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SlogP, and exposed surface area (Å2) are given in normalized percent
frequencies. P-values show the significance of the difference in the
medians of the distributions, as determined by a two-tailed Wilcoxon
rank-sum evaluation (insignificant differences have p>0.05). . . . . . 72

4.2 Limited correlation is seen between size and affinity in non-enzymes
(A and B). The proteins with “clusters” of points have smaller bind-
ing sites and no ligands over 40 non-hydrogen atoms. The ligands
have similar sizes and affinities for oligopeptide-binding protein (OBP),
glutamate receptor 2 (GluR2) and mannose-binding protein (MBP),
arabinose-binding protein (ABP), and estrogen receptor (ER) alpha
and beta. The only non-enzymes with a range of ligand sizes are
maltose-binding protein and the non-enzymatic site on the SH2 do-
main of pp60src tyrosine kinase (C and D, respectively). . . . . . . . 74

4.3 Many examples are available of enzyme complexes that show a strong
correlation between size and affinity of the ligands; seven are given
here (A-G). HIV-1 protease (G) demonstrates that a large collection
of ligands may show no correlation, but subsets of data may reveal
strong trends (data for the C95A and Q7K/L33I/L63I mutants). It
is interesting that even small binding sites with ligands of 40 non-
hydrogen atoms or less (B,C,D) show a linear trend with affinity;
this was not seen for non-enzymes with small binding sites. . . . . . 75

xi



4.4 Distribution of ligand efficiencies per size (-kcal/mol-atom) and per
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for every 1 Å increase in the average contact distance. The gray
background notes systems with more modest efficiencies. The error
bar indicates the standard deviation of the average of two affinity
values reported in the literatures (1; 2). . . . . . . . . . . . . . . . 104

A.1 This figure shows the relevant statistical figures regarding the distri-
bution of size (a heavy) in heavy atoms for the four classifications. . 117

xiii



A.2 This figure shows the relevant statistical figures regarding the distri-
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created for every 2 Å for the distance between the center of mass and
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ABSTRACT

Binding MOAD (Mother of All Databases) is the largest collection of high-quality,

protein-ligand complexes. Binding MOAD contains 13,138 protein-ligand complexes

comprised of 4078 unique protein families and 6210 unique ligands. We have compiled

binding data for 4146 of the protein-ligand complexes. The creation of this database

and three studies mining the database for biophysical properties of protein-small

molecule binding are discussed in this thesis. An additional study is included in the

appendix which investigates flexibility upon small molecule binding to MDM2.

First, we present the development of GoCav, which allows us to mine properties

of the whole database. We have determined that most complexes have well buried

binding sites (70-85%), which fits the idea that a large degree of contact between the

ligand and protein is significant in molecular recognition.

Secondly, we investigate the differences in biophysical properties of binding to

enzymes versus non-enzymes. Differences in the sizes of weak versus tight ligands in-

dicate that the addition of complementary functional groups may improve the affin-

ity of an enzyme inhibitor, but the process may not be as fruitful for ligands of

non-enzymes. Non-enzymes were found to have greater ligand efficiencies than en-

zymes, which supports the feasibility of non-enzymes as druggable targets. This has

significant ramifications for target selection in drug design. Most importantly, the

differences in ligand efficiencies appear to come from the pockets which yield different

amino acid compositions, despite similar overall distributions of amino acids.

We then investigate the biophysical properties of the most efficient protein-ligand

complexes. All highly efficient small molecules contain one or more charge and are

xx



found in binding sites with at least one charge, challenging previous thoughts that

hydrophobic properties of ligands lead to the better binding. Lastly, it is known that

affinity for complexes rarely exceeds -15 kcal/mol, and we suggest that ligands do not

exceed this value because there is no evolutionary pressure to drive tighter binding.
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CHAPTER I

Introduction

Proteins utilize the binding of small molecules to perform a wide range of biological

functions. Common functions include protein processing, cell signaling, responding

to environmental conditions, regulating and performing metabolism. Due to their

great diversity of structure and function, proteins bind a vast array of small-molecule

ligands. The precise biochemical and physical properties which significantly impact

protein-ligand binding are of some debate. However, it is important to understand

the contribution of these properties because structure based drug design relies on this

information to develop small molecules which are able to bind to a particular target

and create a desirable physiological response.

This dissertation utilizes a large database of high-quality, x-ray crystal structures

of protein-ligand complexes, annotated with binding data, to determine what prop-

erties are important for small molecule binding. The creation of the database is

discussed first. Three studies regarding the mining of the database are then pre-

sented. The first study details characteristics of protein-ligand binding as a whole in

the database. The second provides insights into particular aspects of binding that are

important to particular classes and families of proteins. The third study shows the

biophysical characteristics of the complexes that exhibit the “most efficient” binding.

These studies are based on a large database of static crystal structures, so to round
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out these studies, the appendix presents molecular dynamics simulations to examine

ligand binding to the MDM2 protein.

1.1 Protein Ligand Binding

Over time, theories have changed on how small molecules interact with a binding

site of a protein. In 1894, a “lock and key” model was proposed by Herman Emil

Fisher, where a protein pocket is preformed to fit a particular shape (3; 4; 5). A

similar concept was suggested by Linus Pauling who indicated that active sites were

preformed to fit the transition state of a reaction, rather than the substrate or lig-

and (6; 7). This theory was later updated by Daniel Koshland. He introduced an

induced-fit model, where a protein would change to adapt to bind a small molecule

(8). However, more recent evidence suggests that proteins exists in an ensemble

of structures, including ones that resemble the bound state of the protein, and upon

binding of the small molecule, the population distribution will shift to favor the bound

state (9; 10; 11; 12; 13).

Of utmost importance to researchers is how tightly a small molecule binds to a

protein. The free energy of binding is defined by, entropy (∆H) and enthalpy (∆S),

in the following relationship: ∆Gbinding = ∆Hbinding - T∆Sbinding = -RTln(KA), where

KA is the equilibrium constant of the binding between protein and ligand. The pre-

cise contribution of enthalpy and entropy into the calculation of the free energy of

binding (∆G) is dependent on the protein and small molecule under investigation.

Several factors are involved in determining both the enthalpy and the entropy in-

volved in protein-ligand binding (14; 4), but these values are inherently difficult to

calculate accurately. First, it is based on determining a small difference between two

very large numbers, the energies of the complex and the energies of the protein and

ligand alone interacting with solvent. Secondly, the entropic contributions are diffi-

cult to estimate because the conformational space available to both protein and small
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molecule is potentially large. Lastly, many different factors must be considered: van

der Waals interactions, electrostatic interactions, (de)solvation, and flexibility of both

the protein and small molecule ligand (14). Here, we aim to circumvent these limi-

tations by using our large database of protein crystal structures solved with bound

small molecules to determine what types of contacts lead to the best binding. We

will also look at the ability of different classes and families of proteins to investigate

any possible differences in their ability to bind small molecules.

1.1.1 van der Waals Interactions and Electrostatic Interactions

One of the most significant contributions to the binding affinity has been thought

to be van der Waals interactions (15). These are low-energy interactions created by

the London Dispersion forces arising from placing atoms in contact with each other.

The shape complementarity of the binding pocket to the small molecule allows for

optimal contacts, in agreement with the “lock and key” model (16). Most small

molecules bound to proteins are well buried to maximize the amount of contact being

made. Liang et al. found that binding sites are buried cavities or have one or two

small exposed areas and that binding pockets tend to be the largest pockets in the

protein (17).

On the other hand, electrostatic interactions have much stronger enthalpic contri-

butions and include hydrogen bonds, contacts to metals, and salt bridges. Hydrogen

bonds form between highly electronegative atoms (generally O or N) and a hydrogen

bound to another highly electronegative atom. These bonds generally contribute 3-7

kcal/mol to the enthalpy (18). However, the precise contribution depends upon the

geometry of the hydrogen bond (4). Hydrogen bonding interactions are also made

with water, leading to a large desolvation penalty for both the ligand and binding

site; therefore, it is believed they generally do not contribute much to the free energy

of binding, since it is the difference between the standard free energy unbound in
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water and the standard free energy of the complex (4). For example, Lafont et al.

tried to gain a greater free energy of binding by adding a functional group to an

HIV protease inhibitor to make an extra hydrogen bond between the ligand and the

protein. Although a gain in enthalpy was achieved, it was completely compensated

by entropic loss induced by both desolvation of the polar group and forcing that polar

group into a particular conformation (19). Salt bridges are made between positively

and negatively charged functional groups, and are the strongest non-covalent inter-

actions that can be made. However, the desolvation penalty of removing water from

a charged group is also quite large (20).

There has been contradictory evidence as to which types of interactions play the

most significant roles even in the strongest known natural protein-ligand complexes,

specifically in the binding of biotin to streptavidin, the tightest known natural com-

plex. In 1993, Miyamoto and Kollman used free energy perturbation calculations

on biotin-streptavidin and N-L-acetyltryptophanamide-α-chymotrypsin to show that

the increased binding affinity for the biotin-streptavidin system can be accounted

for by van der Waals contacts made in the biotin-streptavidin complex where the

pocket in streptavidin is preformed as in the traditional lock and key theory (21).

However, newer work using combined quantum mechanics/molecular mechanics and

monte carlo computational techniques on hydrogen-bonding residues in streptavidin

have indicated that networks of hydrogen bonds are responsible for the strong binding

in the biotin-streptavidin complex (22). The importance of the network of hydro-

gen bonds was also confirmed using isothermal calorimetry, which showed an 11-fold

greater contribution to the free energy of binding of two coupled residues involved in

hydrogen bonding than the contribution of each of the two residues individually (23).

A common metric to evaluate how well a small molecule binds is “ligand effi-

ciency”. This metric is defined as the binding affinity per number of non-hydrogen

atoms (24; 25; 26). It was first introduced by Kuntz et al. in 1999 (27). Kuntz ana-
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lyzed 159 complexes and scaled the affinities by the number of non-hydrogen atoms

present in a ligand as a metric of size-independent affinity. They showed that for each

non-hydrogen atom the most to be gained is ˜-1.5 kcal/mol of binding affinity (27).

This maximum was consistent with their theoretical predictions based on van der

Waals and hydrophobic interactions (27). The hydrophobic effect will be discussed

further below.

Although electrostatics have previously been proposed to have little effect on the

free energy of binding, Bruce Tidor has been working to optimize charge complemen-

tarity to improve binding free energy (28; 29; 30). He has developed an analytical

solution to the Poisson equation to model the electrostatics of a binding site, and an

analytical method of optimizing the charge profile of a ligand, taking into account

the desolvation penalty, to match the calculated electrostatics of the binding site

(28; 29; 30). His group was able to predict a position to improve the charge com-

plementarity of a small molecule bound to chorismate mutase. They suggested that

this improvement would lead to a 2-3 kcal/mol benefit to the free energy of bind-

ing (31). However, this was not confirmed experimentally. The effects of hydrogen

bonds and electrostatics have been shown to be dependent on distance, short-range

hydrogen bonds of less than 2.5 Å have been shown to lead to binding affinities of

greater than 15 kcal/mol (32; 33; 34). This contradicts the previous idea of a dimin-

ished role of electrostatics in small molecule binding. In chapter five of this thesis,

we present results based on distances of charge-charge interactions and their impact

on the efficiency with which small molecules bind.

1.1.2 Desolvation and Solvation

The binding of small molecules to proteins occurs in an aqueous environment,

so water plays a significant role in the binding. Water must be removed from the

binding site as well as the ligand (4). If water molecules are found in the binding
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site, they are generally partially occupied and are able to move in and out of the

pocket. Desolvation can be either favorable or detrimental to small-molecule binding.

Desolvating a charged functional group is unfavorable to binding (35), whereas the

“hydrophobic effect” results in desolvation being favorable to binding.

The “hydrophobic effect” was first proposed in 1945 by Frank and Evans and is

a positive influence on the free energy of binding (36). The placement of a non-polar

molecule in water is an energetically unfavorable process (37). The hydrogen-bonding

network of water becomes disrupted locally around the non-polar molecule. Therefore,

burial of non-polar groups within the protein is seen to have a positive effect as water

is able to rearrange back to its favorable interactions with itself (38). It has been

shown that reorganization of the solvent can attribute anywhere from 25 to 100%

of the enthalpy gained in small-molecule binding (39). It has also been shown that

the enthalpic contribution of the hydrophobic effect is proportional to the amount of

buried non-polar surface area (38).

1.1.3 Ligand and Protein Flexibility

The formation of van der Waals interactions and the “hydrophobic effect” have

been seen to have favorable impact on the free energy of binding, while the impact

of electrostatics is dependent on the precise protein-ligand complex. There are other

factors working against protein-ligand binding. The loss of flexibility of the small

molecule and the protein by forcing them into a particular conformation is a loss of

entropy and thus a penalty in the free energy of binding. The loss of rotation in

side chains upon small molecule binding has been estimated to be ˜0.88 kcal/mol per

residue (40; 4; 41). It is also important to note, that in some cases some protein

residues will increase in flexibility, such is the case in Topoisomerase 1 (42). Also,

NMR studies have shown that backbone flexibility can increase upon ligand binding

to the mouse urinary protein (43). Additionally, Yang et al. found that in a set
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of 63 complexes from the Protein Data Bank 29 % of the atoms in the binding site

became more flexible than the corresponding free structure, using the B-factors as a

metric of flexibility (44). While, not all structures had atoms that displayed increased

flexibility, 75 percent of the structures had at least some portion of the molecule that

had some increase in their B-factors (44). To ensure the B-factors are comparable

between systems, the structures used in the study were solved by the same group

and had resolutions less than 2.5 Å and R-values less than 0.245, with the exception

of two structures (44). A recent study by Yang et al. has noted the importance of

small molecule reorganization in the prediction of binding affinity using a wide range

of scoring functions (45). Different orientations of the small molecule binding in the

binding site is observed in the case of camphene, adamantine, and thiocamphor bound

to cytochrome P450cam (46).

1.2 Surface Area Calculations

In this thesis we utilize GoCav to calculate the surface area. GoCAv was devel-

oped along with this thesis work in order to calculate the buried surface area of a

small molecule based on its location in an x-ray crystal structure. It also can handle

binding sites that are exposed, an area in which previous methods have been unable

to calculate surface areas accurately. Other programs that have been developed for

this are POCKET(47), SURFNET(48), CAST(17), PASS (49), and NACCESS(50).

1.2.1 POCKET

POCKET was developed by Levitt and Banaszak in 1992. This program identifies

pockets by scanning a grid on the x, y, and z-axis to find where a probe of a certain

radius does not touch any protein atoms. The surfaces are then determined using

a variant of the marching cube algorithm, in which a surface cube is determined by

the surrounding cubes. The shape of the surface is determined by a set of triangles
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associated with the cubes (47). This program will find all pockets in the protein

regardless of size, but does not specifically provide the specific pocket of the desired

ligand, although it may be one of the pockets found.

1.2.2 SURFNET

SURFNET was developed by Laskowski in 1995. SURFNET generates the surface

by adding a Gaussian density function about the center of each atom. At a specific

contour level, the atomic spheres are generated and spheres are placed in between

atoms to find gap regions. The binding pockets are then considered the largest of the

gap areas. This also may not find highly exposed binding pockets, since it needs two

protein surfaces to determine the gap areas (48).

1.2.3 CAST

CAST was developed by Liang et al. in 1998. It uses Veronoi tessellations to

map out the surface of the binding site. The tessellations are formed from triangles

(tetrahedral in 3-dimensions) created by using the atoms of the protein as vertices.

Triangles that do not contain any other atoms are considered cavities. This program

also cannot find exposed binding sites as the number of triangles will go to infinity

for exposed binding pockets (17).

1.2.4 PASS

PASS was developed in 2000 by Brady et al. In this algorithm probes are placed

on the surface of the protein using triplets of protein atoms, then searches for points

where a probe sphere can lie tangential to all three atoms. Any probes that are ex-

posed to the solvent are then removed. This process is continued by placing another

layer of spheres on the surface of the spheres placed in the first iteration. The al-

gorithm ends when no probes can be removed. Clusters of four or more probes are
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kept. PASS does not calculate the surface area and will not identify exposed binding

sites, since if the probes are exposed to the surface they are automatically removed

and no more probes spheres are placed in that area (49).

1.2.5 NACCESS

NACCESS was developed by Hubbard and Thornton in 1993 (50). It calculates

the solvent accessible surface area based on Lee and Richard’s method developed in

1971 (51). This method uses intersections of atomic spheres with their van der Waals

radii to create the surface of the protein. Planes are drawn through the intersections

and the remaining convex arcs are obtained as the van der Waals surface. The solvent

accessible area is created by augmenting the atomic radii with a probe radius. This

program does not locate a binding site and merely calculates the surface area of any

atom included in the calculation (50).

1.3 Protein-Ligand Databases

Given the discussion regarding the thermodynamics of protein-ligand binding, it is

important to investigate a wide range of proteins bound to a variety of small molecules.

It is not surprising that different proteins will have different contributions to the free

energy of binding. A large database of these interactions is necessary because we

aim to make generalized statements regarding a wide range of diverse complexes.

The best source of protein structures is available from the Protein Data Bank, where

greater than 60000 structures are deposited (52; 53). It is also important to have

structural coordinates of complexes correlated to the experimental binding affinity.

Other databases of protein-ligand interactions with binding data have been created

prior to this work, namely Ligand-Protein Database (LPDB)(54), BindingDB(55)

(although it does not contain coordinates it has a large number of binding affinities

reported with links to some protein crystal structures in the PDB), Protein Ligand
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Database (PLD), and PDB Bind(56; 57). However, all have their deficiencies with

respect to combining binding affinity and atomic coordinates. The next section dis-

cusses these databases in more detail. Other databases, such as MSDsite(58) and

Relibase+(59; 60) only have protein-ligand complexes, and do not have affinities.

1.3.1 LPDB

The Ligand-Protein Database (LPDB), created in 2001, has 195 complexes with

binding data. LPDB also provides computer generated docking decoys to help re-

searchers in developing more accurate scoring functions. LPDB has been analyzed

to address redundancy of the protein structures. The 195 complexes consist of 51

unique proteins in 21 protein classes (54). LPDB was created using complexes found

in training sets of previously used scoring functions and searching for those complexes

in the Protein Data Bank (54).

1.3.2 Binding DB

Binding Database (Binding DB), also created in 2001, contains very high-quality

thermodynamic data for 722 proteins. Binding DB also accepts the deposition of Ki

data, and the number of entries has grown significantly to 62,134 binding reactions

(http://www.bindingdb.org/bind/stat.jsp) and continues to grow. Most of the data

is now inhibition constants. Binding DB’s strength lies in the volumes of information

given on experimental conditions used in determining binding information, including

raw data in some cases. Most of the ligands do not have a pdb structure, but at least

one structure of the protein bound to some ligand exists (55).

1.3.2.1 PLD

The Protein Ligand Database (PLD) by John Mitchell in 2003 is a small database

of protein-ligand complexes (61). All of the entries are annotated with calculated
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binding energy using the knowledge-based method BLEEP. 357 entries are annotated

with experimental binding data. While ligand similarity scores have been calculated,

they are not available (61).

1.3.3 PDBBind

PDBbind, created in 2004, contains binding data on 3214 complexes, with 2084

unique ligands, collected from the PDB (56; 57). PDBBind was curated in a very

similar fashion as our database, but has some key differences. PDBBind focuses

on complexes with only one ligand in the crystal structure (56; 57). PDBbind also

excludes any complex binding a simple cofactor such as ATP. Our database does not

discriminate against molecules such as ATP, since it is also a small molecule that binds

to a defined binding pocket in proteins. PDBBind has no threshold value for quality

of the electron density(the largest crystal structure resolution is 4.7 Å). PDBbind

only provides structures of complexes for which it has binding data (56; 57). To meet

our specific needs, we have created our own database, Binding MOAD (Mother of All

Databases) (62).

1.4 MDM2

The majority of the thesis will discuss the creation of Binding MOAD to answer the

questions as to what biochemical properties lead to high-affinity binding. However, we

do not take in to account system flexibility. Therefore, we present a study regarding

the highly flexible MDM2 protein and investigate the flexibility of the protein using

molecular dynamics upon binding of a small molecule. The next session discusses the

importance of MDM2 and the details of the flexible binding site.

The p53 tumor suppressor, also known as the guardian of the genome, is vital

in cell cycle regulation, DNA repair, and apoptosis (63; 64; 65). Mutations in p53

are seen in approximately half of all human cancers (66). Where p53 is in wild-type
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form, it is inhibited by over-expression(67; 68) or amplification(69) of murine double

minute 2 oncoprotein (MDM2; also referred to as HDM2 in human). Reactivation of

p53 through inhibition of the p53-MDM2 interaction has been shown to be a novel ap-

proach for initiating or enhancing cancer cell death (70; 71). A better understanding

of MDM2 dynamics is important for the design of more selective and potent inhibitors

of the MDM2-p53 interaction.

A crystal structure containing residues 25 to 109 of MDM2 and residues 17 to 29

of p53, was solved in 1999 (1YCR) (72). This showed two approximately similar sub-

domains, which come together to form a binding cleft for p53. Three side-chains of

p53 (Phe19, Trp23, and Leu26) fill the relatively deep hydrophobic pocket of MDM2.

This crystal structure has been the basis of several dynamics studies (73; 74; 75; 76),

in all cases the authors compared the MDM2-p53 complex to apo-MDM2, which was

generated by removing the peptide.

Barrett et al. utilized CONCOORD(77), a non-Newtonian method of ensemble

generation to examine protein motion in creation of their program Dynamite (73).

They found that the principle mode of apo-MDM2 was a bilobal flexing, or breathing,

of the protein; this motion was greatly reduced in the p53 bound complex. Previous

work in the Carlson lab has utilized MD simulations to develop receptor-based phar-

macophore models. The models were used to identify five small-molecule inhibitors of

the MDM2-p53 interaction (78; 76). Espinoza-Fonseca and Trujillo-Ferrara presented

two 35-ns molecular dynamics (MD) simulations; again demonstrating that the apo-

MDM2 had a highly flexible and narrow cleft (75). Whereas with p53 bound, the

cleft was more stable and wider. They also reported important side-chain motions

in residues Leu57, Tyr67, His96, and Tyr100 which were present in apo MDM2 but

not MDM2-p53, and they suggested that these motions are involved in the molecular

recognition of p53 and other ligands (75).

The deep, well-defined binding cleft shown from in the crystal structure of MDM2-
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p53, suggested that the MDM2 cleft would be a suitable target for small molecule in-

hibitors. To date, several small molecule inhibitors of the MDM2-p53 interaction have

been reported (reviewed in (79; 80; 81)). The crystal structure of MDM2 was solved

with both a member of the nutlin class (1RV1)(82) and from the 1,4,-benzodiazepine-

2,5-diones (1T4E) (83). Several other structures have been solved with a variety of

small molecules, in all, there are ten structures solved bound to a ligand.

The sequence of MDM2 residues 16-24 is highly conserved in mammals (84). NMR

studies show that these residues form a “lid” which stabilizes MDM2 in the absence

of p53 (84; 85). When the lid is closed, it shields the hydrophobic binding cleft of

MDM2. Ile19 occupies the same space as Pro27 of bound p53, and makes interactions

with His96, Arg97, and Tyr100 (85). However, the lid is easily displaced 3-4 Å to

deepen the binding cleft and then peptide or inhibitor completely binds (84; 86; 85).

In the appendix, we present work in progress to examine the role of the lid and the

flexibility of the system during ligand binding.

1.5 Conclusion

The precise biophysical characteristics that determine the affinity with which a

small molecule binds to a protein is highly variable. Many believe that the primary

interactions favorable to binding are van der Waals contacts and desolvation due

to the “hydrophobic effect”. However, electrostatics-such as hydrogen bonding and

charge complementarity-have been shown to also have a favorable impact, despite the

higher desolvation penalty and the fact that these interactions are also made with

water. Although flexibility and conformational entropy play roles in the free energy

of binding, it is very difficult to account for in calculations. Since we are using a large

database of protein-small molecule complexes from static x-ray crystal structures,

this thesis is rounded out by a molecular dynamics investigation of the highly flexible

protein MDM2.
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In the first chapter, we discuss the creation and curation of Binding MOAD

(Mother Of All Databases). The second chapter discusses the development of GoCav

for calculating surface areas and provides some general trends regarding the complexes

in Binding MOAD. The third chapter breaks down the database into families and

notes differences in the physical properties of the protein-ligand complexes, namely

enzymes versus non-enzymes, as well as tightly bound ligands versus weakly bound

ligands. The fourth chapter investigates the complexes that have the most efficient

binding, based on an affinity per atom or per buried surface area metric. The ap-

pendix provides preliminary results regarding the binding of a specific small molecule

to the human MDM2 protein, to investigate the role of flexibility on a protein-small

molecule complex.

This thesis work has far reaching implications for computational biology and theo-

retical biophysics. In several reviews of methods of structure-based drug design, each

points out the need for databases which provide structural data of protein-ligand

complexes as well as binding affinity in order to provide training sets and tests sets

for scoring functions. These reviews cite Binding MOAD and databases like it as valu-

able resources for improving docking and scoring algorithms (87; 88; 89; 90; 91; 92).

Since publishing Binding MOAD, many researchers have acknowledged the usefulness

of Binding MOAD, but have created similar databases that have additional informa-

tion regarding the ligand and/or binding site, and/or have provided binding affini-

ties for complexes which do not have structures deposited (93; 94; 95; 96; 97; 98).

These databases are publically available: AffinDB(93), sc-PDB(94), SuperSite(95),

PDBCal(96), PLID(97), and PSMDB(98). Others have also acknowledged Binding

MOAD, yet have created datasets to meet their specific research aims(99; 100; 101).

Potential uses of Binding MOAD have been suggested to be of benefit in two projects.

First, it can be used to augment the DUD dataset, which is a dataset of decoy lig-

ands (102), and as a link from the cheminformatic toolkit developed by Rosania et
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al. (103). Additionally, Binding MOAD has been noted to be unique in its inclusion

of ligands bound to heme containing proteins (104).

Binding MOAD has also had some implications in research that is ongoing in

investigations of binding sites. Park and Kim utilized the ideas of “invalid” ligands,

developed in Binding MOAD to create a dataset of ligand binding sites from the

PDB. They utilized this dataset to link structure to function by creating a network

model of similar binding sites (105). Daily and Gray also used this idea to create a

dataset in their investigation of conformational changes in allosteric proteins (106).

Binding MOAD was directly used in four studies. A subset of Binding MOAD

has been used to investigate the specificity of binding of FAD and NAD (107).

Binding MOAD was used in conjunction with AffinDB, PDBBind, and PLD to de-

velop a training set to evaluate a model for predicting the affinity of enzyme-ligand

interactions(108). Binding MOAD was also utilized to locate the binding affinites

of specific molecules used in their study of Fluorine containing compounds bound to

proteins (109), and yet another study used it to find a small chelating compound that

binds to an antibody with high-affinity (110). Lastly, the development of Binding

MOAD has helped lead to the formation of the Community Structure Activity Re-

source (CSAR) center, which is the only NIH funded center designed to gather data

to improve scoring of protein ligand complexes for structure based drug design.

The investigations of binding sites as a whole, as well as enzymes versus non-

enzymes is beginning to influence how we look at binding sites. In a recent review of

drug discovery for protein-protein interactions, our research has provided a limit to

the size of protein-ligand binding sites compared to protein-protein interfaces (111).

The study of enzyme binding sites versus non-enzyme binding sites has helped to

shape our knowledge of enzyme binding sites (112). It has also provided data that

indicates the necessity for different strategies for improving binding to enzymes and

non-enzymes, as well as data that point to non-enzymes being more “druggable”.
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This has potential to effect the choice of protein targets in the drug industry, since

they may be inclined to use a more druggable target to increase their chance of

success. Our investigation is beginning to change how the community looks at ligand

efficiencies and suggests that it cannot be applied strictly when investigating multiple

systems (113). This has potential implications in how we think about designing small

molecules for different types of proteins.

