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Chapter 1 
 

 
GENERAL INTRODUCTION 

 
 
1.1 Grain refinement and Hall-Petch effect 
 
 
Grain refinement is an important field of study in metal processing. Through grain 

refinement, properties such as strength and hardness of the metals can be substantially 

improved. Unlike cold working, which trades strength of the metals with ductility, grain 

refinement of the metals usually increases the ductility as well, especially in superplastic 

deformation. The focus of this work is on the grain refinement of metal materials through 

various thermo-mechanical processes. To study the nature of grain refinement, the 

fundamental understanding of the hardening mechanism behind the grain refinement 

must first be elucidated. Hall [1] and Petch [2] first discovered the hardening in 

polycrystalline metals with smaller grain size and relayed the famous Hall-Petch relation 

as follow:   

                                                         σ = σ0 + KD-1/2                                                           (1) 

where σ is the flow stress of polycrystalline material, K is constant and D is the grain size.  

The principle of the hardening effect in Hall-Petch relation was well explained by the 

review of Li and Chou [3]. A gliding dislocation propagating into another grain is 

blocked by the surrounding grain boundaries and forms a dislocation pile-up near the 

grain boundary. With the increasing numbers of the pile-ups near the grain boundary, the 

stress concentration of the tip increases. When a critical stress is reached, another 

dislocation in the neighboring grain is activated and glides until it meets another grain 
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boundary.  With the decreasing size of the grains, the total grain boundary area is 

substantially increased and more obstructions would be encountered by the dislocations. 

Higher flow stress is thus required for the dislocations to move through the grain 

boundaries.  

Another explanation of the hardening effect in Hall-Petch relation was provided by 

Professor J.C.M. Li [4]. Instead of explaining the hardening effect by the dislocation pile-

up mechanism, Li proposed that ledges in the grain boundaries pump dislocations into the 

grain during deformation, and the yield stress of a metal is corresponding to the stress 

that required overcoming the stress-fiend around the dislocations near the ledges or stress 

that required to activate new ledges. Many studies have reported that dislocations were 

generated from the grain boundary ledges at the onset of yielding [5-7], which provide 

strong supports to the hardening mechanism proposed by Li.  

 

1.2 Common grain refinement practices 

Grain refinement in polycrystalline materials can be achieved by many methods. One 

common practice of grain refinement on polycrystalline material is adding nucleants 

(grain refiner) to the base material before or during the casting process. The result from 

Zhang et al. [8] work shows that by adding 0.3wt% of JR-6 nano-grain refiner, the grain 

size of the cast A356 decreased from 44 μm to 23 μm and had 30MPa, 24 MPa and 4.1% 

increase in tensile strength, yield strength and elongation, respectively.  Common grain 

refiners for magnesium alloys include carbon [9], ferric chloride (FeCl3) [10], Zr [11,12], 

Sr [13] and SiC [14]. These additives are believed to serve as heterogeneous nucleation 

sites during the cooling which promotes the fine grain structure or as obstacles which 
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hinder the grain growth. Superheating is also used to refine the grain structures of 

polycrystalline magnesium alloys [15]. The process involves superheating the alloy 150-

260ºC [16] above the liquidus temperature and cool back to pouring temperature. The 

mechanism of superheating grain refinement was explained by Wood [10] and Hall [17]. 

According to Wood, iron precipitates forms during cooling and these precipitates serve as 

the nuclei for new grains. In Hall’s theory, it was magnesium or aluminum oxides formed 

during the cooling instead of iron.  

 

Another common grain refinement method is severe plastic deformation (SPD), which 

was first introduced by Valiev et al. [18]. SPD process can easily produce metals with 

fine grains, sometimes even ultra-fine grain structures (ie. grain size range from few 

microns to nano-meter). Ultra-fine grain (UFG) materials usually have promising 

properties in strength, ductility and even superplastic behavior. Extensive researches have 

been conducted to establish different SPD routes to fabricate UFG metals with enhanced 

mechanical properties [19-25]. UFG metals are usually processed with high pressure and 

extensive amount of strain under relative low temperature. The crystal structure 

developed by SPD is usually dominated by high angle grain boundaries with equiaxed 

granular type grains [26]. Equal channel angular extrusion (ECAE) is by far the most 

popular SPD process. It was first introduced by Segal et al. [27] in 1981. The ECAE 

process is implemented by repeat pressing ingot in a special die with two intersecting 

channels usually at an angle of 90º. The two channels have equal cross-sections so the 

strain put on the ingot is nearly pure shear and the shape of the ingot does not change. 

This unique processing technique enables the ingot to accumulate strains through many 
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pressings. Different processing routes can be applied by ECAE with different insertion 

angles of the ingot between passes. In process route A, no rotation is applied to the ingot 

between passes. In route B and C, 90 and 180 degrees rotations is applied to the ingots in 

between passes. Extensive studies of ECAE process were done on pure or alloy metals 

such as titanium [28-31], magnesium [32-36], aluminum [37,38], steel[39,40], copper[41], 

and gold[42]. Though the microstructure morphology may vary with different processing 

conditions and materials, it has shown that homogeneous UFG microstructure can be 

obtained after 4-6 ECAE passes by route B with equiaxed grains and high angle grain 

boundaries [43]. The simple design and promising outcome of ECAE process makes it 

the most common SPD practice. Many metal processing studies nowadays are still 

depending on the ECAE processes.  

 

Another popular SPD process, namely high pressure torsion (HPT), was first introduced 

in 1984 by Zhorin et al. [44]. The process of HPT is applying high pressure and torsion to 

a small disk-shaped metal work piece and induce tremendous amount of shear strain in 

the work piece. The HPT device is usually consisted of one cylindrical plunger and one 

cup-shaped holder. The work piece is held in between the plunger and holder under high 

pressure (several GPa). The holder rotates and the friction on the sample forces it to shear. 

The hydrostatic compression applied to the sample stops the sample from breaking apart 

under high shear strain. The sample size is usually 10-20mm in diameter and 0.2-0.5mm 

thick. High pressure torsion has been successfully used to refine microstructures in many 

applications [45-48]. The advantage of using HPT is the ability to control the applied 

pressure, cumulative strain and the strain rate to the sample. The resulting grain size is 
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usually in nano-meter range with high angle grain boundaries. However, due to the 

limited sample size, the HPT processes are still confined to the laboratory experiments. 

Also, strains obtained by the samples are non-uniform from zero in the center to high 

strain near the surface.  

Accumulative roll bonding (ARB) is also used for obtaining refined crystal structures. 

The principal of the ARB is to simultaneous roll two sheets of metal together into one 

sheet. The rolled sheets were bounded together from rolling and the thickness of original 

sheets was reduced in half. The rolled sheet was then cut into two halves and stack 

together for the next rolling. The operation was repeated several times to impart large 

strains into the rolled sheets. Several reports have been made on ARB processes with 

substantial grain refinement [49-51].  

 

Grain refinement is the key to achieving better mechanical properties. From the various 

studies listed above, it is suggested that SPD process is the best way to give fine or Ultra-

fine grain structures. In light of this, this study is dedicated to find a better SPD route to 

achieve grain refinement and study the accompanying mechanical improvements. The 

detailed processing techniques and procedures would be described in Chapter 2-5.  

 

1.3 Superplasticity and related deformation mechanisms 

Superplastic deformation is an importance field of study especially in hard-to-deform 

metals. One important criterion to achieving superplastic deformation is refined grain size. 

With ultra-fine grain structures, several hundred or even thousands percent of elongations 

could be achieved in the samples tested at elevated temperature. The first superplastic 
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behavior of metallic material was reported back at 1912 by Bengough [52] on the brass 

sample pulled to 163% at 700ºC. In 1964 Backofen et al. [53] demonstrated 

superplasticity in Zn-Al alloy and suggested the commercial potential of superplasticity, 

the report started intense superplastic- associated researches. With elongation more than 

300%, most complex shapes of the parts can be made by superplastic deformation, and 

the savings of weight and costs on the superplastic productions gives much of incentive 

in commercial manufacturing to change from conventional to superplastic forming.  The 

most important trait of the superplastic materials is the high strain-rate sensitivity (m 

values) derived from the equation σ = Cέm, where σ is the true flow stress , C is constant , 

and έ is the strain rate. Most metals have m value less than 0.2. Superplastic materials 

usually have m greater than 0.5. The high m values help promote the uniform 

deformation of the samples for the flow stress of high flow rate regions is higher than the 

flow stress of low flow rate regions. The most common way to achieve superplasticity is 

through grain refinement, namely fine-structure superplasticity [54]. The rate-control 

mechanism of the fine-structure superplasticity is grain boundary sliding (GBS) and GBS 

only takes place in fine grain materials. In fine-structure superplasticity, the grain size is 

usually on the order of 1-5 μm and this is the reason why ultra-fine grain materials drew 

so much attention in the past few decades. Also, the flow stress of the fine-grain 

structures at elevated temperature is relatively lower than the coarse grained structures. 

Therefore it is more energy efficient to process the fine-grain structure materials.  

 

The superplastic deformation mechanisms can be explained in three modes; namely 

diffusion flow (Nabarro-Herring and Coble creep), grain boundary slip accommodated by 



 7 

diffusion flow and grain boundary slip accommodated by slip. Many experiments have 

been conducted to explore the most probable deformation mechanisms for superplastic 

deformation. By far, the grain boundary sliding (GBS) accommodated by slip is believed 

to be the most probable mechanism in superplastic deformation [57].  In this mechanism, 

GBS is accommodated by slip in the mantle area of the grains or grain boundaries, while 

little or no slip is occurred at the core of the grains. Fine grain structure is essential in 

GBS mechanism since most of the slips occur in or near the grain boundaries and fine 

grain structure provides high volume fractions of grain boundaries. In other words, if the 

grains are coarse, it is not likely to have superplastic deformation in the material. 

 

 From the analysis of various deformation mechanisms provided above, it is clear that 

fine grain structure is essential in both room temperature and elevated temperature 

deformations. Thus it is worth devoting our efforts into the discovery of new and efficient 

processing routes that leads to fine-grained metal materials. In light of this, current study 

is dedicated to practice new thermo-mechanical processes on hard-to-deform materials (ie. 

magnesium and titanium) and analyze the resulting microstructure and mechanical 

properties of the work pieces in hope to discover a processing technique that betters the 

existing thermo-mechanical processes.  

 

1.4 Experimental studies 

The followings briefly introduce the experimental works and analysis that have been 

done regarding the thermo-mechanical processes in metals. Different processing 

techniques are divided in different chapters. Besides the thermo-mechanical processes of 
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metals, a new tensile test procedure was adopted for testing micro-scale tensile samples 

and is described in chapter 6. 

 

In chapter 2, efforts have been made to impart severe plastic deformation on ZK60 and 

gallium containing Mg alloy (3%Al, 2%Ga and Mg balance) with ABRC process at 

elevated temperature. The ABRC route is different than the convention SPD process and 

can impart heavy deformation on sheet metals without drastically alter its form. This 

technique was first developed by Ghosh and Yang[60] for processing AZ31 Mg alloy. In 

current study, the same processing route was used on ZK60 and gallium containing Mg 

alloy with processing temperature ranged from 450ºC to 275ºC. Microstructures of 

processed Mg alloys were studied on different processing passes and show substantial 

grain refinements along the processing stages. Tensile tests done on the processed sheet 

show improvements in strength at room temperature and ductility at high temperature. 

Also, the analytical studies were made on the growth dynamic and strain rate sensitivity 

at various strain rate regions to evaluate the optimum deformation conditions.  

In chapter 3, Ti-6Al-4V was processed through a series of thermo-mechanical 

deformations include forging in a special designed angle die and hot rolling. The tapered 

design in the angle die helped resolve the applied compressive stress registered on the 

punch to both compressive and shear stresses and provide an efficient way to impart 

severe deformation to high strength materials. The microstructure analysis of the 

processed Ti-6Al-4V showed substantial grain refinement and equiaxed grain structure. 

High temperature tensile testes were performed on the processed Ti-6Al-4V sheet and 

superplastic behaviors were found on the test samples with elongation up to 450%. The 
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strain rate sensitivity (m) calculated  from jump strain rate tests indicated the deformation 

is superplastic (m >0.5) in the strain rate range from 10-4/s to 10-3/s. Dynamic grain 

growth and static grain growth kinetics of the processed Ti-6Al-4V were studied through 

the microstructure analysis of the tested tensile samples.  

Chapters 4 and 5 concentrate on a novel thermo-mechanical process, namely biaxial 

extrusion process. The biaxial extrusion process is different from the conventional SPD 

processes and can apply severe plastic deformation to hard-to-deform material and 

convert billet form to sheet form in one processing step. Biaxial extrusion process was 

tested on many materials (Ti-6Al-4V in Chapter 4, magnesium and Mg based alloys in 

Chapter 5). All processed materials showed great grain refinement with improved 

mechanical properties such as enhanced yield strength in Ti-6Al-4V (564MPa increment), 

in ZK60 (200MPa increment) , increase in hardness (Mg-Al composite, chapter 4) and 

good ductility ( 252% elongation in ZK60 ).  

In Chapter 6, efforts were put on the study of mechanical behaviors of the small tensile 

specimens in the of micron-meter scale (with sample cross-sectional area ~100μm2). Ti-

1100 and Inconel 625 sheets were choose for base materials. A strong increase in yield 

strength in the small specimens was observed with respect to the large samples. The 

microstructure of the tested specimens was studied. Many strain steps were found in both 

Ti-1100 and Inconel 625 specimens. These strain steps were believed to be the cause of 

the strain bursts found in the stress-strain curves of the small sample tests.  The 

deformation mechanism of the materials in micro-meter range is proven to be different 

than the bulk materials. Detailed studies will be described in chapter 6. 
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Chapter 2 
 
 
 
 

Grain refinement of ZK60 alloy and gallium-containing 
 magnesium alloy through ABRC process 

 
 
 

 
 

Abstract 
 

The present work is focused on the processing and properties of two magnesium alloys, 

ZK60 and a gallium-containing magnesium alloy (Mg-3Al-2Ga). The aim of this work 

was to achieve superplasticity through a new severe deformation technique, namely 

alternate biaxial reverse corrugation (ABRC). Mechanical properties and microstructure 

transformations were evaluated side-by-side along each step of the experimental process. 

Fine grain distributions of 6.39μm and 3.58μm of the ZK60 and the gallium-containing 

magnesium alloy respectively, were observed after the ABRC process. A tensile 

elongation of 207% was observed in processed ZK60 under strain-rate of 2x10-4 /s at 

400oC. High m-value of 0.46 of ZK60 was obtained under strain-rate of 10-3/s at 300oC. 
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2.1 Introduction 

Due to its light weight, high specific strength, high stiffness and good damping capacity, 

magnesium is used in many industrial applications such as aerospace and automobile 

body parts. However, because of its hexagonal close pack (HCP) structure, few slip 

systems can be activated during the room temperature deformation thus limited the 

formability and ductility of magnesium. Due to its low ductility, most fabrication of 

magnesium alloys is limited to casting or semisolid processing (thixomoulding). Many 

Mg parts are used in automobile components or sports ware to reduce weight. However, 

these cast parts, unlike wrought materials, don’t have good strength and ductility. A new 

technique is essential to improve the properties of the magnesium and widen the usage of 

Mg alloys. Early studies suggested that severe plastic deformation could effectively 

induce grain refinement in the polycrystalline materials and increase the strength and 

ductility of the material [1-4]. In the past decades, various techniques had been developed 

to introduce sever plastic deformation (SPD) into the metallic alloys such as hot extrusion 

[5, 6], equal channel angular extrusion or pressing (ECAE/ECAP) [7-9] and alternate 

biaxial reverse corrugation (ABRC) [10] process. In this study, the ABRC process would 

be introduced to ZK60 and magnesium-gallium alloy and the microstructure evolution 

and mechanical properties of the processed work pieces would be studied.  

 

The reason ZK60 is chosen for the target material is because ZK60 magnesium alloy 

(Mg- 6% Zn -0.6% Zr) is favored in the commercial use due to its relative higher yield 

strength among the Mg alloys. The finely dispersed MgZn, MgZn2, and Zn2Zr3 

precipitates [4] in the ZK60 alloy hinder the movements of the dislocations inside the 
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grains, thus increase the stress required to further dislocation propagation or activation of 

new dislocations. The ductility of ZK60 could also be improved by grain refinement 

through SPD process. The early study of Galiyev et al. [11] showed significant tensile 

elongations in processed ZK60 magnesium alloy (1330% at 250°C with the strain-rate 

of 1.4x10-4s-1). Galiyev’s thermo-mechanical processes include three-steps; extrusion, 

compression and isothermal rolling. The resulting microstructure of the processed ZK60 

showed refined grain size ~3.7μm.  

Another common practice to increase the strength of the Mg alloys is solid solution 

strengthening. Additives of SiC [12], lithium [13] and rare earth [14] were usually added 

into magnesium to improve the mechanical behaviors. C.J Ma et al. [14] found that by 

adding the rare earth elements such as Ce, La and Nd into the ZK60 alloy, second phases 

particles were formed in the Mg matrix and helped refine the grains during the 

solidification. The strength of ZK60 was both enhanced by the refined grain size and also 

by the entanglement of dislocations around the second phase particles. In this study, 

gallium was used as additive in the Mg alloy for its good wetting property. 

 

ABRC process and hot rolling was introduced to the magnesium-gallium alloy and ZK60 

billet consolidated from machined chips. The processing temperature is progressively 

decreased from 450ºC to 300ºC to enhance the grain refinement and slow down the grain 

growth during the process. The microstructures of the processed magnesium-gallium 

alloy and ZK60 would be studied and the mechanical properties would be tested. Jump 

strain-rate tests were conducted to obtain the strain rate sensitivity (m-value). The 

detailed processing procedures would be described in the following sections. 
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2.2 Material preparation 

One of the target materials, ZK60 billet, was obtained from consolidating ZK60 

machined chips. Another material, magnesium-gallium billet, was obtained from melting 

Ga and Mg in high-temperature induction heat furnace. The chemical composition of the 

ZK60 magnesium alloy and gallium containing magnesium (magnesium-gallium) alloy is 

shown in Table 2.1. The ZK60 chips provided by Thixomat Inc. were about 0.13 inch 

long, 0.11 inch wide and 0.02 inch thick as illustrated in Fig 2.1. The chips were poured 

into a closed cylindrical die and pressed with a Forney FX700 hydraulic press machine 

under the pressure of 17000 psi at 450°C. During the process, the ZK60 Mg chips were 

consolidated into a 2.23inch in diameter, 0.59inch in thickness ingot. The ingot was then 

taken out and flattened down to a 3.5"x3.5"x0.188" plate with a square die. The 

magnesium-gallium alloy was prepared by melting pure Mg , Al, Ga powders in the 

induction heat furnace at 950°C for 90 minutes then air cooled to room temperature. 

The molded ingot, 1.55inch in diameter and 0.31 in thickness, was flattened down to a 

2.22 inch in diameter, 0.15inch in thickness plate with a 3.5”x3.5” squared die. 

 

2.3 Thermo-mechanical processing 

ABRC processes [10] were done on the as consolidated ZK60 and magnesium-gallium 

alloy for grain refinement. The work piece was first corrugated between two sinewave 

dies as shown in Fig 2.2(b). The beaded sinewave dies applied tension and compression 

in different areas of the work piece. After the first corrugation, the work piece was 

rotated 90 degrees to its original position and corrugated again. The deformation lines 

intersected each other and formed a checkerboard-like shape. The work piece was then 
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turned over (flipped) to push the peaks of the waves to the reverse direction. The original 

tensioned area became compression area and the original compression area became 

tensioned area in one direction of the checkerboard-like work piece. At last, the work 

piece was turned 90 degrees to its orthogonal direction and pressed in the other direction 

of the checkerboard to finish a cycle of the ABRC process. A total of 2 cycles of ABRC 

was applied to the magnesium-gallium ingot and 3 cycles to the ZK60 plate. The 

deformation temperature was progressively lowered from 300°C to 275°C for 

magnesium-gallium ingot and from 450°C to 350°C for ZK60 plate. After the ABRC 

process, the work pieces were flattened in the square die to remove the wavy shape in the 

surface. The processed magnesium-gallium and ZK60 plates were put into steel jackets 

and hot rolled to 0.015 inch and 0.03inch at 300°C and 320°C respectively. The 

cumulative strain was about 6 in the magnesium-gallium work piece and 7.5 in the ZK60 

work piece. 

 

2.4 Mechanical testing and microstructure equipments 

Tensile samples, 1.378inch (32mm) gauge length and 0.118inch (3mm) gauge width, and 

high-temperature tensile samples, 0.25inch (6.35mm) and 0.125inch (3.175mm) gauge 

width, were directly machined from the rolled pieces. Room temperature tensile tests 

were performed with Instron universal testing machine (model 5505). High-temperature 

tensile tests were performed ranging from 250°C to 400°C with strain-rate ranging 

from 10-3 /s to 2x10-4/s by Instron testing machine (model 4505) equipped with a three-

zone high-temperature furnace. Microstructures of samples were examined with an 

olympus Pme3 optical microscope. . Acetic-picral solution with the composition of 4.2g 
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picric acid, 10m acetic acid, 10ml deionized water and 70ml ethyl alcohol was used for 

etching the Mg samples. Philips-Xl30 SEM in the electron analysis laboratory (EMAL) 

was used to provide higher resolution photos. The microstructure evolution and 

mechanical properties of the processed Mg alloys are discussed in the following sections. 

 

2.5 Microstructure evolution 

Fig.2.3 shows the microstructure of the magnesium-gallium alloy and the ZK60 before 

and after ABRC process and rolling. The grain size of the as cast magnesium-gallium 

alloy and as consolidated ZK60 are 266 μm and 87μm. With 2 cycles of ABRC (8 passes) 

and hot rolling (cumulative strain=6), the grain size of magnesium-gallium alloy has 

reduced to 3.58μm. With 3 cycles of ABRC (12 passes) and hot rolling (cumulative 

strain=7.5), the grain size of the ZK60 has reduced to 6.39μm. It’s worth noticing that 

during the processing, some droplet-like particles emerge from the grain boundary of the 

magnesium-gallium work piece as shown in Fig 2.3e. With the energy dispersive x-ray 

(EDX) analysis, these particles are rich of Zn and Ga, thus are believed to be the Ga rich 

second phase. The as-consolidated ZK60 (Fig 2.3b) has many inherent voids. Those 

voids were greatly reduced after the subsequent thermo-mechanical ABRC and rolling 

processes. With the increasing strain along the passes of thermo-mechanical process, the 

grains became progressively uniform and refined. It is believed recrystallization is the 

main mechanism for the grain subdivision since heavy deformation took place at ambient 

temperature (>300ºC). The dislocations pile-up around second phase particles (gallium 

rich dispersoids) provided great locations for nucleation of new grains in magnesium-

gallium alloy. Recrystallization is also found in ZK60 along the grain boundaries where 
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high dislocation density encourages the new grains to form as shown in Fig. 2.4. The 

ZK60 processed by ABRC showed homogeneous fine grain structure with grain size = 

6.39μm, unlike the ZK60 processed by ECAE which usually show bimodal grain 

structure with mixture of large and small grains. In Lapovok et al. [16] study on ECAE 

processed ZK60, large grains with grain size ~25μm still remains even after 8 passes in 

route A and route C. In the ZK60 sheet processed by hot rolling by Gong et al. [17], 

bimodal grain structure is still shown after 45% reduction with elongated large grain size 

~30μm. The uniformly distributed fine grain structure found in ABRC processed ZK60 in 

current study is believed to be attributed to the repeated recrystallizations induced by the 

high local strain during the ABRC process.  

