node must be sent, constraint (2.11), and that there were no self loops in the routing

of the commodities. If either of these two conditions were not satisfied then the

resulting problem is no longer difficult to solve. For example, if we relax (2.11)

(
∑

(i,j)∈A

αk
ij ≤ 1, for k = 0, . . . ,m, i ∈ N : i (= dk), then all of the commodities of

value zero in the construction would remain at their destinations leading to a trivial

solution. Similarly, if we had self-loops, all of the zero value commodities would be
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sent on the self loops effectively never interfering with commodity of value. The

remainder of the chapter is dedicated to numerical experiments with this model.

2.4 Abilene Network

As a testbed for numerical experiments in the following sections we used the

Abilene Network depicted in Figure 2.2. The Abilene Network is the backbone

network of the Internet2 community. The Internet2 community is a not for profit

consortium of universities, companies, and government agencies that develops and

deploys advanced network applications critical to the progress of the Internet. We

have obtained network usage data in the Abilene Network in the form of 24 weekly

data sets during a 6-month period of time in 2004 (March 1, 2004 to September 4,

2004) [1]. As the usage data does not span the entire 6-month period, we do not

present the data instances in absolute terms (e.g. 10 AM August 12), but instead

use relative terms (e.g. instance 2783). Due to the time the data was collected,

for the remainder of this chapter we discuss the Abilene Network as it existed in

2004, during which time OSPF was used to deliver traffic between every origin and

destination pair, and no congestion control protocols were implemented.

Los Angeles

Seattle

Sunnyvale

Denver

New York City

Washington DC

Atlanta

Houston

Kansas City
Indianapolis

Chicago 

Figure 2.2: The Abilene Network
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2.5 Numerical Experiments

In the remainder of the chapter we will present results of our numerical studies.

In this section, we first describe the specifics of how we applied our model to the

Abilene network, including a discussion of the objective function used, and present

the first set of numerical results.

The Abilene network usage data, provided at [1], consists of the demands between

every origin and destination pair in the 11-node network over five minute intervals.

It should be pointed out that the data collected consist of arc flows during the

specified period of time (e.g. 5 minutes). This arc flow data is then converted into

estimates of demand between every OD pair with a method such as the one discussed

by Roughan et al. [64]. The method used is not the topic of this chapter, but it is

important to note that the demand data provided at [1] is only an estimate of the

true demand.

For our numerical experiments we encoded the model (2.2) – (2.7) in AMPL [35],

and used the data captured from the Abilene Network to define a family of data files,

one for each time interval (we aggregated the data into hour-long intervals). We

used SNOPT [38], a nonlinear programming solver, to solve the resulting problem

instances. In preliminary experiments with MCFPNG models, we found SNOPT

to perform better than several other popular nonlinear solvers, possibly due to the

high level of nonlinearity of the constraints. SNOPT uses a sequential quadratic

programming algorithm to find locally optimal solutions, and has been successfully

used in solving nonlinear mathematical programs [32, 40]. We approximated the

(non-differentiable) RED function outlined in Section 2.1.3 by

(2.16) f(t) =
1

t + 1
.
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Note that this gain function implies that every arc in the network has effective

capacity of 1. Correspondingly, we scaled the demand data provided at [1] by a

constant factor, in part so that no commodity had a demand greater than 1. (The

scaling factor is intended to calibrate the demands in the network to be consistent

with arcs having capacity of 1 unit, while maintaining the relative demand levels

between the OD pairs, and to be sufficiently high to justify deployment of congestion

control. Thus, the value of the scaling factor was arrived at, to some extent, by trial

and error. It is worthwhile pointing out that, after scaling, the overall level of demand

in the network, as compared to the capacity, is quite high. In particular, under

routing policies considered below, only a small fraction of some of the commodities

reaches the destination.)

2.5.1 Role of Objective Function

In (2.2) – (2.7) we presented the model with an objective function that maximizes

the weighted total of commodities received at all the destinations:

(2.17) max
α, x

K∑

k=1

ckxk
dk .

Alternatively, we may choose to maximize the weighted total fractions of commodi-

ties received at all of the destinations:

(2.18) max
α, x

K∑

k=1

ck xk
dk

sk
.

This objective function is appropriate in models motivated by the use of congestion

control in UDP networks, common in VoIP and IPTV applications, in which the

fraction of commodity delivered reflects the quality of service for that commodity.

Moreover, using objective (2.18) provides an incentive for commodities with smaller

demands to be routed to their destinations.
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Unfortunately, optimizing with respect to either one of these objective functions

may still lead to starvation, i.e.a situation in which some commodities are ignored

and not routed to their destination because of their lower relative values. This can be

circumvented, for instance, by adding constraints assuring a minimum performance

guarantee for all of the commodities. (For example, constraints can stipulate that at

least z% of every commodity must the received at the destination node.)

However, in a network with congestion control, imposing a minimum performance

guarantee could lead to an infeasible problem instance. An alternative approach

to avoiding starvation is to utilize a “max-min” objective function. For example,

objective function (2.17) can be modified as:

(2.19) max
α, x

min
k∈{1,...,K}

ckxk
dk .

Similarly, we can define the max-min modification of objective function (2.18). The

issue with either of these formulations is that the resulting routing policies may be

hindered by a commodity that simply has very little demand to begin with. An

optimal routing policy will optimize for the commodity with lowest demand and

may actually perform much worse, by any other metric, than one obtained with the

cumulative objective function approach.

In the numerical experiments discussed in this chapter, we used objective func-

tion (2.18), as our work is motivated by the use of congestion control in UDP net-

works. However, the above considerations should be taken into account, and alter-

native objective functions should be considered, when applying similar optimization

models to determine routing policies in networks with specific cost and quality of

service considerations.
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2.5.2 Numerical Results

In the first set of numerical experiments, we considered the first week of usage

data (aggregated into hour-long increments). For each of the resulting 168 data

instances, we compared the performance of the current routing policy, OSPF, and

the MPLS routing policy optimized for that data instance, when each is subject to

congestion control. Recall that performance comparisons were done with respect to

the objective function in the form (2.18); we varied the weight coefficients ck to arrive

at three different sets of problem instances.

It should be pointed out that, since the feasible region of MCFPNG is not convex,

there might be multiple local, but not global, solutions to (2.2) – (2.7). Thus,

the routing policy found by the solver may not be truly optimal for the problem.

Moreover, which (local) optimum is found by the solver is dependent on the initial

routing policy used as a starting point of the optimization algorithm. We chose to

initialize the solver with the robust routing policy, discussed in Section 2.6, when

finding the proposed MPLS routing policy. The reasons for this choice will become

clear in the following section. In reporting our computational results, we nonetheless

refer to the solutions found by the solver as optimal, for simplicity of presentation.

In Figures 2.3–2.6, we compare the performance of the OSPF and MPLS routing

policies with three different objective functions. The objective functions differ by

having different values of commodity weights, ck. As we do not have precise infor-

mation regarding the values of the commodities in the network we consider three

different choices of the weights, to see if there is a performance change amongst the

resulting problem instances. The key takeaway from Figures 2.3–2.6 is that, regard-

less of the commodity weights used the MPLS routing policy, optimized for every

demand instance, performs better than the OSPF routing policy. Each objective
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function is the result of different valuations of commodities in the network; to pro-

vide a framework for comparison between results reported in Figures 2.3, 2.4 and 2.5,

we note that node 1 (Sunnyvale) provides roughly 4% of the overall demand in the

network, while over 23% of the overall demand originates in node 10 (Washington,

DC). Note that the MPLS routing policy, when optimized for each demand instance,

performs much better than the OSPF routing policy in every instance and for every

objective function used. As shown in Figure 2.6, the improvement over the OSPF

routing policy is at least 27% when the objective function values all commodities

equally; similar improvements are obtained for other objective functions as well. To

summarize, a routing policy that (i) takes into account the actual demand, and (ii)

allows routing of each commodity on multiple paths performs much better than a

policy, such as OSPF, that does not.

 10

 15

 20

 25

 30

 35

 40

 0  20  40  60  80  100  120  140  160  180

O
b

je
ct

iv
e 

fu
n

ct
io

n
 v

al
u

e

Demand instance

optimal
OSPF

Figure 2.3: Commodities from node 1 are 5 times more valuable than all other commodities
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Figure 2.4: Commodities from node 10 are 5 times more valuable than all other commodities

2.6 Robust MPLS Routing Policies

In this section we present a robust reformulation of (2.2) – (2.7) and study em-

pirical performance of the resulting routing policy.

In Section 2.5.2 we compared the performance of the OSPF routing policy to the

MPLS routing policy that is optimized for every demand instance. As one would

expect, the latter outperformed the former in every instance. In practice, however,

demand in a network fluctuates continuously and is not known in advance; thus,

re-optimizing the routing policy for every short time period would not be feasible.

Therefore, in this section we will use ideas of robust optimization to propose a robust

counterpart of MCFPNG and find one MPLS routing policy which performs well for

a variety of demand instances observed in the network.
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2.6.1 Robust Reformulation

Modern robust optimization was simultaneously introduced by Ben-Tal and Ne-

mirovski [73] and El Ghaoui et al. [37]. Robust optimization is a mathematical

programming modeling technique used when the problem data is not known exactly,

but instead it is known (or assumed) that any data instance from an uncertainty set

can be the problem data. The objective is to find a solution that is optimal among

the solutions feasible under all possible data realizations. Using this approach Ben-

Tal and Nermirovski [72] and El-Ghaoui and Lebret [36] pose and solve problems in

robust truss topology design and robust least-square optimization, respectively. Re-

cently robust optimization has attracted a lot of attention and has been considered

for portfolio selection problems [39], integer programming and network flow prob-

lems [12], supply chain management [13], inventory theory [14], radiation treatment
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Figure 2.6: All commodities are of equal value; fraction improvement

planning [25], etc.

Robust optimization and related approaches have also been applied to computer

routing and network flow problems [10, 11, 8, 68, 18]. For example, Applegate and

Cohn [8] look at minimizing the maximum link utilization over a set of feasible de-

mand realization in a network using MPLS. Chekuri [18] provides a survey paper of

the work to date on using robust optimization to create routing policies. Chekuri

characterizes the work of Applegate and Cohn as working on oblivious routing, mean-

ing that they design a routing policy that is used for a set of possible demand real-

izations without knowing the exact realization. The objective of an oblivious routing

policy, as described by Chekuri, is to minimize congestion. This is a valid objective

function to consider for a Virtual Private Network (VPN) setting, where there is a

strict limit on the amount of flow that can pass through any one point in the network.

The main distinguishing factor among works on oblivious routing is the structure of
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the uncertainty set, i.e.the set of possible demand realizations, considered. For ex-

ample, [8] considers a discrete set of demand realizations, while [11] is the first to

consider a polyhedral set of demand realizations.

As far as we know, none of the current work in oblivious routing takes into ac-

count active congestion control. Though minimizing congestion seems like a good

way to accomplish a level of congestion control, it may not capture the tradeoffs that

need to take place between different commodities in the network. Moreover, since

active congestion control is accomplished, in part, through packet loss, it is not clear

whether the routing policies obtained from models that explicitly take active conges-

tion control into account will be the same as those obtained by simply minimizing

congestion without modeling congestion control.

A robust counterpart of the problem (2.2) – (2.7) takes into account multiple

demand instances (m ∈ {1, . . . ,M}), and finds the routing policy maximizing the

minimum performance over all of these demand instances, mathematically written

as:

(2.20)

(RMCFPNG) max
α, x

min
m

K∑

k=1

ckxk
dk,m

s.t. xk
ok,m = sk

m k = 1, . . . , K, m = 1, . . . ,M
∑

(i,j)∈A

αk
ij = 1 k = 1, . . . , K, i ∈ N : i (= dk

∑

(i,j)∈A

αk
ij = 0 k = 1, . . . , K, i = dk

∑

i∈δ−(j)

αk
ijx

k
i,mfij

(
K∑

l=1

αl
ijx

l
i,m

)
− xk

j,m = 0,

k = 1, . . . , K, j ∈ N : j (= dk, m = 1, . . . ,M

αk
ij ≥ 0 (i, j) ∈ A, k = 1, . . . , K.
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Here, sk
m is the demand for commodity k in data instance m, and xk

i,m is amount of

flow of commodity k present at node i ∈ N in instance m (note that the values of

α’s remain the same for all data instances, and thus specify a routing policy).

2.6.2 Numerical Results

Robust MPLS Routing policy: First Week

To formulate the robust counterpart of MCFPNG as given by (2.20), we need to

specify the uncertainty set, i.e.the collection of demand instances to be considered. In

considering the data for the Abilene network, we observed that the demand fluctuated

following, to a large extent, a daily pattern. Roughly speaking, demand during the

day was significantly higher than during early morning and night hours, which is

to be expected. (This pattern was less pronounced during the weekends, but was

still present.) Based on this observation, we constructed an uncertainty set with

three demand instances as follows. We considered the demand data for the first

week of usage, separated each of the 7 days into three eight-hour intervals (morning,

day, and night), and averaged the demand over these eight-hour intervals across

the week. Thus, the three demand instances included in the uncertainty set reflect

average hourly demand during mornings, days and nights during the first week of

usage.

The resulting robust problem (2.20) has M = 3, and can be solved using MINOS.

We then compared the performance of the resulting routing policy on the 168 demand

instances considered in section 2.5.2 (recall that each of these instances corresponds

to the demand during an hour-long interval during the first week). The results are

summarized in Figures 2.7– 2.10. In each plot of this figure, the robust MPLS routing

policy is the (possibly local) solution of the single problem (2.20), while OSPF and

optimal MPLS policies are the same as were found in section 2.5.2. In particular,
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each optimal MPLS routing policy has been optimized for the demand instance at

hand, and thus changes every hour.

As we mentioned in section 2.5.2, each optimal MPLS policy was obtained by

initializing the solver at the robust MPLS policy found by solving (2.20), thus as-

sessing the improvement to the robust policy that can be made by modifying it to

suit a particular demand instance. As demonstrated in Figures 2.7– 2.10, it appears

that fine-tuning the policy to a specific demand instance makes for very little im-

provement over the robust routing policy. In particular, Figure 2.10 compares, for

each data instance, the improvement over the OSPF routing policy realized by the

robust MPLS policy with the improvement over OSPF realized by the MPLS poli-

cies optimal for each instance. As expected, the improvement achieved by the robust

policy is never better, but the plots are fairly similar: the robust policy improves

performance by at least 27% in each instance, compared to the improvement of at

least 36% realized by the optimal policies.

To summarize, simply by taking into account the natural demand fluctuations

in a network, we propose a single, robust, MPLS routing policy which much better

performance than OSPF, and comparable performance with each of the optimal

MPLS policies.

Robust MPLS Routing policy: 24 Weeks

In Section 2.6.2 we proposed a robust MPLS routing policy, obtained by consid-

ering an uncertainty set considering of three data instances capturing morning, day

and night demand patters. Recall that we constructed these three instances by aver-

aging demands in the corresponding 8-hour periods during the first of the 24 weeks

of data available to us. Since at first glance the demand follows a weekly, as well as

daily, pattern, a natural next step is to assess how the robust policy of Section 2.6.2
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Figure 2.7: Commodities from node 1 are 5 times more valuable than all other commodities

would perform in the following weeks. This is the subject of this section. Here, we

limit our discussion to the case where all commodities are of equal value, but the

results discussed carry over to the other cases as well. At this point it is important

to note that 4 days of the 24 weekly datasets obtained overlap due to the way the

data was partitioned at the time it was collected. This means that for the plots in

Figures 2.11–2.14, 96 data instances (2.4% of all the instances) appear twice every

time a robust routing policy is evaluated.

The plot in Figure 2.11 presents the performance of the robust routing policy

obtained in Section 2.6.2 (based on week 1 data) relative to the performance of the

OSPF routing policy for each hour-long period in the 24-week period. This is done,

as before, by plotting the ratio of the objective function values of the robust policy

and the OSPF policy for each demand instance. If the ratio is greater than one, the

robust policy performs better than OSFP for that demand instance, as is the case
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Figure 2.8: Commodities from node 10 are 5 times more valuable than all other commodities

for 86% of the instances.

A closer study of Figure 2.11 reveals that the robust policy based on week 1 data

performs better than the OSPF routing policy on all instances except for weeks 3, 4

and 5, which correspond to the period from March 15 until April 5 of 2004. Exam-

ining the data, we noted that these three weeks not only have the greatest demand

over all twenty-four weeks, but also have somewhat different demand patterns than

week 1. For example, 35% of the total demand in week 4 originated from a node

that provided only 5% of the total demand in week 1. As the robust policy is catered

to the week 1 demand patterns, it is no surprise that it did not perform well when

the demand pattern was significantly different. (Unfortunately, we were unable to

identify a cause or an explanation of such uncharacteristic demand patterns during

this time period.)

Based on the above observations, we computed a different robust routing policy,
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Figure 2.9: All commodities equal value

basing it on week 4 data, and plotted its performance (relative to that of the OSPF

policy) in Figure 2.12. Notice that this robust policy performs well (i.e., better than

OSPF) only during weeks 3, 4 and 5, further confirming that this behavior is due

to the fact the demand pattern differs between these weeks and the rest of the time

period considered.