The study of the most efficient ligands implies that short electrostatic interactions

of very small molecules are responsible for the most efficient small molecules. This

may indicate the desolvation penalty of highly charged molecules is not as large as

previously thought. We also suggest that affinities better than -15 kcal/mol may be

difficult to attain because there is no evolutionary driving force to allow this selection.

When ligands have such high affinities, their bound lifetimes are on the order of days

to weeks. Many proteins degrade before these ligand are able to dissociate, and may

explain the limit of -15 - -19 kcal/mol. The fact that short electrostatic interactions

define the boundary of ligand efficiency challenges previous ideas of the biophysics

of small molecule binding, where hydrophobic and van der Waals are the dominant

interactions which lead to improved binding.
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CHAPTER II

Binding MOAD (Mother of All Databases)

2.1 Introduction

Binding datasets for protein-ligand complexes were first used in computational

chemistry to develop scoring functions for ligand docking and de novo design of en-

zyme inhibitors. The earliest relevant dataset was only 45 complexes(114) and more

recent sets are 200-800.(54; 55; 56) Some sets have been made available online, chang-

ing their nature from a flat list of data in a paper to a dynamic and searchable tool

for the scientific community. The largest and most useful datasets are outlined below.

The strengths of each are noted and the comparative strengths of Binding MOAD are

highlighted. Our aim is to make Binding MOAD the largest possible collection of high-

quality, protein-ligand complexes available from the Protein Data Bank (PDB)(115)

and augment that set with the inclusion of binding data. When initially introduced

in 2005, Binding MOAD contained 5331 protein-ligand complexes, of which bind-

ing data was collected for 1375 (26%) of the protein-ligand complexes. As the PDB

grew, we have updated the dataset three times. Currently BindingMOAD contains

13,138 structures, with binding data available for 4203 (32%) of these structures.

The numbers presented in the following text represent the current state of Binding

MOAD.
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2.1.1 LPDB

The Ligand-Protein Database (LPDB) has 195 complexes with binding data.(54)

LPDB also provides computer generated docking decoys to help researchers in de-

veloping more accurate scoring functions. We do not plan to add decoys to Binding

MOAD, but our dataset is an order of magnitude larger. LPDB has been analyzed

to address redundancy of the protein structures. The 195 complexes consist of 51

unique proteins in 21 protein classes.(54)

2.1.2 Binding DB

In one of the first papers announcing the Binding Database (Binding DB), it was

reported to contain very high-quality thermodynamic data for 400 binding reactions

(90 for biopolymers).(55) Binding DB has recently started to accept the deposition

of Ki data, and the number of entries has grown significantly to >60,000 binding

reactions (http://www.bindingdb.org/bind/stat.jsp). Most of the data is now inhi-

bition constants for biopolymer binding. Binding DB’s strength lies in the volumes

of information given on experimental conditions used in determining binding infor-

mation, including raw data in some cases. Though we do not provide isothermal

titration calorimetry details like Binding DB, our dataset is larger and we supply

structural data from the PDB. The complexes in Binding DB are not cross-linked to

their structural data.

2.1.3 PDBbind

PDBbind was created by Shaomeng Wang and coworkers.(56) It contains binding

data on 2665 complexes with resolution 2.5 Å (459 structures> 2.5 Å are also provided

as a secondary set). PDBbind does not address redundancy, but does note that

approximately 200 different types of proteins are present. This set was curated in

a similar fashion as Binding MOAD but focuses on complexes with only one ligand
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in a pocket. PDBbind also excludes any complex binding a simple cofactor such as

ATP. Binding MOAD is larger because we do not ignore cofactors or protein-cofactor-

ligand complexes. We also provide information on the structures when we do not have

binding data because they are still a valuable resource in database mining. PDBbind

only provides structures of complexes for which it has binding data.

PDBbind and Binding MOAD were developed independently at the University of

Michigan, Ann Arbor. When we learned of our similar research efforts, we found that

our goals were synergistic. The research projects around PDBbind focus on devel-

oping scoring functions and searching ligand substructures. Our focus with Binding

MOAD is more on protein binding sites and protein flexibility. In sharing binding

data between our groups, we found a disagreement of only 1%, which highlights the

high accuracy and quality of binding data collected in both groups. Disagreements

were simple typos that were easily corrected by consulting the reference again. This

arrangement allows both groups to double check all of the data, basically eliminat-

ing the errors inherent in hand-processed data. This high level of quality control is

unheard of for datasets of this size.

2.1.4 Other Online, Protein-Ligand Databases Without Binding Data

Of course, various improvements are constantly being added to the PDB to provide

additional information and viewers to aid understanding protein-ligand complexes.(116;

117) However, several other online resources deserve discussion. These databases do

not present binding data for the protein-ligand complexes in the PDB, but they do

provide useful search tools, various analyses, and viewers of PDB complexes.

Relibase+ and MSDsite are similar datasets that specifically focus on protein-

ligand complexes. In 2002, Relibase+ contained 15,454 PDB entries, 50,514 individual

ligand sites, and 4530 unique ligands.(59; 60) MSDsite is the newest resource in

the MSD suite of web-based tools from the European Bioinformatics Institute.(58)
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However, the description of ligands in both datasets is unusual for our application.

We have taken great care to make extensive lists of molecules to exclude as ligands

in Binding MOAD. Metal cations like magnesium, inorganic salts such as sulfate,

and common crystal additives like polyethylene glycol are not counted as ligands in

Binding MOAD, but they are ligands in Relibase+ and MSDsite. They even count

modified amino acids in the protein chain as ligands. The strengths of Relibase+

and MSDsite are that they provide powerful search tools for mining their datasets

for interaction patterns. A benefit to the description of ligands in Relibase+ and

MSDsite is that it allows a user to investigate a protein’s interactions with a feature

like a modified residue, a structural zinc ion, or an inorganic reactive center in the

active site. These groups are simply considered to be part of the protein in Binding

MOAD because of its focus on substrates, organic cofactors, and inhibitors. Such an

investigation is not possible with Binding MOAD at this time.

PDBsum and MMDB do not focus on protein-ligand interactions, but they provide

resources that are very useful for those interests. PDBsum is an online resource from

Laskowski and Thornton(118; 119; 120) that provides analyses for all structures in

the PDB (not just protein-ligand structures). PDBsum provides chemical, enzymatic,

and genomic information about the entry, and it provides viewers to analyze protein-

ligand interactions. The viewers display secondary structure, ligand interactions, and

cavities. MMDB is Entrez’s 3D-structure database.(121) Its focus is protein data, but

several resources for comparing related sequence and structure have direct relevance

for ligand binding.

2.1.5 Redundancy in Protein-Ligand Databases

Binding databases available to-date usually do not address the issue of redun-

dancy. Many protein complexes have more than one bound structure. Many small

datasets contain several examples of HIV protease, dihydrofolate reductase, thrombin,
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trypsin, lysozyme, etc. To address this issue in Binding MOAD, we have analyzed

for redundancy and grouped proteins by 90% sequence identity. Of 13,138 complexes

in Binding MOAD, there are 4078 unique protein families when clustered at 90%

identity. In our nonredundant version of Binding MOAD, each protein family is

represented by the structure of the tightest binder. Of the 4078 complexes in the

nonredundant set, we have obtained binding data for 1176. (In cases where binding

data was not available, best resolution and other factors were used to choose repre-

sentatives of the protein families). As we mine this database for general biophysical

properties, our results for redundant and nonredundant Binding MOAD can be com-

pared to measure the influence of bias in the structures available in the PDB. Also,

inverse docking techniques, where a single ligand molecule is screened against a set

of many proteins, will require a nonredundant set of protein complexes.(122; 123)

2.2 Methods

2.2.1 Top-Down Approach

Older protein-ligand databases were originally created by reading through the

literature and compiling lists of appropriate complexes and their binding affinities.

This sort of bottom up approach relies on finding good information in a relatively

random fashion. We chose a top down approach to create Binding MOAD so that

it contained every protein-ligand complex with a 3D structure. We started with the

entire PDB,(115) removed inappropriate structures, and used the remaining struc-

tures to guide our literature searches in a systematic fashion. Since almost all protein

structures are annotated with the authors’ names and the appropriate reference, a

starting point for the literature search is straightforward.
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2.2.2 Paring Down the PDB

Perl scripts were written to determine whether each protein structure was an

appropriate entry for Binding MOAD (Figure 2.1). Our scripts originally took ad-

vantage of the STAR parsers(124) from the Research Collaboratory for Structural

Bioinformatics (RCSB) and the new mmCIF format from the uniformity project.

The mmCIF files have gone through additional checks to correct sequence and EC

errors that may exist in the legacy PDB files.(125) By using the mmCIF files, we plan

to keep abreast of the newest improvements in data from the RCSB, making our re-

source more timely, accurate, and valuable. Since the uniformity project has not been

continued, we now use the remediated PDB files, and have modified our scripts to

parse these files using the Bioperl PDB parser. Our technique is similar to that used

by Rognan and coworkers to create sc-PDB, a set of protein binding sites for inverse

docking.(123) The major difference is that we did not use a keyword search to identify

complexes. Our group and others have found that keyword searches miss complexes

that can be identified through analyzing the individual structures. Starting with

the entire PDB (22,660 structures on 8/19/2003), we eliminated theoretical models,

NMR structures, and structures with poor resolution (> 2.5 Å). Large macromolecu-

lar complexes between proteins and nucleic acids were removed. However, we wanted

to keep any metabolic enzymes that process nucleic acids, so structures with chains

of four nucleic acids or less were kept in Binding MOAD. Short chains of 10 amino

acids or less were counted as peptide ligands. Short-chain ligands were identified in

the SEQRES section of the PDB format ({ pdbx poly .seq scheme} data items in

mmCIF format). Small molecule ligands were identified in the HET and FORMUL

(in PDB format) sections ({ chem comp} in mmCIF) or in ATOM and HETATM (in

PDB format) ({ atom site} in mmCIF). Initial filtering of the database utilized the

mmCIF files from the uniformity project, however, currently we utilize the remediated

PDB files.
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Figure 2.1: Criteria to judge all PDB structures for entry into Binding MOAD. The
scripts evaluate each structure - one at a time - against all criteria, but
this step-by-step diagram is given to show the impact of each criterion.
The numbers shown are taken from the first public release of Binding
MOAD.

Covalently linked ligands were identified by calculating the minimum distance

between the protein and each ligand. Minimum distances greater than 2.4 Å were

defined as noncovalent. Values between 2.1-2.4 Å were examined visually to determine

covalency. Distances less than 2.1 Å were considered covalent unless the short contact

was to a metal ion (we considered many common catalytic metals to be part of the

protein during this analysis). All short contacts to metals were examined visually.

This was crucial in the case of zinc-containing enzymes where a zinc-ligand distance

< 2.1 Å is not necessarily a covalent bond.(126) HET groups within 2 Å of another

HET were identified as multipart ligands (unless they had partial occupancy and

were actually two ligands occupying the same space). If any group of a multipart

ligand was covalently linked to the protein, all components are identified as a covalent

modification. This was important in the case of sugar chains on glycosylated proteins.

Proteins with covalent modifications can still be part of the database if they have

another acceptable ligand. If all ligands are covalent or inappropriate (see Table 2.1),

the crystal structure is rejected.

2.2.3 Extensive Hand Curation of the Data

The literature citations for all final structures were read to confirm the validity

of the ligands and find binding data. Our preference for affinity data is K d over K i

over IC50. Table 2.1 shows the great care that was taken to ensure that entries in
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Table 2.1: Definition of Unusual HET Groups
Classification Type of HET (Examples)
111 Suspect
ligands

Sugars (glucose, galactose, fructose, xylose, sucrose, β-D-
xylopyranose, trehalose)
Small organic molecules (phenol, benzene, toluene, t-butyl alco-
hol)
Membrane components (phosphatidylethanolamine, palmitic
acid, decanoic acid)
Small metabolites that may be buffer components (citric acid,
succinate, tartaric acid)

78 Partial
ligands

Chemical groups (amino group, ethyl group, butyl group,
methoxy, methyl amine)
Inorganic centers of transition state or product mimics (aluminum
fluorides, beryllium fluorides, boronic acids)
Modifications to amino acids (oxygens of oxidized CYS, phos-
phate group on TYR)

511 Rejected
ligands

Unknown or dummy groups (UNK, DUM, unknown nucleic acid,
fragment of)
Salts and buffers (Na+, K+, CI−, PO−3

4 , CHAPS, TRIS, tetram-
ethyl ammonium ion)
Solvents (DMSO, hexane, acetone, hydrogen peroxide)
Crystal additives and detergents (polyethylene glycol,
oxtoxynol-10, dodecyl sulfate, methyl paraben, 2,3 propanediol, pen-
taethylene glycol, cibacron blue)
Metal complexes that associate to the protein surface and are used
for phase resolution (terpyridine platinum, bis bipyridine imidazole
osmium)
Metal ions that are part of the protein (Mg+2, Zn+2, Mn+2, Fe+2,
Fe+3)
Catalytic centers that are part of the protein (4Fe-4S cluster, Ni-
Fe active center)
Heme groups (heme D, bateriochlorophyll, cobatamin, protopor-
phyrin IX)

For brevity, not all compounds are listed.
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Binding MOAD contain only appropriate protein-ligand structures. Short protein-

ligand distances and suspect ligands were flagged for visual inspection in a more

careful hand-check stage. Suspect ligands are crystal additives that are valid only

in some cases. Partial ligands are molecules that cannot be a ligand on their own

but are often a component of multipart ligands. Any HET with 3 heavy atoms

is automatically part of this list. The covalency check identifies if these HET are

modifications to the protein or a ligand.

The reason for our choice to reject or suspect various HETs in Table 2.1 is obvious

in many cases. The reader may notice that β-D-N-acetylglucosamine (GlcNac, NAG

in the PDB) is not on the suspect lists. We found that GlcNac was never used as a

crystal additive. It was either part of a ligand or a covalent modification that was

readily identified by our scripts.

Modifications to amino acids are on the partial ligand list because they can be

part of the protein or part of a peptide ligand. Complexes containing heme groups

were rejected because the covalent association of ligands to the central metals made

it difficult for us to properly identify the true ligands. In many cases, it was a small

molecule (oxygen, carbon dioxide). Of course, this neglects P450s which are very

important in medicinal chemistry, toxicology, and pharmacology.(127) We plan to

add P450s to Binding MOAD in the future to make it more useful.

2.2.4 Grouping the Proteins to Address Redundancy in the Data

It is desirable to group proteins by related structure and function so that users can

compare related systems. Enzyme classification (EC) numbers are used to broadly

group entries into classes with similar chemical functionality. Within these classes,

proteins are grouped into homologous protein families based on sequence.

The EC numbers and protein sequences are pulled from the mmCIF files of all ap-

propriate structures. To compare the sequences in Binding MOAD, we use BLASTp

25



v2.2.7.(128) Defaults are used (E = 10, BLOSOM62 matrix, gap cost = 11, gap

extend cost = 1). To create protein families, we use a cutoff of 90% sequence iden-

tity like HOMSTRAD,(129) but our grouping of proteins is slightly different than

the clustering used for grouping similar sequences at the PDB.(130) The routine is

presented in Figure 2.2:

Figure 2.2: Currently, 4078 protein families exist over all EC classes. Our routine
for grouping proteins by EC number and 90% sequence identity is shown
schematically below. The dashed arrows represent a protein with two EC
numbers being added to two EC classes. The bold arrows show how a
protein with no EC number is added to an EC class by sequence identity.
The bold arrows represent a protein that is nearly identical to the dashed
protein, so it is added to the same two classes. The gray arrow notes that
the homologous protein families are compared in the end, and entries
found multiple in families are corrected.

1. Use BLASTp to compare each protein chain of each entry to all other chains.

2. All protein sequences are initially grouped into classes by the EC numbers. If

a protein has more than one EC number, it is a member of more than one EC

class (dashed arrows in Figure 2.2).

3. Structures that do not have an EC number are checked against the existing

EC classes. If the sequence is 90% identical to any protein in an EC class, the

sequence is added to that class. These entries can be added to more than one

class (see bold arrows in Figure 2.2).
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4. Any structures that do not have matches in the EC classes are initially grouped

into a nonenzyme class. The nonenzyme class can contain enzymes that lack

EC numbers or proteins that bind ligands but do not catalyze a reaction.

5. Homologous protein families in each EC class are created using the comparison

matrix generated from step 1. At this stage, two entries (A and B in a class)

are grouped together into a homologous family if one of the sequences in A is

90% identical to one of the sequences in B. With 90% sequence identity being

so strict for clustering, we always found that any additional chains in entries A

and B were also 90% sequence identical.

6. In some cases, every entry in an EC class may be at least 90% identical to all

other entries. In those cases, the entire EC class is grouped into one homologous

protein family. In the nonenzyme class, there are many, different homologous

protein families because of the greater structural diversity.

7. At this point, the homologous families within all EC classes are compared to

identify any potential errors.

(a) For proteins with more than one EC number, we find nearly identical

protein families in more than one EC class. Only one of the families is

retained and placed in the most appropriate EC class.

(b) If an error was made in the EC number of an entry, it will initially be

placed into the wrong EC class, but it will have little similarity to the

other entries in that class. The misplaced entry will have high similarity

to the entries in another protein family in the correct EC class (e.g., HIV

protease was given many different EC numbers for historical reasons, but

the entries must be grouped together). The incorrectly labeled entry is

moved to the proper class/family. At this time, a missing or incorrect

EC number in Binding MOAD can only be corrected if the entry can be
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identified by its similarity to a homologous protein family in the proper

EC class.

8. The best entry in a protein family is the structure with the tightest binder.

In cases where a family has no entry with binding data, complexes of ligand-

protein or ligand-cofactor-protein are chosen over protein-cofactor complexes.

The priority for choosing a representative of the protein family is:

(a) Tightest binder (when binding data available)

(b) Best resolution (complexes with ligands preferred over complexes with just

cofactors)

(c) Wild-type over structures with site mutations

(d) Most recent deposition date

(e) When all criteria are the same, the representative is chosen based on com-

ments in the crystallography paper.

2.2.5 Annual Updates

We conduct updates annually to incorporate more structures into Binding MOAD

as they become available in the PDB. Our 2004 update began in August. The update

procedure is:

1. Use the PDB’s list of obsolete entries to identify any existing structures in

Binding MOAD that should be removed.

2. Download a new set of mmCIF files. The previous version will be compared

to identify all new structures that have been added to the PDB since the last

version of Binding MOAD was created.

3. Identify good protein-ligand complexes in the new structures using our current

scripts.
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4. Any new HETs must be classified as suitable ligands or added to the suspect,

partial, or reject lists.

5. The literature portion of the updates should be faster because the number

of complexes will be significantly smaller than the existing set and almost all

references will be available as online PDF files.

6. Sequences will be added to existing classes and protein families, but regrouping

all sequences from scratch may be necessary to periodically confirm our protein

classes and families.

7. Each new structure will be compared with the leader of its homologous protein

family to determine if the new structure is a better representative of the family.

2.3 Results and Discussion

The creation of Binding MOAD has been the compilation of many years of work

and has had several people assist with the project. I am directly responsible for

writing the perl program used to filter the Protein Data Bank. The description of

the filtering of the PDB and the generation of the data in binding MOAD has been

placed in Appendix C. I was also responsible for intitiating the use of the list of

ligands that are to be considered “suspect” ligands and to be investigated by hand.

Upon going through each ‘HET’ group by hand to determine whether it is a valid

or suspect ligand, another class of ligands was determined, the “partial” ligand list

from Table 2.1. I was also involved with the decision of how to handle metals when

determining whether a ligand was covalent.

The undertaking to go through the thousands of literature citations to pull out

binding affinity values was shared among several people, with the majority falling

on my shoulders. In the first two updates, the papers were viewed in ’.pdf’ format

in Adobe Acrobat Reader. In order to make the process more manageable, I used
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keywords to search the paper, such as ‘ki’, ‘kd’, ‘ka’, ‘ic50’, ‘affinity’, ‘bind(ing)’,

‘constant’, ‘association’, ‘dissociation’, ‘inhibitor’, and ‘inhibition’. These keywords

as well as other combinations were also used to build a dictionary of terms that was

used in BUDA, which is discussed further later in the chapter.

After determining the complete set of Binding MOAD, the entries were grouped

by family, with enzymes annotated with the EC number. I used several common key-

words for entries that were not provided EC numbers to sort them into the categories

listed in Table 2.2.

After examining the PDB contents in our latest updated, January 1st, 2009 (55,072

entries), a total of 13,138 valid protein-ligand complexes was obtained. Table 2.2

provides detailed information about the functional roles of the proteins contained in

Binding MOAD. Our distribution of structures is a little different than that of sc-

PDB(123) due to slightly different selection criteria. Three-fourths of the proteins

are enzymes, with hydrolases and transferases having the most representatives.

Binding MOAD contains 6213 unique, valid ligands within the 13,138 complexes.

Cofactors, inhibitors, and substrates are all considered ligands in Binding MOAD.

Figure 2.3 provides the distribution of valid ligands by size. The ligands range from

4-176 heavy atoms. The average molecular weight of the ligands in Binding MOAD

is 455 g/mol; an example of the average ligand is ATP which has molecular weight

of 507 g/mol. Figure 2.3 shows that the number of significantly larger ligands drops

off quickly. The largest ligands are peptide, nucleic acid, and sugar chains.

2.3.1 Clustering Binding MOAD into Homologous Protein Families

The protein sequences of the entries in Binding MOAD were grouped into homol-

ogous protein families. When the set is clustered at 100% sequence identity, 7247

unique protein sequences were identified. As one would expect when the criterion

for sequence identity is relaxed, fewer protein families are found and the size of the
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Table 2.2: Functional classification of current entries in Binding MOAD
Proteins identified with EC numbersa Entriesb

1.-.-.- (OXIDOREDUCTASE) 2168 (16.5%)
2.-.-.- (TRANSFERASE) 2927 (22.3%)
3.-.-.- (HYDROLASE) 3641 (27.7%)
4.-.-.- (LYASE) 723 (5.5%)
5.-.-.- (ISOMERASE) 463 (3.5%)
6.-.-.- (LIGASE) 331 (2.5%)
Total enzymes 10253 (78.0%)

Proteins without EC numbers Entries
Binding (lectin, streptavidin, agglutinins, etc.) 593 (4.5%)
Signalling, cell cycle, apoptosis 450 (3.4%)
Folding (chaperones, etc.) 67 (0.5%)
Immune (antibodies, immunoglobulins, cytokines, etc.) 294 (2.2%)
Mobility/structural (actin, myosin, etc.) 94 (0.7%)
Toxin/Viral 87 (0.7%)
Transcription, translation, replication proteins 320 (2.4%)
Transport (amino acid transporters, electron transport, etc.) 414 (3.2%)
Enzymes without EC numbers (eg., isopenicillin N synthase) 83 (0.6%)
Other 483 (3.7%)
Total proteins without EC numbers 2885 (22.0%)

aEnzyme counts include entries without EC numbers that could be identified through keywords
or enzyme names. Some were also identified by 90% sequence identity to entries with EC numbers.

bNumber of entries and their percentage of all 11,368 entries in Binding MOAD
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Figure 2.3: Distribution of the current 6213 unique ligands by molecular weight. The
average ligand in Binding MOAD is 455 g/mol. The largest are small
chains of sugars, amino acids, and nucleic acids.
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protein families increases (Table 2.3). Clustering at 90% sequence identity (our pref-

erence) produces 4078 homologous protein families with the largest family containing

278 complexes. The largest families are for systems that have been well studied

for molecular recognition between proteins and ligands (e.g., trypsin, thrombin, HIV

protease, lysozyme, dihydrofolate reductase, etc.). In Figure 2.4, a histogram of the

homologous protein families shows that most of the families have only a few entries.

This reflects the emphasis in structural biology to identify new structures and folds,

rather than solve many structures of the same protein. Generally, families contain

multiple complexes when mutagenesis studies have been performed or various ligands

have been co-crystallized.

Table 2.3: Characteristics of Binding MOAD When Grouped Into Families by Se-
quence Identity

Clustering Criterion Number of homologous Size of the largest family
protein families (second largest family is also noted)

100% Sequence identity 7247 124 complexes1 (52)2

90% Sequence identity 4078 278 complexes3 (165)1

75% Sequence identity 3823 272 complexes3 (182)1

50% Sequence identity 3316 272 complexes3 (190)1

1Trypsin
2Thrombin
3HIV Protease

2.3.2 Nonredundant Binding MOAD

To create a nonredundant version of the dataset, we had to choose unique repre-

sentatives for each protein family. As outlined in the Methods, we made every effort

to identify the tightest binder to represent each family. For the dataset clustered at

90% sequence identity, 2107 of the 4078 families contained only one complex, and

so the choice for the representative was obvious. The remaining families contained

multiple complexes. In the 2008 update of Binding MOAD, for 724 of the families,

the representative was easily identified by binding data. Resolution was the deciding
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Figure 2.4: Histogram of the homologous protein families shows that most families
have only a few complexes. There is a near-exponential decrease in the
number of larger and larger families. This trend is basically the same for
clustering at 100% sequence identity (blue), 90% (red), 75% (yellow), and
50% (gray).
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factor for 335 of the families (either because there was no binding data or the binding

affinity was the same for more than one ligand). Of the remaining families, 46 were

chosen based on complexes with ligands being preferred to complexes with only cofac-

tors, 13 were chosen by wild-type over mutated protein, 24 by most recent deposition

date, and 48 by other criteria (R factor, comments about ligands in the paper, etc.).

In the current version, the new structures were checked against the previous leader

to determine the leader.

The nonredundant version of Binding MOAD contains 4078 unique proteins. After

choosing the complexes for the nonredundant set as outlined above, this set contains

binding data for 1176 of the unique structures.

2.3.3 Binding-Affinity Data

The binding-affinity data contained within Binding MOAD ranges 13 orders of

magnitude, from low fM to high mM values (see Figure 2.5). The dataset contains

mostly K d and Ki values. There are 1167 entries have IC50 data, ranging 21 pM -

125 mM. For the 1365 entries with K d data, values range 77 fM - 900 mM. The 1671

entries with K i data have the largest range of binding affinity, 11 fM - 400 mM.

One of our primary goals is to obtain binding data for all entries in the full set of

Binding MOAD (all 13,138 complexes). At this time, only 4203 complexes (30%) in

Binding MOAD are augmented with binding data. Though this is much larger than

other datasets with a few hundred binding affinities,(54; 55; 114) we were disappointed

to find that so few of the structure papers notes binding-affinity data. A survey of

the literature by Wang and coworkers found a similar rate of binding data included

in the crystallography papers.(56)

Of course, some of our complexes inherently lack binding data; protein-cofactor

structures do not have K d, K i, or IC50 data for us to report. K M is the more

appropriate binding data for most cofactor-protein complexes, and we have started to
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collect that information for our complexes. Protein-cofactor structures should be part

of the dataset because they can be very important in studying molecular recognition

and drug design. For example, patterns in ATP recognition can be extracted from

ATP-binding domains to explain enzymatic regulation or develop inhibitors.(131; 132)

Figure 2.5: The distribution of binding-affinity data within Binding MOAD. Data is
available as K d (red), K i (blue), or IC50 (yellow). For this histogram,
binding data were converted to free energies by -RT ln (data). Though
not strictly appropriate for many K i or IC50, this simply provides a com-
parison for the reader.