 

Twinning is also believed to play an important role in subdividing the coarse grains in the 

early stage of deformation in magnesium [16] because the interaction between 

dislocations and twins often serve as nucleation sites for new grains. Twinning was 

observed in both magnesium-gallium and ZK60 work pieces as indicated by the black 

arrows in Fig 2.3c and Fig 2.3d. A study by Yang and Ghosh [18] reported that with the 

process temperature higher than 250°C or lower than 170°C with cumulative strain 

greater than 4.0, no twinning could be found in the AZ31 magnesium. Lapovok et al. [16] 

also reported that no twins were found in the ECAE processed ZK60 with deformation 

temperature higher than 300°C. The rarity of twinning at high-temperature is because 

the stress required to activate secondary slip plane (slip on prismatic or pyramidal planes) 

is lowered. However, many twins were observed in the ZK60 work piece with the process 

temperature higher than 400°C and strain more than 4 as shown in Fig 2.3d. The 
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twinning found in ZK60 in the current study is attributed to the high local dislocation 

density induced by ABRC process. 

 
 
2.6 Mechanical behavior 
 
Elevated temperature tensile tests were done on ZK60 and magnesium-gallium specimens 

at strain-rate ranging from 10-3  to 2x10-4 s-1and temperatures ranging from 250°C to 

400°C. The true stress-strain curves of the tests are tabulated in Fig.2.5. The stress peak 

of ZK60 shifted to the higher strain with higher temperature during the same strain-rate 

(2x10-4s-1). Strain hardening was observed at the beginning of most of the tests but some 

strain softening is observed at 250°C with the strain-rate of 2x10-4s-1. Under the same 

test conditions (300ºC, 2x10-4/s), magnesium-gallium alloy has higher strain hardening 

rate and higher flow stress than ZK60 (Fig 2.5(b)) with lower elongation (Table 2.2). 

This result is consistent with the work done by C.J Ma et al. [14] on the rare earth-

containing Mg alloy where low ductility was found. It is believed that the large gallium 

second-phase particles reside on the grain boundaries in the magnesium-gallium alloy 

impeded the sliding between relative grains and caused difficulty to grain boundary 

sliding, which lead to the subsequent low ductility. Room-temperature tensile tests show 

higher yield strength in ZK60 (274MPa) compared to magnesium-gallium alloy (190MPa) 

as shown in Fig 2.6. The high strength in ZK60 is expected since the MgZn dispersoids 

are much finer and uniformly distributed in the Mg-matrix in ZK60 than the coarse 

gallium second phase particles in the magnesium-gallium alloy.  
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Strain rate sensitivity (m-values) of ABRC processed magnesium-gallium alloy and 

ZK60 were measured by jump strain-rate tensile tests with strain-rate ranging from 10-5/s 

to 10-3/s at 300ºC. The magnesium-gallium alloy has a strain rate sensitivity of m= 0.35 

and ZK60 has m=0.35-0.38 at lower strain-rates (10-5/s-5x10-4/s) and m=0.5 at higher 

strain-rates (5x10-4/s-10-3/s) as shown in Fig 2.7. A high strain rate sensitivity is essential 

to the superplastic deformation. Therefore it is important to find the highest m-value by 

optimizing the test temperatures and strain-rates. The elevated temperature tensile tests 

done by Figueiredo et al.[19] on ECAE processed ZK60 showed m-values varied from 

<0.1 at 300K to 0.5 at 450K with strain-rate =10-4/s. The highest ductility (1140% 

elongation) was found on the sample tested at 450K (highest m-value). In Yan et al. [20] 

tests on SiC/ZK60 composite, highest m-value (m=0.35) was found at test temperature = 

613K with strain-rate = 1.67x10-2/s. For temperature higher than 613 K or strain-rate 

lower than 10-2/s, the maximum m was no more than 0.25. It is believed that the grain 

size has an important effect on the distributions of m-values. Smaller grains would have 

high m at higher strain-rates. In Hiroyuki et al.[21] tests on ZK60, samples with grain 

size 6.5μm have highest m(m=0.5) at 10-5/s and samples with grain size 3.3μm have 

highest m (m=0.5) at ~5x10-2/s. Mukai et al.[22] reported m-value = 0.5 at strain-rate (> 

0.1/s) in their SiC/ZK60 composite with test temperature 350ºC-500ºC. This high m-

value at high strain-rate is attributed to their fine grain size (~0.5μm) SiC/ZK60 attained 

by the PM method. The m-values of ZK60 processed by ABRC varies from lowest 0.36 

at strain-rate = 5x10-4s-1 to highest 0.5 at strain-rate = 10-3/s, but m-value in magnesium-

gallium alloy is not temperature or rate sensitive and has a constant value m = 0.35.  The 

m-values found in ZK60 and magnesium-gallium in this study correspond well to their 
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elongations to failures since higher m (0.36-0.5) was found in ZK60 with larger 

elongations (136~207%) and lower m (0.35) was found in magnesium-gallium alloy with 

lower elongations (80%).  

 

To observe the mechanisms during plastic deformations, it is important to obtain the 

activation energy Q. A constitutive equation for determining the activation energy is 

                                                    έ = A σ exp (-Q/RT) [20]                                               (1) 

where έ is strain-rate, A is material constant, Q is activation energy, R is gas constant and 

T is temperature. 

The activation energy of ABRC processed ZK60 can be calculated from the slope in the 

lnσ vs T-1 plot as shown in Fig 2.8. The data were collected from elevated temperature 

tensile tests at strain = 0.4 with strain-rate = 2x10-4s-1. The calculated activation energy of 

ZK60 is 68 kJ/mol. The calculated activation energy is much lower than the activation 

energy found in the most common superplastic deformation mechanisms, grain boundary 

sliding accommodated by grain boundary diffusion [20,21,23], which has activation 

energy ~92 kJ/mol. In ECAE processed ZK60 done by Chuvil’deev et al.[24], low 

activation energy (75 kJ/mol) was also reported. He attributed the low activation energy 

to the enhanced grain boundary diffusion caused by the non-equilibrium grain boundaries 

created by ECAE process. Since the activation energy found in ABRC-processed ZK60 

in this work is close to the activation energy found in ECAE-processed ZK60 in 

Chuvil’deev’s work. It is believed the ABRC process also created non-equilibrium grain 

boundaries like ECAE and cause the main deformation mechanism at elevated 

temperature to be enhanced grain boundary diffusion. 
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Substantial grain growth usually took place in structures with high internal energy and 

causes lowered ductility. Therefore, it is of interest to study the grain growth mechanism 

of processed ZK60 and magnesium gallium alloy to evaluate their structural stability. The 

microstructures of ZK60 and magnesium-gallium alloy tensile samples pulled at elevated 

temperature are shown in Fig 2.9. Inter-linkage of voids appears in near the fracture 

surface along the tensile direction, which suggested plasticity-controlled cavity growth 

[25]. Also, both extensive dynamic grain growth and static grain growth took place in the 

tensile samples (gauge section and grip section) during the tensile deformation. The 

average grain size of magnesium-gallium increased from 3.58μm (as processed) to 

14.63μm after pulling at 300ºC. The average grain size of  ZK60 increased from 6.39μm 

(as processed) to largest 36.62μm in the grip section of tensile sample pulled at 400ºC. 

The corresponding grain sizes of different pulling temperature and areas are tabulated in 

Table 2.3. Little or no grain growth was observed in ZK60 tensile specimens pulled under 

250ºC but with temperature higher than 300ºC, extensive grain growth took place both 

statically and dynamically. The grain growth occurred during the plastic deformation 

increased the flow stress of the specimens, as shown in the stress-strain curves in Fig 2.5 

where large amount of strain hardening in the tests done at 300-400ºC. It is also believed 

that dynamic growth rates are higher than static growth rate at temperature 300-350ºC, 

where average grain sizes of the gauge sections (dynamic growth) are larger than the grip 

sections(static growth). In Galiyev et al. [26] work, extensive grain growth were found in 

processed ZK60 at temperature higher than 300ºC and little/no grain growth were 

observed at temperature under 275ºC. So it is believed the optimal processing 
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temperature of ZK60 is ~ 250-300ºC where grain growth would not obstruct the 

superplastic deformation.  

 

2.7 Summary and conclusions 

ABRC processes have been done on both magnesium-gallium alloy and consolidated 

ZK60 followed by hot rolling. Extensive grain refinement was found in both samples 

with homogeneous grain distribution. The recrystallization during the corrugation 

processes is believed to be the main attribute to the grain refinement in ZK60, while fine 

dispersed gallium particles assisted the fragmentation of the grains in magnesium-gallium 

alloy. ABRC processed magnesium-gallium alloy and ZK60 both exhibit good strength at 

room temperature (Y.S. = 190 MPa and 274 MPa). However, the ductility of magnesium-

gallium alloy is not satisfactory.  The lack of superplasticity in magnesium-gallium may 

be caused by the gallium particles which reside on the grain boundaries and impede the 

relative boundary sliding. The low activation energy, Q, of 68kJ/mol indicates that the 

deformation mechanism of ZK60 is grain boundary diffusion enhanced by the non-

equilibrium grain structure created by ABRC process. The study of ABRC process on 

ZK50 and magnesium-gallium alloy could be summarized by the following: 

 

1. Grain refinement was obtained through elevated temperature ABRC processes in  

   ZK60 and magnesium-gallium alloy. 

2. High yield strength and U.T.S are found in processed ZK60 and magnesium-gallium   

    alloy. 

3. Elevated temperature tensile tests showed highest elongation 207% at 400ºC and 2x10- 
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     4s-1  in ZK60 and 80% at 300ºC and 2x10-4s-1 in processed magnesium-gallium alloy. 

4. Low ductility in magnesium-gallium may be attributed to the hindrance of grain  

    boundary sliding due to its large gallium precipitates. 

5. The deformation mechanism in ABRC processed ZK60 is believed to be enhanced  

    grain boundary diffusion.  
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 Mg Zn Zr Ga Al 
ZK60(wt%) 93.4 6 0.6 0 0 
Ga-
Mg(wt%) 

95 0 0 3 2 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
ZK60 
 

Temperature(°C) 
300 
350 
350 
400 
250 

Strain rate(/s) 
2x10-4 
2x10-4 
10-3 
2x10-4 

2x10-4 

% Elongation 
136% 
168% 
136% 
207% 
152% 

Mg-3Ga-2Al                300 2x10-4  80% 

Unit 
(μm) 

Do 250˚C 
Gauge 
section 

250˚C 
Grip 

section 

300˚C 
Gauge 
section 

300˚C 
Grip 

section 

350˚C 
Gauge
section 

350˚C 
Grip 

section 

400˚C 
Gauge 
section 

400˚C 
Grip 

section 
ZK60 6.39 7.7 6.4 19 10.27 18.3 13.2 32.88 36.62 

Mg-Ga 3.58 - - 14.63 - - - - - 

Table 2.1  Chemical Composition of ZK60 and Gallium-containing Magnesium      
                  Alloys 
 

Table 2.2 Elongation to Failure of Ga-Mg and ZK60 Samples in Different   
                 Temperature  and Strain rate. 
 

Table 2.3 Grain size of the tensile specimens before and after pulling at elevated  
                  temperature in Gauge section (dynamic growth) and grip section (static  
                  growth). 
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Figure 2.1 ZK60 chips provided by Thixomat.Inc.. 

 

(a) (b) 

Figure 2.2 (a) Sine wave dies (b) work piece deformed between 2 sine wave dies 
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Figure 2.3 (a) Mg-Ga from cast ingot (b) As consolidated ZK60 (c) Mg-Ga processed by ABRC 1 cycle,  
                   strain = 2.15 (d) ZK60 processed by ABRC 2 cycles, strain = 4 (e) Mg-Ga processed by ABRC 2  
                   cycles and rolled, strain = 6 (f) ZK60 processed by ABRC 3 cycles and rolled, strain = 7.5 
 

(a) (b) 

(c) (d) 

(e) (f) 



 30 

 

 

 

 

 

 

 
 
 
 
 
 
 
  
 
 
 

                                        

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4 ZK60 Necklace like grain structure indicates that the new grains emerge in the  
                   grain boundary of the original grains 
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(a) 

(b) 

Figure 2.5 (a) Effect of temperature and train rate on the true stress-strain curves on the ZK60  
                   Mg alloy. (b) Stress-Strain curve of the Mg-Ga alloy and ZK60 at 300°C with the  
                   strain rate 2x10-4s-1. 
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Figure 2.6 Room temperature stress-strain relationship of ZK60 and Mg-Ga alloy. ZK60 has the  
                   yield strength of 274MPa and 7.8% elongation. Mg-Ga has the yield strength of 190  
                   MPa and 15% elongation.  
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Figure 2.8 Relationship between ln σ and 1/T in ZK60 processed by ABRC.   
                  Test strain rate = 2x10-4s-1. 
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(a) (b) 

(c) 

Figure 2.9  Microstructures of pulled tensile samples under the same strain rate = 2x10-4 s-1(a)  
                    Mg-Ga alloy in 300°C (b) ZK60 in 300°C (c) ZK60 in 400°C.  
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Chapter 3 
 
 
 

Severe deformation in Ti-6Al-4V alloy through  
forging in an angle die and hot rolling 

 
 
 
 
 
 
 
 
 
 

Abstract 
 
 A series of thermo-mechanical processes, including elevated temperature forging in 

angle die and elevated temperature rolling, were done on the Ti-6Al-4V alloy. The 

resulting Ti-6Al-4V has reduced grain size to 0.31μm with enhanced mechanical 

properties. Superplasticity was also developed in the Ti-6Al-4V with maximum 

elongation of 450% at 800ºC. An equiaxed grain structure was obtained after the 

processing. The flow stress of the processed Ti-6Al-4V rose with the increasing strain 

rate and the strain rate sensitivity (m) was around 0.5 at high strain rate (10-3s-1) region. 

The grain growth exponent (n) was found to be 0.26 and 0.29 in the dynamic and static 

growth of the processed Ti-6Al-4V.  
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3.1 Introduction 
 
Titanium and its alloys are well known for their high specific strength (100-200 MPa-

cc/g) [1], good corrosion resistance [2] and high formability associated with 

superplasticity [3]. This explained why titanium alloys are wildly used in the aerospace, 

chemical industry and medical engineering. The mechanical properties of the Ti alloys 

depend very much on their chemical composition and microstructure. Ti alloys are 

usually exhibit in two forms; lamellar and equiaxed structures. The lamellar structure 

provides better rupture resistance while the equiaxed structure gives higher strength and 

ductility [4]. Among more than 100 titanium alloys known today, the classic Ti-6Al-4V 

covers more than 50% of commercial usage. Despite its success in commercial 

applications, the superplasticity is still limited to Ti-6Al-4V with fine grain size (<10μm) 

and equiaxed structure. For this purpose, a way to achieve fine and equiaxed grain 

structure of the Ti-6Al-4V is required. Several severe plastic deformation (SPD) 

techniques have been developed recently which showed promise to the production of 

material with ultra-fine grain sizes [5-7]. The SPD techniques include hot extrusion [8, 9], 

equal channel angular extrusion or pressing (ECAE/ECAP) [10-12], high-pressure torsion 

(HPT) [13] and alternate biaxial reverse corrugation (ABRC) [14]. Rolling process is also 

a popular SPD process often used in the industry for mass production of sheet metals. 

The alternating roll-bonding (ARB) technique used by Daisuke et al. [15] imparted heavy 

strain on the commercial purity titanium (CP-Ti). During a series of rolling and 

continuous bonding, the grain subdivision [16, 17] induced grain refinement of CP-Ti 

was observed and the SEM metallographic photos showed lamella structures with volume 

fraction of equiaxed grains increased with the increasing ARB cycles. The final grain size 
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of the ARB processed CP-Ti has achieved 100nm. Although ARB and other processes 

[18-21] had successfully produced ultra-fine grained Ti-alloys, there is still a need of 

systematic study on the grain refinement of the Ti-6Al-4V by thermo-mechanical 

processing. The goal of this work is to study the microstructural evolution as well as 

mechanical behavior of the Ti-6Al-4V processed by the hot forging and rolling. Since 

rolling Ti-6Al-4V billet at room temperature may lead to cracking and pre-heating Ti-

6Al-4V in furnace for long period of time before rolling may result in grain growth, a 

new rolling method was applied to minimize the exposure time of Ti-6Al-4V to elevated 

temperature. The new rolling method is to sandwich the Ti-6Al-4V billet in a hot steel 

jacket (~900ºC) and quickly send to the roller when Ti-6Al-4V billet is heated up to 

~700ºC in a short period of time (~5 seconds). By applying this rolling technique, the 

unnecessary grain growth during hot rolling of Ti-6Al-4V is avoided. The metallographic 

microstructures of Ti-6Al-4V in every stage of the thermo-mechanical process was taken 

and examined. The tensile tests were performed on the thermo-mechanical processed Ti-

6Al-4V samples to evaluate the change in mechanical properties. 

 
 
3.2 Thermo-mechanical process 
 
Thermo-mechanical processing was followed in two separate steps: (1) β heat treatment 

following by pressing in angle die and (2) hot rolling. In the following paragraphs, these 

are discussed. 

1A  β treatment 

The microstructure of the raw Ti-6Al-4V material is shown in Fig 3.1. One 0.9345 x 

1.088 x 0.67 inch3 Ti-6Al-4V piece was sectioned from the raw Ti-6Al-4V block by wire 
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EDM. To facilitate later grain refinement, a high temperature β treatment was employed 

before starting the thermo-mechanical process of the Ti-6Al-4V. The Ti-6Al-4V piece 

was first coated with a layer of boron nitride and encapsulated in a quartz tube. The tube 

was then vacuum sealed to prevent surface oxidation of the piece during the heat 

treatment in a rapid heat furnace. The quartz sealed piece was sent to a pre-heated furnace 

and held at 1010 ºC for 30 minutes then quench in water. The β treated Ti-6Al-4V 

microstructure formed a Widmanstätten structure which comprised of long orthogonally 

oriented martensitic transformed β with acicular ά morphology as shown in Fig 3.2.  

1B Forging in angle die 

The heat-treated block was then given several thermo-mechanical processes to impart a 

heavy strain into the material. The first stage of the thermo-mechanical deformation of 

the block was forging. A special designed angle pressing die was used here to forge the 

piece. Fig 3.3 shows the schematic of how the piece was forged in the angle pressing die. 

The load was applied on the 12-degree angled punches of the angle pressing die and 

resolved into shearing and compression stressed on the sample. The shear stress 

facilitated the flowing of material and reduced the excess load concentrated on the 

surface of the punch and reduced the chance of die damaging. Three different punches 

were used in the angle pressing die; each differs in pressing (contacting) area. In each 

pressing step, two of the punches would be used and the difference in contact areas 

between punches allowed the work piece to flow such that more strain could be attained 

during forging. The pressing areas of the lower punch, upper punch A and upper punch B 

are 1.59 x 1.59 inch2 ,1.53 x 1.47 inch2 and 1.47 x 1.47 inch2 , respectively. The detailed 

forging procedures are described in the following: A β heat-treated Ti-6Al-4V piece was 
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first machined to a 0.9345 x 1.088 x 0.27 inch3 block and put in between the lower punch 

and upper punch A (punch set 1) in the angle pressing die. The angle pressing die were 

then heated to 550ºC by using band heaters. When temperature was homogeneous and 

stable throughout the die, load was applied to the punches by hydraulic press and slowly 

increased to 250,000lbs. Upon reaching 250,000lbs, the block was taken out from the die 

and cooled in the air. Two steps forging were used to maximize the applied strain. The 

second forging was done in between the lower punch and upper punch B (punch set 2). 

The forging temperature was kept at 550ºC and the maximum load increased to 

400,000lbs. After two steps of forging, the block became a 1.5 x 1.8 x 0.06 inch3 plate 

with flashes on each side as shown in Fig 3.4. Flashes were cut off from the plate before 

hot rolled. 

2 Hot rolling 

After forging in the angle die, the Ti-6Al-4 V plate became thin enough for the hot 

rolling. A steel jacket was used for heat retaining for the plate during the rolling. As 

shown in Fig 3.5, two 0.06 x 4 x 7 inch3 rectangular high strength steel sheets were spot 

welded together on three sides. The fourth side of the jacket was left open so the plate 

could be slid in. Before hot rolling, the steel jacket was first heated to 950ºC in the 

furnace. The plate was quickly slid into the hot jacket from the open side and the heat 

was quickly transferred from the jacket to the plate. The temperature between jacket and 

plate became homogeneous at ~700ºC. The opening of the jacket was immediately 

hammer closed and the whole pack was quickly sent to a 5"x8" Stanant rolling mill and 

rolled to 50% reduction with 25 rpm feeding rate. After hot rolling, the pack was 

quenched in the water to stop the grain growth. The rolling process took less than 1 
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minute and the grain growth of the plate during the process was minimized. Secondary 

rolling was done for another 50% reduction with the same procedure and rolling direction. 

Another rolling with 30% reduction was done after on the perpendicular direction. The 

final thickness of the rolled sheet was 0.028inch.  

 

3.3 Metallographic specimen preparation 
 
The microstructure examinations were done on the as-received, as-forged, and as-rolled 

samples. The samples were mounted in the self-curing resin, and mechanically ground by 

silicon carbide papers (up to grit 4000 grade) and polished with 0.06μm colloidal silica 

and later etched with Kroll’s reagent (2ml HF, 10ml Nitric acid, and 88ml water). XL30 

Philips SEM was used for the microstructure examination with working voltage between 

10-17 V.  

 
3.4 High temperature tensile test 
 
The elevated temperature tensile samples with gauge length 0.25" and gauge width 

0.125" were machined from the rolled sheets. The elevated temperature tensile tests were 

performed by Instron 4505 frame and test temperature was set between 700ºC ~ 800ºC 

with strain rate ranged from 10-3s-1 to 2x10-4s-1. Elevated temperature tensile test was 

done following the subsequent procedures to ensure test consistency. A clam shell 

furnace equipped on the Instron 4505 frame was first preheated to a selected temperature 

(700-800ºC) for 15 minutes and test sample was inserted to the furnace and heated for 15 

minutes. A stainless steel tube continuously blew argon gas onto the surface of the 

sample to keep the sample from oxidation during the test. Computer controlled constant 
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strain rate was applied to the test samples with temperature variation less than ±2ºC. The 

test results will be compared and discussed in the following sections. 

 

3.5 Microstructure evolution 

Fig 3.1 showed the SEM photo of the microstructure of unprocessed Ti-6Al-4V material. 

The grain sizes of α grains and β grains of the raw Ti were 7.87 μm and 1.07 μm, 

respectively. To calculate the average grain size, the area-base grain size average was 

used: 

                                          ββαα dAdAdave ** +=                             (1) 

where Aα and Aβ  are the area fractions of the α grains and the β grains shown in the SEM 

photo and dα and dβ are the mean grain sizes of α and β grains. Computer software Scion 

Image was utilized to measure the area fractions and the individual grain sizes. The area 

fraction of α grains and β grains are 89.8% and 10.2% and the average grain size of the 

raw Ti is 7.19 μm. After the Ti block was β heat-treated at 1010ºC for 30 minutes and 

water quenched, famous “widmanstätten” structure was observed. The average grain size 

of the heat-treated Ti was 254 μm. After two passes of forging in angle pressing die at 

700ºC, the widmanstatten structure was broken into two phase structure (α+β) as shown 

in Fig 3.6a. The mean grain sizes of α and β grains (dα and dβ) were calculated 

individually by averaging the grain sizes of α grains and β grains circled by the dotted 

lines in Fig 3.6b and 3.6c. The individual grain size distributions of α and β grains are 

shown in Fig 3.6d and 3.6e. Area fraction of α grain is 93.8 % and the area fraction of β 

grain is 6.2 %. The average grain size of the Ti after forging is 0.66µm. Fig 3.7a shows 

the microstructure of the work piece after hot rolling (cumulative strain = 9.6). Again α 
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and β grains were circled individually by dotted line in Fig 3.7b and 3.7c and the grain 

sizes of α and β grains are 0.34 µm and 0.22 µm, respectively. Area fractions of α grains 

and β grains are 80% and 20%, respectively and the average grain size is 0.31 μm. By 

comparing the grain sizes of the as-rolled sheet and as-forged billet, we can see that both 

α grains and β grains are more refined in the as-rolled sheet and the area fraction of the β 

grains also increases. The grains of the as rolled sheet remained equiaxed with no sign of 

elongation from the rolling process. It is believed that by rolling at high temperature 

(700ºC) with large deformation strain (~80% reduction), original large grains 

recrystallized into fine and equiaxed grains. The grain sizes of the Ti-6Al-4V processed 

in each stage are tabulated in Table 3.1. 