We still hypothesized that, aside from anomalous behavior in weeks 3, 4 and 5,

overall demand remains stable from week to week due to the self-similar nature of

demand patterns [27, 51]. Indeed, the first robust policy continued to perform well

in week 6 and beyond. We also looked at the performance of the robust routing

policy based on week 12 data in Figure 2.13. This policy performs better than the

other two routing policies, and seems to perform at least as well as the OSFP routing

policy on most of the data instances. There is still, however, a drop in performance

in weeks 3, 4 and 5.
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Figure 2.10: All commodities equal value, fraction improvements

Finally, Figure 2.14 shows that the objective function values of the robust rout-

ing policy based on week 12 data and the OSPF policy over time follow the same

trend, suggesting that, if the ratio of the objectives is greater than one, it is due

to the improvement achieved by the robust policy over OSPF, not deterioration of

OSPF performance (the same is observed with the other robust routing policies).

Figure 2.14 also suggests that a sharp reduction in the performance of a currently

implemented robust policy could serve as an indication that the demand pattern is

changing and the robust routing policy needs to be reevaluated using more current

demand data.

2.7 Conclusion and Future Work

We introduced a way to model congestion control in networks facing congestion

via the multi-commodity network flow problem with nonlinear gains (MCFPNG),

and proved that the resulting model is NP-hard. We applied the model to the
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Figure 2.11:
Relative performance of the robust routing policy based on week 1 data and the OSFP
policy

Abilene network and showed that a better routing policy can be developed by taking

into account demand fluctuations — either by designing optimal routing policies for

the demand at hand, or, when the above is not possible or desirable, designing robust

routing policies.

As presented, our results only give relative performance guarantees by showing

empirically that the robust routing polices relatively outperform the OSPF routing

policy currently used in the Abilene network. In the future we would like to give

absolute performance guarantees on any routing policy we generate by using an

approximation algorithm to solve our model.

As a further avenue of research, we would like to consider applications of our

model in other areas of network routing. For instance, a modified version our model

could be used to find the minimum power levels for wireless routers so as to meet

a predetermined performance guarantee. For example, we would like the examine a
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Figure 2.12: Relative performance of the robust routing policy based on week 4 data and the OSFP
policy

problem such as: what is the minimum power need in a wireless network such that

no more than 5% of packets in the network are lost? We believe that we can extend

the model we presented to find a near optimal solution to these types of problems.
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OSFP policy
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CHAPTER III

Introduction to Prediction Markets

In this chapter we introduce prediction markets in greater detail, and present

some of the notation we will use in Chapters IV and V.

3.1 Prediction Markets Overview and Notation

A prediction market is an information aggregation tool used to elicit and aggregate

participants’ beliefs regarding the outcome of a future event. Prediction markets are

used to predict future political and social events in markets such as InTrade [47], Iowa

Electronic Market [46], and Hollywood Stock Exchange [45]. Prediction markets are

also used in corporate settings. For example, Microsoft used a prediction market

to determine if an internal product would meet its delivery date [53]. Through this

market, the director learned that the project was behind schedule. Best Buy is also

using prediction markets to assess the success of new products and ideas [31]. One

of their prediction markets accurately forecasted the sales of a new laptop service

package offered by the company.

Prediction markets can be unsubsidized or subsidized. The InTrade market is

an unsubsidized prediction market in which traders use real money to trade. The

Microsoft prediction market is a subsidized prediction market in which each trader

is initially endowed with $50. We will discuss why a corporation would be interested

42
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in subsidizing prediction markets later on in this chapter.

The prediction markets above aggregate participants’ beliefs by incentivizing them

to reveal their private beliefs about the event. For example, assume there are n

traders in the market and participant i has private information, si, pertaining to

the outcome of a future event ω. For ease of exposition, we assume the future

event is binary, ω = 1 or ω = 0. An individual running a market contingent on ω

is interested in eliciting the probability of ω given all of the traders’ private beliefs,

P{ω|s1, s2, . . . , sn}. Prior to any trades in the market, each trader i has a private be-

lief on ω, denoted P{ω|si}. With every trade, all traders may update their private be-

liefs based on trades previously executed in the market. Trader i, after observing all of

the first k trades, has a new updated private belief, P{ω|r1, r2, . . . ri−1, si, ri+1, . . . rk},

that reflects her assessment of other traders’ private information and the executed

trades (rj is the trade of trader j).

In practice, traders in prediction markets trade securities whose ultimate value is

contingent on the outcome of future events. For example, if a trader buys a “Yes”

contract for a security contingent on ω, then she stands to earn $1 if ω = 1 (the event

occurs) and $0 if ω = 0 (if the event does not occur). Therefore, assuming traders

are risk neutral, the current market price in real world markets is interpreted as the

market consensus on the event taking place [79].

Though every trader initially has her private belief P{ω|si}, this belief, or any

subsequently updated belief after trading, may not be entirely revealed when trading

in a prediction market due to the trader’s risk preferences. If this situation arises,

then prediction markets may not be accurately aggregating all of the traders’ beliefs.

We will discuss this issue along with different forms of prediction markets in the next

section.
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3.2 Types of Prediction Markets

Prediction markets can be either unsubsidized or subsidized. There are reasons

to use one over the other, such as using subsidized prediction markets to guarantee

market liquidity. On the other hand, an unsubsidized prediction market does not

require any subsidy for information to be aggregated. We discuss the differences in

greater detail below.

3.2.1 Unsubsidized Prediction Markets

Unsubsidized prediction markets are similar to financial markets where orders to

buy and sell securities are matched in a Continuous Double Auction (CDA). In a

CDA prediction market, an agent willing to sell a stock sets an ask price and an agent

willing to buy a stock sets a bid price. If the ask price is less than or equal to the bid

price, then the two orders are matched and the orders are cleared. In these markets

trade continues until no trader would like to trade. At this point, the market is said

to reach equilibrium and the market price is said to be the equilibrium market price.

However, “no-trade” theorems can be used to characterize such equilibria (assuming

traders are maximizing their utility from participating in the CDA) [41, 49, 54, 65,

74, 75] (see the survey paper by Sent [66] for a detailed overview).

To summarize these “no-trade” results, if all of the agents are rational and have

the same risk averse preferences, then an agent willing to trade is informing the

other traders that she has valuable information and will be making a profit at their

expense. Therefore, those trades would not be willing to trade. This means that a

trader cannot profit from gathering more information in the market. This may seem

like an artificial construct, as trade occurs daily in financial markets, but these results

have been show in laboratory experiments by Angrisani et al. [7]. In the laboratory
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experiment, the authors show that participants, with the same risk preferences, ini-

tially trade, but as the number of trading rounds increases, the participants approach

a no-trade situation.

Both theoretically and in the experiment by Angrisani et al. traders need to have

the same risk preferences for “no-trade” results to hold. In practice, traders have

heterogeneous risk preferences. Preference heterogeneity may explain why financial

markets have such a high volume of trade. As we will see in the next section, having

traders with different risk preferences, within CDA prediction markets, does not

guarantee traders’ beliefs will be accurately aggregated.

CDA prediction markets also run into the issue of elicitation, i.e., traders may

not have an opportunity to reveal their information in the market. Consider the case

where only one trader is present in a CDA prediction market. Because this trader is

the only one present, there is no possibility for her to trade with anyone else in the

market. Therefore, any information this trader has is not captured by the market.

Risk Aversion

In CDA prediction markets, if more than one trader is present in the market, and

all are willing to trade, the reported beliefs on the contingent event might not be

their true beliefs. In fact, risk averse traders will report their risk neutral probability

estimates of the event, as discussed by Kadane and Winkler [48]. When a trader is

risk averse, her risk preference and belief become intertwined. For example, if a trader

has private belief of P{ω|si} on ω, and a utility function u(·), then, as described by

Nau [56], she would report P̂{ω|si}, where P̂{ω|si} ∝ P{ω|si}u′(ω|si), with u′(ω|si)

being her marginal utility if the event occurs conditional on her information si. The

risk neutral probability of a trader is the probability an observer would assign to the

trader’s beliefs given her trading behavior and assuming the trader were risk neutral.
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Further, it can be shown that even though price is converging in a market, the market

may only be converging to a consensus in risk neutral probabilities and not the true

probabilities [57]. This result has the implication that the revealed consensus in

a CDA prediction market is not the consensus that would be reached if all of the

traders traded according to their private beliefs, P{ω|si}. If the reached consensus

is in terms of the risk neutral probabilities and the risk references are unknown, then

we cannot calculate the true probability from the risk neutral probabilities.

Pennock [62] offers a detailed exploration of the behavior of traders with different

risk preferences in a CDA setting. He points out that, although traders are risk

averse, they will trade with respect to their true probabilities. This means that, if

the current market consensus is less than their true probability, a trader, regardless

of risk preferences, would have a positive demand for this security. However, the

risk preferences determine the extent of each trader’s demand. From this result it

follows that if the traders all have the same initial beliefs on the traded events, then

the market will converge to the truthful probability. He then goes on to characterize

the equilibrium of a market if all of the agents have constant absolute risk aversion

or generalized logarithmic utility. These results allow the market equilibrium to be

interpreted correctly by a decision maker.

Prediction markets are used for information aggregation in the corporate set-

ting [24]. Since CDA prediction markets may not be incentivizing trade due to the

“no-trade” theorems, and have issues with eliciting traders’ beliefs when there are

few of them trading, most corporate predictions markets are subsidized. In the next

section we review a few forms of subsidized prediction markets, and discuss in detail

market scoring rule prediction markets.
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3.2.2 Subsidized Prediction Markets

For someone interested in eliciting the beliefs of all participants in a prediction

market regardless of the number of traders present, a way to ensure this elicitation is

to subsidize the market via a market maker. In a prediction market using a market

maker, all traders effectively trade with the market maker so that market liquidity

is guaranteed. Subsidizing the market ensures that a no-trade situation does not

arise. However, if participants are risk averse, traders will still only report their risk

neutral probabilities.

A simple market maker is one that accepts all bid and ask offers in a CDA setting.

The issue with such an approach is that the amount of subsidies introduced into the

market may not be bounded.

Another market maker prediction market is the dynamic pari-mutuel market [63].

The dynamic pari-mutuel market is based on traditional pari-mutuel markets used

in horse racing, but allows for early sale at a dynamically changing price in order to

encourage early trade by informed traders. Standard pari-mutuel markets distribute

the winnings proportionally to the total wager of the winning horse. For example, if

Alice places $10 on the winning horse and Bob places $5 on the winning horse, then

Alice receives 2
3 of the total winnings and Bob receives 1

3 . In dynamic pari-mutuel

markets, the proportion of winnings is also dependent on when the bet was made;

in the example above, if Bob made the bet on the winning horse (the event that

occurred) before Alice then he would receive more than 1
3 of the total winnings.

A type of subsidized prediction markets is market scoring rule (MSR) prediction

markets, introduced by Hanson [42]. (Proper) Market scoring rules are derived from

(proper) scoring rules. The notion of scoring rules was introduced by Brier [16], in

the form of the quadratic scoring rule (which is proper), to measure the accuracy
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of weather forecasters. Proper scoring rules provide a way to reward or evaluate a

forecaster in a way that motivates honest probabilistic forecasts. Other proper scor-

ing rules, like the logarithmic scoring rule, were later introduced again to assess the

quality of weather reports [76, 77]. Most of the early work on scoring rules assumed

that weathermen were expected score maximizers, i.e., risk neutral. If forecasters are

risk averse then, as described by Kadane and Winkler [48], the forecasters will report

their risk neutral probabilities just like they would in a CDA prediction market. We

revisit this discussion in Chapter V when we analyze the impact of risk averse traders

in subsidized prediction markets.

Hanson [42] showed that if a trader is risk neutral and does not take into account

future payoffs, then she will report her true belief in a MSR prediction market, and

the amount of market subsidy in the market is bounded regardless of the number of

traders in the market. Moreover, as MSR markets are subsidized, these results hold

whether there is a large or a small number of traders present. Unfortunately, this

result hinges on two key assumptions:

1. Traders do not take into account future payoffs (in this setting we can think of

this as traders only trading once in a MSR market).

2. Traders are risk neutral.

Both of these assumptions do not hold in practice. Traders may trade any number of

times in a prediction market, thus giving them the opportunity to take into account

future payoffs, and traders are inherently risk averse. Therefore, in Chapter IV we

analyze the effect on MSR prediction markets of allowing traders to take into account

future payoffs, and in Chapter V we analyze the impact of risk averse traders in

prediction markets.
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MSR prediction markets may be presented as financial markets with traders buy-

ing and selling securities with the market maker. However, underlying this interface

is a price function (a price function determines the cost to buy and sell securities in

the market given the current market state) derived from scoring rules. Therefore, it

helps to think of these markets as traders simply reporting, in turn, to the market

maker a probability, their assessment on the probability of the event taking place,

and being scored with respect to this report. We denote by rt the report of the tth

trader in the market. For example, using the log proper MSR, if the tth trade in the

market, made by trader A, consists of a report rt when the previous report was rt−1,

trader A receives a reward that is an affine function of log(rt)− log(rt−1) if the event

occurs and a reward that is an affine function of log(1−rt)− log(1−rt−1) if the event

does not occur. For example, consider a risk neutral trader trading only once in a

market using the log MSR. She observes the current market position, the last made

report to the market maker, to be 0.3 and has an updated belief of 0.8 of the event

occurring. As this situation satisfies all of the conditions defined by Hanson [42], this

trader will report her true belief. If the event occurs, she stands to make a profit of

log 0.8− log 0.3 = log 0.8
0.3 , and if the event does not occur, she stands to make a loss

of log 0.2 − log 0.7 = log 0.2
0.7 , since making a report of 0.8 of the event occurring is

equivalent to making a report of 0.2 of the event not occurring.

3.3 Dynamics and Model

For the remainder of the dissertation we will only consider subsidized prediction

markets. In Chapter IV we consider market scoring rule prediction markets, and

in Chapter V we consider all subsidized prediction markets. Before we present our

results we will discuss how we model subsidized prediction markets.
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As previously mentioned, the purpose of prediction markets is to aggregate traders’

beliefs on the outcome of an event. Mathematically, we are interested in finding

P{ω|s1, s2, . . . , sn}, where si is the signal, or private information, of trader i and ω is

the event traded in the market. Initially we assume that every trader has a common

prior on the joint probability of the event and all of the other traders’ signals, i.e.,

P{ω, s1, s2, . . . , sn}, P{ω, si}, and P{si} ∀i ∈ {1, . . . , n}. Every trader observes her

private signal and forms a belief on the outcome of the event conditional on that

signal, i.e., the belief of trader i is P{ω|si}.

Without loss of generality we assume that traders trade in turn (trader 1 trades

first, then trader 2, etc.). We do not assume the traders necessarily know the identity

of traders 1, 2, and so forth. Once trader 1 trades, all of the other traders update their

beliefs conditional on her trade. For example, assume that trader 1 is myopic and

risk neutral. This means she would report r1 = P{ω|s1}, as every other trader knows

P{s1} and P{ω, s1}, the other traders can deduce trader 1’s signal realization. Even

if the first trader does not honestly report her belief and instead reports a different

value of r1, any trade she makes reveals some information on her signal realization.

Therefore, all other agents will update their belief on ω in a Bayesian manner given

r1. With these updated beliefs, the second trader will trade and all of the other

traders, including the first, will update their beliefs. This continues until no trader

trades and the market is said to reach its equilibrium price.

In this dissertation we consider two slightly different variants of the dynamics

above. In Chapter IV we consider a setting where every trader knows who the other

traders are. That is, if Alice is trader 1, Bob is trader 2, and Carol is trader 3, then

when trader 1 trades, all of the traders know Alice made a trade. Similarly if trader

3 trades, then all of the traders know Carol made a trade. On the other hand, in
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Chapter V, we assume the traders cannot tell who is making the actual report. The

main difference between these two settings is that if a trader were to trade repeatedly,

in the first setting (Chapter IV) traders can tell that the same trader made multiple

trades, and in the second setting (Chapter V) they cannot.

We can now introduce the notion of an information structure, defined in greater

detail in Section 5.2. An information structure describes the truthful prediction

(P{ω|s1, s2, . . . , sn}) for all possible signal realizations for n traders, assuming each

trader trades in the market once. For example, for n = 3 and for every trader

having an equal probability of observing one of two signals (left, right), one possible

information structure is seen in Figure 3.1. In the figure, if trader 1 observed a right

signal and trader 2 observed a right signal, then the truthful prediction given those

observations would be 0.7. At that point, if the third trader observed a left signal,

then the truthful prediction would be 0.65. Had the signals observed by the three

traders been different, a different sequence of probability updates would result — all

possible outcomes are presented in the information structure.

The notation introduced in this chapter is common among the following two

chapters. In every chapter we will expand and simplify this notation as needed

so as to best convey the results.
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Figure 3.1: An example of an information structure



CHAPTER IV

Non-myopic Strategies in Prediction Markets

This chapter is based on joint work with Rahul Sami; parts were reported in [28,

29].

4.1 Introduction

As discussed in Chapter III, prediction markets may be used to aid in decision

making by aggregating the beliefs of participants on the outcome of a future event.

Ideally, the market participants truthfully reveal their beliefs, and all of their private

information is captured by the market. In this chapter, we characterize a class of

situations where risk neutral traders have an incentive to deviate from the truthful

strategy is a market scoring rule prediction market.

The successful aggregation of information through prediction markets thus relies

critically on traders adjusting their beliefs in response to other traders’ trades. How-

ever, this responsiveness can also have a drawback in the operation of the market: A

trader may attempt to first mislead other traders about the value of the security, and

then exploit their inaccurate information in later trades. Awareness of, and reaction

to, this problem can lead traders to be overly cautious about making inferences from

market prices, thus weakening the aggregative powers of the market. As a result,

prediction markets have always had to grapple with this perceived threat of manip-

53
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ulation, even when actual manipulation is absent. It would be very useful to have

a characterization of market situations in which such manipulation is possible (or

impossible); due to the strategic complexity of traditional double-auction markets,

such characterizations have been difficult to achieve.