2.3.4 Database Growth and Updates

As mentioned above, we are committed to the growth and quality of Binding

MOAD. Since its introduction in 2004, Binding MOAD has regularly expanded its

collection with new data. Originally with 5331 crystal structures of protein-ligand

complexes, it has increased by almost 1500 each year, growing to 6638 in 2005 and

then 8250 in 2006, reaching 9836 entries in 2007, 11,368 in 2008, and 13,138 with the

latest update. This steady growth mirrors the growth of the PDB (Binding MOAD

contains approximately one-fourth of the PDB). The primary literature for each crys-
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tal structure is read in order to verify the ligand and to extract any affinity data

for the ligand. Thus, adding new data to Binding MOAD involves reading tremen-

dous number of journal articles for manual annotation and validation of appropriate

ligands.

To facilitate the literature-checking process, a natural language processing (NLP)

based workflow tool called Binding Unstructured Data Analysis (BUDA) has been

developed. The NLP portion of BUDA is built upon the General Architecture for

Text Engineering (GATE) framework(133). It identifies key sentences and phrases

in papers and uses a weighted scoring algorithm to rank the likelihood that the key

sentences and phrases contain binding data. The workflow portion of BUDA is used to

interact with the researcher to organize the data for the annotation process. From the

workflow interface, the curators can sort the articles by their weighted scores, review

the annotated texts and highlighted sentences, and update the data into Binding

MOAD.

2.3.4.1 Platform

Binding MOAD is built on proven technologies. The Binding MOAD database is

based on the Java 2 Platform, Enterprise Edition (J2EE), using an open-source JBoss

Application Server, Enterprise JavaBeans (EJB), and a MySQL database backend.

These tools provide a standards-compliant, easy-to-use website that unifies the pre-

sentation of structural, chemical, and binding data in one simple format.

2.3.4.2 Improving User Experience

Having a flexible infrastructure, allows for changes in the web-site presentation.

Efforts are made to make the data as easily accessible as possible. We have removed

the need for users to login, and data is now freely accessible to private companies, non-

profits, and foreign institutions. Additional features have been added. A screenshot
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of the modified layout for a datapage in Binding MOAD is shown in Figure 2.6.

Figure 2.6: Screenshot of the data page for 3ERK, showing the additional ligand data
and the connectivity to proteins with similar structure and function.

2.3.4.3 Viewer

A new 3D protein viewer, EolasViewer, is available to view the ligand in the

protein pocket. The new viewer is built using the Eolus platform from Metamatics

and it replaces the previously used GoCavViewer. A screenshot of the viewer is shown

in Figure 2.7 The new viewer is still capable of selecting and viewing the ligand pocket

using both ball-stick and surface representations. EolasViewer incorporates significant

improvements in the areas of performance, visual quality, and back-end flexibility for

future application development efforts.

By taking advantage of rendering algorithms and OpenGL Shader Language (GLSL),

Eolus provides the new viewer with new representation styles. The surface represen-

tation has been expanded to a fully transparent polygon surface. The proteins are

rendered as ribbons by default, and the entire protein (instead of only the ligand
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pocket atoms) can now be rendered either as ribbon or ball-stick. Finally, many ad-

vanced features are planned for future versions of this tool. Eolus is a platform for

structual biology being developed in conjunction with this and other tools.

Like its predecessor, the new Eolus-based viewer is built using a Java framework

and we are deploying it as a WebStart application. Eolus uses Jogl (Java Bindings for

OpenGL) to fully utilize the 3d acceleration features available in nearly all modern

computers. These two technologies, Java WebStart and OpenGL, provide nearly

hands-free deployment of the software, together with state-of-the-art performance

and visual quality.

Figure 2.7: EolasViewer for 3ERK. The SB4 ligand is shown in ball in stick inside the
pocket. The surfaces shown are the ligand surface in blue, the binding
site in red and the solvent-exposed regions of the binding site are in green.
(Top) The protein backbone is shown as a gray ribbon, and in the close-up
(Bottom), the backbone is colored by B-factors.
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2.4 Conclusion

As stated above, we have developed and continue to expand Binding MOAD, in

the future we wish to contain more binding-affinity data (including the addition of

K M for cofactors). We have also committed to annual updates of the dataset to keep

pace with the growth in the PDB. Binding MOAD has over eleven thousand, hand-

curated, protein-crystal structures that contain biologically relevant ligands. Binding

affinity data is available for almost one-third of the entries. Part of the value of

Binding MOAD is in its careful curating and in its size and wealth of data. This

has been only achievable because of the efforts invested to maintain the continual

growth. Binding MOAD has plans for even greater improvement. We are planning

to add similarity-based searches for the ligands. Furthermore, while we have been

able to use text-mining tools to speed up our annotation process, we are looking to

make these tools available online to allow users to mine text for additional types of

data. We are now using NLP to aid in our searching. Such NLP based text mining

approaches can be readily applied to other bioinformatic projects. This technology

can be used to extract a wide variety of data - not just binding information - from

the huge body of literature available today. NLP is proving to be a valuable tool in

aiding the curation of Binding MOAD. It has significantly sped up the process of the

annual updates of adding data.

We have made the dataset available online at http://www.BindingMOAD.org.

This web-accessible resource makes our information freely available to other research

groups at non-profit organizations (annual licenses are available to the private sec-

tor). Data from our perl scripts and our hand curation include PDB id, EC class,

homologous protein family, binding-affinity data, and classification of each ligand in

the entry (valid versus invalid). The datapage for each complex in Binding MOAD

provides this information to the user. Our scripts also note the reason any PDB

structure was excluded (resolution > 2.5 Å, no appropriate ligand, etc.). If a user
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tries to access a PDB entry that is not part of Binding MOAD, a datapage provides

the reason for its exclusion from the dataset.

We are choosing to make the structures available as biological units rather than

PDB files. The biological units provide the proper multimer for biological activity.

For instance, only the proper dimer is provided when multiple dimers occupy a unit

cell, or the proper tetramer is provided from symmetry operations of a unit cell

containing only the monomer. This will provide users with the structures that are

most related to biological activity and therefore the most appropriate for study.
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CHAPTER III

Exploring Protein-Ligand Recognition with

Binding MOAD

3.1 Introduction

A growing trend in computational biology is the development of large datasets

to provide the scientific community with various information on protein-ligand struc-

tures. Of course, the definitive online resource for structural data of these complexes

is the Protein Data Bank (PDB) (53). It is constantly being improved through the

addition of online tools and links to complementary datasets (134). Most recently,

Ligand Depot was created by the curators of the PDB to facilitate searching the HET

groups via chemical substructures and text-based searches (117). There are many

other examples of databases and websites that analyze and augment protein-ligand

complexes from the PDB. The following discussion is by no means an exhaustive

listing of such derivatives of the PDB.

Our own contribution in this area is Binding MOAD (Mother of All Databases)

(62). Our goal for Binding MOAD is to create the largest resource of high-quality

protein-ligand complexes and augment those structures with binding affinity data

and online analytical tools. We took a top-down approach to create Binding MOAD.

Starting with the entire PDB, we selected only crystal structures of high resolution
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(= 2.5). We ensured that Binding MOAD contained only appropriate protein-ligand

structures through extensive hand curation. Structures were required to contain at

least one valid, non-covalently bound ligand. Chains of 4 nucleic acids or less and

10 amino acids or less were treated as ligands. In our original creation of the 2003

version of Binding MOAD, we eliminated any structure with a heme group because of

the difficulty in distinguishing non-covalently bound ligands. With the August 2004

update, all heme-containing proteins have been examined by hand and appropriate

structures are now part of Binding MOAD. The 2004 version of Binding MOAD

contains 6821 complexes. We read over 6000 crystallography papers to confirm the

validity of the protein-ligand complexes and to gather binding affinity data. As a

result of this process, we have binding data for 1793 (27%) of the complexes. The

2008 version now contains 13,138 complexes with binding affinity for 4203 (32%).

We wanted to mine Binding MOAD to provide general patterns of molecular

recognition to the scientific community. How exposed binding sites are across all

protein-ligand complexes? To answer this, we needed a resource that could properly

treat any binding site – regardless of size, shape, degree of solvent exposure, the

inclusion of bridging water molecules, or the occurrence of side chains with multiple

resolved orientations (partial atom occupancy). For this, we have developed GoCAV

and the GoCAVviewer to calculate and display molecular surfaces for the ligands and

for the protein cavities.

A number of online tools are already available to view atomic coordinates, sec-

ondary structure, and cavities. We are not presenting GoCAV as a breakthrough to

supercede these programs. We simply feel that GoCAV and the GoCAVviewer are

complementary alternatives to these other excellent resources, and by incorporating

the viewer into our website (www.BindingMOAD.org), we have a means to share the

data from this study with the scientific community. The discussion below highlights

some of the most useful online resources created by other research groups for an-
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alyzing and viewing protein-ligand complexes. Generally, these databases describe

a ligand as any molecule that is not one of the common 20 amino acids or 8 com-

mon nucleic acids. They make no distinction between valid and invalid ligands like

crystallographic additives or covalent modifications to the protein.

PDBsum is the most comprehensive resource. It provides data on the entire

collection of structures from the PDB (120; 135; 118; 119). Chemical, enzymatic,

and genomic information is available for all PDB structures, even if they are not

proteins and even if they do not contain ligands. One of the most powerful features

of PDBsum for understanding the molecular recognition of ligands is its analysis of

macromolecule-ligand interactions. The information is provided via 2D pictures and

several 3D viewers. Most relevant to this work is the fact that PDBsum provides

analysis of potential cavities using an updated version of SURFNET (48).

CASTp is an online database that uses rigorous analytical techniques to analyze

all proteins in the PDB for interior cavity voids and surface pockets (136). Using

the program CAST (17), it calculates the volumes and surface areas of the sites,

and it also determines the size of the openings in solvent-exposed pockets. It is not

limited to proteins with bound ligands, so it has the benefit of identifying previously

unknown binding sites, but it also identifies many small surface pockets that do not

bind ligands. The online viewer displays the residues that make up the cavities and

pockets, but it does not show the bound ligands. This makes it difficult to understand

the molecular recognition that controls binding in that site.

MSDsite (58) provides information on ligand interactions with any macromolecule,

not just proteins. MSDsite provides various analyses of the macromolecular environ-

ment surrounding ligands. The dataset can be mined by matching patterns based

on the ligand or on the binding-site environment. PDB-Ligand (137) is a new re-

source that is very similar to MSDsite, but strictly focuses on analyses of protein

residues and nucleic acids within 6.5 Å of a HET group. Relibase (59; 138) is a
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resource that specifically focuses on the protein-ligand complexes in the PDB. It al-

lows for text-based and sequence-based searching of the PDB. SMILES strings can

be used to search ligand substructures. It also provides graphics tools to examine the

structures. Relibase+ (60) is a newer version that allows for additional 2D and 3D

similarity searches. NCBI’s Entrez resource for 3D structures is the Molecular Model-

ing DataBase (MMDB) (121). MMDB is based on pregenerated relationships, found

by comparing each PDB entry with various structure and sequence databases. Their

viewer can be used to compare any individual PDB entry to its structural homologs.

This reveals their similar tertiary structure and can be used to examine common

binding motifs of bound ligands. So though the focus of MMDB is the comparison of

folds and domains, it can provide valuable information on protein-ligand recognition.

Each of the four online databases mentioned above has very useful features, but as

mentioned above, they make no distinction of which HET groups are proper ligands.

Two additional datasets, PDBbind and sc-PDB, are similar to Binding MOAD

and also focus on valid ligands. These databases do not provide viewers to exam-

ine protein-ligand complementarity, but the atomic coordinates of the proteins and

ligands are available for download and can be examined offline. PDBbind is a large

set of protein-ligand complexes from the PDB, focusing on binary structures with a

single ligand in a protein binding site (56). PDBbind also provides binding affinity

data obtained from reading the crystallography papers. As of its latest update in

January 2004, it contains binding data on 1622 complexes (a subset of 900 complexes

makes up the “refined” set) (57). PDBbind provides graphical interfaces, similar to

those used with Ligand Depot, to view the ligands and perform substructure searches

to find related systems. The other database, sc-PDB (123), was created in a fashion

similar to Binding MOAD and PDBbind, but it does not provide binding data. The

set of structures is used for “inverse screening,” a procedure where a ligand is docked

to a series of binding sites to determine its appropriate target. sc-PDB is a set of

45



5634 protein binding sites and 7109 ligands at the time of writing this paper [personal

communication, Esther Kellenberger, Universit Louis Pasteur, placeCityStrasbourg].

The online interface to the dataset allows for text-based searches of much of the in-

formation within the PDB files (PDB ID, HET group name, authors, EC numbers,

deposition date, resolution, etc.). The data can also be accessed by information based

on other resources like Swiss-Prot (139) data and NCBI taxonomy notation (140).

3.2 Methods

Rather than simple PDB files, “corrected biounit files” were used for all protein-

ligand complexes. Biounit files are available from the PDB, and they represent the

appropriate multimer for biological activity. For instance, if only a monomer appears

in the unit cell, but a trimer is the appropriate biounit, the other two monomers

are generated through symmetry operations. We found that HET groups and water

molecules frequently were not properly treated in the PDB’s biounit files. They

were not propagated where necessary, and they were not removed in cases where

their corresponding protein was deleted from the unit cell. We corrected all biounit

files by propagating the water and ligands as necessary using the program PyMOL

(141). We also removed any molecules that were more than 10 Å away from the

protein. Covalent links were checked to avoid truncating sugar chains and other post-

transcriptional modifications that were longer than 10 Å. These corrected biounit files

are the structures that are available for download on the Binding MOAD website.

It is straightforward to calculate the surface of an enclosed binding site (142; 143),

but many interesting ligands are bound in open clefts. Molecular surface area (MSA)

is calculated by ”rolling a solvent probe” on the van der Waals (vdw) surface of the

atoms. With an exposed binding site, the probe escapes and maps out the entire

protein surface. Ho and Marshall suggested that some cutoff distance to the ligand

might be a reasonable way to determine the boundary of an open site (144). We were
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not able to find code to do this, so we wrote GoCAV to accomplish the task and

provide a consistent treatment for any type of binding site in Binding MOAD.

GoCAV, uses an “enlarged ligand surface” (ELS) to create a boundary for the

binding site (Figure 3.1). It calculates MSAs using a grid-based method. Voronoi

tessellations are more accurate than grids for enclosed sites (145; 146; 143), but

the method does not work as well on surfaces (147; 148). We use a very fine, 0.2-

Å grid (0.008 Å3 cubes) to minimize the errors as much as possible. Codes have

been developed by other groups that calculate surfaces and cavities (for example,

POCKET (47), SURFNET (48), CAST (17), PASS (49), and an unnamed grid-

based technique by Schneider and coworkers (149)). Many of these have the benefit

of finding pockets without needing bound ligands to guide them, which means they

can identify new binding sites (a definite advantage over GoCAV). However, in the

process of analyzing/identifying all possible cavities, some of these codes produce

pockets that are not true binding sites. Some have poorly defined boundaries that do

not encapsulate all of a bound ligand. Some do not identify all types of pockets, and

others tend to create large networks of interconnected cavity spaces over the surface of

the protein. For our purposes with Binding MOAD, we needed a code which focuses

on defining a cavity within the local vicinity of a bound ligand.

To create the ELS, we extended the ligand’s vdw radii by 2.8 Å (the equivalent of

one layer of water as the exterior boundary for an open binding site). We wanted to

define a boundary for open binding sites, but not hinder the calculation of enclosed

binding sites that incorporate bridging water molecules. To verify our description

of the ELS, we examined several binding sites with bridging water molecules (see

Figure 3.2). Appropriate boundaries of these binding sites were identified with the

ELS radius of 2.8 Å. The MSA for ligands are straightforward to calculate and were

also part of the GoCAV output.

The overwhelming majority of Binding MOAD’s structures do not contain hydro-
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Figure 3.1: Determining the boundary of an open cavity using ELS. (Left) A ligand
molecule (black) is bound in an open protein cleft (gray). The dashed
line is the ELS, determined by adding 2.8 Å to the radii. A probe rolls
over the vdw surfaces of the protein atoms and the inward-facing surface
of the ELS. The resulting surface of the cavity is shown as a bold, black
line. The solvent-exposed portion of the cavity surface is defined as the
section of bold, black line that is defined only by the ELS in the opening
of the binding site.
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Figure 3.2: The use of an ELS does not create inappropriate boundaries for open or
closed cavities that contain bridging water molecules. Examples are given
for completely buried cavities (1ECM and 1KDK) and solvent-exposed
pockets (1AZ8 and 1GFY). (left) Binding site and ligand surfaces cal-
culated with GoCAV, employing an ELS cutoff. (right) The resulting
surfaces when the noted bridging water molecules within the cavity are
included in the calculation as additional protein atoms. The ligand sur-
face is blue, and the binding site surface is red and gray. The red regions
are buried, and the gray region denotes the solvent-exposed or ELS sur-
face of the cavity. Protein atoms are not shown for clarity. This figure
was created using the GoCAVviewer on the Binding MOAD website.
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gen atoms, so we needed to use united-atom radii in our analyses. Our chosen radii

were based on averaged OPLS united-atom vdw parameters: C=1.925 Å, N=1.655

Å, O=1.52 Å, S=1.81 Å, P=1.87 Å (150). (We estimated radii for other less-typical

atoms as 2.0 Å.) OPLS parameters were carefully developed to reproduce thermody-

namic properties in condensed phases. We are confident in the choice of OPLS radii

because of their good agreement with Li and Nussinov’s radii set which was deter-

mined in an entirely different fashion (151). Li and Nussinov derived radii through

contact distance distributions in a set of 1405 protein crystal structures (C=1.92 Å,

N=1.66 Å, O=1.51 Å, S= 1.92 Å). Though we do not present the data here, a user

can use a second set of radii in GoCAV. We made the Fleming and Richards’ radii

(147) (C=1.9 Å, N=1.5 Å, O =1.4 Å, S=1.85 Å) an available option because they

are well established and many groups support smaller radii. Gerstein and coworkers

determined similar, smaller radii using contact distance distributions from crystal

structures of small organic molecules (C=1.88 Å, N=1.64 Å, O=1.44 Å, S= 1.77 Å)

(152).

Invalid ligands are not included in the calculations unless they are a covalent mod-

ification of the protein or a structural element like a catalytic/structural zinc ion or a

heme (these are treated as additional protein atoms). When mining a large dataset,

the code must properly treat unusual cases. GoCAV was created with several “filters”

to analyze structures before performing the surface calculations. With these filters,

GoCAV was able to properly process >98% of the structures in Binding MOAD. In

the case of ligands with warnings (too many or too few atoms), those complexes were

not included in this study (even when GoCAV was able to calculate their surfaces).

Unusual protein-ligand complexes include the following situations: 1) Side chains

within a binding site can be solved in multiple orientations (as denoted by partial oc-

cupancy). In these cases, GoCAV automatically calculates the surfaces twice, with the

side chain in either orientation. Appropriate combinations are generated if more than
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one side chain in the binding site requires this treatment. All solutions are presented

in our analysis, providing averaged data points with error bars for those complexes.

2) Some sugar-binding proteins actually contain both enantiomers of the sugar in

the binding site, superimposed with 50%-50% occupancy. Again, GoCAV recognizes

the two solutions inherent in the structure and does two independent calculations,

each with a single enantiomer. Both ligands are presented independently in our plots

and histograms (no error bars because they are not the same ligand). 3) When two

separate ligands are accommodated in a large binding site (such as a cofactor and

an inhibitor bound in close proximity), GoCAV actually does three calculations: a)

both ligands are treated as one large molecule, b) the first ligand is treated as part

of the protein while the surfaces around the second ligand are calculated, and c) the

second ligand is part of the protein while the first ligand is calculated independently.

The later two calculations, where each ligand is treated independently, are the values

included in the plots and histograms in this study.

To verify that the patterns calculated with GoCAV are appropriate and compa-

rable to other standard techniques, we have also calculated the solvent accessible

surface area (SASA) of the ligands with the program NACCESS (50). (SASA of the

ligand should be roughly comparable to the MSA of the cavity.) NACCESS is based

on Lee and Richard’s analytical method (51) as opposed to our grid-based approach.

It uses radii based on Chothia’s (153) but with more subtypes for carbon, nitrogen,

and oxygen with slightly different radii (carbons range 1.76-2.0 Å, nitrogens range

1.5-1.65 , oxygens are 1.35 or 1.4 Å, S=1.85 Å, P=1.9 Å, Fe=1.47 Å). NACCESS

provides SASA on a “per residue” basis. If the ligand is completely buried, the SASA

calculated with NACCESS is zero. The SASA of each ligand in each complex was

calculated in the presence and absence of the protein (again, we included any other

appropriate ligands as part of the protein environment). We calculated the buried sur-

face area of the ligand as SASA(no protein)-SASA(with protein) and percent buried
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surface area as 100*(1-SASA(with protein)/SASA(no protein)). NACCESS is not

able to treat the unusual cases that we describe above for GoCAV. Those systems are

not included in the NACCESS plots and histograms.

3.3 Results and Discussion

3.3.1 Binding MOAD

Several features of Binding MOAD make it particularly useful for examining the

degree of solvent exposure of all protein-ligand binding sites. First, the dataset has

been carefully curated to identify valid and invalid ligands in each structure. Only the

valid ligands are included in our analysis. Without this analysis, any broad mining of

the structures would reflect real binding patterns skewed by the less relevant patterns

seen for crystallographic additives. (We have also excluded any ligands with warnings

of too many or too few atoms from the analysis, though they are part of the MOAD

dataset.)

Second, the dataset has been analyzed for redundancy. The proteins have been

grouped into families by 90% sequence identity. The non-redundant set of structures

from Binding MOAD contains only one complex from each protein family. The rep-

resentative for the family is the tightest binder when binding data is known. In cases

where there is no binding data for any of the complexes in the family, the represen-

tative is chosen based on best resolution and other structural considerations (62).

This allows us to present the data without some of the inherent bias of structures

deposited within the PDB.

3.3.2 Sharing the data on the Binding MOAD website

Each entry’s datapage on the Binding MOAD website is organized to help users

identify related protein systems and compare binding data, see Figure 3.3. Entries
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are cross-linked by function (classes for both enzymes and non-enzymes), sequence

identity, and ligand content. All HET groups in the complex are identified as valid

or invalid, and warnings are provided when too few or too many ligand atoms appear

in the PDB entry (unresolved atoms or multiple resolved orientations for parts of the

ligand, respectively). Binding data is provided when available. Text-based searches

can be used to identify entries based on PDB id, EC number, protein name, 3-

letter HET codes, and authors. Wildcards are permitted. The results can be limited

to a user-defined range of crystallographic resolution. The user can also limit the

search to the 1793 structures in Binding MOAD with available binding data, the

2223 structures of the non-redundant Binding MOAD dataset (where each protein

family is only represented once), or the 630 structures in the non-redundant set that

have binding data. There is also a browse feature to allow users to page through

functional classes of structures. When a user clicks the “class” link on a datapage

(seen in Figure 3.3), they are taken to the browse page for that functional class where

all protein families within the class are shown and ligand/binding information also

provided (Figure 3.4).

Clicking the blue and red thumbnail on a datapage, see Figure 3.3, launches a

version of the GoCAVviewer that interactively displays the atomic coordinates and

the surfaces calculated with GoCAV. The binding-site surfaces and the ligand surfaces

calculated with GoCAV are grid points, so the “raw” surfaces look like LEGO building

blocks. A smooth surface is created by a graphics trick, applying a Gaussian filter to

the image. The GoCAVviewer is written entirely in standards compliant Java, and

the code will work on any operating system that provides an implementation of the

standard Java Runtime Environment and Java3D API. GoCAVviewer is interactive,

allowing the user to rotate, zoom, or translate the structures in real time. The cavity

surfaces are transparent and near-by protein atoms can be displayed, so the user can

look at the complex in detail. At this time, the most critical issue is speeding up the
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Figure 3.3: The datapage for the HIV-1 protease complex 1MTR. The page starts
with the general information from the PDB file. The ligand HET codes are
single-click searches that pull up all other structures with that ligand. All
ligands are listed as valid or invalid, and binding affinity data is provided
when available. Warnings are provided when the number of atoms in
the structure do not match the formula section of the PDB file. Clicking
the thumbnail launches the GoCAVviewer. Links to the right of the
thumbnail take the user to the equivalent datapage at the PDB and to
the crystallography paper on Pubmed. Various sets of structural and
binding data are available for download. At the bottom of the page, the
structure is linked to other entries with the same functional class, and
all other members of its protein family are listed with ligand information
(over 100 HIV-1 protease structures are included in Binding MOAD and
the user needs to scroll down the page to see all the data.
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Figure 3.4: The user can find information by browsing through the complexes within
Binding MOAD. The structures are organized by function: EC numbers
for enzymes and our own classifications for entries without EC numbers.
All protein families within a class are displayed for the user to compare
related systems and their binding affinity data.
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viewer. We are committed to improving it, but we wanted to make the data available

to the rest of the community as soon as possible.

Tight complementarity between the protein and ligand is highlighted by the ligand

surface projecting through the cavity surface (see Figure 3.2). We have found that

these intersections only occur at positions with strong hydrogen bonding or very

specific vdw interactions. We have also configured the viewer to display a second

set of surface information calculated with bridging water molecules. It was easy to

include water molecules as additional protein atoms in a GoCAV calculation and

determine their influence on creating a surface to complement the ligand. Figure

3.2 shows how the surfaces change when bridging waters are treated as part of the

protein. The shape complementarity between the ligand and the pocket is often more

evident when waters are included.

3.3.3 Mining Binding MOAD

Figure 3.5 provides histograms of the size of the ligands in the redundant and

non-redundant Binding MOAD sets. The distribution of ligand sizes is similar in the

two sets. In Figure 3.6, the plots of size vs. affinity show the wide range of data

available in Binding MOAD. One issue that should be noted is that the “affinities”

used in our plots are a simplistic translation of the K d, K i, and IC50 data using

the formula RT*ln(data). This is not strictly correct for K i or IC50, but it is a

way to do a standardized treatment of a large dataset. The K d data in the plots is

highlighted in black because the affinities should be more reliable and better reflect

true free energies of binding. Complexes with K i and IC50 data are in gray. The

data available for download from the website is the original K d, K i, and IC50 data

from the crystallography papers.

The ranges in Figure 3.6 are approximately the same for the redundant and non-

redundant sets, but the averages for both sets are slightly different. The average

56



Figure 3.5: Distribution of ligand size within the complexes in redundant and non-
redundant Binding MOAD, note the larger scale for the redundant com-
plexes. Black bars represent all complexes in Binding MOAD; gray bars
represent only the complexes with affinity data.

Figure 3.6: Plots of ligand size vs. binding affinity for the complexes in redundant
and non-redundant Binding MOAD. The data points in black squares are
from complexes with Kd data, and gray diamonds are used for complexes
with K i or IC50 data.
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binding affinity for the redundant set is -8 kcal/mol, but the average for the non-

redundant set is -9 kcal/mol. Both sets have a standard deviation of 3 kcal/mol.

The average numbers of heavy atoms for the ligands in these sets are 26 and 27,

respectively, both with a standard deviation of 14 atoms. A size range of 12-41 heavy

atoms corresponds to drug-like molecular weights of approximately 150-700. It should

be noted that these are the averages for just the complexes with binding affinity data

(all points in Figure 3.6, but only the gray bars in Figure 3.5). The average number

of heavy atoms for ligands in all of the Binding MOAD complexes is 31 (black bars

in Figure 3.5).

Figure 3.7A presents histograms of buried MSA for the binding-site cavities as

calculated by GoCAV. The distribution of buried surface area parallels the size dis-

tribution of ligands, and in Figure 3.7B, a plot of the cavity’s buried MSA vs. ligand

size shows a good correlation, simply reflecting the relationship between increasing

size of the ligand and increasing surface of the cavity it occupies. (As expected, the

distributions for buried SASA of the ligands, as calculated with NACCESS, were very

similar and also well correlated to ligand size, data not shown).

Liang et al. found that a linear correlation exists between ligand volume and

binding site volume, provided that the pockets were small (=700 Å3). Figure 3.7B

also shows that the correlation is not as tight for the larger ligands and pockets.

