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CHAPTER I

Introduction

This dissertation presents novel mathematical models and algorithms for stochas-

tic network design and flow (SNDF) problems: the optimal design and flow of a

network under uncertainty to meet specific requirements while minimizing expected

total cost. These types of network problems arise in a wide variety of domains. For

example, in telecommunication network design, the objective may be to determine

the amount of capacity to install on each link (arc) of a telecommunication net-

work such that there is sufficient capacity to carry an uncertain amount of traffic

(telephone calls or data transmissions) simultaneously between various source and

sink nodes. In disaster relief management, the network is defined by a set of nodes

representing emergency-supply sources, sinks or transhipment points. The goal may

be to allocate emergency-supplies in a pre-emergency stage such that demand in the

post-emergency stage can be met at the least possible cost. Uncertainties in node

and arc capacities exist due to potential damage to shipment routes and facilities

during the event of a disaster.

In this dissertation, we focus on two other important applications: truckload pro-

curement auctions and wind farm network design. In truckload procurement, carriers

minimize their costs to ship loads by creating efficient tours, continuous movements

1
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with minimal empty mileage. This is often accomplished by combining loads they

are bidding on with their repositioning capacities. However, these repositioning ca-

pacities are not known with certainty at the time of the procurement auction, as

they may depend on future contracts and spot market opportunities.

In recent years, wind farm network design has garnered much interest because of

federal and state initiatives to reduce greenhouse gas emissions in an effort to forestall

global warming. In wind farm network design, a primary concern is the impact on

overall system reliability of integrating a large amount of intermittent wind resources

(turbines). This problem is highly stochastic because wind speed is stochastic and

varies spatially and temporally across sites, future demand is not fully known, and

both generators and transmission lines are subject to random failures.

SNDF problems, such as those above, often have characteristics that render them

difficult to model and computationally challenging to solve, including:

Nonlinear costs: There are often fixed costs associated with network expan-

sion decisions. In power system transmission expansion planning, for example, there

are fixed costs associated with adding new transmission capacity in each corridor.

These fixed costs may reflect one-time regulatory fees, land leases, et cetera. These

are traditionally modeled using Big-M constraints, which state that capacity can-

not be added on a specific corridor unless the fixed cost is assessed. These types

of constraints are well known to be computationally challenging because they lead

to weak linear programming (LP) relaxations and fractional capacity expansion de-

cisions. Weak LP relaxations lead to poor lower bounds, and fractional expansion

decisions lead to large branch-and-bound trees and thus to significantly increased

computational times.

Nonlinear flows: The flows of commodities on arcs may be subject to nonlinear
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losses. In power systems, for example, electricity flow on a transmission line is

subject to “i2R”transmission losses, and in communication networks, packets are

increasingly (at an exponential rate) dropped as network congestion rises. Nonlinear

flow decisions like these are unfortunately quite common in SNDF problems. These

challenges are further magnified because often a subset of the decision variables must

take on integral values. In such cases, the resulting model is nonlinear and discrete.

Probabilistic reliability requirements: In addition to minimizing total cost,

there may be an additional requirement on the reliability of network designs. For

example, in WFND, a key consideration is the impact of intermittent wind power

on overall system reliability. When such a reliability requirement exists, network

reliability requirements can be enforced either as an objective penalty, penalizing the

system for unmet demand, or as a hard constraint on the minimum probability of

meeting demand. The second case is especially challenging. In WFND, for example,

the conversion from wind speed to power output is highly nonlinear (and non-convex)

and discontinuous; moreover, integrating a multivariate probability distribution for

multi-area wind speeds within this power curve poses even greater challenges.

Stochastic parameters: In SNDF problems, network parameters are not known

with certainty. For example, in combinatorial truckload procurement auctions (CTPA),

carriers do not have complete information about their future repositioning capaci-

ties and costs at the time of the auction, as these capacities may depend on other

contracts they may be awarded and/or spot market opportunities at the time of

operation. In CTPA, carriers’ repositioning capacities and prices, represented by arc

capacities and costs in the network model, are discrete random variables with some

joint distribution. To minimize the expected cost for procuring truckload services,

each scenario (which represents a realization of the random variables and its asso-
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ciated probability) must be considered explicitly. Incorporating these uncertainties

into the model results in an extremely large SNDF problem and thus poses significant

computational challenges.

In all of the aforementioned applications, additional application-specific require-

ments are added to the nominal network design and flow problem, while simplifying

steps are typically taken to achieve tractability at the expense of solution quality.

The goal of this research is, therefore, to capture as much of the complexities within

these problems as possible. We focus on truckload procurement auction and wind

farm network design problems characterized by uncertainties in node supplies and/or

demands and in arc capacities and/or costs.

This dissertation presents models and algorithms to address all of these challenges

for truckload procurement auctions and wind farm network design. We develop

models and algorithms for these specific applications; whenever possible, we also

extend our results to a more general class of network flow problems.

In the remainder of the introduction, we provide motivation, describe challenges,

and summarize our contributions to SNDF problems within the context of our re-

search on CTPAs and WFNDs. In §1.1, we introduce a novel implicit bidding ap-

proach (IBA) that permits the solution of fully-enumerated combinatorial auctions

in a single round, something that was not possible with preexisting approaches. By

using IBA, we can circumvent the main computational challenges of CTPAs by repos-

ing this problem as an integer multicommodity flow problem of polynomial size (with

respect to the auction parameters). In §1.2, we describe the extension of CTPAs to

consider network uncertainties. Specifically, we show that this problem can be for-

mulated as a more general two-stage multicommodity flow problem (TS–MFP) in

which there are uncertainties in the costs and/or capacities of a subset of the arcs.
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In §1.3, we present our work on WFND problems subject to penalties for unmet

demand. An accelerated Benders decomposition algorithm is developed to solve this

problem. In §1.4, we consider an alternative model for WFND problems in which

reliability is enforced via a constraint on loss-of-load expectation. We conclude the

introduction in §1.5 with an outline of the remainder of the dissertation.

1.1 Solving Truckload Procurement Auctions Over an Exponential Num-
ber of Bundles

Truckload carriers provide hundreds of billions of dollars worth of services to ship-

pers in the United States alone each year. Internet auctions provide these shippers

with a fast and easy way to negotiate potential contracts with a large number of

carriers. Combinatorial auctions have the added benefit of allowing multiple lanes to

be considered simultaneously in a single auction. This capacity is important because

it enables carriers to connect multiple lanes (where a lane is defined by an origin, a

destination, and a volume indicating the number of loads) in continuous moves or

tours, decreasing the empty mileage that must be driven and therefore increasing

overall efficiency. However, achieving full economies of scope and scale in combi-

natorial auctions requires bidding on an exponential number of bundles, which is

not tractable except for very small auctions. In most real-world auctions, bidding is

instead typically limited to a very small subset of the potential bids. We present a

new bidding framework, the Implicit Bidding Approach, for combinatorial truckload

procurement auctions that enables the complete set of all possible bids to be consid-

ered implicitly, without placing the corresponding burden of an exponential number

of bids on the bidders or the auctioneer. This approach leverages the fact that there

is a known and amenable structure underlying the cost of servicing a given set of bid

lanes. Specifically, the least-cost tour (or set of tours) needed to cover a set of lanes
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can be computed by solving a minimum-cost flow problem. We therefore propose to

embed this underlying cost structure (which we refer to as a bid-generating function)

directly into WDP. This approach eliminates the need for the bidder to compute and

communicate an exponential number of bids. Furthermore, we will show that the

resulting WDP is a special case of an integer multi-commodity flow (MCF) problem

of polynomial size. We then provide extensive computational results to demonstrate

the increased tractability that our approach provides. Finally, we conclude with

numerical analyses to assess the quality of the solutions that are generated and to

demonstrate the benefits of our approach over existing bidding methods in practice.

The contributions of this research are in:

1. presenting a new implicit bidding approach for combinatorial auctions that en-

ables the complete set of all possible bids to be considered implicitly, and thus

achieves full economies of scope;

2. developing tractable models to solve a basic truckload procurement auction to

optimality, in a single round, fully considering (implicitly) the exhaustive set of

all possible bids;

3. showing how the power of mathematical programming can enable this basic

problem to be extended to include additional important real-world operational

considerations; and

4. taking advantage of this new capability to solve fully-enumerated truckload

procurement auctions as a tool for conducting numerical analysis on the char-

acteristics of CTPA solutions.
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1.2 Stochastic Multicommodity Flow Approach to Combinatorial Truck-
load Auctions

In this research, we consider a fully-enumerated stochastic combinatorial truckload

procurement auction (S–CTPA) characterized by uncertainties in carriers’ reposi-

tioning capacities and costs. Typically, carriers participating in combinatorial truck-

load auctions estimate repositioning capacities and costs for different opportunities.

However, shipments awarded on the basis of such estimates are often sub-optimal

in expectation. To rectify this problem, we leverage the implicit bidding approach

for truckload procurement auctions to derive a tractable winner determination prob-

lem that is fully expressive and completely captures carriers’ uncertain repositioning

capacities and costs. We then present an accelerated decomposition algorithm for

solving the resulting winner determination problem and extensive computational

studies to demonstrate its efficacy. Finally, we generalize the models and algorithms

presented for stochastic combinatorial truckload procurement auctions to a class of

stochastic network flow problems, which we call Two-Stage Multicommodity Flow

problems (TS–MFPs), and demonstrate the applicability to a variety of other prob-

lems, such as vaccine distribution and emergency relief.

The contributions of this research are in:

1. presenting models and decomposition algorithms for fully-enumerated S–CTPAs,

where carriers have uncertain repositioning capacities and costs;

2. proposing procedures to accelerate the decomposition algorithm for solving S–

CTPAs and demonstrating their efficacy for solving practically-sized instances;

3. taking advantage of this new capability to solve fully-enumerated S–CTPAs to

demonstrate the value of the stochastic solution over the deterministic solution,
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obtained by solving the expected value problem (a related deterministic model

that uses the expected values of uncertain parameters);

4. generalizing the stochastic model and algorithmic approach presented for S–

CTPAs to a more general stochastic network flow problem and demonstrating

its applicability to a variety of other problems.

1.3 Including Wind in Power System Siting and Capacity Expansion
Models

Wind-generated electricity is widely regarded as the most promising way to reduce

pollution and greenhouse gas emissions, but it also presents new challenges not found

in the design of conventional (i.e. nuclear or fossil-fuel based) generation networks.

We propose a new model, Wind Farm Network Design (WFND), for generation-

and transmission- expansion planning that integrates both wind-based and conven-

tional power generation. Because transmission losses grow nonlinearly with distance,

and wind generation is often located far from demand points, adequate modeling of

transmission losses becomes particularly important when including wind-based gen-

eration in network design problems. We consider linear and quadratic transmission

loss models for WFND and present a Benders Decomposition (BD) algorithm, whose

integer master problem prescribes a network design, and whose linear subproblems

convey information about the operating and loss-of-load costs (LOLC). However, the

standard BD algorithm performs poorly because of the lack of network information

in the master problem and the weakness of standard optimality cuts. Accordingly, we

enforce necessary conditions regarding network connectivity and demand fulfillment

in the master problem along with iteratively adding sets of valid inequalities and

adopting a scenario aggregation strategy (to generate multiple optimality cuts per

Benders Iteration) to improve the convergence of BD. Finally, we present a compu-
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tational study involving three test systems to demonstrate the tractability of WFND

and the efficacy of our proposed solution strategy.

The contributions of this research are in:

1. presenting a new model for the design of wind farm networks in a multi-area

power system;

2. modeling an integrated generation and transmission expansion problem with

explicit considerations for system uncertainties, fixed-siting costs and nonlinear

transmission losses;

3. introducing an accelerated Benders decomposition algorithm (A-BD) that effi-

ciently solves WFND problems with a large number of scenarios.

1.4 Iterative Test-and-Prune: Designing Wind Farms with Probabilistic
Constraints

In this research, we consider the question of how to extend WFND problems

to incorporate a probabilistic constraint on the loss-of-load expectation (LOLE). We

explore the fundamental challenges traditional mathematical programming (MP) ap-

proaches encounter in solving WFND problems with LOLE-constraints and demon-

strate these difficulties via computational experiments. We then present a novel

algorithmic approach, which we call Iterative Test-and-Prune (I–T&P), for solving

LOLE-constrained WFND problems. I–T&P is a hybrid algorithm that leverages

the power of mathematical programming (and other approaches) to solve a series of

easy feasibility problems within a larger meta-search algorithm. We present compu-

tational results for a simplified version of LOLE-constrained WFND problems and

demonstrate the greater efficacy of I–T&P over standard mathematical programming

approaches.
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The contributions of this research are in:

1. presenting a new model for the design of wind farm networks that incorporates

probabilistic constraints on LOLE;

2. developing a hybrid algorithm, Iterative Test-and-Prune, for solving WFND

problems with a LOLE constraint and demonstrating the algorithm’s efficacy

via computational experiments.

1.5 Outline for the Remainder of the Dissertation

The remainder of the dissertation is organized as follows. In Chapter II, we present

a novel approach for combinatorial auctions, the implicit bidding approach, that si-

multaneously addresses the two main hurdles of combinatorial auctions. We demon-

strate the viability of IBA for CTPAs by presenting extensive computational results.

In Chapter III, we consider fully-enumerated CTPAs under uncertain network ca-

pacities and costs. Specifically, we consider the case where carriers’ repositioning

capacities and costs are subject to uncertainty. To the best of our knowledge, we are

the first to propose a model and solution algorithm for fully-enumerated stochastic

CTPAs. Finally, we generalize our model and algorithm for Stochastic CTPAs to a

broader class of network flow problems, which we called two-stage multicommodity

flow problems. In Chapter IV, we present models and algorithms for the integrated

generation and transmission expansion planning problem with wind resources, which

we called wind farm network design (WFND). We present an efficient decomposition

algorithm for solving WFND and extensive computational results that demonstrate

the effectiveness of our approach. In Chapter V, we consider WFND problems with

a probabilistic constraint on LOLE. We demonstrate that this model is extremely

challenging and that direct applications of mathematical programming approaches
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are not viable. We present a hybrid algorithm, which we called Iterative Test-and-

Prune (I–T&P), that leverages mathematical programming (and other approaches)

to solve a series of easy feasibility problems within a larger meta-search algorithm.

Chapter VI concludes with a discussion of the contributions of this dissertation and

suggestions for future research.



CHAPTER II

Solving Truckload Procurement Auctions Over An
Exponential Number of Bundles

2.1 Introduction and Motivation

U.S. freight transportation expenditures in 2005 exceeded $700 billion. Of this

amount, $300 billion was accounted for by the truckload segment [3]. In many

corporations, transportation expenditures can be as high as 30% of the overall cost of

goods sold [7]; furthermore, trucking is often the dominant cost. Therefore, reducing

trucking expenditures can greatly reduce a shipper’s cost of goods sold and improve

profitability.

Typically, shippers estimate their freight to be shipped in an upcoming year based

on the prior year’s shipments [28]. When contracting out truckload services, a shipper

puts forth a request for quotes (RFQ) for a network of lanes. Traditionally, carriers

(i.e. trucking companies) have submitted quotes for individual lanes in the RFQ. This

is akin to a single-item reverse auction, where each lane is awarded independently

to a single carrier using a single criterion, usually price [49].

Today internet auctions provide shippers with a fast and easy way to simulta-

neously negotiate multiple potential contracts with a large number of carriers. The

use of the internet as an auction medium has the benefit of decreasing information-

gathering, participation, and transaction costs, as well as increasing geographic and

12
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temporal conveniences [38]. Large corporations such as The Home Depot, Walmart

Stores and Staples Inc. rely on applications from software providers to procure $bil-

lions worth of services annually via internet auctions [19], [35], and [11]. Prominent

providers of such software currently include CombineNet and Manhattan Associates.

Over the past decade, many of these auctions have allowed bidders to bid on

combinations of lanes instead of bidding only on individual lanes. Such auctions,

called combinatorial auctions, have three stages. First, the auctioneer (on behalf of

the shipper) announces multiple lanes for bid (henceforth, bid lanes) in the auction.

Second, the bidders (here, the carriers) submit bids for sets of bid lanes (bundles),

rather than bidding on each bid lane individually. Third, the auctioneer determines

the best set of bundles that collectively cover each bid lane, and awards contracts

for these bundles (rather than awarding individual bid lanes) to the corresponding

bidders.

An important benefit of combinatorial auctions is that they often make it possible

to capture the benefits of substitution effects and complementarities, in which the

value of a set is not simply the sum of its parts. Using a combinatorial auction in

such cases allows bidders to express their true preferences, with the goal of finding

better allocations. This is the case in truckload shipping, due, for example, to the

fact that carriers must not only transport the bid lanes that they have been awarded,

but must also return drivers home. If carriers can string together multiple loads to

form a continuous move (tour), then they can decrease their empty mileage and

thereby reduce cost.

We illustrate this in Figure 1 with a simple example with two loads. Here, we

see that the bidder’s bid price of transporting a load from A to B is l · x (the direct

movement price per mile (l) times the distance (x) to move the load from A to B)
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plus e ·x (the empty movement price per mile (e) times the distance (x) to return the

driver home from B to A). The price of transporting a load from B to A is computed

similarly. The price of transporting both loads, however, is not 2(l · x + e · x) but

instead only 2(l · x), because the two loads can be combined to form a single tour,

without any empty movements. If the loads were auctioned individually, in two

separate auctions, then the bidders would face the following dilemma when bidding

on the first load. If they bid high presuming the full price (including the empty

return trip), they might lose the auction for bidding too high a price. But if they

bid low presuming only the direct movement price and then did not win the second

load, they could lose money. A combinatorial auction ameliorates this by allowing

three bids: one for winning only load A, one for winning only load B, and one for

winning both.

A B A B A B

l·x

e·x

l·x

e·x

l·x

l·x

+ >

Figure 2.1: The benefits of complementarities demonstrated through a two load example.

More broadly, combinatorial auctions allow carriers to bid on bundles of lanes to

produce more efficient movements. The efficiency gained in combinatorial bidding, in

turn, allows carriers to submit more aggressive bids, thereby reducing transportation

costs for the shipper.

There is a substantial stream of literature on the explicit computation of bundle

bids for truckload transportation auctions. [54], [36] and [4] provide methods for

identifying bundles that are likely to be good to bid on, and efficiently computing

the bids for those bundles. [25] study a dynamic setting: they show how to compute



15

non-combinatorial bids for entire contracts in an environment where contracts are

put up for bid sequentially over time. All of these works recognize that truckload

transportation services is an area where the potential for economies of scale and scope

is particularly rich. In fact, there is opportunity to leverage the complementarities

in lanes among different shippers even before the auction begins [20], [21]. Likewise,

there is also an opportunity to leverage synergies in lanes among different carriers to

improve efficiencies in the transportation of contracted lanes [24], [50], [31], and [34].

However, two major hurdles remain that prevent the full realization of the benefits

of combinatorial auctions. The first is bid expression and communication: to fully

express economies of scale and scope among all items being auctioned, bidders must

construct and submit bids for an exponential number of subsets of these items (2n−1

for an n-item auction). This is clearly intractable for all but the smallest instances.

The second hurdle is in solving the winner determination problem (WDP), typically

formulated as a set partitioning problem [6], to select the least-cost set of bundles

such that each item is in exactly one bundle. WDP is an integer program with an

exponentially-large number of binary variables and thus also intractable for all but

the smallest instances.

[18] presented the state of knowledge for solving combinatorial auctions and sug-

gest the used of an “oracle” to alleviate the burden of expressing and communicating

an exponential number of bids. The auctioneer invokes the appropriate oracle at any

stage of an auction to determine the bid for a particular bundle. Alternatively, an

auctioneer may specify a bidding language [46], [40], [47], [1], [18], [42] and [30] to

be used by all bidders. Bidding languages specify ways in which bids must be re-

stricted to a subset of the potential bundles. Alternatively, these bidding languages

may allow for full expression of preferences, provided that the preferences have some
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special structure.

Next, assuming one can overcome the difficulties of bid expression and communi-

cation, the auctioneer is still left with solving an exponentially-large WDP. [46] and

[18] showed that WDP is computationally manageable if the structure of allowable

bids permits decomposition into disjoint groups, yields a tractable number of com-

binations, or results in constraint matrices with integral extreme points. Another

strategy is to shift the computational burden of solving WDP to the bidders. [8], [9],

and [32] proposed mechanisms that allow bidders to iteratively submit improvement

bids. Finally, [46], [27], [56], [47], [48], and [30] presented algorithms and heuris-

tics to efficiently solve WDP under certain conditions. Readers interested in a more

comprehensive examination of the theory and applications of combinatorial auctions

should refer to a recent book edited by [17].

In practice, the hurdles of exponential bidding and an exponentially-large WDP

are sometimes circumvented by using iterative bidding, by restricting bidding to

a small number of bundles, and by using exact and approximation algorithms, as

discussed in the references above. However, bidding on only a small subset of lanes

prevents the full realization of the benefits of a combinatorial auction, and incentive

compatibility and individual rationality of the auction might be compromised if the

auction is not solved to optimality [45].

No single generalized approach can find optimal solutions to fully-enumerated

combinatorial auctions for all classes of problems. [41] discussed why, in the worst

case, a general problem may require exponential communication. Therefore, as high-

lighted in the preceding paragraphs, most research focuses on exploiting problem

structure to find acceptable solutions for specific types of auctions. The goal of our

research is to show that the underlying structure of a truckload procurement problem



17

can be exploited similarly, enabling us to find solutions to fully-enumerated auctions

in practical time frames.

This research extends the existing literature on combinatorial truckload procure-

ment auctions (CTPA). For example, [49] and [12] presented the state of knowledge

for CTPAs. [35] and [19] described early uses of combinatorial auctions for truckload

procurement. [52] and [44] addressed carrier bidding strategies in multi-round auc-

tions. [29] extended the carrier assignment models used in WDP to include shipper

non-price objectives and carrier transit point costs.