. 

3.6 Mechanical behavior 

 The stress-strain curves of the as-processed Ti samples tested in 700ºC and 800ºC with 

various strain rates are shown in Fig 3.8. Samples tested in 800ºC have lower flow stress 

but higher strain. Substantial strain-hardening was observed in each test condition. This 

suggested that grain growth might have taken placed during the tensile test at the elevated 

temperature. The tested tensile samples are compared in Fig 3.9 with different test 

conditions. The tensile elongations of the as processed samples tested at 700ºC with 

strain rates of 10-3s-1 and 2x10-4s-1are 270% and 325% respectively. The samples tested at 

800ºC reached higher elongation of 404% and 450% with the strain rates of 10-3s-1 and 

2x10-4s-1 respectively. It seemed higher strain rate leads to lower elongation in between 

700ºC and 800ºC. Table 3.2 listed the tensile elongations in different test conditions of 

the pulled samples. Two two-step strain rate tests were done at 800°C with the starting 
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strain rate of 10-3s-1 pulled to strain 0.9 and 1 then followed by lowered strain rate of 

2x10-4s-1 untill failure. Higher elongations were expected in two step strain rate tests for 

less time spent in higher strain rate region so that less grain growth took place. However, 

as can be seen in Fig 3.8, the second part of the two step strain rate tests had a higher 

strain hardening rate than the 800oC, 2x10-4s-1 test and samples failed earlier than 

expected. The higher strain hardening rate indicated higher grain growth rates happened 

in the second part of the two step strain rate tests and lead to less elongation. The 

maximum elongation of the two step strain rate test was 434%.  

 

3.7 Strain rate sensitivity   

To determine the strain rate sensitivity (m values) of the as-rolled sample, a decrement 

step-strain rate tensile test was performed. The test was conducted at 700ºC with starting 

strain rate of 10-3s-1. The strain rate decreased 50% to 5x10-4s-1 when strain reached 0.15; 

decreased 50% again to 10-4s-1 when strain reached 0.25 and decreased 50% again to 

5x10-5s-1 when strain reached 0.28. After strain reached 0.3, the strain rate jumped back 

to 10-3s-1 and another cycle of strain rates decrement took place from strain 0.3 to 0.6. 

After pulled to strain 0.6, the strain rate went back to 10-3s-1 and kept untill failure. The 

saturating stresses at each step were measured and plotted against each corresponding 

strain rate in a log-log plot as shown in Fig 3.10. The strain rate sensitivity (m) of the as 

processed Ti is calculated by measuring the slopes of the flow stress-strain rates curve 

and plotted in Fig 3.11. In lower strain rate region (~5x10-5s-1), both m values measured 

from 700ºC and 800ºC tests are small(less than 0.1). With the increasing strain rates, the 

m values increased and went up to around 0.6 when the strain rate rose to 10-3s-1. The 
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relatively high m value in higher strain rates indicated that the deformation mechanism 

had changed from diffusion creep at low strain rate to the grain boundary sliding which 

accommodated by the dislocation creep [22].  

 

3.8 Bulge testing 

 A 25mm diameter circular sample was cut from the as processed Ti sheet for the biaxial 

bulge tests with argon. The surface of the sample was mechanical ground to remove 

defects and deformation marks from the previous thermo-mechanical process. The 

circular sample was clamped in a circular die with 13mm inner diameter and sent to the 

preheated 700ºC furnace. After temperature was homogeneous and stable (around 5 

minutes), high pressure argon gas was applied to the Ti sample from the inside the die 

and forced the sample to bulge to another side and form a dome. Different pressures were 

applied to the sample and the corresponding holding time and dome height were 

tabulated in Table 3.3. A photo of gas formed dome is shown in Fig 3.12.  

 

3.9 Static/Dynamic Grain growth  

Fig 3.13 shows the microstructure of the Ti sample after tensile tested at 800ºC with 

strain rate of 2x10-4s-1(3.13a. and 3.13b.) and with two step strain rates of 10-3s-1 and 

2x10-4s-1 (3.13c, 3.13d and 3.13e.). SEM images took from the grip section of the tested 

samples, as shown in Fig 3.13a and 3.13c, exhibited an equiaxed grain structure. In the 

grip section, no strain was imposed, so the growth of the grains was considered statically. 

SEM image taken from the gauge section of the tested samples, as shown in Fig 3.13b, 

3.13d and 3.13e, also showed an equiaxed grain structure.  The strain at the gauge section 



 48 

was around 2.1 and the evolution of the grains at the gauge section was considered 

dynamical. Compared to the grain size of the sample before the test (0.31 μm), substantial 

amount of grain growth was evident in both grip (static) and gauge (dynamic) sections. 

The overall time the sample pulled in the high temperature (800 ºC) was 200 minutes 

( Fig 3.13a and 3.13b ) and 82 minutes ( Fig 3.13c, 3.13d, and 3.13e) . The grain sizes of 

the tested samples were tabulated in Table 3.4.  Equation of classic grain growth kinetics 

deduced by Burke and Turnbull [24] is as follow:  

                                            tKRR nn γ'0

11

=−                                                      (2) 

Where R is the grain size at time t and Ro is the initial grain size. K’ is constant. γ is grain 

boundary free energy which is proportional to boundary pressure P due to surface 

curvature. n is the grain growth exponent. Since the grain growth of the Ti is extensive 

and grain size of the annealed sample is much lager than the as processed sample, the 

initial grain size Ro is negligible and a more general form [25] as: 

                                                        nKtR =                                                            (3) 

In a simplified case which only the geometric factor is considered (growth of the soap 

foam model, Fisher and Fullman, 1952), the n value (grain growth exponent) is equal to 

0.5. Fig 3.14a shows the static/dynamic grain growth of the processed Ti at 800ºC .The 

square blocks in Fig 3.14a are the measured values and the two polynomial curves are 

growth behaviors extrapolated to fit the measured data. By plotting the growth curves in 

log-log scale, we can find the growth exponent n by measuring the slope of the converted 

curves as shown in Fig 3.14b. The initial dynamic grain growth is faster than static grain 

growth. This stress-assisted grain growth was often observed in high temperature 

deformation of the Ti alloys [23].  The enhanced n value (0.48) in the beginning of the 
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dynamic grain growth is believed to be caused by faster grain boundary movement which 

was aided by the applied stress. The dynamic grain growth slowed down fast and came to 

a steady state (n = 0.26) after around 100 seconds. The static grain growth had a constant 

n value (0.29) through this time range. The grain growth kinetics of the two phases Ti are 

more complicated than the single phase material. Several researches [26-29] have been 

made to explain the growth mechanism of the microduplex Ti alloys. The n values 

measured in from the dynamic/static grain growth curves (n=0.26 and 0.29) are close to n 

value of the bulk diffusion [28] (n=0.33). So the main growth mechanism of the 

processed Ti is believed to be diffusion through bulk.  

  

3.10 Conclusions 

 By applying forging at 550ºC and rolling at higher temperature to the Ti-6Al-4V, ultra-

fine equiaxed grain structure was obtained with superplasticity. The high temperature 

tensile test gave a 450 % elongation of the as processed Ti. The growth mechanism of the 

processed Ti was believed to be bulk diffusion. Several conclusions could be drown as 

follow: 

-Ultra-fine and equiaxed grained Ti-6Al-4V could be obtained through a series of  

   thermo-mechanical process including high temperature forging and rolling.  

-The angle pressing die facilitated the flowing of the material and reduced the possibility  

  of damage to punch. 

-Higher strains could be attained by allowing material to flow into the sides of  

  the punch with smaller contacting area in the angle pressing die. 

 -By controlling the time Ti-6Al-4V was exposed to the high temperature surroundings   
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   during the hot  rolling process, the grain growth was limited and the ultra-fine grain  

   structure of the Ti-6Al-4V was retained. 

-Superplasticity of the thermo-mechanical processed Ti-6Al-4V was achieved with the  

  tensile elongation up to 450%. 

- Extensive grain growth was observed in the Ti-6Al-4V samples after the high  

   temperature tensile test. 

- Substantial strain hardening was observed during the testing of the as- 

   processed Ti-6Al-4V samples. It is believed to be attributed to the grain growth of the  

   test samples. 

- Dynamic grain growth of the processed Ti-6Al-4V was enhanced by the applied tensile  

   stress in the beginning of the test then gradually slowed to a steady state close to the  

   static growth rate. 

 

Acknowledgement 

The raw Ti-6Al-4V block was kindly provided by Dr. Semiatin of U.S Air force research 

lab. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 51 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 Strain Rates (s-1) Test Temperature (°C) 

700ºC 800°C 
Tensile Elongation 

(%) 
10-3 270% 404% 

2 x 10-4 325% 450% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Thermomechanical 
process 

As Received As Beta Heat 
Treated(1010°C) 

After 
Forging in 
Angle die 

After Rolling 
in  Steel Jacket 

(50% 
reduction) 

Cumulative strain 0 0 4.5 9.6 
  Grain size (μm) 7.19 254 0.66 0.31 

Table 3.1   Grain sizes comparison of Ti-6Al-4V in different 
thermo-mechanical process stages. 

 
 

Table 3.2 Percent elongation of the High temperature 
 tensile tested Ti-6Al-4V samples 
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Pressure / time Dome Height 

300 psi / 8 minutes 2.42 mm 

400 psi / 8 minutes 2.44 mm 

500 psi / 8 minutes 2.6 mm 

600 psi / 8 minutes 3.09 mm 

900 psi / 8minutes 3.16 mm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3.3  Dome Height of Ti-6Al-4V sample formed  
                  in 13mm diameter circular die  
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Thermomechanical 

Process 

 
α Grain 
Size(μm) 

 
β Grain 

Size (μm) 

Volume 
Fraction 

of α 
Grains 

(%) 

Volume 
Fraction 

of β 
Grains 

(%) 

 
Average 

Grain Size 
(μm) 

As Received 7.87 1.07 89.8 10.2 7.19 

As Beta Heat 
Treated(1010°C) 

 254 0 100 254 

After Forging in 
Angle Die 

0.68 0.35 93.8 6.2 0.66 

After Rolling in  
Steel Jacket 

0.34 0.22 80 20 0.31 

Tensile Tested at 
800ºC  ( Grip Area) 

for 200 mins 

4.31 1.86 76 24 3.73 

Tensile Tested at 
800ºC ( Gauge 

Area) for 200 mins   

7.83 1.74 78 22 6.5 

2 Step Strain Rate 
Tensile Tested at 

800°C (Gauge 
Area) for 82 mins 

5.36 1.4 93.2 6.8 5.1 

2 Step Strain Rate 
Tensile Tested at 

800°C (Grip Area) 
for 82 mins 

3.1 1.13 88 12 2.87 

Table 3.4  Individual α and β grains sizes, volume fractions of each phases and average          
                 grain sizes of the Ti-6Al-4V samples taken from each thermo-mechanical process. 
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Figure 3.2 Microstructure of Ti-6Al-4V after heat treated at 1010ºC for   
                  30 minutes. The Widmenstätten structure is observed 
                  with acicular ά inside the coarse transformed β grains. The  
                  average grain size is 254µm. 
 

Figure 3.1 Microstructure of as-received Ti-6Al-4V. β grains are dispersed  
                  around the grain boundaries of the α grains. Some voids are visible  
                  in the structure. The average grain size is  7.19 μm. 
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Figure 3.4 Photo image of as-forged Ti-6Al-4V piece.    
                  Thin vertical flashes (2mm thick)  on the sides   
                  of  the piece would  be later removed  before   
                  hot rolling. 
 

Figure 3.3  Schematic diagram of the 12º angle pressing die. Vertical load   
                    is resolved into compression and shearing directions on the  
                    work-piece       
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Figure 3.5 The steel jacket used to protect the Ti piece during heating and retain   
                  heat during rolling. Three sides of the bag were spot welded and the  
                  fourth side was opened so that the Ti-6Al-4V piece could be easily slid  
                  in. 
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 α Grains  β Grains 

(a) 

Individual Grain Size Distributions 

(b) (c) 

Figure 3.6 Microstructure and grain size analysis of Ti-6Al-4V alloy after forged from the  
                  angle pressing die. a) the original grain structure, b) α-grains of the structure, c)  
                  β-grains of the structure, d) α-grain size distribution, e) β-grain size distribution. 
 
 

(d) (e) 
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α Grains  β Grains 

(a) 

Individual grain size 
 

(b)  (c) 

Figure 3.7  Microstructures and grain size analysis of the Ti-6Al-4V after rolled in the  
                   steel jacket. a) the original grain structure, b) α-grains of the structure, c) β- 
                   grains of the structure, d) α-grain size distribution, e) β-grain size   
                   distribution. 
 

(d) (e) 
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Figure 3.9 Ti-6Al-4V tensile tested samples compared with the original(untest)  
                  sample. Test conditions are tabulated on the left side and the tensile  
                  elongations are tabulated on the right side. 

Figure 3.8  Stress-Strain curves of as processed Ti-6Al-4V. The tests were conducted  
                   at 700ºC and 800ºC with strain rates of 10-3s-1 and 2x10-4s-1. Two two-step  
                   strain rate tests were also conducted at 800ºC with initial strain rate of 10-3s-1  
                   pulled to strain 0.9 and 1 and lowered strain rate of 2x10-4s-1 pulled to failure.  
                   Extensive strain hardening was observed in each test condition. 
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(a) 

(b) 

Figure 3.10  Flow stress versus strain rate curves of as processed Ti-6Al-4V at a) 700°C  
                     and b)  800°C in different strain ranges. 
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(a) 

(b) 

Figure 3.11  The value of m of the as-processed Ti-6Al-4V in different tensile strain  
                      rates tested at a) 700ºC and b) 800°C in different strain ranges.    
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       5cm 

Figure 3.12  Photo of the dome formed on theTi-6Al-4V thin sheet at 700ºC. The diameter of  
                     the Ti-6Al-4V disc is 25mm and the diameter of the dome formed in the center is 
                     13.5mm. 
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Figure 3.13 SEM images of the microstructure of the Ti-6Al-4V tensile samples. a) and c) the grip  
                    area of the samples tested at 800°C for 200 and 82 minutes, which represented the  
                    static grain growth of the material. b) the gauge section of the sample tested at 800ºC  
                    at strain rate of 2x10-4s-1 for 200 minutes which shows the dynamic grain growth. d)  
                    and e) the gauge sections of the sample tested at 800°C with 2 step strain rates ( 10-3s-1   
                    to ε  = 0.9 then 2x10-4s-1 to failure). The alpha and beta grains are circled by the  
                   dotted lines. 

(a) (b) 

(e) (d) 

(c) 
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Figure 3.14 (a) Static and dynamic grain growth in the grip(static) and   
                     gauge(dynamic) sections of Ti-6Al-4V tensile sample  
                     after tested at 800ºC .The grain sizes of as-received and  
                     as-processed Ti-6Al-4V are plotted as t=0.(b) Log-log plot  
                     of the grain size versus time curves. The slopes of each growth   
                     line give the dynamic/static growth exponent (n) of the material. 
 

(a) 

(b) 
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Chapter 4 

 
 

Improved plasticity and strengthening in Ti-6Al-4V 
 via biaxial extrusion 

 

 

 

Abstract 

A novel deformation technique, namely biaxial extrusion, is applied to the Ti-6Al-4V 

billet to convert the original billet form into sheet form. The deformation includes 

shearing and extrusion along all radial directions of the extrudate. The strain input in the 

work piece is variable and depends upon the ratio of radius of the billet and thickness of 

extrusion gap and to some extent how much material extruded. Microstructure of the 

extruded Ti-6Al-4V showed equiaxed fine grains with diameter ~0.7μm. Tensile tests 

done on the processed Ti-6Al-4V sheet showed improved yield strength (1513MPa) over 

conventional alloys and high ductility (724% elongation at 800ºC, 2x10-4/s). 
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4.1 Introduction 

Several severe plastic deformation (SPD) techniques have been developed in past few 

decades and showed great promise to improving mechanical properties of metal materials. 

The idea of SPD is to impart heavy strain into materials and promotes grain subdivision 

thus refines the microstructure of the material. The grain boundary subdividing the grains 

in the process of deformation can be categorized into two types; geometrically necessary 

boundaries and incidental dislocation boundaries [1]. In severe plastic deformation, many 

geometrically necessary boundaries were created and helped refine the grains. Common 

SPD techniques include hot extrusion [2, 3], equal channel angular extrusion or pressing 

(ECAE/ECAP) [4-14], high-pressure torsion (HPT) [15, 16, 17], alternating roll-bonding 

(ARB) [18], and conventional rolling [19, 20, 21].  In those processes, ECAE is the most 

promising technique since it could repeatedly impart plastic deformation into materials 

without changing the original shape of the sample. However, this is also the limitation of 

the ECAE since it could only produce samples in billet forms. Some studies have been 

made in the ECA-rolling [22-24], or ECAR, which can produce samples in sheet forms 

and eliminates the labor-consuming reloading processes in the conventional ECAE 

process for ECAR’s semi-continuous nature. This new technique creates an opportunity 

to obtain ultra-fine grained materials in sheet forms but still, could not directly transform 

billets into sheets. High pressure torsion usually gives very fine grains in materials down 

to nano-meter scale. In Sergueeva et al. study,  Ti-6Al-4V samples with grain size of 200-

300nm is produced via HPT process, which poses very high ductility at elevated 

temperature ( 676% elongation at 725ºC ). Although the success of HPT in improving the 
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material property is unquestionable, owing to its high pressure necessity, HPT can only 

produce samples with limited sizes (< 20mm in diameter). Large samples which meet the 

industrial needs is still unavailable. Rolling is often used in the industry for mass 

production of sheet metals and can also impart heavy deformation in the material. 

Textures, however, are often introduced into the material from the rolling process [19, 21] 

and lead to anisotropy. The ARB process adapted by Daisuke et al. [18] can eliminate the 

texture build-up and property anisotropy from the conventional rolling process. The 

processed C.P Ti has very fine grained microstructure (~100nm) with high yield strength 

(~900 MPa). Nevertheless, the process requires many steps and is very time-consuming.  

 

The authors recently developed a novel SPD process, namely Biaxial Extrusion [25], 

which can overcome the limitations faced by the conventional SPD techniques mentioned 

above. With the biaxial extrusion route adapted in this new technique, work piece in sheet 

form could be produced from billets/rods in a single extrusion process with very high 

strain input and extensive grain refinement. The shear strain experienced from the 

process is no less than 5 in one extrusion and the extrusion direction is biaxial, which 

means the shear is in 360º. In other words, the strain input in one biaxial extrusion would 

equal to strain input in 5~10 runs of ECAE in route B and route C. A two-pieces circular 

die set is used in the extrusion process. As shown in Fig 4.1a, Two 5 inch diameter H-13 

steel round blocks (upper block, 5 inch diameter x 3.5 inch tall and lower block, 5 inch 

diameter x 1.5 inch tall) were clamped together by six high strength steel bolts with a thin 

gap kept in between blocks to allow the work piece to flow. The thickness of the gap is 

controlled by the thickness of the washers put on the steel bolts and could be varied to 
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adjust the thickness of the sheets to be formed. In the extrusion, work piece is put at the 

bottom of the hole in the upper block and load is gradually applied to the work piece 

through several one-inch diameter punches. In the loading process, work piece would 

flow into the gap in 360º directions and forms a round disk/sheet with the thickness of the 

gap. To keep the edge of the work piece from cracking, a sacrificial washer is required to 

constrain the work piece in order to provide hydrostatic compression force during the 

extrusion process. This washer is very ductile and softer than the work piece so it can 

expand to a greater extent and still provide enough hydrostatic compression to the work 

piece. Fig 4.1b. shows the top view of the lower block of the biaxial extrusion die. The 

work piece sits in the one inch circle in the center and flows to 360º directions upon 

extrusion. Six shaded round circles represent where the bolts sit and these bolts would 

constrain the flow of the work piece. The limit of the flowing path of the work piece in 

the current die design is 3.5 inch (distance between the two pairing bolts). Further 

expansion of the work piece is blocked by the surrounding bolts; this limitation can be 

improved if larger die is used. The unique biaxial extrusion route could promote the 

activations of various slip planes parallel to the extrusion directions in 360 degrees. These 

slip planes were activated when work piece exited from the center hole and slips in 

different directions would intersect each other, as illustrated in the schematic in Fig 4.2. 

The multi-slips planes activated from the biaxial extrusion are different from the ECAE 

process where only one pair of slip planes are activated from each extrusion process 

(details shown in Appendix 4A). These biaxial slip motions help promote uniform strain 

distribution and lead to finer equiaxed grain structure.  
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4.1.1 Numerical calculation of deformation strain in biaxial extrusion  

Samples experience both shear and expansion strains in biaxial extrusion process. The 

shear strain can be calculated by analyzing the strain of a single element of the work 

piece shown in the schematic in Fig 4.3. Element given by abcd represents the sample 

before extrusion. Element given by aefb represents the sample after extrusion. Notice line 

gb and bi are perpendicular to lines dc , ab and ef.  r =the radius of the sample and t = 

thickness of the gap. The shear strain experienced by the sample is given by γ = dc/gb, 

where dc = rsecθ and gb = r sinθ. Therefore, the shear strain is: 

                                                   γ = 1/sinθcosθ                                                                 (1)                                                                     

Where θ = tan-1 t / r. 

Consider the von Mises effective strain, the strain from the extrusion is: 

                                                 ε1 = 1/ 3  sinθcosθ                                                       (2) 

The strain from the expansion can be simply determined by the radius difference of the 

sample in two directions.  

                                                    ε2 = 2ln ( r / ro)                                                               (3) 

where r = final radius of the extruded disk, ro = original radius of the sample 

Assume Δh of the original sample has been pressed down, a corresponding disk with 

equal amount of volume should be extruded out: 

                                                      trrh 22
0 ππ =∆                                                               (4)  

So                                                   
t
h

r
r ∆
=

0

                                                                  (5) 

Plug equation (5) into equation (3) then we have 
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                                                     ε2 = ln ( Δh / t )                                                             (6) 

The total strain experienced in one extrusion run is simply the summary of ε1 and ε2                                                         

                                       εtotal = ε1 + ε2 = 1/ 3  sinθcosθ + ln ( Δh / t)                            (7) 

Plots of ε1,  ε2  and εtotal with different r, t and h values are shown in Fig 4.4.  It is clear 

that with higher r / t ratio, higher shear strain could be obtained (Fig 4.4 (a)). The strain 

from expansion ε2 is plotted in Fig 4.4(b) with different sample height and gap thickness. 

It appears that strain increases with the sample height but decreases with larger gap. 

Though the εtotal is combined with ε1 and ε2, the final strain is mostly contributed from ε1 

since its value is much greater than ε2.  In the current study, the gap is kept at 0.04 inch 

and the radius of the sample is 0.5 inch. For the sample with original height of 0.5 inch, 

the overall strain input is 9, based on the plot (Fig 4.4(c)). Fig 4.4(d) shows the final 

strains of the extruded disks with different initial sample radius.  

The strain input in work piece in ECAE is about 1.15 per pass and is relatively lower than 

the strain input in the biaxial extrusion. Detailed strain calculation of ECAE is tabulated 

in Appendix 4A. 