Others have found that binding sites tend to be the largest pockets/cavities in a

protein (154; 155; 156; 17). We have not examined other cavities within our proteins,

but we plan to compare the patterns of valid and invalid ligands in the future. One

would assume that the crystal additives on the surfaces of the protein are in shallow

pockets with little buried surface area, but covalent cofactors and structural elements

of proteins will occupy both surface and buried positions. Patterns of valid vs. invalid

ligands of both types should help current efforts in the field to identify binding sites

in apo structures. At this time, groups are focusing on the analysis of occupied vs.
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Figure 3.7: (A) Distribution of the buried surface area (Å2) for cavities within Bind-
ing MOAD as calculated with GoCAV, note the larger scale for the re-
dundant data. Black bars represent all complexes in Binding MOAD;
gray bars represent only the complexes with affinity data. (B) Plots of
buried surface area of the cavity (Å2) vs. ligand size. The data points
in black squares are from complexes with K d data, and gray diamonds
are used for complexes with K i or IC50 data. Error bars for data points
were available in two cases. First, if a side chain in the active site was
resolved in more than one orientation. Second, some multimer complexes
are solved with slight differences in the independent binding sites (for
instance, the atomic coordinates of the binding sites within a dimer will
not be the exactly same if symmetry was not imposed while fitting the
electron density).

59



unoccupied pockets and having good success (49; 154; 136; 157; 158; 159; 160; 161;

156; 17; 162; 149), but the methods could be further refined with data on the invalid

ligands identified within Binding MOAD.

Liang et al. also found that binding sites are either buried cavities or more often

pockets with one, occasionally two, exposed openings (17). In agreement with that

study, our histograms in Figure 3.8 show that most ligand-binding sites have limited

exposure to solvent; GoCAV data shows that 70% of the cavities have ≥70% of their

MSA buried, and NACCESS data shows that 85% of the ligands have ≥70% of their

SASA buried. The high degree of burial also parallels findings by Keil et al (161)

where they show that binding sites for ligands are deeper and more concave than

binding sites for protein-DNA or protein-protein associations. We found that the

largest ligands are rarely well buried. They tend to have less percent buried MSA of

the cavity and less percent buried SASA of the ligand (Figure 3.9); many of them are

short peptide or nucleic acid chains, again fitting with the findings that such binding

sites are more shallow.

3.4 Conclusions

The histograms in Figures 3.7A and 3.8 tell us that most ligands are well buried.

This fits the common paradigm that many contacts between the ligand and the protein

are a significant factor in molecular recognition. Figure 3.9 shows that largest ligands

tend to have more exposed surface area. These large ligands are typically peptide,

nucleic acid, or sugar chains, and one would expect the patterns of binding such

molecules to start to resemble the patterns of proteins binding macromolecules.

The general trends found here do not change with the choice of MSA of the pocket

vs. SASA of the ligand. Also, GoCAV and NACCESS use different methodologies and

radii, so the patterns appear to be independent of how the calculation is performed.

We do want to note that surfaces of the binding site calculated with GoCAV are
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Figure 3.8: Histograms of the percent of surface area that is buried. (A) Percentage
of buried MSA of the cavity and (B) Percentage of buried SASA of the
ligand. Black bars represent all complexes in Binding MOAD; gray bars
represent only the complexes with affinity data.
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Figure 3.9: The largest ligands tend to have much of their surface area exposed to
solvent (low % buried). (A) Percentage of buried MSA of the cavity and
(B) Percentage of buried SASA of the ligand. The data points in black
squares are from complexes with K d data, and gray diamonds are used
for complexes with K i or IC50 data.
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not completely independent of the ligand because of the use of an ELS to “bound”

the binding site. However, the probe never reaches the ELS boundary in a buried

binding site. Most of our sites are highly buried, so the majority of the cavity surface

is defined only by contacts to the protein. This typically makes the portion of the

surface defined by the ELS only a small percentage.

In closing, future efforts with Binding MOAD will allow us to compare – broadly,

for the first time – the binding affinity data to the patterns of molecular recognition

mined from the PDB. Past studies have mined subsets of the PDB with various

structural analyses of proteins and ligands (49; 154; 59; 163; 136; 157; 164; 158; 165;

159; 160; 161; 156; 142; 17; 162; 132; 166; 149; 167), but now, we will be able to

add another layer of depth to such studies. There is more to binding affinity than

just burying a ligand inside a protein, and all of the complex issues that go into

creating an effective scoring function (168) will need to be considered in our analyses.

Both shape and chemical complementarity are thought to be the basis of molecular

recognition. Our future analyses will have to consider the chemical complementarity

or what “types” of surfaces are solvent-exposed or interact with the protein. We will

also need to address the very complex issue of entropic changes upon binding.
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CHAPTER IV

Differences between high- and low-affinity

complexes of enzymes and nonenzymes

4.1 Introduction

Both enzymatic and non-enzymatic proteins can bind small molecules, but en-

zymes catalyze reactions and have a fundamentally different role from non-enzymes,

which may have an impact on their recognition of ligands. Do these two types of

binding events have the same physical characteristics? Furthermore, are there any

differences between high-affinity complexes and weaker binding events that can be

linked to their physical contacts? To answer these questions, physicochemical pat-

terns were mined from our protein-ligand database Binding MOAD (Mother of All

Databases), where MOAD is pronounced “mode” as a pun on a ligand’s mode of

binding.(62; 169)

Binding MOAD is the largest curated database of high-resolution protein-ligand

complexes from the Protein Data Bank (PDB).(115) Though it only reflects proteins

that can be crystallized, these are the exact systems where structure-based insights

will be used. The PDB is the source of all structures used for docking and scoring

development by academics. However, the data used here are significantly larger than

most sets used to develop existing scoring functions, which are typically sets of <300
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complexes of <50 unique proteins. We use 2214 structures: 1790 enzymes and 424

non-enzymes (512 unique enzymes and 176 unique non-enzymes). This study provides

an important benchmark of the current landscape available from structural biology

(incomplete and/or biased as it may be).

For this study, we have compared distributions of various properties between four

classes of protein complexes. Distribution analysis is used widely in many fields,

and it is important to stress that it does not define “absolute rules”, nor are the

data presented as such. These are general guidelines, and of course, there will be

exceptions to those trends. Distribution analysis can show that “men are taller than

women” and “women live longer than men.” Those trends are true even though some

women are 6’ tall and some men live to 100.

Empirically derived rules can be very useful in discovering and applying new prin-

ciples in chemistry. One of the most well known examples is Lipinski’s Rule of Five,

which describes the physical properties of orally-available drugs.(170; 171) These rules

provide general guidelines for size, lipophilicity, and hydrogen-bonding characteris-

tics that correlate with the likelihood that a molecule can be orally absorbed into

the body. The findings are based on distribution data of the chemical characteristics

of orally absorbed molecules going into Phase-II testing. The dataset is biased by

issues outside of pharmacokinetics such as the need for good synthesis (not just ac-

cessible chemistry, but few steps in high yield) and market considerations (completely

economic, no basis in the thermodynamics of protein-ligand binding). The rules do

not hold for natural products, actively transported molecules, molecules that require

metabolism for activation, or most antibiotics, antifungals, vitamins, and cardiac gly-

cosides. There are plenty of molecules in Lipinski space that are not drugs, and many

molecules outside that space that are. Despite these limitations and biases, the Rule

of Five is used widely in the pharmaceutical industry.

We hope that the present work will also aid drug discovery. In this study, we
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provide new patterns which describe high-affinity, protein-ligand binding and outline

differences between enzymes and non-enzymes. Of course, there will be examples that

fall outside the typical pattern, but these relationships provide a good description of

the general landscape that structural biology can provide at this time. We expect

that our understanding will grow as more structures become available through the

various protein structure initiatives.(172) These guiding principles may be useful in

designing targeted libraries for drug discovery and improving scoring functions. They

are also important to advancing our fundamental understanding of chemical biology,

protein-ligand binding, and the biophysics that dictate molecular recognition.

Non-covalent, small molecule binding is a tradeoff between the enthalpy gained by

making specific contacts between functional groups of the ligand and the protein and

entropy lost by forcing the ligand and protein into a specific conformation.(173; 174)

Since this study uses crystal structures it is difficult to fully account for the effect

caused by entropy. However, it is possible to determine the physical characteristics

of the small molecule and the protein which leads to the binding affinity.

Other studies(175; 176) have noted an inherent limitation in mining protein struc-

tures for physical characteristics of binding. When a pocket is discovered on a protein

surface, it is difficult to identify whether it is a true binding site or if it is capable of

high-affinity binding appropriate to represent drug-like binding. This study does not

suffer from these limitations; all sites have been curated to assure that they are true

binding pockets, and the high-affinity complexes are separated from those with low

affinity.

Only complexes with binding data (Kd, Ki, or IC50) were used for this study. No

complexes in MOAD are annotated with Km data, so almost all ligands are inhibitors,

agonists, or antagonists (a small number are cofactors, 5%, included only for systems

were affinity data is appropriate). We specifically focused on the contacts between

the ligand and the protein, excluding any structure with poorly defined contacts such
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as missing atoms from under-resolved density or ligands and side chains resolved in

multiple orientations. Distributions of ligand size, buried surface area (BSA), exposed

surface area (ESA), and other physical characteristics were examined for statistically

significant differences between four subsets of the complexes: high-affinity binding

to enzymes, high-affinity non-enzymes, low-affinity enzymes, and low-affinity non-

enzymes. A common metric to evaluate lead compounds is ligand efficiency.(24; 25;

27; 26) In this study, ligand efficiencies for the different classes of proteins are reported

as affinity per size (-∆Gbind divided by the number of non-hydrogen atoms) and per

the degree of contact between the ligand and the pocket (-∆Gbind/BSA).

Here, we focus on the most significant differences between molecular recognition

of tight and weak binding to enzymes and non-enzymes.

4.2 Methods

Data for this study come from the largest comprehensive database of protein-

ligand crystal structures with binding data, Binding MOAD. The latest version of

Binding MOAD was created from structures released on 12/31/2008 or earlier; it

contains 13138 complexes, comprised of 4078 unique protein families binding 6213

unique ligands. The great care taken in curating this dataset has been outlined

elsewhere,(62) but it should be noted for these purposes that ∼11,000 crystallogra-

phy papers have been examined to determine the appropriateness of every ligand

(crystallographic additives, post-translational modifications, and covalently bound

ligands are excluded from consideration). From these efforts, binding affinity data

is available for 30% of the entries, with a preference for Kd data over Ki data over

IC50 values. The affinities were converted to free energies of binding by ∆Gbind =

RTln(Kd) or simply approximated by ∆Gbind = RTln(Ki or IC50) with a temperature

of 298 K.

High-affinity binding was defined Kd, Ki, or IC50 ≤250 nM (∆Gbind ≤-9 kcal/mol),
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which is approximately the average of all the complexes with binding data in Binding

MOAD. Enzyme complexes were defined from the Enzyme Classification number in

the PDB file. The non-enzymes were annotated by hand using keywords reported in

the remarks section of the PDB entry. Binding MOAD’s high-affinity non-enzymes

and enzymes are listed in the Supporting Information. Enzymes that had ligands that

were allosteric sites, were considered non-enzymes. For instance, the non-nucleoside

inhibitors of HIV Reverse transcriptase are bind in a non-enzymatic allosteric site,

and it was included in the non-enzyme list. All complexes and binding data are

available at the Binding MOAD website, www.BindingMOAD.org.

To calculate surface areas, BSA and ESA were calculated with GoCAV using radii

based on united-atom OPLS parameters.(169) This code reports buried molecular

surface area (MSA) of the pocket and also defines ESA of the binding site, bounded

by the 3D coordinates of the ligand.

The SlogP for the ligands was calculated using MOE,(177) based on the method

developed by Wildman and Crippen.(178) For the 2D and 3D descriptors calculated

with MOE, the idealized SDF files from the PDB were used if available; otherwise,

the coordinates of the ligand from the protein’s structure were taken. Hydrogens

were added with MOE. In an effort to identify any differences, all 2D and 3D ligand

characteristics available within MOE were compared for the four groups of complexes:

high-affinity enzyme, low-affinity enzyme, high-affinity non-enzyme and low-affinity

non-enzyme.

4.2.1 Statistical Analysis

Statistical significance was assessed with the programs SAS(179) and JMP(180).

Initial assessments used JMP to calculate all pair-wise correlations for the over 200

descriptors calculated. For the descriptors showing interesting trends, the significance

of the differences between the distributions of physical properties were determined by
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the Wilcoxon rank-sum test, which is most appropriate given the non-Gaussian dis-

tributions of the data. We also performed one-way ANOVA, two-way ANOVA, and

Tukey-Kramer HSD tests between the four classifications. Since these second series

of tests require near-normal distributions, the square-root transform was applied to

reduce the skew and bring the distributions closer to normal. For the important de-

scriptors, distribution analyses from JMP are included in the Supporting Information

(Supporting Information, Figures A.1-A.7), and each includes the mean, median,

quantiles, distribution histogram, and outlier box plot. The results of the Tukey-

Kramer HSD test are presented in Supporting Information (Supporting Information

Tables A.1-A.5).

Histograms of the distributions of ligand size were binned in increments of 5 heavy

atoms. Distributions of BSA and ESA were binned by 50 Å2. Those plotting ligand

efficiency were binned by 0.1 kcal/mol-atom for affinity per size or 10 cal/mol-Å2

for affinity per degree of contact. Distributions of SlogP were binned by 2 log units.

These bin sizes were in proportion to the size of the datasets and were consistent with

those automatically generated by JMP.

4.3 Results and Discussion

Considerable effort was made to determine direct mathematical relationships be-

tween affinity and surface area, ligand size, or other characteristics of protein-ligand

interactions, but there was no global correlation across all complexes. Recent work

by Coleman and Sharp(181) based on the PDBbind dataset(57) also found no corre-

lation between affinity and surface area or depth of the binding pocket. Inspired by

analyses of distributions of ligand efficiencies from screening data,(24) we changed our

approach and focused on distributions of the properties between subsets of protein-

ligand complexes.

Table 4.1 outlines the characteristics that differ between high-affinity and low-
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affinity binding for enzymes and non-enzymes; all emphasized differences in the

datasets have a statistical significance >99.99% (p<0.0001) based on a two-tailed,

Wilcoxon rank-sum test. Figure 4.1 shows a comparison between each of the sub-

sets of complexes, examining the distribution of ligand sizes, BSA, SlogP, and ESA.

Many of the low-affinity complexes have ∼300 Å2 of BSA, but the high-affinity com-

plexes display more contact. It has been estimated that drug-like binding sites have

∼300 Å2 of solvent-accessible surface area (SASA).(175) Our measurement for BSA

is based on MSA, and so, the slightly higher values of the high-affinity complexes are

appropriately comparable.(175)

4.3.1 Different approaches for improving inhibitors of enzymes versus

non-enzymes

For enzymes, there is a significant difference in the size of the ligands in high-

and low-affinity complexes (Figure 4.1a). High-affinity ligands are much larger (11

more non-hydrogen atoms). However, non-enzymes display very little difference in

the size of the ligands between high-affinity and low-affinity complexes (Table 4.1,

Figure 4.1b). These differences do not come from any influence of the inclusion of

cofactors in the set. The medians are nearly unchanged if they are removed from the

dataset (see Supporting Information, Table A.6).

Sizes of the ligands point to a strong difference in the complexes, particularly in

how to improve an inhibitor for enzymes versus non-enzymes. To improve the affinity

of an enzyme inhibitor, it appears fruitful to add functional groups to increase the

complementary contact between the inhibitor and the protein. In contrast, improving

ligands for non-enzymes may best involve conservative changes which maintain the

ligand’s size. Tight binders for non-enzymes are less exposed than the low-affinity

ligands, making them more sequestered from the surrounding solvent (Table 4.1).

Distributions of the calculated octanol/water partition ratios (Figure 4.1a,b) show
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Table 4.1: Characteristics of Protein-Ligand Binding for Enzymes and Non-Enzymes
in the Full Dataset.a

Median
Physical
Properties

Low Affinity
>250 nM
∆Gbind>-9
kcal/mol

High Affinity
≤250 nM
∆Gbind≤-9
kcal/mol

Comparisonb

Enzymes
∆Gbind

Sizec

BSA
ESA
(%ESA)d

SlogP

-
∆Gbind/atom
-
∆Gbind/BSA

1048 complexes
-6.6 kcal/mol
21 atoms
305 Å2

87 Å2 (22%)

0.3

0.31 kcal/mol-
atom
21 cal/mol-Å2

742 complexes
-10.9 kcal/mol
32 atoms
419 Å2

144 Å2 (24%)

2.4

0.36 kcal/mol-
atom
26 cal/mol-Å2

High-affinity
ligands are
52% larger
and more
hydrophobic

Non-
Enzymes
∆Gbind

Sizec

BSA
ESA
(%ESA)d

SlogP

-
∆Gbind/atom
-
∆Gbind/BSA

234 complexes
-7.2 kcal/mol
22 atoms
265 Å2

118 Å2 (33%)

-2.2

0.28 kcal/mol-
atom
22 cal/mol-Å2

190 complexes
-10.4 kcal/mol
25 atoms
361 Å2

45 Å2 (11%)

1.5

0.41 kcal/mol-
atom
31 cal/mol-Å2

Low-affinity
ligands are
three times
more exposed
and more
hydrophilic

Comparisonb Non-enzymes have
17% greater lig-
and efficiencies

a. Values presented are medians for each population.
b. All differences noted in the comparisons sections have a statistical significance of
>99.99% (p<0.0001).
c. Ligand size is given in the number of non-hydrogen atoms.
d. Percent exposure is ESA/(ESA+BSA).
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Figure 4.1: Comparisons of (A) enzyme complexes, (B) non-enzyme complexes, (C)
high-affinity complexes and (D) low-affinity complexes are presented.
High-affinity enzymes are shown in dark blue, and low-affinity enzymes
are in green. High-affinity non-enzymes are in red, and low-affinity non-
enzymes are in gold. Distribution of ligand sizes (number of non-hydrogen
atoms), buried surface area of the pocket (Å2), SlogP, and exposed sur-
face area (Å2) are given in normalized percent frequencies. P-values show
the significance of the difference in the medians of the distributions, as
determined by a two-tailed Wilcoxon rank-sum evaluation (insignificant
differences have p>0.05).
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that high-affinity ligands are more hydrophobic than those with low affinity, but

there is no significant difference between enzymes and non-enzymes in this regard.

It appears that “adding grease” equally improves binding to both enzymes and non-

enzymes, consistent with a general desolvation effect.(173)

The above trends for improving inhibitors for enzymes versus non-enzymes come

from observing patterns across different proteins (inter-protein relationships), but

information to improve inhibitors for a specific target must come from observing

trends of one protein binding a variety of ligands (intra-protein binding trends). This

is a more difficult comparison to make because few proteins are crystallized with a

significant range of bound ligands. For the few that exist, we must divide them into

enzymes and non-enzymes, further reducing the sizes of the available datasets. The

findings below are qualitative in nature. Overall, our data show that enzymes appear

to have better correlations between size and affinity than non-enzymes.

In order to determine a relationship between ligand size and affinity within a

protein family (Figures 4.2 and 4.3), the complexes were grouped by 100% sequence

identity. This organization ensures that changes in affinity are the result of changes

in the ligand and not a mutation within the binding site. (For a few proteins, we were

able to combine two sets when the mutations were far from the active site and incon-

sequential.) Groups that contained ≥5 complexes were examined. For non-enzymes,

there were only a few proteins available: oligopeptide-binding protein, glutamate re-

ceptor 2, estrogen receptor alpha, estrogen receptor beta, arabinose-binding protein,

mannose-binding protein, maltose-binding protein, and src SH2-binding domain. For

most of the non-enzymes, the ligands are very similar in size and affinity. Six of

the eight proteins have a small range of ligand sizes which shows little correlation

to affinity (Figure 4.2a, b). The small range of observed ligand sizes supports the

idea that conservative changes are most appropriate for trying to improve ligands for

non-enzymes. However, the lack of a distinct trend between ligand size and affinity
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does not necessarily prove that a trend could not be observed. It is unclear if the

small range of ligands is the result of the specificity of the protein systems or whether

more diverse complexes are simply not available from the PDB.

Figure 4.2: Limited correlation is seen between size and affinity in non-enzymes (A
and B). The proteins with “clusters” of points have smaller binding sites
and no ligands over 40 non-hydrogen atoms. The ligands have similar
sizes and affinities for oligopeptide-binding protein (OBP), glutamate re-
ceptor 2 (GluR2) and mannose-binding protein (MBP), arabinose-binding
protein (ABP), and estrogen receptor (ER) alpha and beta. The only non-
enzymes with a range of ligand sizes are maltose-binding protein and the
non-enzymatic site on the SH2 domain of pp60src tyrosine kinase (C and
D, respectively).

Only maltose-binding protein (Figure 4.2c) and the non-enzymatic site on the

SH2 domain of pp60src tyrosine kinase (Figure 4.2d) have a significant range of ligand

sizes. The maltose-binding protein complexes contain sugar chains of varying length.
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Figure 4.3: Many examples are available of enzyme complexes that show a strong
correlation between size and affinity of the ligands; seven are given here
(A-G). HIV-1 protease (G) demonstrates that a large collection of ligands
may show no correlation, but subsets of data may reveal strong trends
(data for the C95A and Q7K/L33I/L63I mutants). It is interesting that
even small binding sites with ligands of 40 non-hydrogen atoms or less
(B,C,D) show a linear trend with affinity; this was not seen for non-
enzymes with small binding sites.
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Almost all bind with roughly the same affinity, and this may be explained by the

fact that the larger ligands show little difference in the BSA contact, despite the very

large range of sizes. The non-enzymatic site on the SH2 domain of pp60src tyrosine

kinase is the only non-enzyme complex showing some correlation between ligand size

and binding affinity. It is interesting that the only exception in non-enzymes is a

regulatory site on an enzyme. These linear correlations reflect a trend across several

ligands, ∆(∆Gbind/size), which is slightly different than the ligand efficiency of an

individual ligand, ∆Gbind/size. In the discussions below, we will use the term “trend”

or “correlation” when comparing across several ligands bound to the same protein,

∆(∆Gbind/size).

In the case of enzymes in MOAD, thirty-seven proteins were available with five

complexes or more. Unlike non-enzymes, over half of the families showed correlations

between size and affinity. For brevity, only seven examples of MOAD’s enzymes are

given in Figure 4.3. One of the most interesting features of the data in Figure 4.3 is

that the slopes - the overall trend for each set - significantly vary! Though a linear

correlation can be found for a good number of enzymes, the additive contributions

of more functional groups appear to be system dependent, with some contributions

being rather small. The trends range from 0.44 kcal/mol-atom for carboxypepti-

dase A (Figure 3b) to 0.09 kcal/mol-atom for FK506-binding protein (Figure 4.3f).

Most scoring functions use additive terms, and these findings underscore the diffi-

culty in developing a universal scoring function, appropriate for all protein systems.

Yang et al. have also noted these difficulties in development of their M-Score scoring

function(182).

However, for 11 enzymes, there was no correlation; the ligands had roughly compa-

rable affinity and sizes, much like the non-enzyme examples. Three enzymes showed

a very small range of ligand sizes and a large range in binding affinity (Supporting

Information). It is debatable whether these trends are exceptional examples of the
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correlation expected for enzymes or whether they indicate cases where only conser-

vative changes in sizes are allowed, as would be expected for non-enzymes. It is also

possible that they result from an unusual set of ligands from one chemical class.

Though Babaoglu and Shoichet have used fragments of inhibitors of β-lactamase

to show that ligand efficiency is not necessarily additive within a binding site,(183)

fragment-based design often couples these small building blocks in the pursuit of high-

affinity ligands.(184) From our data above, one might expect greater success for this

strategy when targeting enzymes where increasing size generally leads to increasing

affinity. A recent study by Hajduk compared fragment-based design for 14 enzymes

and four non-enzymes to show that ligand efficiency remained rather constant as

the optimal leads were increased in size.(185) The contributions were roughly addi-

tive for the best functional groups. The average trend across these systems was 0.3

kcal/mol-atom, with individual systems showing trends from approximately 0.23 to

0.51 kcal/mol-atom (reported as binding efficiency indices of 11-28 pKd units per MW

in kDa). It is encouraging that the values are comparable to the ligand efficiencies

reported in Table 4.1.

Hajduk’s trends were presented for the most efficient ligands for each protein,

emphasizing the most ideal cases of improving a ligand.(185) However, his data for

Bcl-xL, a non-enzyme with a large binding cleft, showed that many changes will not

be optimal. A detailed analysis for >2300 additional molecules showed that many had

significantly lower efficiencies. In fact, he suggests that chemical modifications that

reduce the ligand efficiency by >10% deviate too much from the ideal and indicate

that either the location or chemical nature of the modification is less desirable.

The HIV-1 protease data (Figure 4.3g) shows that there is a large scatter of

inhibitor sizes and affinities, but two subsets of data (from mutants of HIV-1 protease)

show strong linearity. This could demonstrate the same issue seen in Hajduk’s detailed

analysis of Bcl-xL.(185) The full set of data shows wide scatter and little trend, but a
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carefully chosen subset could reveal idealized trends for a particular protein system or

class of ligands from a specific synthetic series. For HIV-1 protease, the compensation

between enthalpy and entropy can be hard to control. Lafont et al. have demonstrated

that an increase in size from the KNI-10033 inhibitor to the KNI-10075 inhibitor

did not increase binding affinity despite a more favorable enthalpy from a strong

hydrogen bond.(19) The entropic penalty of changing a thio ether (two heavy atoms)

in KNI-10033 to a sulfonyl group KNI-10075 (four heavy atoms) is responsible for

the lack of change in binding affinity. That study noted that, although others have

been able to optimize certain HIV-1 protease inhibitors with respect to enthalpy, the

enthalpy-entropy compensation could make optimization of affinity impossible for

some chemical series.

An important caveat should be considered in the preceding discussion. It is pos-

sible that strong correlations between size and affinity can only be easily determined

for large binding sites. Large ligands can be truncated to provide smaller, weaker lig-

ands that bind to subsites. This would give a wide range of ligand sizes and affinities,

allowing a definite size-affinity relationship to emerge from the data. It may be more

difficult to determine a trend for a small binding site. This would still imply that

enzyme inhibitors are more likely to be improved through the addition of functional

groups, simply because the binding sites in enzymes are generally larger than those

of non-enzymes. However, if this were the case, the trend would be due to the size of

the binding site and not necessarily the protein’s basic function.

Though the size argument above is important to note, it is most likely not the cause

of the difference between enzymes and non-enzymes. Several examples of smaller

binding sites, characterized by ligands of 40 non-hydrogen atoms or less, are presented

in Figures 2 and 3. For small non-enzymes, there are no proteins which show a

correlation between size and affinity. Conversely, there are several enzymes with small

binding sites which do show a good correlation of increased affinity with increased
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size.

4.3.2 Ligand Efficiencies

Distributions of ligand efficiencies are given in Figure 4.4. Ligand efficiency based

on contact (-∆Gbind/BSA) can be compared to established values for the desolvation

effect. The free energy of transferring a hydrophobic molecule from a hydrophobic sol-

vent into water has been estimated as 24-47 cal/mol-Å2, with the higher value being

the most widely accepted.(186; 187; 37) Honig and coworkers have noted this is lower

than the value of 72 cal/mol-Å2, derived from the surface tension of a hydrocarbon-

water interface.(37) Only 0.8% of the complexes in this study have ligand efficiencies

that exceed 72 cal/mol-Å2 (i.e., greater than Honig’s value), and many have effi-

ciencies ranging between 20-40 cal/mol-Å2. The low-affinity complexes are roughly

bounded by the 47 cal/mol-Å2 value (only 4.1% have greater efficiencies), but the

high-affinity complexes have large populations greater than that value. Although,

the complexes in Binding MOAD are not exclusively driven by hydrophobic associa-

tion, these values provide a yardstick for comparisons. However, it should be noted

that the range of values from the literature are based on SASA of small molecules in

differing environments (ligands), and our values are based on MSA of the contacts

within the pockets. While the comparison is not ideal, MSA-based values for ligands

are not prevalent in the literature, and SASA of a pocket is not equivalent to SASA

of a ligand.