With the recent rapid growth of markets designed primarily for information aggre-

gation, researchers have developed new market designs that are tailored to incentivize

informed agents to trade and to reveal their private information in a timely manner.

Hanson’s market scoring rule [42] is an innovative tradable security; it is based on

the idea of a proper scoring rule [16]. Pennock’s dynamic pari-mutuel market [63]

is another new market design that is based on the traditional pari-mutuel market

form used in horse racing, but allows for early sale at a dynamically changing price

in order to encourage early trade by informed traders. Apart from their other ad-

vantages, these new market forms are promising for another reason: As one side of

each individual trade is held by an automated market maker with a predetermined

(and fairly simple) strategy, these market forms are much more amenable to formal

analysis. For the market scoring rules, it has been proven that honest revelation of

private information is myopically optimal [42]. A similar (although slightly weaker)

characterization of myopically optimal strategies in dynamic pari-mutuel markets is

reported by Nikolova and Sami [58]. However, much of the concern about manipu-

lation in prediction markets is based on non-myopic strategies: strategies in which

the attacker sacrifices some profit early in order to mislead other traders, and then

later exploits erroneous trades by other traders, thereby gaining an overall profit.

As yet, very little is known theoretically about the existence and characterization of

manipulative non-myopic strategies in these markets.
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Our Results

In this chapter, we study trading strategies in the logarithmic market scoring rule

prediction market. We model a general Bayesian framework in which traders receive

information signals relevant to the event to be predicted, and trade in the prediction

market to maximize their expected payoffs. Our model captures the fact that traders

learn from prior trades as well as their own signals. This way, the market itself is

represented as an extensive form game played between partially informed traders.

The logarithmic market scoring rule allows the traders’ moves and profits to be

connected to the information-theoretic notion of entropy. Our analysis builds on this

connection, and we show that it allows meaningful analysis of the informativeness of

market prices.

We show that, if traders’ initial signals are independent, it is generically true that

the myopically optimal strategy of trading honestly is not an equilibrium of this

extensive-form game. In other words, if a trader believes that future traders will

believe that she is playing myopically, she can profit by dishonest trading. Thus,

we demonstrate that strategies that involve deception of future traders are a real

possibility under a wide range of information conditions.

We propose a simple scheme, the discounted market scoring rule, in which traders’

payoffs for market transactions are explicitly discounted over time. This reduces

the potential gain from correcting a misled trader, thereby reducing the threat of

deceptive, non-myopic strategies. We analyze the market game in the presence of

discounting, and show that, although non-myopic trading might still be profitable,

the market converges to the optimum value (the probability of the event given the

traders’ signal realizations) in a very strong sense: In any equilibrium, the relative

entropy of the actual market price with respect to the optimal market price decreases
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exponentially over time, at a rate that can be lower-bounded in terms of the discount

factor. For a market operator who is running a prediction market to aggregate all

known information about a particular event, this provides a way to quantify and

limit the uncertainty in price accuracy due to non-myopic bluffing strategies. Our

analysis also reveals conditions under which the myopic strategy is in fact the only

equilibrium strategy.

Related Work

There have been several field and experimental studies of manipulation in pre-

diction markets. Strumpf and Rhode [71] conducted experiments on manipulating

prices in the Iowa Electronic Market. Hanson et al. [44] experimentally study whether

agents with an incentive to manipulate prices can influence the trading price of a

security. They found that other agents who were aware of potential manipulation

adjusted for this possibility, thus limiting the effects of the manipulation attempts.

There is rich literature on manipulation in financial markets, which are closely

related. This literature has studied manipulation based on releasing false information

(perhaps through trades in other markets), as well as manipulation that only requires

strategic manipulation in a single market; the latter form of manipulation is closely

related to our study here. Allen and Gale [6] describe a model in which a manipulative

trader can make a deceptive trade in early trading rounds, and then profit in later

rounds, even though the other traders are aware of the possibility of deception and

act rationally. They use a stylized model of a multi-period market; in contrast, we

seek to exactly model a market scoring rule model. Apart from other advantages

of detailed modeling, this allows us to construct simpler examples of manipulative

scenarios: The model in [6] needs to assume traders with different risk attitudes to

get around no-trade results, which is rendered unnecessary by the inherent subsidy
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in the market scoring. Our model requires only risk neutral traders, and exactly

captures the market scoring rule prediction markets. We refer readers to the paper

by Chakraborty and Yilmaz [17] for references to other research on manipulation in

financial markets.

Feigenbaum et al. [33] also study prediction markets in which the information

aggregation is sometimes slow, and sometimes fails altogether. In their setting,

the aggregation problems arise from a completely different source: The traders are

nonstrategic, but extracting individual traders’ information from the market price is

difficult. Here, we study scenarios in which extracting information from prices would

be easy if traders were not strategic; the complexity arises solely from the use of

non-myopic strategies.

Nikolova and Sami [58] present an instance in which myopic strategies are not

optimal in an extensive-form game based on the market, and suggest (but do not

analyze) using a form of discounting to reduce manipulative possibilities in a predic-

tion market. We draw on a generalization of this instance as the starting point of our

analysis. Plott et al. [9] also proposed a form of discounting in an experimental pari-

mutuel market, and showed that it promoted early trades. Unlike the pari-mutuel

market, the market scoring rule has an inherent subsidy, so it was not obvious that

discounting would have strategic benefits in our setting as well.

Our work is most closely related to independent work by Chen et al. [22, 23].

Chen et al. study non-myopic strategies in prediction markets; their initial re-

sults [23] were reported at the same time as the preliminary version of our results [28].

They study a similar Bayesian model of a market scoring rule market, with an in-

formation structure that differs in one key aspect from ours. Our nonexistence of

myopic equilibria results assume that traders’ signals are independently generated,
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and that different combinations of the signals lead to different expectations of the

event occurring. Chen et al. model signals as conditionally independent, conditioned

on the eventual truth of the event under consideration. This difference in models

leads to opposite results: they show that, under their model, following the myopic

strategy is an equilibrium strategy. This difference can be represented by looking at

the two settings in terms of complementary and substitutable information. In the

conditionally independent setting traders’ signals are substitutable. In our model,

the signals are complementary. When traders have substitutable signals, it becomes

a race between traders as to who will earn most of the profit available in the market

by truthfully revealing their information. However, when the signals are complemen-

tary, a trader stands to earn a larger reward if she knows the other trader’s signal.

Therefore, the first trader will bluff in hopes of having the second trader reveal some

information about their signal and thus the first trader stands to gain a larger profit

than by being truthful during the first trade. Both of these conditions can occur in

practice. For example, if traders are trying to predict the outcome of an election

where every trader is a voter, then a trader, knowing all of the other traders’ in-

formation, will earn all available profit in the market. However, if traders instead

are each asked the probability oil will be found in a particular well, then the traders

might have substitutable information. Further, Chen et al. [22] construct an example

three-round market in which the conditional independence condition does not hold,

and show that it admits an equilibrium strategy in which the first trader bluffs with

some nonzero probability.

Börgers et al. [15] study when signals are substitutes and complements in a general

setting. Our analysis and convergence result suggests that prediction markets are

one domain where this distinction is of practical importance.
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Structure of the Chapter

The rest of this chapter is structured as follows: In Section 4.2 we describe the

2-player model we use to highlight deception threats, and we introduce some equi-

librium concepts. In Section 4.3, we formally analyze the simple 2-player model and

show that there exists no finite equilibrium in this setting. In Section 4.4 we gener-

alize the 2-player model to any finite number of players and signals and extend the

result to other scoring rules. In Section 4.5 we show that a simple discounted market

scoring rule reduces the opportunity for non-myopic strategies, and the market price

converges to the optimal price at a rate bounded in terms of the discounting param-

eter. In Section 4.6 we discuss how our results may be generalized and used to gain

insight about more complex markets. We draw parallels with classical bargaining

theory, and sketch directions for future research.

4.2 A Simple Model: Two Players and Two Signals Each

In this section, we describe a model of an extremely simple prediction market

setting. The setting is as follows: A prediction market is designed to predict a future

event ω, by trading in a security F based on ω. Two players, P1 and P2, are each

endowed with some private information about ω. We assume the simplest possible

case, in which P1 and P2 each have a single bit of information (s1, s2 respectively)

relevant to ω. (Equivalently, they each receive a signal that can take on two possible

values: 0 or 1). Further, we assume that the traders are risk neutral, and share a

common (and accurate) prior probability distribution over P1, P2, and ω.

The prior probability distribution can be completely specified by specifying the

prior probabilities of the signals and the conditional probability of ω given each

combination of signals. We assume that the two signals are independent. Further,
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we assume for simplicity that s1 is 0 or 1 with equal probability. The probability

that s2 is 1 is given by a parameter 0 < κ < 1. Thus, the model can be fully specified

by specifying four probabilities p00 = P{ω|s1 = 0, s2 = 0} (or P{ω|00} for short),

p11 = P{ω|11}, p01 = P{ω|01} and p10 = P{ω|10}. We study the behavior of the

market for different values of the parameters p00, p11, p01, p10 and κ. Note that pij

may be thought of as the probability of ω given signals i and j. We summarize the

probability of ω given the players’ signals in Table 4.1:

Table 4.1: Probability Realizations
Probability Signals

p00 00
p01 01
p10 10
p11 11

We assume that the trade in security F is conducted using a market scoring

rule [42]. Players make a sequence of market moves; in each move, the player reports

a probability ri. At the end, when the event ω is revealed, the move earns a player

a net score Score(ω, ri) − Score(ω, ri−1), where S is some proper scoring rule. In

this chapter, we assume the logarithmic scoring rule. The market maker seeds the

market with a value ps which is irrelevant to our analysis. We consider a sequence

of alternating moves in which P1 moves first, P2 moves next, P1 potentially moves

again, and so on.

In a market using the logarithmic scoring rule, the score of any one move is

a constant multiple of log ri − log ri−1 if ω occurs. Without loss of generality we

assume that the constant multiple is 1 for our analysis of the market scoring rule.

In Section 4.5, we propose a scheme in which the constant multiplier changes over

time.
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4.2.1 Myopic Behavior

We now analyze the price dynamics if each trader followed her myopically optimal

strategy. There are two additional probabilities φ0 and φ1 that arise in the analysis

of the myopic behavior because of P1’s uncertainty of P2’s signal. Suppose P1

saw s1 = 1. She would then condition her prior on this information, resulting in

a posterior in which she ascribes probability κ to the possibility that the optimal

probability (the probability of ω given the traders’ signals) is p11, and probability

1− κ to the possibility that the optimal probability is p10. In the balance, her belief

about the likelihood of ω would be in between that implied by p11 and that implied

by p10. Therefore, her optimal myopic strategy if she observed s1 = 1 would be to

report probability φ1 = κp11 +(1−κ)p10, or simply the expected optimal probability

conditioned on her seeing 1 as her signal. Likewise, if P1 saw s1 = 0, she would move

to a point φ0 defined in terms of p01 and p00.

After P1’s move P2 cannot directly see s1, but she can infer what P1’s myopic

actions would have been in each case. We assume that we are in the non-degenerate

case in which φ0 (= φ1; this allows us to focus on strategic threats instead of difficulties

in extracting signals from the price. Then, P2 can infer the value of s1; combining

this with the value of s2 that P2 observed, she can calculate the best possible estimate

of the conditional probability of ω. Due to the myopic strategyproof properties of

the market scoring rules, P2 would move to p00, p01, p10, or p11. Subsequently, neither

player would have an incentive to move again. Thus, if players followed their myopic

strategies, the market would perform remarkably well: All information would be

aggregated optimally in just two trades. Further, in general, both players would

make a profit in expectation in this market.
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4.2.2 Non-myopic Behavior and Bluffing

Now, suppose that the players were not restricted to myopic behavior. Specifically,

a player may deviate from the myopic strategy to exploit the other player’s reaction,

and make a greater total profit through subsequent moves. Consider the ways in

which P1 can deviate from her original myopic strategy. We restrict our attention to

strategies in which P1 moves to either φ1 or φ0 in the first round. These are the two

positions that P2 is expecting to see the market in, and thus we can reason about

the reaction that P2 would make to the move; this would be difficult if the move was

to a different point.

Thus, we are interested in the following kind of bluffing strategies for P1: Suppose

P1 sees s1 = 1. She could move to φ0 in the first round, instead of her myopically

optimal strategy of moving to φ1. Now, if P2 is expecting myopic behavior, she would

incorrectly infer that s1 = 0, and correspondingly report the wrong probability: p00

instead of p10, or p01 instead of p11. P1 can see the reported probability by P2,

and make a subsequent correcting move: p00 → p10 or p01 → p11 respectively. P1’s

incentive to bluff is determined by the profitability of this bluffing strategy relative

to the honest (myopic) strategy. If the myopic strategy is superior to bluffing, for

both values of s1, P1 would follow this strategy. Then, P2 would have no reason to

bluff (because P1 would not move again). Thus, checking if the myopic strategy is

an equilibrium is equivalent to checking if P1’s expected profit from bluffing is less

than her expected profit from the myopic strategy, assuming that P2 will be myopic.

Suppose that the bluffing strategy has a strictly higher profit than the myopic

strategy for player P1. It follows that P1 will bluff with some probability ζ. Note that

P2 can analyze P1’s profit in different scenarios, and thus, can infer that P1 would

not necessarily be truthful. Now, we characterize equilibria in which the bluffing
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probability ζ is known to P2, who takes it into account and reacts accordingly.

It must be that 0 < s < 1, because otherwise P2 would know s1 with certainty.

Now, from P2’s point of view, the market looks very similar to the market we just

analyzed for P1: She sees s2, and assigns some probability ζ to s1 = 1. The myopic

optimal response for P2 taking into account the probability that P1 is bluffing can

be determined: it is a function of ζ, s2 and the position (φ1 or φ0) that P1 left the

market. Next, we can repeat the analysis from P2’s point of view, and determine

if the myopic response is optimal for P2, or if she too would rather bluff with some

probability. The analysis follows exactly as done for P1, except that the role of s1 and

s2 are interchanged, or equivalently, the probabilities p01 and p10 are interchanged.

Next we show that with an informativeness condition for all points of p00, p11, p01,

and p10 the myopic strategy is not an equilibrium strategy for the two-player, two-

valued signal setting and in general for the n-player m-valued signal setting. Using

the informativeness condition we show that no finite equilibrium exists in both of

the settings for the logarithmic market scoring rule.

4.2.3 Equilibrium Concepts

The prediction market model we have described is an extensive-form game be-

tween two players with common prior probabilities but asymmetric information sig-

nals. Specifying a plausible play of the game involves specifying not just the moves

that players make for different information signals, but also the beliefs that they

have at each node of the game tree.

Informally, an assessment Ai = (σi, µi) for a player i consists of a strategy σi

and a belief system µi. The strategy dictates what move the player will make at

each node in the game tree at which she has to move. We allow for strategies to be

(behaviorally) mixed; indeed, a bluffing equilibrium must involve mixed strategies.
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To avoid technical measurability issues, we make the mild assumption that a player’s

strategy can randomize over only a finite set of actions at each node. The belief

system component of an assessment specifies what a player believes at each node of

the game tree. In our setting, the only relevant information a trader lacks is the

value of the other trader’s information signal. Thus, the belief at a node consists of

an assignment of a value to the probability that the other player received a ‘1’ signal,

contingent on reaching the node.

An assessment profile (A1, A2), consisting of an assessment for each player, is a

weak Perfect Bayesian Equilibrium iff, for each player, the strategies are sequentially

rational given their beliefs and their beliefs at any node that is reached with nonzero

probability are consistent with updating their prior beliefs using Bayes’ rule, given

the strategies. This is a relatively weak notion of equilibrium for this class of games;

frequently, the refined concepts of Perfect Bayesian Equilibrium or sequential equi-

librium are used. Our results involve proving the nonexistence of myopic weak PBEs,

and characterizing the set of all weak PBEs. They thus hold a fortiori for refinements

of the weak PBE concept, including those mentioned above. For a formal definition

of the equilibrium concept, we refer the reader to the book by Mas-Colell et al. [52].

Given the strategy components of a weak PBE profile, the belief systems of the

players are completely defined at every node on the equilibrium path (i.e., every node

that is reached with positive probability). In the remainder of this chapter, we will

not consider players’ beliefs off the equilibrium path. Thus, we will abuse notation

slightly by simply referring to an “equilibrium strategy profile”, leaving the beliefs

implicit.



65

4.3 Analysis of the Simple Model

Building on the intuition developed in Section 4.2.2, we now consider an analytical

proof to show that player 1 has an incentive to bluff. It turns out to be easiest to

analyze the logarithmic market scoring rule in this case, because we can reduce it

to a standard result on information-theoretic (Shannon) entropy. At the end of the

section, we discuss why we expect this result to hold for other scoring rules.

4.3.1 Generic Bluffing

In this subsection, we show that the myopic strategy profile is generically not a

weak Perfect Bayesian equilibrium.

In order to show that there is a strictly profitable deviation from the myopic

strategy profile, we first need to exclude certain degenerate cases. In particular, we

restrict our attention to instances that satisfy the following general informativeness

condition:

Definition IV.1. An instance of the prediction market with n players satisfies the

general informativeness condition if there is no vector of signals for any n−1 players

that makes the nth player’s signals reveal no distinguishing information about the

optimal probability. Formally, for n = 2, the following property must be true:

∀i, ī, j, j̄ such that i (= ī, j (= j̄: pij (= pij̄ and pij (= pīj. For n > 2, using the notation

of Section 4.4, we must have ∀i ∀j̄ (= j, p(j, i) (= p(j̄, i),where j, j̄ are two possible

signals for any one player, and i is a vector of signals for the other n− 1 players.