Nevertheless, the full benefits of combinatorial auctions for truckload procurement

have not yet been achieved in practice. One recent study [43] showed that only 28

percent of carriers submit bids of more than one lane in combinatorial auctions and

the majority of these carriers only submit 2-7 multi-lane bundles due to practical

constraints on bid preparation time, computational resources and technical expertise

at their disposal.

We propose an implicit bidding approach to truckload procurement auctions that

can (implicitly) capture the full, exponential set of bundles. This approach leverages

the fact that there is a known and amenable structure underlying the cost of servicing

a given set of bid lanes. Specifically, the least-cost tour (or set of tours) needed to

cover a set of lanes can be computed by solving a minimum-cost flow problem.

We therefore propose to embed this underlying cost structure (which we refer to

as a bid-generating function) directly into WDP. This eliminates the need for the

bidder to compute and communicate an exponential number of bids. Furthermore,

we will show that the resulting WDP can be re-formulated as a multi-commodity

flow (MCF) problem of polynomial size. Our computational results demonstrate the

practical performance of the implicit bidding approach.
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The contributions of this research are in:

1. presenting a new implicit bidding approach for combinatorial truckload procure-

ment auctions that enables the complete set of all possible bids to be considered

implicitly, and thus achieves full economies of scope;

2. developing tractable models to solve a basic truckload procurement auction to

optimality, in single round, fully considering (implicitly) the exhaustive set of

all possible bids;

3. showing how the power of mathematical programming can enable this basic

problem to be extended to include additional important real-world operational

considerations; and

4. taking advantage of this new capability to solve fully-enumerated truckload

procurement auctions as a tool for conducting numerical analysis on the char-

acteristics of CTPA solutions.

The remainder of this chapter is organized as follows. In §2.2, we formally present

combinatorial auctions for truckload procurement. In §2.3, we introduce the implicit

bidding approach for combinatorial truckload procurement auctions. In §2.4, we

present computational experiments focusing on the tractability of the implicit bid-

ding approach, solution characteristics under a variety of conditions, and performance

comparison to bidding methods in practice. We conclude in §2.5 with a summary of

our contributions and our suggestions for future research.

2.2 Combinatorial Auctions for Truckload Procurement

In a basic truckload procurement auction, the auctioneer specifies a set of bid

lanes, each defined by an origin, a destination and a volume (typically corresponding
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to the expected number of loads). Given a bundle of bid lanes, carriers determine

the least-cost set of tours to serve these bid lanes, then use this cost in computing

their bid price for this particular bundle. For example, in a first-price auction,

carriers typically bid true-cost plus a percentage-based markup [51]. Throughout

the manuscript, we will assume a first-price auction with a percentage-based markup

for the sake of exposition. However, our approach is applicable to other auction

mechanisms as well, for example, forward auctions where items are sold. Finally, the

auctioneer solves a WDP to select bundles and allocate the corresponding lanes to

the winning carriers.

2.2.1 Computing Bundle Bids

In order to understand how carriers compute their bids, we must first understand

their cost structure. The carriers’ cost of service can be decomposed by individual

movements. The obvious cost is the direct movement cost, associated with actually

moving a load from lane origin to destination. This cost is well understood by the

carrier and is largely a function of distance (fuel, equipment depreciation, driver’s

wage, tolls, et cetera).

In addition, there is the repositioning cost associated with moving a truck from the

destination of one lane to the origin of the next, so as to form tours. To minimize cost,

and thus improve the probability of winning bids, carriers must try to build efficient

continuous movements with minimal empty mileage. This can be accomplished not

only by combining bid lanes, but also by taking advantage of a carrier’s pre-existing

contracted lanes and opportunities on the spot market. For example, Figure 2.2

shows a sequence of movements for efficiently transporting three bid loads.

These repositioning opportunities are the key to determining the actual bid price

for any bundle of lanes to be served, resulting in significant synergies and comple-
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Figure 2.2: A cost-effective tour covering bid loads 1, 2, and 3 that leverages a carrier’s pre-existing
contracts and spot market opportunities.

mentarities, as seen in the example above. Because repositioning opportunities are

often not known with certainty at the time of the auction, carriers typically estimate

these opportunities for each directed city pair (i, j) in the network. One way to rep-

resent this is with an n-tiered step function, where each tier represents capacity and

cost estimates of a different type of repositioning opportunity. For example, one tier

might represent the expected number of movements from a pre-existing contracted

lane (with other shippers), which can be used “for free”, as these movements repre-

sent hired rather than empty movements. Another tier might represent the potential

for partial connections : pre-existing lanes that require the driver to travel empty

from i to some nearby location before picking up the load and delivering it to some

location near j, thereby incurring limited empty mileage costs. Estimates of spot

market opportunities would be represented by additional tiers as well. Finally, the

highest cost tier, with infinite capacity, represents empty movements from i to j.

Figure 2.3 provides an example of such a step function. More generally, high-

traffic city pairs would have high-capacity, low-cost tiers because of the abundance of

backhaul opportunities, while low-traffic city pairs would have lower-capacity, higher-

cost tiers representing the decreased likelihood of finding complementary lanes.

Finally, we reiterate that given a set of bid lanes, direct movement cost and
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Figure 2.3: Estimate of carrier k ’s repositioning capacity and price (cost plus markup) from city i
to city j using a 4 tiered step-function.

repositioning opportunities (costs and capacities), carriers determine the least-cost

set of tours to serve these bid lanes, then use this cost in computing the bid price,

typically, cost plus a percentage-based markup.

2.2.2 Traditional Winner Determination Problem

Once the bids have been submitted, the auctioneer then solves the WDP to select

bundles and allocate lanes to winning carriers. The traditional winner determination

formulation (T–WDP) is as follows:

Sets

• K is the set of carriers and K = |K|

• AL is the set of arcs representing bid lanes and L = |AL|

• Sk is the set of bundles submitted by carrier k

Parameters

• Da is the expected volume of bid lane a, ∀ a ∈ AL

• δk
sa is the number of lane a movements in bundle s of carrier k,∀ a ∈ AL, k ∈

K, s ∈ Sk
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• bk
s is carrier k’s bid price (cost plus a percentage-based markup) for bundle

s, ∀ k ∈ K, s ∈ Sk

Variable

• xk
s is a binary variable that takes value 1 if carrier k is awarded bundle s and 0

otherwise, ∀ k ∈ K, s ∈ Sk

(T–WDP) min
∑
k∈K

∑
s∈Sk

bk
sx

k
s(2.1a)

s.t.
∑
k∈K

∑
s∈Sk

δk
sax

k
s = Da ∀ a ∈ AL(2.1b)

∑
s∈Sk

xk
s ≤ 1 ∀ k ∈ K(2.1c)

xk
s ∈ {0, 1} ∀ k ∈ K, s ∈ Sk(2.1d)

The objective (2.1a) is to minimize the total cost the shipper pays for procuring

truckload services for all lanes in AL. Constraint set (2.1b) states that bundles must

be chosen such that each lane in AL is fully covered by the awarded bundles. In a

fully-enumerated CTPA, an additional constraint set (2.1c) stating that each carrier

can be awarded at most one bundle is imposed (note that each bundle might contain

more than one tour). This constraint set is needed to ensure that we do not select

a combination of bundles for a given carrier such that, in total, the combination

of bundles violates some of the carrier’s operational constraints (for example, using

more repositioning capacity than there exists).

We conclude this section by re-iterating the fact that, for practically-sized truck-

load procurement auctions with thousands of lanes, it is of course not possible to

explicitly enumerate all bundle bids. For each lane a ∈ AL, a carrier may bid a

volume of zero up to Da, so, the total number of distinct combinations is equal to
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Λ =
∏

a∈AL

(Da + 1).

Even in the case of a regional carrier who bids only on a subset of a few dozen lanes,

this would still entail millions of bundle combinations. Instead, carriers submit bids

for only a small subset of the bundles, due to practical constraints on bid-preparation

time, computational resources, and technical expertise available at their disposal [43].

As a result, the solution quality of CTPAs in practice is often compromised.

2.3 Implicit Truckload Combinatorial Auctions

In the majority of the combinatorial auction literature, bundle prices are assumed

to be exogenously endowed. For CTPAs, although most of the literature continues

with this exogenous endowment of bundle bids, there is more recent literature on the

identification and pricing of bundles. For instance, [54], and [36] show how carriers

can efficiently identify promising bundles to bid on as well as the bid price for those

bundles. [25] also explore how synergies impact the pricing of bids for bundles in a

dynamic environment, where demand for loads to be served arrives over time.

We follow a similar approach for the purpose of establishing how carriers generate

bids for specific bundles. The key idea, as recognized by the papers cited above, is

that bundle prices depend critically on the network structure, existing commitments,

and potential future commitments of the carrier. We model these by a bid-generating

function (BGF).

More importantly, the structure of this BGF can now be exploited using an im-

plicit bidding approach to solve WDP using BGFs directly, in lieu of the actual

bids. This enables the exhaustive set of bundles to be considered implicitly without

sacrificing tractability.
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2.3.1 The Bid-Generating Function

Given a bundle of bid lanes s, carrier k ’s price to service these lanes is comprised of

the individual direct movement and repositioning movement prices. For a given set of

lanes, the direct movement prices are fixed and known in advance. The repositioning

movement prices, on the other hand, depend on the continuous moves that the carrier

constructs to minimize the total price of the bundle. These repositioning moves

enable carriers to exploit synergies and complementarities that exist in serving lanes

of a bundle. As such, the price of a bundle may be significantly different from the

sum of bid prices of individual lanes in that bundle, as discussed in §2.2.1.

For a given carrier k, the problem of determining the least-cost set of continuous

moves (and thus, the value of the corresponding bids) to serve a set of bid lanes can

be computed by solving a network flow problem on a directed graph, G(N, A). In this

graph, node set N represents origin, destination and/or transhipment cities and arc

set A represents direct movement and repositioning movement lanes with associated

arc prices (cost plus profit markup) and capacities. Repositioning movement arcs

may include the carrier’s estimates of opportunities from pre-existing contracted

lanes, anticipated opportunities on the spot market, and empty movements. In

particular, we construct one arc for each tier of repositioning capacity between a

directed city pair (as described in §2.2.1).

The problem is then to create the least-cost set of tours in this network such that

each bid lane in s is covered. The notation and formulation for this BGF (which we

denote by fk) are as follows.

Sets

• N is the set of nodes corresponding to arc origins or destinations
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• Ak is the set of arcs representing carrier k ’s estimated repositioning opportuni-

ties, one for each tier of a directed city pair

Parameters

• O(a) is the origin of arc a, ∀ a ∈ AL ∪Ak

• D(a) is the destination of arc a, ∀ a ∈ AL ∪Ak

• pk
a is carrier k ’s price for a unit movement on arc a, ∀ a ∈ AL ∪Ak

• uk
a is carrier k ’s estimated repositioning capacity on arc a, ∀ a ∈ Ak

• xks is a vector of carrier k’s bid volume, where element xks
a represents the bid

volume of lane a ∈ AL in bundle s

Observe that the price of a unit movement on arc a, denoted pk
a, is strictly a

function of the carrier’s cost to complete a movement on this arc plus a profit markup.

In turn, the profit markup can account for factors such as competitive strategy,

geographic location of depots, transshipment centers, et cetera. Carriers can also

use the parameter pk
a to indicate an undesirable lane (e.g. a lane outside their region

of coverage) by setting a very high value. Lastly, in the context of pricing bundle s,

the quantity xks is a parameter of the BGF fk and not a variable.

Variable

• yk
a is the number of repositioning movements on arc a made by carrier k, ∀ a ∈

Ak
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The BGF can now be represented as the following integer program:

fk(xks) =
∑

a∈AL

pk
ax

ks
a + min

∑
a∈Ak

pk
ay

k
a(2.2a)

s.t.
∑

a∈AL:O(a)=i

xks
a +

∑
a∈Ak:O(a)=i

yk
a =

∑
a′∈AL:D(a′)=i

xks
a′ +

∑
a′∈Ak:D(a′)=i

yk
a′ ∀ i ∈ N(2.2b)

yk
a ≤ uk

a ∀ a ∈ Ak(2.2c)

yk
a ∈ Z+ ∀ a ∈ Ak(2.2d)

The objective function (2.2a) states that carrier k ’s price for bundle s is the sum of

direct movement prices (which depends solely on s and is known in advance) and the

repositioning movement prices (which depends on the chosen routing). Because these

sums are over distinct sets of movement arcs, the carrier can submit different prices

for bid arcs and repositioning arcs over the same origin-destination pairs. Constraint

set (2.2b) ensures flow conservation at each node in the network; that is, the number

of movements into a node must be equal to the number of movements out of the

node. This ensures that the resulting solution is a set of tours covering lanes in s.

Constraint set (2.2c) states that the repositioning capacity used must be less than

or equal to the available capacity.

fk(xks) has two important structural characteristics that have significant impact

on tractability. First, the integrality restrictions (2.2d) can be replaced by non-

negativity constraints yk
a ≥ 0, ∀ a ∈ Ak because the constraint matrix of this problem

is totally unimodular. Secondly, BGF can be reformulated as a circulation problem

via a simple variable redefinition. Circulation problems, which are special cases of

minimum cost flow problems, are well known to be easy to solve. For examples of

polynomial time algorithms for the circulation problem please refer to [2].



27

2.3.2 The Implicit Winner Determination Problem

Using the traditional auction mechanism described in §2.2.2, each carrier must

solve a BGF (2.2) to obtain a bid price for each bundle of interest. For real-world

truckload procurement auctions with thousands of lanes, constructing bid prices for

the full exponential set of bundles is not possible. Furthermore, even if carriers could

compute and communicate bids for all bundles, the auctioneer could not solve the

corresponding exponentially-large WDP. We show that these hurdles can be overcome

by using an implicit bidding approach, which directly embeds a carrier’s BGF into

WDP. The resulting polynomially-sized (with respect to bid lanes, number of carriers

and number of nodes) model is solution-equivalent to the fully-enumerated T–WDP

but, in contrast, is tractable for practically-sized instances.

The thrust of this implicit bidding approach is the following. Rather than submit

an exponential number of bundle-price pairs, each carrier k instead submits the

parameters of the BGF, fk. These parameters are simply a list of all the arcs

with corresponding prices (including any profit markups) and capacities. Note, of

course, that a carrier choosing not to bid on particular lanes (e.g. those outside

their geographic region of coverage) would simply not include those arcs in their

parameters. Additionally, the shipper may choose to inlude a “dummy” carrier

with a bid generating function corresponding to the spot market. In this case, the

dummy carrier’s cost function for each directed city pair (i, j) in the network would

be a trivial single-tiered step function.

The auctioneer can then imbed fk directly into WDP, which can be reformulated

as:
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min
∑
k∈K

fk(xk)(2.3a)

s.t.
∑
k∈K

xk
a = Da ∀ a ∈ AL(2.3b)

xk
a ∈ Z+ ∀ a ∈ AL, k ∈ K(2.3c)

Observe that (2.3) implicitly captures substitution effects and complementarities,

resulting in a fully-enumerated truckload procurement auction where each winner is

awarded exactly one bundle (possibly empty). This bundle is described by the single

vector of decision vector xk (with one element per bid lane), taking the place of the

set of vectors xks (with one vector per bundle) previously defined in §2.3.1. For each

a ∈ AL, xk
a is the volume of bid lane a assigned to carrier k. Note, however, that

in place of K · Λ binary variables, there are now only K · L integer variables in the

model described by (2.3). As an example, an auction with 10 carriers and 100 bid

lanes (each with a volume of 10) translates to a reduction from over 1.37 × 10105

binary variables to only 1,000 integer variables.

Of course, even with this reduction in size, the new formulation may still be quite

difficult to solve, depending on the structure of fk. As we have noted in §2.3.1,

however, fk is simply a circulation problem. Thus, embedding (2.2) in place of the

function fk leaves us with the following mixed integer program, which we denote by

Implicit Winner Determination Problem (I–WDP).
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min
∑
k∈K

[∑
a∈AL

pk
ax

k
a +

∑
a∈Ak

pk
ay

k
a

]
(2.4a)

s.t.
∑
k∈K

xk
a = Da ∀ a ∈ AL,(2.4b)

∑
a∈AL:O(a)=i

xk
a +

∑
a∈Ak:O(a)=i

yk
a =

∑
a′∈AL:D(a′)=i

xk
a′ +

∑
a′∈Ak:D(a′)=i

yk
a′(2.4c)

∀ i ∈ N, k ∈ K,

yk
a ≤ uk

a ∀ k ∈ K, a ∈ Ak,(2.4d)

xk
a ∈ Z+ ∀ k ∈ K, a ∈ AL,(2.4e)

yk
a ∈ Z+ ∀ k ∈ K, a ∈ Ak.(2.4f)

Note that x is no longer a fixed parameter in I–WDP, but now a vector of de-

cision variables. I–WDP has two sets of variables, x and y, representing bid lane

assignments and the usage of carrier’s repositioning capacities, respectively. The

objective function (2.4a) minimizes the total price attributed to direct movements

and repositioning movements. The lane cover constraint set (2.4b) stipulates that

all bid lanes must be covered by selected carriers. Constraint set (2.4c) ensures flow

conservation of nodes for each carrier; that is, the number of movements into a node

must be equal to the number of movements out of the node, thereby ensuring that

the resulting allocation defines a set of continuous moves (tours). Constraint set

(2.4d) states that the repositioning capacities used to complete the tours must be

less than or equal to the capacities available.

So, rather than solve an exponentially-sized (with respect to the number of bid

lanes, number of carriers and number of nodes) T–WDP, we can instead solve a

polynomially-sized I–WDP. I–WDP is solution equivalent to a fully-enumerated T–

WDP, as formally stated by Proposition II.1.
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Proposition II.1. Consider an auction with a set of carriers, bidding for a set of

bid lanes AL. For each carrier k ∈ K, if the price of a specific bundle s is given

by the solution to fk (defined by 2.2), then I–WDP is solution-equivalent to a fully-

enumerated T–WDP.

Proof: We will show that an optimal solution to T–WDP is a feasible solution

to I–WDP, with equivalent cost, and vice versa. Let S∗ be the set of bundles that

correspond to an optimal solution for T–WDP and let zT–WDP(S∗) be the total cost.

Let (x∗,y∗) be the set of vectors that correspond to an optimal solution for I–WDP

and let zI–WDP(x∗,y∗) be the total cost.

Claim 1: zT–WDP(S∗) ≥ zI–WDP(x∗,y∗)

Proof: For each sk ∈ S∗, define xk to be a vector of size L, where xk
a = wa (the bid

volume of lane a in sk) ∀ a ∈ AL. Since pk
s (price of bundle sk ∈ S∗) is obtained

by solving fk(xk), there exist vectors yk corresponding to the minimum price set

of repositioning moves used in sk. Observe that (xk,yk) satisfies constraints (2.4c)-

(2.4f) of I–WDP. If we let (x,y) be defined as the concatenation of (xk,yk) ∀ sk ∈ S∗,

then (x,y) also satisfies (2.4b) and is a feasible solution to I–WDP. Since the cost

coefficients of fk ∀ k ∈ K and I–WDP are identical, zT–WDP(S∗) = zI–WDP(x,y).

Finally, the optimal solution of I–WDP can only be better, thus we must have

zT–WDP(S∗) = zI–WDP(x,y) ≥ zI–WDP(x∗,y∗).

Claim 2: zT–WDP(S∗) ≤ zI–WDP(x∗,y∗)

Proof: (x∗,y∗) can be decomposed into (xk,yk) for each carrier k ∈ K. If pk(xk,yk)

is the total price to serve the bundle defined by xk using repositioning movements

corresponding to yk, then zI–WDP(x∗,y∗) =
∑

k∈K pk(xk,yk). Observe that reposi-

tioning movements yk satisfies (2.2b)-(2.2d), and thus (xk,yk) is a feasible solution of

fk. Since the optimal solution of fk(xk) can only do better, we must have fk(xk) ≤
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pk(xk,yk) ∀ k ∈ K. This implies zI–WDP(S∗) =
∑

sk∈S∗ fk(xk) ≤
∑

k∈K pk(xk,yk) =

zI–WDP(x∗,y∗). Claims 1 and 2 together imply that zT–WDP(S∗) = zI–WDP(x∗,y∗). �

Finally, as proven by Proposition II.2, we observe that this formulation is a special

case of the multi-commodity flow problem.

Proposition II.2. I–WDP can be reformulated as a multi-commodity flow problem.

Proof: The proof is by construction. For each bid lane a ∈ AL with corresponding

origin i and destination j, define Dij ≡ Da and let AB represent this set of move-

ments. For each carrier k ∈ K and bid lane a ∈ AL with corresponding origin i

and destination j, define an arc (i, j) with per unit cost ck
ij ≡ pk

a, lower bound of

lkij ≡ 0, upper bound of uk
ij ≡ Da. For each carrier k ∈ K and repositioning lane

a ∈ Ak with corresponding origin i and destination j, define an arc (i, j) with per

unit cost ck
ij ≡ pk

a, lower bound lkij ≡ 0 and upper bound uk
ij ≡ uk

a; let Sk
r represent

this set of arcs. Finally, let Ak ≡ AB ∪ Sk
r . Letting xk

ij represent the amount of flow

of commodity (i.e. carrier) k ∈ K on arc (i, j) ∈ Ak, I–WDP can be written as:

min
∑
k∈K

∑
(i,j)∈Ak

ck
ijx

k
ij(2.5a)

subject to: Dij ≤
∑
k∈K

xk
ij ≤ Dij ∀ (i, j) ∈ AB(2.5b)

∑
k∈K

∑
j:(i,j)∈Ak

xk
ij −

∑
k∈K

∑
j:(j,i)∈Ak

xk
ji = 0 ∀ k ∈ K, i ∈ N(2.5c)

lkij ≤ xk
ij ≤ uk

ij ∀ k ∈ K, (i, j) ∈ Ak(2.5d)

(2.5) is a multi-commodity flow problem. �

Although theoretically difficult [22], the multi-commodity flow problem is known

to be easy to solve in practice for many real-world instances [2]. This is the case for
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the truckload procurement auctions, as we will demonstrate through computational

results in §2.4.1.