   

Titanium is favored in a large variety of applications from aerospace to sports wares for 

its high specific strength and good corrosion resistance. However, like other HCP metals, 

titanium lacks ductility at room temperature and most of the Titanium products are 

formed by casting and mechanical machining. In order to enhance the formability and 

strength of Titanium, extensive studies [4-24] have been made to introduce severe plastic 

deformation into Titanium alloys which lead to fine grained structure and enhanced 
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ductility or even superplasticity in elevated temperature. Many techniques were used to 

impart SPD into raw titanium alloys; among those, ECAE [4-14] is the most common and 

successful technique for its design simplicity and experimental repeatability. Other severe 

deformation techniques includes high pressure torsion [15-17], isothermo compression 

[18] and  rolling [19]. In this study, we tried to apply SPD into Ti-6Al-4V via biaxial 

extrusion process since up to date, no SPD process has been made to directly transform 

billet Ti-6Al-4V into sheet form. The reason Ti-6Al-4V was chosen here is that it is the 

most common Ti alloys used in the titanium industry and it can acquire large varieties of 

microstructures with different α morphologies, depending on thermal-mechanical 

treatments. Also, the fine plate-like α phase in β heat treatment Ti-6Al-4V helps break up 

the coarse grains into fine equiaxed grains during the elevated temperature SPD process. 

Metallographic analysis has been done on the raw and extruded Ti-6Al-4V to understand 

the microstructure evolution. Room temperature tensile tests were also done on the 

processed Ti-6Al-4V to obtain mechanical properties. 

 

4.2 Experiment. 

A 0.75 inch diameter x 0.65 inch tall Ti-6Al-4V rod was used in this study. The Ti-rod 

was first heat treated to 1050ºC for 1 hour and water quenched. After heat treatment, the 

Ti-rod was put into a 0.125 inch thick soft steel tube with height same as the Ti-rod and 

with 1 inch out side diameter as shown in Fig 4.5. Two washers were attached to the 

bottom of the tube to provide hydrostatic pressure during the extrusion; one steel washer 

with 1.5 inch inner diameter and 2 inch outer diameter and one aluminum washer with 

2.5 inch inner diameter and 3 inch outer diameter, both washers have the same thickness 
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of 0.1 inch. The extrusion was done at 500ºC with very high load (~330,000lbs). One 

problem commonly faced by the extrusion processes is the friction between work piece 

and the inner wall of the die. Large friction force may result in local shearing which 

favors the goal, however, in the processing of high strength materials such as Ti-6Al-4V, 

too much load on the punches and dies may cause unwanted deformations. To avoid the 

friction problem, proper lubrication is needed. To allow the lubricant to flow into the die 

and separate the sample and punches from the die, a 0.003 inch gap is created in between 

the sample, punches and the die. Fig 4.6 shows how the Ti-6Al-4V work piece and 

punches were assembled in the die. Due to the nature of high temperature processing 

environment, PVA and boron nitride powder mixture was used for lubricant.  

After biaxial extrusion, a two inch diameter x 0.11 inch thick Ti-6Al-4V round disk was 

obtained as shown in Fig 4.7. The cumulated strain of the extruded Ti-6Al-4V disk is 

4.13. 

 

4.3 Microstructure evolution 

Metallographic pictures were taken from the as heat treated and as extruded Ti work 

piece. The samples were first mounted in the Kold mount self curing resin and ground 

with sand paper to grit 4000. A 0.3 μm colloidal silica was used for polishing.  

Titanium is categorized in three classes due to its unique dual phase composition; alpha 

alloys, alpha-beta alloys and beta alloys. Alpha alloy have mostly alpha phase with little 

or no beta grains. Alpha-beta alloys have both alpha and beta phases in the alloy with 

different volume fractions, the volume of alpha and beta phases could be controlled by 

heat treatment or alloy additions. Beta alloys have mostly beta phase retained from the 
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solution treatment. The phase compositions or the classes of the alloys heavily depend on 

the element additions to the alloy. Elements like Zr, niobium, and iron are known as beta 

stabilizers. Addition of these elements to the titanium lowers the alpha-beta 

transformation temperatures and thus, more beta phase could be retained. Elements like 

Aluminum, Sn are well known alpha stabilizers and could raise the alpha-beta 

transformation temperatures and lead to higher alpha content in the resulting alloy. Ti-

6Al-4V contains 6 wt% aluminum and 4 wt% Zr, which are alphas and beta stabilizers, 

and make Ti-6Al-4V an alpha-beta alloy with mixed alpha and beta phases in the matrix. 

The microstructure manipulation of Ti alloys mainly depends on the beta  alpha 

transformation while cooling from the alpha-beta transformation temperature. Many 

different phases take various forms in metallography and also effect the alloy properties. 

For examples, equiaxed morphologies would have the advantage in ductility and 

formability. Acicular morphologies have the advantage in fracture-toughness and stress-

corrosion resistance [27].  Fig 4.8a shows the microstructure of Ti-6Al-4V after β treated 

at 1100ºC for 1 hour. The heat treated Ti-6Al-4V showed a famous widmenstätten 

structure with transformed β phase (acicular α). The thin plate-like ά are well distributed 

inside the large β grain. These dual phase structure is beneficial for the further thermal 

mechanical processing since the plate-like ά phase is already very thin and would help 

break down  the large β grains. The transformation mechanism from widmenstätten 

structure into fine equiaxed α+β structure can be categorized into two types as suggested 

by Ding et al. [26]. The first mechanism involves the formation of both low and high 

angle grain boundaries across α plate and followed by the penetration of β phase along 

the sub-boundaries. The second mechanism is associated with the localized shearing and 
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rotation in the α plates and β phase would penetrate along the shearing band in the α 

plates and break them into smaller segments. Fig 4.8b shows the break downs of original 

α plates and the protrusion of β phase into α dendrites. In higher strain level, most of the 

α phase arms have been turned into rounded segments as shown in Fig 4.8c. Long 

acicular α were sheared into small segments and would later on turned into fine equiaxed 

grains. With highly imposed strain and continuous breaking up of α plates and β grains 

during the extrusion process, very fine equiaxed α+β phase could be obtained as shown in 

the SEM image in Fig 4.8d.The average grain size of the biaxial processed Ti-6Al-4V is 

~0.7μm.  

 

In the TEM image, as shown in Fig 4.9, many individual grains show high angle grain 

boundaries as circled by dotted lines. The grain fragments shown in the figure are no 

more than 200-300nm. The circled α grains are believed to be the segments of the 

original α plates broken up by the surrounding β grains and have distinct orientations and 

sharp boundaries. The surrounding β grains have a high dislocation density, which 

indicates that more severe deformations have been imparted in the β grains during the 

segmentation of the α phase. The higher dislocations density in the β grains suggested 

that more deformation strain have been accommodated by the softer β phases than α 

phases [25] or more slip systems are readily activated in BCC β phase than HCP α phases. 

The volume fraction of β phase content calculated from the TEM images is ~21 vol%.  
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4.4 Mechanical test 

Room temperature tensile samples with 3mm wide x 12.7mm long gauge section were 

machined from the as-extruded Ti-6Al-4V work piece. The tensile samples were ground 

and polished before testing to eliminate any defects on the gauge section. Instron 450 

machine was used for the tensile test with constant strain rate of 0.5 mm/minute. Strain 

was directly measured from the gauge section of the sample with the 0.5 inch extensile 

meter. The test result is tabulated in Fig 4.10. It can be clearly seen that the work piece 

after biaxial extrusion has much higher yield strength (1513MPa) than the commercial 

grade Ti-6Al-4V. The elongation of the extruded work piece is however, little less than 

the commercial grade Ti-6Al-4V. The increase in strength is most likely attributed to the 

grain refinement during the extrusion process. 

 

High temperature tensile tests were conducted at 800ºC and 700ºC with constant strain 

rate equals 2x10-4/s. The samples were machined from the extruded Ti-6Al-4V disk with 

gauge width=3mm and gauge length=6.35mm (0.25 inch shoulder to shoulder distance). 

Tests were done with the Instron 4505 test machine with a clamshell 3-Zone heating 

furnace. Temperature variation of the tests was controlled within ± 3ºC. Boron Nitride 

was coated on the samples before tests to avoid contact with air. Surfaces of the samples 

were polished to remove damages from machining. Fig 4.11 shows the stress-strain 

curves of the tests. Low flow stress was found in the sample tested at 800ºC with 

maximum flow stress less than 15 MPa. The sample tested at 700ºC has much higher 

flow stress, up to 150 MPa and showed strong strain hardening before the flow stress 

reached its peak. Superplasticity were found in both samples tested at 800ºC and 700ºC 
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with 724% and 425% elongation, respectively as shown in Fig 4.12. Both samples 

showed diffusion necking with no sign of brittle fracture.  

 

The high ductility of extruded Ti-6Al-4V can be attributed to its high m value determined 

by the decrement strain rate test with starting strain rate 10-3s-1 and lowest strain rate 

5x10-5s-1. The following equation is used to calculate m values. 

m = dlog(σ)/dlog(έ)                                                                                                           (5) 

The decrement strain rate test results are tabulated in Fig 4.13. Highest m value is 

measured at strain rate ~10-4s-1 where m = 0.42. The high m value in low strain rate 

region corresponds to high elongation (724%) in sample tested at strain rate 2x10-4s-1.  

 

4.5 Conclusion  

Biaxial extrusion was successfully demonstrated on the Ti-6Al-4V work piece. The 

extrusion temperature was relatively low (500ºC) and the one step processing prevented 

Ti-6Al-4V work piece from heavy surface oxidation, which is usually encountered by the 

repetitive processing at high temperature. The microstructure of the extruded work piece 

showed equiaxed α + β phase with average grain size less than 1μm. The fine-grained 

structure of the biaxial extruded Ti-6Al-4V work piece is similar to the Ti-6Al-4V work 

piece processed by 4-8 passes by ECAE [10,14] (route B). Processed Ti-6Al-4V with fine 

grain size less than 1 μm usually exhibit improved strength and good ductility. The Ti-

6Al-4V disk processed by Sergueeva [17] with HPT has fine grain structure with 100-200 

nm grain fragments. The highest elongation reached 676% at 725ºC with test strain rate 

equals 10-3/s. Ti-6Al-4V work piece processed by multi-stage forging by Patankar [28] 
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has grain size 0.3μm-0.8μm and exhibits high yield strength (1190MPa) and high 

Ultimate strength (1238MPa). An elongation of 474% was obtained on Ti-6Al-4V work 

piece processed by Ko et al. [7] after ECAE. The grain size of was refined to 0.3μm. 

Compared to the Ti-6Al-4V work pieces processed in different techniques listed above, 

the Ti-6Al-4V processed by the biaxial extrusion has higher yield strength exceeding 

1513 MPa. Also, the elongation of biaxial extrusion processed Ti-6Al-4V have higher 

ductility (724%). The mechanical properties of biaxial extrusion processed Ti-6Al-4V 

demonstrated that this new processing technique is an efficient SPD method with good 

potential for metal processing technology. 
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Figure 4.1 Schematic of (a) biaxial extrusion process and (b) cross section of the lower block.  
                  upper block is clamped with the lower block by the bolts and the gap in between is  
                  controlled by the thickness of the washers. The load is applied to the punches and  
                  the punches press on the work piece. Upon yielding, the work piece would flow  
                  from the center hole to the gap between the upper piece and the lower piece and  
                  form a circular disk. The black arrows in (b) indicated the flow directions of the  
                  work piece upon extrusion. The free flowing distance is 3.5 inch from the edges of  
                  two pairing bolts. The optimal size of the sample is 3.5 inch in diameter. 
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Figure 4.2 Schematic diagram of the work piece extruded from the biaxial extrusion die.  
                  Different shearing planes were activated and intersect each other along the extrusion  
                  process. 
 

Extrusion directions 
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Figure 4.3 Schematic of the shear strain input of the biaxial extrusion die.  
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Figure 4.4 (a) Strain ε1 (equation 2) applied to the extruded sample with different r (hole radius) and t  
                 (gap thickness) values. (b) Strain from extruded sample expansion ε2 (equation 6) with  
                 different Δh (change in sample height) and t values. (c) Total strain input to the sample εtotal  
                 (equation 7).  
                    

(a) (b) 

(c) (d) 
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3”O.D Al 
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Figure 4.5 Schematics arrangement of the Ti work piece. A 0.75 inch I.D x    
                  0.65 inch tall cylindrical Ti was encapsulated inside a 0.125 inch thick   
                  steel tube. Two pieces of 0.1 inch thick steel and Al washers were  
                  attached to the bottom of the tube to provide circumferential constraint to  
                  the Ti work piece and prevent the edge cracking.  

PVA mixture 

Ti 

0.003 inch 
round gap 

Figure 4.6 Schematic illustration of the arrangement of Ti-6Al-4V work piece in the biaxial  
                  extrusion die. The diameter of the punches and the work piece is reduced 0.003 inch  
                  to create a gap between them and the inner wall of the die such that PVA mixture 
                  could be filled in. The PVA-BN mixture works as lubricant during the extrusion   
                  process.  

Steel tube 
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Figure 4.7 Photo image of  Ti-6Al-4V piece after biaxial extrusion. An approximate 2 inch  
                  diameter Ti flat disk with thickness of 0.11 inch is clamped inside the steel and Al  
                  washers. Both steel and Al washers were stretched out by the extruded Ti. Steel                 
                  washer failed at a certain point during the extrusion process while the Al washer held  
                  the most of the compression stress to the Ti-6Al-4V piece till the end of the run. 
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Ti 
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Figure 4.8 (a) SEM image of the heat treated Ti-6Al-4V. Widmenstätten structure with  
                  transformed β (acicular α)  are shown in the matrix. (b) SEM image of processed   
                  Ti-6Al-4V shows the original acicular α started to break up.(c) Further thermo- 
                  mechanical deformation broke α dendrites into small round segments (d) SEM  
                  image of the extruded Ti-6Al-4V. The longitudinal strain is 2.7. A uniformly  
                  dispersed β and α grain are shown in the matrix. The average grain size is 0.7 μm. 
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Figure 4.9 TEM image of extruded Ti-6Al-4V work piece. The β grains have higher dislocation  
                  intensity which indicates that higher deformation is attained in the softer β grains.  
                  Both α and β grains appear to be exuiaxed and uniformly distributed. The β grains  
                  occupied 75.2 % volume of the matrix. The TEM image only shows partial grains  
                  corresponding to its diffraction angle. 
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Figure 4.11  High temperature tensile tests on Ti-6Al-4V with strain rate equals 2x10-4/s.  The  
                     flow stress of the sample tested at 800ºC is very low (<15MPa) compared to the  
                    700ºC tested sample. 
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Figure 4.10 Room temperature tensile properties of commercial Ti-6Al-4V and Biaxial  
                    extruded Ti-6Al-4V. The yield strength of extruded Ti-6Al-4V increased 563  
                    MPa than the commercial Ti-6Al-4V but has less ductility (strain = 12% ). 
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Figure 4.12 Photo image of the high temperature tensile tested Ti-6Al-4V samples.  



 90 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.13 Measurement of strain rate sensitivity from decremented train rate test at  
                    750ºC.  m value of biaxial extruded Ti-6Al-4V show increased value in low  
                    strain rate  region with highest m = 0.42 at strain rate 0.0001s-1. 
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Appendix 4A 
 
 

 
Strain input in ECAE process. 

 
 

ECAE is the most common SPD process used so far. The extrusion process is 

demonstrated in Fig 4A1. The billet abcd is pressed through the shear plane from original 

channel to the channel with the same cross section with angle 2φ to the original channel. 

The square shape of the billet abcd is turned to a diamond shape aˊbˊcˊdˊ.   The shear 

strain imparted in the billet would be: 

 
                                                     φ=2 cot φ                                                                   (A1) 
 
The Von Mises effective strain is then: 
 
                                                    ε = 2/ 3  cot φ                                                            (A2)                                                           
 
The angle φ is usually 45 degree and the strain per pass ECAE is 1.15. 

However, there are still other factors still need to be counted for such as friction and 

radius of the die corner, which all have effects on final strain.  

Different processing routes also triggers different slip planes in the billet as shown in Fig 

4A2. In route A, the billet is not turned so two slip planes would be activated and 

intersect on the Y axis. In route B, the billet is turned 90 degrees between passes so 

different slip planes would be activated along the X axis. In route C, the billet would be 

turned 180 degrees between passes so basically only one slip plane would be activated 

but with alternating slip directions. 
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Figure 4A1. Schematic diagram of the ECAE process adopted from ref [29]. The  
                     element abcd is passed through the shear plane and become element    
                     aˊbˊcˊdˊwith equivalent volume.  

Figure 4A2. Schematic illustrations (adopted from ref [30]) of the slip planes    
                     activated in different routes during ECAE process. 
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Chapter 5 

 

Processing of ZK60 and Fabrications of  
Mg-based materials through Biaxial Extrusion  

 

 

 

Abstract 

Biaxial extrusion is a novel severe plastic deformation (SPD) technique, by which 

materials in billet form is turned into round sheets. In this study, ZK60 billets processed 

through biaxial extrusion were turned into flat sheets with extensive grain refinements in 

relatively low deformation temperatures (150ºC-220ºC). The tensile tests done on the 

extruded ZK60 showed improved yield strength and good ductility. Also, with this 

unique processing technique, different types of Mg-based composite (Mg-Al) and alloys 

(Mg-Y2O3 and Mg-B) were successfully fabricated. Fine grain structures were observed 

in these Mg-based materials with good mechanical properties. 
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5.1.Introduction. 

It is well known that the mechanical properties of metals can be improved through grain 

refinement. Of all grain refinement methods studied so far, severe plastic deformation 

(SPD) has been proved to be the most efficient way to achieving fine grain structure,  or 

sometimes even ultra-fine grain structure (grain size < 1μm). Various SPD processing 

techniques have been developed in the past few decades such as equal channel angular 

extrusion (ECAE) [1-3], high pressure torsion (HPT) [4,5], and hot rolling[6]. It is always 

of interest to process metal sheets with good mechanical properties. However, ECAE 

processes could not give final products in sheet form and HPT could not produce samples 

in large scale (sample size ~15mm diameter). The only choice left for sheet processing is 

rolling, but strong textures are developed.  

A novel technique, namely biaxial extrusion, is recently adopted to directly transform 

billets into sheets and impart heavy deformation along the process. With this new process 

technique, metal sheets with good mechanical properties can be produced with little 

texture developed. A schematic illustration of biaxial extrusion is shown in Fig 5.1. 

 

A two-piece circular die set are used in the extrusion process. As shown in Fig 5.1a, Two 

5 inch diameter H-13 steel round blocks( upper block, 5 inch diameter x 3.5 inch tall and 

lower block, 5 inch diameter x 1.5 inch tall ) was clamped together with six high strength 

steel bolts. A thin gap was kept in between blocks to allow the work piece to flow and 

expand. The thickness of the gap was controlled by the thickness of the washers put in 

between the blocks. Thickness of the washers is adjustable, so the thickness of the 

extruded work piece is also changeable according to the thickness of the washers. In an 
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extrusion run, work piece was put at the bottom of the upper block while load was 

gradually applied to it. Work piece would be extruded into the gap between upper and 

lower block and flow into all directions, as shown in Fig 5.1b, and forms a round 

disk/sheet. The bolts around the edge of the blocks (gray circles in Fig 5.1b) limited the 

growth of the work piece since the work piece would touch the bolts while it expands out. 

The shortest distance between two facing bolts is 3.5 inch so the largest diameter a work 

piece can grow is 3.5 inch. This limitation could be improved if a larger die is used.  

 

Fig 5.1c shows shear planes that were activated in work piece when work piece was 

extruded out from the upper block. Multiple shear planes were activated along their 

corresponding extrusion directions and intersected each other. A more uniform strain is 

believed to be developed from the slip intersections. Samples experience both shear and 

expansion strains in biaxial extrusion process. The shear strain can be calculated by 

analyze the strain of a single element of the work piece shown in the schematic in Fig 

5.1(d). Element given by abcd represents the sample before extrusion. Element given by 

aefb represents the sample after extrusion. Notice line gb and bi are perpendicular to lines 

dc , ab and ef.  r =the radius of the sample and t = thickness of the gap. The shear strain 

experienced by the sample is given by γ = dc/gb, where dc = rsecθ and gb = r sinθ. 

Therefore, the shear strain is: 

                                                   γ = 1/sinθcosθ                                                                 (1)                                                                     

Where θ = tan-1 t / r. 

Consider the von Mises effective strain, the strain from the extrusion is: 

                                                 ε1 = 1/ 3  sinθcosθ                                                       (2) 



 99 

The strain from the expansion can be simply determined by the radius difference of the 

sample in two directions.  

                                                    ε2 = 2ln ( r / ro)                                                               (3) 

where r = final radius of the extruded disk, ro = original radius of the sample 

Assume Δh of the original sample has been pressed down, a corresponding disk with 

equal amount of volume should be extruded out: 

                                                      trrh 22
0 ππ =∆                                                               (4)  

So                                                   
t
h

r
r ∆
=

0

                                                                  (5) 

Plug equation (5) into equation (3) then we have 

                                                         

                                                     ε2 = ln ( Δh / t )                                                             (6) 

The total strain experienced in one extrusion run is simply the summary of ε1 and ε2                                                         

                                       εtotal = ε1 + ε2 = 1/ 3  sinθcosθ + ln ( Δh / t)                            (7) 

In the current study, the gap is kept at 0.04 inch and the radius of the sample is 0.5 inch. 

For the sample with original height of 0.5 inch, the overall strain input is 9 based on 

equation (7).  

The goal of this study is to examine ZK60 magnesium alloy and Mg-based materials 

(Mg-Al, Mg-Y2O3 and Mg-B) processed through biaxial extrusion. Chapter 5A describes 

the process of ZK60 and chapter 5B describes the process of Mg-based composite and 

alloys.  

 

5A. Severe deformation of ZK60 via biaxial extrusion. 
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ZK60 is a commercial magnesium alloy with high yield strength compared to the other 

Mg alloys. The high strength in ZK60 is mostly attributed to its well distributed Zn2Zr3 

and Mg2Zn3 particles. The usual yield strength of cast ZK60 is close to 300MPa and can 

be increased by thermo-mechanical processing. Since magnesium is one of the lightest 

metals, it is desirable to use magnesium in applications that requires light weight. Also, 

with thermo-mechanical processes, magnesium parts can give good stiffness and strength 

and fit in applications that usually require uses of heavier metals. Many studies have been 

made to process magnesium alloys in hope to find a better processing route to increase 

the strength and ductility.  

 

Severe plastic deformation (SPD) is one promising processing technique to increase the 

strength and ductility of metals. SPD process reduces the grain size of the original 

material and imparts heavy strain into the crystal hence the strength of the material could 

be greatly increased. Many SPD processes [7-9] have been done on ZK60 alloys to 

produce ultra-fine grained crystals with high strength and ductility. However, no study 

has yet been made to fabricate ZK60 sheets directly extruded from ZK60 billet. In this 

study, the biaxial extrusion process was done on the raw ZK60 billet (cut from cast ZK60 

plate) with three different processing temperatures (150º, 180ºC and 220ºC). 

Microstructure evolution and mechanical properties of extruded ZK60 sheets were 

studied. The original grain size of raw ZK60 billet is 6.3 μm. After the extrusion process, 

the grain size of the extruded ZK60 sheets was reduced to ~ 1 μm, and the mechanical 

properties of extruded ZK60 was greatly improved. Superplastic behavior was also 

observed in the extruded ZK60 through high temperature tensile test.  
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5A.1 Experiment 

Three 0.75 inch tall x 1 inch diameter ZK60 cylinders were machined from a 1 inch thick 

ZK60 plate (as shown in Fig 5.2) for the biaxial extrusion. Two 3003 Al sacrificial 

washers were used to provide hydrostatic forces to the work piece during the extrusion. 