Consider a game of two players with each player seeing one of two signals. The

optimal probability if player 1 sees signal i and player 2 see signal j is pij. As before

we assume that player 2 has a probability of κ of seeing a one. As player 1 is playing
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first, her honest belief, conditioned on her signal, would be given by:

φ1 = κp11 + (1− κ)p10 expectation if P1 sees s1 = 1

φ0 = κp01 + (1− κ)p00 expectation if P1 sees s1 = 0

The probabilities φ1 and φ0 determine the optimal myopic moves for player 1.

We first show that, if an equilibrium profile involves deterministic strategies, it

must be the myopic strategy profile:

Lemma IV.2. Consider any equilibrium strategy profile. If player 1 has a deter-

ministic strategy of playing φu when she receives a 1 signal and φv (= φu when she

receives a 0, then φu = φ1 and φv = φ0.

Proof. Assume that φu (= φ1. Whenever player 1 plays φu player 2 will deduce that

player 1 has observed a 1; then, player 2 will capture all remaining surplus. Player

1 thus gets at most the profit she earns from her first move. However, by definition

of myopic optimality, φ1 would yield a higher profit to player 1 in the first round.

Therefore, player 1 has a profitable deviation in expected payoff from φu to φ1. A

similar argument holds for φv and φ0.

Consider the situation in which player 1 observes a 1 as her signal. We will want

to compare the expected profits that player 1 could earn through different first-round

moves. Assume that the market starts at an arbitrary point ps. The market scoring

rule payoffs are additive, in the sense that the total payoff for two consecutive moves

is exactly the payoff of moving from the starting point to the end point of the second

move. Now, in order to estimate the relative profitability of bluffing, we can think of

the bluffing strategy as a move from ps to the honest position φ1 followed by a move

from φ1 to φ0. Therefore, when comparing the two strategies the initial move ps to

φ1 cancels out. In order to eliminate the irrelevant ps from our comparison, we treat
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the myopic move as if it had profit 0, and analyze the incremental profit or loss of

the move from φ1 to φ0.

We now express the expected profits in terms of information-theoretic entropy.

To this end, we observe that the following two expressions are equivalent:

S(pi, pj) The expected log score from moving from position pi to pj, with pj being

the true belief:

S(pi, pj) = pj log
pj

pi
+ (1− pj) log

1− pj

1− pi

D(pj||pi) The relative entropy of two probability mass functions p(x) and q(x) is

defined in [26] as:

D(p||q) =
∑

p(x) log
p(x)

q(x)

With p(x) =






pj x = Y

1− pj x = N
and q(x) =






pi x = Y

1− pi x = N
.

Lemma IV.3. Assume that Player 2 expects Player 1 to play honestly, and reacts

accordingly. If Player 1 observes s1 = 1 and bluffs, her expected increase in score

(over following the myopic strategy) is qD(p11||p01) + (1− q)D(p10||p00)−D(φ1||φ0).

Proof. We analyze the change in Player 1’s score due to her two moves (deviation and

subsequent correction) separately. Given P1’s information (s1 = 1), the expected

probability of the event happening is φ1. Thus, the expected deviation move score

for player 1 is:

S(φ1, φ0) = φ1 ln φ0

φ1
+ (1− φ1) ln 1−φ0

1−φ1

= −D(φ1||φ0)

As player 2 has a probability of κ of seeing a one, player 1 will have to have a

corrective step from p01 to p11 with probability κ. Similarly with probability 1 − κ
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player 1 will make her corrective step from p00 to p10. Therefore the expected score

from the corrective step is κS(p01, p11) + (1− κ)S(p00, p10).

S(p01, p11) = p11 ln p11

p01
+ (1− p11) ln 1−p11

1−p01

= D(p11||p01)

S(p00, p10) = p10 ln p10

p00
+ (1− p10) ln 1−p10

1−p00

= D(p10||p00)

Theorem IV.4. Suppose two players are trading in a market with alternate moves;

without loss of generality, suppose P1 makes the first move. Suppose that the general

informativeness condition holds.

Then, there is no weak PBE strategy profile in which P1 always moves to some

φu in the first round when she sees s1 = 1, and P1 always moves to φv (= φu in the

first round when she sees s1 = 0.

Proof. Let (σ1, σ2) be a weak PBE equilibrium strategy. For contradiction, suppose

that σ1 requires P1 to follow the myopic strategy in the first round. By lemma IV.2,

P1 must move to φ1 when s1 = 1 and φ0 when s1 = 0. Now, in equilibrium, P2 will

take this into account, and will therefore know both bits after the first round. She

can capture all the remaining surplus by moving to p00, p11, p01, p10 depending on s2

and the inferred value of s1. Thus, in any equilibrium, she will eventually move to

the optimal point. Now, consider a deviation from this strategy in which P1 bluffs

in the first round and corrects P2’s final move at the end. When s1 = 1, Lemma IV.3

shows that the expected additional score increase if P1 bluffed is given by:

κD(p11||p01) + (1− κ)D(p10||p00)−D(φ1||φ0)
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Now, from a well-known convexity property of the relative entropy [26, pp.30], we

have:

κD(p11||p01) + (1− κ)D(p10||p00) ≥

D(κp11 + (1− κ)p10||κp01 + (1− κ)p00)(4.1)

⇒ κD(p11||p01) + (1− κ)D(p10||p00) ≥

D(φ1||φ0)(4.2)

⇒ κD(p11||p01) + (1− κ)D(p10||p00)−D(φ1||φ0) ≥

0(4.3)

Inequality (4.2) follows from the definition of φ1 and φ0. Thus, inequality (4.3)

implies that bluffing is always at least as profitable as behaving myopically by

lemma IV.3. Moreover, inequality (4.3) is strict when κ (= 0, 1 and p10 (= p00, p11; this

follows directly from the log sum inequality [26]. Thus, bluffing will be a strictly prof-

itable deviation under the conditions of the theorem, and hence the myopic strategy

for P1 cannot be part of an equilibrium profile.

We observe that the general informativeness condition we assumed is sufficient

but not necessary.

4.3.2 Nonexistence of Finite Equilibrium

Theorem IV.4 and Lemma IV.2 show that there is no equilibrium in which player

1 follows a deterministic strategy that is dependent on her signal. If there was such

an equilibrium, then, in equilibrium, player 2 would infer player 1’s bit and move to

the optimal point.

Now, it follows that there is no weak PBE equilibrium strategy profile for the

extended trading game, under the same assumptions, that satisfies the condition
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that the market is in the optimal state with certainty after some finite number, k, of

rounds.

Theorem IV.5. Under the general informativeness condition there is no weak PBE

strategy profile in which the market is certain to be in the optimal state after k rounds,

for any finite k.

Proof. Suppose the general informativeness condition is met. By the log sum in-

equality, no matter the priors, i.e. the players beliefs of the other player’s signals, it

is always profitable for the player currently playing in the market to bluff.

From theorem IV.4, there are two cases that could arise in equilibrium.

Case (i): P1 plays some strategy pu with certainty regardless of the value of s1. In

this case, P2 has learned nothing about P1’s bit, and thus, the conditions of the

theorem always hold after 1 round.

Case (ii): P1 plays a mixed strategy for at least one value of s1. Now, we claim that

there is a position φu such that P1 moved to φu with nonzero probability ξ when

s1 = 0 and with nonzero probability ξ′ when s1 = 1. Suppose there was no such

φu. Then, the support of P1’s first-round strategy for different values of s1 would

be completely disjoint, and thus, P2 could infer P1’s bit exactly. Thus, P1 would

effectively have a deterministic strategy; a simple extension of Lemma IV.3 shows

that the myopic strategy would be as good as this.

Observe that φu is played with strictly positive probability. Further, conditioning

on P1 moving to φu in the first round, P2 would assign some probability κ̂ (= 0, 1 to

s1 = 1. P1’s beliefs about s2 haven’t changed at all after the first round. Thus, the

conditions of theorem IV.4 still hold after the first round, conditional on φu being

played.

Repeating this argument for each of the first k − 1 rounds, and conditioning on
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one of the strategies in the support of each round, shows that the conditions of the

theorem still hold with some nonzero (albeit small) probability. Thus, the price

cannot converge with certainty after k rounds.

4.4 Generalizing the Results

We now move to a setting with n players and m signals each, for arbitrary n and

m. We will use the following notation:

M The set of all players.

i ∈ {0, n− 1}n−1 is a vector of the signals for all players other than player i.

(j, i) ∈ {0, n− 1}n is a vector of the signals for all players; j denotes player i’s signal.

κk
j prior probability that player k sees signal j

κi =
∏

k∈M/{1}

κk
ik

is the probability of players 2 through n of seeing the signals

specified in i.

p(j,i) is the optimal prediction with signal vector (j, i)

In the following scenario, assume that all players other than player 1 are behaving

myopically, and player k moves kth in the market. Below we determine if player 1

has an incentive to deviate from the myopic strategy. As player 1 is playing first we

define the following myopic optimal moves:

φj =
∑

i

κip(j,i) if she sees signal j

For the following assume that player 1 observes j as her signal, but is contem-

plating pretending to have j̄ instead of following the myopic strategy.
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Claim IV.6. Player 1 has an expected score increase of
∑

i

κiD(p(j,i)||p(j̄,i))−D(φj||φj̄) if she bluffs and then corrects the position after others

have played myopically.

Proof. The change in expected score due to the initial deviation move is equivalent

to moving from φj to φj̄:

S(φj, φj̄) = φj ln
φj̄

φj
+ (1− φj) ln

1−φj̄

1−φj

= −D(φj||φj̄)

As each player, k, has a probability of κk
j of seeing j as her signal and is behaving

myopically it means that player 1 will move from p(j̄,i) to p(j,i) with probability κi.

Summing over all possible i we have the expected profit of the corrective step being
∑

i

κiS(p(j̄,i), p(j,i))

For any given i:

S(p(j̄,i), p(j,i)) = p(j,i) ln
p(j,i)

p(j̄,i)
+ (1− p(j,i)) ln

1−p(j,i)

1−p(j̄,i)

= D(p(j,i)||p(j̄,i))

Thus, the expected profit obtained in the corrective step is
∑

i

κiD(p(j,i)||p(j̄,i))

Theorem IV.7. The honest strategy profile is not a weak PBE equilibrium.

Proof. Player 1 will deviate from the myopic strategy if her expected score of devi-

ating is greater than her expected score of behaving myopically. In particular:

∑

i

κiD(p(j,i)||p(j̄,i))−D(φj||φj̄) > 0

⇐⇒
∑

i

κiD(p(j,i)||p(j̄,i)) > D(φj||φj̄)

⇐⇒
∑

i

κiD(p(j,i)||p(j̄,i)) > D(
∑

i

κip(j,i)||
∑

i

κip(j̄,i))(4.4)
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We use the following standard result on the convexity of the relative entropy, for any

set of convex multipliers {λi}:

(4.5) D(
∑

i

λipi||
∑

i

λiqi) ≤
∑

i

λiD(pi||qi)

Further, we note that equality can hold only if either all pi with λi > 0 are identical,

or pi = qi for at least one pair. (This is implicit in [26, pp. 29-30].)

By the general informativeness condition, p(j,i) (= p(j̄,i). This condition also implies

that, if ī is constructed by changing any one component of i, we have p(j,̄i) (= p(j,i).

As ī can occur with positive probability, the inequality (4.4) holds strictly.

4.4.1 Nonexistence of Finite Equilibrium

We can extend this result to show nonexistence of finite informative equilibria.

For contradiction, consider any weak PBE strategy profile σ that always results in

the optimal market prediction after some number t of rounds in a potentially infinite

game. By theorem IV.7, player 1 cannot play myopically in her first move under σ;

otherwise, she would have a profitable deviation. Thus, after some move that player

1 makes with positive probability under σ, there must be at least two feasible values

of her signal that could have led to that move. We are now left with a reduced game

with a different order of play, perhaps a smaller set of signals that player 1 could

have, and perhaps different values of some κ1
j . σ must be consistent with a weak

PBE of this reduced game. However, the independence and general informativeness

conditions still hold. Thus, we can apply theorem IV.7 again. Inductively, we cannot

have convergence by any finite t.

Intuitively if a player has some private information that may be revealed by her

signal, she has an incentive to not fully divulge this information when she may
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play multiple times in the market. The general informativeness condition simply

guarantees that no matter the signal distribution, a player will always have some

private information revealed by her signal.

4.4.2 Implications for Other Scoring Rules

We believe that these results are not artifacts of the logarithmic scoring rule in

particular. The result above relies on the strict convexity of the Kullback-Leibler

divergence, the divergence associated with the log market scoring rule. The results

above holds for all scoring rules with strictly convex divergence functions. We be-

lieve that many, if not all, other scoring rules have an associated convex divergence

function. In particular, there is a strictly convex divergence function associated with

the quadratic market scoring rule as well. This means that a similar analysis holds

for the quadratic scoring rule.

4.5 Discounting and Entropy Reduction

In this section we propose a discounted market scoring rule, characterize equilibria

in this market in terms of entropy, and use this to show that the market converges

to the optimal price in any equilibrium.

4.5.1 The Discounted Market Scoring Rule

One way to address the incentives traders have to bluff in a market using the log

market scoring rule is to reduce future payoffs using a discount parameter, perhaps

resulting in an incentive to play the myopic strategy. Using this intuition, we propose

the discounted log-MSR market.

Let δ ∈ (0, 1) be a discount parameter. The δ-discounted market scoring

rule is a market microstructure in which traders update the predicted probability of

the event under consideration happening, just as they would in the regular market
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scoring rule. However, the value (positive or negative) of trade is discounted over

time. For simplicity, we assume a strict alternating sequence of trades. Suppose

a trader moves the prediction from p to q in his ith move, and the event is later

observed to happen. The trader would then be given a payoff of δi−1(log q − log p).

On the other hand, if the event did not happen, and the player moves the prediction

from p to q in his ith move he would earn a payoff of δi−1(log(1− q)− log(1− p)).

Using the definition of a market scoring rule price function as defined in [43], we

note that the price function in the δ-discounted market scoring rule is (4.6).

(4.6)
exp((hi − ai)/(b · δt))∑
j exp((hj − aj)/(b · δt))

hj is the amount of shares of security j sold so far. b and aj are constants defined

by the non-discounted market scoring rule.

Clearly, the myopic strategic properties of the market scoring rule are retained

in the discounted form. We will show that the discounted form can have better

non-myopic strategic properties.

We present a multiplicative form of discounting. However, there may be other

forms of discounting that could be used. One alternative would be to charge each

traders a fixed coupon price to trade in the mechanism. In particular, before any

trader trades they pay a fixed cost to the market maker. This approach may actually

disincentivize some traders from participating in this market if their expected profit

from participating without the fixed cost is less than the participation cost. Another

approach to discounting is to fix an ending time of the security. For example, the

market will be closed after 100 trades and the traders will receive their payoff once

the outcome of the event is observed. This approach has the advantage of each trader

revealing their true beliefs with their last trade in the market. However, closing the

event early eliminates the opportunity for traders to gather information past 100



76

trades and have that information aggregated by the market. As the δ-discounted

market scoring rule does not suffer from these drawbacks, we believe it is the way to

discount.

4.5.2 Convergence and Entropy Reduction

The discounted log-MSR may admit equilibria in which players play non-myopic

strategies, i.e., they bluff with some probability. We want to show that, in any

weak-PBE profile σ, the market price will converge towards the optimal value for

the particular realized set of information signals. In other words, although complete

aggregation of information may not happen in two rounds, it does surely happen in

the long run.

We now present a natural metric Di that quantifies the degree of aggregation in

the prediction market after any number of trades of strategy profile σ: Di is the

expectation, over all possible signal realizations and the randomization of moves as

dictated by σ, of the relative entropy between the optimal price (given the realization

of the signals) and the actual price after i rounds.

Formally, for a strategy profile σ, and a number of rounds i, a signal node π

consists of a realization of the signals of the two players, and a sequence of i trades

in the market. The aggregative effect of the strategy profile σ is summarized by the

collection of signal nodes π that can be reached, the market price ri(π) after the last

trade in π, and the associated ex-ante probability P{π} of reaching each such signal

node. Now, we define

Di(σ) = Eσ[D(r∗||ri)]

=
∑

π:π∈σ

P{π}D(r∗(π)||ri(π)) ,

where r∗(π) denotes the optimal trading price given the realization of signals in



77

π. Hereafter, we abuse notation by merely writing Di for Di(σ); the profile under

consideration is obvious from the context. For i = 0, the signal nodes π correspond

to different realizations of the signals.

If Di = 0, it implies that the market will always have reached its optimal price for

the realized signals by the ith rounds. If Di > 0, it indicates that, with positive prob-

ability, the market has not yet reached the optimal price. Di is always nonnegative,

because the relative entropy is always nonnegative.

We now show that, in addition to measuring the distance from full aggregation, Di

also enables interesting strategic analysis. The key result is that Di can be related to

the expected payoff of the ith round move in the non-discounted (standard) log-MSR:

Lemma IV.8. Let M i denote the expected profit (over all signal nodes π) of the ith

trade under profile σ. Then, M i = Di−1 −Di

Proof.

M i =
∑

π:π∈σ

P{π}[r∗(π)[log ri − log ri−1]

+(1− r∗(π))[log(1− ri)− log(1− ri−1)]

=
∑

π:π∈σ

P{π}[D(r∗||ri−1)−D(r∗||ri)]

= Di−1 −Di

This first equality holds by the definition of M i and the second by the definition of

relative entropy.

This suggests another interpretation for Di: Di represents the expected value of

the potential profit left for trades after the ith trade.