An implicit assumption in our model is that bidders (carriers) are easily able to

compute the pk
a values. While sometimes computing pk

a may be as straightforward

as adding variable costs (fuel, wages, etc.), amortized fixed costs (equipment de-

preciation, for example) and a profit margin, carriers may wish to incorporate other

considerations such as competition on the lane and expectations of future traffic. We

refer the reader to [12] for a discussion on how carriers price individual lanes. There

is also a stream of literature (e.g. [25], [52]) on pricing bundles of lanes, in static

or dynamic environments; these approaches also provide insight on pricing single

lanes. Our work only requires bid prices to be computed for single lanes rather than

multi-lane bundles, and then uses the implicit bidding approach to obtain a WDP

that is substantially easier to solve.

2.3.3 Operational Considerations

In addition to the basic constraints shown in (2.4), shippers and carriers may

have other operational considerations to take into account. Although all models are,

of course, simplifications of the real world, we are able to expand our formulation

to capture some of the most natural operational considerations. We provide several

examples as follows.

First, we begin by defining auxiliary variables qk
a and qk for use in defining con-

straints corresponding to these operational considerations. Let qk
a be a binary variable

that takes value 1 if carrier k is awarded at least one load in lane a and 0 otherwise

and qk be a binary variable that takes value 1 if carrier k is awarded at least one load

in any lane and 0 otherwise. The following relationships are then helpful in adding

operational constraints.



33

qk
a ≤ xk

a ≤ Daq
k
a ∀ a ∈ AL, k ∈ K(2.6a)

xk
a ≤ Daq

k ∀ a ∈ AL, k ∈ K(2.6b)

qk ≤
∑

a∈AL

xk
a ∀ k ∈ K(2.6c)

• Load volume: The shipper and carriers may want to restrict the load volume

(across all bid lanes) that a carrier can be awarded. A minimum load volume

ensures that carriers are awarded at least a threshold volume. A maximum load

volume ensures that carriers’ transportation capacities are observed and there

is a manageable number of shipper-carrier relationships.

These operational considerations can be modeled as follows where, αk is the

minimum number of loads carrier k must win (or nothing), αk is the maximum

number of loads carrier k can win.

αkqk ≤
∑

a∈AL

xk
a ≤ αk ∀ k ∈ K(2.7a)

Constraints (2.7a) say that the total volume of loads awarded to carrier k must

be between αk and αk (inclusive) or zero.

• Number of assigned carriers: The shipper might prefer to award bid lanes

to no fewer than β carriers and to no more than β carriers, thus ensuring a

manageable number of vendor relationships and adequate spreading of risk. We

can model such restrictions as follows:

β ≤
∑
k∈K

qk ≤ β(2.8a)

Constraints (2.8a) say that the total number of assigned carriers must be be-

tween β and β (inclusive).
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• Number of assigned carriers per lane: The shipper may prefer to award

a lane to no fewer than γ
a

carriers and no more than γa carriers to ensure

operational efficiency.

γ
a
≤
∑
k∈K

qk
a ≤ γa ∀ a ∈ AL(2.9a)

Constraints (2.9a) say that for each lane, a ∈ AL, the total number of carriers

assigned must be between γ
a

and γa (inclusive).

• Favoring of incumbents and performance measures: There is a cost to

the shipper to start a new relationship with a carrier. In practice, incumbents

are often favored by 3-5 percent – especially for service-critical or time-sensitive

lanes [11]. Similarly, the level of service (such as percentage on-time, claims

performance, acceptance rate, et cetera) provided by a carrier can also be taken

into consideration. These operational considerations can be accounted for by

simply adjusting a new carrier’s price coefficients by a constant or multiplicative

factor.

2.3.4 Privacy Issues of the Implicit Bidding Approach

We have tacitly presumed that carriers would be willing to submit separate price

bids for each possible bundle, and that it is not a privacy concern that prevents them

from doing so, but rather a practical one — it simply is not tractable to compute

and submit such a large number of bids. However, submitting price bids for every

possible bundle – either explicitly through enumerative bidding or implicitly through

a bid-generating function — transmits a substantial amount of information to the

auctioneer. Sharing such a large amount of information may naturally raise privacy

concerns for the carriers. Broadly speaking, there will always be tension between

the perceived risk of providing information versus the opportunities to be gained by
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leveraging synergies (which can benefit both the carriers and the auctioneer).

Thus it is worth noting that our implicit bidding approach will be subject to such

tensions. For example, transmitting tiered pricing for different repositioning-arc

volumes in the bid-generating function implicitly reveals capacity information about

the carrier. On the other hand, there are substantial gains to be made by an efficient

allocation of lanes to carriers, resulting in a win-win situation for both the auctioneer

and the carriers. For the auctioneer, the gains are clear in that the overall price of

procuring the transportation services will be lower. For the carriers, the efficient

allocation resulting from our approach means that overall, the empty movement by

carriers is much lower than in an inefficient allocation. Therefore, carriers are able to

better serve lanes that they win (i.e. serve with lower empty/wasteful repositioning

movement), and thereby use their excess capacity to earn more revenues from other

markets. While it is of course true that some individual carriers may earn lower

profit from this approach when compared to some other, less expressive approach,

our approach drives overall inefficiencies resulting from unprofitable repositioning

moves out of the system. From a longer-term perspective, greater truckload efficiency

makes the truckload market more competitive versus alternative shipment modes like

rail and air, which has implications for the long-term viability of carriers.

We believe, given the benefits of achieving full economies of scope in a fully-

enumerated CTPA, that carriers and shipper have significant incentives to overcome

these concerns. Consider an analogous example, Vendor Managed Inventory (VMI)

systems [14], in which a retailer provides its suppliers with direct visibility to in-

ventory levels. Like our proposed approach, VMI raises concerns about information

privacy and security. However, VMI systems are widely used today by large corpora-

tions such as Walmart and The Home Depot because of the substantial benefits they
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provide [37]. The practice of CPFR (collaborative planning, forecasting and replen-

ishment) in the manufacturing and distribution sectors requires even more extensive

sharing of information [5]. The reason different agents (manufacturers, distributors,

retailers, etc.) participate in these systems despite concerns about sharing critical

information about capabilities and forecasts is that these systems allow all parties

to benefit from the realized efficiencies.

In practice, third party service providers such as Manhattan Associates and Ariba

can provide services such as bidder pre-qualification and transaction confidentiality

to improve information security and privacy and to limit the risk of information leak-

age. Additionally, emerging research on cryptographically-secured auctions [33], [26]

provides an additional way to protect information. We believe our proposed method

provides significant incentives for its use and as such may galvanize deployment of

existing, or development of new, infrastructures.

2.4 Computational Experiments

We conducted a set of computational experiments to assess the overall effective-

ness of the implicit bidding approach for CTPAs. Specifically, we have focused on:

• the tractability of I–WDP and the impact of instance size (number of bid

lanes and load volume) on solution time;

• the impact of operational constraints (load volume, assigned carriers, as-

signed carriers per lane) on solution time;

• the impact of instance characteristics (repositioning capacity and network

structure) on solution characteristics (solution time, number of assigned carriers,

and empty movement ratio);

and
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• a comparison to bidding methods in practice in terms of solution times

and allocation costs.

Computational experiments were conducted on a Sun x4600-M2 with 8 AMD

Opteron 8218 processors and 64 GB of RAM. The test machine was running Red

Hat Enterprise Linux 4. Models and algorithms were coded using C++ and ILOG

Concert Technology and solved using ILOG CPLEX 10.0. Parameter files for all

computational instances in §2.4 are available online [15].

2.4.1 Tractability of I–WDP

We evaluate the performance of I–WDP on randomly generated instances rep-

resenting various sized auctions. Random instances are controlled by the following

parameters: number of nodes (cities), number of carriers, number of bid lanes, repo-

sitioning capacity per carrier, and carriers’ price structures (represented by pairs of

direct movement and empty movement price-per-mile).

We generated five sets of experiments representing auctions of size 1000, 2000,

3000, 4000 and 5000 bid lanes on a network with 100 nodes representing the 100

most populous cities in the United States. There are 50 carriers (bidders) bidding

in each auction. For each set of auctions, we randomly generated 10 instances and

report cumulative statistics. The volume of each bid lane is selected uniformly be-

tween 50 and 200 loads. A carrier’s repositioning capacity is represented by a set of

capacitated, preexisting contracted lanes (that can be used for “free”) and a set of

uncapacitated empty movement lanes. The number of preexisting contracted lanes

per carrier is selected uniformly between five and fifteen percent of the number of

bid lanes, with each pre-existing contracted lane volume selected uniformly between
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10 and 100 loads.

Carriers’ movement prices are generated by multiplying travel distance and a per-

mile movement price to the ensure that the triangle inequality is satisfied. A carrier’s

price to serve an additional load in a bid lane is equal to the distance from bid lane

origin to bid lane destination times the carrier’s direct movement price-per-mile,

generated using a Normal distribution, N(1.10, 0.052). Similarly, a carrier’s price to

move empty between any city pair is equal to the distance between the city pair times

the carrier’s empty movement price-per-mile generated using a Normal distribution,

N(0.80, 0.052).

Results

Solution characteristics for the five auction sizes are shown in Table 2.1. The

median times reported are substantially lower than the averages which indicates that

average solution times are skewed by a few long running instances. It is interesting

to note that, generally, average solution times are inversely proportional to the size

(number of bid lanes) of the auction. All else being equal, increasing the number of

bid lanes in the auction actually improves solution time. Intuitively, given a fixed-

size network with uniformly distributed lanes, increasing the number of lanes in the

auction improves the probability of finding complementary lanes. Therefore, for large

auctions, the price of the auction is primarily dominated by direct movement prices

and the majority of bid lanes are allocated to a smaller number of low-cost carriers.

The solution times suggest that we can in fact solve to optimality fully-enumerated

CTPAs of up to 5000 bid lanes (over 600,000 bid loads) with relative ease. We

contrast this again with the traditional approach, which would require each carrier

to compute and submit an exponential number of bundle bids and the auctioneer

to solve a T–WDP with a corresponding number of binary variables - clearly, an
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22213799140551,792249,6652,000
63218391181276,780124,4251,000

Std. Dev.MedianAvg.
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carriers 

assigned

Solution Time (sec.)Avg. repos. 
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(loads)

Avg. no 
bid 

loads 

No. 
bid 

lanes

Table 2.1: I–WDP solution characteristics for various auctions sizes.

intractable task.

2.4.2 Impact of Operational Considerations

We next consider the impact on performance of imposing constraints on load vol-

ume, number of assigned carriers and number of assigned carriers per lane. We again

consider auctions with 1000, 2000, 3000, 4000 and 5000 bid lanes, using the basic

instances generated in §2.4.1 as the baseline. In addition, we conducted the following

sets of experiments: basic problem with additional constraints on load volume (con-

straints 2.6b-2.6c, 2.7a), basic problem with additional constraints on the number

of assigned carriers (constraints 2.6b-2.6c, 2.8a) and basic problem with constraints

on the number of assigned carriers per lane (constraints 2.6a, 2.9a). We constrained

the total load volume awarded to any carrier to be between 50 loads and 40 percent

of the total load volume. The number of assigned carriers was constrained to be at

least 5 and at most 20. Lastly, we constrained the number of assigned carriers per

lane to be at most ten.

Results

As expected, solution time increased with additional constraints. These operational

considerations depend on imposing constraints (2.6a) and (2.6b) to define the aux-

iliary variables qk and qk
a . Constraint set (2.6a) and (2.6b) are generally very weak



40

7731,7847741271,384,599624,4125,000
6241,0121,1351471,087,532499,8784,000
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Carriers 
per lane

Assigned 
carriers

Load 
volumeBasic

Avg. solution time (sec.)Repositioning 
capacity 
(loads)

Number of 
bid loads 

Number of 
bid lanes

Table 2.2: Average solution times for I–WDP with constraints on total load volume, number of
assigned carriers and number of assigned carriers per lane.

because in most cases the entire lane volume is not assigned to a single carrier. These

types of “big M” constraints typically lead to a weak linear programming (LP) relax-

ation, which is well known to be computationally undesirable [39]. There is potential

here for future research to develop “stronger” alternative formulations and cutting

plane algorithms for improving LP relaxations of constrained I–WDP.

Nonetheless, constrained I–WDPs remain tractable for auctions with up to 5000

bid lanes (over 600,000 bid loads), in some cases with improving tractability as the

number of bid lanes in the auction grows. The results represented in Table 2.2 were

obtained using default CPLEX solver settings and no preprocessing routines. This

also leads us to believe that further improvements in solution times of I–WDP with

operational constraints are attainable.

2.4.3 Impact of Instance Characteristics

In the preceding sections, we demonstrated the viability of the implicit bidding

approach by presenting computational results for CTPAs with up to 5000 bid lanes.

Furthermore, we showed that these models can be extended to account for some

practical considerations and still maintain tractability.

Now that we have a tractable way to solve, in a single round, fully-enumerated

CTPAs to optimality (which was not possible in the past) we can also conduct nu-

merical analysis to better understand the performance and characteristics of practical
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CTPAs. To our knowledge, in the literature there has not appeared such a study of

fully-enumerated CTPA outcomes.

In particular, we consider the following questions:

• How does the number of lanes affect solution characteristics?

• How do differences in network structure affect solution characteristics?

Effects of Repositioning Lane Quantity

We first consider how varying carriers’ repositioning capacities impacts solution

time, the number of assigned carriers, and empty movement ratio, defined as the ratio

of empty movement distance to total (direct plus empty) movement distance. In this

numerical experiment, we again consider auctions of 1000, 2000, 3000, 4000 and

5000 bid lanes. With the exception of the number of repositioning lanes, parameter

settings are identical to those described in §2.4.1. For each of these auction sizes, we

hold the number of bid lanes constant and vary the number of repositioning lanes

(of each carrier) as a percentage of the number of bid lanes, ranging from zero to 100

percent.

Results

In Figures 2.4, 2.5 and 2.6, we present results for auctions with repositioning

capacities for each carrier varying from zero to 50 percent of the number of bid

lanes. Computational results showed that these trends continue to hold beyond

these ranges up to 100 percent of the number of bid lanes.

Our computational results show that CTPAs have special properties at two ex-

tremes: when carriers have no repositioning capacities or very large repositioning

capacities. At these extremes, the I–WDP is extremely tractable as evident by the

small solution times in Figure 2.4. Furthermore, at these extremes the number of
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Figure 2.4: Effect of lane quantities on solution time.
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Figure 2.5: Effect of lane quantities on the number of carriers assigned.

assigned carriers is relatively small (Figure 2.5). Intuitively, when carriers have no

repositioning capacity, the cost of the auction is dominated by the carriers’ direct

and empty movement costs, therefore, a small number of low-cost carriers typically

win the majority of the bid lanes. As carriers’ repositioning capacities increase, the

likelihood of finding cost-effective connections also increases, leading to decreases in

empty movements (Figure 2.6). As this happens, the majority of continuous move-

ments are formed by combining bid lanes with carriers’ pre-existing contracted lanes.
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Figure 2.6: Effect of lane quantities on empty movement ratio.

In this case, the cost of the auctions is dominated by direct movement cost and a

small number of carriers with the lowest direct movement costs again typically win

out.

Effects of Network Structure

Next, we evaluate how solution characteristics change as the structure of the

network varies. Specifically, what is the impact on solution time, number of assigned

carriers, and empty movement ratio? We again consider a network with 100 nodes,

which we now divide into six regions. Each bidder is defined to be either a national

or regional carrier. National carriers have repositioning capacities that are uniformly

dispersed throughout the entire network, while regional carriers have repositioning

capacities that are concentrated in one specific region. Bid lanes are generated

in either a uniform network, where bid lanes have randomly selected origin and

destination cities, or in a hub-and-spoke network, where bid lanes originate from

one of three hubs (selected a priori) and terminate at a random node in an adjacent

region. Examples of a hub-and-spoke network and a uniform network are provided

in Figure 2.7.
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Detroit

Hub-and-Spoke Network Uniform Network

Figure 2.7: The network on the left is a hub-and-spoke network with a single hub located in Detroit.
All bid lanes in this network originate from the hub. The network on the right is a
uniform network with bid lanes uniformly dispersed throughout the entire network.

The computational results presented below are based on auctions with a total

load volume of 100,000 and 50 carriers. Carriers are assigned 100 repositioning (pre-

existing contracted) lanes, each with volume 100. We compare computational results

for the following four network structures:

1. Network One consists of national carriers bidding on 1000 bid lanes (with aver-

age lane volume of 100) uniformly generated on the network. For each carrier,

we uniformly generate 100 repositioning lanes on the network.

2. Network Two consists of regional carriers bidding on 1000 bid lanes uniformly

generated on the network. For each carrier, we randomly generate repositioning

lanes within the carrier’s pre-assigned region.

3. Network Three consists of national carriers bidding on 50 bid lanes (with average

lane volume of 2000) generated on a hub-and-spoke network. For each carrier,

we uniformly generate 100 repositioning lanes on the network.

4. Network Four consists of regional carriers bidding on 50 bid lanes (with average

lane volume of 2000) generated in a hub-and-spoke network. For each carrier, we

randomly generate repositioning lanes within the carrier’s pre-assigned region.
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Results

Figure 2.8-a shows that in a very unstructured network (Network One), with

national carriers and uniform bid lanes, the average solution time is 202 seconds. In

contrast, with a very structured network (Network Four) consisting of only regional

carriers and hub-and-spoke bid lanes the average solution time is only 13 seconds. In

Network One, there is significantly more fractionality; carrier characteristics, in terms

of costs and repositioning capacity, are very homogenous and bid lanes are uniformly

generated throughout the network. In Network Four, there is less fractionality as

carrier characteristics are more heterogeneous; each regional carrier has repositioning

capacity that is concentrated in a specific region of the network. Observe that the

computational results presented earlier in §2.4.1 and §2.4.2 are based on the least

tractable setup, with national carriers and uniform bid lanes. As such, we can expect

computational performance of our approach to be even better in real-world networks

with some structure.
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Figure 2.8-b shows that CTPAs on networks with hub-and-spoke bid lanes (Net-

works Three and Four) result in higher empty movements. This is as expected, since

carriers must return empty to hubs (bid lane origin) more often to pick up a bid load.

With respect to carrier types, national carriers are better able to exploit complemen-

tarities between their repositioning capacities and bid lanes and hence, service bid

lanes more efficiently (0.175 empty movement fraction for national carriers compared

to 0.304 empty movement fraction for regional carriers).

With respect to the number of carriers assigned (Figure 2.8-c) and number of

carriers assigned per lane (Figure 2.8-d), less structure implies fewer carriers assigned

and more structure implies more carriers assigned. On less structured networks, a

few of the lower-cost carriers typically dominate, while on a more structured network,

the unique set of repositioning lanes that each carrier brings to the auction plays a

key role in forming efficient movements and so more carriers are likely to be allocated

lanes.

2.4.4 Comparison to Bidding Methods in Practice

The research outlined in this chapter is premised on two key ideas. First, the

solution quality in a CTPA can improve significantly as the number of combinations

bid upon grows. Second, the run time in a CTPA can worsen significantly as the

number of combinations bid upon grows. In this section, we focused on reconciling

these two conflicting issues. We now focus on a comparison between bidding methods

in practice and our implicit bidding approach.

Enumerative Bidding Approaches for Low Cardinality Bundles

We use this section to show the impact on solution quality and run time of com-

binatorial bidding. A detailed study [43] of carriers’ bidding behavior showed that
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in practice, only 28 percent of carriers participating in a combinatorial auction sub-

mit multi-lane bids. Furthermore, among those carriers submitting multi-lane bids,

most submit only two to seven multi-lane bids of low cardinality (with a median

and a mode of two lanes per bundle). In the following experiments, we show that

the transition from single-lane bidding to bidding on bundles with even just two or

three lanes can dramatically increase solution quality, but also lead to prohibitive

increases in run time. We contrast this with our approach, which can exhaustively

(implicitly) consider all bundles of any size, while maintaining tractability for the

same problem instances.

For all of the experiments in this section, we assume a small auction in which 5

carriers bid for lanes (each with volume one) randomly generated in a network of 100

cities. Each carrier has 10 repositioning lanes (each with volume one) that can be

used as part of a continuous move for free. Each carrier’s price structure is randomly

generated as described in §2.4.1.

We begin by considering an instance in which 100 bid lanes are being auctioned

off by the shipper. We compute the outcome of this auction for five cases:

1. Case One permits only single-lane bids with empty returns. In this case, all

bid lanes will be allocated to the lowest price (with respect to direct and empty

movement prices) carrier(s).

2. Case Two permits only single-lane bids (see Figure 2.9). However, we allow

these bids to reflect the opportunity each carrier has for efficiencies associated

with using repositioning lanes in their network for backhaul. Specifically, for

each bid lane a ∈ AL, each carrier computes their lowest price for transporting

that lane, taking into consideration the option to use repositioning lanes, and

submits the corresponding bid for lane a. In addition, to account for the fact
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that a carrier cannot use a repositioning lane (with volume one) in more than

one bundle, we impose a constraint such that at most one bundle, among those

that share a repositioning lane, can be chosen. Finally, we must also include one

bid for each lane associated with returning empty, so as to ensure feasibility.

BL1 BL2 Empty
Move

Empty
Move

Preexisting 
Load

Preexisting 
Load

Figure 2.9: Case 2 permits single bid lane bundles. These bundles may leverage repositioning lanes
to form efficient continuous moves.