Three different extrusion temperatures were used for processing; 150ºC, 180ºC and 

220ºC. Fig 5.3 (a) shows the microstructure of raw ZK60 work piece,(b),(c)and (d) show 

the ZK60 work piece extruded at 150ºC, 180ºC and 220ºC, respectively. These extruded 

ZK60 have the same thickness of 0.08 inch with different diameters. The diameter of 

150ºC, 180ºC and 220ºC extruded ZK60 pieces are 2.83 inch, 2.67 inch and 3.38 inch, 

respectively and the cumulative strains are 7.92, 7.8 and 8.27, respectively. Flow lines 

can be seen on the surfaces of the extruded ZK60 work pieces as shown in Fig 5.3. These 

flow lines are clear indications of flow directions of the work piece during the extrusion 

process, start from one inch center and radiate out in all directions. Work piece extruded 

at 180ºC showed a crack on the bottom edge. This edge crack happened at the place 

where the constraint Al washer had early failure during the expansion thus no hydrostatic 

pressure was applied to this region. Possible flow instability caused the work piece to 

crack along the edge.  

 

5A.2 Microstructure evolution 

Microstructure samples were sectioned from both extruded and raw ZK60 work pieces. 

The sectioned samples were mounted in the self-curing resin, ground with sand papers to 

4000 grit and polished with 0.3μm colloidal silica. Picrial acid (1.26 mg picric acid, 3ml 

de-ionized water, 3ml acetic acid and 70ml ethyl alcohol) was used to reveal the grain 
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boundaries of the samples. The microstructures of the raw and as-extruded ZK60 samples 

in different extrusion temperatures are tabulated in Fig 5.4. The raw ZK60 shows 

bimodal grain structure with large grains sized more than 60 μm and small grains size 

about 6 μm. After biaxial extrusion, many large grains were broken into small grains. 

Heavy twinnings are shown in the samples with lower extrusion temperatures (150ºC and 

180ºC as indicated by the arrows in Fig 5.4 (b) and (c)). It is believed that less recovery 

happened at lower temperature and forced twinning to accommodate the deformation 

strains. These twinnings happened mostly at the large grains at low deformation 

temperature. Also, more grain fragmentations were observed in the samples extruded at 

lower temperature. Volume percentage of the fine grained area in samples increased after 

the biaxial extrusion, as shown in the chart of Fig 5.5. The original small grain area 

constitutes 61% volume in the raw ZK60. After biaxial extrusion, the volume of the small 

grain area increased to 74%, 73% and 76% in 220ºC, 180ºC and 150ºC samples. The 

average grain size of the large grains reduced from 63μm in raw ZK60 to 36μm, 32μm 

and 29μm in 220ºC, 180ºC and 150ºC extruded samples. The average grain size of the 

small grains reduced from 6.3μm to 1.92μm, 1.86μm and 1.57μm in 220ºC, 180ºC and 

150ºC extruded samples, respectively. From the numbers shown above, it is evident that 

lower extrusion temperature encouraged the grain subdivision and helped increase 

microstructural uniformity.  

 

Fig 5.6 shows the TEM image of microstructure of ZK60 work piece extruded at 150ºC. 

Small individual grains were circled with dotted lines. Many small grains less than 500 

nm were found in the microstructure and heavy dislocations can be seen in some of the 
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larger grains. These dislocations generated in larger grains increased the shear 

requirement in deformation, thus increased the overall strength of the sample. Heavy 

dislocations are usually generated in magnesium samples deformed at low temperature 

because with deformation temperature higher than 300ºC, recrystallizations are likely to 

happen and eliminate the dislocations in the grains. 

 

(0002), (10
−
10) and (10

−
11) pole figures were done on both unprocessed ZK60 and 150ºC 

extruded ZK60 ( as shown in Fig 5.7 and Fig 5.8) with Rigaku rotating anode X-ray 

diffractionmeter tilting from 15 to 85 degrees. The original diffraction patterns had been 

processed by “POPLA” to correct the misalignments and drop in intensity on the edge of 

the sample. The image processing details are postulated in Appendix 5A. The X-ray 

source was Cu-Kα radiation at 30Kv and 100mA. The unprocessed ZK60 has some 

texture developed from the previous forming process (extrusion) in both (0002), (10
−
10) 

and (10
−
11) poles. The highest intensity is 14.94. After biaxial extrusion, though the 

texture on (0002) basal pole was still developed parallel to the extrusion direction, the 

intensity dropped to 7.89 with broad texture pattern. Also, the textures on (10
−
10) and 

(10
−
11) poles have greatly been reduced and broadened out. It is believed that the biaxial 

extrusion with multiple slip directions develops very little texture on the sample or can 

even reduce the inherited textures from previous forming processes.  

 

5A.3 Mechanical test 
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Room temperature tensile samples were machined from the extruded ZK60 sheets. The 

strain rate is set at 0.5mm/minute. Test results are tabulated in Fig 5.9. It is worth 

noticing that both specimens extruded at 150ºC and 180ºC showed very high yield 

strength (355MPa and 290MPa). Specimen extruded at 220ºC has relatively lower yield 

strength of 180MPa. The yield strength increases with lower extrusion temperature. The 

result matches the finding in the microstructures since lower temperature extruded work 

pieces have smaller grains and higher volume percentage of fine grained area.  

 

 Both 150ºC and 220ºC samples have good room temperature ductility (fracture strain 

~15%). This high ductility is rarely seen in the commercial ZK60 (~7% fracture strain) 

and is believed to be attributed to the fine grained structure. The 180ºC sample failed at a 

much lower strain (~4%), which is believed to be caused by the pre-existing machine 

defects. 

 

High temperature tensile tests were performed on the extruded work piece with different 

test temperatures. The tests were done on the work piece extruded at 150ºC. Tests were 

done at 300ºC and 250ºC with constant strain rate (2x10-4/s ) and the results are tabulated 

in Fig 5.10. The sample tested at 250ºC showed higher flow stress (~60MPa) but less 

ductility. Fig 5.11 shows samples used in the high temperature tensile tests. The top one 

is the untested sample with original 0.25 inch gauge length. The middle one is the sample 

tested at 300ºC and the bottom one is the sample tested at 250ºC; both tested samples 

showed very good ductility with 252% elongation and 244% elongation. Ductile fractures 

were observed with pointed fracture tips and uniform necking areas. 
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Micro-hardness tests were performed on both raw ZK60 and extruded ZK60 work pieces. 

Test load was set to 100g with 10 second dwell time in standard vicker’s micro-hardness 

tester. The results are tabulated in Table 5.1 with average grain size of the processed 

samples and their tensile properties. Hardness of the unprocessed ZK60 is 72 and 

increased to 82, 86.5 and 90.6 after extruded at 220ºC, 180ºC and 150ºC. The increase in 

hardness in work pieces extruded at lower temperature is believed to be caused by the 

higher volume percentage of fine-grain area and smaller grains. 

 

5A.4 Discussion 

Raw ZK60 in billet form was successfully processed by biaxial extrusion at elevated 

temperature. Bimodal structures with mixed large-grain/small-grain areas were observed 

in both raw and processed samples.  However, large grains in raw ZK60 were broken up 

during the extrusion process and average sizes of the large grains were greatly reduced 

after the extrusion. Also, the volume fraction of the fine grains increased after the 

extrusion. The extrusion temperature is essential in controlling resulting microstructures 

and the mechanical properties of the work pieces. Lower extrusion temperature has better 

effect in grain subdivision and inducing twinnings and dislocations into the crystal, hence 

has better increase in strength of the work piece. It is believed that dislocations generated 

at low temperature extrusion contributed a great portion of strengthening in the material. 

In Jinbao Lin et al. study [10], the yield strength of the ZK60 work piece reduces with the 

increasing numbers of extrusion processes at 230ºC from 261 MPa 1-pass extrusion to 

215 MPa 4-passes extrusion. The grain size was refined in the first extrusion with large 
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amounts of dislocations. The following extrusions did not reduce the grain size by much. 

Decrease in strength with further extrusions is believed to be caused by the elimination of 

dislocations when dynamic recrystallizations occurred during the processes. 

From the microstructural analysis and mechanical tests of the biaxial extruded ZK60 

work pieces, it is safe to say that the optimal extrusion temperature is 150ºC.  

 

Although the strength of ZK60 was greatly increased through biaxial extrusion, the 

ductility of the extruded ZK60 is still low. Many have reported processed ZK60 work 

pieces have elongation more than 1000% [11, 12]. The maximum elongation of biaxial 

extruded ZK60 did not exceed 300%. It is believed that the bimodal microstructure of the 

processed ZK60 is the cause of its low ductility. The dominant deformation mechanism 

in superplastic forming is grain boundary sliding, and it only occurs in samples with very 

fine grains (<1μm) and good structural uniformity. In the biaxial extruded ZK60, bimodal 

microstructure could not be eliminated and some coarse grains were still around 30μm. 

These coarse grains were believed to be the major obstructions for grain boundary sliding 

during high temperature deformation thus reduced the ductility. To reduce the overall 

grain size of the sample, processing at higher temperature is required to encourage 

dynamic recrystallizations to occur and break down the large grains. However, this would 

sacrifice the strength of the material since dynamic recrystallization could reduce the 

numbers of generated dislocations.  

 

Biaxial extrusion can produce fine-grained materials in sheet form in one extrusion 

process, but it also limited the possibility for repetitive processing like ECAE. In ECAE, 
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strain could be cumulated from each extrusion pass and large amount of strain can be 

attained. It usually takes cumulative strain more than 6 to have uniform and fine-grained 

microstructure in work piece. In biaxial extruded ZK60, the cumulative strain is around 8 

with set condition gap/radius ratios equals 0.16 (0.08 inch gap with 1 inch diameter 

extrusion hole). The thickness of the gap is adjustable so larger strain could be obtained.  

 

5B. Processing of Mg base composites through biaxial extrusion. 

Three different Mg-based composites were studied: Mg-Al composite, Mg-Y2O3 alloy 

and Mg-B alloy. The reason Mg is used for base material in these composites is because 

Mg is light weight and has high specific strength and stiffness. The first Mg-based 

composite fabricated through biaxial extrusion die is Mg-Al composite for both 

magnesium and aluminum are light weight and easy to acquire. The aluminum used here 

is 5754 Al. Commercial 5754 Al is strengthened by the solid solution formed by the 

addition of magnesium [13]. So it is believed that 5754 Al in the Mg-based composite 

would be stronger for forming solid solution with higher Mg concentration. The Mg alloy 

used in the Mg-Al composite is AZ31 Mg alloy. In AZ31 magnesium, the strengthening 

mechanism is from β phase ( Mg17Al12) precipitates [14,15] located at the grain boundary. 

It is believed that by combining AZ31 and 5754Al, a light weight composite with better 

strength could be made. The chemical composition of AZ31 is Mg-3%Al-1%ZN-

0.2%Mn and the chemical composition of 5754 Al is Al-0.4%Si-0.4%Fe-0.5%Mn-

2.8%Mg. A detailed description of the fabrication processes of the composite will be 

given in the following section. The microstructure of the fabricated composite would be 

examined and mechanical property (micro hardness) would be tested.  
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The second Mg-based alloy fabricated through biaxial extrusion die is Mg-Y2O3 for Mg is 

light weight and has high specific strength, high specific stiffness, good wear resistance 

and high damping capacity. The addition of hard particles to magnesium usually gives 

better properties for the precipitates formed in the matrix [16-19]. The precipitates 

distributed in the matrix obstruct the movements of the dislocations during the plastic 

deformation thus higher stress is required for the further deformations. Many processing 

techniques have been developed to fabricate new Mg-base alloys, including powder 

metallurgy, squeeze cast, stir casting and spray forming. By far, the powder metallurgy 

method gives the best properties for having finest grain structures. However, the powder 

metallurgy usually requires high temperature. With biaxial extrusion process, the 

fabrication of Mg-base alloys with additives could be done at much lower temperature. 

Also, the grain size of the original Mg can be greatly reduced and the additives can be 

well distributed inside the matrix through the extrusion process. Two Mg-Y2O3 sheets 

with different Y2O3 concentrations were fabricated from the extrusion processes. 

Microstructure evolutions of the sheets were studied and high temperature tensile tests 

were done.  

 

An Mg-B alloy was also processed by biaxial extrusion process for property enhancement. 

An Mg-B ingot was first fabricated by hot pressing then processed through biaxial 

extrusion to attain fine grain structure. Microstructural analysis and EDS was done on the 

work piece. Both elevated and room temperature tensile tests were done on the composite 

to evaluate its mechanical properties. 
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5B.1 Experiment procedures 
 
The starting materials for the Mg-Al composite are five 1 inch diameter x 0.1 inch thick 

AZ31 and  five 1 inch diameter x 0.04 inch thick 5754 Al disks. The assembling of Mg 

and Al in the biaxial extrusion die is shown in the schematic in Fig 5.12. The AZ31 disks 

and 5754 Al disks were stacked alternatively in the biaxial extrusion die. Two 0.02 inch 

thick 3003 Al washers were used to provide hydrostatic stress to the work piece to 

prevent edge cracking. The disks were extruded first at 375ºC to form a 3 inch diameter x 

0.1 inch thick composite sheet. Five 1 inch diameter disks were then cut from the 

extruded composite sheet and stacked again in the biaxial extrusion die for the second 

extrusion. To ensure the bonding between the layers, the temperature of the second 

extrusion was kept the same at 375ºC. Two 3003 Al washers were again used in the 

second extrusion to prevent edge cracking.  

 

Fabrication of Mg-Y2O3 in the biaxial extrusion die is similar to fabrication of Mg-Al 

composite. The AZ31 disks were alternatively stacked with Y2O3 powders inside the die. 

A total of five AZ31 disks with one inch diameter and 0.1 inch thick were used. To 

ensure uniform distribution of the Y2O3, Y2O3 powders were first mixed with PVA, and 

the mixture of PVA+ Y2O3 was then coated on the front and back sides of the AZ31 disks. 

The set-up of the AZ31 disks with Y2O3 / PVA coating in the biaxial extrusion die is 

shown in Fig 5.13. Two Mg-Y2O3 sheets were fabricated with different Y2O3 

concentrations. The extrusions were done at 220ºC and the weight percentages of Y2O3 of 

two fabricated Mg-Y2O3 sheets are 0.2 wt% and 0.5 wt% respectively.  
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Mg-B ingot was made from hot pressing ZK60 chips with 10 volume % Boron powder. 

Chips and Boron powders were first ball milled for 3 hours before hot pressing to 

promote uniform mixture. After ball milling, the mixture were hot pressed in enclosed die 

at 450ºC to form a 2.5 inch diameter x 1 inch thick ingot. A second hot pressing was done 

on the ingot at 230ºC to reduce the porosity. The ingot was then processed by the biaxial 

extrusion at 200ºC for further property enhancement. 

 

5B.2 Microstructure evolutions  

Fig 5.14 shows the microstructure of the Mg-Al composite sheet after first extrusion. 

Thick layers of AZ31 were sandwiched in between thin Al layers. The average thickness 

of the AZ31 layers is 153 μm and the average thickness of the Al layers is 28 μm. 

However, the thickness of the layers is not uniform. Some AZ31 layers were more than 

300 μm thick and some were less than 100 μm. To reduce the thickness and increase 

numbers of layers of the composite, a secondary extrusion was conducted. 5 one inch 

disks were cut from the first extruded composite sheet and stacked in the biaxial 

extrusion die for another extrusion. The microstructure of the secondary extruded sheet is 

shown in Fig 5.15. Thinner and more uniform layers of AZ31 and 5754 Al were formed. 

Also, due to the repeated extrusions and high cumulative strain, the grain size of AZ31 

layers was much refined (3.4 μm) as shown in Fig 5.15 (b). Mg-Al intermetallic layers 

were formed after second extrusion, these Mg-Al intermetallic layers are believed to be 

Al3Mg2 + β phase magnesium (Mg17Al12) for its high hardness. Vickers micro hardness 

tests were done on the Mg-Al composite sheet after secondary extrusion. The hardness of 
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the composite is not consistent throughout the whole samples, but varied in layers as 

shown in Fig 5.16. The hardness of the AZ31 layers is between HV 63 to HV68 and the 

hardness of the 5457 Al layers is between HV 123 and HV147. Hardness of the Mg-Al 

intermetallic layers is much higher than Mg and Al layers, with hardness value of HV 

155~182.  

Fig 5.17 (a) and (b) show the microstructure of extruded AZ31 sheets with 0,2 wt% Y2O3 

and 0.5 wt% Y2O3, respectively. The grain size seem to be affected by the concentration 

of Y2O3 since work piece with higher Y2O3 concentration has finer grains (4.2 μm) than 

work piece with lower Y2O3 concentration (6.4 μm). It is believed that dislocation pile-

ups were formed at Y2O3 precipitates, and the local stress field from the dislocation pile-

ups facilitated the fragmentation of the grains, thus higher Y2O3 content AZ31 work piece 

would have finer grains 

 

Annealing was done on both low and higher Y2O3 content AZ31 work piece for 13 hours 

at 230ºC to study the grain growth mechanism of Mg-Y2O3. The microstructure of 

annealed work pieces are tabulated in Fig 5.17 (c) and (d). Abnormal grain growth took 

place in the AZ31 work piece with low Y2O3 concentration. However, no abnormal grain 

growth was observed in AZ31 with high Y2O3 concentration.  The lack of abnormal grain 

growth in high Y2O3 concentration AZ31 work piece is believed to be attributed to the 

larger amount of Y2O3 precipitates which pinned the grain boundaries and stopped the 

abnormal grain growth. 
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Fig 5.18(a) shows the micro of the as consolidated ZK60 billet. Many elongated voids 

can be seen on the original chip boundaries. To eliminate the voids and increase the 

homogeneity of the alloy, a second hot press was done on the billet at 230ºC. The number 

of voids was greatly reduced after secondary press as shown in the microstructure in Fig 

5.18(b). The grains were elongated perpendicular to the pressing direction. After 

secondary pressing, a 1 inch diameter cylinder was cut out from the billet for the biaxial 

extrusion. The extrusion temperature was set at 200ºC to optimize the grain refinement 

and increase the numbers of dislocations. After extrusion, the grains were greatly refined. 

Microstructure of the extruded work piece showed bimodal grain structures with some 

large grained areas as shown in Fig 5.18(c). Overall fine grain areas were up to 86 

volume %. The average grain size of the fine grained area is 1.1 μm. Though the structure 

is fine grain dominant, there are still some bands filled with small flake-like congregates 

in the matrix as shown in the SEM image in Fig 5.19(a). Energy dispersive x-ray (EDX) 

analysis shows high oxygen content in these bands. Higher magnitude SEM image taken 

on these band regions in Fig 5.20 shows that these bands were constituted with many 

small white flakes/particles. These flakes/particles are believed to be the Mg2B2O5 

collects. These bands of Mg2B2O5 collects are believed to be formed during the 

consolidation process when the entrapped oxygen in between chips reacted with Boron 

and Mg at elevated temperature. 

 

5B.3 Mechanical properties 

Two elevated temperature tensile tests were done on the biaxial extruded Mg-Y2O3 work 

piece with high Y2O3 concentration (0.5wt%). Test temperatures were set at 300ºC and 
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250ºC with strain rate 2x10-4/s.  Test results are shown in Fig 5.21. The sample tested at 

300º C strain hardened to 44 MPa, then gradually softened untill failure. The sample 

tested at 250ºC reached a higher flow stress of 48 MPa, then rapidly softened and failed.  

 

Another two elevated temperature tensile tests were done on the biaxial extruded Mg-B 

with strain rate of 2x10-4/s and test temperature 300ºC and 250. The test results are 

tabulated in Fig 5.22. Both samples tested have very low flow stresses (6 MPa in 250ºC 

test sample and 3 MPa in 300ºC test sample). Both biaxial processed Mg-Y2O3 and Mg-B 

showed very low ductility at elevated temperature with brittle fractures. Table 5.2 shows 

the elongation to failure of each tested sample.  

 

Room temperature tensile tests were performed on the samples machined from as 

consolidated Mg-B billet and as extruded Mg-B sheet. The test results are tabulated in 

Fig 5.23. The as consolidated Mg-B has very low yield strength (78 MPa) measured from 

0.2% off-set strain. After one step of hot pressing and subsequent biaxial extrusion, the 

yield strength of the Mg-B increased to 280MPa with U.T.S 322 MPa. This increase in 

strength is believed to be caused by the grain refinement through hot pressing and biaxial 

extrusion processes. Also, the ductility of the extruded Mg-B alloy has been greatly 

increased due to the elimination of voids in the as- consolidated Mg-B ingot. Stronger 

strain hardening is found on the as consolidated Mg-B while little or no strain hardening 

is found on the as extruded Mg-B. 

 

5B.4 Discussion 
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The Mg-Al composite formed via high temperature biaxial extrusion has a lamellar 

structure with alternative layers of AZ31, 5754 aluminum and Mg-Al intermetallic 

(Al3Mg2+ Mg17Al12). The average hardness of the AZ31 layer in the composite is HV65, 

which is higher than the hardness of the original (unprocessed) AZ31 (HV52) billet. This 

increase in hardness is believed to be caused by the grain refinement during the repeated 

compressing and shearing during the extrusion process. The hardness of 5754 aluminum 

layer in the composite is HV~130, which is also greater than the hardness in the raw 5754 

Al sheet (~HV75). The possible strengthening mechanism in the Al layer in the 

composite is believed to be attributed to the higher Mg concentration solid solution 

formed during the high temperature extrusion process. Besides the increase in hardness in 

both Mg and Al layers in the composite, the intermetallic layer formed in between Mg 

and Al layers has a relatively much higher hardness. So it is believed that the overall 

strength of the composite is much higher than individual magnesium and aluminum 

alloys. However, the ductility of the composite is very poor according to the result of 

room temperature tensile tests (not shown here). The test sample failed at strain less than 

0.015. This low ductility may have two possible reasons: First, the intermittent fractures 

of the individual layers; many Mg/Al layers in the composite were not continuous 

through out the sample and have fractures. Those fractures carried little or no load during 

the tensile tests and caused the premature failure. Second, the brittle intermetallic layers; 

the intermetallic layers are consisted of hard β phase magnesium (Mg17Al12 ) and Al3Mg2 , 

both are hard but fail at little strain.  
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The biaxial extrusion done on the Mg-B made boron particles more uniformly distributed 

in the Mg matrix and reduced the grain size of the Mg matrix. The boron particles in the 

matrix formed precipitates and obstructed the dislocation movement thus enhanced the 

overall strength. The grain refinement of Mg-B through biaxial extrusion also contributed 

to the increase in strength. Although the extruded Mg-B has good strength, low ductility 

was shown in elevated temperature tests. The lack of ductility of Mg-B is believed to be 

caused by the formation of Mg2B2O5 bands in the matrix. These Mg2B2O5 bands are 

believed to be hard and brittle, which may cause local stress concentration and forms 

cracks upon loading. To avoid the formation of Mg2B2O5 particles, it is important to 

ensure that no oxygen is allowed in the hot pressing process so that no chemical reactions 

could be involved. 

 

5.2 Summary 

Biaxial extrusion has been proven to be a versatile technique which can impart severe 

plastic deformation into materials via unique shear extrusion route and fabricate various 

Mg-base composite and alloys. Sheets of ZK60, Mg-Al composite, Mg-Y2O3 and Mg-B 

were successfully fabricated with good mechanical properties. Conclusions drawn from  

the experimental are as follows: 

 

1. ZK60 sheets with fine-grained structure (~1μm) and high strength (Y.S=343 MPa)  

   were fabricated via biaxial extrusion process, the optimal extrusion temperature is  

   150ºC. Superplastisity was obtained in the extruded ZK60 with highest elongation  

   252%    
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   (300ºC, 2x10-4/s). 