For low-affinity complexes, the ligand efficiencies are basically the same for en-

zymes and non-enzymes (Table 4.1, Figure 4.4b). However, the differences are sig-

nificant in high-affinity complexes (p <0.0001 for both efficiencies). The ligand ef-

ficiencies for high-affinity, non-enzyme complexes are ∼17% greater than those of

high-affinity, enzyme complexes (Table 4.1). Non-enzymes in Figure 4.4a show a

broader distribution of efficiencies and much higher populations above 0.4 kcal/mol-
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Figure 4.4: Distribution of ligand efficiencies per size (-kcal/mol-atom) and per con-
tact (-kcal/mol-Å2), given in normalized percent frequencies. Distribu-
tions present comparisons of (A) high-affinity complexes (p<0.0001 in
both cases) and (B) low-affinity complexes. High-affinity enzymes are
shown in dark blue, and low-affinity enzymes are in green. High-affinity
non-enzymes are in red, and low-affinity non-enzymes are in gold.

atom (55% of high-affinity non-enzyme complexes vs 37% of high-affinity enzyme

complexes) and 30 cal/mol-Å2 (51% of non-enzymes vs 35% of enzymes). On average

over the high-affinity complexes, every atom and square Ångstrom of buried cavity

surface is worth more free energy in non-enzymes!

The differences in efficiencies between high-affinity enzymes and non-enzymes are

not dependent on the choice of cutoff between high- and low-affinity complexes. Even

if the full set of enzymes is compared to the full set of non-enzymes, the ligand

efficiencies are better for non-enzyme complexes. For the 1790 enzyme complexes,

the median ligand efficiencies are 0.33 kcal/mol-atom and 23 cal/mol-Å2; the median

ligand efficiencies for the 424 non-enzymes are 0.36 kcal/mol-atom and 26 cal/mol-Å2.

The same patterns for enzymes and non-enzymes are observed when redundancy

is removed (Appendix A, Table A.7, Figures A.8 and A.9). This is important because

it corrects for some biases in the dataset by using only one complex of a protein

(some proteins have hundreds of entries and are heavily represented in the PDB). The
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non-redundant dataset in Binding MOAD is obtained by grouping the proteins into

families of 90% sequence identity and representing that family by the single complex

with the highest-affinity ligand - in essence, the optimal binding event available for

that individual protein. There are 688 unique complexes in this dataset, 512 enzymes

and 176 non-enzymes. Again, the high-affinity enzymes (235 complexes) have poorer

ligand efficiency than the high-affinity non-enzymes (85 complexes). For the non-

redundant datasets, the median ligand efficiencies for high-affinity enzyme complexes

are 0.39 kcal/mol-atom and 28 cal/mol-Å2. The median ligand efficiencies for the

non-redundant, high-affinity, non-enzyme complexes are still larger at 0.44 kcal/mol-

atom and 34 cal/mol-Å2. The smaller number of complexes produces nearly identical

distributions, and although the p-value of the comparison is slightly poorer (p =

0.04), it is still significant (96%).

4.3.3 Efficiencies, evolution, and druggability

The significant differences in ligand efficiencies suggest a differentiation in the

binding sites of these two classes of proteins, based on their function. This may

reflect the different evolutionary pressures upon enzymes and non-enzymes. The

higher ligand efficiencies of non-enzymes make them, in essence, more responsive to

low concentrations of ligand molecules. This is fitting, given their roles in signaling

and regulatory control of cellular function in response to stimuli. Conversely, enzymes

are optimized to bind molecules, change them, and release them again.

Ligand efficiencies are one key factor in describing the druggability of a target.

Does this imply that non-enzymes may be more druggable? In general, higher lig-

and efficiencies mean that drug-like affinities can be obtained with smaller molecules.

Smaller molecules would tend to provide better oral absorption and fewer functional

groups for toxicity concerns.(188; 176; 189; 190) Of course, ligand efficiencies reflect

“bindability”, and it is important to recognize that there are additional properties
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that make a protein a suitable drug target. It must be essential to the disease state.

Leads must show selectivity to avoid any negative consequences of off-target binding

events. There are a myriad of ADME and pharmacokinetic properties to be consid-

ered. However, the differences in ligand efficiencies do indicate a greater likelihood to

have better drug-like properties for inhibitors, agonist, and antagonists of non-enzyme

targets.

Many non-enzymes are the subject of intense drug discovery efforts in both the

private and public sectors; for instance, hormone receptors, signaling proteins, and

transcription regulators are targets for anticancer treatment.(191; 192) Recent discus-

sions on the druggability of protein-protein interfaces note that these difficult targets

may be more amenable than originally thought.(193; 111) Small molecules have been

developed that bind to key hot-spot regions with greater efficiencies and deeper burial

than the natural partner. Furthermore, many of the non-enzymes not represented in

the PDB are membrane-bound receptors. Even though they are not included here,

it is likely that the additional information would support the hypothesis that non-

enzymes are more druggable, since they are the target of many drugs. G-protein

coupled receptors alone constitute 30% of the drugs on the market,(189) and genomic

analysis has indicated many more receptors are druggable.(194)

Our results are also in good agreement with a recent study that estimated the

druggability of 1096 non-redundant human proteins.(176) The predictions used a

statistical model trained on NMR-screening data using a small fragment library.(195)

Four of the top six classes were non-enzymes: vitamin-binding, steroid-binding, lipid-

binding, and nucleotide-binding proteins.(176) The non-enzymes that were predicted

to be the least druggable were large macromolecular complexes and are not reflected

in Binding MOAD and this study.
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4.3.4 What produces the higher ligand efficiencies in non-enzymes?

Obviously, the root cause of the disparity in ligand efficiencies between enzymes

and non-enzymes is of paramount interest. Though the ligands for non-enzymes are

smaller, the SlogP characteristics are roughly the same for high-affinity ligands of

enzymes and non-enzymes (Figure 4.1c). If the ligands are chemically similar, then

the difference in efficiencies must come from the protein pocket. The most significant

difference is the degree of exposure for ligands of non-enzymes versus enzymes. High-

affinity ligands have a median exposure of only 11% in non-enzymes, but 25% in

enzymes (note that %ESA are used instead of ESA to correct for the difference in sizes

of the ligands). Low-affinity ligands for non-enzymes are significantly more exposed

(median of 33%), even more than the low-affinity ligands for enzymes (22%). Tight

and weak inhibitors have the same degree of exposure in enzymes, but tight ligands for

non-enzymes are much more encapsulated than the weak ligands (p<0.0001). Other

2D and 3D ligand descriptors displayed no significant patterns. This comparison was

cognizant of correlations between characteristics; for instance, differences in surface

area are correlated to size and were not “double counted” as additional differences

between high-affinity ligands of enzymes vs non-enzymes.

Amino acid composition of the binding sites was examined (Figure 4.5, left col-

umn). There is little difference between the binding sites of high- and low-affinity en-

zyme complexes. The largest differences are an increase in Val content in high-affinity

enzymes and an increase in Arg in the low-affinity complexes. For enzymes, the hy-

drophobic residues (Ala through Trp) on Figure 4.5 are 47.0% of the binding sites

for high-affinity complexes, but 43.9% for low-affinity ones. This is fitting with the

aforementioned finding that the high-affinity ligands are slightly more hydrophobic.

The comparison between binding sites of high- and low-affinity non-enzyme complexes

shows more pronounced variation, but also holds the general pattern of high-affinity

complexes having more hydrophobic content. The Ala-Trp residues are 55.9% of the
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binding sites for high-affinity complexes, but 43.2% for low-affinity ones. What is

most interesting is the comparison between enzymes and non-enzymes, particularly

for the high-affinity complexes. The hydrophobic content is higher for non-enzymes

(55.9% vs 47.0%), but the reader should recall that there is no significant difference

in the SlogP of the ligands (in fact, the median value for non-enzymes is more hy-

drophilic). Why are more hydrophobic sites recognizing slightly more hydrophilic

molecules with better affinity? The answer may lie in the fact that the amino acids

making the contacts are significantly different. In high-affinity non-enzymes, Leu and

Met provide a large portion of the hydrophobic contacts, at the expense of Val and

Ile. The non-enzyme’s preference for Glu over Asp is reversed in high-affinity enzyme

complexes, yet the use of Lys and Arg is the same. Leu, Met, and Glu are larger than

their counterparts Val, Ile, and Asp. It is possible that those residues are slightly

more polarizable. (Confirmation will have to come from in-depth examinations of

fully modeled complexes, inclusive of added hydrogens, detailed atom typing, and

possibly polarizable force fields. To do this for thousands of complexes is a sizable

effort, and outside the scope of the present study.) It should be noted that differences

in the binding sites are not correlated with differences in the overall amino acid con-

tent; the reader should compare the left and right columns in Figure 4.5. Leu, Met,

Phe, Tyr, and Trp make up nearly the same percentage of residues in the protein

sequences, but not the binding sites. This selective placement of differing residues

within binding pockets may have direct relevance to analyses of hot-spot regions and

potential binding sites on proteins.(196; 197; 198)

4.3.5 Most druggable enzymes

Of course, many pharmaceutically relevant targets are enzymes. By no means is it

suggested that they are not appropriate drug targets, especially when they constitute

47% of the drugs on the market(189) and a large percentage of new targets identified
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Figure 4.5: The binding sites (left) and the entire protein sequences (right) are an-
alyzed for amino acid content. Distributions are given in normalized
frequencies percent frequencies. Amino acids within 4Åof the ligands are
considered to comprise the binding site. Distributions of (A and B) low-
and high-affinity complexes of the same class show smaller differences than
comparisons between enzymes and non-enzymes (C and D). Amino acids
are listed by hydrophobic, aromatic, cationic, anionic, and hydrophilic
nature. “X” denotes contacts with cofactors, unnatural amino acids, and
covalent modifications on the protein.
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through genomic analysis.(194) The distribution of ligand efficiencies for the enzyme

classes suggests that lyases and oxidoreductases are the most druggable enzymes,

Figure 4.6. The distribution of lyases is significantly shifted to higher efficiencies,

standing out from the other data. The better efficiencies for oxidoreductases come

from an increased population in the tail of the distribution. The median ligand

efficiencies for the 139 lyases are 0.50 kcal/mol-atom and 33 cal/mol-Å2; and the

median ligand efficiencies for the 256 oxidoreductases are 0.39 kcal/mol-atom and 26

cal/mol-Å2. The 1395 enzymes from the other four classes have median efficiencies of

0.31 kcal/mol-atom and 23 cal/mol-Å2, which are significantly lower (significance of

≥99.99% using the Wilcoxon test). It should be noted that the two enzymes which

were predicted to be most druggable in the aforementioned study were also lyases

and oxidoreductases, in that order.(176)

Recently, a new method was introduced to predict druggability of a binding site

by estimating the site’s maximum Kd based on the percent hydrophobic SASA and a

scaling factor for efficiency that is dependent on the curvature of the site.(175) The

model was trained on 8 enzymes and applied to 63 structures, comprised of complexes

of 26 enzymes and a single structure of the non-enzyme mdm2.(199) An important

goal of the study was to fit a predictive equation to assess druggability of a site

based on protein-ligand structures of orally available compounds. This feature of the

study is important to note because the contributions of various physical characteris-

tics within the model should reflect both high-affinity binding and oral bioavailability

of the ligand. The model was fit under the assumption that hydrophobic desolvation

is the major driving force of binding, so terms based on electrostatics were not in-

cluded. The model was able to properly rank the training set, noting that outliers

were compounds with strong electrostatic components, prodrugs, or ligands that are

actively transported. The model was then used to identify new, druggable structures

from the PDB. It was interesting that the two newly identified targets were both
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Figure 4.6: Distribution of ligand efficiencies (-kcal/mol-atom) for enzymes, given in
percent frequencies normalized for the different number of complexes in
each enzyme class. The distribution of transferases (EC 2, 468 com-
plexes), hydrolases (EC 3, 843 complexes), isomerases (EC 5, 60 com-
plexes), and ligase (EC 6, 17 complexes) are the same and have been
added together for this example (black line). Oxidoreductases (EC 1, pur-
ple line, 256 complexes) have larger populations in the higher efficiencies
(p<0.0001). The distribution of lyases (EC 4, blue line, 139 complexes)
is notably shifted (p<0.0001).
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enzymes. With only two new targets presented, it is not clear whether the model

preferentially identifies enzymes over non-enzymes, but a preference towards enzymes

may be expected from their model given the training and test sets used. Our data

indicate that enzymes and non-enzymes may require different models in such anal-

yses. Furthermore, many of the ligand efficiencies in our set exceed the established

values for hydrophobic association, indicating that the most efficient complexes have

additional factors which contribute to their affinity. The affinity of these complexes

may not be well described by models based solely on hydrophobic SASA.

4.4 Conclusion

We have presented a substantial mining study of Binding MOAD, the largest

public database of curated protein-ligand structures with binding data. Physical

characteristics of bound ligands were compared between enzymes and non-enzymes

as well as high-affinity and low-affinity complexes. The comparison between ligand

sizes for low-affinity versus high-affinity binding shows that divergent approaches

are likely needed to improve the affinity of enzyme inhibitors versus those for non-

enzymes. The traditional approach of adding functional groups to fill more of the

pocket may work for enzymes, but it may not be as appropriate for non-enzyme

systems. However, making ligands more hydrophobic appears to aid binding in both

enzymes and non-enzymes.

Non-enzymes have higher ligand efficiencies than enzymes, which may be a re-

flection of their biological roles. This is also encouraging when considering the drug-

gability of non-enzymes. In the pharmaceutical industry, ligand efficiencies have

become a metric for evaluating hits from screening campaigns and even candidate

compounds.(25) Our results would caution against applying a rigid standard across

all protein targets. At the very least, a cutoff based on ligand efficiency should dif-

fer between enzymes and non-enzymes. Ideally, cutoffs would differ between protein
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families and only be considered as one of several guidelines in a selection process.

Binding MOAD provides strong support of several mathematical models cited

above,(199; 185; 176) particularly those of Hajduk and coworkers. Our results have

implications for the development of scoring functions for docking and predicting drug-

gability of a binding site.(200; 201; 202; 203) The differences between non-enzymes

and enzymes, as well as the differences across enzymatic systems, underscore the chal-

lenges of developing universal functions that perform well across all systems. Modest

improvement might be achieved by developing separate functions for enzymes and

non-enzymes, with even greater improvement expected for functions trained on spe-

cific protein families.
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CHAPTER V

Charge-charge interactions appear to dictate the

maximum ligand efficiencies available for

protein-ligand binding

5.1 Introduction

Protein-ligand binding is a delicate balance between the loss of entropy resulting

from complexation and the enthalpy gained by forming favorable contacts with the

protein (4; 19). The precise contribution of these contacts is a source of debate

and has provided a significant obstacle in the ability to predict how small molecules

will bind (204; 182; 205). The interplay between entropy and enthalpy is difficult

to determine since they are influenced by several factors. For entropy, binding two

entities results in a loss of six degrees of freedom, a change in the internal flexibility

of the protein and ligand must be taken into account, and the reorganization of water

around the ligand and within the binding site has significant implications. In the case

of enthalpy, several types of contacts can be made to varying degrees in the binding

site (4). Current thinking is that van der Waals forces are the most significant factor

for binding due to tight packing between the small molecule and protein (16; 4).

Hydrogen-bonding and electrostatic interactions are thought to contribute more to

the specificity of binding (4). Since these interactions are also present with water and
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counter ions, they are thought to have a smaller impact on affinity (4).

Highlighting the different interpretations regarding the drive for efficient binding,

there has been contradictory evidence as to which types of interactions play the

most significant roles in the binding of biotin to streptavidin, the tightest known

natural complex. In 1993, Miyamoto and Kollman used free energy perturbation

on biotin•streptavidin and N-L-acetyltryptophanamide•α-chymotrypsin to show that

the increased binding affinity for the biotin-streptavidin system can be accounted for

by van der Waals contacts made in the biotin•streptavidin complex where the pocket

in streptavidin is preformed as in the traditional lock-and-key theory (21). However,

newer work has shown that networks of hydrogen bonds are responsible for the strong

binding in the biotin•streptavidin complex (22).

A common metric to evaluate a small molecule’s ability to bind is “ligand effi-

ciency”. This metric is defined as binding affinity per number of non-hydrogen atoms

(24; 25; 26). It was first introduced by Kuntz et al. in 1999 (27), where they an-

alyzed 159 tightest-binding complexes and the relationship between the number of

heavy (non-hydrogen) atoms present in a ligand and its affinity. They showed that

each heavy atom can provide at most -1.5 kcal/mol of binding affinity (27). This

maximum was consistent with their predictions of the maximum affinity obtainable

by van der Waals and hydrophobic interactions (27). Though many of the most ef-

ficient ligands were metals and small ions, electrostatics was given little attention.

Even in recent investigations this class has been ignored because they are not “drug-

like” and most scientists prefer to focus on drug-like molecules for ligand efficiency

(206; 207; 208).

In this study, we investigated which properties lead to an optimal efficiency. To

study general patterns with regard to binding affinity and efficiency, it is necessary to

use a large set of protein-ligand complexes for which a structure has been solved and

an experimentally-derived binding constant (Kd, Ki, or IC50) has been determined.
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We used the largest dataset available, Binding MOAD(62; 169), to explore the re-

lationship between structure and binding affinity, extending Kuntz’s examination to

include all available binding events in the Protein Data Bank (115). By looking at

the most efficient ligands and the characteristics of their binding pockets, we reveal

which interactions are most important to provide the highest binding affinity and

efficiency. This study explores all binding events with the goal of examining funda-

mental biophysical properties, rather than focusing solely on properties of drug-like

chemical space.

5.2 Methods

Structural properties were derived from the complexes in our protein-ligand database

Binding MOAD (Mother of All Databases) (62; 169). Binding MOAD is the largest

database of high-resolution protein-ligand complexes annotated with binding data

from the PDB(115) (13,138 complexes comprised of 4078 unique protein families,

binding 6213 unique ligands). We have compiled binding affinity data for 32% of

the entries (4203 complexes), with a preference for Kd data over Ki data over IC50

data. The free energy of binding was determined directly from Kd values by ∆Gbind =

-RT×ln(Kd), and in the case Kd was not available, we approximated the free energy

of binding using ∆Gbind = -RT×ln(Ki or IC50). All structures and affinity data are

freely available at http://www.BindingMOAD.org.

Only complexes with binding data were used for this study. Coordinates were

taken from the biological unit files provided by the PDB, which display the functional

form of the protein. These files were processed to remove artifacts. We specifically

focused on the size of the ligand and its contact surface with the protein, so any

structure with poorly defined contacts were not considered. Therefore, we excluded

structures with partially occupied or missing atoms from under-resolved ligands or

side chains, as well as structures with too many atoms from ligands or side chains
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resolved in multiple orientations. A ligand was determined to have too many or two

few atoms if the number of atoms in the formula did not match the number of atoms

in the coordinate section of the pdb file. The total number of structures used in this

study was 2794.

Ligand efficiency is the free energy of binding divided by the number of non-

hydrogen atoms in the ligand (24; 25; 27; 26). Hence, a ligand with 10 atoms is twice

as efficient as a ligand with 20 atoms if they bind with the same affinity. In this study,

ligand efficiencies are reported as affinity per size (-∆Gbind/atoms) and per degree of

contact between the ligand and the pocket (-∆Gbind/BSA).

Surface areas were calculated using OPLS-based radii(150) with our code GoCAV

which reports buried molecular surface area (BSA) of the pocket (169). Variation

in BSA occurs when several examples of ligand binding occur in the biological unit

(i.e., slightly different interactions for three ligands in the three binding sites of a

homotrimer). This variation is represented by error bars on the graph of BSA. The

exposed surface area (ESA) is also computed from the total surface area minus the

BSA.

To estimate the electrostatic interactions of the ligand and the pocket with respect

to efficiency, we calculated the minimum distance of each charge of the ligand to the

charged residues of the pocket, including any metal atoms that may be present in the

binding site. We then averaged the minimum distance over all the charge sites on

the ligand. The charge sites were determined by calculating the pKa of each atom in

Pipeline Pilot(209) with the pKa calculator at a pH of 7.0.
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5.3 Results and Discussion

5.3.1 Maximum and average ligand efficiencies

If van der Waals terms are the definitive contribution, then we may expect to see a

correlation between affinity and contact surface area between the protein and ligand.

However, no correlation is seen between affinity and size or conatcet area(Figure 5.1A

& 5.1B).

Our dataset is significantly larger than that of Kuntz et al. (27), and we find

a slightly higher maximal efficiency for ligands of -1.75 kcal/mol-heavy atom. This

“hard” limit is set by several systems, but an alternative “soft” limit is -0.79 kcal/mol-

heavy atom, which is the upper bound of 95% of the data in Figure 5.1. The soft limit

is established by a significant number of Kd measurements. Given the significant drop

in efficiency between the two limits, it is extremely rare to find exceptional ligands

and suggests that the -0.79 kcal/mol is a sufficient limit for most uses.

The average and median efficiencies of our dataset are -0.38 kcal/mol-atom and -

0.33 kcal/mol-heavy atom, respectively. These averages are in agreement with average

values for ligand efficiency of -0.37 kcal/mol-heavy atom for enzymes (median = 0.33

kcal/mol-atom) and -0.42 kcal/mol-heavy atom for non-enzymes (median = -0.36

kcal/mol-heavy atom), as reported in our previous work (210). Accurate benchmarks

for ligand efficiencies are very important because these values define physical limits of

ligand binding. Furthermore, ligand efficiencies are often used to evaluate HTS data

or to eliminate lead compounds during a drug development cycle (24; 25; 26; 211).

Anecdotally, the best ligand efficiencies from HTS data approach -0.6 kcal/mol-atom

(26; 211). Pushing for leads with ligand efficiencies near -0.3 or -0.4 kcal/mol-atom

from a simple combinatorial library may be too restrictive for some systems as this

is near the average for all good structures, as noted above (25). However, ligand

efficiencies of candidate compounds must often be higher to allow for changes during
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Figure 5.1: Plotting the affinity of the complexes versus their physical characteristics
reveals the limiting cases as well as the general trends. Measurements used
for affinity data are noted as IC50 (green diamonds), Ki (red squares), or
Kd (black diamonds). (A) Affinity versus size of the ligand. Affinity is
given in -kcal/mol and size is given as the number of non-hydrogen atoms.
The units of the ligand efficiencies listed above the lines are -kcal/mol-
atom. (B) Affinity versus the buried surface area of the binding site, in
Å2. The units of the ligand efficiencies listed above the lines are -cal/mol-
Å2. The “hard limits” of ligand efficiency are denoted with black lines
and values; the “soft limits” which bound 95% of the data are denoted
with solid blue lines and values; the average ligand efficiencies are given
with orange lines and values. The dashed blue line denotes how few of
the complexes have affinities greater than 15 kcal/mol.
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further drug development (211; 212).

We can also define ligand efficiency in terms of BSA of the binding site. Others

have proposed metrics for ligand efficiency based on free energy of binding per surface

area of the ligand, but these have been based on pharmacokinetic considerations and

are not equivalent to contact surface area between the ligand and its protein target

(24; 25; 26). Recently Nissink, has proposed that the maximal ligand efficiency should

be proportional to protein-ligand contact area and volume (206). That work further

suggests a modified measure of ligand efficiency based on affinity/N3.0, to estimate

the area to volume ration of a ligand (206). This metric is also useful for reducing

the dependency of a traditional ligand efficiency based on affinity/N, where N is the

number of heavy atoms (206).

Estimates based only on the ligand ignore a large portion of the interaction with

the protein. Instead, we have chosen to measure the contacts directly. In our descrip-

tion based on the BSA of the binding site, the average efficiency is 27 cal/mol-Å2.

Houk and coworkers coupled structure and affinity data for a moderate set of over

1000 host-guest, 175 antibody-antigen, and 176 enzyme-inhibitor complexes to pro-

pose that affinity is proportional to BSA of the ligand (213; 214). Their data implies

a relationship, equivalent to 7 cal/mol-Å2 (reported as approximately 1 log Ka for

every 90 Å2 of buried surface). This average is approximately one-fourth of our av-

erage, but Houk’s trend is for surface area of the ligand and ours is for molecular

BSA of the binding site. Other reported values of the relationship of surface area

versus free energy for transferring a hydrophobic solvent into water range from 24 to

47 cal/mol-Å2 (186; 187), which is in excellent agreement with the range between our

average and soft-limit efficiencies.

In Figure 5.1B, the “hard limit” for efficiency is 120 cal/mol-Å2 and the soft

limit that bounds 95% of the data is 51 cal/mol-Å2. We were surprised to find that

the maximum efficiency with respect to BSA was in exact agreement with limits
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proposed for macromolecular binding (215). In a follow-up work examining protein-

protein, protein-RNA, and protein-DNA complexes, Brooijmans et al. established

the same limit of 120 cal/mol for every Å2 of BSA (215). Macromolecular recognition

generally involves large, flat regions of a protein surface (216), but despite that large

contact surface, macromolecules do not inherently bind with higher affinities than

small molecule ligands (215). Keil et al. have shown that binding sites for ligands

are deeper and more concave than binding sites for protein-DNA or protein-protein

associations, implying a good degree of burial for small molecules despite their smaller

size (161). It is rather remarkable that the 120 cal/mol-Å2 limit of binding efficiency

appears to be universal across all varieties of binding interfaces on proteins.

5.3.2 Electrostatic Interactions Define Maximal Efficiency

Structures which define the limit of ligand efficiency all share a single distinct char-

acteristic: every system involves a charged ligand, in contact with a charged protein

residue or a metal ion cofactor. In fact, many of the ligands with the best efficiencies

have two or three charge centers, and they are complemented in their binding sites

by several charged side chains and/or dicationic ions. Figure 5.2 shows the systems

with the maximum efficiencies, annotated with their PDB codes. The highest effi-

ciency is seen for a phosphonoacetohydroxamate compound with a -3 charge that is

sandwiched between two dications in yeast enolase (PDB code 1els Figure 5.3) (217).

The crystal structure shows several unusually tight contacts in the chelation (2.1 Å)

which create very small contact surfaces. Not only is the small molecule bound by

two magnesium ions, there are two charged aspartates, two glutamates, two lysines,

an arginine, and a histidine (that potentially could be charged) in the vicinity.

Other high efficiency complexes include a charged benzylamine coordinated to

an acidic side chain in trypsin (1tnh) (218), a dicationic histamine complexed by

four acidic side chains in tick histamine-binding protein (1qft) (219), nitric oxide
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synthase binding +1-charged isothioureas (4nos, 1ed4, 1d1w, and 9nse - the natural

substrate for this enzyme is arginine, which has a positively-charged side chain and

a zwitterionic core) (220; 221), a zwitterionic cystine complexed by four charged side

chains in the cystine transporter (1xt8) (222), a +2-charged 1,4-diaminobutane in

the putrescine receptor (1a99) (223), and an anionic acetohydroxamic acid inhibitor

sandwiched between two Ni+2 in urease (4ubp) (224). Each of these binding sites can

be viewed in Figure 5.3. Even though some of these structures contain metal ions

and may be considered partially covalent by some, each structure in Binding MOAD

has been verified to be non-covalently bound, according to the primary citation listed

in the PDB for the structure (62).