3. Case Three permits carriers to combine two bid lanes together whenever they

create a efficient continuous move (see Figure 2.10). Specifically, in addition

to the bids from Case Two, carriers also bid on pairs of bids lanes, finding

the cheapest continuous move that covers both of these lanes (again, using

repositioning lanes as well whenever beneficial), and submitting this bid price

for the pair of lanes. In addition, to account for the fact that a carrier cannot

use a repositioning lane in more than one bundle, we impose a constraint such

that at most one bundle, among those that share a repositioning lane, can be

chosen.

BL1Empty
Move

BL2

Preexisting 
Load

BL1

Empty
Move

BL2

Preexisting 
Load

BL3

Figure 2.10: Case 3 (left) permits two bid lane bundles. Case 4 (right) permits three bid lane
bundles.

4. Case Four extends Case Two by also allowing all sets of three bid lanes to be
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combined in continuous moves (see Figure 2.10). In addition, to account for the

fact that a carrier cannot use a repositioning lane in more than one bundle, we

impose a constraint such that at most one bundle, among those that share a

repositioning lane, can be chosen.

5. Case Five uses the implicit bidding approach to consider all possible bids of any

number of bid lanes.

-143,3494---I-WDP

1.30%145,21232,60468131,923833,850Singles+Doubles
+Triples

4.27%149,4699881297625,350Singles+Doubles
34.17%192,33123221600Singles

51.23%216,785000100Singles - Empty 
Returns

Cost 
Differential

Total 
Cost

Total 
(sec.)

SPP 
(sec.)

MCF 
(sec.)

Number of 
BundlesCase

Table 2.3: Comparison of explicit bidding approaches to the implicit bidding approach.

Table 2.3 shows the results of these auctions. We present the average results for

ten randomly generated instances. Column one shows the case, column two shows

the number of bundles that was considered, and column three shows the total time

spent pricing bundles by solving individual minimum cost flow problems. Column

four shows the time spent solving T–WDP to determine the allocation of bundles to

carriers. Column five shows the total time to solve the model. Column six shows the

total cost. The final column gives the ratio of overall cost to the optimal cost to be

found if all bundles, regardless of size, are considered. Of course, this is in fact the

solution obtained by solving the I–WDP.

Observe that moving from single to double bids improves the solution quality

dramatically (29.90%). The reduction from double to triple (2.97%) is less dramatic

but still significant. Although it would appear that moving from triples to all lanes
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does not improve solution quality by a large margin, a 1.30% improvement is still

quite meaningful in the trucking industry, where profit margins range from 2% to

4% [16]. Perhaps more importantly, these cost improvements associated with moving

from single- to double- to triple- lane bidding come at a substantial cost in terms of

run-time, from 23 to 988 to 32,604 seconds (in contrast with the 4 second run time

for I–WDP using the implicit bidding approach). Furthermore, this example is small

in size. As the number of bid lanes increases run-time increases prohibitively, as seen

in the next experiment.
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Figure 2.11: Projected run-times for evaluating all double bid lane bundles (left, in hours) and all
triple bid lane bundles (right, in days).

Figure 2.11 projects run times for generating all double- and triple- lane bids

as a function of the number of bid lanes. These were computed by extrapolating

from the results in Table 2.3. On average each minimum cost flow problem takes

0.038 seconds. We multiply 0.038 seconds by the total number of possible double- and

triple- lane bids to project run-times. These projections are actually underestimates,

for three reasons. First, as the networks increase in size, the individual minimum

cost flow problems take longer to solve (i.e. the run time per bid increases). Second,



51

if we consider lanes with volume greater than one load, then the number of possible

double- and triple- lane bids is even larger. Third, as the number of bids grows very

large, computational performance will be impacted by computer memory limitations.

Finally, we observe that in the examples shown here, the run-time challenge is a

function of the bid generation, with the actual WDP solving quite quickly. This will

not always remain true – as the number of bids grows the impact on IP performance

will begin to show.

Selective Bidding Approaches for Low Cardinality Bundles

The results in §2.4.4 suggest that even bidding on all bundles of size three will not

be tractable for most truckload auctions, thereby missing substantial opportunities

for cost efficiency. A logical counter-argument is to suggest not bidding on all bundles

of multiple lanes but only bidding on “good” bundles. However, this idea presents

two major challenges. First, what defines a “good” bundle? Second, how can we

find these “good” bundles?

To address these questions, we conducted the following experiments. We identified

three metrics that could be used to evaluate bundles. These are:

1. Absolute empty mileage - quality of a bundle is measured by the total empty

miles traveled. Lower absolute empty mileage is more desirable.

2. Empty mileage ratio - quality of a bundle is measured by the ratio of empty

miles traveled to total miles traveled. Lower ratio of empty mileage to total

mileage is more desirable.

3. Random - bundles are randomly selected from the set of all single, double, and

triple bid lane bundles.

For each of these metrics, we ran a separate auction. In each case, we included all
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single-lane bids (both with and without the use of repositioning lanes), as in Case

2 of §2.4.4 In addition, we enumerated all double- and triple- bid lane bundles and,

for each carrier, selected the best bids relative to the metric and included these in

the auction. We then solved the auction and reported the final cost. Figure 2.12

shows the outcomes for each of these three metrics, as the number of bids per carrier

varies. These are reported as percentages relative to the optimal value, computed

by our implicit bidding approach.
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Figure 2.12: Optimality gap between various bundles selection criteria vs. implicit bidding ap-
proach.

Observe, first, that the optimal solution relative to bidding the exhaustive set of

doubles and triples provides a natural lower bound, which in turn has a non-zero gap

relative to the optimal – in other words, the optimal solution contains some bundles

with four or more bid lanes. Note also that although metrics 1 and 2 appear to

dominate metric 3 for all but small numbers of bids, it is not always obvious which

metric would lead to the better solution.

Furthermore, we see substantial improvement as the number of included bids

increases. It is interesting to observe that this does not reflect an increase in the

number of multi-lane bids being included in the final solution. Given 100 bid lanes,

for example, at most 33 bundles of size three could ever be included in the final

solution. Rather, what we are observing is the fact that the most desirable bundles
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are not those that best satisfy the given metrics. The reason for this is that we are

not concerned with bundles in isolation, but rather with how they fit together with

other bundles to complete the auction. As an extreme case, suppose that two carriers

shared a common bid lane in their “best” bundles. Because that lane can only be

awarded once, only one of those bids could be chosen. Had one of the carriers bid

their “second best” bundle, not containing that lane, both bids might be chosen.

Finally, we note that although the run-time for the T–WDP of these instances

is certainly shorter than when including all double- and triple- bid load bundles,

because of the decrease in size of the IP, we do not know of any efficient way to find

these bundles – in our case, we resorted to enumeration, which is no faster than the

run time of Case Three.

Observations

We conclude this section by summarizing our observations. First, including multi-

lane bundles, even of small size, can greatly improve solution quality, but at a tremen-

dous impact on run time. Even small auctions become intractable when including

just triple-bid lane bundles, never mind bundles of larger cardinality. Second, we

cannot overcome this by including only those bundles which are “good bundles”

– both because of the computational challenges associated with identifying these

bundles and also because the best bundles, in isolation, might not form the best

combination of bids. Finally, we observe that our computational results here are

only from auctions of a limited size. Although the implicit bidding approach enables

us to solve much larger auctions to optimality, we cannot compare the results to

the traditional approach, as the traditional approach cannot be solved to optimality

(even across all double- and triple- bid lane bundles), except for very small instances.

However, as the number of lanes in the auction grows, there may be substantial new
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opportunities for combining larger sets of lanes (i.e. bundles of size four or more)

to incur improved savings, suggesting even more improvement in solution quality as

the number of lanes grows.

2.5 Conclusions and Future Research

In this chapter, we introduced an implicit bidding approach to solve CTPAs in

a single round while implicitly considering the exhaustive set of all possible bun-

dles. This approach directly addresses the two main challenges of combinatorial auc-

tions: bidding on an exponentially-large set of bundles and solving the corresponding

exponentially-large WDP. Using the implicit bidding approach, instead of submit-

ting an exponential number of bundles, each carrier simply submits a BGF, which is

embedded directly into the WDP. We showed that in truckload transportation, a car-

rier’s BGF is a circulation problem and the resulting I–WDP is a multi-commodity

flow problem, which is generally known to be tractable in practice. Tractability was

demonstrated through extensive computational experiments for auctions with up to

5000 bid lanes and over 600,000 loads. Furthermore, I–WDP can be extended to

include additional operational considerations while preserving tractability. In short,

we presented a new approach and models for solving CTPAs to optimality that

are computationally efficient, consider the exhaustive set bundles, and achieve full

economies of scope, which is not possible with current approaches.

We also took advantage of this new capability to solve fully-enumerated CTPAs

to optimality as a tool for conducting numerical analysis on the quality and char-

acteristics of solutions. We showed that, using this approach, shippers can conduct

numerical experiments to assess how CTPA characteristics (e.g., solution time, num-

ber of carriers assigned, empty movement ratio, et cetera) are likely to change with
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important problem parameters (e.g., number of carriers, number of lanes, carriers’

repositioning capacities, et cetera). Additionally, the shipper can use our approach

to perform what-if analysis to assess the cost impact of imposing various operational

constraints before finalizing contracting decisions. Lastly, we compared the implicit

bidding approach to bidding methods in practice and showed its benefits both in

terms of solution quality and runtime.

In terms of future work, we envision two types of research. First, extensions are

possible for our work in CTPAs. For instance, additional operational considerations

could be addressed, such as regional coverage requirements, backup carrier bids, and

maximum tour length constraints. Maximum tour length constraints are applicable

because drivers and equipment must be returned home within a limited time win-

dow. This constraint set can only be addressed with explicit knowledge of bid lane

allocations and the tours constructed to cover these allocated lanes. We are currently

addressing this problem using column generation to solve a tour based model, where

each variable represents a viable tour or set of tours.

Furthermore, now that we can solve CTPAs in a reasonable amount of time, we

can use this tool to assess the quality of various auction mechanisms for truckload

procurement. Specifically, how would different auction mechanisms (first price, sec-

ond price, et cetera) perform under various procurement settings? Even with just

a single item, revenue–or cost–equivalence between standard auction formats fails if

bidders are asymmetric.

Additionally, uncertainties in the cost parameters exist due to spot market vari-

ability, carriers’ uncertainties about their existing and future networks, and timing

effects; detailed modeling of such uncertainties and development of appropriate so-

lution approaches are interesting, but challenging, directions for future research.
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Secondly, future work could extend the use of the implicit bidding approach to

other application domains. Of particular interest is the identification of domains for

which the bid-generating approach appears amenable. A sample of potential domains

include wireless spectrum auctions, energy auctions, and procurement auctions with

capacity-constrained suppliers.
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CHAPTER III

A Stochastic Multicommodity Flow Approach to
Combinatorial Truckload Auctions

3.1 Introduction

In this chapter, we consider a stochastic combinatorial truckload procurement auc-

tion (S–CTPA) where carriers have uncertain backhaul capacity and costs. Carriers

participating in truckload auctions typically assume estimated repositioning capaci-

ties and costs, because the actual capacities and costs in the future are not known

with certainty. However, allocating bid lanes to carriers on the basis of such esti-

mates may not be optimal in expectation. For example, a carrier may be awarded

a set of bid lanes assuming the availability of a complementary set of repositioning

opportunities. However, if these repositioning opportunities are not fully available

or are available at higher costs than anticipated, the carrier may not receive suffi-

cient revenue to make a profit, or even to cover the operating cost required to serve

these bid lanes. On the other hand, if more repositioning opportunities exist or are

available at lower than estimated cost, the carrier may be awarded a payment above

what is efficient, at the expense of increased cost to the shipper.

Given the challenges of exponential bidding and carriers’ uncertain repositioning

capacities and costs, we propose a method to simultaneously resolve these two prob-

lems. We introduce two bid generating functions, one in which carriers use expected

60
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values for uncertain repositioning capacities and costs and one in which carriers con-

sider all repositioning capacity and cost scenarios. In the former, the resulting BGF

in a minimum cost flow problem structurally identical to the deterministic BGF in-

troduced in Chapter II. In the later, the resulting BGF, which we call a BGF–S, is a

large-scale minimum cost flow problem in which constraints have a block structure,

one block for each scenario. We use the implicit bidding approach to circumvent

the computational challenges of traditional CTPAs by embedding carriers’ BGF–S

directly into the WDP. This results in a tractable implicit WDP that is a two-stage

stochastic integer program.

The contributions of this research are in:

1. presenting models and decomposition algorithms for fully-enumerated, stochas-

tic combinatorial truckload procurement auctions (S–CTPAs), where carriers

have uncertain repositioning capacities and costs;

2. proposing procedures to accelerate the decomposition algorithm for solving S–

CTPAs and demonstrating their efficacy for solving practically-sized instances;

3. taking advantage of this new capability to solve fully-enumerated S–CTPAs to

demonstrate the value of the stochastic solution over the deterministic solution,

obtained by solving the expected value problem (a related deterministic model

that uses the expected values of uncertain parameters);

4. generalizing the stochastic model and algorithmic approach presented for S–

CTPAs to a more general stochastic network flow problem, which we call the

two-stage stochastic multicommodity flow problem (TS–MFP) and demonstrat-

ing its applicability to other problems.

The outline for the rest of the chapter is as follows. In §3.2, we formally present
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stochastic combinatorial auctions for truckload procurement. In §3.3, we briefly

review IBA and develop two tractable winner determination problems for fully-

enumerated S–CTPAs. §3.4 presents a cutting plane algorithm, based on the L-

shaped method, for solving S–CTPAs. §3.5 introduces various modeling and al-

gorithmic procedures to improve the efficacy of the proposed solution algorithm.

Computational experiments and results are presented in §3.6. §3.7 presents a gen-

eralization of the models and algorithms for S–CTPA to TS–MFP and other appli-

cations of TS–MFP. We conclude in §3.8 with a summary of our contributions and

our suggestions for future research.

3.2 CTPA

The basic truckload procurement auction is conducted by an auctioneer (on behalf

of the shipper), with a set K of prospective bidders (carriers). First, the auctioneer

announces a set of bid lanes A`, with L = |A`|, being auctioned, where each bid lane

a ∈ A` is defined by an origin, a destination, and a volume da, corresponding to the

number of loads in that bid lane. A bundle or combination is a subset of A`, and

different carriers are interested in selling different bundles to the shipper at different

prices. Each carrier k determines a set of bundles of interest (Sk) and submits a bid

(bk
s ≥ 0, s ∈ Sk) to the auctioneer for each of these bundles. Finally, the auctioneer,

on behalf of the shipper, solves a winner-determination problem (WDP), to partition

the bid lanes in A` and award bundles to carriers in such a way that the total cost

is minimized.

3.2.1 Computing Bundle Bids

To understand how carriers determine the bid-price for a bundle b, we must first

understand how carriers determine their cost. Given a bundle of bid lanes, carriers
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must determine the least-cost way to serve these bid lanes and use this cost to derive

a bid-price. A carrier’s cost can be decomposed into two types, direct movement-

and repositioning movement- cost. Direct movement cost is the cost associated with

moving a bid load from load origin to load destination. This cost is largely known

and is primarily a function of distance.

Repositioning movement cost is the cost associated with moving a truck from the

destination of the current bid load to the origin of the subsequent bid load. This

cost will vary depending on the chosen routing and the carrier’s backhaul capacity.

In order to maximize the probability of winning business, a carrier must find efficient

tours (continuous movements) that minimizes the total repositioning movement cost

incurred to cover the bid lanes in bundle b. This can be accomplished by combining

bid lanes in bundle b with the carrier’s backhaul capacity, which represents oppor-

tunities from existing contracted loads, future contracts, spot market opportunities,

and empty movements. The efficiencies of these repositioning movements are the key

to determining the actual bid price for any bundle b.

In practical CTPAs, carriers determine the types of repositioning movements avail-

able to them for each directed city pair (i, j) and derive an estimated capacity and

cost for each of these types. We represent a carrier’s repositioning opportunities for

each directed city pair (i, j) in the network using a piecewise-linear function. An

example of this function is shown in Figure 3.1.

In this example, each of the five line segments represents a different repositioning

opportunity type from city i to city j. The first segment (leftmost) might repre-

sent the number of movements from preexisting contracted lanes and, because these

movements represent hired rather than empty movements, they can be used “free.”

The second, third, and fourth segments, each with different prices and capacities,
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Figure 3.1: A carrier’s estimated repositioning capacities and prices from city i to city j
.

may represent spot market opportunities, estimated opportunities from future con-

tracts, and partial connections (preexisting lanes that require the driver to move

empty from city i to a location nearby before picking up a load and delivering that

load to a location near city j, thereby incurring a limited amount of empty mileage

costs). The fifth (last) segment, with the highest price and infinite capacity, rep-

resents empty movements from city i to city j. In the context of a network, each

segment of a piecewise linear function would be represented by an arc with associated

arc cost and capacity corresponding to the segment’s slope and length.

Despite the fact that most, if not all, CTPAs assume these carriers have de-

terministic repositioning capacities and costs, in practice carriers do not have full

information about their future repositioning capacities and cost. Under the latter

condition, a model that considers carriers’ uncertain repositioning costs and capac-

ities may perform better than one that does not. We refer to such a CTPA, with

uncertain carrier capacities and costs, as a stochastic combinatorial truckload pro-

curement auction (S–CTPA).
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In a S–CTPA, we assume that the set of bid lanes A` to be auctioned is known

with certainty. That is, the shipper determines the lanes a priori and corresponding

volume for which to procure services. We assume that carrier k’s repositioning prices

(cost plus profit markup) and capacities for each arc in Ak are discrete random

parameters with a known joint distribution and finite support. Let ξk represent a

discretely distributed random price-capacity data vector with finite support Ξk. In

this problem a scenario s represents a realization of arc capacity and price for each

arc a ∈ Ak. Let s = 1, · · · , |Ξk| be the index of scenarios and ρs represent the

realization probability of scenario s.
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Figure 3.2: A carrier’s repositioning capacity and price from node i to node j in scenario s = 1 and
s = 2.

Then the repositioning capacities and costs for each directed node pair (i, j) can

be described by a set of piecewise linear functions, one function for each scenario

s = 1, · · · , |Ξk|. Figure 3.2 depicts a carrier’s repositioning opportunities from city

i to city j under scenario 1 and scenario 2. Each segment of a piece-wise linear

function in 3.2 represents capacity and price realization for a specific repositioning

opportunity type under a particular scenario realization.

We reiterate that, given a bundle b, direct movement cost, and repositioning
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movement opportunities (cost and capacity), carriers determine the least cost set of

tours to serve the bid lanes in b and then use this cost to determine the bid price,

typically, cost plus a percentage markup. In the following sections, we present two

bid-generating functions for S–CTPAs. In the first, we adopt a common approach

for dealing with stochastic models by assuming expected repositioning costs and

capacities. This problem is referred as the expected value problem (EVP). In the

second, we consider the full distribution of repositioning capacities and costs and

evaluate the bid price under each scenario, s = 1, · · · , |Ξk|, to derive an expected bid

price over all the scenarios.

Pricing a Bundle of Bid Lanes with No Recourse

In the context of pricing bundle b, the vector xk
b = (xk

b1, · · · , xk
ba, · · · , xk

bL) is a

parameter that describes the composition of bundle b and not a vector of variables.

A component of xk
b , xk

ba, refers to the number of loads in bid lane a ∈ A` bid upon.

pk
a =

⌈ |Ξk|∑
s=1

ρkspks
a

⌉
is the ceiling of the expected price of a unit movement on arc a

and uk
a =

⌊ |Ξk|∑
s=1

ρksuks
a

⌋
is the floor of the expected capacity of arc a. In defining

these parameters, we make mild assumptions that carriers estimate repositioning

capacities and prices in integral values. Specifically, carriers estimate repositioning

movement prices in whole dollars and repositioning movement capacities in integral

number of movements. These rounding rules provide a lower bound estimate on a

carrier’s expected repositioning movement capacities and an upper bound estimate

on expected repositioning movement costs. In making these estimates, carriers can

also employ other types of rounding rules. Finally, variable yk
a (∀a ∈ Ak) is an integer

variable indicating the number of repositioning movements taken over arc a ∈ Ak.

Given the aforementioned parameters and variables, the carrier’s bundle pricing
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problem which we refer to as the bid generating function (BGF) is given by

(BGF) fk(xk
b ) =

∑
a∈A`

pk
ax

k
ba + min

∑
a∈Ak

pk
ay

k
a(3.1a)

s.t.
∑

a∈A`:O(a)=i

xk
ba +

∑
a∈Ak:O(a)=i

yk
a =

∑
a∈A`:D(a)=i

xk
ba +

∑
a′∈Ak:D(a)=i

yk
a(3.1b)

∀i ∈ N,

yk
a ≤ uk

a ∀a ∈ Ak,(3.1c)

yk
a ∈ Z+ ∀a ∈ Ak.(3.1d)

The first summation term in (3.1a) is a constant term associated with direct move-

ments. The objective (3.1a) is then to minimize the total repositioning movement

cost. Constraints (3.1b) are flow balance constraints specifying that the number of

direct- and repositioning- movements into each node i ∈ N must be equal to the

number of direct- and repositioning- movements coming out of it. These constraints

guarantee a tour solution. Finally, constraints (3.1c) ensure that carriers’ backhaul

capacity is not violated. Observe that in the case when uks
a represents a reposition-

ing opportunity with infinite capacity, such as uks
4 in Figure 3.1, the corresponding

repositioning arc capacity constraint (3.1c) can simply be eliminated.