2. Mg-Al composites were fabricated via biaxial extrusion. Repeated extrusion runs were 

    applied to promote more uniform layer thickness. Mg-Al composite exhibit high  

     overall hardness with hardness variation between composite layers. 

3. Mg-Y2O3 was fabricated at low temperature (220ºC) through biaxial  

    extrusion. Fine dispersed Y2O3 precipitates in the Mg matrix helped break down  

    the grains during the extrusion process and stopped the abnormal grain growth  

    during annealing. Low ductility was found on the extruded Mg-Y2O3 work piece.  

4. Substantial grain refinement was observed in Mg-B through biaxial extrusion  

    process. Good tensile strength properties were obtained in the Mg-B laminates but  

    ductility was poor after biaxial extrusion.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 117 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Test temperatures 300ºC 250ºC 
Y2O3 containing AZ31 189% 157% 

Mg-Boron 181% 165% 

ZK60 
 

Grain Size (μm) Hardness 
( HV ) 

Yield Strength 
( MPa ) 

U.T.S ( MPa ) 

Raw 6.3 72 138 290 
Extruded at 
220ºC 

1.92 82 182 277 

Extruded at 
180ºC 

1.86 86.5 292 348 

Extruded at 
150ºC 

1.57 90.6 343 350 

Table 5.2 Elongation comparison of elevated temperature tensile test samples of biaxial  
              extruded Y2O3 containing AZ31 and Mg-Boron. 
 

Table 5.1 Grain size and mechanical properties of ZK60 before and after biaxial extrusion. 
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Figure 5.1  Schematic of (a) biaxial extrusion process, (b) cross section of the lower block.  
                  (c) extrusion directions and corresponding activated shearing planes (d) illustration  
                  of shear strain obtained by the element passed through the bottom exit. Schematic  
                  details are discussed in the text. 
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20mm 

Figure 5.2 Photo image of ZK60 cylinder for biaxial extrusion. The dimension of the  
                  cylinder is 1 inch in diameter and 0.75 inch in height. Boron nitride would be  
                  sprayed on the cylinder before extrusion to avoid direct contact of Mg with  
                  steel die. 



 120 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3 Photo images of extruded ZK60 disks. The extrusion temperatures are set at (a) 150ºC  
                   (b) 180ºC (c) 220ºC.  Biaxial extrusion marks are clearly shown on the extruded disks 
                   as marked by the white arrows. All three disks have the same thickness of 0.08 inch.  
                  The one extruded at 180ºC has a crack near edge. Four round indents as marked by the  
                  black arrows in (c) indicated the place where ZK60 disk made contact with the bolts of 
                  the die set. 
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Figure 5.4 Photo images of the microstructures taken by the optical microscope of raw ZK60 
                  (a), biaxial extruded ZK60 at (b) 150ºC (c) 180ºC (d) 220ºC. Heavy twins are found 
                   in the ZK60 extruded at 150ºC and 180ºC as indicated by the arrows. All the extruded  
                  disks show bimodal microstructures with large grains surrounded by the very fine grains.  
                  Extensive grain fragmentation can be seen in the 150ºC extrudate.  
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Figure 5.5  Grain distributions and grain sizes of raw and extruded ZK60 under different  
                   extrusion temperatures. 
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500 nm 

Figure 5.6  TEM image of 150ºC ZK60 extrudate. Many small grains less than 500nm  
                   can be seen around the sample. However, heavier dislocation lines were  
                   shown in the larger grains. 
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Figure 5.7 (0002), (10
−
10) and (10

−
11) pole figures of unprocessed ZK60 
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Figure 5.8 (0002), (10
−
10) and (10

−
11) pole figures of the biaxial extruded ZK60 
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Figure 5.9 Tensile properties of the extruded ZK60 samples. High Y.S and U.T.S  
                  were attained by 150ºC and 180ºC extrudates. 220ºC extrudate has a   
                  relatively lower Y.S and U.T.S..  
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Figure 5.10 High temperature tensile properties of biaxial extruded ZK60 with  
                    different testing conditions. 
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Untested Sample 

300ºC , 2 x 10-4 

250ºC , 2 x 10-4 

Figure 5.11 ZK60 tensile samples tested at elevated temperatures ( 300ºC and   
                    250ºC ). The strain rate was set at 2x10-4/s. Both samples show  
                    superplasticity which is evidenced by the pointed fracture tips. The 
                    300ºC sample has 252% elongation and 250ºC sample has 244%  
                    elongation (shoulder to shoulder distance). 

AZ31 
 

Al disks 

punch 

Figure 5.12  Schematic illustration of the assembling of Mg and Al disks inside the biaxial  
                     extrusion die. Five 1 inch diameter AZ31 disks and Al disks with 0.1 inch and  
                     0.04 inch thickness, respectively, were stacked alternatively at the bottom of  
                     the die. Upon extrusion, Mg and Al were extruded out to become a single  
                     composite sheet. 
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Figure 5.14  Microstructure of the extruded Mg-Al composite. Mg layers appeared to 
                     be much thicker than the Al layers. 
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Figure 5.13  Schematic diagram of the set-up of AZ31 disks and Y2O3 powder inside  
                     the biaxial extrusion die. Each AZ31 disks were coated with Y2O3 powder  
                     in PVA in both front and back side. Extrusion was done at 220ºC. 
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Figure 5.16  Hardness variation in the Mg/Al composite. 
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Figure 5.15 (a) Microstructure of composite sheet after 2nd extrusion. Many more layers  
                     of Mg and Al are shown in the sheet compare to the sheet in the first extrusion.  
                     (b) High magnitude picture shows fine grained AZ31 layer in between two 5754  
                     Al layers. Mg-Al intermetallic is formed in between Mg and Al layers as  
                     indicated by the arrow. 
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Y2O3 Particles 
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Figure 5.17  Microstructures of (a) Mg-Y2O3 with low Y2O3 content (0.2 wt%) after extrusion. 
                     Black dots shown in the microstructure are the Y2O3 particles. The average grain  
                     size is 6.4 μm. (b) Mg-Y2O3 with high Y2O3 content (0.5 wt%) after extrusion. More  
                     Y2O3 particles are shown with finer grain size of 4.2 μm. (c) Microstructure of low  
                     Y2O3 content AZ31 after annealing at 230ºC for 13 hrs. Some region with abnormal  
                     grain growth is seen at the bottom of the picture. (d) Microstructure of high Y2O3  
                     content AZ31 after annealing. Higher Y2O3 content obstructed the movement of the 
                     grain boundaries hence no abnormal grain growth is shown in the sample. 
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Figure 5.18  (a) As consolidated Mg-B. The ZK60 chips didn’t seem to be bonded well  
                     due to the appearance of elongated voids around the original chip boundaries. (b) Mg-  
                     B alloy after first pressing. The voids seem to be greatly reduced after the pressing.  
                     Grains are elongated perpendicular to the pressing direction with many shearing lines.      
                     (c) Mg-B alloy after biaxial extrusion. It shows bimodal structure with 94 %  
                      fine grains and 6 % large grains. The average grain size of fine grains is 1.1 μm.  
                     Some long bands with width of 3~5μm are shown in the Mg matrix.  
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Figure 5.19  EDS analysis of the as extruded Mg-B. The white band observed in the SEM image 
                     in (a) has a high oxygen concentration and the Mg matrix doesn’t have oxygen 
                     content as shown in the edax analysis in (b) and (c). This high oxygen concentration 
                     area (white band) is believed to be the magnesium-borate (Mg2B2O5) collects. 
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Figure 5.20  SEM image of extruded Mg-B. Band of Mg2B2O5 is believed to be formed  
                      on the original chip boundaries where entrapped oxygen reacted with the 
                      boron and magnesium.  

Figure 5.21 High temperature tensile properties of Mg-Y2O3. 
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                  Figure 5.22 High temperature tensile properties of Mg-B. 
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Figure 5.23  Plot of room temperature tensile properties of as consolidated and as  
                     extruded Mg-B. Both yield strength and ductility of extruded  
                     sample are much greater than the as consolidated sample. 
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Appendix 5A 

 
 
Introduction to popLA and the processing tutorial 
(adopted from popLA_manual provided by The Regents of the University of California and 
John S. Kallend.) 
 
The computer program popLA is primarily designed to evaluate pole figures generated by 

4-circle goniometer X-ray diffraction equipment but can also be used with pole figures 

generated from other sources (e.g. neutron diffraction). popLA’s data analysis programs 

correct pole figure data for background Xray counts, the drop in measured intensity 

which occurs at the edge of the sample due to geometric considerations, and sample 

misalignment. Two types of analysis, the harmonic method and the WIMV method,may 

be used to calculate the orientation distribution of the sample. Pole figures and orientation 

distribution determined by popLA may be displayed or printed on a variety of hardware. 

The tutorial of popLa is listed in the following pages. 
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TUTORIAL 
This section gives a quick guide through a “standard procedure” for an easy case. It is assumed, for this 
exercise, that you already have an “experimental pole figure (.EPF)” file: with experimental corrections 
likedefocusing and background already incorporated, and in the right format. Appendix B2 will discuss 
how you getraw data into an .EPF file.The specimen name for this case is “demo”. All the files you will 
generate are already contained inC:\X\DEMO. In addition, this subdirectory contains a file TRY.EPF which 
is identical to DEMO.EPF and shouldbe used to regenerate a whole set of TRY.* files (without overwriting 
the DEMO.* files).The sequence in this tutorial does not follow the sequence in the popLA menu, but rather 
how you mightend up using popLA routinely later. References to the different screens are made by page 
number, to the optionon that page by #; e.g.: p.2#4, page 2 (in this case the Massage page) option number 4 
(in this case the RotatePole Figures option). 
 
BEFORE YOU START 
• popLA must have been installed (from the yellow and blue disks, see Appendix A3) into C:\X on a PC 
(which 
requires about 4 MB) 
• Your AUTOEXEC.BAT file must have been augmented as suggested in AUTOEXEC.POP: put C:\X 
into thepath (preferably early); and (after the path statement) add the line: APPEND C:\X /path:on. 
There aresome problems with this recommendation; for other options, see Appendix A3. 
• The computer must have been configured to have at least 540 MB of free memory (for some programs); 
this isthe last number given as an answer to CHKDSK. 
 
LOOK 
At every stage, you will want to see what has been accomplished. We will use two instruments: 
p.1#1: lists a file (which we'll do later); andp.6#2: plots it on the screen and allows you to make hardcopies. 
The quickest way to make hardcopies (althoughnot WYSIWYG) is by downloading our special fonts 
(POPFONT?.HP) to an HP Laserjet II or better: do thisnow by entering popLA (from your work directory), 
opting for p.6#2, and answering 2 to the first question; itwill take a while but during any future use, skip 
this step by answering 0 to the first question.PlotNow stay within POD and merely RETURN upon every 
question (which selects default values), until it asks:"Enter name of data file # 1": try.epf 
and then again RETURN until you see that the calculations are running. Pretty soon, you'll see a pretty 
picture.Play 
• Press F1 repeatedly to see different colors and gray-shades; some have eight values, some fourteen (plus 
blackand white); however, the contour lines are drawn in at eight levels only, in either case. 
• Look at the scale bar: there are numbers that go, in a logarithmic scale, from the minimum to the 
maximum.To get a nicer scale, press F2; when it asks you for a maximum, answer 400 (for this file), and 
then 3 to thenext question. To all other questions, RETURN to get the defaults. Eventually, you'll see a new 
picture. Notethat there are no contour lines (that was a default choice); that the region just above and just 
below randomdensity have the same shade; and that pure black and pure white (or pink) are used to show 
regions in whichthe density is beyond the limits you specified.(At this point, you should perhaps stop 
playing for now, and go on.) 
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Print the plot 
Now press F3: it will make a file copy (black/white and with lower resolution) which you will then be 
given anoption to print (hopefully self-explanatory). If the print doesn't come out right, restart the printer 
(therebydeleting all downloaded fonts) and then download ours again.Inspect the fileGet yourself to page 1 
of the menu and select 1, then try.epf. You will see the general format. (Press p to printout the file.) It will 
be worth your while to study Appendix B2 some time to understand all aspects of theformat. For now, we 
emphasize only a few things: 
• The first line contains, in its first eight characters, the “specimen name” (here “demo”). This specimen 
namewill be used by some of the programs, with new extensions. (The rest of line 1 can be arbitrary 
comments –some of which may get overwritten later.) 
• The second line has first an identifier ("(111)" in this case). Page down a few times to see that this file in 
factcontains 3 pole figures, identified with their indices, and separated by a blank line (and a repeat of the 
titleline). 
•Go back home. In line 2, the next number is 5.0 (the angular increment in the radial direction) and then 
80.0:this is the tilt to which measurements were made. Plots are always made to the angle listed in this 
position.Note, however, that the file contains numbers right up to 90°: these come from a simple 
extrapolationprocedure for the purpose of providing a preliminary normalization of the pole figures. 
• In line 2, the second number from the end is 100: it is a scaling factor (multiplied by 100); if any of the 
datavalues would exceed 9999, the whole file is multiplied with a factor, and this factor (×100) is shown in 
line 2.(It would be less than 100.) 
• Immediately preceding the 100 are 3 integers (" 2 1 3" in this case) which reflect your choice of axis 
nomenclature, in the sequence right-top-center on the figure. You will note that what you looked at before 
hada "2" on the right – reflecting our choice to call the rolling direction "1" and plot it on top. Exit by 
pressing X.NOTE: It is at this stage that you should edit your .EPF file, if you ever want to, because all the 
information in itis carried forward to all subsequent files! 
MASSAGE 
There are three common things that one may wish to do with experimental pole figures before proceeding 
with a 
detailed analysis: rotate them, smooth them, and normalize them better. (Other "massaging" items will be 
discussed in the DETAILS section.) 
 

Figure 1 – DEMO.EPF 
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Rotate 
The experimental pole figures shown above seem to have some symmetry – except that it is not exactly 
alignedwith the axes. This could, for example, be due to a slight misalignment of the specimen on the 
goniometer. Iforthotropic symmetry were imposed on the data without first aligning them with the axes, 
some accuracy wouldbe lost. 
• The program ROTATE (p.2#4, option 1) can analyze the data for this effect (by looking at sin terms in the 
harmonic expansion) and suggest an angle by which the pole figure should be rotated in order to make it as 
symmetrical as possible around the axes. In addition, you may wish to impose another rotation around the 
center of the pole figure; e.g., 90° if the way the specimen was mounted resulted in the rolling direction 
appearing on the right and you want it on top.(Other utilities in ROTATE are discussed in the DETAILS 
section.)The output file is called .RPF.SmoothSome data are very spotty; e.g., when only a few grains were 
covered. It is a matter of judgment in every casewhether this effect should be smoothed out in the 
beginning, or at the end of the analysis (or never). 
• The program SMOOTH (p.2#8) provides an option to apply a Gaussian filter of arbitrary breadth to the 
data.We have found smoothing by 2.5° or 5° to be useful under some circumstances (remembering that this 
isabout the grid resolution). You may try the program now using .RPF as an input. Note, however, that the 
“maximum” values observed in the texture decrease. For this reason, we will not use the smoothed file for 
further analysis, only perhaps for plotting.• The output file is called .MPF (“Massaged Pole Figure” – even 
when you later use it to smooth whole ODs).Inspect it via p.1#1: note that the two last actions were 
recorded on the title line.Normalize using the harmonic methodThe orientation distribution (OD) analysis 
in terms of spherical harmonics may be used as the principal tool ofQuantitative Texture Analysis (QTA), 
or a discrete method may eventually be preferred by the user. Even in thelatter case, harmonic analysis 
brings a significant initial advantage: it predicts the intensities in the unmeasuredrim of all pole figures in a 
way that is consistent with all pole figures. In the process, all pole figures are renormalized,and this can be 
important (for example, in the WIMV program in popLA). 
• Use p.4#2, with your .RPF as input. Answer defaults, and use only the output file .FUL: it is identical to 
theinput file except for the rim and the normalization. (The title line records this fact, but the two previous 
actions have now been dropped from being thus recorded.)This program is currently available only for 
crystal symmetries greater than orthorhombic and samplesymmetries that have at least one two-fold axis in 
the center of the pole figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 – DEMO.FUL 
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Analyze using the WIMV Method 
For this, you need the .FUL pole figures just obtained; WIMV will ignore the values above a tilt of 80° (but 
needs the normalization obtained in the last step). You also need "pointer files". They have the 
extension .WIM,.BWM, or .WM3, depending on which level of WIMV you use. Use the default files 
supplied for now. (Lateryou can make your own on p.4#8.) There are three levels of the WIMV program in 
popLA, depending on thecomplexity of your problem: look at p.4 numbers 2, 3, and 4. We have the easiest 
case, so we will use the fastestprogram: 
• Opt for p.4#2. Take the defaults on all options (especially the one on treating these as “incomplete” pole 
figures (even though they go to 90°). The progress will be displayed. The error estimates are listed for you 
to judge the rate of conversion. One may wish to stop when the change from one iteration to the next is 
onlya fraction of a percent. (For the DEMO. files, we have stopped after iteration 17. The number of 
iterations,the final error estimate, and the Texture Strength will all be listed on the title line of the 
resulting .SOD and.WPF files.At the end you have an option as to which Euler angles you wish to have the 
files sequenced in. Your choicewill be recorded in the output file, on the second line, position 5: B or R or 
K (for Bunge, Roe/Matthies, orKocks). Pick 1 for now. 
• Before you look at the files, opt for p.4#7: make a file of WIMV-calculated inverse pole figures, .WIP. 
Sinceyou have just made it, you may as well look at it first: 
• Opt for p.6#2 (for which you need to go back to p.1 first), answer 0, then defaults until "...plots on page?" 
Ifyou answer 3, you get the whole file; but answer 2 to get the Z- and Y-axis pole figures. (You can print 
only2 plots in higher resolution). Note that a whole quadrant is shown even though, for this case, just one 
of the“stereographic triangles” would have been sufficient. (You can cut it out...) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• Now you are back on p.6, opt again for #2, etc., but this time look at .WPF: the WIMV-recalculated pole 
figures; the first two suffice. Use scale 400/3 again. Do they look familiar? They should be similar to the 
original .EPF, only rotated a bit and symmetrized, and completed in the rim. Since we assumed orthotropic 
sample symmetry (as one of the default answers while WIMVing), the four quadrants of the pole figure 
contain the same, averaged information. Plotting only one quadrant allows a better resolution of the figure 
inthe same area.For a quantitative comparison of the recalculated and the input pole figures, we could 
either EXPAND the .WPF(p.2#7) or, which we suggest, SYMMETRIZE (p.2#6) the input pole figure. The 
actual input to WIMV was the.FUL pole figure, and we compare to it – firstly, because it has the rotation 
already built in, and second becauseit is properly normalized. As a fringe benefit, we get a comparison of 
the rim predictions from WIMV and fromthe harmonic method. Thus: 
 

Figure 3 – DEMO.WIP 
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• Opt for p.2#6 (via p.1), using .FUL as input, getting .QPF as output. Now back to p.6#2 (via p.1). Try 
something new: the third question within POD asks whether you want all standard options, and you have 
answered “yes” (0) so far. Answer 1 “for any change”. Now opt for the default of all options until the 
directive is “Enter the number of FILES to open”: answer 2. Now you know why it always asked 
you to “Enter the name of date file #1”. This will be the next question and you pick .QPF. For 
the“maximum” you pick 400, and for the next number enter 3. When the question data file #2 comes up, 
enter.WPF, then later the same scale options. You will get the {111} pole figures side by side (and to the 
samescale: one good reason to pick the scale yourself rather than taking the defaults!) Inspect the 
similarities anddifferences by eye. (You may also wish to get rid of the net in the right figure, or put a net 
on both: you canplay using F2. But these nets don't print on the Laserjet by the procedure we are using 
now.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• To do the comparison between the two files in a quantitative way, opt for p.2#9 (via p.1) and make a 
difference file (.DIF), subtracting the .QPF from the .WPF. It will do it for all three pole figures. (It will ask 
you whether the difference in second-line parameters is OK: it is.) 
• Go to p.6#2 (you are already on p.6!), defaults, 2 plots, until it tells you “THIS FILE CONTAINS 
NEGATIVEINTENSITIES”: answer 2 to make a scale symmetric around zero. For the amplitude, pick 140. 
You willsee, for both the {111} and {100} pole figures, the actual difference between recalculated and 
experimentalvalues. Note that the differences are small everywhere but especially in the areas of very low 
density: thisgood fit is a consequence of the WIMV algorithm. It is also noteworthy that the peaks are 
higher(particularly, the "copper" and the "cube" orientations) than those predicted by the harmonic method. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 – DEMO.WPF and DEMO.QPF 
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Concerning Hardcopies 
The prints you have been making are fast and adequate, but of lower resolution than the screen; and they do 
notcopy well. The figures in the document result from a different way of making hardcopies. We used a 
commercial screen-dump program (GRAFLASR) to make a .PCX file, then opened it in PAINTBRUSH 
(withinWINDOWS 3.1), and printed in the "coarse-dither" option. To get all eight gray-shades, you must 
have a 256-color monitor. The figure may not look pretty to you now: but copy it (it works) and then copy 
it to a reductionof less than 70%: it works, and it looks pretty. (If you want just a single figure, for example 
one transparency,you can print out in high resolution with a 600dpi printer – but it doesn't copy well.) 
Also try the regular Laserjet method (via F3), having loaded POPFONT?.HP when first entering POD). 
This works as expected for 2 plots; for more plots, the arrangement on the hardcopy will be different from 
thaton the screen. The option to use PostScript is similar (via F4). 
DISPLAY the three-dimensional Orientation Distributions (ODs) 
Now inspect your .SOD (p.1#1). The format looks much like the .EPF, but there are only 19 lines of data in 
eachblock. The OD (orientation distribution) files list the intensities in sections of 3-dimensional 
orientation space.In the .SOD, each section is a “partial inverse pole figure”: partial in that the third angle is 
constant; the sum ofall sections is the projection, which is the inverse pole figure for axis 3, which is 
appended as the last block.This file is only one way to arrange the derived densities in orientation space; it 
is the “Sample OrientationDistribution”, or. SOD (with respect to crystal coordinates).Each section ontains 
one quadrant (for cubic crystal symmetry): 19 lines. The sections are given at every 5° ofthe section angle. 
There are 19 of them (because we chose orthotropic sample symmetry). This is too many to plot and 
inspect comfortably.• Let us pare the file down to sections every 10°: p.5#5 will let you do this. Call the 
output file .SOS (the last Sfor Selected sections). Plot it (p.6#2): 11 plots per page. If you use the scale 
400/3 again, the last plot (theprojection) should look quantitatively like the .WIP plotted out before (only 
smaller in size). However, sincethe densities in 3-D orientation space are usually higher than in the 
projections, it is better to plot it to adifferent scale: try it now, using F2, (put a net on every plot for a 
change, but leave out the contours), thenchoose the maximum 1600, next 3.A different way to section 
orientation space is as "partial pole figures" or a "crystal orientation distribution", or.COD (with respect to 
sample coordinates). 
• To rearrange the OD that WIMV gave us from an .SOD to a .COD, use p.5#3, then again pare to 
somethingyou can plot: p.5#5, call .COS. Plot the 11 sections: the last one is the projection, which is the 
{001} polefigure, and thus should be the same as the second plot on .WPF. 
 