Figure 5.2: Close up view of the complexes with the highest ligand efficiencies. (A)
Affinity (kcal/mol) compared to size as in Figure 5.1A. (B) Affinity com-
pared to BSA as in Figure 5.1B. Complexes are labeled with their PDB
codes.

Examining the structures that are at the maximum limit of efficiency per BSA

shows three structures in common with efficiency per non-hydrogen atom (1els, 1qft,

and 1xt8). We note that all but one of the additional systems in Figure 5.2B contain
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Figure 5.3: Binding sites of the 11 most efficient complexes. Figures show all residues
within 4Å of the small molecule ligand. The ligand is colored by atom
type. The water is colored red and shown in small spheres. Metal ions are
shown in larger blue spheres. Acidic residues (Asp, and Glu) are colored
red; basic residues (His, Lys, Arg) are colored blue; hydrophobic residues
(Ala, Ile, Leu, Met, Phe, Pro, Val) are colored green; hydrophilic residues
(Cys, Gly, Asn, Gln, Ser, Thr) are colored white; and Tyr and Trp are
colored either green or white depending on the interaction made with the
ligand. The heme is colored with C=light blue and the Iron=brown.
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Figure 5.4: Figure 5.3 continued.

a charged ligand, see Figure 5.5. Three are lactate dehydrogenase bound to singly-

charged, azol-based carboxylic acids (1t24, 1t25, and 1t26) (225). Other complexes

include 1lah (an ornithine with three charge sites bound to the lysine-argninine-

ornithine-binding protein) (226) and 1y20 and 1pb8 (the glutamate NMDA recep-

tor binding a zwitterion and D-serine, respectively) (227; 228). The only structure

without a charged ligand is ribose bound to D-ribose-binding protein (1drj) (229).

Although the ligand is not charged, the binding site in this structure contains four

charged residues (plus two asparagines and a glutamine) each making hydrogen bonds

with the ribose (Figure 5.5E).

Based on the known size dependence of ligand efficiency, it is not surprising that

the best ligands are small. However, the ten most efficient complexes in 5.6 are still the

ten most efficient when scaled to counter small-size artifacts as suggested by Reynolds
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Figure 5.5: Binding sites of highly efficient complexes (affinity per buried cavity sur-
face area). Figures show all residues within 4 Å of the small molecule lig-
and. The ligand is colored by atom type. Acidic residues are colored red;
basic residues are colored blue; hydrophobic residues are colored green;
and hydrophilic residues are colored white as in figure 5.3. The NAD+
of lactate dehydrogenase is colored blue because the moiety against the
ligand is positively charged. Water is colored red and shown in small
spheres.

101



et al. (208). Also, it is important to note that not all small charged molecules in

charged binding sites are highly efficient. If we focus on all highly charged ligands

that contain 5-10 heavy atoms, we see that there are several small molecules that have

more modest efficiencies (-0.40 kcal/mol-atom or poorer). Note that we are using a

rather high cutoff to define less efficient binding as drugs often have efficiencies this

high (a 1-nM ligand with ≥31 non-hydrogen atoms has ≥400 MW and an efficiency

of -0.4 kcal/mol-atom or less). Higher efficiency cutoffs have been recommended for

small molecules (207).

To determine why these ligands are less efficient, we examined all ligands with

5-10 non-hydrogen atoms and more than one charged site (63 complexes, of which

9 have efficiencies of -0.4 kcal/mol or weaker). We used two metrics to determine a

complementary fit between the ligand and protein. First, the average distance be-

tween charged groups of the protein and those of the ligand was used to calculate

the degree of complementarity in a way that is independent of the number of charge

sites in the ligands and pockets. Second, we calculated the exposed surface area and

normalized for the number of non-hydrogen atoms (ESA/size). Figure 5.6 presents

the relationship of efficiency to those metrics. There is a very significant difference

(two-sided Wilcoxon p-value = 0.005) in the efficiencies of complexes that are well

buried (ESA/size < 2 Å2/atom) versus those that are more exposed, Figure 5.6A.

The median efficiency of well-buried ligands is -0.83 kcal/mol-atom versus a median

efficiency of -0.57 kcal/mol-atom for those with ESA/size > 2 Å2/atom (mean ef-

ficiencies are -0.81 versus -0.60 kcal/mol-atom, respectively). Furthermore, if those

efficiencies are compared to the average distance between charged groups (Figure

5.6B), it appears that longer distances severely limit the maximum efficiency possible

for the system. This is in keeping with Nissink’s proposal that maximal efficiency

should be proportional to contacts normalized for ligand size (206).

It should be noted that there are five systems that are not included in Figure
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5.6 because they do not fit our definition of multiply charged. Though each has two

titratable, all include an amine that is tightly coordinated to a metal cofactor, making

it neutral. These systems have very short average contact distances, but very poor

ligand efficiencies. The binding event must include a change in ionization, which

is unfavorable and leads to reduced binding. To avoid confusion, these have been

excluded.

For every increase of 1 Å in the average contact distance, the maximum efficiency

drops by 0.7 kcal/mol-atom. Perhaps a more appropriate view is that a ligand’s

maximum efficiency is reduced by 0.1 kcal/mol-atom for a misfit as small as 0.14

Å in the average contacts between its charged groups and the protein’s. Such sig-

nificant gains/losses for such small spatial changes in the charges may explain why

synthetic modifications to ligands that alter polarization and charge distribution can

be so effective. The importance of charge interactions may support the ideas of op-

timizing charge complementarity that has been developed by Tidor and co-workers

(28; 30; 230). They developed an analytical solution the Poisson-Boltzmann equation

to model the electrostatics of the binding site and an analytical method of optimizing

the charge profile of the ligand to match the calculated electrostatics of the binding

site while also accounting for the desolvation penalty (28; 30; 230).

The importance of charge complementarity in ligand binding can be supported by

other biological binding events. The ability of salt bridges to improve the stability

of protein-protein interactions in protein folding or protein-protein binding may be

supportive (231). Networks of salt bridges have been shown to stabilize proteins,

although the majority of individual salt bridges have been shown to be destabilizing

in proteins (232; 231). In a statistical study of 94 proteins from the PDB, Musafia et

al. found that one-third of all residues participating in salt-bridges were involved in

‘complex’ salt bridges, which they defined as ones involving three or more amino acids

(233). Olson et al., were able to stabilize α-helical peptides by engineering multiple
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Figure 5.6: Relationship between efficiency, exposure, and protein contacts for ligands
with 5-10 atoms and more than one charge site. (A) The distribution of
efficiencies is compared for systems with well buried (black) versus more
exposed sites (white); a cutoff of 2 Å2/atom is used to define the two sets.
(B) Efficiencies are compared to the average contact distance between
charged groups (black circles denote systems with ESA/size < 2 Å2/atom,
and white circles are ESA/size> 2 Å2/atom). The line highlights the drop
in maximal efficiency as the contacts become less favorable: roughly 0.7
kcal/mol-atom for every 1 Å increase in the average contact distance. The
gray background notes systems with more modest efficiencies. The error
bar indicates the standard deviation of the average of two affinity values
reported in the literatures (1; 2).
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Table 5.1: Properties of small charged ligands, all ligands are between five and ten
heavy atoms. Efficiency is affinity/size.

PDB Id Ligand Affinity
(-kcal/mol)

Efficiency
(-kcal/mol-
atom)

ESA/size
(Å2)

Avg

Distance
1a99 PUT 7.74 1.290 0.12 2.76
1ahy MAE 4.56 0.570 0.41 3.45
1amk PGA 5.84 0.649 3.16 3.53
1b74 DGN 1.77 0.177 8.36 4.10
1cea ACA 6.74 0.749 10.41 3.22
1czc GUA 3.84 0.426 0.27 2.79
1cze SIN 3.56 0.445 0.49 3.62
1ebg PHA 14.71 1.63 0 2.34
1egh PGA 7.74 0.860 0.93 3.13
1el5 DMG 2.39 0.341 0.07 3.43
1ftj GLU 8.27 0.827 0.13 3.20
1ii5 GLU 8.99 0.894 1.52 3.47
1kc7 PPR 7.50 0.750 7.46 3.75
1kv5 PGA 5.74 0.637 3.54 3.67
1lah ORN 10.22 1.14 0.10 3.19
1m1b SPV 6.33 0.633 0.085 3.38
1o4m MLA 1.90 0.271 9.85 2.69
1o4n OXD 1.90 0.317 7.93 3.96
1pb8 DSN 7.00 1.000 0 2.74
1pot SPD 7.47 0.747 0.02 2.96
1poy SPD 7.47 0.747 0.03 2.54
1qds PGA 5.87 0.652 3.47 3.61
1s89 PGA 7.11 0.790 1.27 3.17
1s8a PGA 5.43 0.600 0.93 3.15
1ssq CYS 8.15 1.16 2.43 2.66
1tok MAE 3.35 0.419 0.23 3.30
1txf GLU 9.84 0.984 0.56 3.17
1usk LEU 8.69 0.966 0.01 3.38
1wdn GLN 9.51 0.951 0.17 2.77
1xt8 CYS 9.51 1.36 0.07 2.75
1y1m AC5 2.47 0.274 1.62 3.04
1y1z 192 4.19 0.523 0.14 2.71
1y20 1AC 7.23 1.03 0.02 2.67
1z16 LEU 7.66 0.851 0.02 3.36
1z17 ILE 8.21 0.913 0 3.37
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Table 5.2: Table 5.1 Continued
PDB Id Ligand Affinity

(-kcal/mol)
Efficiency
(-kcal/mol-
atom)

ESA/size
(Å2)

Avg

Distance
1z18 VAL 7.33 0.917 0.01 3.38
1zha PEP 10.05 1.01 1.27 3.09
2aay GPJ 3.76 0.376 0.10 2.69
2dua OXL 3.67 0.611 5.56 2.60
2fpz 270 5.38 0.538 3.68 3.75
2gga GPJ 3.02 0.302 0.10 3.09
2ggd GPJ 5.16 0.516 0.08 2.98
2iqd LPA 6.24 0.780 8.21 3.11
2o1c PPV 6.41 0.713 8.71 3.21
2pt9 2MH 6.05 0.757 0.45 2.99
2pyy GLU 9.10 0.910 0.22 3.02
2qrl OGA 5.43 0.543 10.63 3.17
2rk7 OXL 5.50 0.917 6.01 2.13
2rke SAT 5.55 0.693 2.86 3.68
2v2c PGA 4.63 0.515 3.45 3.61
2v2h PGA 5.12 0.569 3.12 3.91
2v7x MET 6.48 0.720 0.002 3.18
2ypi PGA 6.55 0.728 3.38 3.79
2ze3 AKG 4.14 0.414 3.04 3.45
2zlz GLU 3.64 0.364 7.98 3.37
3bm5 CYS 4.02 0.574 1.88 2.92
3bra AEF 3.67 0.367 10.80 2.76
3bu1 HSM 11.07 1.38 1.60 2.73
3bxe 13P 7.44 0.744 3.08 3.69
3epa PUT 4.48 0.748 0.55 2.71
3epb PUT 5.43 0.906 0.33 2.93
3jdw ORN 4.89 0.543 1.30 3.76
3kiv ACA 6.38 0.709 12.50 2.67
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salt bridges, and found that the amount of stability obtained was cooperative (234).

Networks of salt bridges were also found to be stabilizing by Kumar and Nussinov us-

ing continuum electrostatics to computationally determine the difference in energy of

salt bridges compared to their hydrophobic isosteres, where the partial charges on the

residue were set to zero (235). They found that the stability for most salt bridges was

determined largely by the desolvation penalty; however, the networked salt bridges

were an exception to this phenomenon. In all cases, the networked salt bridge was

found to be stabilizing, despite a large desolvation penalty (235). These networked

salt bridges are homologous to our charged ligands complemented by multiple charged

residues in their binding sites.

Furthermore, Having a higher charge has been noted to be beneficial in metal ion

binding to DNA/RNA. In these cases the dicationic Mg2+ is the preferred counter

ion, compared to Na+, for binding to and stabilizing the phosphate backbone of the

nucleic acid (236).

Coulombic forces are the strongest non-bonded interactions that can be made, and

it may not be surprising that highly efficient molecules utilize the strongest forces per

atom. However, it is surprising that the free energy of binding is high since the

desolvation penalty for charged molecules is insignificant (20). Since these also bind

with relatively high affinity, the penalty must not be as large as previously thought.

In support of the idea that the desolvation penalty is less, almost all of the structures

contain water in the binding sites (Figures 5.3 and 5.5), so not all of the water are

displaced.

A possible reason the desolvation penalty may be lower than initially thought is

that water cannot completely solvate the charges. Many of the systems have lig-

ands and pockets with charges that are closely spaced - too close for water to pack

around each charge independently. It has been shown that the multiply charged

phosphate backbone of DNA, which puts charges close together, leads to “frustrated
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water” around the DNA. The restructuring of water was determined to dominate the

interaction of polyols with DNA (237).

The limits of efficiency may be set by closely packed charged molecules because

we are approaching covalent bonding. Zhang and Houk investigated 1017 enzymes-

transition state complexes as well as 160 enzyme/inhibitor complexes. They found

that transition states, which tend to have covalent or partially covalent bonds to the

protein, had affinities of Ka= 1016M−1, while the inhibitors only bound with Ka=

109M−1. Additionally, they proposed that any enzyme proficiencies and affinities of

greater than 1011 M−1 (˜15 kcal/mol) would exhibit covalent or partial covalent bond-

ing (34; 213). At heavy atom distances less than 2.5 Å, low barrier hydrogen bonds

exhibit at least a partial covalent nature, and provide stability of 10-20 kcal/mol

(238; 239). Additionally, metals have the ability to exhibit coordinate-covalent bond-

ing to ligands (240). In a few highly efficient complexes, we observe distances less

than 2.5 Å between atoms capable of hydrogen bonding, and some cases have metals

involved in coordinating the ligand. We should note that we do not believe these

systems to be overly influenced by partial bonding characteristics because all are re-

versibly bound, many with affinities in the µM and nM range. furthermore, in the

NOS system (4nos, 1ed4, 1d1w, and 9nse) where the small molecule is near a heme,

the distances to the iron are greater than 4 Å. Also, investigation of the available

electron densities does not indicate partial bonding between the heme and ligand.

5.3.3 Maximum affinity of ligands

What defines the maximum binding affinity of ligands? Kuntz et al. found that

binding affinity plateaus after ˜15 atoms and little improvement is seen for larger

ligands (27). No ligand has a binding affinity of -20 kcal/mol or better. In fact, it

is rare to exceed -15 kcal/mol (0.1% of the complexes in Figure 5.1). Kuntz and

coworkers suggested that other biological factors may be the cause of the limit; for
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instance, molecules with too high of a binding affinity can exhibit clearance problems

in the body (27). Nature would tend to disfavor such molecules.

Kuntz notes that affinities better than -15 kcal/mol are so tight that a ligand will

most likely never dissociate before the protein is degraded. If we assume that kon is

the rate of diffusion of ˜106M−1s−1, then an affinity of -15 kcal/mol (Kd ≈ 10 pM)

would correspond to an average bound lifetime of ˜1 day, which is well within the

lifetime of most proteins (241), but at -16 or -18 kcal/mol, the lifetimes would be

approximately 6 and 187 days, respectively. However, we do not agree that clearance

issues limit binding because protein binding predates complex organisms. Instead,

we hypothesize that once a ligand is bound for the lifetime of a protein, there is no

evolutionary pressure to coax ligands and proteins to associate more tightly.

Reynolds et al. have also discussed the plateau at -15 kcal/mol (208). They

noted that as size increased, the maximal efficiency would decrease. They suggested

the reason for the drop in efficiency was that larger ligands would need to optimize a

larger number of contacts with the protein that would lead to structural compromises

and thus a reduced affinity (208). We acknowledge that our data could also support

this proposal because significant drops in efficiency can come from rather minor misfits

in charge complementarity.

Several other factors may also contribute to the -15 kcal/mol limit to binding.

First, assays which are used to determine binding constants have inherent limitations

when measuring high affinity. We do not believe that this is the cause of the limit.

If it was the cause, the distribution of binding affinities would drop off rapidly as

one approaches the limit, which is not the case. The distributions in MOAD folow

a near-normal distribution with centered at ≈9 kcal/mol. Second, our study has the

limitation of examining only proteins and ligands that can be crystallized. Given

that higher affinity complexes are generally hydrophobic than lower affinity com-

plexes (210), solubility issues may limit the crystallization process. Therefore, these
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structures could be under represented in our dataset. Third, most of the high affinity

complexes are man-made compounds. In the drug design process, once one obtains a

small molecule that binds well enough, there is no need to synthesize tighter binding

small molecules. In fact ADME/Tox issues may discourage pursuing molecules in

this range. Lastly, some affinities of greater than -15 kcal/mol may be incorrectly

considered covalent (34; 213). We may see a limit because Binding MOAD does not

contain covalently bound ligands.

5.4 Conclusions

The difficulty in determining which interactions dominate the contribution to

the free energy of binding has limited the ability of researchers to predict a priori

which small molecules will bind to a target and how tightly. Previously, it had been

suggested that van der Waals and hydrophobic interactions were the driving force for

small molecule binding (4; 27). Our study and other recent studies have pointed to the

importance of electrostatics in driving these interactions (28; 230; 235; 30; 233; 234).

We have looked at the most efficient protein-ligand complexes and have noted that in

all of these complexes the small molecules have at least one charge-charge interaction,

and several of them have multiple charge interactions. We highlight the importance

of not only matching the shape of the binding pocket, but also complementing the

charge profile of the active site.

Although desolvation of charged molecules is a barrier to binding, it appears that

the small size and close proximity of charges leads to water’s inability to fully solvate

the ligand and its binding site. Desolvation of the charged pocket may not be as

difficult to overcome, and many of the systems examined here retain some water in

their sites.

Lastly, we suggest that the ≈15 kcal/mol limit of binding may be due to the fact

that there is no evolutionary pressure to create tighter binding small molecules once
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the bound lifetime exceeds the lifetime of the protein.
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CHAPTER VI

Conclusion

We have created and utilized Binding MOAD to investigate the biophysical prop-

erties with which proteins bind to ligands. We have also committed to annual updates

of the dataset to keep pace with the growth in the PDB. Binding MOAD has over

thirteen thousand, hand-curated, protein-crystal structures that contain biologically

relevant ligands. Binding affinity data is available for almost one-third of the entries.

In the future, we wish to contain more binding-affinity data (including the addition

of K M for cofactors). Part of the value of Binding MOAD is in its careful curating

and in its size and wealth of data.

Binding MOAD has plans for even greater improvement. We will add similarity-

based searches for the ligands. Furthermore, we have been able to use text-mining

tools to speed up our annotation process, and we are looking to make these tools,

such as BUDA, which was developed in conjunction with Torrey Path, available

online. This will allow users to mine text for additional types of data. Natural

language processing (NLP) is proving to be a valuable tool in aiding the curation

of Binding MOAD. It has significantly sped up the process of the annual updates

of adding data. Such NLP-based, text-mining approaches can be readily applied to

other bioinformatic projects. This technology can be used to extract a wide variety

of data - not just binding information - from the huge body of literature available
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today.

From chapter three we find that most ligands are well buried. This fits the common

paradigm that many contacts between the ligand and the protein are a significant

factor in the specificity of molecular recognition. Since most of our sites are highly

buried, the majority of the cavity surface is defined only by contacts to the protein.

This typically makes the portion of the surface defined by the enlarged ligand surface

(ELS) only a small percentage. Figure 3.9 shows that the largest ligands tend to have

more exposed surface area. These large ligands are typically peptide, nucleic acid, or

sugar chains, and one would expect the patterns of binding such molecules to start

to resemble the patterns of proteins binding macromolecules, such as other proteins

or DNA.

Future efforts with Binding MOAD will allow us to compare broadly the binding

affinity data to the patterns of molecular recognition mined from the PDB. Past

studies have mined subsets of the PDB with various structural analyses of proteins and

ligands (49; 154; 59; 163; 136; 157; 164; 158; 165; 159; 160; 161; 156; 142; 17; 162; 132;

166; 149; 167), but now, we will be able to add another layer of depth to such studies.

There is more to binding affinity than just burying a ligand inside a protein, and all

of the complex issues that go into creating an effective scoring function (168) will

need to be considered in future analyses. Both shape and chemical complementarity

are thought to be the basis of molecular recognition. Our future analyses will have

to consider the chemical complementarity or what “types” of surfaces are solvent-

exposed or interact with the protein, in order to understand how to improve the

enthalpy of binding. We will also need to address the very complex issue of entropic

changes upon binding.

In chapter four of the thesis, physical characteristics of bound ligands in Binding

MOAD were compared between enzymes and non-enzymes as well as high-affinity and

low-affinity complexes. The comparison between ligand sizes for low-affinity versus
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high-affinity binding shows that divergent approaches are likely needed to improve the

affinity of enzyme inhibitors versus those for non-enzymes. The traditional approach

of adding functional groups to fill more of the pocket may work for enzymes, but it

may not be as appropriate for non-enzyme systems. However, making ligands more

hydrophobic appears to aid binding in both enzymes and non-enzymes.

Non-enzymes have higher ligand efficiencies than enzymes, which may be a reflec-

tion of their biological roles. This is also encouraging when considering the druggabil-

ity of non-enzymes. The differences in efficiencies between enzymes and non-enzymes

could not be attributed to the small molecules or the protein alone. Therefore, future

investigations would require one to look at the specific contacts between the protein

and ligand or entropic considerations.

In the pharmaceutical industry, ligand efficiencies have become a metric for evalu-

ating hits from screening campaigns and even candidate compounds.(25) Our results

would caution against applying a rigid standard across all protein targets, since each

individual protein family showed different ligand efficiencies. At the very least, a

cutoff based on ligand efficiency should differ between enzymes and non-enzymes.

Ideally, cutoffs would differ between protein families and only be considered as one

of several guidelines in a selection process.

We have also noted that Binding MOAD provides strong support of several math-

ematical models cited above,(199; 185; 176) particularly those of Hajduk and cowork-

ers. Our results have implications for the development of scoring functions for docking

and predicting druggability of a binding site.(200; 201; 202; 203) The differences be-

tween non-enzymes and enzymes, as well as the differences across enzymatic systems,

underscore the challenges of developing universal functions that perform well across

all systems. Modest improvement might be achieved by developing separate functions

for enzymes and non-enzymes, with even greater improvement expected for functions

trained on specific protein families.
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In chapter five, we have looked at the most efficient protein-ligand complexes in

Binding MOAD and have noted that in all of these complexes the small molecules

have at least one charge-charge interaction, and several of them have multiple charge

interactions. We highlight the importance of not only matching the shape of the

binding pocket, but also complementing the charge profile of the active site.

Although desolvation of charged molecules is a barrier to binding, it appears that

the small size and close proximity of charges leads to water’s inability to fully solvate

the ligand and its binding site. Desolvation of the charged pocket may not be as

difficult to overcome, and many of the systems examined here retain some water in

their sites. Future work to help understand water’s role may be to use isothermal

calorimetry to provide entropic and enthalpic contributions to the free energy of

binding. Additionally, we may be able to use quantum mechanics and molecular

mechanics to investigate the energy of solvation for these highly electrostatic ligands

and binding sites and how it compares to the free energy of solvation of other highly

electrostatic ligands and binding sites which do not bind with high efficiency.

It is also important to note that all of our results are developed from structures

that can be crystallized. Since our dataset is significantly large, we believe our results

to be applicable. However, it will be important in the future to compare the types

of small molecules and proteins in Binding MOAD to the entire space of drug-like

small molecules and protein binding sites, to see if this is true representation of

all complexes. Although no crystal structures are available for all protein-ligand

complexes, it would still be possible to compare the chemical properties of the small

molecule and the amino acid compositions of the proteins. This will be a daunting

task as it will require a dataset much larger than that presented in Binding MOAD.
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APPENDIX A

Supplemental Information for Chapter 4

A.1 Distributions, box plots, and distribution analysis

see Figures A.1-A.7

Figure A.1: This figure shows the relevant statistical figures regarding the distribution
of size (a heavy) in heavy atoms for the four classifications.
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Figure A.2: This figure shows the relevant statistical figures regarding the distribution
of BSA (Å2) for the four classifications.

Figure A.3: This figure shows the relevant statistical figures regarding the distribution
of ESA (Å2) for the four classifications.
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Figure A.4: This figure shows the relevant statistical figures regarding the distribution
of sqrt(ESA)(Å) for the four classifications.

Figure A.5: This figure shows the relevant statistical figures regarding the distribution
of size ligand efficiency (kcal/mol-atom) for the four classifications.
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Figure A.6: This figure shows the relevant statistical figures regarding the distribution
of BSA ligand efficiency (cal/mol-Å2) for the four classifications.

Figure A.7: This figure shows the relevant statistical figures regarding the distribution
of SlogP for the four classifications.

120



A.2 Tukey-Kramer HSD analysis

The datasets do not have normal, Gaussian distributions, so we used square-root

transformations to reduce the skew of the data. With the modification, the Tukey-

Kramer HSD test could be used to examine the means (medians were compared in

the p-values). The large population of the dataset also increased the significance of

this statistical test. The Tukey-Kramer HSD test was performed in SAS with an

exceptionally tight confidence value of 0.0001.

First, high-affinity enzymes are significantly larger than high-affinity non-enzymes

and low-affinity enzymes; however, the non-enzymes are not significantly different

(Table A.1). Since the size distributions are not normal we also analyzed the square-

root transform of the size to shift the right-skewed distribution to a more normal

distribution (Figure A.1). The same trend held when the Tukey-Kramer HSD test

for this variable is performed (Table A.1).

Secondly, in the paper we noted that the high-affinity non-enzymes were signif-

icantly less exposed than the high-affinity enzymes according to the Wilcoxon test.

This is confirmed with the Tukey test. The ESA distribution was not normal, and a

square root transform was used to transform the ESA to a more normal distribution

as well to perform the test (Figures A.2 and A.3). The Tukey grouping confirms

the significance of the difference in the degree of exposure between high-affinity non-

enzymes and high-affinity non-enzymes.

Third, high-affinity non-enzymes are more efficient than high-affinity non-enzymes.

This can also be seen in the Tukey grouping for the two efficiency variables (Tables

A.3 and A.4).

Lastly, we noted that the high-affinity complexes were more hydrophobic, accord-

ing to an increase in SlogP. The high-affinity complexes group in the same group,

while the low-affinity complexes group in separate groups, with the exception of the

high-affinity non-enzymes and low-affinity non-enzymes which appear in the same
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group.

see Tables A.1-A.5

Table A.1: This table shows the Tukey-Kramer HSD for size in number of heavy
atoms (sqrt(size)) over the four classifications. Classes indicated with the
same letter are not significantly different at the 99.99% confidence level.

Classification Tukey Grouping Means
High-Affinity Enzymes A 32.898 (5.61754)

High-Affinity Non-Enzymes B 27.558 (5.09263)
Low-Affinity Non-Enzymes B C 26.889 (4.93237)

Low-Affinity Enzymes C 22.613 (4.59402)

Table A.2: This table shows the Tukey-Kramer HSD for sqrt(ESA) over the four
classifications. Classes indicated with the same letter are not significantly
different at the 99.99% confidence level.

Classification Tukey Grouping Means

High-Affinity Enzymes A 11.7061 Å

High-Affinity Non-Enzymes B 8.3495 Å

Low-Affinity Non-Enzymes A 11.4802 Å

Low-Affinity Enzymes B 9.5732 Å

Table A.3: This table shows the Tukey-Kramer HSD for size ligand efficiency over
the four classifications. Classes indicated with the same letter are not
significantly different at the 99.99% confidence level.