BGF has two important structural characteristics that positively impact compu-

tational tractability. First, the integrality requirement of variable yk
a (3.1d) can be

relaxed because the constraint matrix of (3.1) is totally unimodular (TU) given our

assumption that repositioning arc capacities (uk
a ∀ a ∈ Ak) are integer values. Anal-

ogously, the constraint matrix of the dual of (3.1) is also TU given our assumption

that arc prices (pk
a ∀ a ∈ Ak) are integer values. This is critical because in §3.4 we

present a decomposition algorithm that relies of the ability to efficiently solve the

dual of (3.1). Secondly, without constraints (3.1d), BFG is a minimum cost flow
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(MCF) problem and solvable in polynomial time ([1]).

Pricing a Bundle of Bid Lanes with Recourse

Although solving the expected value pricing problem is commonly used in practice

because it is easy to compute, doing so can have unfavorable results, as we will

show in §3.6.2. In this section, we consider the BGF with recourse; that is, we

consider the problem of finding the expected price to serve bundle b over all scenarios

s = 1, · · · , |Ξk| by determining the optimal set of tours to serve bundle b under each

scenario separately and then weighting the total price of each scenario to obtain the

expected bid-price for the bundle.

(BGF–S) fk(xk
b ) =

∑
a∈A`

pk
ax

k
ba + min

|Ξk|∑
s=1

ρks

[ ∑
a∈Ak

pks
a yks

a

]
(3.2a)

s.t.
∑

a∈A`:O(a)=i

xk
ba +

∑
a∈Ak:O(a)=i

yks
a =

∑
a∈A`:D(a)=i

xk
ba +

∑
a∈Ak:D(a)=i

yks
a(3.2b)

∀i ∈ N, s = 1, · · · , |Ξk|,

yks
a ≤ uks

a ∀a ∈ Ak, s = 1, · · · , |Ξk|,(3.2c)

yks
a ≥ 0 ∀a ∈ Ak, s = 1, · · · , |Ξk|.(3.2d)

Carrier k’s objective is to determine the expected price to cover each bid lane

in bundle b. This can be accomplished by determining the minimum cost set of

tours to serve each bid lane in b weighted over all scenarios, s = 1, · · · , |Ξk|. The

objective function (3.2a) states that carrier k’s price for bundle b is the sum of direct

movement prices (which depend only on bundle b and is known in advance) and

expected repositioning movement prices weighted over all scenarios, which depend

on the chosen routing. Constraints (3.2b) are flow balance constraints, one for each

scenario-node pair. Constraints (3.2c) are repositioning capacity constraints, one for

each arc in Ak and scenario s = 1, · · · , |Ξk|.
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Since scenarios are independent and there are no arc capacity constraints across

scenarios, we can decompose (3.2) by scenarios. Consequent to that decomposition,

the bid-price of bundle b can be obtained by solving |Ξk| independent MCF problems,

one for each scenario s = 1, · · · , |Ξk|, rather than a single extremely large MCF

problem (3.2), which may not be directly solvable.

Although MCF problems are computationally easy to solve, submitting a single

bundle bid now requires a carrier to solve |Ξk| MCF problems, one for each scenario

s = 1, · · · , |Ξk|. Given that carriers’ repositioning capacities and costs are highly

stochastic, the number of scenarios |Ξk|may be large, thereby, making explicit pricing

of individual bundles extremely challenging computationally.

3.2.2 Traditional WDP

Once carriers price each bundle of interest and submit bundle bids, the auctioneer

then solves the following mathematical program, denoted (T–WDP), where the T

stands for “traditional.” The parameter δk
ba represents the number of lane a move-

ments in bundle b of carrier k, and the binary variable xk
b takes the value 1 if carrier

k is awarded bundle b, and 0 otherwise.

(T–WDP) min
∑
k∈K

∑
b∈Bk

pk
bx

k
b(3.3a)

s.t.
∑
k∈K

∑
b∈Bk

δk
bax

k
b = da ∀a ∈ A`,(3.3b)

∑
b∈Bk

xk
b ≤ 1 ∀k ∈ K,(3.3c)

xk
b ∈ 0, 1 ∀k ∈ K, b ∈ Bk.(3.3d)

The objective (3.3a) is to minimize the total cost the shipper pays for procuring

truckload services for all bid lanes in A`. Constraints (3.3b) specify that each bid lane
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a ∈ A` must be fully allocated among the awarded bundles. In the case of a fully-

enumerated S–CTPA, where each carrier bids on every distinct bundle, additional

constraints (3.3c), restricting each carrier to at most one winning bundle, are required

to ensure that a carrier’s repositioning capacity is not violated.

In the context of a traditional S–CTPA, each carrier k must solve bid-generating

function (3.1) or (3.2) for each bundle b ∈ Sk. Although these pricing problems may

be computationally tractable, the traditional approach to S–CTPAs suffers as a result

of the combinatorial explosion in the number of bundles, presenting a significant

hurdle to its practical implementation. For each bid lane a ∈ A`, a carrier may bid

a volume of zero up to da; as such the total number of distinct combinations (and

hence, number of distinct bundles) is:

M =
∏

a∈Ab

(da + 1).(3.4)

For practically-sized CTPAs, with thousands of bid lanes, the number of combi-

nations M can be enormous. Additionally, if carriers bid using BGF–S then pricing

each bundle require solving |Ξk| individual MCF problems, one for each scenario

s = 1, · · · , |Ξk|. Therefore, explicitly pricing each bundle is clearly intractable even

for the smallest size auctions in practice. In practice, carriers typically submit bids

for only a very small subset of the distinct bundles [19]. As a result, the full benefits

of S–CTPAs in practice cannot be achieved via the traditional bidding approach.

Researchers have suggested several approaches to overcome this hurdle, as dis-

cussed in Chapter II. These suggested approaches, however, either sacrifice captur-

ing the exhaustive set of bundles (losing optimality) and/or require several auction

rounds (resulting in an increase in procurement cycle times). In the next section, we

describe IBA as it is applied to S–CTPAs and highlight its many benefits.
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3.3 IBA for S–CTPAs

The key idea of IBA is that carriers, rather than having to solve multiple BGF

or BGF-S for a large number of bundles, can simply transmit the parameters of

their bid-generating function fk to the auctioneer as their “bid.” These parameters

are simply a list of arcs with associated arc prices and capacities. The auctioneer

then simultaneously, in a single round, solves one large optimization problem that

determines the allocation of bid lanes to carriers as well as the price to the carriers

of the bundles awarded to them.

The auctioneer embeds the parameters of fk directly into the WDP to get the

following optimization problem:

min
∑
k∈K

fk(xk)(3.5a)

s.t.
∑
k∈K

xk
a = da ∀a ∈ A`,(3.5b)

xk
a ∈ {0, 1} ∀a ∈ A`, k ∈ K.(3.5c)

Solving (3.5) is equivalent to solving a fully-enumerated S–CTPA, where each

carrier submits a bid for each of the M distinct bundles and the auctioneer solves

an exponentially-sized T–WDP (Proposition II.1). The optimal solution x∗ awards

exactly one bundle (possible empty) to each carrier and xk∗ (with one element per

bid lane a ∈ A`) corresponds to the bundle awarded to carrier k. The problem

(3.5) has only K × L integer variables, compared to K ×M binary variables in T–

WDP. As an example, in a 10 carrier and 10 bid lanes (each with a volume of 10

truckloads) S–CTPA, this translates to a reduction from more than 2.5×1011 binary

variables in T–WDP to only 100 integer variables in (3.5). Of course, the tractability

of (3.5) depends greatly on the structure of the of bid-generating function fk. In the
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next section, we describe two resulting implicit WDPs, the first using BGF as the

bid-generating function and the second using BGF–S as the bid-generating function.

3.3.1 WDP with No Recourse

In the case where the carrier’s bid-generating function is given by (3.1), the result-

ing pricing problem is a MCF problem. Substituting (3.1) directly into (3.5) results

in the following expected value winner determination problem (EV–WDP):

min
∑
k∈K

[∑
a∈A`

pk
ax

k
a + min

∑
a∈Ak

pk
ay

k
a

]
(3.6a)

s.t.
∑
k∈K

xk
a = da ∀a ∈ A`(3.6b)

∑
a∈A`:O(a)=i

xk
a +

∑
a∈Ak:O(a)=i

yk
a =

∑
a∈A`:D(a)=i

xk
a +

∑
a∈Ak:D(a)=i

yk
a ∀i ∈ N, k ∈ K,(3.6c)

yk
a ≤ uk

a ∀k ∈ K, a ∈ Ak,(3.6d)

xk
a ∈ Z+ ∀k ∈ K, a ∈ A`,(3.6e)

yk
a ∈ Z+ ∀k ∈ K, a ∈ Ak.(3.6f)

In EV–WDP, the objective (3.6a) is to minimize the total cost, consisting of

direct- and repositioning- movement costs incurred for procuring truckload services

for all lanes in A`. Constraints (3.6b) ensure that bid lane volumes are fully allocated

among the set of carriers. Constraints (3.6c) enforce flow balance constraints for each

carrier; that is, for each node i ∈ N the number of movements into node i must be

equal to the number of movements out of node i. These constraints force all nodes

i ∈ N to be transhipment and thus ensure that the resulting solution is a set of tours.

Constraints (3.6d) enforce capacity constraints on each carrier’s repositioning arcs.

Finally, constraints (3.6e) and (3.6f) are variable integrality constraints.

We observe that in this formulation the integrality of yk
a variables can be relaxed.
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Once integer variables xk
a are fixed (i.e. bid lanes have been allocated), the rest of

the problem decomposes by carriers. This simplifies the problem to a collection of

MCF problems, one per carrier. As stated earlier, MCF problems have TU constraint

matrices; thus, integrality constraints (3.6f) can be replaced by a corresponding set

of non-negativity constraints.

3.3.2 WDP with Recourse

The difference between WDP with recourse and WDP with no recourse is that a

carrier may change repositioning movements after information about repositioning

capacities and costs is revealed. In such a case, the carrier’s bundle pricing problem is

given by BGF–S (3.2), an extremely large MCF problem that is decomposable into

|Ξk| smaller MCF problems, one per scenario. Substituting BGF–S (3.2) directly

into (3.5) results in the following recourse winner determination problem (R–WDP):

min
∑
k∈K

[∑
a∈A`

pk
ax

k
a +

|Ξk|∑
s=1

ρks
∑
a∈Ak

pk
ay

ks
a

]
(3.7a)

s.t.
∑
k∈K

xk
a = da ∀a ∈ A`,(3.7b)

∑
a∈A`:O(a)=i

xk
a −

∑
a∈Ak:O(a)=i

yks
a =

∑
a∈A`:D(a)=i

xk
a −

∑
a∈Ak:D(a)=i

yks
a

∀k ∈ K, i ∈ N, s = 1, · · · , |Ξk|,(3.7c)

yks
a ≤ uks

a ∀k ∈ K, a ∈ Ak, s = 1, · · · , |Ξk|,(3.7d)

xk
a ∈ Z+ ∀k ∈ K, a ∈ A`,(3.7e)

yks
a ∈ Z+ ∀k ∈ K, a ∈ Ak, s = 1, · · · , |Ξk|.(3.7f)

In this problem, the flow decisions x, corresponding to bid lane allocations to

carriers, and thus are made in advance of the realization of random events. These

decisions are referred to as first-stage decisions. Flow decisions y, corresponding
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to carriers’ repositioning movements to form a minimum-cost set of tours, can be

deferred until after the realization of random events and are referred to as second-

stage or recourse decisions. This type of stochastic model, with two stages of integer

decision variables, are known as two-stage stochastic integer programs. For a detail

overview of stochastic programming please refer to [4].

In solving EV–WDP and R–WDP, we observed a fundamental trade-off between

solution quality and computational difficulty. EV–WDP, as described by (3.6), is a

moderately-sized integer MFP that is solvable directly using a standard MIP solver.

We demonstrate the tractability of this problem for various size auctions in §3.6.2.

In contrast, R–WDP, as described by (3.7), is a large-scale integer MFP that is not

solvable directly. In §3.4 and §3.5, we describe an algorithmic framework based on

the L-shaped method for effectively solving R–WDP. However, despite the increased

computational difficulties, the expected result of using the stochastic solution given

by R–WDP is superior to that of the expected value solution give by EV–WDP. This

result, for general two-stage stochastic programs, was established by [18]. In §3.6.2,

we demonstrate the value of the stochastic solution over the expected value solution

via computational results for S–CTPAs of varying sizes.

3.4 An L-shaped method for R–WDP

R–WDP, as presented in (3.7), is the extensive form of a two-stage stochastic

integer program. Before presenting the decomposition algorithm for solving R–WDP,

we define the deterministic equivalent of (3.7) as follows:
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min
∑
k∈K

∑
a∈A`

pk
ax

k
a +Q(x)(3.8a)

s.t.
∑
k∈K

xk
a = da ∀a ∈ A`(3.8b)

xk
a ∈ Z+ ∀a ∈ Ak, k ∈ K(3.8c)

In the first stage, we fix bid lane allocations x to carriers. Then the expected

recourse function Q(x) represents the expected repositioning movement costs given

bid lane allocations x and is given by

(3.9) Q(x) =
∑
k∈K

|Ξk|∑
s=1

ρksQk(x, s)

andQk(x, s) represents carrier k’s minimum repositioning movement costs in scenario

s given bid lane allocation x.

Qk(x, s) = min
∑
a∈Ak

pks
a yks

a(3.10a)

s.t. :
∑

a∈Ak:O(a)=i

yks
a −

∑
a∈Ak:D(a)=i

yks
a = bks

i,x ∀ i ∈ N,(3.10b)

yks
a ≤ uks

a ∀a ∈ Ak,(3.10c)

yks
a ∈ Z+ ∀a ∈ Ak.(3.10d)

We observe that in the context of problem (3.10), the bid lane allocations x is a

parameter and not a variable. The node (supply/demand) parameters bks
i,x given by

bks
i,x =

∑
a∈A`:D(a)=i

xk
a −

∑
a∈A`:O(a)=i

xk
a ∀k ∈ K, i ∈ N

represent the net demand (flow in minus flow out) at each city i ∈ N as a function of

the bid lane allocation x. Since bks
i,x are integers and (3.10) is a MCF similar to the
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bid generation function described by (3.1), we can relax the integrality requirements

on y (3.10d) and replace them by nonnegativity constraints. Before presenting the

decomposition algorithm for R–WDP, we state the dual to the linear relaxation of

(3.10), which we call DSP.

Qk
D(x, s) = max

∑
i∈N

bks
i,xα

ks
i +

∑
a∈Ak

uks
a βks

a(3.11a)

s.t. αks
O(a) − αks

D(a) + βks
a ≤ pks

a ∀a ∈ Ak,(3.11b)

αks
i free ∀i ∈ N,(3.11c)

βks
a ≤ 0 ∀a ∈ Ak.(3.11d)

We solve R–WDP using a variant of the L-shaped method, whose integer master

problem allocates bid lanes to carriers and whose linear MCF subproblems convey

information about a carrier’s repositioning movement costs under each scenario, s =

1, · · · , |Ξk|. The steps of the L-Shaped method are as follows:

1. Initialization:

Set lower bound lb=0, upper bound ub=+∞, and iteration counter I = 0. Let

ε be the predefined optimality gap at termination.

2. Solve the following restricted master problem (RMP):
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Let θ be an auxiliary variable that defines the second-stage cost in RMP.

min
∑
k∈K

∑
a∈A`

pk
ax

k
a + θ(3.12a)

s.t.
∑
k∈K

|Ξk|∑
s=1

∑
i∈N

aks
it

[ ∑
a∈A`:O(a)=i

xk
a −

∑
a∈A`:D(a)=i

xk
a

]
+
∑
k∈K

|Ξk|∑
s=1

dks
t ≤ θ(3.12b)

∀ t = 1, · · · , I,∑
k∈K

xk
a = da ∀ a ∈ A`,(3.12c)

xk
a ∈ Z+ ∀ a ∈ A`, k ∈ K.(3.12d)

Let x be the incumbent bid lane allocation and update lb to be the optimal

solution of RMP.

3. Check optimality gap:

If (ub − lb)/lb ≤ ε, exit and return the incumbent solution x, else, continue

to Step 4.

4. Solve dual subproblems (DSP):

For each carrier k ∈ K and scenario s = 1, · · · , |Ξk|,

(a) Solve Qk
D(x, s) and let α and β represent its solution.

(b) Using α and β, compute the following RMP cut coefficients for iteration t:

aks
it = ρksαks

i ∀i ∈ N,(3.13a)

dks
t = ρks

∑
a∈Ak

uks
a β

ks

a .(3.13b)

5. Update ub:

Let q(x) =
∑
k∈K

∑
a∈A`

pk
ax

k
a +

∑
k∈K

|Ξk|∑
s=1

ρksQk
D(x, s)(3.14)

If q(x) < ub, let x be the incumbent solution and let ub = q(x)
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6. Generate RMP optimality cut:

Let I = I + 1. Use cut coefficients generated in Step (4b) to create RMP cut

(3.20) for iteration I, and return to Step 2.

By taking advantage of carriers’ independent repositioning capacities and costs, we

avoid the need to solve a large MCF that sums across commodities, and instead solve

a set of smaller MCFs, one for each commodity. This decomposition has a significant

impact of the runtime of step (4a), which represents the bottleneck operation for

problems with a large number of scenarios, as is the case for S–CTPAs.

Although cutting-plane algorithms like the L-shaped method terminate in a finite

number of iterations, the number of iterations needed to converge to the desired

optimality gap may be extremely large for problems (like R–WDP) that have a

network flow second-stage problem. In the next section, we introduce additional

network structure to the RMP, valid inequalities, and multiple optimality cuts to

improve algorithmic performance.

3.5 Accelerating L-shaped method

R–WDP is a large-scale, two-stage stochastic integer program, and initial com-

putational results show that a direct application of the L-shaped method performs

poorly because of limited network information in the initial RMPs and the weakness

of the traditional Benders Cut due to commonly observed degeneracy in the optimal

solution of network flow subproblems. In this section, we discuss in detail the sources

of these problems and present enhancements to both the model and the L-shaped

method to accelerate the convergence of the algorithm.
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3.5.1 Embedding Network Capacities and Costs within RMP

One of the main weaknesses of cutting plane algorithms, such as the L-shaped

method, when it is applied to network design problems, is that a large number of

iterations is required to produce enough optimality cuts to relate adequate informa-

tion about the network flow costs in the second stage. Because of the lack of network

information in RMP, initial iterations tend to allocate bid lanes “greedily” to a small

number of low cost carriers. To remedy this deficiency, we propose the addition of a

set of network flow constraints to the RMP to provide a lower bound on repositioning

movement costs for any bid lane allocation x.

For each carrier k and repositioning arc a ∈ Ak, let p̌k
a = min {pks

a |s = 1, · · · , |Ξk|}

represent the minimum unit movement cost on arc a over all scenarios and let ûk
a =

max {uks
a |s = 1, · · · , |Ξk|} represent the maximum arc a capacity over all scenarios.

Q̃k(x) = min
∑
a∈Ak

p̌k
af

k
a(3.15a)

s.t.
∑

a∈Ak:O(a)=i

fk
a −

∑
a∈Ak:D(a)=i

fk
a

= bk
i,x∀ i ∈ N,(3.15b)

fk
a ≤ ûk

a ∀ a ∈ Ak,(3.15c)

fk
a ≥ 0 ∀ a ∈ Ak.(3.15d)

Objective (3.15a) defines a lower-bound approximation of total repositioning move-

ment cost. Constraints (3.15b) ensure that for each carrier k the number of move-

ments into a node i is equal to the number of movements out of i. Constraints (3.15c)

restrict the usage of carriers’ repositioning movements to the maximum available ca-

pacity over all scenarios.
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We observe that Q̃k(x) is a MCF problem structurally identical to Qk(x, s). The

two problems differ only with respect to arc prices p and arc capacity upper bounds

u. As stated by Proposition III.1, constraints defined by (3.15) provides a lower-

bound on repositioning costs as a function of bid lane allocation x.

Proposition III.1.
∑
k∈K

Q̃k(x) ≤ Q(x).

Proof: Given a feasible bid lane allocation x, for any carrier k ∈ K and scenario

s = 1, · · · , |Ξk|, the inequality Q̃k(x) ≤ Qk(x, s) holds because:

(i) uks
a ≤ ûk

a ∀ a ∈ Ak implies that if y∗ is an optimal solution of Qk(x, s) then it is

a feasible solution of Q̃k(x);

(ii) p̂k
a ≤ pks

a ∀ a ∈ Ak implies
∑
a∈Ak

p̂k
ay

∗
a ≤

∑
a∈Ak

pks
a y∗a.

Then the following relationships follows directly,

∑
k∈K

Q̃k(x) =
∑
k∈K

[ |Ξk|∑
s=1

ρksQ̃k(x)
]
≤
∑
k∈K

[ |Ξk|∑
s=1

ρksQk
p(x, s)

]
= Q(x). �

By Proposition III.1, we can impose the following set of constraints on RMP to

provide a lower bound approximation of carriers’ repositioning capacities and costs:

∑
a∈Ak

p̌k
af

k
a ≤ θ(3.16a)

∑
a∈Ak:O(a)=i

fk
a −

∑
a∈Ak:D(a)=i

fk
a = bk

i,x ∀k ∈ K, i ∈ N,(3.16b)

fk
a ≤ ûk

a ∀k ∈ K, a ∈ Ak,(3.16c)

fk
a ≥ 0 ∀k ∈ K, a ∈ Ak.(3.16d)

3.5.2 Knapsack Constraints

In this section, we introduce valid inequalities derived from optimality cuts gener-

ated during each iteration of the L-shaped method and the incumbent upper bound
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ub. These cuts are similar in spirit to those introduced by [21] for supply chain

planning problems. Let

∑
k∈K

|Ξk|∑
s=1

∑
i∈N

aks
it

[ ∑
a∈A`:O(a)=i

xk
a −

∑
a∈A`:D(a)=i

−xk
a

]
+
∑
k∈K

|Ξk|∑
s=1

dks
t ≤ θ(3.17)

be the optimality cut generated in step (6) of the tth iteration of the L-shaped method.