Figure 5 – DEMO_W-Q.DIF 
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• Now plot the .COD again, but in square sections. From within POD, opt for non-standard options: the first 
one is for ksquare. The best scale (which defaults to linear) is 700/0. The resulting plot is on a very 
coarsescale, but it should be recognizable to people who have worked with rolled FCC materials. 
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In all the polar figures, there is some concentration near the origin of many sections. (This is a cube 
componentdue to partial recrystallization.) In the square plot, the concentrations at the top line (at various 
places in thevarious sections) all correspond to this one component. The best way to avoid any 
degeneracies for thisorientation is to use oblique sections. 
• Run p.5#4, take option 2, angles from 0 to 45°. The output is .CON. For the benefit of some improvement 
inthe plots themselves, let us also smooth this file: go to p.2#8, range 5.0, do not treat as “INCOMPLETE 
polefigures”. The resulting file is called .MPF (and overwrote the smoothed .RPF you may have made early 
on.The best is to rename it to .CMN, which you can do by escaping to DOS (p.1#8), then type exit to come 
backto popLA. 
• Now plot (.MPF or .CMN): 10 sections. (The projection from this is the {001} pole figure again, but it is 
notplotted because, under some circumstances, the projections contains more, symmetrically equivalent 
components than are shown in the sections.) Scale 1600/3. 
• Try a few visual changes: F2, rewrite the first line to something descriptive, put a net on all plots, delete 
theEuler-angle information, stay with high resolution, but eliminate the contours (default!), finally change 
tovertical stacking (which allows you easier pasting for a “column figure”). 
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Chapter 6 

 

Plasticity in small tensile specimens 

 

 

 

Abstract. 

Tests have been done on Ti-1100 and Inconel 625 tensile specimens with cross-sectional 

area of ~400 μm2 to ~2000 μm2 directly machined from metal sheets. The machining 

processes including mechanical machining, chemical etching and focus ion beam (FIB) 

cutting. A small scale tensile testing fixture was special designed to test the specimens in 

micrometer size. SEM images have been taken to examine the deformation mechanisms 

of the small samples. Test results show strong increase in strength in the small samples 

relative to the conventional large samples.  

 

 

 

 

 



 150 

 6.1. Introduction 

On the design of mechanical systems or developing new structures, understanding of the 

mechanical properties of materials is essential. It is common practice to test materials by 

the conventional mechanical tests such as tensile, compression, torsion or bending tests. 

From these tests the general understanding of the material properties is very well 

established in the past few decades. However, when the sizes of the materials come down 

to a very small scale (e.g. less than 100μm), the mechanical properties of the materials 

start to deviated from their bulk counterparts. This phenomenon was first discovered by 

Fleck et al.[1] in 1994 by conducting a series of torsion tests on the copper wires. In his 

tests, the strength of the copper wires increased with reducing diameters (volume). This 

finding rose interest to the material scientists and many started to test small volume 

samples in different test apparatus. Dimiduk[2] performed compression tests on the 

micro-scale Ni pillars and found small pillars hardened with reducing diameter. The 

detail of Dimiduk’s experiment is described in the Appendix 6A. Fig 6.1(a) shows the 

flow stress vs sample diameter plot of Greer et al. experiment [3] by conducting 

compression tests on the micro-scale gold pillars. The flow stress of the smallest gold 

pillar (~400nm) in Greer’s test is about 120 times larger than the pillars with diameter 

larger than 1000nm. Similar stress vs sample size plots was constructed by Kiener et al. 

[4] as shown in Fig 6.1(b), by conducting series of bending and compressing tests on the 

micro-scale copper beams. The shaded area at the bottom of the plot is the tensile stress 

of the copper single crystal. The curves have the same power low trend as Greer’s plot 

and have the exponents of -0.8 for the micro-bending samples and -0.4 for the micro-

compression samples. However, the power law behaviors in the plot in Fig 6.1(b) are 
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restricted in the micron-scale and would not apply to larger volumes. (ie, flow stresses 

would not change with the sizes of the conventional specimen). To compare the 

relationship between increase in strength and size of the samples of different materials, a 

modification is made using (σ-σ0) in Y axis instead of σ.  σ is the flow stress obtained 

from small samples, σ0 is the tensile stress of the conventional specimens (large samples). 

A reconstruction using data acquired from Fig 6.1(a) and 6.1(b) is plotted in Fig 6.1(c). 

The reconstructed plot clearly illustrates the strengthening phenomenon of the specimens 

in small sizes. Higher strengthening (deeper slopes) are found in specimens with smaller 

sizes in both copper and gold in plot 6.1(c). Besides the tests done on the small copper 

and gold specimens, several other small sample tests were done with different 

apparatuses and changes in mechanical properties of the small samples were also reported. 

Yield strength 33 times larger than the bulk value of the thin aluminum film was 

observed by Haque et al.[5] by performing the micro-tensile tests inside the SEM 

chamber on the 200nm thick, 23.5μm wide and 185μm long sputter deposited aluminum 

samples. The load was applied by a piezo-actuator and the strain was measured by the 

sensor beam which directly connected to the specimen. Ruud and Josell [6] tested the Cu, 

Ag and Ni thin films of 1 cm long, 3.3 μm wide and 1.9-2.6μm thick in gauge area. The 

poisson ratios of the thin films tested by Ruud were found different than the calculated 

bulk values. Some more tests were done on the thin films [7-15]. After these findings 

through testing samples in micron-scales, various theories for explaining the change in 

strength in small size specimens, or size scale plasticity, were raised. In the Artz’s 

overview literature[16] and Burghard et al. report[17] , size scale plasticity found in the 

thin films were attributed to the dimensional constraint of the films and/or the substrates.  
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According to the model proposed by Artz, it is the passivation layers on the film surface 

and grain boundaries that obstructed the advance of the dislocations. Dislocations 

nucleated from the source continued to pile up at the surfaces and the grain boundaries 

thus increased the shear stress required to generate new dislocations. Greer [3] proposed a 

dislocation starvation mechanism that explained the size effect found in his compression 

tests on gold pillars. The dislocations inside the gold pillars could not multiply (e.g. 

intersecting with other dislocations) before leaving the surface due to short moving 

distance in the small sample. With dislocations continuously leaving the sample, shear 

stress required to nucleate new dislocations from the lattice is increased so that total 

strength of the material is increased. Small size indentation tests also showed an increase 

in strength of small samples [18,19]. The indentation created geometrical necessary 

dislocations that accommodate the strain gradients formed during the deformation [20]. 

However, the hardening effect found in the indentation tests is not depending on the size 

of the sample but the profile of the test indenter and the strain gradient it created. So the 

hardening effect due to the strain gradient is not size scale plasticity. Another size effect 

found in the small volume beam bending tests was reported by Sedlacek [21]. He 

attributed the increase in strength of the small beams to the dislocation pile-ups formed 

near the neutral plane. This model is similar to Arzt’s thin film model, except the 

passivation layers is in the middle of the sample rather than on the sample surface. 

Besides the above mentioned theories that explain the size scale plasticity, several other 

factors may also affect the behaviors of samples especially when they are small: 

 1. Thin film texture effect: 

    Strong texture is usually developed when thin film is deposited on the substrate.  
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    Up to 90% volume fraction of textured structure was found in the aluminum thin  

    film by Kang et al.[22]. The developed texture can greatly affect the measured strength 

    in different locations.   

 2. Grain size effect: 

     When thin film is deposited on the substrate, the thickness of the film restricted the  

     size of the grains that can grow, so the grain size of the thin film is usually less than  

     the thickness of the film. So if the thickness of the thin film is in sub-micron level, the  

     size of the grains of the film must be sub-micron too, thus higher strength is expected. 

3. Intrinsic stresses 

     The deposited thin films often exhibit intrinsic stresses [23] when they are deposited  

     onto the substrates due to different in thermo expansion coefficients of the substrate  

     and the film. When testing these thin films, the intrinsic stresses may increase the  

     stress that required for them to yield. 

Small volume tensile tests were done mostly on the thin films, and more or less the afore 

mentioned factors may affect the measured results. To minimize those errors and find the 

true hardening effect due to change in sample sizes, it is essential to test small samples in 

different sizes directly machined from one bulk material. In this study, small tensile 

samples were machined from Ti-1100 and Inconel 625 sheets. The cross-sectional areas 

of small samples varied from 2000 μm2 to 400μm2. These samples were relatively larger 

than thin films samples (cross-sectional area ~10μm2) but much smaller than the 

conventional test samples (cross-sectional ~10mm2). Strong size effect was found in 

small samples through series of microscopic tensile tests.  Measured stress-strain curves 

of the tested small samples gave very different mechanical properties than those of large 
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samples. Strain burst phenomenon discovered by Ghosh [24] was observed during the 

tests of the small samples. The size effect found in small samples is believed to be caused 

by the thickening of the mantle areas of the samples, which is caused by continuous strain 

bursts, and repeated slips occurred at the same slip step. The fabrication and dimension of 

small samples as well as the test apparatus will be described in the following sections.   

 

6.2 Fabrication of small samples 

The base materials used in the tests were 0.1mm thick Ti-1100 sheet and 0.27mm thick 

Inconel 625 sheets. The chemical compositions of Ti-1100 and Inconel 625 are tabulated 

in Table 6.1 and Table 6.2. Optical metallography of both Ti-1100 and Inconel 625 are 

shown in Fig 6.2(a) and 6.2(b). Ti-1100 sample was etched by Kroll’s reagent (1~3ml HF, 

2~6 HNO3, 90ml DI water) and Inconel 625 sample was etched by Aqua regia (20ml 

Nitric acid with 100ml Hydrochloric acid ) to reveal the grains. The average grain size of 

original Ti-1100 sheet is 22.3μm and the grain size of original Inconel 625 sheet is 

15.7μm.  

 

Two types of small samples were machined from the Ti-1100 and Inconel 625 sheets; 

type 1 and type 2 samples. Type 1 small sample has a two-finger shape with an average 

cross-sectional area around 400-800μm2 as shown in the schematic illustration in Fig 

6.3(a). Type 2 small sample has elongated shape and larger cross-sectional areas in gauge 

section (around 1000-2000μm2) as shown in the schematic illustration in Fig 6.3(b).  
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20mm x 6mm rectangular strips were cut from the Ti-1100 and Inconel 625 sheets. Both 

type 1 and type 2 samples were further machined from these strips to give small gauge 

sections. For type 1 samples, three 1.76mm diameter holes were drilled parallel to each 

other on the strips and the spacing between holes were kept for 50-75 μm. These spacing 

between holes are the gauge sections (test areas) of the samples. The spacing between the 

holes and the edges of the strip are served as protection arms which protect the test 

fingers from breaking during transportations. These supportive arms would be cut open 

before the tests. Two 3mm diameter pin holes were drilled on the left and right of the 

strip for pins of the test machine to go through. The centers of the pin holes and the 

1.76mm diameter hole in the middle are carefully aligned such that load could be equally 

distributed to two gauge sections. After machining, the middle section of the sample 

where two fingers located would be etched by the HF solution (10ml HF, 90ml ethyl 

alcohol) to reduce the size of the fingers. After the diameter of the fingers were etched 

down to ~30 μm, focused ion beam (FIB) machining would be applied to the fingers and 

carve a 50 x 20 x 20 μm3 rectangular gauge section on the fingers. A photo of the type 1 

small sample is shown in Fig 6.4(a) and the SEM image of the FIBed gauge section is 

shown in Fig 6.4(c).   

 

Type 2 samples were made by machining the Ti-1100 strips to a dumbbell-like piece as 

shown in the schematic illustration in Fig 6.3(b) with four 0.150 x 5 x 0.1mm3 fingers in 

the middle and two 0.5 x 5 x 0.1mm3 supportive arms on the top and bottom. The 

supportive arms were made to protect the test fingers during the transportation and would 

be cut open before the tests. HF solution was used to etch the fingers of the machined 
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samples to reduce the volume of the fingers down to 100μm2 . Subsequent mechanical 

sanding and polishing was done on the top and bottom of the fingers which reduced the 

thickness of the fingers down to around 30μm. A 100 x 30 μm2 rectangular block on the 

side of the fingers would be cut by the FIB and form a smooth gauge section. A photo of 

the type 2 small sample is shown in Fig 6.4(b) and the SEM image of the FIBed gauge 

section is shown in Fig 6.4(d). The curvature on the test fingers of the type 2 small 

sample may result in a higher flow stress measured than the real effective stress which 

acts on the sample. The curvature problem can be solved by the Bridgeman correction 

and the details of Bridgeman correction is given in Appendix 6B.  

 

6.3 Small sample test apparatus  

A tensile test apparatus was special designed to test the small samples. Fig 6.5 shows the 

photo image of the test apparatus. A computer controlled open-loot New Technology 

Squiggle linear actuator (H) was used to apply load to the loading flange (G), and the 

load was transferred through the slide stage (E) and mobile crosshead (B) to the test  

sample(C). The loads registered on the test sample were recorded by a Futek 5lbs load 

cell (D) and translated to voltage signals and stored in computer through DAQ system. 

The test apparatus is vacuum proved and can be set up inside a SEM chamber and 

allowed the test to be monitored under the SEM. Detailed description of the small sample 

test apparatus is shown in Appendix 6D. 
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6.4 Calibration of the small sample test apparatus 

Calibration of the small sample test apparatus was done by comparing the load-strain 

curves of the Ti-1100 small sample tested under the small sample test apparatus and 

conventional tensile sample tested under the Instron machine. The test procedure and 

sample dimension of the conventional large tensile sample are listed in Appendix 6C.  

Fig 6.6(a) shows the load-displacement plot of two samples different in sizes tested by 

the small test apparatus and Instron test machine. The tensile load of the conventional 

large sample tested under the Instron machine went up to ~290 N so only a small portion 

of the curve is shown in plot (a). Another load-displacement curve shown in plot (a) is a 

smaller sample with 1.59x0.1mm2 in the gauge section tested under the small sample test 

apparatus. The maximum load of small sample bore was 20N due to the load limitation of 

the motor. The load displacement curves in plot (a) are transformed to engineering stress-

strain curves and re-plotted in plot (b). Also, another stress-strain curve was added into 

plot (b), which is a large sample tested in small sample test apparatus. Though different 

samples were tested under different test apparatus, in the engineering stress-strain plot, 

the young’s modulus of all three tests are almost the same. Since young’s modulus of  

same material would not chance with different sample sizes, this gives strong evidence 

that the readings of the small sample test apparatus are credible and the data collected 

could be used for analysis.  

 

6.5 Tests of type 1 small samples 

The first small sample test was conducted on the type 1 small sample machined from Ti-

1100 strips with 20μm x 20μm cross-sectional areas. The cross head speed was controlled 
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by an open loop squiggle linear actuator with minimum rate of 1μm/s and the load cell 

was calibrated before tests. Engineering stress-strain curve of the Ti-1100 type 1 small 

sample is shown in Fig 6.7(a) with the stress-strain curve of a conventional large tensile 

sample and a stress-strain curve of a type 2 small sample. The stress-strain curves of the 

type 1 small samples did not give a clear elastic-plastic transition point; instead, it had 

many small strain bursts (strain steps). The curve of large sample showed strain softening 

after yielding while the type 1 small sample continued hardened till failure. The 

hardening rate of the type 1 small sample slowed down after strain reached 0.1 and fewer 

strain bursts were found in strain between 0.1 and 0.17. The type 1 small sample 

hardened again after strain reached 0.17 with several small strain bursts. The fracture 

stress of type 1 small sample reached 2000MPa and is much higher than the fracture 

stress of the large sample (~800MPa ).  

 

The second set of test was done on the type 1 small sample machined from Inconel 625 

strip. Fig 6.7(b) shows the stress-strain curves of a tested small sample and a 

conventional large sample for comparison. Again, no apparent elastic-plastic transition 

point was found on the stress-strain curve of the Inconel 625 small sample. Also, many 

strain bursts (strain steps) were found on the stress-strain curve of the Inconel 625 small 

sample. Both Inconel 625 small sample and large sample stain-hardened till failure, but 

small sample had a higher hardening rate and failed at 2800MPa, which is about 2 times 

higher than the failure stress of the large sample. Two plots in Fig 6.8(a) and Fig 6.8(b) 

show the details of early part and end of stress-strain curves of tested Ti-1100 type 1 

small sample. Strain steps on the curve are outlined by horizontal bars. These strain steps 
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shown in the plots are believed to be early yieldings of the small samples and are 

believed to correspond to the slip steps formed on the sample surface. And slip steps 

usually occur at the imperfect surface regions which have higher stress concentration. 

When each slip step is formed, strain energy of the sample is temporary released and the 

flow stress is lowered, thus on the stress-strain curve, a flat region (strain step) is formed. 

When the sample is further deformed, flow stress increases again and keeps increasing 

until the next slip occurs (ie, ejection of dislocations to the surface). Detailed modeling of 

slip-associated strain bursts is described in Ghosh [24]. The continuous strain bursts 

caused the stress-strain curves of both type 1 Ti-1100 and type 1 Inconel 625 small 

samples to be serrated. The total number of strain steps recorded on the Ti-1100 type 1 

small sample is 33.  The total number of strain steps found on the Inconel 625 type 1 

samples (recorded on the magnified stress-strain curves in Fig 6.9(a) and Fig 6.9(b)) is 54.  

To further investigate the relation between the strain steps and slip steps that formed on 

the sample, SEM analysis is required. Fig 6.10(a) shows the SEM image of tested Ti-

1100 type 1 small sample at fracture surface. The final cross-sectional area is circled by 

the black dotted line. The fractured surface still retained its original rectangular shape 

with small area reduction. Fig 6.10(b) shows another SEM image 45 degrees to the 

fracture surface. Many slip steps were shown on the side of the sample. The number of 

the slip steps appeared on the sample is 33, which is identical to number of strain steps 

found in the stress-strain curve. The matching numbers of the slip steps and strain steps 

give strong proof that the strain steps on the stress-strain curves were caused by the 

formation of slip steps. Fig 6.11(a) shows the SEM image of the tested Inconel 625 type 1 

small sample looking down from the fracture surface. Heavy slip steps surrounded the 
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fractured area and formed a pyramid shape. The slip steps propagated from one side of 

the sample to the other. The final cross-sectional area was greatly reduced from original 

400μm2 to 83μm2. On the side of the sample, as shown in Fig 6.11(b), a total of 34 slip 

steps were measured. The number of slip steps measured in Inconel 625 type 1 small 

sample did not match the number of strain steps (54 strain steps) in the stress-strain curve. 

The difference in numbers of strain steps and slip steps may be caused by the multiple 

slips in a single slip step. Fig 6.12(a) shows the SEM image taken on the side of the 

fractured Inconel 625 type 1 small sample where the strain is about 0.145. Fig 6.12(b) 

shows the SEM image of the same sample with another region where strain is about 

0.324. The thickness of slip steps that formed at higher strain region are ~ 0.4 μm, which 

are thicker than the slip steps that formed at lower strain region (0.16 μm). Thick slip 

steps at higher strain region are believed to contain more slips than slip steps in lower 

strain region. Multiple slips may have occurred in one slip step at high strain region. A 

schematic illustration of the formation of slips is shown in Fig 6.12(c). 

 

6.6 Tests of the type 2 small samples 

The stress-strain curve of the Ti-1100 type 2 small sample is shown in Fig 6.7(a).  The 

type 2 small sample followed similar hardening pattern of the type 1 small sample. There 

are only three strain steps found in the stress-strain curve of type 2 small sample, which 

took place at strain 0.02, 0.04 and 0.08, respectively. Type 2 small sample has a larger 

cross-sectional area (~2000μm2) compared to the type 1 small sample (~400μm2) and 

requires higher load to deform the sample such that small load drops when slip steps 

formed may not be picked up by the load cell, so few strain bursts were recorded. Fig 
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6.13 shows the fracture surface of the type 2 small sample. Slip steps could be seen on 

the side of the sample. The slip steps formed in the type 2 small sample are less than slip 

steps formed in type 1 small sample. The final cross-sectional area of the fractured 

sample is circled by the dotted line in Fig 6.13. Several Ti-1100 type 2 small samples 

were tested and the failure stresses of each sample were measured by dividing the load 

applied to the sample before failure by the sample’s final cross-sectional area.  

 

6.7 Result and discussion 

 The failure stresses of Ti-1100 small samples are plotted in Fig 6.14(a) with the 

corresponding final strains (measure from the change of cross-sectional area) and 

extrapolation lines were made to connect the data points. A stress-strain curve of 

conventional large sample is also plotted in the figure for comparison. The large sample 

shows much lower yield stress and failure stress than the small samples. The extrapolated 

stress-strain curves of the type 2 small samples shows higher strength and strain 

hardening rate than large sample. Type 1 small sample with the smallest cross-sectional 

area (20μm x 20μm) shows even higher strength and hardening rate than type 1 small 

samples. The failure stress of the type 1 small sample is 2240MPa (measured from the 

final cross-sectional area), which is more than two times larger than the failure stress of 

the conventional large sample (~900MPa).Yield stress (1600MPa) of the type 1 small 

sample is also much larger than the yield stress of conventional large sample (900MPa). 

Also, the strain hardening rates of the small samples are higher than the large sample.  
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The increase in strength of Inconel 625 type 1 small samples is even more phenomenal. 

In Fig 6.14(b), failure stress of Inconel 625 type 1 small sample is plotted with its 

corresponding strain and a stress-strain curve of conventional large sample is also plotted 

for comparison. From the extrapolation, yield stress of the small sample reached 1020 

MPa while yield stress of the conventional large sample is 470MPa. The tensile stress of 

the large sample is 1370MPa while the tensile stress measured from the type 1 small 

sample is 14.4GPa, about 11 times increments. The strain hardening rates of the Inconel 

625 small samples are believed to be much higher than the hardening rates of large 

sample. By comparing the stress-strain curves of large samples and small samples in both 

materials, we can find that the stress-strain curves of small sample do not follow the 

conventional pattern. The curves of small sample have no apparent yielding point but 

consist of many small strain steps. Therefore, it is difficult to determine the yielding 

strength of the small samples because different yield off-sets we use will give different 

yield strength. Also, the material hardens after every strain steps forms and this hardening 

continues till sample fractures. These step-hardening curves were first found in the tests 

of small samples. 

 

 A plot of cross-sectional area versus failure stress of Ti-1100 small sample is shown in 

Fig 6.15. The failure stress of the conventional large sample (4x1011nm2) is around 

1000MPa. With the size of the samples decreases, the failure stress increases up to 

~2000Mpa. Strong size scale plasticity is shown in the plot. Size scale plasticity is also 

found in the Inconel 625 small samples, as shown in the plot in Fig 6.16. The stress at 

failure increased from 950 MPa for a conventional large sample to 10500 MPa for a type 
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1 small sample and the yield stress increased from 450 MPa for a conventional large 

sample to 1000MPa for a type 1 small sample.  

 

6.8 Factors which may cause the size scale plasticity 

From the SEM analysis and test results, there is no doubt that size scale plasticity exists 

in small samples. It is believed that two factors caused the increase in flow stress in small 

samples. 

1. Hardening of the mantle area (skin) of the small sample: 

The mantle area of the sample hardens during plastic deformation, thus higher stress is 

required for the dislocations to pass through the mantle area of the sample when it is 

hardened. In large sample, the volume of the mantle area is small compare to the overall 

volume of the sample. An illustration is shown in Fig 6.17. However, if sample is small, 

the number of atoms in the mantle area is close to the total number of atoms in the sample, 

thus the strengthening from the mantle area becomes more prominent. In SEM image 

taken from Inconel 625 tested small sample, as shown in Fig 6.11(a), the final cross-

sectional area reduced from original 400 µm2 to 78µm2 and the perimeter of the sample 

reduced from 112 µm to 36 µm. The cross-sectional area to perimeter ratio equals the 

volume fraction of mantle area. So the volume fraction of mantle area of small sample 

increased from 0.28 before test to 0.46 after test. The strengthening from the mantle area 

became more prominent when the small sample was elongated.   

 

2. Continual slip on the previously formed slip steps: 
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The slip steps shown in Fig 6.12 indicated that more than one slip occurred at one slip 

step in small samples. The flow stress required for slip to occur on the same slip step is 

higher than slip to occur elsewhere. Since slip steps found in Fig 6.12 showed multiple 

slips occurred on same slip steps, higher flow stresses must be applied in these regions. 