Given the definition of M i, we can now define M̃ i as the expected profit of the

ith trade in the discounted log MSR. We have assumed discounting after every even
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trade, i.e., after every trade by player 2.

(4.7) M̃ i =






δk(D2k −D2k+1) ∀i = 2k

δk(D2k+1 −D2(k+1)) ∀i = 2k + 1

Using the definition of M̃ i we write the total profit for player 1 in the δ-discounted

MSR as:

P1 payoff =
∑

i:i=2k,k∈Z+

M̃ i

= D0 −D1 + δ(D2 −D3) + . . .

We can similarly rewrite player 2’s expected payoff as:

P2 payoff =
∑

i:i=2k,k∈Z+

M̃ i+1

= D1 −D2 + δ(D3 −D4) + . . .

We reiterate that the definition of Di is not dependent on δ; it is a measure of the

informational distance between the prices after i trades in profile σ and the optimal

prices. Of course, the stability of a given strategy profile σ may change with δ.

4.5.3 Bounding Relative Entropy

In this section, we bound the value of Dn for large n, in any weak PBE. Recall

that an instance of the two-person market game consists of a set of optimal points for

different signal realizations {p00, p01, p10, p11} and prior beliefs κ1 and κ2 about the

probability that player 1 (and player 2, respectively) will receive the 1 signal. The

optimal points remain unchanged through the entire course of trade, but the players’

beliefs about each other’s signal distribution changes as trade proceeds. Thus, it is

useful to separate the instance description into a configuration {p00, p01, p10, p11} and

a signal distribution (κ1, κ2).

We will express our convergence bound in terms of an invariant of the market

configuration, the complementarity coefficient, which we define below. Fix a par-
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ticular configuration of the optimal points. Now, any pair of probabilities (κ1, κ2)

determines an instance of the game. Let π1
M(κ1, κ2) denote the expected profit of

player 1 if she traded first, and followed the myopically optimal (i.e., honest) trading

strategy in the first round of trade. Similarly, let π2
M(κ1, κ2) denote the expected

profit of player 2 if player 2 had traded first, and followed the myopically optimal

(i.e., honest) trading strategy in the first round of trade. Let D0(κ1, κ2) denote the

initial profit potential of this instance: the expected total profit in moving from ps

to the optimal point. In other words, D0(κ1, κ2) represents the sum of both players’

expected profits if they both followed the myopic strategy. Now, define the comple-

mentarity coefficient C(κ1, κ2) =
π1

M (κ1,κ2)+π2
M (κ1,κ2)

D0(κ1,κ2) . The reason for using the term

‘complementarity’ comes from the following observation. Under the myopic strategy

profile, whichever order the players trade, their total profit will be D0(κ1, κ2). If

this is greater than the sum of what they could each have earned playing first, i.e.,

π1
M(κ1, κ2) + π2

M(κ1, κ2), then this indicates that their individual bits of information

have increasing marginal value, i.e. they are complements. The lower C(κ1, κ2)

is, the greater the complementarity of information. Finally, let the complementarity

bound C of the configuration be the minimum, over all values of (κ1, κ2), of C(κ1, κ2).

Under our independence assumption C(κ1, κ2) is always less than 1; indeed, if it

were greater than 1, the myopic strategy profile would be an equilibrium. We do not

yet have a good characterization of the complementarity coefficient. However, based

on sample configurations, we have observed that it is nontrivial (not always 0), and

often quite close to 1. Note that if C = 0, the myopic strategy may not involve any

movement by either player, and thus, we could have lack of information aggregation

even with the myopic strategy. We exclude such degenerate cases, and assume that

C > 0.
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Now, fix a discount parameter δ, and a particular instance (including probabilities

(κ1, κ2)) of the two-person market game induced by the δ-discounted log-MSR. Let

σ be any weak PBE of this market game.

Without loss of generality we assume that player 2 moves second in the market.

In the first round, player 1 will follow some (perhaps mixed) strategy σ1 dictated by

σ. Under the equilibrium strategy profile σ, player 2 will revise her beliefs consistent

with the profile σ and the realized move. Let π2
M |σ1 denote the expected profit of

player 2 if she played her myopically optimal strategy conditioned on her revised

beliefs. From theorem IV.9 we note that π2
M |σ1 ≥ π2

M .

Theorem IV.9. π2
M |σ1 ≥ π2

M

Proof. Consider any strategy σ for player 1 such that setting σ1 = σ minimizes

π2
M |σ1. We will show that σ must involve player 1 not moving the market price at

all.

We will first argue that σ has support on a single point only. If not, then σ

would have support over a set of points: at least two points A, B, and perhaps a

set of other points R. In this case, we show that we can construct a strategy σ′

that reduces the objective function by “mixing” points A and B. For simplicity, we

assume that κ1 = 0.5, i.e., that player 1 has equal chance of seeing either a 1 or a 0.

Any other value of κ1 can easily be substituted into the proof below, but it would

slightly clutter the notation. Define uA and uB as the probability (under σ) that

player 1 will play A and B given she saw 1 as her signal. Similarly we define vA and

vB as the probability player 1 will play A and B given she saw 0 as her signal. Let

pA be the probability player 1 plays A and similarly pb be the probability player 1

plays B. Without loss of generality let pB < pA. Define α = P{s1 = 1|A} = uA
pA

and
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β = P{s1 = 1|B} = uB
pB

. With these definitions we can define the myopic move of

player 2 given that market is at A and s2 = 1 as φα
1 = αp11 + (1 − α)p01; likewise,

if s2 = 0 as φα
0 = αp10 + (1 − α)p00. Similarly φβ

0 and φβ
1 are defined as the myopic

moves of player 2 given the market is at B.

Now, let C = (A+B)/2 be the midpoint of A and B, and consider a new strategy

σ′ over points A, C, and the same set of remaining points R. Under σ′ she will mix

over A and C with probability pA−pB and 2pB respectively. As before we can define

γ = P{s1 = 1|C} =
pB
pA

uA+uB

2pB
= 1

2
uA
pA

+ 1
2

uB
pb

= α+β
2 . We can now define the myopic

move of player 2 given the market is at C and s2 = 1 as φγ
1 = γp11 + (1 − γ)p01.

Likewise if s2 = 0 and the market is at C the myopic move of player 2 is defined as

φγ
0 = γp10 + (1− γ)p00.

We now characterize π2
M |σ as:

π2
M |σ = 0.5(pA − pB)[qD(φα

1 ||qφα
1 + (1− q)φα

0 )

+(1− q)D(φα
0 ||qφα

1 + (1− q)φα
0 )]

+0.5pB[qD(φα
1 ||qφα

1 + (1− q)φα
0 )

+(1− q)D(φα
0 ||qφα

1 + (1− q)φα
0 )]

+0.5pB[qD(φβ
1 ||qφ

β
1 + (1− q)φβ

0 )

+(1− q)D(φβ
0 ||qφ

β
1 + (1− q)φβ

0 )]

+ remaining profit over R

We also characterize π2
M |σ′ as follows, writing pA as (pA − pB) + pB to facilitate
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comparison with σ′:

π2
M |σ′ = 0.5(pA − pB)[qD(φα

1 ||qφα
1 + (1− q)φα

0 )

+(1− q)D(φα
0 ||qφα

1 + (1− q)φα
0 )]

+0.5 · 2pB[qD(φγ
1 ||qφ

γ
1 + (1− q)φγ

0)

+(1− q)D(φγ
0 ||qφ

γ
1 + (1− q)φγ

0)]

+ remaining profit over R

From the definitions of the myopic moves given the market states, note that φγ
1 =
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φα
1 +φβ

1
2 and φγ

0 = φα
0 +φβ

0
2 . This means that π2

M |σ′ can be bounded as :

π2
M |σ′ = 0.5(pA − pB)[qD(φα

1 ||qφα
1 + (1− q)φα

0 )

+(1− q)D(φα
0 ||qφα

1 + (1− q)φα
0 )]

+0.5 · 2pB[qD(φγ
1 ||qφ

γ
1 + (1− q)φγ

0)

+(1− q)D(φγ
0 ||qφ

γ
1 + (1− q)φγ

0)]

+ remaining profit over R

= 0.5(pA − pB)[qD(φα
1 ||qφα

1 + (1− q)φα
0 )

+(1− q)D(φα
0 ||qφα

1 + (1− q)φα
0 )]

+0.5 · 2pB[qD(φα
1 +φβ

1
2 ||q φα

1 +φβ
1

2 + (1− q)φα
0 +φβ

0
2 )

+(1− q)D(φα
0 +φβ

0
2 ||q φα

1 +φβ
1

2 + (1− q)φα
0 +φβ

0
2 )]

+ remaining profit over R

< 0.5(pA − pB)[qD(φα
1 ||qφα

1 + (1− q)φα
0 )

+(1− q)D(φα
0 ||qφα

1 + (1− q)φα
0 )]

+0.5pB[qD(φα
1 ||qφα

1 + (1− q)φα
0 )

+(1− q)D(φα
0 ||qφα

1 + (1− q)φα
0 )]

+0.5pB[qD(φβ
1 ||qφ

β
1 + (1− q)φβ

0 )

+(1− q)D(φβ
0 ||qφ

β
1 + (1− q)φβ

0 )]

+ remaining profit over R

= π2
M |σ

The last inequality follows from the strict convexity of relative entropy under the

general informativeness condition.

Therefore, for any strategy σ with two or more points in its support, there always

exists a strategy σ′ such that π2
M |σ′ < π2

M |σ. This means that for any strategy, σ, for

player 1 that minimized π2
M |σ the strategy must have only one point in its support.

Thus, the strategy does not reveal any information about player 1’s bit to player 2.
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Suppose that the point in the support, pi, is such that pi (= ps. This again contradicts

the fact that σ minimizes π2
M |σ, as player 2 will always make a positive payoff in

expectation if she moves from pi to ps; thus, she would have a larger payoff overall if

player 1 left the market at pi instead of ps. Therefore the strategy that minimizes the

expected payoff of player 2 is for player 1 to report ps. However, player 1 reporting

ps is equivalent to her not trading at all in the first round. Therefore we have shown

that π2
M |σ ≥ π2

M .

(where, for clarity, we have suppressed the dependence on (κ1, κ2)). Intuitively

the result of the theorem holds, as any move by player 1 reveals some information

to player 2 in equilibrium. Any such information would be used by player 2 to

reduce her uncertainty on the observed bit of player 1. Due to the complementarity

of signals, this results in a higher expected profit for player 2 than if she had no

information at all. The latter is equivalent to the situation in which player 2 moves

first.

Recall that after the second round, the total expected payoff of both players is at

most δD2. We also know that the total expected payoff of player 1 in equilibrium

is at least π1
M ; if not, a simple deviation to the myopic strategy would be beneficial.

By theorem IV.9, the total expected payoff of player 2 in equilibrium is also at least

π2
M . This means that the total payoff of the first two rounds in the market is at least

π1
M + π2

M − δD2. Therefore we can bound D2 as:

D2 ≤ D0 − [π1
M + π2

M − δD2]

This argument generalizes to any even number of rounds, by looking at the total
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expected profits within the first 2k moves, and the remaining profit potential δkD2k:

D2k ≤ D0 − [π1
M + π2

M − δkD2k](4.8)

⇐⇒ (1− δk)D2k ≤ D0 − [π1
M + π2

M ]

= D0

(
1− π1

M + π2
M

D0

)

⇐⇒ D2k ≤ D0 (1− C(κ1, κ2))

1− δk
(4.9)

Note that for any configuration, by definition, C(κ1, κ2) ≥ C. Thus, we can

rewrite inequality (4.9) as:

(4.10) D2k ≤ D0(1− C)

1− δk

From inequality (4.10) we see that the bound on D2k depends only on δ, as D0

and C are both constants for any configuration of pij. Now, consider the remainder

of the game after k rounds. After any particular sequence of moves that occurs

with positive probability, the players would have updated their beliefs about the

other player’s bit. Thus, the players are left to play a slightly different instance

of the 2-player market game, and for smaller stakes. But the configuration of the

optimal points stays the same. Therefore, the equilibrium profile σ will also induce

an equilibrium profile on the instance of the game after 2k rounds. Now, we can

repeat this argument to bound D4k in terms of D2k, etc.

In this way, we rewrite inequality (4.10) in terms of δ and for a round n = 2km.

We set k such that δk/2 = C, i.e. k = 2 log C
log δ . Using this value of k and a value
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m = n
2k we note that:

(4.11)

Dn ≤ D0
(

1−C
1−δk

)m

= D0
(

1−C
(1−δk/2)(1+δk/2)

)m

= D0(1 + δk/2)−m = D0(1 + C)−
n
2k

= D0(1 + C)−
n log δ
4 log C = D0δn− log(1+C)

4 log C

Note that − log(1+C)
4 log C depends only on complementarity coefficient of the market

configuration. Moreover, the value of − log(1+C)
4 log C > 0 as C < 1 from the independence

condition. Therefore, inequality (4.11) shows that the relative entropy of the prices

with respect to the optimal prices reduces exponentially over time.

Further, the mechanism designer can reduce the value of δ to speed up the con-

vergence to optimum in any weak PBE. One caveat: rapid discounting results in

rapidly reducing available profits, and thus, may dissuade traders from participating

in the market.

4.6 Discussion and Future Work

In this chapter, we analyze non-myopic strategies in a two-player prediction mar-

ket setting. We find that the myopic strategies are generically not in equilibrium

when non-myopic strategies are admitted, under our independent signals assump-

tion. In a real market, there may be other reasons why players prefer the myopically

optimal strategies: In particular, they are much simpler to play, and more robust,

and the potential gains from bluffing are often very small. Thus, our results are not

in any way meant to imply that market scoring rules are not a useful microstructure

for organizing a market. Instead, we believe that the analysis suggested here will

be useful in clarifying when markets might be especially susceptible to long-range

manipulative strategies. The contrast between our results and the results of Chen
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et al. [22] are especially intriguing. One exciting direction for future research is to

fully characterize the class of information structures on which myopic strategies are

in equilibrium, and more importantly, are the only equilibrium.

We use a simple modification to the market scoring rule, which includes a form of

discounting, to ameliorate this potential problem. This allowed us to prove a bound

on the rate at which the error of the market, as measured by the relative entropy

between perfect aggregation and the actual price distribution, reduces exponentially

over time. The exponent depends on the “complementarity coefficient” of the in-

stance. One important direction for future work is to characterize or bound this

function; this will lead to a more complete understanding of the convergence rate.

The need for discounting shows a connection to bargaining settings, in which

players bargain over how to divide a surplus they can jointly create. In a prediction

market, informed players can extract a subsidy from the market maker; moreover,

players can pool their information together to make sharper predictions than either

could alone, and thus extract an even larger subsidy. They might engage in bluffing

strategies to bargain over how this subsidy is divided. Explicit discounting can make

this bargaining more efficient.



CHAPTER V

Subsidized Prediction Markets for Risk Averse Traders

This chapter is based on joint work with Marina Epelman and Rahul Sami; parts

were reported in [30].

5.1 Introduction and Related Work

As discussed in Chapter III, Hanson [42] has shown that, for risk neutral agents

who are myopic (i.e., do not account for the effect of their trades on other traders),

it is optimal for each trader to reveal her true beliefs of the outcome of the traded

event in a market scoring rule market. This results leaves two questions:

1. What happens when agents take into account future payoffs?

2. What happens when agents are not risk neutral?

The first question was partially addressed in Chapter IV and results are further

expanded on in Chen et al. [20] by showing that if agents have complementary in-

formation, a mixed strategy of bluffing with a certain probability is an equilibrium

strategy, and if agents have substitutable information, then the truthful strategy is

an equilibrium strategy.

In this chapter, we tackle the second question: What happens when agents are

not risk neutral? In practice, most people are better modeled as being risk averse

88
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in their decision making. We model traders as expected-utility maximizers with an

arbitrary weakly monotone and concave utility functions that captures their risk

aversion. Current prediction market mechanisms, like the market scoring rule or the

dynamic pari-mutuel market [63], do not always give appropriate incentives to risk

averse traders. For example, a sufficiently risk averse informed trader, who knows

that an event will occur with 80% probability even though the current price is 50%,

may not want to push up the price in a market scoring rule market because of the

20% chance of making a loss. This observation suggests that subsidized prediction

markets using the current mechanisms may converge to a non-truthful1 price in a

sequential equilibrium. As prediction markets are used in the corporate setting for

forecasting future events [24], a decision maker running such a market might make

the wrong decision as a result of a non-truthful equilibrium due to the presence of

risk averse traders.

If traders have known risk aversion, the scoring rules could be adjusted to com-

pensate, retaining the original incentive properties. In this chapter, we focus on

the more common setting, in which traders have unknown risk aversion, and study

whether it is possible to modify the market mechanism to guarantee myopic honesty

while preserving other desirable properties of prediction markets. We first list a set

of properties that any prediction market-like mechanism should satisfy: (1) myopic

strategyproofness; (2) sequential trade, giving traders the opportunity to update be-

liefs; (3) a variant of sybilproofness, capturing the idea that trading under multiple

identities does not yield any direct advantage; and (4) boundedness of the expected

subsidy.
1As discussed in Chapter III, risk averse agents may participate, but will report their risk neutral probabili-

ties. Since risk neutral probabilities are reported, the market will converge to an equilibrium in the risk neutral
probabilities. In this situation we say that the market is converging to a non-truthful equilibrium.
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We propose one mechanism that satisfies all of these properties, even in the pres-

ence of traders with unknown risk averse preferences. The key building block of our

result is a technique, developed by Allen [5], of scoring forecasters by varying their

probability of winning a fixed reward. We note that the proposed mechanism has the

undesirable property of reducing the expected reward exponentially with the number

of agents.