Since ub is the best upper bound, the following inequality holds,

ub ≥
∑
k∈K

∑
a∈A`

pk
ax

k
a + θ(3.18)

Substituting the left-hand-side of (3.17) for θ in (3.18) and isolating the first-stage

decision variables x to one side yields the following valid inequality:

∑
k∈K

∑
a∈A`

⌊
pk

a +

|Ξk|∑
s=1

(
aks

O(a),t − aks
D(a),t

)⌋
xk

a ≤

⌊
ub−

∑
k∈K

|Ξk|∑
s=1

dks
t

⌋
(3.19)

These type of knapsack constraints in conjunction with the standard optimality

cut can have a significant impact on solution quality in subsequent iterations. As the

L-shaped method progresses, ub decreases and the right-hand-side of (3.19) continues

to decrease, thereby, tightening these knapsack inequalities.

3.5.3 Multi-Cut Generation

Traditionally, in the L-shaped method all s realizations of the second-stage pro-

grams are solved to obtain their optimal simplex multipliers. These multipliers are

then aggregated into a single cut as shown in (3.20). However, the block struc-

ture of the two-stage stochastic program allows for multiple cuts to be generated

simultaneously. Multiple cuts present more information to the first stage problem

(RMP) and as such may improve the convergence property of the L-shaped method.

However, this improvement comes at a cost of a larger first stage problem which
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may negatively impact RMP runtime. Although this is not always true, in practice

adding multiple optimality cuts often decreases the number of L-shaped iterations

and overall runtime.

[5] describes a multicut L-shaped method for two-stage stochastic linear programs

where an optimality cut is added for each scenario s. However, since |Ξk| is extremely

large in R–WDP problems, a direct application of the multicut approach will quickly

render the RMP intractable. In solving R–WDP, we take a hybrid approach in which

subsets of the realizations are aggregated to produce a reduced number of optimality

cuts. In computational experiments in §3.6, we generate a single optimality cut for

each carrier that is awarded a bid lane in the current master iteration. Specifically

for each carrier k ∈ K awarded a least one bid load in the current iteration, we solve

DSP for each scenario s to obtain simplex multipliers and then construct a single

optimality cut that aggregates these multipliers across all |Ξk| scenarios. These

optimality cuts are given by

|Ξk|∑
s=1

∑
i∈N

aks
it

[ ∑
a∈A`:O(a)=i

xk
a −

∑
a∈A`:D(a)=i

xk
a

]
+

|Ξk|∑
s=1

dks
t ≤ θk.(3.20)

3.6 Computational Experiments

In this section, we describe the computational experiments performed to assess

the viability of S–CTPA using IBA. Specifically, we demonstrate the tractability of

R–WDP, the performance benefits of the accelerated L-shaped method (A–LSM)

over the standard L-shaped method (S–LSM), and the benefit of the stochastic solu-

tion (obtained by solving R–WDP) over the expected value solution (EV–WDP). We

begin in §3.6.1 by first describing how the test instances for these studies were gener-

ated, and then compare the computational characteristics of A–LSM and S–LSM in
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solving these instances. Finally, in §3.6.2, we assess the value of stochastic solutions

over expected value solutions. All computational experiments were conducted on a

Sun SunFire x4600 server, using a single AMD Opteron 8218 processor and 3.0 GB

of RAM. We use the CPLEX 11.0 callable library to solve the mixed integer RMP

and the linear DSP. We restrict all tests to a maximum runtime of 24 hours (1,440

minutes).

3.6.1 Tractability of R–WDP and performance benefits of A–LSM

We evaluated the tractability of R–WDP on randomly generated instances rep-

resenting various-sized S–CTPAs. Random instances are controlled by the following

parameters: number of nodes (cities), number of bidders (carriers), number of bid

lanes (and corresponding volumes), number of repositioning lanes (and corresponding

volumes) per carrier, and carriers’ price structures (represented by pairs of direct-

movement and empty-movement price-per-mile).

Table 3.1: Test Set Characteristics for Various Auctions Sizes
Set No. No. No. of Bid Avg. No. of Range of Repositioning Avg. No. of
No Carriers Nodes Lanes Bid Loads Lanes Per Carrier Repositioning Loads
1 20 40 100 12,279 50-100 88,100
2 30 50 300 37,386 100-300 456,793
3 40 60 500 62,427 200-400 900,678
4 50 100 500 62,956 200-400 1,128,370
5 50 100 1000 124,937 200-400 1,115,635
6 50 100 2000 250,877 200-400 1,103,918

We generated the six test sets, representing auctions of various sizes, shown in

Table 3.1. Bid lane and existing lanes (per carrier) are generated on a network with

up to 100 nodes representing the 100 most populous cities in the United States.

There are 20 to 50 bidders bidding in each auction. For each set of auctions, we

randomly generated four instances and report cumulative statistics. The volume of

each bid lane is selected uniformly between 50 and 200 loads. A carrier’s repositioning

capacity is represented by a set of capacitated, preexisting contracted lanes (that can
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be used for “free”) and a set of uncapacitated empty movement lanes. The number of

preexisting contracted lanes (and corresponding lane volume) per carrier is selected

uniformly between the ranges specified in Table 3.1. Since the capacities of these

pre-existing contracted lanes may be correlated and are not known with certainty at

the time of the auction, we randomly classify carriers into two categories: correlated

and uncorrelated. If a carrier has correlated pre-existing contracted lanes, then the

availabilities of these lanes are correlated within a given scenario. For example, if

a carrier has 5 pre-existing contracted lanes in a particular scenario, then either all

lanes (and associated volume) are available for repositioning movement or none are

available. On the other hand, if a carrier has uncorrelated pre-existing contracted

lanes, for each lane and each scenario we uniformly chose the lane volume to be

between 0 and the maximum value.

Carriers’ movement prices are generated by multiplying travel distance and a per-

mile movement price to ensure triangle inequality is satisfied. A carrier’s price to

serve an additional load in a bid lane is equal to the distance from the bid lane

origin to the bid lane destination times the carrier’s direct movement price-per-mile,

generated using a Normal distribution, N(1.10, 0.05). Similarly, a carrier’s price to

move empty between any city pair is equal to the distance between the city pair times

the carrier’s empty movement price-per-mile generated using a Normal distribution,

N(0.80, 0.05).

Results

Solution characteristics for the six auction sizes are shown in Table 3.2. This table

represents the aggregated results of 24 test instances (four per set). The result for

each test set (represented by a row) is the average of 4 randomly generated instances.

All times are reported in minutes.
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Table 3.2: S–LSM and A–LSM Solution Characteristics for Various Test Sets
S–LSM A–LSM

Set No. Opt. MP SP Total No. Opt. MP SP Total
No. itr. Gap % time time time itr. Gap % time time time
1 294 NA 40 1,037 1,047 11 < 1 1 35 36
2 63 < 1 2 291 293 11 < 1 1 41 42
3 49 < 1 2 360 362 9 < 1 2 54 56
4 98 NA 7 1,173 1,180 10 < 1 10 63 112
5 56 < 1 12 782 794 8 < 1 11 109 120
6 30 < 1 3 368 371 4 < 1 12 64 76

Using A–LSM, we were able to solve all 24 test instances within the 24 hour (1440

minutes) runtime limit. S–LSM was also largely tractable. With the exception of

one instance in test set 1 and two instances in test set 4, we were able to solve all

test instances within the 24 hour runtime limit.

However, we observed a substantial performance difference between S–LSM and

A–LSM. Using A–LSM, the average run times varies from a little over 30 minutes

to a maximum of two hours. This is in stark contrast to S–LSM, where average run

times varies from more than four hours to approximately 24 hours.

As expected, as auction size increases runtime also increases. However, these

increases appear to be fairly moderate as evident by the difference between the run

time of set 1 and set 4. However, it is interesting to note that, when everything

else is equal, increasing the number of bid lanes in the auction actually improves

solution time, as evident by computational results for sets 4 to 6. Intuitively, given a

fixed-sized network with uniformly distributed lanes, increasing the number of lanes

in the auction improves the probability of finding complementary lanes.

3.6.2 Value of the Stochastic Solution

In this section, we compare the solutions of the EV–WDP and R–WDP to assess

the value of the stochastic solution. The comparison is performed as follows:

1. Solve the expected value winner determination problem (EV–WDP) by using
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expected values for uncertain repositioning price and cost parameters, and let

x be the optimal bid lane allocation;

2. For each carrier k and scenario s = 1, · · · , |Ξk|, find the minimal repositioning

movement cost to cover bid lanes in x by solving Qk(x, s);

3. Compute the expected value of the expected value solution (EES) as follows:

EES =
∑
k∈K

∑
a∈A`

pk
ax

k
a +

∑
k∈K

|Ξk|∑
s=1

ρksQk(x, s)(3.21)

The value of the stochastic solution (VSS) is simply the difference between EES and

the stochastic solution (SS), given by the solution of R–WDP. In Table 3.3, we present

the value of the stochastic solution for all six test sets. Column 1 describes the set

number. Column 2 describes the average optimality gap % which we computed as

(EES - SS)/SS. Columns 3 and 4 indicate the average number of winning carriers for

EV–WDP and R–WDP respectively.

Table 3.3: Value of the Stochastic Solution

Set Opt. No. of Carriers Assigned
No Gap % EV–WDP R–WDP
1 1.48 12 11
2 2.44 8 8
3 1.75 10 8
4 1.11 12 11
5 0.48 14 17
6 0.64 15 13

We observed that moving from EV-WDP to R–WDP improves the solution quality

by 0.48 to 2.44 percent. Although it would appear that moving from the computa-

tionally easy EV-WDP to the computationally more challenging R–WDP does not

improve solution quality by a large margin, a 0.48 to 2.44 percent improvement is

quite meaningful in the trucking industry, where profit margins range from 2% to 4%

([8]). But perhaps, just as important, using A–LSM these cost improvements can be

attained at a very manageable increase in runtime (from 32 to 105 minutes).



87

3.7 Generalization

In many real world application contexts, a set of physical commodities, each

limited by their own network flow constraints, may share an underlying network

structure. The objective of these applications is to minimize the total cost of flowing

commodities on this network from source nodes to demand nodes in a way that

minimizes total cost, while observing flow capacity constraints. Since arc capacities

are limited, commodities interact when they flow on the same arcs. This type of

problem is commonly referred to as a multicommodity flow problem (MFP).

In this section, we generalize R–WDP to a stochastic network flow problem, which

we call a two-stage integer multi-commodity flow problem (TS–MFP), in which there

is uncertainty in the cost and/or capacity of some of the arcs. Flow decisions over

all arcs are made in two stages; first-stage flow decisions correspond to flows over

deterministic arcs with known capacity and cost, and second-stage flow decisions

correspond to flows over stochastic arcs with uncertain capacity and/or cost.

MFPs are commonly used to model transportation networks, telecommunication

networks, network interdiction problems, and multi-product distribution systems. In

most MFP literature, the network structure and cost are assumed to be deterministic.

Deterministic integer and linear MFP have been well studied. Two early papers

by [3] and [16] describe various solution methodologies for linear MFP. In recent

years, integer MFPs have received increased interest due to their relevance to various

application domains ([12], [9], and [13]).

However, the literature on stochastic linear MFPs is limited to a few instances [2],

[5] and [24]. The literature that incorporates stochastic elements in integer MFPs is

even more limited. The closest related work is that of [25] in which they proposed an
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approximate dynamic programming-based methodology for multi-period stochastic

integer MFP with uncertain demand, arising in fleet management.

3.7.1 Deterministic Integer MFP

Let us begin with the deterministic mathematical formulation of an integer MFP.

Let G(N, A) be a directed network defined by a set of nodes N and a set of directed

arcs A. Each arc has an associated cost ck
a denoting the cost per unit flow of com-

modity k ∈ K on that arc. Using this notation, the arc-chain formulation of integer

MFP can be described as follows:

min
∑
k∈K

∑
a∈A

ck
ax

k
a(3.22a)

s.t.
∑

a∈A:O(a)=i

xk
a −

∑
a∈A:D(a)=i

xk
a = bk

i ∀ i ∈ N, k ∈ K,(3.22b)

`a ≤
∑
k∈K

xk
a ≤ ua ∀ a ∈ A,(3.22c)

`k
a ≤ xk

a ≤ uk
a ∀a ∈ A, k ∈ K,(3.22d)

xk
a ∈ Z+ ∀ a ∈ A, k ∈ K.(3.22e)

This formulation has a collection of |N| + |K| flow balance constraints (3.22b),

one for each commodity-node pair, modeling the flow of each commodity. Since

commodities interact and compete for the used of finite arc capacities, we have a

constraint (3.22c) that restricts the total flow, across all commodities, on each arc

a ∈ A to be between the lower bound `a and the capacity limit ua. Additionally, we

also restrict the total flow of each commodity k on each arc a ∈ A to be between the

lower bound `k
a and capacity limit uk

a (3.22d). Lastly, we constrain the flow on each

arc to be integer values (3.22e).
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Observation III.2. EV–WDP is a special case of integer MFP.

Proof: The proof is by construction. EV–WDP can be transformed into an integer

MFP (3.22) via the following variable, parameter and set redefinitions: (1) let `a =

ua = da ∀ a ∈ A`, (2) let `k
a = 0 ∀ k ∈ K, a ∈ Ak , (3) let uk

a = uk
a if a ∈ Ak and 0

otherwise ∀ k ∈ K, a ∈ Ak, (4) let the vector of flow variables x be the concatenation

of flow variables x and y in EV–WDP, and finally, (5) let A = A`
⋃
k∈K

Ak. Then the

resulting formulation is an integer MFP of the form (3.22). �

3.7.2 Two–Stage Integer MFP

In many practical applications, all network attributes of an MFP may not be

known with certainty; for example, a carrier’s backhaul capacity in truckload trans-

portation and transportation capacity during emergency response depends on the

availability of transportation arcs, which are contingent on the realization of random

events. We now introduce a special form of MFP, which we call TS–MFP, where arc

capacities and demands are uncertain. Specifically, we focus on the case where the

following are true:

1. Arcs a ∈ A are partitioned into two disjoint sets A1 and Ak ∀k ∈ K, where arcs

in A1 have known capacity and cost and arcs in Ak have uncertain capacity and

cost;

2. Commodities k ∈ K interact and compete for the use of finite arc capacities for

arcs in A1;

3. Commodities do not interact or compete for the use of arc capacities in Ak ∀k ∈

K;

4. Node demands depend on several unknown factors and as such are not known
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with certainty when first-stage flow decisions (a ∈ A1) are made.

In TS–MFP, the first stage variables allocate capacity of “shared” arcs in A1

among the different commodities k ∈ K, after which the second-stage problems

determine the optimal flow of each commodity k on arcs a ∈ Ak to meet commodity-

specific demands. The resulting master problem is an integer program, while the

resulting second stage problem is a MCF problem. For clarity of exposition, we

define two sets of variables xk
a and yk

a , corresponding to first-stage flows on arcs

a ∈ A1 and second-stage flows on arcs a ∈ Ak ∀k ∈ K respectively.

Since uncertain parameters are associated with individual commodities, let ξk rep-

resent a discretely distributed random vector with finite support Ξk. In this problem

a scenario ξk = (b, l,u, c) is a vector that represents a realization of commodity-

specific node demands and arc capacity and cost for all arcs in Ak. Index the sce-

narios by s = 1, · · · , |Ξk| and let ρks represent the realization probability of scenario

s of commodity k. Then for each scenario s, cks
a is the cost of flowing one unit of

commodity k on arc a, `ks
a and uks

a are flow upper- and lower- bounds of commodity

k on arc a, and bks
i represents the demand for commodity k in node i. The first-

stage decision variables xk
a represent the flow of commodity k on arcs in A1 and the

second-stage decision variables yks
a represent the flow of commodity k on arc a ∈ Ak

in scenario s.

Then the deterministic equivalent of TS–MFP is given by
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min
∑
k∈K

∑
a∈A1

ck
ax

k
a +Q(x)(3.23a)

s.t. `u ≤
∑
k∈K

xk
a ≤ ua ∀ a ∈ A1,(3.23b)

`k
a ≤ xk

a ≤ uk
a ∀ a ∈ A1, k ∈ K,(3.23c)

xk
a ∈ Z+ ∀ a ∈ A1, k ∈ K.(3.23d)

Given first-stage flow decisions x and our assumption that commodities do not

interact or compete for the use of arc capacities in Ak ∀k ∈ K, the expected recourse

function Q(x) can be decomposed by commodities and is defined as follows:

Q(x) =
∑
k∈K

|Ξk|∑
s=1

ρksQk(x, s)(3.24)

where Qk(x, s) is the recourse function of commodity k in scenario s and is given by

Qk(x, s) : min
∑
a∈Ak

cks
a yks

a(3.25a)

s.t.
∑

a∈A1:D(a)=i

xk
a +

∑
a∈Ak:D(a)=i

yks
a −

∑
a∈A1:O(a)=i

xk
a −

∑
a∈Ak:O(a)=i

yks
a

= bks
i ∀ i ∈ N,(3.25b)

`ks
a ≤ yks

a ≤ uks
a ∀ a ∈ Ak,(3.25c)

yks
a ∈ Z+ ∀ a ∈ Ak.(3.25d)

Observation III.3. R–WDP is a special case of TS–MFP.

Proof The proof is by construction. R–WDP can be converted to a TS–MFP

(3.23) via the following variable, parameter and set redefinitions: (1) let A1 = A`,
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(2) let ck
a = pk

a ∀ k ∈ K, a ∈ A`, (3) let cks
a = pks

a ∀ k ∈ K, a ∈ Ak, s = 1, · · · , |Ξk|,

(4) let la = ua = da ∀ a ∈ A`, (5) let lka = 0 ∀ k ∈ K, a ∈ A`, (6) let lks
a = 0 ∀ k ∈

K, a ∈ Ak, s = 1, · · · , |Ξk|, and finally, let bks
i = 0 ∀ k ∈ K, s = 1, · · · , |Ξk|, i ∈ N.

Then the resulting formulation is a TS–MFP of the form (3.23). �

We conclude this section by noting that the algorithmic enhancements proposed

in §3.5 are applicable to TS–MFP. In the following section, we demonstrate the

wide applicability of TS–MFP to another important problem, emergency response

planning.

3.7.3 Another Application Area

In this section, we describe another important problems that can be modeled as

TS–MFP and solved using the accelerated decomposition algorithm proposed in §3.5.

Natural Disaster Planning

In urban areas that are prone to natural disasters such as earthquakes, hurricanes,

floods, droughts, et cetera., it is imperative that public officials and aid organizations

make adequate preparation and planning to respond to the occurrence of natural

disasters. Two very important questions to address in natural disaster planning are

(1) how to allocate available emergency supplies among candidate warehouses prior

to the occurrence of a natural disaster, and (2) following the occurrence of a natural

disaster, how to transport critical commodities, such as food, medicine, water, and

clothing, to disaster areas such that loss-of-life is minimized and efficiency of rescue

operations is maximized. A multi-modal, deterministic version of such a problem

was studied by [11].

This type of planning problem can be modeled as a TS-MFP. In this problem,
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first-stage decisions correspond to preparatory (re)allocation of emergency commodi-

ties, such as food, medicine, water, and clothing, prior to the occurrence of a natural

disaster. Second-stage decisions correspond to recourse decisions made after the oc-

currence of a natural disaster. Immediately after the occurrence of a natural disaster,

transportation networks may be disrupted and emergency supplies may be damaged

at certain locations. As such, the second-stage decision is to determine the optimal

allocation and transportation of available emergency supplies from warehouses to

disaster areas such that the overall system objective is optimized (e.g. minimizing

the loss-of-life).

3.8 Summary and Conclusion

In this chapter, we consider a stochastic combinatorial truckload procurement auc-

tion problem that generalizes the deterministic combinatorial truckload procurement

auction presented in Chapter II. We begin by describing carriers’ pricing problems

when repositioning capacities and costs are uncertain. We showed that using IBA

(introduced in Chapter II), we can overcome the two main computational challenges

of stochastic combinatorial truckload procurement auction: pricing an exponential

number of bundles and solving the corresponding exponentially-sized winner determi-

nation problem. Using IBA, we can instead solve a single integer MFP. In the case

when carriers use expected values for uncertain parameters, the resulting implicit

winner determination is a moderately-sized integer MFP, which we call EV–WDP.

This problem is solvable using standard commercial mixed integer programming

solvers.

If carriers consider the full distribution of uncertain parameters, the resulting win-

ner determination problem is a two-stage integer MFP, which we call R–WDP. We de-
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scribed a decomposition framework based on the L-shaped method and then present

model and algorithmic enhancements to improve the convergence of this algorithm.

We begin by introducing network structures to the master problem to provide a good

lower bound approximation on repositioning movement costs. Next, we present valid

inequalities for the master problem and a hybrid approach in which subsets of the

realizations are aggregated to produce a reduced number of combination optimality

cuts. We then examine the effectiveness of our proposed methodologies on CTPAs

of various sizes to demonstrate the benefits of our accelerated L-shaped method, ver-

sus the standard L-shaped method. We conclude the computational section with a

comparison of the stochastic solution to the expected value solution to demonstrate

the value of the stochastic solution.

We then present generalizations of our model and algorithmic approach to en-

compass a broader class of stochastic MFP, which we call two-stage multicommodity

flow problem (TS–MFP), and demonstrate its applicability to an important disaster

planning problem.