Classification Tukey Grouping Means
High-Affinity Enzymes B 0.40555 kcal/mol-atom

High-Affinity Non-Enzymes A 0.49497 kcal/mol-atom
Low-Affinity Non-Enzymes B 0.35009 kcal/mol-atom

Low-Affinity Enzymes B 0.35191 kcal/mol-atom

A.3 Properties after removal of Cofactors

see Table A.6

A.4 Patterns obtained from the non-redundant dataset

See Table A.7 and Figures A.8 and A.9
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Figure A.8: For the non-redundant complexes: distribution of ligand sizes (number
of non-hydrogen atoms) and buried surface area of the pocket (BSA in
Å2) are given in normalized percent frequencies. (a) Comparisons of
high-affinity complexes, (b) low-affinity complexes, (c) enzymes, and (d)
non-enzymes are presented. High-affinity enzymes are shown in dark
blue lines, and low-affinity enzymes are in green lines. High-affinity non-
enzymes are in red, and low-affinity non-enzymes are in gold.
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Figure A.9: For the non-redundant complexes: distribution of ligand efficiencies per
size (-kcal/mol-atom) and per contact (-kcal/mol-Å2) are given in nor-
malized percent frequencies. (a) Comparisons of high-affinity complexes
and (b) low-affinity complexes are presented. High-affinity enzymes are
shown in dark blue lines, and high-affinity non-enzymes are in red lines.
Low-affinity enzymes are in green lines, and low-affinity non-enzymes are
in gold lines.
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Table A.4: This table shows the Tukey-Kramer HSD for BSA ligand efficiency over
the four classifications. Classes indicated with the same letter are not
significantly different at the 99.99% confidence level.

Classification Tukey Grouping Means

High-Affinity Enzymes B 29 cal/mol-Å2

High-Affinity Non-Enzymes A 35 cal/mol-Å2

Low-Affinity Non- Enzymes B C 26 cal/mol-Å2

Low-Affinity Enzymes C 23 cal/mol-Å2

Table A.5: This table shows the Tukey-Kramer HSD for SlogP over the four clas-
sifications. Classes indicated with the same letter are not significantly
different at the 99.99% confidence level.

Classification Tukey Grouping Means
High-Affinity Enzymes A 1.7338

High-Affinity Non-Enzymes A B 0.8631
Low-Affinity Non-Enzymes C -2.1065

Low-Affinity Enzymes B -0.3392

A.5 Patterns obtained from complexes with Kd data

See Table A.8

A.6 Three enzymes with a large range in affinities for a small

range of ligand sizes

In three cases – neuramidase, MTA/SAH nucleosidase, and protocatechuate 3,4-

dioxygenase – we found enzymes that had a very small range of ligand sizes and a large

range in binding affinity, Figure A.10. It is unclear whether the strong overall trends

of 0.62 kcal/mol-atom for neuramidase and 0.71 kcal/mol-atom for MTA/SAH nucle-

osidase are exceptional examples of the correlations expected for enzymes or whether

they indicate that only conservative changes in sizes are allowed for these systems, as

we suggested for non-enzymes. We have presented protocatechuate 3,4-dioxygenase

in Figure S10c to show the only example obtained for an enzyme with overwhelm-

ingly strong influence from small changes, much like arabinose-binding protein in the
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Table A.6: Median Characteristics of Enzyme and Non-Enzyme Complexes in the
Redundant Set with All Cofactors Removed from Consideration (includes
Kd, Ki, and IC50 values for affinity). The values are nearly unchanged from
Table 4.1, underscoring the robust nature of the data when 109 complexes
(˜5%) are removed.

Median
Physical
Properties

Low Affinity
>250 nM ∆Gbind

> -9 kcal/mol

High Affinity
<=250 nM
∆Gbind <= -9
kcal/mol

Enzymes
∆Gbind

Sizea

BSA
ESA (%ESA)b

SlogP

-∆Gbind/atom
-∆Gbind/BSA

972 complexes
-6.6 kcal/mol
20 atoms
297 Å2

84 Å2 (21%)

0.5

0.32 kcal/mol-
atom
21 cal/mol-Å2

715 complexes
-10.9 kcal/mol
32 atoms
420 Å2

142 Å2 (24%)

2.6

0.36 kcal/mol-
atom
26 cal/mol-Å2

Non-Enzymes
∆Gbind

Sizea

BSA
ESA (%ESA)b

SlogP

-∆Gbind/atom
-∆Gbind/BSA

231 complexes
-7.2 kcal/mol
21 atoms
261 Å2

116 Å2 (32%)

-2.2

0.28 kcal/mol-
atom
22 cal/mol-Å2

187 complexes
-10.5 kcal/mol
25 atoms
358 Å2

40 Å2 (10%)

1.5

0.42 kcal/mol-
atom
31 cal/mol-Å2

a. Ligand size is given in the number of non-hydrogen atoms.
b. Percent exposure is ESA/(ESA+BSA) for each individual ligand.

126



Table A.7: Median Characteristics of Protein-Ligand Binding in Enzymes and Non-
Enzymes from the Non-Redundant Dataseta.

Low Affinity
> 250 nM
∆Gbind > -9
kcal/mol

High Affinity
<= 250 nM
∆Gbind <= -9
kcal/mol

Comparisonb

Enzymes

∆Gbind

Sizec

BSA
ESA
(%ESA)d

SlogP

∆Gbind/atom
∆Gbind/BSA

277 com-
plexes

-6.8 kcal/mol
23 atoms
313 Å2

93 Å2 (22%)

-1.3

0.29 kcal/mol-
atom
20 cal/mol-Å2

235 com-
plexes

-11.1 kcal/mol
30 atoms
413 Å2

122 Å2 (22%)

1.3

0.39 kcal/mol-
atom
28 cal/mol-Å2

High-affinity
ligands are
30% larger

Non-
Enzymes

∆Gbind

Sizec

BSA
ESA
(%ESA)d

SlogP

∆Gbind/atom
∆Gbind/BSA

91 complexes

-6.9 kcal/mol
26 atoms
302 Å2

201 Å2 (43%)

-3.2

0.24 kcal/mol-
atom
21 cal/mol-Å2

85 complexes

-10.9 kcal/mol
24 atoms
343 Å2

64 Å2 (15%)

1.4

0.44 kcal/mol-
atom
34 cal/mol-Å2

Low-affinity
ligands have
more than
three times
the esposure

Comparisonb Non-enzymes
have similar
ligand efficien-
cies

Non-enzymes
have greater
ligand effi-
ciency

a. Proteins are grouped by 90% sequence identity and represented by the complex
with the highest affinity ligand
b. All differences noted in the comparisons sections have a statistical significance of
>96% (p<0.04).
c. Ligand size is given in the number of non-hydrogen atoms.
d. Percent exposure is ESA/(ESA+BSA).
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Table A.8: Median Characteristics of Enzyme and Non-Enzyme Complexes in the
Redundant Set with Kd Values.

Low Affinity
> 250 nM
∆Gbind > -9
kcal/mol

High Affinity
<= 250 nM
∆Gbind <= -9
kcal/mol

Comparisona

Enzymes

∆Gbind

Sizeb

BSA
ESA (%ESA)c

SlogP

-∆Gbind/atom
-∆Gbind/BSA

291 com-
plexes

-6.3 kcal/mol
20 atoms
290 Å2

90 Å2 (22%)

-1.6

0.31 kcal/mol-
atom
22 cal/mol-Å2

138 com-
plexes

-11.2 kcal/mol
31 atoms
345 Å2

170 Å2 (30%)

-0.21

0.39 kcal/mol-
atom
33 cal/mol-Å2

High-affinity
ligands are 55%
larger

Non-
Enzymes

∆Gbind

Sizeb

BSA
ESA (%ESA)c

SlogP

-∆Gbind/atom
-∆Gbind/BSA

158 com-
plexes

-7.3 kcal/mol
24 atoms
292 Å2

131 Å2 (35%)

-3.1

0.27 kcal/mol-
atom
22 cal/mol-Å2

113 com-
plexes

-10.2 kcal/mol
23 atoms
342 Å2

54 Å2 (13%)

-0.09

0.44 kcal/mol-
atom
33 cal/mol-Å2

Low-affinity
ligands are
2.5-3 times
more exposed

Comparisona Non-enzymes
have similar
ligand efficien-
cies

Non-enzymes
have greater
ligand effi-
ciency

a. All points comparing the averages have a statistical significance of 99.1% or better.
b. Ligand size is given as the number of non-hydrogen atoms.
c. Percent exposure is ESA/(ESA+BSA).
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non-enzymes Figure A.10b. All the ligands for protocatechuate 3,4-dioxygenase have

10 or 11 non-hydrogen atoms, and it appears to be an example of a small, restricted

binding site.

see Figure A.10

Figure A.10: Examples of enzyme families that show exceptionally strong response
and limited size ranges for ligands. (a) Wild-type (Ki as black trian-
gles, IC50 as black circles) and the R292K-mutant (Ki as gray triangles,
IC50 as gray circles) of neuraminidase show the same strong response to
conservative changes to the ligands. (b) Sizes and Ki (black triangles)
for ligands bound to MTA/SAH Nucleosidase. (c) The data points for
the ligands bound to protocatechuate 3,4-dioxygenase cannot be fit to
a line because of the near vertical arrangement.

A.7 Total amino acid content in enzymes and non-enzymes

The differences in binding sites of enzymes and non-enzymes (Figure 4.6) are not

due to inherent differences in the amino acid composition of the proteins.

see Figuer A.11

A.8 Classes of proteins that make up the high-affinity com-

plexes

It should be noted that the number of enzymes and non-enzymes in the non-

redundant dataset are slightly larger than the lists below. This is because a protein

may be represented more than once if it comes from different species that have less
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Figure A.11: Amino acid content in enzymes and non-enzymes, given in normalized
percent frequencies. Amino acids are listed by hydrophobic, aromatic,
cationic, anionic, and hydrophilic. “X” denotes cofactors, unnatural
amino acids, and covalent modifications on the protein (does not include
crystallographic additives in the crystal structure).
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than 90% sequence identity. Any enzyme listed in the non-enzyme list is an example

of allosteric binding. Though we made every effort to locate these examples, it is

possible that some are contained in the enzyme set, rather than the non-enzyme set,

because of the EC notation inherent to the Binding MOAD dataset.

HIGH-AFFINITY COMPLEXES OF ENZYMES ARE COMPRISED OF:

1. ALDOSE REDUCTASE

2. 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE

3. 2-DEHYDRO-3-DEOXYPHOSPHOOCTONATE ALDOLASE

4. 3-HYDROXYACYL-COA DEHYDROGENASE TYPE II

5. 4-HYDROXYPHENYLPYRUVATE DIOXYGENASE

6. 5’-DEOXY-5’-METHYLTHIOADENOSINE PHOSPHORYLASE

7. A/G-SPECIFIC ADENINE GLYCOSYLASE

8. ACETOLACTATE SYNTHASE, MITOCHONDRIAL

9. ACETYLCHOLINESTERASE

10. ACETYL-COENZYME A CARBOXYLASE

11. ADAM 17

12. ADENOSINE DEAMINASE

13. ADENYLOSUCCINATE SYNTHETASE

14. ADP-RIBOSYLATION FACTOR-LIKE PROTEIN 3

15. ALCOHOL DEHYDROGENASE

16. ALPHA1,2-MANNOSIDASE
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17. ALPHA-AMYLASE

18. ALPHA-MANNOSIDASE II

19. ALPHA-THROMBIN

20. ANGIOTENSIN CONVERTING ENZYME

21. ARGINASE

22. ASPARTATE CARBAMOYLTRANSFERASE CATALYTIC CHAIN

23. B. ANTHRAX LETHAL FACTOR

24. BACTERIAL LEUCYL AMINOPEPTIDASE

25. BETA-1,4-XYLANASE

26. BETA-D-GLUCAN EXOHYDROLASE

27. BETA-GALACTOSIDASE

28. BETA-GLUCOSIDASE

29. BETA-SECRETASE

30. BIFUNCTIONAL DIHYDROFOLATE REDUCTASE-THYMIDYLATE SYN-

THASE

31. BIFUNCTIONAL PURINE BIOSYNTHESIS PROTEIN PURH

32. CAMP-DEPENDENT PROTEIN KINASE

33. CAMP-SPECIFIC 3’,5’-CYCLIC PHOSPHODIESTERASE 4B

34. CAMP-SPECIFIC 3’,5’-CYCLIC PHOSPHODIESTERASE 4D

35. CARBONIC ANHYDRASE I
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36. CARBONIC ANHYDRASE II

37. CARBOXYPEPTIDASE A

38. CATALASE

39. CATECHOL-O-METHYLTRANSFERASE

40. CATHEPSIN D

41. CATHEPSIN G

42. CATHEPSIN K

43. CATHEPSIN S

44. CELL DIVISION PROTEIN KINASE 2

45. CGMP-INHIBITED 3’,5’-CYCLIC PHOSPHODIESTERASE 3B

46. CGMP-SPECIFIC 3’,5’-CYCLIC PHOSPHODIESTERASE 5A

47. CHITOTRIOSIDASE

48. CHORISMATE SYNTHASE

49. CHYMASE

50. CITRATE SYNTHASE

51. COAGULATION FACTOR VII

52. COAGULATION FACTOR X

53. COAGULATION FACTOR XA

54. COLLAGENASE 3

55. CYTIDINE DEAMINASE
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56. CYTOCHROME P450 2B4

57. CYTOCHROME P450-CAM

58. DENOSINE DEAMINASE

59. DEOXYRIBONUCLEOSIDE KINASE

60. DIHYDROFOLATE REDUCTASE

61. DIHYDROOROTATE DEHYDROGENASE

62. DIHYDROPTERIDINE REDUCTASE

63. DIPEPTIDYL PEPTIDASE IV

64. DNA GYRASE SUBUNIT B

65. ELASTASE

66. ENDOPLASMIN

67. ENDOTHIAPEPSIN

68. ENOYL-[ACYL-CARRIER PROTEIN] REDUCTASE

69. EPIDERMAL GROWTH FACTOR RECEPTOR KINASE

70. EPOXIDE HYDROLASE 2, CYTOPLASMIC

71. EPSILON-THROMBIN

72. ERK2

73. ESTROGEN SULFOTRANSFERASE

74. EXOTOXIN A

75. FERREDOXIN: NADP+ REDUCTASE
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76. FIBROBLAST COLLAGENASE

77. FIBROBLAST GROWTH FACTOR (FGF) RECEPTOR 1

78. FKBP25

79. FLAVODOXIN

80. FORMYLMETHIONINE DEFORMYLASE

81. FR-1 PROTEIN

82. FRUCTOSE 1,6-BISPHOSPHATASE

83. G25K GTP-BINDING PROTEIN

84. GLUCOAMYLASE

85. GLUCOSE-6-PHOSPHATE ISOMERASE

86. GLUTATHIONE S-TRANSFERASE (ISOENZYME 3-3)

87. GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE

88. GLYCOGEN SYNTHASE KINASE-3 BETA

89. GUANINE PHOSPHORIBOSYLTRANSFERASE

90. H-2 CLASS I HISTOCOMPATIBILITY ANTIGEN, K-B ALPHA CHAIN

91. HEAT SHOCK PROTEIN 90

92. HEPATITIS C VIRUS NS5B RNA-DEPENDENT RNA POLYMERASE

93. HEPATOCYTE GROWTH FACTOR RECEPTOR

94. HISTONE DEACETYLASE 8

95. HIV-1 PROTEASE
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96. HIV-2 PROTEASE

97. HMG-COA REDUCTASE

98. HUMAN BETA2 TRYPTASE

99. HYPOTHETICAL PROTEIN DPP4

100. HYPOXANTHINE-GUANINE PHOSPHORIBOSYLTRANSFERASE

101. IMP-1 METALLO BETA-LACTAMASE

102. INDOLE-3-GLYCEROL PHOSPHATE SYNTHASE

103. INDUCIBLE NITRIC OXIDE SYNTHASE

104. INOSINE-5’-MONOPHOSPHATE DEHYDROGENASE

105. INOSINE-ADENOSINE-GUANOSINE-PREFERRING NUCLEOSIDE HYDRO-

LASE

106. ISOCITRATE DEHYDROGENASE

107. ISOPENTENYL-DIPHOSPHATE DELTA-ISOMERASE

108. LACTOYLGLUTATHIONE LYASE

109. LIVER GLYCOGEN PHOSPHORYLASE

110. MATRILYSIN

111. MATRIPTASE

112. METHIONINE AMINOPEPTIDASE 2

113. METHIONYL-TRNA SYNTHETASE

114. METHYLGLYOXAL SYNTHASE
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115. MITOGEN-ACTIVATED PROTEIN KINASE 10

116. MITOGEN-ACTIVATED PROTEIN KINASE 14

117. MMP-13

118. MTA/SAH NUCLEOSIDASE

119. NAD-DEPENDENT FORMATE DEHYDROGENASE

120. NADH OXIDASE

121. NADPH-FLAVIN OXIDOREDUCTASE

122. NEPRILYSIN

123. NEURAMINIDASE

124. NEUTROPHIL COLLAGENASE

125. NICOTINAMIDE PHOSPHORIBOSYLTRANSFERASE

126. NITRIC-OXIDE SYNTHASE, BRAIN

127. NRH DEHYDROGENASE [QUINONE] 2

128. ORNITHINE TRANSCARBAMOYLASE

129. OROTIDINE 5’-PHOSPHATE DECARBOXYLASE

130. PEPTIDE DEFORMYLASE 1

131. PEPTIDYL-PROLYL CIS-TRANS ISOMERASE A

132. PHENAZINE BIOSYNTHESIS PROTEIN PHZD

133. PHENOL 2-HYDROXYLASE COMPONENT B

134. PHOSPHOLIPASE A2
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135. PHOSPHOLIPASE C DELTA-1

136. POLY (ADP-RIBOSE) POLYMERASE

137. POLYAMINE OXIDASE

138. POLYPEPTIDE DEFORMYLASE

139. PROTEIN FARNESYLTRANSFERASE

140. PROLINE RACEMASE

141. PROTEIN KINASE B

142. PROTEIN KINASE C, THETA TYPE

143. PROTEIN KINASE CK2, ALPHA SUBUNIT

144. PROTEINASE *A (COMPONENT OF THE EXTRACELLULAR FILTRATE

PRONASE)

145. PROTEIN-TYROSINE PHOSPHATASE, NON-RECEPTOR TYPE 1

146. PROTO-ONCOGENE SERINE/THREONINE-PROTEIN KINASE PIM-1

147. PROTO-ONCOGENE TYROSINE-PROTEIN KINASE ABL

148. PROTO-ONCOGENE TYROSINE-PROTEIN KINASE SRC KINASE DO-

MAIN

149. PURH (BIFUNCTIONAL PURINE BIOSYNTHESIS PROTEIN)

150. PURINE NUCLEOSIDE PHOSPHORYLASE

151. PYRUVATE DEHYDROGENASE E1 COMPONENT

152. RAP1A
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153. RAS-RELATED PROTEIN RAL-A

154. RENIN

155. RESPIRATORY NITRATE REDUCTASE 1

156. RETINOL DEHYDRATASE

157. REVERSE TRANSCRIPTASE P66 SUBUNIT

158. RIBONUCLEASE, PANCREATIC

159. RIBULOSE BISPHOSPHATE CARBOXYLASE/OXYGENASE

160. ROUS SARCOMA VIRUS PROTEASE

161. SACCHAROPEPSIN

162. SALICYLIC ACID-BINDING PROTEIN 2

163. SARCOPLASMIC/ENDOPLASMIC RETICULUM CALCIUM ATPASE 1

164. SCYTALONE DEHYDRATASE

165. SECRETED ASPARTIC PROTEINASE

166. SERINE/THREONINE PROTEIN PHOSPHATASE 1 GAMMA (CATALYTIC

SUBUNIT)

167. SERINE THREONINE-PROTEIN KINASE 6

168. SERINE/THREONINE PROTEIN PHOSPHATASE PP1-GAMMA

169. SERINE/THREONINE-PROTEIN KINASE CHK1

170. SIV PROTEASE

171. SPERMIDINE SYNTHASE
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172. STROMELYSIN-1

173. TGF-BETA RECEPTOR TYPE I

174. THERMOLYSIN

175. THIOESTERASE

176. THROMBIN

177. THYMIDINE PHOSPHORYLASE

178. THYMIDYLATE KINASE

179. THYMIDYLATE SYNTHASE

180. TRIHYDROXYNAPHTHALENE REDUCTASE

181. TRNA (GUANINE-N(1)-)-METHYLTRANSFERASE

182. TRYPSIN

183. TRYPTOPHAN SYNTHASE

184. TYPE 1 17 BETA-HYDROXYSTEROID DEHYDROGENASE

185. TYROSINE-PROTEIN KINASE ITK/TSK

186. TYROSINE-PROTEIN KINASE JAK2

187. TYROSINE-PROTEIN KINASE ZAP-70

188. TYROSYL-TRNA SYNTHETASE

189. UBIQUINOL-CYTOCHROME-C REDUCTASE COMPLEX CORE, MITO-

CHONDRIAL

190. UBIQUITIN-PROTEIN LIGASE E3 MDM2

140



191. URACIL-DNA GLYCOSYLASE

192. URIDINE PHOSPHORYLASE, PUTATIVE

193. UROKINASE-TYPE PLASMINOGEN ACTIVATOR

194. WEE1-LIKE PROTEIN KINASE

195. XYLOSE ISOMERASE (GLUCOSE ISOMERASE)

HIGH-AFFINITY COMPLEXES OF NON-ENZYMES ARE COMPRISED

OF:

1. ACETYLCHOLINE-BINDING PROTEIN

2. ANDROGEN RECEPTOR LIGAND BINDING DOMAIN

3. ARABINOSE BINDING PROTEIN

4. ARTIFICIAL NUCLEOTIDE BINDING PROTEIN (ANBP)

5. AUXIN-BINDING PROTEIN 1

6. AVIDIN-RELATED PROTEIN AVR4

7. BACULOVIRAL IAP REPEAT-CONTAINING PROTEIN 7 ML-IAP

8. CATION-INDEPENDENT MANNOSE 6-PHOSPHATE RECEPTOR

9. CELLULAR RETINOL BINDING PROTEIN II

10. CIRCULARLY PERMUTED CORE-STREPTAVIDIN E51/A46

11. CRABP-II

12. C-TERMINAL BINDING PROTEIN 3 (CTBP/BARS: A DUAL-FUNCTION

PROTEIN INVOLVED IN TRANSCRIPTION COREPRESSION AND GOLGI

MEMBRANE FISSION)
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13. D-*GALACTOSE/D-*GLUCOSE BINDING PROTEIN

14. D-RIBOSE-BINDING PROTEIN

15. DIGA16

16. DODECIN

17. DUAL ADAPTOR OF PHOSPHOTYROSINE AND 3-PHOSPHOINOSITIDES

18. ESTROGEN RECEPTOR ALPHA

19. ESTROGEN RECEPTOR BETA

20. EUKARYOTIC TRANSLATION INITIATION FACTOR 4E

21. FATTY ACID-BINDING PROTEIN, BRAIN

22. FEMALE-SPECIFIC HISTAMINE BINDING PROTEIN 2

23. FIMH PROTEIN

24. FMN-BINDING PROTEIN

25. GLUTAMATE RECEPTOR 2

26. GLUTAMATE RECEPTOR, IONOTROPIC KAINATE 1

27. GLUTAMATE RECEPTOR, IONOTROPIC KAINATE 2

28. GLYCOGEN PHOSPHORYLASE (ALLOSTERIC BINDING SITE)

29. HISTIDINE-BINDING PROTEIN COMPLEXED WITH L-HISTIDINE

30. HIV-1 REVERSE TRANSCRIPTASE (NON-NUCLEOSIDE INHIBITORS)

31. HPV11 REGULATORY PROTEIN E2

32. HUMAN NUCLEAR CAP-BINDING-COMPLEX

142



33. IMPORTIN ALPHA-2 SUBUNIT

34. INOSITOL 1,4,5-TRISPHOSPHATE RECEPTOR TYPE 1

35. INTEGRIN ALPHA-L (LFA-1)

36. KINESIN-LIKE PROTEIN KIF11 KINESIN-MOTOR DOMAIN

37. KINESIN-RELATED MOTOR PROTEIN EG5

38. L-*ARABINOSE-BINDING PROTEIN

39. LEUCINE-SPECIFIC BINDING PROTEIN

40. LYSINE, ARGININE, ORNITHINE-BINDING PROTEIN (AMINO ACID TRANS-

PORT)

41. MALTOSE-BINDING PERIPLASMIC PROTEIN

42. NEUTROPHIL GELATINASE-ASSOCIATED LIPOCALIN

43. NUCLEAR RECEPTOR (STEROIDOGENIC FACTOR-1 LIGAND BIND-

ING DOMAIN)

44. NUCLEAR RECEPTOR ROR-BETA

45. OSMOPROTECTION PROTEIN (PROX)

46. PERIPLASMIC OLIGO-PEPTIDE BINDING PROTEIN

47. PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA LIG-

AND BINDING DOMAIN

48. PEROXISOMAL TARGETING SIGNAL 1 RECEPTOR

49. PROGESTERONE RECEPTOR

143



50. PUTATIVE AMINO-ACID TRANSPORTER PERIPLASMIC SOLUTE-BINDING

PROTEIN

51. RAB PROTEINS GERANYLGERANYLTRANSFERASE COMPONENT A 1

52. RETINOBLASTOMA PROTEIN

53. RETINOIC ACID RECEPTOR BETA

54. RETINOIC ACID RECEPTOR RXR-ALPHA

55. RETINOL BINDING PROTEIN

56. SEX HORMONE-BINDING GLOBULIN

57. TETRACYCLINE REPRESSOR

58. THYROID HORMONE RECEPTOR BETA-1

59. TRANSCRIPTION ELONGATION PROTEIN NUSA

60. TRANSTHYRETIN

61. TYROSINE-PROTEIN KINASE BTK

62. TYROSINE-PROTEIN KINASE TRANSFORMING PROTEIN SRC

63. VITAMIN D NUCLEAR RECEPTOR

64. VITAMIN D3 RECEPTOR

65. ANTIBODIES

(a) 28B4 FAB (CATALYTIC)

(b) 29G11 FAB

(c) 4-4-20 (IG*G2A=KAPPA=) FAB FRAGMENT
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(d) DIELS ALDER CATALYTIC ANTIBODY FAB

(e) ANTI-TESTOSTERONE FAB

(f) BLUE FLUORESCENT ANTIBODY (19G2)

(g) CATALYTIC ANTIBODY FAB 15A9

(h) CATALYTIC ANTIBODY FAB 34E4

(i) CHIMERIC 48G7 FAB

(j) ANTI-MORPINE FAB 9B1

(k) HLA CLASS I HISTOCOMPATIBILITY ANTIGEN WITH FAB

(l) CATALYTIC IG ANTIBODY D2.3

(m) IG KAPPA-CHAIN

(n) IMMUNOGLOBULIN

(o) IMMUNOGLOBULIN E

(p) CATALYTIC IMMUNOGLOBULIN MS6-164

(q) MONOCLONAL ANTIBODY FV4155

(r) TAB2

(s) CHA255 IMMUNOGLOBULIN

(t) IGG2B (KAPPA) FAB

(u) CATALYTIC IMMUNOGLOBULIN 6D9
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APPENDIX B

MDM2 Dynamics

B.1 Introduction

The p53 tumor suppressor, also known as the guardian of the genome, is vital

in cell cycle regulation, DNA repair, and apoptosis (63; 64; 65). Mutations in p53

are seen in approximately half of all human cancers (66). Where p53 is in wild-type

form, it is inhibited by over-expression(67; 68) or amplification(69) of murine double

minute 2 oncoprotein (MDM2; also referred to as HDM2 in human). Reactivation of

p53 through inhibition of the p53-MDM2 interaction has been shown to be a novel ap-

proach for initiating or enhancing cancer cell death (70; 71). A better understanding

of MDM2 dynamics is important for the design of more selective and potent inhibitors

of the MDM2-p53 interaction.