We then establish that such exponentially decreasing rewards are unavoidable for

any mechanism satisfying all the properties listed above. It is natural for traders to

have lower expected rewards in some contexts, such as when they have no private

information; to exclude trivial examples of decreasing rewards, we normalize all re-

wards by a measure of the intrinsic informativeness of a trader’s private information.

We show that exponential decrease in the normalized expected reward is necessary for

any mechanism that satisfies the properties we propose in the presence of arbitrarily

risk averse agents. The consequence of this result is that, in any such mechanism,

even a trader with a significant amount of private information might find that she

can earn a very minute amount if the number of traders is large.

Related Work

In this chapter we only consider subsidized prediction markets. Therefore, in this

section we look specifically at risk aversion in scoring rules and subsidized prediction

markets. Prior work on risk aversion in unsubsidized prediction markets is summa-

rized in Chapter III. Hanson [42] introduced the concept of a market scoring rule, a

form of subsidized prediction market, and proved a myopic strategyproofness prop-

erty for risk neutral traders, as well as a bound on the total subsidy. Pennock [63]

introduced another mechanism, the dynamic pari-mutuel market, for a subsidized

prediction market. Both these mechanisms introduce some of the properties in Sec-
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tion 5.2. However, both mechanisms assume risk neutrality of the traders, which

is not assumed in this chapter. Lambert et al. [50] introduced a self-financed wa-

gering mechanism, i.e., one that is not subsidized, and introduced properties that

such a mechanism must satisfy and showed a class of mechanisms that satisfy these

properties. The authors assumed risk neutral traders and an absence of subsidy in

the mechanism. Chen and Pennock [21], and later generalized by Agrawal et al. [3],

considered a risk averse market maker in a subsidized market and showed that the

market maker has bounded subsidy in most forms of risk aversion. This line of work

is useful to show that even a risk averse market maker would be interested in sub-

sidizing a market; however, unlike this chapter, the incentive consequence of risk

averse traders were not addressed.

As discussed in Chapter III, the market scoring rule prediction market mechanism

is based on scoring rules, which originally were introduced to measure the accuracy

of weather forecasters. In order to address risk aversion in subsidized prediction

markets, we look at previous work on risk aversion in scoring rules. Winkler and

Murphy [78] showed that, if forecasters have a known risk type, scoring rules can

be transformed to recapture the honest reporting property. Chen et al. [19] and

Offerman et al. [59] provided one approach to handling forecasters with unknown

risk type: they proposed first figuring out every participant’s risk type by asking

them a series of questions, and then calibrating their future reports using this data.

This mechanism may work for a prediction market mechanism if the group of traders

can be pre-screened. However, this may not be the case, and ideally we would like

to have an “online” mechanism that can handle traders regardless of their risk type

without any calibration. Allen [5] proposed one such “online” scoring rule for traders

with arbitrary risk type. Our mechanism is based on Allen’s result, and we discuss
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this idea in Section 5.3.

5.2 Model, Notation, and Definitions

In this section and Section 5.4 we consider a class of mechanisms defined by a set

of properties each mechanism in the class satisfies. These properties are satisfied by

most subsidized prediction markets described in literature. We do not claim that the

outlined properties are sufficient to completely characterize the space of prediction

market mechanisms; rather, they identify a class of broad market-like mechanisms.

We first describe our basic model of the information and interaction setting in which

the mechanism operates, and then list the properties that the mechanisms we study

should satisfy.

We consider a class of mechanisms designed to aggregate information from a set

of agents (or traders) in order to forecast the outcome of a future event ω. Each

agent i receives a private information signal, si, relevant to the outcome of the event;

we assume si is binary, as is ω.

As before, in the market-like mechanisms that we consider, the agents sequentially

interact with the mechanism through trades or reports, each of which expresses a

predicted probability of the event. Reports are public, and other agents can update

their beliefs based on the observed history of reports. We use rk ∈ [0, 1] to denote

the kth report made in the market, and let µk = (r1, · · · , rk−1) denote the history

up to the start of the kth trade. rk can thus depend on µk as well as any private

information available to the trader making the report. We let n denote the total

number of trades in the market.

The agents provide names while making reports, but in this chapter we consider

a setting in which the identity of the agents making the reports cannot be verified,
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and that the total number of participating agents is not known. We assume that

no agent is identified more than once in a sequence of trades. An agent may, how-

ever, masquerade as multiple agents, which will be important in our consideration

of sybilproofness. This requirement to treat each trade as if it were from a separate

agent is natural for a market setting.

Once the true outcome of the event is realized, ω = 1 if the event occurs and

ω = 0 if the event does not occur, the mechanism determines the reward for every

agent. The reward for agent i, ρ(ri, µi, n,ω), is a function of the report of the

agent, the market state at the time the report has been made, the total number

of agents participating in the mechanism, and the outcome of the event. We allow

the mechanism to randomize the distribution of the rewards, and we propose one

such mechanism in Section 5.3. We assume that the reward does not depend on any

reports made in the future. This is a nontrivial technical assumption that enables

us to simplify the analysis of agents’ myopic strategies, as agents can make decisions

based on their current beliefs about the outcome, without forming beliefs about

future agents’ signals and strategies. This assumption is satisfied by most securities

markets as well as market scoring rule markets, but is not necessarily true for pari-

mutuel markets.

Every agent i values the reward distributed to her by the mechanism according

to her value function Vi(·), where Vi(·) is a weakly monotone increasing concave

function. We make the normalizing assumption that Vi(0) = 0. In order to make her

report, the agent maximizes her expected value Eω∼piVi(ρ(r, µi, n,ω)) over possible

reports r ∈ [0, 1]. The expectation above is taken over the outcome of the event

(with respect to the agent’s true belief pi, as emphasized by the notation), as well as

any randomization of the mechanism over the rewards. Though there may be other
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sources of uncertainty in the mechanism, we do not consider them in our model.

We identify the properties mechanisms should satisfy by examining the literature

in prediction market design and other wagering mechanisms. In recent literature

there is work on characterizing properties of subsidized prediction markets. Han-

son [42], in introducing the market scoring rules required a subsidized prediction

market be myopically strategy proof, meaning that an agent not considering future

reward will maximize her payoff by reporting her true belief on the outcome of the

event. Similarly, he required that the subsidized prediction market have bounded

market subsidy. The same properties also hold in the dynamic pari-mutuel market

introduced by Pennock [63]. Due to the fact that both Hanson’s and Pennock’s mech-

anisms were subsidized, both had guaranteed liquidity by having a market maker that

is always willing to trade with an agent using a predetermined price function. Predic-

tion markets provide anonymity, i.e., the reward given due to a report is independent

of who made the report. Finally, prediction markets are sybilproof, meaning that an

agent reporting once with some information is no better off reporting twice in the

market (using different names, commonly referred to as sybils) with the exact same

information. We note that though anonymity and sybilproofness were not explicitly

stated by Hanson or Pennock, they still hold in their proposed mechanisms and were

explicitly defined by Lambert et al. [50]. The definition of sybilproofness we give is a

relaxation of that presented by Lambert et al. in that we require the agent being no

better off reporting twice, while they require the agent receive the exact same payoff

regardless of the agent reporting once or twice.

Using the notation established above, we formally define the desired properties:

P1: Myopically Strategyproof: Let pi be the true belief of the agent making the

ith trade, this belief being determined by the market history up to trade i, µi,
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and her signal, si. If this agent trades only once in a market, her reported belief,

which maximizes her expected utility in a myopically strategy proof mechanism,

will be her true belief,. Equivalently, if an agent does not take future payoff

into consideration, she will report her true belief. Mathematically, for any n,

i ∈ {1, . . . , n} and µi,

pi = arg max
r∈[0,1]

piVi(ρ(r, µi, n,ω = 1)) + (1− pi)Vi(ρ(r, µi, n,ω = 0))

= arg max
r∈[0,1]

Eω∼piVi(ρ(r, µi, n,ω)).

(5.1)

(As mentioned above, we use the notation Eω∼pi to represent the expectation

over the outcome of the event ω with respect to beliefs pi, as well as, if appro-

priate, any randomization of the mechanism over the rewards.) Further, we also

require that the expected value an agent gets as a result of such report, which

we refer to as an honest trade, should be non-negative. In other words, our

notion of myopic strategyproofness includes a standard individual rationality

condition.

P2: Sybilproofness: A mechanism is sybilproof if an agent is no worse off re-

porting once in this mechanism than consecutively reporting more than once.

Equivalently, an agent reporting in a mechanism with her private belief will not

increase her expected value by reporting more than once with the same belief.

For ease of analysis we consider a slightly weaker condition of reporting twice

being no better than reporting once; our results hold for any number of consec-

utive trades. Mathematically, for any n, i ∈ {1, . . . , n} and µi, as well as any

reports r(1) and r(2),

(5.2)

Eω∼piVi(ρ(pi, µi, n,ω)) ≥ Eω∼piVi(ρ(r(1), µi, n + 1, ω) + ρ(r(2), µi+1, n + 1, ω)),
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where µi+1 = (µi, r(1)).

Note that this definition embodies a limited, myopic form of a sybil attack. In

particular, it states that consecutive trading under different identities is not prof-

itable, but does not rule out attacks involving non-consecutive trades. As dis-

cussed in the previous chapter, dishonest trading with multiple non-consecutive

trades may be profitable even with current market mechanisms and risk neu-

tral traders; further, the profitability of such attacks depends on the specific

information distribution pattern as well as the mechanism chosen. In order to

make a clean comparison to current market forms, we focus on simpler attacks

involving consecutive trades only.

P3: Bounded Subsidy: There exists an upper bound β on the expected value of

the subsidy the market maker needs to invest into the market. That is, for any

number of trades in the market, n, and any collection of reports ri ∈ [0, 1], i ∈

{1, . . . , n}, made,

Eω

(
n∑

i=1

ρ(ri, µi, n,ω)

)
< β.

Here we use Eω to denote that the expectation is taken with respect to the true

probability of the event taking place.

To summarize, we define the class of market-like mechanisms to be all mechanisms

that guarantee liquidity, are anonymous, myopically strategy proof and sybilproof, and

have bounded market subsidy.

Before we introduce our results, we must introduce the concepts of information

structure, report informativeness, and expected normalized reward.

Information Structure: Recall that we define an information structure to consist

of a set of possible signal realizations for each trader, and the posterior prob-
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ability of the event given a subset of signal realizations (equivalently, the joint

probability of signal realizations and the event outcome). An information struc-

ture can be represented as a tree of possible trading histories that would arise

if each agent honestly reported her belief.

Informativeness: For a given information structure, we define informativeness of

an agent k as the expected relative entropy reduction of the posteriors after

including agent k’s signal into the history. The relative entropy, or Kullback-

Leibler divergence, between p and q is defined as (see [26, Chapter 2]):

D(p||q) ! p log
p

q
+ (1− p) log

1− p

1− q
.

Let p(µk) denote the posterior probability of the event after the first k signals

are revealed. The informativeness of k is then defined as the expectation, over

all future histories (all future traders’ signal realizations) in the information

structure, of D(ω||p(µk−1)) − D(ω||p(µk)), where the outcome ω is treated as

a distribution with all mass on the eventual outcome. This definition of infor-

mativeness measures how much each agent’s report contributes to reducing the

uncertainty about the event’s occurrence.

Expected Normalized Reward: The informativeness and reward of an agent’s

report depend on the history of previous trades. Therefore, in order to compare

the reward an agent receives from a report, we define the expected normalized

reward. Note that we assumed agents are expected value maximizers; therefore,

to compare the reward between agents, we normalize the expected reward they

receive by the informativeness of that report. For example, if an agent with in-

formativeness h and posterior belief pi reports ri, she expects to receive a reward

of Eω∼piρ(ri, µi, n,ω); then her expected normalized reward is
Eω∼piρ(ri,µi,n,ω)

h .
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5.3 Proposed Mechanism

In this section we review the work presented by Allen [5] and then present one

mechanism that satisfies the properties outlined in Section 5.2.

5.3.1 Allen’s Result

We first explore the core of Allen’s result involving a single trader who is an

expected value maximizer with an increasing value function V (·). We assume that

the trader has unknown risk preference, i.e., while function V (·) is known to be

monotone, its exact form is not known to the market-maker. The trader is asked to

predict the probability of an outcome ω.

Suppose the trader gives her assessment, p̂, on the outcome of the event, while

her true belief is p. If the event occurs, she receives a reward of 1 with probability

q(p̂) = 1− (1− p̂)2, and if the event does not occur, she receives a reward of 1 with

probability q̂(p̂) = 1− p̂2.

As the trader is maximizing her expected value, she will maximize over p̂

Eω∼pV (p̂) = p[q(p̂)V (1) + (1− q(p̂))V (0)] + (1− p)[q̂(p̂)V (1) + (1− q̂(p̂))V (0)],

and thus set p̂ = p, as long as V (1) > V (0). Therefore, in an Allen sweepstake (the

q(·) and q̂(·) functions are referred to as sweepstake functions), a trader will reveal

her true belief to maximize her expected reward value. Note that this report also

maximizes the probability of winning the sweepstake.

Allen’s result follows from the fact that the expected value is linear in p (the

probability of winning), and regardless of the form of the value function, as long as

it is monotonically increasing, any sweepstakes q(·), q̂(·) such that

p
dq(p̂)

dp̂
+ (1− p)

dq̂(p̂)

dp̂

∣∣∣∣
p̂=p

= 0
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is satisfied will result in an expected value maximizing player revealing her true be-

liefs. The condition above means that Allen’s sweepstake functions can be generalized

to q(p̂) = a− b(1− p̂)2 and q̂(p̂) = c− bp̂2.

5.3.2 Proposed Sweepstakes

In this section we propose one possible sweepstakes method that is a generalization

of Allen’s result. Consider the following serial sweepstakes:

1. Each agent, in order, observes the previous agents’ reports, and plays an in-

dividual sweepstake as defined by Allen with generalized sweepstake functions

described in Section 5.3.1.

2. The outcome of the event is observed.

3. If there are n reports in the mechanism, then each player reporting p̂ wins a

reward of 1 with probability q(p̂) = 1
4n (1 − (1 − p̂)2) if the event occurred and

q̂(p̂) = 1
4n (1− p̂2) if the event did not occur.

As the discussion below demonstrates, this method satisfies the desired properties

outlined in Section 5.2.

Guaranteed liquidity: As each agent, by making a report, participates in an Allen

sweepstake, she is guaranteed a nonnegative payoff, thus guaranteeing liquidity.

Anonymity: As each agent receives a reward independent of who she is, anonymity

holds.

Bounded market subsidy: If the event occurs, and there are n agents in the mech-

anism, then at worst every agent would have reported 1, and each would receive

a reward of 1 with probability 1
4n , meaning that in expectation the total reward
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given out is n · 1
4n . (The case if the event does not occur is similar.) In either

case, the highest expected reward given out would be n · 1
4n < 1

4 for n ≥ 1.

Myopically strategy proof: This follows from the fact that each (myopic) agent is

playing an independent Allen sweepstake with generalized sweepstake functions.

Sybilproof: In this setting, we will use the “full” definition of sybilproofness, i.e.,

an agent is no worse off reporting once than consecutively reporting more than

once. With a slight abuse of notation, we want to show that

(5.3) EV (ρ(reporting once)) ≥ EV (ρ(reporting k times)), k ≥ 1.

Consider an agent with true belief p. Let us define

P̄ (r) = p(1− (1− r)2) + (1− p)(1− r2)

(P̄ (r) can be interpreted as this agent’s estimate, based on her beliefs, of the

probability of winning the sweepstake if she were the only trader in the mecha-

nism and reported value r). Then, when there are n traders in the mechanism

and this agent reports only once (in which case she would report her true belief,

r = p), her expected value of payoff is

EV (ρ(reporting once)) =
1

4n
P̄ (p) V (1).

Consider now the case when, by creating sybils, this agent makes k > 1 (possibly

different) consecutive reports, and thus increasing the number of trades in the

mechanism to n + k − 1. Due to monotonicity of V (·), it can be argued that

to maximize her expected value, the agent should still have each of the sybils

report her true belief (since, by reporting r = p, each sybil plays in a sweepstake

the agent believes it has the highest chance of winning). Taking into account
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V (0) = 0, the expectation of the value received by the agent from sweepstakes

of k sybils is

EV (ρ(reporting k times)) =
k∑

i=1

(
k

i

) (
1

4n+k−1
P̄ (p)

)i (
1− 1

4n+k−1
P̄ (p)

)k−i

V (i)

≤
k∑

i=1

(
k

i

) (
1

4n+k−1
P̄ (p)

)i (
1− 1

4n+k−1
P̄ (p)

)k−i

iV (1)

= k
1

4n+k−1
P̄ (p) V (1)

≤ 1

4n
P̄ (p) V (1).

The first inequality holds because V (·) is concave and V (0) = 0, implying that

V (i) ≤ iV (1) for i ≥ 1.

We conclude that for k ≥ 1, EV (ρ(reporting once)) ≥ EV (ρ(reporting k times)).

The mechanism above possesses all of the desirable properties outlined in Sec-

tion 5.2; however, the mechanism distributes rewards that are exponentially de-

creasing with the number of agents. Moreover, we know that if every agent makes

an equally informative report, then the expected normalized reward also decreases

exponentially with the number of reports. In the next section we will show that

expected normalized reward must decrease exponentially, in the worst case over all

information structures, whenever agents with unknown risk aversion are allowed to

participate in a mechanism with the properties of Section 5.2.