Several avenues for future research exist. In S–CTPA, a natural extension would

be to consider the shipper’s uncertainty in bid lane volumes. The additional modeling

challenge, however, would be substantial because in this case the bid lane allocation

(first-stage) decision is no longer deterministic. Another interesting S–CTPA exten-

sion would be the inclusion of operational constraints introduced in §2.3.3. Finally,

it is worthwhile to note that we assumed risk neutral carriers, as such, their objec-

tive is to minimize expected cost. In practice, some carriers may be risk averse. For

such carriers, a bid generating function objective other than minimizing the expected

price may be more appropriate (e.g. looking at the 90th or 95th percentile of expected

cost) to protect against catastrophic losses. Alternatively, other risk measures such
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as conditional value at risk function may also be applicable.

In algorithmic development, we observed that the majority of computational time

was spent on solving dual subproblems to obtain simplex multipliers for the optimal-

ity cuts. It would be interesting to investigate how we can speed up the subproblem

solution time. Many subproblems are parametrically very close (the uncertain pa-

rameter values are similar); it may be interesting to see if we can take advantage of

these similarities to reduce subproblem runtime. Finally, stochastic programs with

network recourse often have degenerate optimal DSP solutions. It would be of in-

terest and benefit to develop an algorithm to efficiently find the best (strongest)

optimality cut among the set of optimality cuts corresponding to degenerate optimal

DSP solutions.
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CHAPTER IV

Including Wind in Power System Siting and Capacity
Expansion Models

4.1 Introduction

Wind power is the fastest growing source of electricity in the U.S. Currently, over

half the states in the country have passed so-called Renewable Portfolio Standards

(RPS), which require utilities to procure a significant share (ranging from 5 to 25%)

of their electricity from renewable resources in the near future [40]. Because wind is

almost always the most cost-competitive renewable electricity source, it is expected

to comprise the overwhelming majority of capacity installed to comply with these

laws.

In response, there has been a proliferation of supporting policies to facilitate wind

development, and these are likely to result in massive infrastructure expenditures.

For example, states are building new transmission lines to areas with high-quality

wind resources, expecting that wind developers will build new generation capacity

in response [19],[7]. Moreover, the North American Reliability Corporation (NERC)

is requiring its regional members to analyze scenarios with up to 15% of generation

capacity coming from renewable sources, in part to assess how much new conventional

generation must also be built so as to ensure reliability (for example, during periods

of low wind speed [27]).
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Figure 4.1: Normalized power output for the same amount of capacity. The top figure shows power
output distribution when all turbines are installed at a single (windiest) site. The
bottom figure shows power output distribution when turbines are uniformly distributed
across twenty sites.

Unlike conventional sources of generation, which can usually be located near de-

mand points or embedded in existing transmission networks so as to reduce trans-

mission costs and losses, wind power varies with wind speed, which in turn varies

significantly over both time and space. In particular, the aggregate output from a

spatially-diverse collection of wind sites is far less variable than the output from the

same capacity installed in a concentrated area. As illustrated in Figure 4.1 [19], a

spatially diverse network of wind farms has lower variance (more reliable) and can
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thus be integrated more easily with existing infrastructure. However, a spatially di-

verse network also requires higher siting costs and transmission costs and are likely

to produce lower output (compared to installing all turbines at the windiest site), as

illustrated in Figure 4.1 .

Current system planning studies that consider wind resources focus on site-level

optimization, for example, selecting candidate sites on the basis of average wind speed

[19],[7]. This approach, however, neglects the effect of spatio-temporal correlation

across wind sites on power system reliability and operations.

Therefore, in this chapter we develop a model and solution framework to find

the optimal wind farm network design (WFND). Specifically, we present a model

for integrated transmission and generation expansion planning (TGEP) in which

we simultaneously consider transmission capacity expansion and generation capacity

expansion, for both wind resources as well as conventional generators (nuclear and

fossil-fuel based). Additionally, we assume that a significant share of wind capacity

must be installed to meet renewable portfolio standards (RPS) requirements, individ-

ual state’s commitment to meeting a portion of electricity demands using renewable

resources.

4.1.1 Background

There is a large body of work that proposes models and optimization techniques

for solving the Generation Expansion Planning (GEP) problem. Exact approaches

based on mathematical programming [6],[14],[15] and dynamic programming [15],[25]

have been proposed for variations of the GEP problem. Metaheuristic techniques,

such as Genetic Algorithms [29], Evolutionary Programming [30], Differential Evo-

lution [35], et cetera, have also been successfully applied to GEP.

However, most of this work, like [18],[10],[39], does not consider system reliability
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measures and stochasticity in generation capacity availability, transmission capacity

availability and area loads. Additionally, none of this work considers an integrated

TGEP. Typically, GEP and Transmission Expansion Planning (TEP) are solved

separately due to computational difficulties. For conventional power systems this

may be adequate, as most conventional generation expansion planning involves the

addition of generation or transmission capacity to existing networks. On the other

hand, when considering wind generation, these two sets of decisions must be taken as

a whole, as candidate wind resources may be located far from existing transmission

infrastructure.

To the best of our knowledge, there has been very little work that considers the

integrated TGEP problem, with the lone exception of recent work by [16]. This work

presents an integrated generation and transmission expansion planning model and

proposes a solution framework based on Benders Decomposition (BD) and Sample-

Average Approximation (SAA) [20],[37]. However, [16] considers only conventional

generation, uses a simplified lossless transmission model, and ignores fixed-siting

costs. For conventional power systems with limited spatial coverage, a lossless trans-

mission model is a reasonable simplification. However, for wind networks that may

stretch thousands of miles, it is critical to consider the full quadratic line loss model,

as line loss over great distance may have a significant impact on power flow solutions

[8].

Despite proposing an integrated TGEP model, [16] presents computational results

for the GEP problem and TEP problem separately. The integrated TGEP problem, a

two-stage stochastic integer program, is computationally challenging, and the direct

application of BD often performs poorly due to limited network information in the

master problem and weakness of the standard optimality cut. We discuss some of
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these issues that are relevant to WFND in Section 4.4 and present model extensions

and procedures to improve the convergence of our proposed solution approach.

As noted in the previous section, wind-based power systems are characteristically

different from conventional generation systems, both because wind speed is highly

stochastic and location-dependent, and also because of the nonlinear and discontin-

uous power curve that converts wind speed to power output (Fig. 4.2).
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Figure 4.2: Conversion from wind speed to power.

Yet despite these differences, and despite the importance of capacity expansion

for wind networks, relatively little has been done in this specific area. The most

closely related efforts are those of [23] and [24], and the National Renewable Energy

Laboratory’s Wind Deployment System Model, WinDS [26]. Both [23] and [24] use a

heuristic dynamic search algorithm to choose wind capacity at several geographically-

dispersed locations, assuming a pre-determined level of capacity, no fixed siting costs,

and no penalties for violating reliability targets. WinDS, which has been used for

nationwide wind deployment scenario analysis, is a large-scale linear programming

model for generation and transmission expansion. The model minimizes the cost

of meeting demand subject to constraints on emissions and reserve margins, which

require that total generation capacity exceed maximum forecasted demand by some
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pre-defined percentage.

4.1.2 Goals and Contributions

In this chapter, we present a mixed-integer stochastic programming approach to

determine the optimal WFND. The contributions of this research are thus:

1. presenting a new model for the design of wind farm networks in a multi-area

power system;

2. modeling an integrated generation and transmission expansion problem with

explicit considerations for system uncertainties, fixed-siting costs and nonlinear

transmission losses;

3. introducing an accelerated Benders decomposition algorithm (A-BD) that effi-

ciently solves WFND problems with a large number of scenarios.

4.2 Problem Formulation

We begin by introducing the nomenclature for the WFND problem.

4.2.1 Sets

• N is the set of all nodes (indexed by i and j).

• D is the set of all demand nodes (indexed by d), D ⊂ N .

• D is the artificial demand-sink node, D /∈ D.

• G is the set of all generator types (indexed by g, g = 0 is wind).

• T is the set of transmission line types (indexed by t).

• ξ is the set of all scenarios (indexed by ξ).
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4.2.2 First Stage Parameters

• ξ is a wind speed, multi-area load, generation- and transmission- availability

scenario.

• hi is the fixed cost of adding generation capacity to node i.

• hij is the fixed cost of adding transmission capacity between node i and node j.

• cg
i is the cost of adding a type g generator at node i.

• ct
ij is the cost of adding a type t transmission line connecting nodes i and j.

• ∆rps is the minimum amount of installed wind capacity required to meet renew-

able portfolio standard (RPS) requirements (in MW).

• ρi is the wind capacity factor at node i (i.e. fraction of installed wind capacity

at node i that is credited towards meeting RPS).

• M g
i is the maximum number of type g generators that can be installed at node

i.

• M t
ij is the maximum number of type t transmission lines connecting node i and

node j that can be installed.

• σ is the scaling factor to make siting and investment costs comparable to oper-

ating cost (OC) and loss-of-load cost (LOLC).

• bd is the minimum generation capacity that must be transmittable to demand

node d (in MW).

• bD is the minimum generation capacity that must be transmittable to demand-

sink node D (in MW).

• S is the number of scenarios, S = |ξ|.
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4.2.3 First Stage Variables: Capacity Expansion and Siting

• xg
i is the number of type g generators to install at node i.

• xt
ij is the number of type t transmission lines connecting i and node j to install.

• zi is the binary variable that takes value 1 if node i is selected for generation

expansion and 0 otherwise.

• zij is the binary variable that takes value 1 if a new line connecting nodes i and

j is added and 0 otherwise.

4.2.4 First Stage Variables: Network Flows

• pd
i is the generation capacity in node i transmittable to demand node d.

• pD
i is the generation capacity in node i transmittable to demand-sink node D.

• fd
ij is the potential power flow from node i to node j intended for demand node

d.

• fD
ij is the potential power flow from node i to node j intended for demand-sink

node D.

4.2.5 Second Stage Parameters

• ng
i is the marginal operating cost (OC) of a type g generator at node i.

• li is the loss-of-load-cost (LOLC) (per MWh) at node i.

• egξ
i is the number of existing type g generators available at node i in scenario ξ.

• etξ
ij is the number of existing type t lines connecting nodes i and j available in

scenario ξ.

• mt is the capacity of a type t transmission line.
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• mgξ
i is the capacity of a type g generation at node i in scenario ξ.

• κgξ
i is the total capacity of type g generators at node i in scenario ξ.

• κtξ
ij is the total capacity of type t transmission lines connecting node i and node

j in scenario ξ.

• dξ
i is the demand at node i in scenario ξ.

• λt
ij is the linear loss coefficient of a type t line connecting node i and node j.

• µt
ij is the quadratic loss coefficient of a type t line connecting node i and node

j.

• L is the number of blocks in piecewise linearization of quadratic line loss.

• mt` is the slope of the `th linearization interval of a type t line.

• κt`ξ
ij is the total capacity of the `th interval of a type t transmission lines con-

necting node i and node j in scenario ξ.

4.2.6 Second Stage Variables: Network Flows

• pg
i is the power generated at node i using type g generator(s).
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• f t
ij is the power flow from node i to node j on type t line(s).

• gt`
ij is the power flow from node i to node j on the `th linearization interval of

type t line(s).

• si is the loss-of-load-cost at node i.

WFND is a two-stage, stochastic integer program where the first-stage variables

correspond to generation and transmission siting and to capacity expansion decisions

that must be made prior to the realization of random variables: which are transmis-

sion availability, generation availability, and area load. The objective is to minimize

transmission and generation investment cost and expected operating cost (OC) and

loss-of-load-cost (LOLC) subject to meeting minimum RPS and system reliability re-

quirements. A weighting factor σ is used to scale the expected OC and LOLC to net

present cost over the entire planning horizon. In WFND, overall system reliability is

measured using expected LOLC, which inherently captures both the magnitude and

frequency of load loss. We now present the stochastic programming formulation of

WFND.
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min
∑

i

((
hizi +

∑
g cg

i x
g
i

)
+
∑

j:i<j

(
hijzij +

∑
t c

t
ijx

t
ij

))
+ σEξ[Q(ξ,x)](4.1a)

s.t.
∑

i ρix
0
i ≥ ∆rps(4.1b)

xg
i ≤ M g

i zi, ∀ i, g(4.1c)

xt
ij ≤ M t

ijzij, ∀ i, j : i < j, t(4.1d)

xg
i ∈ Z+, ∀ i, g(4.1e)

xt
ij ∈ Z+, ∀ i, j : i < j, t(4.1f)

zi ∈ {0, 1}, ∀ i(4.1g)

zij ∈ {0, 1}, ∀ i, j : i < j, t(4.1h)

The objective (4.1a) represents the sum of generation siting, generation expansion,

transmission siting, transmission expansion, and expected OC and LOLC. Constraint

(4.1b) represents the share of RPS requirements to be met using wind resources.

Constraints (4.1c) and (4.1d) enforce generation and transmission expansion limits

and siting costs. Constraints (4.1e)–(4.1h) are variable integrality constraints. Since

transmission lines are undirected, we only define transmission siting and expansion

variables in one direction (for i < j).

In WFND, we assume that wind speed at each site, available generation and

transmission capacity, and area loads are stochastic parameters with a known joint

distribution. Then the second-stage variables correspond to power flow decisions

under a specific realization of our uncertain parameters. Specifically, let ξ represent

the random data vector and ξ represent a particular realization. Then given ξ and

network design x, the total OC and LOLC, which we represent by Q(ξ,x), is the

optimal value of the following linear program:
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Q(ξ,x) = min
∑

i

∑
g

ng
i p

g
i +

∑
i

lisi(4.2a)

s.t.
∑

g

pg
i +

∑
j

∑
t

(L(f t
ji)− f t

ij) = dξ
i − si, ∀ i(4.2b)

f t
ij ≤ κtξ

ij , ∀ i, j, t(4.2c)

pg
i ≤ κgξ

i , ∀ i, g(4.2d)

pg
i ≥ 0, ∀ i, g(4.2e)

f t
ij ≥ 0, ∀ i, j, t(4.2f)

si ≥ 0, ∀ i(4.2g)

For clarity of exposition, we have eliminated the index ξ from the second-stage de-

cision variables (p, f, s). The objective function (4.2a) is the sum of OC and LOLC.

Constraints (4.2b) enforce flow balance at each node. Specifically, the total power

produced, plus loss-adjusted power inflow (L(f t
ji)), minus power outflow, must be

equal to the load at node i minus any loss-of-load. Constraints (4.2c) enforce power

flow limits on each transmission line type, where κtξ
ij = mt · (etξ

ij + xt
ij) represents the

total transmission capacity of type t lines connecting node i to node j under sce-

nario ξ and network design x. Constraints (4.2d) enforce generation capacity limits,

where κgξ
i = mgξ

i · (egξ
i + xg

i ) represents the total capacity of type g generators at

node i under scenario ξ and network design x. Note that the capacity of a generator

mgξ
i is scenario dependent; for example, wind turbine power output at node i is a

function of scenario-dependent wind speed. Constraints (4.2e)–(4.2g) are variable

non-negativity constraints. Within the context of a two-stage stochastic program,

the network design vector x is a parameter of the second stage problem described by

(4.2a)–(4.2g).
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We have also chosen to present the second stage problem Q(ξ,x) as a network flow

problem. However, if so desired, a linearized DC power flow model with quadratic

loss, such as those present in [1], can also be use in place of (4.2).

4.2.7 Transmission Losses

As has been shown in [19] and Figure 4.1, the aggregate output of a collection

of spatially-diverse wind sites is far less variable than the same capacity installed

in a concentrated area. However, this reliability benefit comes at an increase in

transmission investment cost and, potentially, a decrease in total output, as the

windiest (highest average wind speed) site may not be a good candidate from a

reliability (low variability in power output) standpoint. Because candidate wind

farms may be located in very spatially-diverse areas, far away from load centers, it

is critical to account for the impact of transmission losses across great distances. In

this section, we present two alternative enhancements to the model to account for

transmission losses.

Linear Line Loss

In this approximation, the fraction of power lost on a type t line connecting node

i and node j is strictly a function of distance and the line type. We model this loss

as a linear function of line flow f t
ij, where λt

ij ∈ (0, 1) represents the fraction of power

that is transmitted to node j.

L(f t
ij) = λt

ijf
t
ij ∀ i, j, t(4.3)

Quadratic Line Loss

In this approximation, the fraction of power lost on a type t line connecting node

i and node j is now a function of distance, line type, and power flow. We model this
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loss as a quadratic function of the total flow f t
ij and line parameter µt

ij. Observe that

µt
ij is a function of both the line type and distance.

Then the quadratic loss-adjusted inflow L(f t
ij) is given by:

L(f t
ij) = f t

ij − µt
ij

(
f t

ij

etξ
ij + xt

ij

)2

(etξ
ij + xt

ij)(4.4)

where

(
f t

ij

etξ
ij +xt

ij

)
represents the total flow from node i to node j on a single type

t line in scenario ξ. For brevity we rewrite (4.4) as follows:

L(f t
ij) = f t

ij −
µt

ij

etξ
ij + xt

ij

(
f t

ij

)2
(4.5)

Constraint (4.5) contains a quadratic term
(
f t

ij

)2
, which we approximate by using

L line segments. Since the flow on a single type t line is bounded within the interval

[0, mt], we partition this interval into L smaller intervals using the break points

a0 = 0 < a1 < · · · < aL−1 < aL. Then the length (which represents maximum flow)

of the `th interval is given by κt`ξ
ij = (a` − a`−1) · (etξ

ij + xt
ij), and the corresponding

slope of the function can be computed by:

mt` =
(a2

` − a2
`−1)(e

tξ
ij + xt

ij)

a` − a`−1

, ∀ `(4.6)

Using the above definitions, the quadratic term
(
f t

ij

)2
in (4.5) can be approximated

as follows:

f t
ij =

∑
`

gt`
ij , ∀ i, j, t(4.7a) (

f t
ij

)2 ≈
∑

`

mt`gt`
ij , ∀ i, j, t(4.7b)

gt`
ij ≤ κt`ξ

ij , ∀ i, j, t, `(4.7c)

gt`
ij ≥ 0, ∀ i, j, t, `(4.7d)
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(4.7a) specifies that the flow magnitude summed across all L intervals must be

equal to f t
ij. (4.7b) approximates the quadratic term

(
f t

ij

)2
using L line segments,

where mt` and gt`
ij represent the slope and flow magnitude of the `th interval of type

t lines respectively. (4.7c) restricts the flow on the `th interval of type t lines to be

at most κt`ξ
ij .

For the remainder of this chapter, we will focus on the quadratic transmission loss

model, which most accurately reflects quadratic power loss behavior of transmission

lines.

4.2.8 Full Second Stage Model With Quadratic Loss

Using the quadratic definition of L(f t
ij) in (4.5) and constraints (4.7a)–(4.7d), we

replace all f t
ij terms with the RHS of (4.7a) and substitute

(
f t

ij

)2
with the RHS of

(4.7b). Then the complete second stage problem with quadratic line losses can be

formulated as the following linear program:

Q(ξ,x) = min
∑

i

∑
g

ng
i p

g
i +

∑
i

lisi(4.8a)

s.t.
∑

g

pg
i +

∑
j

∑
t

∑
`

rt`
jig

t`
ji − gt`

ij = dξ
i − si, ∀ i (α)(4.8b)

∑
`

gt`
ij ≤ κtξ

ij , ∀ i, j, t (β)(4.8c)

pg
i ≤ κgξ

i , ∀ i, g (γ)(4.8d)

gt`
ij ≤ κt`ξ

ij , ∀ i, j, t, ` (π)(4.8e)

pg
i ≥ 0, ∀ i, g(4.8f)

si ≥ 0, ∀ i(4.8g)

gt`
ij ≥ 0, ∀ i, j, t, `(4.8h)

where rt`
ij = 1− µt

ij(a
2
`−a2

`−1)

a`−a`−1
. The dual variables corresponding to primal constraints
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(4.8b) – (4.8e) are shown in parentheses immediately following these constraints.

Observe that in approximating quadratic line losses, each flow variable f t
ij in the

original second stage problem has been replaced by a set of L smaller flow variables

gt`
ij , where each gt`

ij is the flow on a new arc in our reformulated network.

4.3 Benders Decomposition Algorithm

We solve WFND using a variant of BD commonly known as the L-shaped method

with integer first-stage variables [34],[38]. Below we briefly state the BD algorithm

as it is applied to WFND.

1. Initialization:

Set lower bound lb=0, upper bound ub=+∞, and iteration counter I = 0. Let

z̄ and x̄ represent the incumbent first-stage solution (initially undefined).

2. Solve the following restricted master problem (RMP):

lb = min
∑

i

(
hizi +

∑
g

cg
i x

g
i +

∑
j:i<j

(hijzij +
∑

t

ct
ijx

t
ij)
)

+
σ

S
θ(4.9a)

s.t. Constraints (4.1b)− (4.1h)(4.9b) ∑
ξ

∑
i

(∑
g

agξ
ikxg

i +
∑
j:i<j

∑
t

(atξ
ijk + atξ

jik)x
t
ij + bξ

k

)
≤ θ,(4.9c)

∀ k = 1, · · · , I

θ ≥ 0(4.9d)

and update lb to be the optimal solution of RMP.

3. Check optimality gap:

If (ub− lb)/lb ≤ ε, exit and return the incumbent solution.