A crystal structure containing residues 25 to 109 of MDM2, and residues 17 to

29 of p53, was solved in 1999 (1YCR) (72). This showed two approximately similar

sub-domains, which come together to form a binding cleft for p53. Three side-chains

of p53 (Phe19, Trp23, and Leu26) fill the relatively deep hydrophobic pocket. This

crystal structure has been the basis of several dynamics studies (73; 74; 75; 76). In all
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cases, the authors compared the MDM2-p53 complex to that of apo-MDM2, which

was generated by removing the peptide from the structure prior to the dynamics

simulation.

Barrett et al. utilized CONCOORD (77), a non-Newtonian method of ensemble

generation to examine protein motion (73). They found that the principle mode

of apo-MDM2 was a bilobal flexing, or breathing, of the protein; this motion was

greatly reduced in the p53 bound complex. Previous work in our lab has utilized

MD simulations to develop receptor based pharmacophore models. The models were

used to identify five small-molecule inhibitors of the MDM2-p53 interaction (78; 76).

Espinoza-Fonseca and Trujillo-Ferrara presented two 35-ns molecular dynamics (MD)

simulations; again they demonstrated that the apo-MDM2 had a highly flexible and

narrow cleft (75). Conversely, when the p53 peptide was bound, the cleft was more

stable and wider. They also reported important side-chain motions in residues Leu57,

Tyr67, His96, and Tyr100 which were present in apo MDM2 but not MDM2-p53, and

suggested that these motions are involved in the molecular recognition of p53 and

other ligands (75). A recent molecular study of the X. laevis by Espinoza-Fonseca

and Garcia-Machorro has indicated that aromatic-aromatic interactions are involved

in the interaction of p53 and MDM2 (242).

The deep, well-defined binding cleft shown in the crystal structure of MDM2-p53,

suggested that the MDM2 cleft would be a suitable target for small molecule inhibitors

(243). To date, several small molecule inhibitors of the MDM2-p53 interaction have

been reported and the subject of recent reviews (79; 80; 81)). Through structure-

based design, a nano-molar inhibitor of MDM2 (Ki = 3 nM) has been discovered

(244). The crystal structure of MDM2 has been solved with both a member of the

nutlin class (1RV1)(82) and a 1,4,-benzodiazepine-2,5-diones (1T4E) (83). A total of

ten structures of MDM2 are found in the Protein Data Bank (115), all with a small

molecule bound, and all missing the N-terminal “lid” residues.
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The sequence of MDM2 residues 16-24 is highly conserved in mammals (84). NMR

studies show that these residues form a lid which stabilizes MDM2 in the absence of

p53 (84; 86; 85). When the lid is closed, it shields the hydrophobic binding cleft of

MDM2. Ile19 occupies the same space as Pro27 of the bound p53 peptide, and makes

interactions with His96, Arg97, and Tyr100 (85). The lid unfortunately is not well-

defined in the apo-NMR structure, 1Z1M, but this was the first and only structure

including it when we began this study (85). NMR studies on MDM2 residues 17-

125 indicate the apo-MDM2 structure exists in two states, with the dominant state

being closed, and the minor state open (245). There is also evidence that the lid is

phosphorylated on Ser18 (86). When the lid is phosphorylated it binds the pocket

and inhibits p53 association (86). The unphosphorylated lid is easily displaced by

p53, as well as small molecule and peptidic inhibitors (84). It is thought that the

two sub-domains then swing apart by 3-4 Å to deepen the binding cleft, allowing

the peptide or inhibitor to completely bind (84; 86; 85). In this study, we present

the preliminary results of molecular dynamics simulations of the full-length apo N-

terminal of MDM2 and the nutlin inhibitor from the x-ray crystal structure, which

has an IC50 of 0.14 µM (82). The structure of the nutlin is show in Figure B.1.

B.2 Methods

An NMR ensemble of the apo N-terminal, p53 binding region of MDM2 is avail-

able (1Z1M) (85). This ensemble consists of 24 structures and provided the starting

conformations for the protein in each set of Langevin dynamics simulations. The

NMR structure was from a more complete construct (residues 2-118) than that used

for the available x-ray structures. However, residues 2-6 had no assignments and were

assumed to be disordered (85). Therefore, the N-terminal residues 1-6, Met1, Val2,

Arg3, Ser4, Arg5, and Gln6, were built in with PyMOL (141). The resulting protein

represents the entire p53-binding region, including the binding site lid.
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Figure B.1: Structure of nutlin inhibitor used in molecular dynamics simulation.

The crystal structure of a nutlin small molecule with MDM2 (1RV1)(82) was

overlaid on each structure from the NMR ensemble. The MDM2 protein was removed

from 1RV1, leaving just the nutlin in the binding cleft of the NMR structure. To

attempt to recreate a binding event, the nutlin was then translated to two positions

where the inhibitor RMSD values from the x-ray structure were 13.0 and 16.8 Å,

but the original orientation of the ligand was preserved. From these conformations,

two positions other were obtained by rotating the ligand 180 degrees on itself after

translation, yielding nutlin RMSD values of 15.7 and 19.3 Å respectively.

Hydrogen atoms were placed by using the LEaP (246) module in AMBER (247).

FF03(248) was used together with parameters for the nutlin were obtained using

the antechamber module and GAFF(249) with AM1-BCC charges (250). Langevin

dynamics were performed, with a collision frequency of 1 ps−1, and a timestep of

1 fs. No nonbonded cutoff was applied. Aqueous solvation was modeled implicitly

with a modified generalized Born model (251). The system was minimized, and then

gradually heated to 300K. All heavy atoms were harmonically restrained, with the
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force decreasing from 2 to 0.1 kcal/mol-Å2 in four steps, for a total of 80 ps. Then

just the backbone atoms were harmonically restrained at 0.1 kcal/mol-Å2 for 50 ps.

The last step of equilibration was 100 ps of unrestrained Langevin dynamics at 300K.

All production simulations were unrestrained at 300K for 1 ns.

The ptraj module in AMBER was used to generate snapshot structures every 1

ps from each simulation. These structures were overlaid using a Gaussian-weighted

alignment tool (252). This superimposed the core of the protein, without the highly

flexible N- and C-terminus tails skewing the alignment. The MMTSB toolset(253)

was used to calculate the RMSD of the flexible residues in the binding site: Leu63,

Tyr73, His96, and Tyr100. It was also used to calculate the RMSD of the nutlin

ligand in each structure to the position of the ligand in the crystal structure. The

center of mass of the nutlin ligand was also calculated and compared to the center of

mass in the crystal structure.

The dynamics of the cleft were estimated by using NACCESS(50) to calculate the

solvent accessible surface area of the residues lining the binding pocket, while ignoring

the ligand (colored in blue in Figure B.2). The width (w) of the binding site is the

length of the vector between the Cα of Leu63 and the Cα of Tyr100. The length (l)

of the binding site is the length of the vector between the Cα of Gln24 at the base of

the lid and the Cα of Tyr73 at the other end of the binding cleft (see Figure B.2).

The dynamics of the cleft with respect to the binding site are determined by two

angles, the angle of the lid with respect to the cleft and the shear angle with respect to

the plane of the binding cleft. The (ϕ) angle is formed between the lid vector formed

by the Cα of Gln22 and the Cα of Thr16 or the center of mass of the lid residues

(residues 16-24). For our discussion we use the center of mass of the lid residues since

it is most representative of the lid. The shear of the binding site (θ) is the angle

projected by the lid vector on the plane of the binding site formed by the width and

length vectors. See Figure B.2 for more details. A completely closed lid will have ϕ
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Figure B.2: This figure shows the definition of the angles (θ and ϕ of the lid with
respect to the binding pocket. The length(l) and width(w) of the binding
pocket are shown. The residues on the surface of the binding pocket are
colored blue.

= 0 and θ = 0. The distance from this point is then defined by d =
√

(ϕ2 + θ2) and

will be used as a direct measure of openness.

B.3 Result and Discussion

B.3.1 Lid Dynamics

Initial comparisons of the RMSD of the ligand in the snapshots compared to

the RMSD of the ligand in the x-ray structure indicate four simulations were able

to reproduce the binding of the inhibitor into the binding site (RMSD< 3 Å). One

additional structure reproduced the fit but only stayed in the bound conformation

for a short period of time at the end of equilibration. It is left off of Figure B.3,

since the inhibitor is not in the bound conformation during nearly the entirety of the

production run. The dynamics of the lid in each of the simulations that reproduce

the pose varies. In the simulation which obtained the ligand pose closest to the small

molecule in the x-ray, the lid opens very wide, which allows the small molecule to
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enter the pocket (Figure B.3A). This is the only structure to reproduce the crystal

structure, but also have the lid open. The other three cases display of variety of lid

dynamics. In fact, during the second trajectory the small molecule gets caught in

the N-terminal residues and is brought close to the pocket by these residues (Figure

B.3C). In the third simulation the lid is just open enough to allow the ligand to enter

the binding site, and then closes down on the ligand and binding site. In the fourth

system the lid opens during equilibration then comes closes on part of the pocket

when the small molecule binds.

The lid has been shown previously to have large fluctuations upon small molecule

binding. In an NMR study by Showalter et al. the apo- form of MDM2 was shown to

predominantly favor a closed lid state, while the state with 13-residues of p53 bound

was only found in the open lid conformation (245). Coordinates for this structure

were not deposited in the PDB for comparison. However, the bound state does not

appear to be open in the four simulations that represent the nutlin binding mode. In

the third best simulation, that represents the bound state of the ligand, the lid has

closed on the small molecule. Figure B.4 further demonstrates this since the majority

of structures with a center of mass near the ligand in the crystal structure have a

relatively closed lid. Additionally, all snapshots where the ligand is unbound (> 40 Å

from the x-ray pose) have a lid that is open, which contradicts the NMR findings, but

since there are so few snapshots that are unbound, compared to bound, it may be an

artifact of the ligand in the simulation, which on occasion interacts with unstructured

N-terminal residues, influencing the lid.

What also can be seen in Figure B.4 is that many of the snapshots have a small

molecule within 5 Å of the crystal structure ligand, but only four simulations were

able to reproduce the binding mode of the crystal structure. This indicates that

more sampling may be necessary in these simulations to allow the ligand to adopt

the appropriate conformation. In addition, since the lid is shown to bind in the
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Figure B.3: This figure shows the RMSD between the snapshot pose and the x-ray
pose of the nutlin inhibitor, and the openness of the lid in each snapshot
of the four simulations that reproduced the ligand pose of the x-ray crys-
tal structure (1RV1). Figure A is the simulation that had the smallest
RMSD, and Figures B, C and D had the second, third and fourth small-
est RMSD, respectively. Negative time from the simulation indicates the
equilibration time period. This is included in the figure since the ligand
does interact with the protein before the start of the production run.
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Figure B.4: This figure is a histogram of the distance between the center of mass of
the inhibitor in the snapshot and the center of mass of the inhibitor in
the x-ray structure (1RV1), and the openness of the pocket. The colors
represent the number of structures in each bin. Bins were created for
every 2 Å for the distance between the center of mass and 20 degrees for
the openness of the lid.

pocket when it is phosphorylated and p53 does not bind, the frequency at which it is

phosphorylated may have some impact on lid dynamics upon small-molecule binding

(86).

B.3.2 Pocket Dynamics

In each of the four cases that reproduced the conformation of the ligand in the

binding site, the pocket begins in an exposed conformation (˜500 Å2). In three of

the four cases the pocket decreases in exposed surface by ˜200-300 Å2 when the lig-

and bound, Figure B.5. Although in the simulation that most closely reproduces

the crystal structure position of the ligand, the pocket remains somewhat exposed

with SASA ≈400 Å2, which may be due to the lid being completely displaced in this

simulation (see Figure B.3). The change in SASA upon binding is in agreement with

previous molecular dynamics simulations by Espinoza-Fonseca and Trujillo-Ferrara

(75). They have noted that the SASA of the binding pocket is ˜100 Å2 less in the

complex bound to a p53 peptide compared to the apo-MDM2 system. Their study
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cites an experimental decrease in solvent accessible surface area of ˜200 Å2, but do

not a provide reference for the value (75). The change in surface area calculated in

their study is with respect to all the residues in the structure. However, we aimed to

investigate the surface area of the pocket, not the entire protein, and therefore only

calculated the SASA of the residues in the binding site. Our finding is also consistent

with high-temperature molecular dynamics simulations to investigate unfolding of

MDM2 performed by Chen and Luo, in which MDM2, upon unfolding, tertiary con-

tacts decrease as the number of native binding contacts of the p53 peptide decrease

(74). They suggested that this is, in actuality, a folding pathway as the p53 peptide

binds. Therefore, ligand binding induces folding of MDM2 (74).

Only the four simulations mentioned above of the 96 simulations have reproduced

the binding site ligand conformation. Therefore, we looked at the ensemble of all

snapshots across all simulations. From Figure B.6, we see that as the ligand ap-

proaches the pocket, or as the center of mass is getting closer to the bound ligand,

(up until about 20 Å from the pocket) the SASA remains about the same, but once

inside that range the pocket begins to become less exposed. The calculations of SASA

were performed with the ligand removed from the structure, therefore the change in

SASA of the residues around the pocket reflects a “closing” of the pocket. Breaking

the SASA down into contributions from the individual residues is possible. Future

analysis will break down the SASA of the binding pocket. This may indicate which

residues are contributing most to the change in surface area, and show which residues

in the binding site are most flexible and/or necessary for binding. We hypothesize

that the most flexible residues would be Leu57, Tyr67, His96, and Tyr100, as they

were determined to change the most upon p53 peptide binding by Espinoza-Fonseca

and Trujillo-Ferrara (75). This can be confirmed by examining the root-mean-square

fluctuation of these residues as the small molecule binds to the pocket. However,

initial investigations of the RMSD of these four residues do not indicate significant
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Figure B.5: This figure shows the RMSD between the snapshot pose and the x-ray
pose of the nutlin inhibitor, and the exposed surface area of the pocket
in each snapshot of the four simulations which reproduced the ligand
pose of the x-ray crystal structure (1RV1). Figure A is the simulation
that had the smallest RMSD, and Figures B, C and D had the second,
third and fourth smallest RMSD, respectively. Negative time from the
simulation indicates the equilibration time period. This is included in
the figure since the ligand does interact with the protein before the start
of the production run.
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Figure B.6: This figure is a histogram of the distance between the center of mass of
the inhibitor in each snapshot and the center of mass of the inhibitor in
the x-ray structure (1RV1), and the SASA of the binding pocket. The
colors represent the number of structures in each bin. Bins were created
for every 2 Å for the distance between the center of mass and 40 Å2 for
the SASA of the pocket.

dynamics.

B.4 Conclusion

From molecular dynamics simulations of the complete, apo-MDM2 NMR structure

we were able to investigate the dynamics of the lid and the binding pocket as a small

molecule enters the binding site. We notice that the lid provides different dynamics

than previously indicated when the p53 peptide bound. Here the lid appears to be

in a closed state when the small molecule is bound, and is potentially open when

unbound. Secondly, upon investigation of the binding pocket, it appears that as

the small molecule nears the pocket, the pocket closes and becomes less exposed to

solvent. Future directions of the study will continue to investigate the behavior of

the residues that line the pocket. Knowledge of the residues that display a change in

their SASA upon binding may provide insight into important motions in the binding

of the nutlin inhibitor.
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APPENDIX C

Protein Data Bank Filtering and Updating

Binding MOAD

First download the PDB, filter the PDB entries through a series of perl scripts,

and then hand check them. After these scripts, the PDBs are aligned against each

other using BLAST to put them into protein families of high sequence similarity. The

data is then ready to put up on wasabi (on bindingmoad.org).

C.1 Download PDB Files

1. Download the latest PDBs from the Protein Databank using rsync

source moad update scripts/rsync PDB.justPDB.sh

This script is downloaded from www.rcsb.org, and modified to have the correct

paths and directories on curry.

C.2 Filtering the PDB files

1. Create a list of all PDB files.

ls pdb directory > pdb date.txt
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2. Open “pdb date.txt” in vi or an editor of your choice and remove the .ent

extensions and save it.

diff MOAD [last year]/[last year] all entries already ran > differences file

grep ‘>’ differences file > new PDBs date.txt

3. Open the “new pdbs date.txt” file and remove the leading ‘>’, and save it.

4. Run the MOAD filtering scripts, these will take a day or so depending on how

you break it up):

5. The caution file and the caution covalency file have some duplicates. Therefore

you must merge the accept, caution, anc caution covalency files into one. To do

this I have written merge accept caution files.pl. The syntax for running this

is:

6. Make a list of PDBS to check.

C.3 Scrape HTML and load data into BUDA

1. Get a list of Pubmed IDs from NCBI and RCSB.

2. Merge the two lists (giving preference to NCBI over RCSB, as they have ap-

peared to be more recent, and more correct)

3. Get a list of the DOIs using the list of Pubmed IDs,

4. Get the HTML files using the DOIs.

5. Rename the DOI files based on Pubmed ID.
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C.4 Checking the heavy atoms

1. Run the get hets.pl script which will produce a file of all of the het groups in

the particular pdb files (This may take a while depending on how many new

structures there are):

2. Run the unique hets.pl script to only make a list of the unique het groups.

3. Run the check heavy atoms.pl. Be sure to change the names of the output files

that are listed on lines 51 and 52 of the script.

4. These two lists are checked by hand to see what is wrong and why there are

too many or too few atoms, this information should also be entered on columns

M (comment) and N (percentage missing or too many) on the .csv spreadsheet

generated in the first section.

5. Find the differences between the new het list and the old list of het groups that

have been checked. These are HETs that still need to be checked for validity.

6. Create a new .csv which has a comment regarding the new het atoms to check.

The new hets should be in a list with a single line for a het group with no

spaces.

C.5 Literature Searching

1. Log into BUDA (The web address will be given by Peter Dresslar).

2. Go through each pdbid, if it says caution in the comment section of the ligand

(or the first column has a 2 or a 3 three, check to see if the ligand/structure

is valid and that it is not just a crystal additive, otherwise check to see if the

ligand is on the list of new HET groups. If the ligand is on the list of new

HET groups make a decision if it should be rejected, cautioned, or accepted
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HET group (if it contains a metal check to see if part of the HET group should

be considered a ligand). If everything is valid search the paper for a binding

constant (Ki, Kd, or IC50). Search terms that I use to go through the .pdf file

are and look in the paragraph and sentences for the actual values:

(a) Kd

(b) Ka

(c) Ki

(d) ic50

(e) binding constant

(f) association constant

(g) dissociation constant

(h) inhibition constant

(i) association

(j) dissociation

(k) binding affinity

(l) affinity

(m) equilibrium constant

(n) free energy of binding

(o) binds with millimolar affinity

(p) binds with micromolar affinity

(q) binds with nanomolar affinity

(r) Km

3. Once you find a binding constant, check to see what ligand and structure it

is associated with. The value must be for the same organism and form of the
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protein (mutant or wild-type). If multiple binding constants exist choose the

one that was determined at experimental conditions that most closely resembles

the crystal conditions, with preference of Kd over Ki over IC50.

4. Mark the entry as “COMPLETED”

C.6 Export Entries

1. Export the entries and download the “bindings” and “messages” files.

2. Run the create csv for binning.pl script with the csv’s fom the export.

3. Remove any structures that have been rejected in BUDA.

4. This list also has entries from previous years, therefore you need to use the list

of structure we had done in previous years to take them off the list. This only

should be the structures from the new update. This will then be used for the

merge.py script after binning.

C.7 Pre-Binning

1. Get the list of PDBs in current moad (with obsoletes remove) from directory.

2. Obtain the old csv from current MySQL database.

3. Obtain the list of obsolete entries from the Protein Data Bank (rcsb.org) and

remove any obsoleted entries from the old csv file.

4. Make a list of the old (without the obsolete) and new entries in MOAD.
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C.8 Binning

1. Run the script to get the ec numbers and fasta information: Running this script

produces three files: all.txt, ec.txt, and pdbchains.fasta - these are used for the

binning script.

2. Run getNonRedundantEntries.py script.

C.9 Merge Bins

1. The binning makes a directory called CurrentRun in the directory the program

was ran from. The new tab delimited file is CurrentRun/blastlist/scale2/90ec-

subbins.fancy.out This file needs to be copied to 90ec-subbins.fancy.edited.out,

and duplicate bins need to be removed. A list of the duplicate bins is located at

CurrentRun/blastlist/scale2/90ec-subbins.redundancy-warnings.out. The file

’2008 hand editing.txt’ has the list of bins and why they were deleted in the

past and can guide you through the hand editing process. When editing the

90ec-subbins.fancy.out make sure there is a tab after each pdbid. The merge.py

script will choke otherwise.

2. Run the merge.py script to combine the old and new data. Open merge.py and

change the variables on lines 62-65 to match the appropriate names. Then from

the command line type ’python /users/dicksmit/src/PLD/merge.py

3. Choosing Bin leaders: Open the new output file in Excel. For each of the

subbins if the subbin has an N in column F, a new leader must be chosen. The

rules for selection of bin leader are as follows:

(a) Highest affinity

(b) Ligand present over only biological cofactor (ATP, GTP, NAD, FAD, PLP,

etc.)
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(c) Best Resolution

(d) Wild-type over mutant protein

(e) Human over non-human protein

(f) Deposition Date

(g) Other criteria (Comments in papers, R-value, chemical intuition)

C.10 Getting Protein Information

1. Create a file with all the pdb information. To create this file run:

You will need this file to help classify the proteins that dont have ec numbers.

C.10.1 Classifying the enzymes that do not have EC numbers

2. Run the script to get the information for proteins that have already been clas-

sified.

3. Use the new entries output from step 1 and the output file from “Getting

Protein Information” to organize the information for each of the new proteins.

The output file is the list of entries that do not need to be checked.

4. With this output run the script to identify proteins. This script puts each

protein into one or more of twelve categories. It also produces a summary

output of which category each protein falls into (it is tab delimited

(pdb category.id prot (date)). You may want to change the output file names

in the script (identify proteins.pl) on lines 24-36 to reflect the new date. To run

the script

5. Open this new file in excel and sort the list by column A, this will tell you

which structures were identified in more than one group, read the paper and

164



decide which class the protein should be in, change the name in column C to re-

flect your choice (binding, signal hormone, enzyme, mobile, transport, immune,

structural, transcript translate, toxin viral, folding, cell cycle, other) Then sort

the list by column C, and take a look at the ones that were categorized as en-

zyme, or other and see if they could be given EC number (1.-.-.-: oxidase, 2.-.-.-:

transferase, 3.-.-.-: hydrolase, 4.-.-.-: lyase, 5.-.-.-: isomerase, 6.-.-.-: ligase) or

placed in one of the other 11 classes (other than other). Use the the list of new

entries from step 2 to help you decide since that has the proteins already sub-

bin (you should have proteins in the same subbin have the same classification).

Change the unmatched classification in the new entry file from step 2 to reflect

the new subbins classification.

6. Concatenate the modified file of the new entries with the entries that already

were classified, to create the new classification file.

7. Make the final file into a comma separated file by using your favorite text editor.

You must also make sure the ec numbers are in the format 1.-.-.-, 2.-.-.- etc.

C.11 Processing the Biounit Files

C.11.1 Make Biounits

1. Download the biounit files from the PDB and copy the biounits for the new

structures in MOAD to a new directory.

2. Remove atoms that are greater than 10 Åfrom any protein atoms.

3. Determine which biounit files contain multiple models; these files will need the

waters rotated. Move thes fixed files corresponding to those structures into a

separate directory.

4. Go into this new directory and run the rotate waters.py script.
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5. Make a new directory to put these new files in, they are currently placed in the

same directory as the files with the 10 angstroms removed.

6. Move the output files from step 5 to the new directory.

7. Run the script to get the header information from the fixed file. The script that

removes the waters renames some of the chains so you must tell it where the

fixed files are and not the original biounit file.

8. Copy those files with the header to a new directory.

9. Pymol chops the ends of the lines off the pdb format so you must add spaces

to the end of the file to have a total of 80 characters.

10. Remove any waters that ended up more than 10 Åfrom the protein just as was

done in step 3.

11. Rename the final outputs [pdb id].bio[#].

C.12 Generate Multi-Part SMILES

1. Figure out which structures have multi-part ligands.

2. Copy biounit files of these structures to a new directory.

3. Make ligand files for these structures This creates a new directory called ligands

within the biounit directory

4. Run the perl script which runs the svl script to generate the SMILES string.

First you must change the file for the .mdb file on line 44 of the save db.svl

script.

5. Copy the .mdb file over to a windows machine and open it in MOE. Then save

it as a ’.csv’ file.

166



6. Use a text editor to only keep the ’ligand name, SMILES’. Remove the pdbid,

chain name, residue number and other information from the first column (before

the first comma) leaving only the ligand name. After the first comma delete

everything before the SMILES string.

7. Concatenate this new file with the old file

C.13 Run Gocav on new biounits

1. Run the script to run gocav over all the structures in a directory. You may do

this on as many nodes as you would like to split up the list., be sure you run it

from the directory you would like to put the output (script on curry)

2. Run script to rename the files (script on curry).

3. Make a new directory to put divided entries in, and make two subdirectories,

nowater and water.

4. Run script to divide the files into a new directory (script on curry)

5. Run script to copy the files to the format for the viewer (script on curry).

6. Choose only one ligand for jar files.

7. Create linking shell script for jar files

8. Make directory for jar files

9. Change name of directories in script to reflect the desired xyz and jar directories.

10. move the jar files to /users/moaddata/jar
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C.14 Create the extracted references.csv and authors.csv

1. Change line 30 in extract reference.pl (found in

/home/moad 2008 update/moad update scripts on basil) to reflect the list of

all structures in binding moad.

(variable $source file)

2. Change line 35 in extract reference.pl to reflect where the pdb lives (variable

$pdb path)

3. Run the extract reference script.pl

4. Change line 11 in create authors.pl (found in same directory as

extract reference.pl) to reflect name of output file from previous step, variable

$file), and change line 12 to reflect where you would like the output to go

($output).

5. Run the create authors.pl

C.15 Create NEW Database and Load Data

1. Creating a mysql dump of the old data.

2. Create the new mysql database moad devel with password s3crtP2ss and user

moad. Also create a database jboss with password jbossmoad, and user jb.

3. The files you will need to run the loading scripts need to be in the base directory

where the run marathon scripts directory is located. These are:

(a) The final csv.

(b) The final list of rejected structure.

(c) The list of protein classifications.
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(d) The list of multi-part smiles.

(e) The extracted references files and the authors.csv files from the previous

steps.

4. Change the name of any input files in the directory run marathon scripts to

reflect where the new files are located.

5. Run run marathon.sh

C.16 Zip Biounits

1. You must first generate a list of the biounit files that have valid ligands. The

’old list’ is already located in /data/sandbox/2008 VALID BIOUNIT FILES.

2. Run generate biounit zips.pl

3. To genereate the new for xxxx.zip, run

generate new biounit zips.pl

4. Remove all files except new for xxxx.zip and the HiQ set of zips from

/users/moaddata/biou

5. Copy the new for xxxx.zip and zip directory to /users/moaddata/biou

C.17 Generate CSV files for downloadinig

1. First make the directories class/ family/ total/ and individual/ in whatever

directory you would like to work in.

2. Change the variable $license file in

generate csv from mysql.pl to reflect the location of the license file. The file is

currently on basil in /data/sandbox/BindingMOAD license.txt
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3. Run the script.

4. Generate a ‘.csv’ of only the new entries

5. First change line 20 to reflect where the license file is, and change line 218 on

generate new entry csv from mysql.pl to reflect where and what you would like

the new file to placed and named. Then run the script.

6. Remove all files from the /users/moaddata/csv except the new for xxxx.csv files

7. Copy the files from in class family individual and total to /users/moaddata/csv.

Also copy the file created from step three to

/users/moaddata/csv/new for xxxx.csv
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