5.4 Impossibility Result

In this section, we show that if agents with arbitrary risk averse preferences are

allowed to participate in a mechanism of this class, then the normalized expected

reward of the agents must, on at least one family of information structures, decrease

exponentially with the number of agents.



102

An overview of our proof is as follows: We first show that if agents of arbitrary

risk averse preferences participate in the mechanism, and the mechanism satisfies the

individual rationality condition included in the definition of myopic strategyproof-

ness, then the amount of reward given for any report must be non-negative. We then

consider a situation with n traders who each trade once, honestly revealing their

posterior probabilities. From this situation we identify a sybil attack with the same

n agents, i.e., the agents having the same posterior probabilities, making a total

of n + 1 reports, meaning that two of these reports are made by the same agent.

Using the sybilproofness property, if follows that the expected reward of the agent

making the two reports cannot be greater than her expected reward of making only

one report. We then construct a different information structure with n + 1 agents

making the same n + 1 reports made in the sybil attack setting, however the reports

are truthful. We will then show that the expected rewards in the setting with n + 1

agents are bounded by a constant multiple of the expected rewards in the sybil at-

tack setting. Because the expected reward of the agent reporting twice in the “sybil

setting” is bounded by her expected reward in the “honest setting” with n agents,

it means that the expected reward of one of the agents in the setting with n + 1

agents is bounded by the expected reward of one of the agents in the setting with

n agents. We use this construction inductively, to show that the expected rewards

must be exponentially decreasing in n, even if all traders are trading honestly.

5.4.1 Sybil Attack Payoff Bound

Before we show our main result, we first show that the reward in any mechanism

satisfying the properties in Section 5.2 must be non-negative. We also show that the

expected reward an agent receives for making the same report under different beliefs

is bounded when the beliefs are bounded away from 0 and 1.
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Lemma V.1. If a mechanism satisfies the properties in Section 5.2 and allows all

rational agents with arbitrary risk averse types to trade, then each agent receives

non-negative reward for any report.

Proof. Consider a mechanism that has the potential to distribute negative rewards.

Now, consider an agent that receives a value of x for any payoff less than ε for some

ε > 0, and a value of ε for any payoff greater than or equal to ε, i.e.,

V (x) =






x x < ε

ε x ≥ ε
. Consider the reward distribution that is given to this agent if

she trades honestly. By the myopic strategyproofness property, this agent’s expected

value from the rewards given to her must be non-negative. Given her value function,

if any reward were negative, a small enough ε could be found such that the expected

reward is negative.

For ease of analysis, we will use the following approximation of relative entropy:

(5.4) ∀p, q ∈ [0.3, 0.7] 2(p− q)2 ≤ D(p||q) ≤ 5(p− q)2.

The left-hand inequality was proven by Okamoto [60]. The right-hand inequality

follows, for p, q ∈ [0.3, 0.7], from the inequalities of log(1+x) ≤ x and log(1−x) ≤ −x.

We make this approximation because we can now approximate the informativeness

of a report (move) as the square of the difference between the posteriors after every

report (move). Moreover, a constant factor will not impact the exponential decrease

in the expected normalized reward of the report we are establishing.

Note that a mechanism cannot “tell” if it is faced with n agents trading honestly,

or a sybil attack with n − 1 agents with one trading twice consecutively. The only

difference between these two situations is in the beliefs of the agents; in the sybil
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attack, the market prices after a sequence of moves may not match the posterior

probability of the last trader. As all posterior probabilities are in a bounded range,

we show that this has limited effect:

Lemma V.2. For ρ1, ρ0 non-negative (with at least one of them positive), p, q ∈

(0, 1), and p̄ = (1− p), and q̄ = 1− q:

min

(
p

q
,
p̄

q̄

)
≤ pρ1 + p̄ρ0

qρ1 + q̄ρ0
≤ max

(
p

q
,
p̄

q̄

)
.

The proof follows from the observation that αp+ρo

αq+ρ0
is monotone decreasing if p < q

and monotone increasing if p > q in α > 0, with an asymptote at 1.

Proof. Without loss of generality, we can assume ρ1 ≥ ρ0.

Case 1: ρ0 = ρ1 > 0:

pρ1 + p̄ρ0

qρ1 + q̄ρ0
= 1,

which satisfies the inequalities trivially.

Case 2: ρ1 > ρ0, i.e., ρ1 = ρ0 + α, where α > 0:

pρ1 + p̄ρ0

qρ1 + q̄ρ0
=

p(ρ0 + α) + p̄ρ0

q(ρ0 + α) + q̄ρ0
=

αp + ρ0

αq + ρ0
.

If p ≥ q:

min

(
p

q
,
p̄

q̄

)
≤ 1 ≤ αp + ρ0

αq + ρ0
≤ αp

αq
≤ max

(
p

q
,
p̄

q̄

)

The first inequality holds by the definition of p, q, p̄, q̄. The remaining in-

equalities hold because p ≥ q and α is positive.

If p < q:

min

(
p

q
,
p̄

q̄

)
≤ αp

αq
≤ αp + ρ0

αq + ρ0
≤ 1 ≤ max

(
p

q
,
p̄

q̄

)

This first three inequalities hold because p < q and α is positive. The fourth

inequality holds by the definition of p, q, p̄, q̄.
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Lemma V.2 states that the ratio between expectations over the same values with

respect to two different probability mass functions is bounded by the ratio of the

elements in the probability mass functions. We use this idea to bound the expected

reward of the same report made in a mechanism under two different beliefs.

Lemma V.3. An agent making a report ri after history µi under belief p(µi, si),

receives an expected reward that is a constant multiple of the expected reward she re-

ceives when making report ri after history µi under belief q(µi, si), where p(µi, si), q(µi, si) ∈

(pl, pu) with 0 < pl < pu < 1. Mathematically,

min
(

pl

pu , p̄l

p̄u

)
≤ p(µi,si)ρ(ri,µi,n,ω=1)+p̄(µi,si)ρ(ri,µi,n,ω=0)

q(µi,si)ρ(ri,µi,n,ω=1)+q̄(µi,si)ρ(ri,µi,n,ω=0)

≤ max
(

pl

pu , p̄l

p̄u

)
.

The proof follows by applying lemma V.2 in the setting of non-negative rewards,

and using the fact the posteriors are bounded to (pl, pu) to get a bound for all

posteriors. In our setting we use pl = 0.497 and pu = 0.503.

Proof. By Lemma V.1 we know that the reward to any agent is non-negative. This

means that the expected reward for a risk neutral agent must also be non-negative,

and may be written as: p(µi, si)ρ(ri, µi, n,ω = 1) + (1 − p(µi, si))ρ(ri, µi, n,ω = 0)

in one setting, and q(µi, si)ρ(ri, µi, n,ω = 1) + (1− q(µi, si))ρ(ri, µi, n,ω = 0) in the

other.

The rewards are non-negative and p(µi, si), q(µi, si) ∈ (pl, pu), (pl, pu) ⊂ (0, 1). We

also assume that at least one of the rewards is strictly positive. From Lemma V.2 it

follows that:

min
(

p(µi,si)
q(µi,si)

, p̄(µi,si)
q̄(µi,si)

)
≤ p(µi,si)ρ(ri,µi,n,ω=1)+p̄(µi,si)ρ(ri,µi,n,ω=0)

q(µi,si)ρ(ri,µi,n,ω=1)+q̄(µi,si)ρ(ri,µi,n,ω=0)

≤ max
(

p(µi,si)
q(µi,si)

, p̄(µi,si)
q̄(µi,si)

)
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As both posteriors, p(µi, si) and q(µi, si), are bounded in some interval (pl, pu) ⊂

(0, 1), the result may be rewritten as:

min( pl

pu , p̄l

p̄u ) ≤ p(µi,si)ρ(ri,µi,n,ω=1)+p̄(µi,si)ρ(ri,µi,n,ω=0)
q(µi,si)ρ(ri,µi,n,ω=1)+q̄(µi,si)ρ(ri,µi,n,ω=0)

≤ max( pl

pu , p̄l

p̄u )

5.4.2 Inductive Construction of Information Structures

To reiterate, we define an information structure to be the set of all histories and all

honest reports with no sybils for all combinations of all the agents’ signal realizations.

This can be represented as a tree where each level represents an agent, each node

represents the belief, or market prediction, of an agent before her report is made,

and each branch represents the signal realizations that lead to the current market

prediction. (Note that, except for the first agent, each agent’s belief is a posterior

distribution, calculated based on observing the (honest) reports of the other agents

and inferring their signals from their reports.) Such a representation can be seen in

Figure 5.4. In Figure 5.4, there are 3 agents, each starting with a common prior on ω

of 0.5. If the first agent sees a “right” signal, she makes an honest report of 0.5 + c
2 ,

and all agents calculate their posterior. If the second agent sees a “left” signal, and

had a prior of 0.5 + c
2 , she reports 0.5 + c

4 , and so on.

We will now describe our inductive procedure to construct a family of informa-

tion structures I(n). Fix a mechanism in the class described in Section 5.2. The

construction of I(n) depends on the mechanism, but enables us to show that, for any

given mechanism, there is a family of information structures on which the mechanism

must exhibit exponentially decreasing normalized rewards. The inductive construc-

tion requires one additional parameter c, which bounds the agents’ posteriors. In

this chapter we use c = 0.003.



107

We assume that each agent has a common prior of 0.5 on the outcome of the

event. Further, all agents’ posteriors are bounded between 0.5 − c and 0.5 + c. In

the constructed structures, the first j + 1 agents, with probability 1
2 , observe one

of two signals (e.g., right, left). The remaining agents observe their signals with

probabilities that make their beliefs consistent with their reports. How the value of

j is selected will be explained later in this section, and we will note that the actual

reports of agents after j + 1 do not influence the results.

The first structure, I(1), has only one agent. If the agent receives a right signal then

her posterior is 0.5+c, and if she receives a left signal then her posterior is 0.5−c. (In

Figure 5.1, we illustrate the information structure I(1); we say that the informative-

ness of the report in I(1) is (0.5+ c−0.5)2 = c2). We then create I(2) by splitting the

report in I(1) into two symmetric reports as illustrated in Figure 5.2. When we say a

report is split, we mean that an additional level is added to the binary tree represent-

ing the information structure. Further, the history up to the split report remains the

same and history after the split changes in order to make all reports consistent with

the joint probability distribution underlying the resulting information structure. We

say that a report is symmetric when for all signal realizations the absolute value of the

differences in the prior, before the report is made, and the posterior, after the report

is made, of that report are equal. For instance, in Figure 5.2, the first report is sym-

metric because |0.5−(0.5− c
2)| = |0.5−(0.5+ c

2)|, and the second report is symmetric

because |(0.5− c
2)−(0.5−c)| = |(0.5− c

2)−0.5| = |(0.5+ c
2)−0.5| = |(0.5+ c

2)−(0.5+c)|.

Similarly, all of the reports in Figure 5.4 are symmetric, however the last report in

Figure 5.3 may or may not be symmetric, depending on the values of α1–α6.

Starting with I(3), we construct I(k+1) from I(k) by comparing the expected re-

ward of the two symmetric reports just added in I(k). Note that we will always be
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Figure 5.2: n = 2

comparing two symmetric reports, because by construction we are always splitting a

report into two symmetric reports. Say, report j and report j + 1 are these reports.

For example, in I(2), j = 1. If the expected reward of agent j is 4 times greater



109

than the expected reward of agent j + 1, then I(k+1) is created by splitting report

j into two symmetric reports (this case is exhibited when creating I(3) shown in

Figure 5.3 from I(2)). Assuming report j shifted the posterior by ±β (meaning for

one signal realization the difference in posteriors will be β and in the other signal

realization the difference in posteriors will be −β), then these new reports will shift

the posterior by ±0.9β. Note that the report following the split in I(k+1) will become

asymmetric in order to make the beliefs consistent with the reports (the exact value

of this report does not matter because rewards are independent of future reports).

For I(k+1) constructed in this manner, we set jk+1 = j, where jk+1 is the first report

we consider for splitting in the next step of the inductive construction process.

Otherwise, i.e., if the expected reward of agent j in structure I(k) is not 4 times

greater than the expected reward of agent j + 1, then I(k+1) is created by splitting

report j + 1 into two symmetric reports (this case is exhibited when creating I(3)

shown in Figure 5.4 from I(2)). Assuming report j + 1 shifted the posterior by ±β,

then these new reports will shift the posterior by ±0.5β. For I(k+1) constructed in

this manner, we set jk+1 = j + 1; again, jk+1 is the first report we consider for

splitting next.

By the construction of I(k+1) we keep the history before the split report the same

as it was in I(k). Moreover, if we let js
k be the report split in I(k), then we know that

jk+1 = js
k, where jk+1 is the first report we consider in I(k+1). We note that so long

as the posterior before a report is between the posteriors after the report under two

different signal realizations, we can always construct a feasible information structure

(i.e., an information structure that is consistent with Bayesian updating on some

joint distribution on si and ω). By the construction of I(k+1) from I(k) we note

that the posteriors before a report are always bounded between the posteriors after,
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meaning the information structures we construct are feasible.

For example, in Figure 5.2 we show I(2) when there are two agents in the mech-

anism, n = 2 (the informativeness for the first report is ((0.5 + c
2)− 0.5)2 = c2

4 , and

the second is ((0.5+ c)− (0.5+ c
2))

2 = c2

4 ) ; We show I(3) in Figure 5.3 if report j = 1

was split, and in Figure 5.4 we show I(3) when report j = 2 was split.

0.5 + 0.9c
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Figure 5.3: n = 3 case 1

5.4.3 Exponential Bound

The exponential bound that we show follows from the fact that we allow agents of

arbitrary risk averse preferences to participate in a mechanism satisfying the prop-

erties in Section 5.2.

Theorem V.4. If an anonymous, guaranteed liquidity mechanism satisfies properties

P1–P3, then, there is a family of information structures I(n), each parameterized

by a number n of agents, such that, if all agents perform perfect Bayesian updating

according to the structure I(n) and report their posteriors honestly, the minimum



111

0.5

! ! ! ! ! !!

! ! !

! !

!

!

!
!

!
!

!
!

!!
"
"
"
"
"
"
""
#
#
#
#
#
#
##

)
)

)
)

)
)

))
$

$
$

$
$

$
$$

%
%
%
%
%
%
%%

&
&
&
&
&
&
&&
#
#
#
#
#
#
##

'
'
'
'
'
'
''

(
(
(
(
(
(
((

$
$

$
$

$
$

$$
'
'
'
'
'
'
''

#
#
#
#
#
#
##

'
'
'
'
'
'
''

0.5 + c
20.5− c

2

0.5− 3c
4 0.5− c

4 0.5 + 3c
4

0.5 + c
4

0.5− c 0.5 + c0.50.5− c
2 0.50.5− c

2 0.5− c
2 0.5− c

2

!
Figure 5.4: n = 3 case 2

normalized expected reward of an agent must decrease exponentially with n.

The proof follows inductively by building a family of information structures, where

one of the two last added reports is split into two new reports, to simulate a sybil

attack. The report split is determined by looking at the expected rewards of the two

new added reports. In one case the new reports have 0.81 times the informativeness

of the original report, and in the other the new reports have 0.25 times the infor-

mativeness. The sybilproofness property, specialized for a risk neutral agent, implies

that the expected reward from the original report must be greater than or equal to

the expected reward of the two new reports. Using the fact that the rewards are

non-negative and Lemma V.3, we show that one of the new reports, made in the

honest setting, has an expected normalized reward that is no more than c+0.5
0.5−c ·

80
81 the

expected normalized reward of the report that is split. We note that for c = 0.003,

c+0.5
0.5−c ·

80
81 < 1. Iteratively applying this observation, we can show that there exists at

least one trade that has an expected normalized reward exponentially smaller than
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the expected normalized reward of only participating in the mechanism in which

n = 1.

Proof. In the following we will be applying the sybilproofness property at every step,

while constructing a sequence of information structures I(n), n = 1, 2, . . . , where n

is the number of agents trading. During a sybil attack, a risk neutral agent would

be comparing the expected payoff she may receive for trading once to the expected

payoff she may receive when trading twice with the same information. In order for

the sybilproof property to hold, the expected payoff over her beliefs in information

structure I(n), from reporting once must be at least as large as the expected payoff

from reporting twice. We write this as:

(5.5)

Eω∼P{I(n)}ρ(rn, µn, n,ω) ≥ Eω∼P{I(n)}[ρ(r′n, µn, n + 1, ω) + ρ(r′n+1, µn+1, n + 1, ω)].

Above we use Eω∼P{I(n)}[·] to note that the expectation of the reward is with respect

to the posteriors in I(n). In order to avoid adding unnecessary notation we use the

following convention to discern if we are considering a case of a sybil attack or a case

of a honest trade:

honest trade: Eω∼P{I(N)}[ρ(rN
j , µj, N,ω) + ρ(rN

j+1, µj+1, N,ω)]

sybil attack: Eω∼P{I(N)}[ρ(rN+1′′

j+1 , µ′′j+1, N + 1, ω) + ρ(rN+1′′

j+2 , µ′′j+1, N + 1, ω)].

The key difference here is that, in the sybil attack setting, the number of traders is

N , having beliefs defined in I(N), is not the same as the number of reports, N + 1,

the third value in the reward function. However, in the honest trade setting they are

both equal to N .

Below we present a proof by induction:

Inductive Hypothesis: There exists an information structure I(N) with a pair of
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reports, j, j + 1 that are symmetric and each have informativeness tN , and

(5.6)

Eω∼P{I(N)}[ρ(rN
j , µj, N,ω) + ρ(rN

j+1, µj+1, N,ω)] ≤
(

0.5 + c

0.5− c

)N−1 (
80

81

)N−2

tN4l.