 

Perimeter (inverse proportional to the volume fraction of mantle area) and width of slip 

steps of Inconel 625 small sample with deformation strain is plotted in Fig 6.18. It is 

believed that both increase in mantle area and multiple slips attributed to the increased 

strength in Inconel 625 small sample. 

 

6.9 Imperfect surface regions from the machining. 

Due to the machine limit, the focused ion beam machining may cause small surface 

defect on the small sample (~0.5µm since the resolution of the Focused Ion Beam 

machining is 0.5µm). This defect may be neglected in large samples for their massive 

volume. However, in small samples, the cross-sectional areas in gauge sections are very 

small and defects even in micron-scale may lead to stress-concentration. These surface 

defects are the regions where slip steps prefer to occur. It is believed that because slip 

steps formed on the defect regions, strain steps showed up and formed the unique serrated 

stress-strain curve. The defects have more prominent effect on type 1 small sample than 

type 2 small sample since cross-sectional area of type 1 small sample is much smaller 

than type 2 small sample, and this is believed to be the reason why less strain steps were 

found on the type 2 small samples.  The radius on the shoulders of FIB’d gauge sections 
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may also affect the stress distribution of the sample. The detailed discussion is tabulated 

in Appendix 6B.  

 

6.10 Summary and conclusions  

Ti-1100 and Inconel 625 type 1 small samples with ~400µm2 cross-sectional areas and 

type 2 small samples with cross-sectional areas ~1000-3000 µm2 were successfully 

machined from metal strips by series of cutting, chemical etching and focused ion beam 

(FIB) trimming. Tensile tests were done on the small samples with special designed small 

sample test apparatus. The fracture surfaces of tested type 1 and type 2 small samples 

showed extensive slip lines. Numbers of the dislocation lines formed on the Ti-1100 

small samples matched the strain steps formed on the stress-strain curves. It is believed 

that for each slip step formed, a corresponding strain step formed on the stress-strain 

curve. A trend was found in the tests of small samples that with reduce in cross-sectional 

areas, flow stresses increased. This strengthening effect is believed to be caused by the 

hardening from the mantle area and the multiple slips that occurred in same slip steps. 

The tests of small samples can be summarized by the followings: 

 1. Micron-level small samples can be machined from the bulk materials via precise  

     mechanical machining, chemical etching and focus ion beam machining. 

  2. Strain steps were found in the type 2 small sample tests and were believed to be  

      caused by the slips formed on the sample surface. 

  3. Multiple slips may occur on the same slip steps and increase the required flow stress. 

  4. Hardening of the mantle area caused the strengthening in small samples. 

  5. Higher flow stresses were found in the small samples compare to the conventional  
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      large samples.  

  6. Samples with smaller cross-sectional areas exhibited higher flow stresses.  

  7. Surface imperfections may be responsible for the premature slips to occur in the  

      small samples, which lead to the formation of strain steps on the stress-strain curves. 
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Alloy                Sn             Zr             Al             Mo            Si               C             Ti 
Weight %        2.85          4.09         6.04           0.45           0.36           0.006       Balance 

Alloy          C        Mn     Si       P         S          Cr       Mo     Al       Cu     Ti   Iron   Ni  
Weight % 0.024  0.05   0.13  0.004  0.0006   21.31   8.67   0.18    0.03   0.2  3.47 balance 

Table 6.1 Chemical composition of the Ti-1100 alloy. 
 

Table 6.2 Chemical composition of the Inconel 625 Ni-based alloy. 
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Figure 6.1 (a) Plot of flow stress versus pillar diameter of the micro-compression tests on the gold  
                   pillars. (b)Plot of stress versus beam thickness of micro-bending tests on the copper beams.  
                   It is evident in both plots that samples with smaller volumes exhibit higher strength. 
                   (c). Reconstruction of plot and (b) by changing the flow stress σ to the stress increment  
                  due to the size scale plasticity (σ-σ0). The slops of both curves increase with reducing 
                  specimens size.  
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Figure 6.2 (a) Optical microscopic image of microstructure of Ti-1100 thin metal sheet. The  
                  average grain size is 22.3μm. (b) OM image of microstructure of Inconel 625 thin 
                  metal sheet. The average grain size is 15.7μm. 

(a) (b) 
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Figure 6.3 (a) Schematic illustration of the type 1 small sample. The spacing between three 
                  1.76 mm diameter holes in the center of the sample is where the test fingers located. 
                 Two 3mm diameter holes on left and right are the pin holes for the gripping of the  
                 sample. The centers of two pin holes and the small hole in the middle are precisely  
                 aligned thus upon loading, the load would be equally distributed to the two test fingers. 
                 (b) Schematic illustration of the type 2 small sample. Rectangular cuts were made at the 
                gauge section to form the elongated fingers. The finger width was kept in between 100- 
                150μm. One larger spacing (500-600μm) at each side between the edges of the sample  
                and the outer cuts would server as the supportive arms  which would be cut open before  
                the test. Two 3mm holes on the left and right are the pin holes for the gripping.  
 

(b) (a) 
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Figure 6.4 (a) Photo of the type 1 small sample. (b) Photo of the type 2 small sample. (c) SEM  
                  image of the gauge section of the type 1 small sample. A 50 x 20 x 20 μm3 rectangular  
                  portion was carved by the FIB. (d) The SEM image of the gauge section of the     
                  type 2 small sample where two 200 μm long stripes on both sides of the sample were  
                  removed by the FIB. 
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(d)         Edges removed by FIB 



 172 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.5  The small sample test apparatus. (A)Fixed crosshead (B) Mobile crosshead (C)  
                   small sample (D) Futek 5lbs loadcell (E) slide stage (F) Stainless steel frame  
                   (G)Loading flange (H) New Technology squiggle linear actuator. 
 

H 
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Figure 6.6 (a) Ti-1100 Load-displacement curve of the large sample tested under the small  
                  sample test apparatus compared with the load-displacement curve of the large 
                  sample tested under the Instron test machine. The maximum loading capacity of 
                  the small sample test apparatus is 20N where the curve ceased growing. (b) 
                  Ti-1100 Engineering stress-strain curves. Type 1 small sample was tested under the  
                  small test apparatus, large samples were tested under the small test apparatus and 
                  Instron machine. In both plots, the tests done in the small apparatus followed the 
                  similar slopes of the test done in the Instron machine, which verified the credibility 
                 of the data collected from the small sample test apparatus. 

(b) 

1 

(a) 
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Figure 6.7 (a) Stress-strain curves of the Ti-1100 type 1 and type 2 small sample vs large  
                  sample. The yielding of the small samples started much earlier than the large sample  
                  but continued hardened with the increasing strain till failure. Strain softening was  
                  observed in the large sample after reaching the ultimate tensile stress. (b) Stress-  
                  strain curves of the Inconel 625 type 1 small sample vs large sample. The same early  
                  yielding occurred to the small sample. Strain hardening was found in both samples,  
                  but the small sample exhibits a higher hardening  rate than the large sample. 
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(b) 

Figure 6.8  Magnified stress-strain curve of the Ti-1100 type 1 small sample in the early stage of   
                   the test (a) and right before failure (b). The horizontal lines indicate the strain steps 
                   that formed during the test. A total 33 steps were measured. 
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Figure 6.9 Magnified stress-strain curve of the Inconel 625 type 1 small sample in the early  
                  stage of the test (a) and right before failure (b). The stress increments of each strain  
                  step in Inconel 625 small sample were smaller than the Ti-1100 small sample. But the  
                  number of the strain steps in Inconel small sample is much more than the Ti-1100. A  
                  total 54 steps were measured. 
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Figure 6.10 SEM images of the fractured Ti-1100 type 1 small sample (a) looking from the 
                    project direction of the fracture surface, the final cross-sectional area is circled by  
                    the dotted lines (b) looking 45° from the fracture surface, slip lines appears at the  
                    edge of the sample. A total 33 slip lines were measured. 
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                                                       20μm 

(1) (19) (34) 

Figure 6.11 SEM images of  Inconel 625 type 1 small sample (a) looking from the project direction of  
                    the fracture surface, the final cross section area is circled by the dotted line. Compared to  
                    the original area (rectangular shape in the background), large area reduction was obtained.  
                    Two white arrows indicated the thicker slip lines where the multiple slips may have  
                    occurred. (b) looking from the top of the fractured small sample, heavy slip lines are  
                    visible. Spacing between slip lines are small near the base of the samples and grow larger  
                    toward the fracture surface. A total 34 slip lines were measured. 

(a
) 

                                                       10μm 
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Figure 6.12 SEM image on the side of the Inconel 625 type 1 small sample at (a) ε=0.145 and (b)  
                    ε=0.324. Width of the slip lines grow larger with the higher strain. (c) Schematic  
                    illustration of slip step formation for single slip  
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Slip 
plane Slip 
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Figure 6.13  SEM image looking from the project direction of the fracture surface of the Ti- 
                     1100 type 2 small sample. Dimples appeared on the surface are the evident of  
                     the ductile failure. Slip steps created during the test are pointed out by the white  
                     arrow. The final cross section area which used in the calculation of fracture   
                     stress- strain is circled by the dotted line. 
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Figure 6.14  Stress-Strain plots of (a) Ti-1100 and (b) Inconel 625. The data points of the small           
                     samples were calculated by the final cross section areas and it is evident that samples  
                     with smaller cross section areas have higher stress values. The strain hardening rates 
                     of small samples were also found higher than the large sample from the extrapolated  
                     curves. 
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Figure 6.15  Relation ship between the cross-sectional area of the Ti-1100 samples and  
                     measured flow stress. An extrapolated curve was made to fit the experimental  
                    data. Samples with smaller cross-sectional areas exhibit higher stresses. 
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Figure 6.16 Stress vs cross section area plot of the Inconel 625 tensile samples. The stress at  
                    failure increased rapidly with the cross-sectional area reduced to less than 109   
                    nm2. The yield stress also increased with the smaller cross section area but with a  
                    more gradual slope. 
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Figure 6.17 Schematic illustrations of skin areas in the sample. When the sample is large,  
                    flow stress increase from the skin area has little effect on the overall strength  
                    of the sample. When the sample is small, the number of atoms in the skin area  
                    is almost the same as numbers of atoms in the body of the sample. Hence the  
                    stress increase from the skin area becomes more prominent for the overall  
                    strength. 

 
Large sample Small sample 

Skin 
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Figure 6.18  Correlation between strain and slip step width and sample perimeter of Inconel  
                     625 type 1 small sample. As strain increases, slip step width increases from 0.15 
                    μm to 0.5μm and perimeter decreases from 112μm to 36μm. 
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                                               Appendix 6 A  
 
                                  Size effect in pure nickel microcrystals. 
 
Dimiduk et al. [2] introduced a method of testing small Ni single crystal pillars based on 

the FIB machining and nanoindentation.  The dimensions of the Ni pillars varied from 0.1 

μm to 40 μm and had length-to-diameter ratio of 2:1-3:1. An SEM image of the FIB 

machined micro-pillar is shown in Fig 6.A.1. Compression test was done by the modified 

nanoindentor with flat diamond tip. The loading is control by the close loop voice-coil 

loading system and the displacement rate is controlled in between 0.2 to 5 nm/s. A 

schematic illustration of the configuration of the nanoindentation system is shown in  

6.A.2. With decrease in sample size, the stress-strain curves of the samples start to 

deviate from the conventional single crystal stress-strain behavior. A plot of stress-strain 

of Ni pillars with diameter less than 2.5 μm is shown in Fig6.A.3. There are no distinct 

yieldings among these samples and many large strain bursts are shown in the stress-strain 

curves. The shape of the stress-strain curves also changed from conventional convex 

upward to concave upward. Fig 6.A.4 shows the plot of the relationship between the 

engineering stress and pillar diameter. It is clear that stress increases with the decreasing 

sample diameter and the lowest stress for the small pillar is higher than the CRSS for the 

macroscopic crystal. The size-dependence of the strength for single Ni small pillars is 

attributed to the lack of dislocation intersections due to the sample sizes smaller than the 

mean free path length (~50-300μm) of the dislocation. With the continuous escaping of 

the dislocations from the sample surface, the dislocation density of the small sample 

approached to the dislocation-free whiskers and resulted in the consequent strengthening 

and high flow stress of the small samples.  
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Figure 6.A.1  SEM image of the FIB’d small nickel pillar used in the compression test. The  
                       length to- diameter ratio is 2:1-3:1 

Figure 6.A.2  Schematic illustration of the nanoindentation system used in the nickel pillars   
                       compression tests. 
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Figure 6.A.4  Engineering stress vs sample diameter plot of the small nickel pillars. The stress  
                       increases with the decreasing sample diameter. The dashed line shows the CRSS of  
                       the macroscopic nickel single crystal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.A.3  Stress-strain curves of the nickel pillars with diameter less than 2.5μm. Many   
                       strain bursts are shown in the curves with slopes concave upward.. 
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                                           Appendix 6 B 
 
                                          Bridgman correction 
 
The stresses at the center of neck is not uniaxial tension but also compression from the 

lateral contraction during the tensile deformation. The effective tensile stress that causes 

yielding is the total tensile stress minus the compression stresses from the lateral 

contraction and the curvature on the neck affects the state of the lateral compression 

stresses. Bridgman’s correction for the effective stress for the tensile deformation is, 

                                     )]2/1ln()/21/[1/ RaaR ++=σσ                              (B1) 

where σ  is the measured stress, R is the radius of curvature at neck, a is the radius of the 
 neck. 
 
Fig 6.B.1. showed the Bridgman correction factor as a function of the curvature of the 

neck region. The radius of curvature of the type 2 small sample used in this study is 

around 30mm and the radius of the finger is ~50μm. The Bridgman factor of the type 2 

small sample is 0.9996, which means the effective stress for tensile deformation is almost 

equal to the applied tensile stress. Furthermore, the curvature of the sample is only 

outside the gauge section since the curvature in the gauge section is removed by the 

focused ion beam. So that it can be concluded that the load applied to the sample can be 

used as the tensile stress with little/no corrections.  

 
 
 
 
 
 
 
 
 



 188 

Figure 6.B.1  The Bridgman correction factor as a function of the curvature of the neck 
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                                              Appendix 6 C 
 
                            Conventional tensile tests on the large samples 
 
Conventional large samples were machined from Ti-1100 sheet and Inconel 625 sheets 

with dimensions of 15mm long and 3mm wide in gauge section. A 4505 Instron frame 

was employed in the test and the strain rate was set at 0.5mm/min. The pulled samples 

compared with the untested sample is shown in Fig 6.C.1. and the stress-strain curves of 

the test are shown in Fig 6.C.2. The stress-strain curves of the Ti-1100 large sample (Fig 

6.C.2(a)) showed a little strain hardening in the beginning and then dropped to zero 

following the dotted line. An extrapolation of the true stress-strain was made to connect 

the original Ti-1100 curve to the stress-strain at fracture, which was calculated from the 

load at failure and the final cross-section area of the sample. Some strain softening was 

found from the extrapolation. The tensile strength of the large sample is around 1000MPa 

and the tensile elongation measured from the gauge section is about 9.3%. Compared to 

Ti-1100, Stress-strain behavior of the Inconel 625 large sample (Fig 6.C.2(b)) showed a 

much stronger strain hardening effect and no strain softening was found. Same true 

stress-strain extrapolation was made on the Inconel 625 plot. The sample yielded at 470 

MPa but the flow stress continued grew to 1400 MPa. Elongation of the Inconel 625 

sample is about 45%. 
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Figure 6.C.1 Photo of the large samples. The top one is the unstrained sample, middle one is the  
                      tested Ti-1100 large sample and bottom one is the tested Inconel 625 sample. The    
                      cross section of the Ti-1100 and Inconel 625 samples are 3x0.1mm2 and 3x0.27mm2  
                      respectively. Elongation of 9.3% was found in the tested Ti-1100 sample and 45% 
                      in the tested Inconel  
               

Untested 

Ti-1100 sample 

Inconel 625 sample 



 191 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.C.2  True stress-strain curves of the (a)Ti-1100 large sample and (b) Inconel 625 large  
                       sample. The dashed lines are the engineering stress-strain obtained from the tensile  
                       tests where the true stress-strain of the curves were extrapolated by connecting the  
                       original stress-strain curves to the failure stress-strain points of the samples. The  
                       failure stress-strain were measured by dividing the load before failure by the final 
                       cross section area of the samples. The strain rates were set at 0.5mm/min.  Strain  
                       hardening was found in the Inconel 625.  

(a) (a) (b) (b) 
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Appendix 6 D  
 

Step-by-step assembling and standard operation procedure  
of small sample test apparatus. 

 
The small sample test apparatus is consisted of 4 major systems: The stage, feed through, 

data acquisition (DAQ) system and motor control. The basic assembling steps of each 

component in each system are described in the following: 

Stage system 
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Figure 6.D.1 shows the components of small sample test fixture including Futeck load 

cell, cable of the load cell, cross head, body of the stage and sliding member. The detailed 

scales of each part are illustrated in Fig 6.D.2.  Figure 6.D.3(a) and (b) shows the front 

side and back side of the mounting fixture of the stage.  

 

 

 

 

 

 

 

Combine the mounting fixture to the small sample test fixture as shown in Fig 6.D.4 (a) 

Front view and 6.D.4 (b) Back view.  
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Attach squiggle motor to the sliding member and the stage system is completed as shown 

in schematic in Fig 6.D.5 (a) and photo 6.D.5(b).  
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Feed through system 

Fig 6.D.7 shows the schematic of the side plate of SEM chamber with two feed through 

installed. One feed through has two wires and another has eight wires attached to it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Four wires of feed through 1 are used for motor control and the other four wires of feed 

through 1 are used to collect signals from load cell. The connections between systems in 

and out of the feed through are illustrated in Fig 6.D.8. The stage system is connected to 

the feed through system and the motor control system (control box + motor control ) is 

also connected to the feed through system. Data acquisition (DAQ) board connects to 

Part # 2 

SEM chamber side plate with feed through. 

Feed through 1&2 
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1 2 
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four wires through feed through to the load cell and collects signals, which are stored in 

the computer.  
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Standard operation procedure ( SOP ) of small sample test apparatus. 

1. Load cell and DAQ system. 

    The load cell should be connected to the amplifier and the amplifier is connected to   

    one end of the feed through. The numbers on the cords of feed through correspond to   

    different signals that load cell provides. 

                    #5 positive excitation to the amplifier ( 12v~24V) 

                    #6 negative excitation to the amplifier 

                    #7 grounds  

                    #8 positive voltage signals from the load cell 

     Connect # 5 and #6 to the power supply which gives constant voltage of 12~24V 

     Connect # 7 and # 8 to the ground and CH1IN port of the DAQ board 

 

2. DAQ board and computer 

    Use USB cable to connect DAQ board to the laptop. 

    Install the tracer DAQ program from the “NEW SCALE TECHNOLOGY” blue cd   

    ( blue cd shown in figure 6.D.10 ). 

    Open the software and enable the selected board, then change vol to big20V 

    Start recording the voltage and change data point to 1000 or more 

     Save data after finish the test. 

 

3. Extensometer and the stage assembly 

    Connect the extensometer of the Instron 5505 to the stage. 

     Measure the displacement based on 12.7mm gauge length. 
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     The displacement measured from Instron machine needs to be converted by the   

     following equation: 

    Displacement of the small sample ( mm ) = (((%strain/100)+1)12.7)-12.7 

 

4. Voltage signal – load conversion 

    Each 1V change in signal corresponds to 0.5 lb change of load. 

    The base voltage DAQ board gives is 1.4 V, which decreases with increasing load.  

    To convert the voltage signal into load ( N ), follow the equation below. 

    Load ( N ) = ((volt signal)*(-1)+1.4)*0.5*0.454*9.8 

 

5. Check all measurement equipments are calibrated and ready for recording. 

     Put small sample on the stage and secure with screws through pin holes 

     Increase the load by advancing the motor through the control knob of the motor   

     system. 

     Continue increase the load till sample fails. 

     Save all the data collected and convert into stress-strain values. 
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Chapter 7 
 
 

 
Summary and recommendations for future work 

 
 
The focus of this work is mostly on the thermo-mechanical processes of hard-to-deform 

metal alloys. The process techniques include ABRC, angle die extrusion followed by hot 

rolling and biaxial extrusion. Materials processed by these thermo-mechanical processes 

all showed great grain refinement with improved mechanical properties. ZK60 Mg alloy 

processed by ABRC 3 cycles (cumulative strain = 7.5) has final grain size of 6.39μm and 

yield strength of 274MPa and maximum elongation of 207%. ZK60 alloy processed by 

biaxial extrusion (cumulative strain = 7.92) has bimodal final grain size with large grain 

~29μm and small grain ~1.57μm with higher yield strength 355 MPa and maximum 

elongation of 252%. Though the cumulative strain of ZK60 processed by ABRC (7.5) 

and biaxial extrusion (7.92) were similar, the resulting microstructures differ due to their 

different processing routes.In ABRC processed ZK60, no bimodal grain distribution was 

observed but bimodal grain distribution was shown in biaxial extruded ZK60. The 

uniform fine-grained microstructure of ABRC processed ZK60 is believed to be 

attributed to the repeated deformation induced recrystallizations at ambient temperature 

(most of the deformations were done above 250ºC). On the contrary, the biaxial extruded 

ZK60 at 150ºC lacks the driving force for recrystallization (low temperature) thus the big 

grains were not able to break down to smaller grains. However, low temperature 

deformation and unique extrusion route in biaxial extrusion helped further break down 

the small grains into near submicron size (1.57μm grain size with many ~500nm 
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segments) where warm deformed ABRC ZK60 has relatively larger final grain size (6.39 

μm). The difference in developed grain structures also affected the mechanical behaviors. 

Higher yield strength was found in biaxial extruded ZK60 with smaller grain size 

(smaller grains in fine grained area compare to ABRC processed ZK60).  

 

Two processing techniques were used to process Ti-6Al-4V alloy; angle die pressing 

followed by hot rolling and biaxial extrusion. In Ti-6Al-4V processed by angle die 

pressing and rolling, ultra-fine grain size of 0.31 μm was found with equiaxed 

microstructure. The biaxial extruded Ti-6Al-4V also has fine equiaxed grains with 

average grain size of 0.7μm. The microstructures of Ti-6Al-4V processed by these two 

techniques do not differ too much. However, the ductility of biaxial extruded Ti-6Al-4V 

(724%) is much higher than angle die processed Ti-6Al-4V (450%). This higher ductility 

in biaxial extruded Ti-6Al-4V is believed to be attributed to the higher β phase content (~ 

25% compare to ~20% in angle die pressed Ti-6Al-4V) due to its one shot processing 

step.  

 

From the experience learned from processing Ti-6Al-4V and several magnesium alloys in 

different thermo-mechanical routes, there are few recommendations for the future works  

 

1. For magnesium alloys, precipitates play important roles in the mechanical 

properties as well as grain sizes. The stability of grain sizes under elevate 

temperature deformation is also of concern. So far, the optimal processing route 

that gives highest strength and good ductility of ZK60 is via biaxial extrusion 
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with processing temperature set at 150ºC. It is of interest to discover the effect of 

biaxial extrusions on other magnesium alloys (AZ series and AM series as well as 

rare earth containing Mg alloys).  

2.  For Ti-6Al-4V alloy, the mechanical properties are deeply affected by the 

volume percent of α-β content and grain size. It is believed with higher β phase 

present, higher ductility could be achieved. Various processing route should be 

tested to adjust the α-β content of the processed work piece.  

3. For small sample tests, TEM works should be done on the tested samples to 

examine the microstructure of mantle area and bulk area to verify the dislocation 

pile-up theory that causes the increase in strength of small samples. 
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