Here we set l =
E

ω∼P{I(1)}ρ(r1
1 ,µ1,1,ω)

c2 to be the expected normalized reward of an agent

reporting once in information structure I(1). In I(1) an agent starts with a prior of

0.5, with equal probability observes a value (right, left) of her private binary signal,

and reports 0.5 + c if she observes one value (right) or 0.5 − c if she observes the

other (left).

If we show (5.6) holds for all N , then we would have shown the result of the

theorem, as we would have constructed a family of information structures where

there exists at least one report that has a normalized expected reward exponentially

smaller than l. In particular, as all rewards are non-negative, it follows that all

expected rewards are also non-negative. This means:

Eω∼P{I(N)}ρ(rN
j , µj, N,ω) ≤ Eω∼P{I(N)}[ρ(rN

j , µj, N,ω) + ρ(rN
j+1, µj+1, N,ω)]

=⇒ Eω∼P{I(N)}ρ(rN
j , µj, N,ω) ≤

(
0.5 + c

0.5− c

)N−1 (
80

81

)N−2

tN4l

=⇒
E

ω∼P{I(N)}ρ(rN
j ,µj ,N,ω)

tN
≤

(
0.5 + c

0.5− c

)N−1 (
80

81

)N−2

4l.

Note that the last inequality gives us the desired exponential reduction for c ≤ 0.003.

Base case: For N = 2, we start with I(1) where only one agent is making a single

report with an initial prior of 0.5 and either reports 0.5 + c with probability 1
2 or

0.5−c with probability 1
2 . This agent now is considering making two reports with the

same prior she had in I(1). The two reports considered have equal informativeness

and are created by splitting the report in I(1) into two symmetric reports as depicted

in Figure 5.2. In order for the agent not to make these two reports via two sybils,
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the sybilproofness property must hold:

(5.7) Eω∼P{I(1)}ρ(r1, µ1, 1, ω) ≥ Eω∼P{I(1)}[ρ(r′1, µ1, 2, ω) + ρ(r′2, µ2, 2, ω)].

Using Lemma V.3, we can compare Eω∼P{I(1)}[ρ(r′1, µ1, 2, ω) + ρ(r′2, µ2, 2, ω)] to

Eω∼P{I(2)}[ρ(r′1, µ1, 2, ω) + ρ(r′2, µ2, 2, ω)] as two agents make the same reports under

different priors, noting that by construction both reports are contained in [0.5 −

c, 0.5 + c]. From Lemma V.3 we know that the ratio of the expected rewards is

bounded:

(5.8)

0.5− c

0.5 + c
Eω∼P{I(2)}[ρ(r′1, µ1, 2, ω)+ρ(r′2, µ2, 2, ω)] ≤ Eω∼P{I(1)}[ρ(r′1, µ1, 2, ω)+ρ(r′2, µ2, 2, ω)].

By the definition of I(2), the informativeness of either of the two reports in I(2) is

(
1
2

)2
c2 = 1

4c
2, and the informativeness of the only report is I(1) is c2. Note that by

the definition of tn, we can write t2 = 1
4c

2. We now examine the normalized expected

reward for the reports in I(2):

Eω∼P{I(2)}[ρ(r′1, µ1, 2, ω) + ρ(r′2, µ2, 2, ω)]
1
4c

2
.

Similarly, we calculate the normalized expected reward of the report in I(1) as:

Eω∼P{I(1)}ρ(r1, µ1, 1, ω)

c2
.

Combining (5.7) and (5.8) we have:

0.5−c
0.5+cEω∼P{I(2)}[ρ(r′1, µ1, 2, ω) + ρ(r′2, µ2, 2, ω)] ≤ Eω∼P{I(1)}ρ(r1, µ1, 1, ω)

=⇒ 0.5−c
0.5+c

E
ω∼P{I(2)}[ρ(r′1,µ1,2,ω)+ρ(r′2,µ2,2,ω)]

c2 ≤
Eω∼P{I(1)}ρ(r1, µ1, 1, ω)

c2

=⇒ 0.5−c
0.5+c

E
ω∼P{I(2)}[ρ(r′1,µ1,2,ω)+ρ(r′2,µ2,2,ω)]

c2 ≤ l.

The last inequality follows from the definition of l. We can now multiply both sides
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by 4 and have the inequality:

0.5−c
0.5+c

E
ω∼P{I(2)}[ρ(r′1,µ1,2,ω)+ρ(r′2,µ2,2,ω)]

1
4 c2

≤ 4l

=⇒ 0.5−c
0.5+c

E
ω∼P{I(2)}[ρ(r′1,µ1,2,ω)+ρ(r′2,µ2,2,ω)]

t2
≤ 4l.

The last inequality holds by the definition of t2. We now multiply both sides by t2

and 0.5+c
0.5−c to get:

Eω∼P{I(2)}[ρ(r′1, µ1, 2, ω) + ρ(r′2, µ2, 2, ω)] ≤ 0.5 + c

0.5− c
t24l

=⇒ Eω∼P{I(2)}[ρ(r′1, µ1, 2, ω) + ρ(r′2, µ2, 2, ω)] ≤ 0.5 + c

0.5− c

(
80

81

)0

t24l(5.9)

We have just shown that (5.6) hold for N = 2, and will now look at the inductive

step.

Inductive Step: Assuming that the inductive hypothesis holds for N , will show

that it holds for N + 1 by constructing an appropriate information structure I(N+1)

that is derived from I(N). Recall that j and j + 1 are the two reports just created

in I(N). We will construct I(N+1) by setting I(N+1) = I(N+1′) if the expected reward

of report j is greater than 4 times the expected reward of report j + 1, and we set

I(N+1) = I(N+1′′) otherwise. I(N+1′) is defined by splitting report j in I(N) into two

symmetric reports, each with a difference in the posteriors before and after the report

of 0.9·
√

tN , and the reports after split will become asymmetric so that the beliefs can

remain consistent (note that the future reports do not matter as long as consistency

is preserved and the posteriors are bounded between 0.5 − c and 0.5 + c). I(N+1′′)

is defined by splitting report j + 1 in I(N) into two symmetric reports, each with a

difference in the posteriors before and after the report of 1
2 ·
√

tN , with report j in

I(N+1′′) the same as report j in I(N). We will now show that (5.6) holds for I(N+1).

Consider the case I(N+1) = I(N+1′). We know that by the sybilproofness property
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the following must hold:

Eω∼P{I(N)}[ρ(rN+1′

j , µ′j, N + 1, ω) + ρ(rN+1′

j+1 , µ′j+1, N + 1, ω)] ≤

Eω∼P{I(N)}ρ(rN
j , µj, N,ω)

=⇒ Eω∼P{I(N)}[ρ(rN+1′

j , µ′j, N + 1, ω) + ρ(rN+1′

j+1 , µ′j+1, N + 1, ω)] ≤

4
5Eω∼P{I(N)}[ρ(rN

j , µj, N,ω) + ρ(rN
j+1, µj+1, N,ω)].

The last inequality holds by the conditions on the expected rewards of reports j and

j + 1 in I(N) that lead to I(N+1′). We recall by Lemma V.3 that:

c−0.5
c+0.5Eω∼P{I(N+1′)}[ρ(rN+1′

j , µ′j, N + 1, ω) + ρ(rN+1′

j+1 , µ′j+1, N + 1, ω)] ≤

Eω∼P{I(N)}[ρ(rN+1′

j , µ′j, N + 1, ω) + ρ(rN+1′

j+1 , µ′j+1, N + 1, ω)]

meaning:

Eω∼P{I(N+1′)}[ρ(rN+1′

j , µ′j, N + 1, ω) + ρ(rN+1′

j+1 , µ′j+1, N + 1, ω)] ≤

c+0.5
c−0.5 ·

4
5Eω∼P{I(N)}[ρ(rN

j , µj, N,ω) + ρ(rN
j+1, µj+1, N,ω)]

=⇒ Eω∼P{I(N+1′)}[ρ(rN+1′

j , µ′j, N + 1, ω) + ρ(rN+1′

j+1 , µ′j+1, N + 1, ω)] ≤
(

0.5+c
0.5−c

)N · 4
5

(
80
81

)N−2
tN4l.

The last inequality holds by the inductive hypothesis (5.6). We recall that the

informativeness of each the two new reports in I(N+1′) is 0.81tN , i.e., tN+1 = 0.81tN

in I(N+1′) thus,

Eω∼P{I(N+1′)}[ρ(rN+1′

j , µ′j, N + 1, ω) + ρ(rN+1′

j+1 , µ′j+1, N + 1, ω)] ≤
(

0.5+c
0.5−c

)N (
80
81

)N−1
tN+14l.

This last inequality holds by observing 80
81 · 0.81 = 4

5 .

Consider now the case I(N+1) = I(N+1′′). By the sybilproofness property the
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following must hold:

Eω∼P{I(N)}[ρ(rN+1′′

j+1 , µ′′j+1, N + 1, ω) + ρ(rN+1′′

j+2 , µ′′j+1, N + 1, ω)] ≤

Eω∼P{I(N)}ρ(rN
j , µj, N,ω)

=⇒ Eω∼P{I(N)}[ρ(rN+1′′

j+1 , µ′′j+1, N + 1, ω) + ρ(rN+1′′

j+2 , µ′′j+1, N + 1, ω)] ≤

1
5Eω∼P{I(N)}[ρ(rN

j , µj, N,ω) + ρ(rN
j+1, µj+1, N,ω)].

The last inequality holds by the conditions on the expected rewards of reports j and

j + 1 in I(N) that lead to I(N+1′′). Recall that by Lemma V.3,

c−0.5
c+0.5Eω∼P{I(N+1′′)}[ρ(rN+1′′

j+1 , µ′′j+1, N + 1, ω) + ρ(rN+1′′

j+2 , µ′′j+1, N + 1, ω)] ≤

Eω∼P{I(N)}[ρ(rN+1′′

j+1 , µ′′j+1, N + 1, ω) + ρ(rN+1′′

j+2 , µ′′j+1, N + 1, ω)]

meaning:

Eω∼P{I(N+1′′)}[ρ(rN+1′′

j+1 , µ′′j+1, N + 1, ω) + ρ(rN+1′′

j+2 , µ′′j+1, N + 1, ω)] ≤

c+0.5
c−0.5 ·

1
5Eω∼P{I(N)}[ρ(rN

j , µj, N,ω) + ρ(rN
j+1, µj+1, N,ω)]

=⇒ Eω∼P{I(N+1′′)}[ρ(rN+1′′

j+1 , µ′′j+1, N + 1, ω) + ρ(rN+1′′

j+2 , µ′′j+1, N + 1, ω)] ≤
(

c+0.5
c−0.5

)N · 1
5 ·

(
80
81

)N−2
tN4l.

The last inequality holds by the inductive hypothesis (5.6). We note that the infor-

mativeness of each the two new reports in I(N+1′′) is 0.25tN , i.e., tN+1 = 0.25tN in

I(N+1′′). This allows us to write:

=⇒ Eω∼P{I(N+1′′)}[ρ(rN+1′′

j+1 , µ′′j+1, N + 1, ω) + ρ(rN+1′′

j+2 , µ′′j+1, N + 1, ω)] ≤
(

c+0.5
c−0.5

)N · 1
5 ·

(
80
81

)N−1
tN+14l.

The last inequality holds by observing 1
5 ≤

80
81 · 0.25.

Note that in either case the inductive hypothesis holds, meaning that the expo-

nential decrease is preserved.
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5.5 Discussion and Future Work

In this chapter we present one mechanism that satisfies the desirable properties

of subsidized prediction markets that allows agents with unknown risk averse value

functions to participate. However, this mechanism requires that the normalized ex-

pected rewards exponentially decrease with the number of agents. We then show that

as long as the risk aversion structure of the agents is not known, for any mechanism

in the class described in Section 5.2 that allows agents with arbitrary risk averse

value functions to participate, the normalized expected reward decreases exponen-

tially with the number of agents. This result may help in developing new forms of

prediction markets, that are guaranteed to converge to the truthful equilibrium even

in the presence of risk averse agents.

The presented result relies on the fact that agents can be highly risk averse,

leading to the observation that only non-negative rewards are given for any report.

This seems like a very restrictive setting, and thus considering a setting where the

amount of risk aversion is bounded, and that does not have the exponential decrease

in the normalized expected reward, is of interest. Moreover, the mechanism that

we presented satisfied all of the desired properties due to the fact that the expected

value of a reward is linear in the probabilities. In the future it would be interesting if

a mechanism satisfying the properties in Section 5.2 could be found where the agents

could be characterized by a more general decision model, such as prospect theory or

uncertainty aversion, that is not necessarily linear in the probabilities.



CHAPTER VI

Conclusion

In this dissertation we address issues in information management problems using

an algorithmic and economic perspective. In particular, we focus on the two topics

of information procurement and delivery by way of prediction markets and network

routing, respectively. To summarize, our contributions are:

• Devise robust routing policies that take into account demand fluctu-

ations and congestion control. We formulate mathematical models used to

generate routing policies that take into account active congestion control and

are robust to demand variation. Combining random early detection (RED),

multi-protocol label switching (MPLS), robust optimization, and non-linear pro-

gramming we show that routing policies that take into account natural demand

variation perform better than current routing policies. Though the resulting

model is NP-hard, we are able to show that solutions returned by modern non-

linear solvers outperform routing policies currently in use when congestion is

high.

• Show bluffing can exist in prediction markets with non-myopic traders.

Devise prediction market mechanisms robust to non-myopic traders.

In prediction markets using market scoring rules we characterize the behavior of

119
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strategic traders with complementary information. We show that traders have

incentive to bluff and do not fully reveal their information. Further, we propose

the δ-discounted market scoring rule to make the market robust to strategic

traders.

• Devise a prediction market mechanism that accurately aggregates the

information of risk averse traders. We show that any prediction mar-

ket that aggregates the beliefs of risk averse traders exponentially

decreases the reward as the number of participants increases. Current

prediction markets assume risk neutral traders. However, risk aversion is ex-

hibited by players in both real money and play money settings. We describe

the desirable properties that a prediction market satisfies. We propose a sweep-

stakes mechanism that satisfies all of these properties even in the presence of

risk averse traders. Our mechanism exponentially decreases rewards to agents

as the number of agents increases. We show that this characteristic is necessary

in any prediction market that accurately aggregates the beliefs of risk averse

traders

Future Work

In what follows, we present some future research directions in information pro-

curement and delivery:

• Design quick approximations to the NP-hard routing model account-

ing for congestion control. In Chapter II, we show the usefulness of the

designed routing policies as they outperform existing routing policies. However,

the model to generate the designed routing policies is NP-hard and requires

large amounts of computation with current non-linear programming solvers.



121

Can we design fast approximation algorithms that achieve near-optimal solu-

tions and scale well with the size of the network?

• Design good routing heuristics, based on local knowledge instead of

global optimization. The models and results in Chapter II assume global

knowledge of the entire network and its demand in designing the routing policy.

In an evolving network, this information is not available. Therefore, finding a

good routing policy using only local information is of interest.

• Identify the information setting of traders in a prediction market

using their trading histories. In our analysis of non-myopic strategies in

prediction markets (Chapter IV), we note that Chen et al. [22] show a setting

where the myopic strategy is an equilibrium strategy. These two results are

extended by Chen et al. [20] to show non-myopic strategies are equilibrium

strategies when traders have complementary information and myopic strategies

are equilibrium strategies when traders have substitutable information. In the

future, identifying the relationship between traders’ information by their trading

history is of interest.

• Analysis of prediction markets on events with uncertain ending times.

In Chapter IV we introduce the discounted market scoring rule to alleviate the

issue of bluffing in prediction markets. Discounting may be characterized as

traders being uncertain if they will come back to the market to trade again,

therefore, they are discounting their future expected payoffs. This uncertainty

naturally leads to the consideration of prediction markets on events with un-

certain ending times. Consider a project manager trying to decide which of

two unlikely long term projects to fund. If the success of each of these projects
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was traded on a current prediction market, their price would be very close to

zero, making them difficult to differentiate. However, if these two projects were

represented as a claim with an uncertain ending time, “Will the first project

finish before the second project?”, the projects could be differentiated giving

the manager additional information. Such contingencies lead to new strategic

questions for traders. For example, if a trader knows that the first project will

be a success but is uncertain about the second project, they may not know when

to reveal their information. Characterizing trader behavior in this setting is of

interest for future prediction market design.

• Analyze the necessity of exponential reward decrease in prediction

markets with traders with bounded risk aversion. In Chapter V we

discuss the impact of risk averse traders in prediction markets. We use the fact

traders of arbitrary risk averse preferences may participate in a market to show

that the reward distributed in any mechanism must be non-negative. With the

non-negative reward requirement, we show that for any mechanism to satisfy 5

desirable properties the mechanism must exponentially reduce the distributed

reward as the number of traders increases. This leaves the open question of can

this exponential reduction be eliminated if the risk aversion of the participating

traders is bounded?
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[11] Walid Ben-Ameur and Hervé Kerivin. Routing of uncertain traffic demands. Optimization and
Engineering, 6(3):283–313, 2005.

[12] Dimitris Bertsimas and Melvyn Sim. Robust discrete optimization and network flows. Math-
ematical Programming, 98(1):49–71, September 2003.
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[36] Laurent E. Ghaoui and Hervé Lebret. Robust solutions to least-squares problems with uncer-
tain data. SIAM Journal on Matrix Analysis and Applications, 18(4):1035–1064, 1997.

[37] Laurent E. Ghaoui, Francois Oustry, and Hervé Lebret. Robust solutions to uncertain semidef-
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