4. Solve dual subproblems (DSP):

For each scenario ξ = 1, · · · , S
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(a) Solve the dual second-stage problem:

QD(ξ, x̄) = max
∑

i

(
dξ

iαi +
∑

g

κgξ
i γg

i(4.10a)

+
∑

j

∑
t

(
κtξ

ijβ
t
ij +

∑
`

κt`ξ
ij πt`

ij

))
αi + γg

i ≤ ng
i , ∀ i, g(4.10b)

αi ≤ li, ∀ i(4.10c)

rt`
ijαj − αi + βt

ij + πt`
ij ≤ 0, ∀ i, j, t, `(4.10d)

βt
ij ≤ 0, ∀ i, j, t(4.10e)

γg
i ≤ 0, ∀ i, g(4.10f)

πt`
ij ≤ 0, ∀ i, j, t, `(4.10g)

(b) Define and compute the following RMP cut coefficients:

agξ
ik = mgξ

i γg
i , ∀ i, g(4.11a)

atξ
ijk = mtβt

ij +
∑

`

∆t`πt`
ij , ∀ i, j, t(4.11b)

bξ
k =

∑
i

dξ
iαi +

∑
i

∑
g

mgξ
i egξ

i γg
i(4.11c)

+
∑

i

∑
j

∑
t

(
mtetξ

ijβ
t
ij +

∑
`

∆t`etξ
ijπ

t`
ij

)
5. Update ub:

q(z̄, x̄) = min
∑

i

(
hizi +

∑
g

cg
i x

g
i(4.12)

+
∑
j:i<j

(
hijzij +

∑
t

ct
ijx

t
ij

))
+

σ

S

∑
ξ

QD(ξ, x̄)

If q(z̄, x̄) < ub, let x̄ be the incumbent solution and let ub = q(z̄, x̄)

6. Generate optimality cut:

Let I = I + 1, use cut coefficients generated in step (4b) to create a RMP cut

(4.9c) for iteration I, and return to step 2.
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Although cutting plane algorithms like BD terminate in a finite number of itera-

tions, the number of iterations needed to converge to the desired optimality gap may

be extremely large for network design problems like WFND. In the next section,

we introduce additional network structure to RMP, valid inequalities, and multiple

optimality cuts to improve algorithmic performance.

4.4 Accelerating Benders Decomposition

WFND is a large-scale, two-stage stochastic integer program, and in our initial

computational experiments we observed (as is often the case) that a direct application

of BD performs poorly due to certain structural properties of the model. In this

section we discuss the sources of these problems and present enhancements to both

the model and BD to accelerate the convergence of our solution approach.

4.4.1 Network Connectivity

Unlike conventional TGEP, where much of the transmission infrastructure is al-

ready in place, in WFND problems candidate wind farms may be located in remote

areas far away from existing transmission infrastructure. As such, transmission ex-

pansion and generation expansion decisions must be made simultaneously.

In early iterations of BD, transmission capacity and generation capacity are added

piecemeal, resulting in network designs that are often unconnected. This leads to

large LOLC in the second-stage and a weak ub. Performance is further degraded by

the fact that these initial cuts increase the size of the integer RMP and, consequently,

its run-time.

We remedy this problem by enforcing network connectivity in RMP. That is, in a

valid network design for each generation node (new or existing), there must exist at

least one path from that generation node to a demand node. This augmented RMP
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network structure is defined as follows.

Let yij be the flow of electricity from node i to node j, D be an artificial demand-

sink node, and yiD be the flow of electricity from node i to demand-sink node D.

Then RMP’s network connectivity constraints can be defined as follows:∑
j

yij −
∑

j

yji = zi, ∀ i(4.13a) ∑
i

yiD =
∑

i

zi(4.13b)

yij ≤ N
∑

t

(xt
ij + et

ij), ∀ i, j(4.13c)

yij ≥ 0, ∀ i, j(4.13d)

Constraints (4.13a) are flow balance constraints that specify that for each node

where generation capacity is installed, a net of one unit of electricity must flow out

of that node. Constraint (4.13b) specifies that the total flow into node D must be

equal to the number of nodes with new generation capacity. This constraint ensures

that a path exists from each new generation node to a demand node. Constraints

(4.13c) specify that power can only flow on existing or newly installed lines. Observe

that for any pair of nodes (i, j) that has existing transmission capacity
∑

∀t e
t
ij > 0,

constraints (4.13c) are never binding and can therefore be eliminated. Constraints

(4.13d) enforce non-negative flows.

4.4.2 Demand Fulfillment

The aforementioned network connectivity constraints ensure that generation ca-

pacity is always connected to demand points. However, that alone is not sufficient to

ensure that sufficient generation and transmission capacity is added to meet demand

in all areas. As a consequence, initial network designs consist of very little additional

generation and transmission capacity, which corresponds to lower objective values.

This again results in large LOLC in the second stage and a weak ub.
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To remedy this problem, we introduce additional network structure in RMP to

ensure that adequate transmission and generation capacity is installed to meet (i)

area loads and (ii) total system load.

To enforce (i), we define flow balance, generation, and transmission constraints

for each demand node d ∈ D, as follows:

pd
i +

∑
j

fd
ji −

∑
j

fd
ij = 0, ∀ i 6= d(4.14a)

pd
i +

∑
j

fd
ji −

∑
j

fd
ij = bd, i = d(4.14b)

pd
i ≤

∑
g

mg
cap · (e

g
i + xg

i ), ∀ i(4.14c)

fd
ij ≤

∑
t

mt
cap · (et

ij + xt
ij), ∀ i, j(4.14d)

Constraints (4.14a) enforce flow balance for each non-d nodes; that is, the total power

produced, plus power inflow, minus power outflow, must be equal to zero. These

constraints in essence force all non-d nodes to be trans-shipment nodes. Constraints

(4.14b) enforce flow balance at demand node d; that is, the total power produced,

plus power inflow, minus power outflow, must be equal to the demand fulfilment

parameter bd. Constraints (4.14c) and (4.14d) enforce generation- and transmission-

capacity limits based on the total amount of existing- and newly-installed- capacity.

Constraints (4.14a) - (4.14d) together ensure that there is sufficient generation- and

transmission- capacity to deliver bd units of electricity to demand node d in isolation

(not considering demands at other nodes).

To enforce (ii), we define a new set of variables, fiD ∀ i, to indicate the amount of

electricity transmittable from node i to demand-sink node D and the following sets
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of flow balance, generation, and transmission constraints:

pi +
∑

j

fji −
∑

j

fij = fiD, ∀ i(4.15a) ∑
d

fdD ≥ bD,(4.15b)

pi ≤
∑

g

mg
cap · (e

g
i + xg

i ), ∀ i(4.15c)

fij ≤
∑

t

mt
cap · (et

ij + xt
ij), ∀ i, j(4.15d)

Constraints (4.15a) enforce flow balance for all nodes i ∈ N ; that is, the total power

produced, plus power inflow, minus power outflow, must be equal to the flow to

demand-sink node D. Constraint (4.15b) specifies at least bD units of installed ca-

pacity must be transmittable to demand-sink node D from demand nodes d ∈ D.

Finally, constraints (4.15c) and (4.15d) enforce generation- and transmission- capac-

ity limits based on the amount of existing and newly installed capacity. Constraints

(4.15a) - (4.15d) together ensure that there is sufficient generation- and transmission-

capacity to deliver bD units of electricity to demand-sink node D. Since there is a

directed arc from each demand node d to D, these constraints ensure that there is

sufficient generation- and transmission- capacity to deliver bD units of electricity to

the demand nodes.

Although these two sets of demand fulfillment constraints cannot guarantee that

there is adequate generation- and transmission capacity to satisfy demand in each

scenario ξ, they do prevent the selection of poor (inadequate) network designs in the

early iterations of Benders Decomposition.

4.4.3 Valid Inequalities

In this section, we introduce valid inequalities derived from optimality cuts gen-

erated during each iteration of BD and the incumbent upper bound ub. These cuts
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are similar in spirit to those introduced by [32] for supply chain planning problems.

Let

∑
ξ

∑
i

(∑
g

agξ
ikxg

i +
∑
j:i<j

∑
t

atξ
ijkx

t
ij

)
+ bk ≤ θ ∀ k = 1, · · · , I(4.16)

be the optimality cut derived at the end of step (4) of iteration I. Since ub is the

best upper bound, we have

ub ≥
∑

i

(
hizi +

∑
g

cg
i x

g
i +

∑
j:i<j

(
hijzij +

∑
t

ct
ijx

t
ij

))
+

σ

S
θ(4.17)

Substituting the LHS of (4.16) for θ in (4.17) and isolating the first-stage decision

variables x and z to one side, we get the following valid inequality:

∑
i

(
bhiczi +

∑
g

bug
ikcx

g
i +

∑
j:i<j

(bhijczij +
∑

t

but
ijkcxt

ij)
)
≤ bub− dkc(4.18)

where

ug
ik = cg

i +
σ

S

∑
ξ

agξ
ik , ∀ i, g(4.19a)

ut
ijk = ct

ij +
σ

S

∑
ξ

(
atξ

ijk + atξ
jik

)
, ∀ (i, j) : i < j, t

dk =
σ

S
bk.(4.19b)

These type of knapsack constraints in conjunction with the standard optimality

cut can have a significant impact on solution quality in subsequent iterations. As the

BD algorithm progresses, ub decreases and the right-hand-side of (4.18) continues

to decrease, thereby, tightening these knapsack inequalities.

4.4.4 Multicut Generation

Traditionally, in BD all S realizations of the second-stage programs are solved

to obtain their optimal simplex multipliers. These multipliers are then aggregated
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into a single cut as shown in (4.9c). However, the block structure of the two-stage

stochastic program allows for multiple cuts to be generated simultaneously. Multi-

ple cuts present more information to the first stage problem. Although this is not

always true, in practice adding multiple optimality cuts often decreases the number

of Benders iterations.

[5] describes a multicut BD algorithm for two-stage stochastic linear programs

where an optimality cut is added for each scenario ξ. However, since S is extremely

large in WFND problems, a direct application of the multicut approach will quickly

render the RMP intractable. In solving WFND, we take a hybrid approach in which

subsets of the realizations are aggregated to produce a reduced number of optimal-

ity cuts. In computational experiments in §4.5, we generate six optimality cuts per

master iteration. Specifically, we solve DSP for each scenario ξ to obtain simplex

multipliers and then construct a single optimality cut that aggregates these multipli-

ers across scenarios representing each two month period (approximately 1,464 hourly

scenarios). These optimality cuts are given by

(s×1,464)+1,463∑
ξ=s×1,464

∑
i

(∑
g

agξ
ikxg

i +
∑
j:i<j

∑
t

(atξ
ijk + atξ

jik)x
t
ij + bξ

k

)
≤ θs(4.20)

∀ s = 0, · · · 5.

4.5 Computational Experiments

In this section, we describe the computational experiments performed to assess

the tractability of WFND and the performance of our proposed solution framework.

We begin in Section 4.5.1 by describing how the three test systems were generated for

this study and then demonstrate the results of our proposed A-BD in Section 4.5.2.

All computational experiments were conducted on a Sun SunFire x4600 server, using
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only a single AMD Opteron 8218 processor and 1.5 GB of RAM. We use the CPLEX

11.0 callable library to solve the mixed integer RMP and the linear DSP.

4.5.1 Test System Generation

To assess the tractability of WFND and the computational efficacy of our proposed

solution framework, we developed three test systems: Test System 1 (TS1), Test

System 2 (TS2), and Test System 3 (TS3) using a combination of historical data

given in the literature and randomly generated data. TS1 is a network consisting

of 18 nodes (representing demand, supply, and transmission interconnection nodes)

and 25 arcs. TS2 is a network with 26 nodes and 33 arcs. Finally, TS3 is a network

with 34 nodes and 38 arcs. The number of candidate wind farms (supply nodes) in

TS1, TS2, and TS3 are 12, 17, and 21 respectively.

Demand nodes in the networks represent five large metropolitan areas on the West

coast. We used hourly load data obtained from FERC [9] from January 1, 2004 to

December 31, 2004. Therefore, each test system contains 8,784 scenarios representing

each hour in 2004.

To capture the correlations between candidate wind farm sites and area loads, we

use coincidental wind speed data obtain from NREL’s Western Wind Data Set [41]

for the same time period. In total, seventy wind sites were randomly selected out

of 32,043 candidate locations. For each of our test systems, we randomly select the

desired number of candidate wind farm sites from our list of seventy. Wind speed

data for these sites were simulated (by 3TIER) for turbines at 100 meters above

ground level. The turbine power curve is based on the 3MW Vestas V-90. Readers

interested in a more detailed description of the Western Wind Data Set methodology

can refer to [42].

Interconnecting multiple wind farms to a common interconnection point and then
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connecting that point to a far-away load center can allow the long-distance trans-

mission portion of transmission capacity to be reduced [2]. To generate wind farm

transmission networks for our test systems, we follow the network structure proposed

by [2]. A simplified version of this network structure is illustrated in Figure 4.3.

WW

W

W

W D W

I

I

WW D

I

Figure 4.3: Interconnecting wind farms to a common interconnection point.

We begin by randomly selecting the desired number of wind farms (nodes “W”)

and then grouping these candidate wind farms based on geographical proximity. For

each wind farm within a group, we generate a candidate arc from that wind farm

to an interconnection point (nodes “I”) located near the center of mass. These

interconnection point are then connected to load centers (nodes “D”).

For the three test systems, we assume there are two types of additional generators:

a 200MW conventional generator at a cost of $100 million each and a 3MW wind

turbine generator at a cost of $3 million each. The rps requirement ∆rps is set to

be ten percent of the average multi-area load. The generation siting cost is assumed

to be $20 million for all sites. It should be noted, however, that siting costs will

typically vary with the location and the size of the site.

It is assumed that each new transmission line has a capacity of 300MVA. Ad-

ditionally, transmission siting costs and line costs are proportional to the distance

between the pair of nodes to be connected. Specifically, the transmission siting cost

between nodes i and j is given by hij = (1.0 × 106) × dij, and, similarly, the trans-
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mission line cost is given by ct
ij = (5.0× 105)× dij. Transmission loss parameters are

also proportional to distance. In our computational experiments, we assume a single

line type with the following loss parameters: linear loss λt
ij = (6.3× 10−5)× dij and

quadratic loss µt
ij = (3.0× 10−6)× dij.

Detail generation and transmission parameters for the three test systems can be

found in Tables 4.2 to 4.7 in §4.7.

4.5.2 Computational Results

We solve the three test systems using two approaches: a standard application of

Benders Decomposition (S-BD) and the A-BD framework proposed in Section 4.4.

For each instance we restrict runtime to 24 hours and solve to within a 1% optimality

gap. The results of these three test systems are summarized in Table 4.1.

Table 4.1: Algorithmic Performance
TS1 TS2 TS3

S-BD A-BD S-BD A-BD S-BD A-BD
Iteration 263 33 338 49 531 235

Time (min.) 600 86 806 118 1,440 728
Opt. Gap % 0.73 0.13 0.83 0.29 7.20 0.62

In Table 4.1, the first column describes the performance metrics. Each subsequent

pair of column presents a comparison of S-BD to A-BD for a test system along

three metrics: iteration count, solution time (in minutes), and optimality gap. The

last row, labeled “Opt. Gap,” is the optimality gap (in percent) at the time of

termination, which is computed as ((ub− lb)× 100)/lb.

The results in Table 4.1 clearly show that applying S-BD to WFND is not efficient.

For all test systems, a large number of iterations and hence, a long runtime, is

required for convergence. In Figures 4.4 to 4.6, we make a detailed comparison of the

convergence properties of S-BD versus A-BD. These figures show the optimality gap

(vertical axis) of S-BD and A-BD as a function of the number of Benders Iterations
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(horizontal axis).
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Figure 4.4: TS1 - Optimality gap as a function of iteration count.

In all three test systems, A-BD significantly outperforms S-BD in both solution

quality and runtime. Although we were able to solve TS1 and TS2 using S-BD

within the 24 hour runtime limit, convergence is slow and several hundred Benders

Iterations were needed. This is in contrast to A-BD, which required less than 50

iterations for both of these instances and used only a small fraction of the runtime

limit. For TS3, which corresponds to the largest network, the performance difference

is even more substantial. As expected, the computational difficulty increases as the

size of the network increases. Using S-BD, the entire 24 hour limit was exhausted,

and after more than 500 Benders Iterations, an optimality gap of more than 7% still

existed. In contrast, we were able to solve TS3 to within 1% optimality gap using

A-BD in approximately 12 hours.
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Figure 4.5: TS2 - Optimality gap as a function of iteration count.

4.6 Summary and Conclusions

We introduce a WFND problem that simultaneously considers transmission and

generation expansion. Specifically, we focus on a power system expansion problem

where wind power makes up a significant portion of new capacity. We begin by

presenting WFND as a two-stage stochastic integer program. Next, we consider

extensions of the problem to include considerations for transmission losses, which is

critical to WFND because areas with good wind regimes may be far away from load

centers. Because electricity generated from wind farms may be transmitted across

great distance, it is critical that we model transmission losses to accurately represent

“i2R” loss behavior.

We present two loss models: linear and quadratic. Quadratic transmission losses

are approximated using sets of piecewise-linear functions in order to maintain lin-

earity in the second-stage. Next, we outline a solution framework based on BD and

show that this can be applied to WFND with piecewise-linear loss functions.
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Figure 4.6: TS3 - Optimality gap as a function of iteration count.

Following this, we present procedures and model enhancements to accelerate the

convergence of BD. We present two novel techniques for including the second-stage

problem’s network structure to RMP via the addition of connectivity and demand

fulfillment constraint sets. We also identify a class of valid equalities that can be

added to RMP to produce a stronger continuous relaxation. Finally, we use an ag-

gregation procedure to add multiple optimality cuts per Benders Iteration to balance

the benefit of adding more second-stage information to RMP and maintaining the

tractability of RMP.

We then examine the effectiveness of our methodology on a series of test systems

to demonstrate the benefit of our proposed A-BD, versus executing a standard BD

algorithm.

Several avenues for future research exist. One important extension would con-

sider the addition of a probabilistic (chance) constraint to capture the loss-of-load-

expectation (LOLE) (i.e. hard limits on the expected number of hours in which

demand can exceed power output). This extension is important because regulatory
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agencies may make meeting this type of probabilistic constraint a requirement in the

future [31]. However, in the context of mathematical programming, stochastic wind

speeds and the nonlinear, discontinuous power curve make closed-form probabilistic

constraint formulation intractable. We are currently developing a new hybrid algo-

rithm that leverages mathematical programming within the framework of a directed

search. Another interesting avenue for future research would be to generalize the

proposed model and algorithm for a broader class of facility location problems with

uncertain capacity, such as those seen in disaster relief efforts. Finally, our proposed

two-stage stochastic integer program can be readily extended to include other form

of renewable energy (e.g. solar and geothermal).
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4.7 Test System Parameters

Table 4.2: TS1 - Generation and Load Parameters
Area Peak Wind Conv. Conv.

i Load (MW) Max# Exist. (MW) Max#

1 3,793 0 4,000 4
2 12,774 0 13,000 13
3 4,024 0 4,000 4
4 0 0 0 0
5 0 0 0 0
6 0 0 0 0
7 0 400 0 0
8 0 400 0 0
9 0 400 0 0
10 0 400 0 0
11 0 400 0 0
12 0 400 0 0
13 0 400 0 0
14 0 400 0 0
15 0 400 0 0
16 0 400 0 0
17 0 400 0 0
18 0 400 0 0
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Table 4.3: TS1 - Transmission Parameters
i j Cost ($m) Exist# Max#

1 2 149 0 20
2 3 180 0 20
4 1 77 0 20
4 2 74 0 20
4 3 225 0 20
4 13 89 0 4
4 14 84 0 4
4 15 77 0 4
4 18 18 0 4
5 1 126 0 20
5 2 74 0 20
5 3 145 0 20
5 4 83 0 20
5 6 83 0 20
5 10 91 0 4
5 11 68 0 4
5 16 45 0 4
5 17 34 0 4
6 1 197 0 20
6 2 141 0 20
6 3 76 0 20
6 7 37 0 4
6 8 100 0 4
6 9 41 0 4
6 12 19 0 4
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Table 4.4: TS2 - Generation and Load Parameters
Area Peak Wind Conv. Conv.

i Load (MW) Max# Exist. (MW) Max#

1 4,605 0 4,000 4
2 15,512 0 13,000 13
3 4,886 0 4,000 4
4 0 0 1,000 2
5 0 0 2,000 2
6 0 0 600 2
7 0 0 0 0
8 0 0 0 0
9 0 0 0 0
10 0 400 0 0
11 0 400 0 0
12 0 400 0 0
13 0 400 0 0
14 0 400 0 0
15 0 400 0 0
16 0 400 0 0
17 0 400 0 0
18 0 400 0 0
19 0 400 0 0
20 0 400 0 0
21 0 400 0 0
22 0 400 0 0
23 0 400 0 0
24 0 400 0 0
25 0 400 0 0
26 0 400 0 0
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Table 4.5: TS2 - Transmission Parameters
i j Cost ($m) Exist# Max#

1 2 149 0 25
1 6 33 3 2
2 3 180 0 25
2 5 17 7 2
3 4 7 4 2
7 1 77 0 25
7 2 74 0 25
7 3 225 0 25
7 16 89 0 4
7 17 84 0 4
7 19 77 0 4
7 25 18 0 4
7 26 75 0 4
8 1 126 0 25
8 2 74 0 25
8 3 145 0 25
8 7 83 0 25
8 9 83 0 25
8 13 91 0 4
8 14 68 0 4
8 20 45 0 4
8 21 34 0 4
8 22 128 0 4
8 23 86 0 4
9 1 197 0 25
9 2 141 0 25
9 3 76 0 25
9 10 37 0 4
9 11 100 0 4
9 12 41 0 4
9 15 19 0 4
9 18 59 0 4
9 24 116 0 4
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Table 4.6: TS3 - Generation and Load Parameters
Area Peak Wind Conv. Conv.

i Load (MW) Max# Exist. (MW) Max#

1 2,832 0 2,000 1
2 3,793 0 3,000 2
3 12,774 0 11,000 6
4 2,846 0 2,400 2
5 4,024 0 3,200 2
6 0 0 1,200 2
7 0 0 1,800 2
8 0 0 5,000 5
9 0 0 2,000 2
10 0 0 1,200 2
11 0 0 0 0
12 0 0 0 0
13 0 0 0 0
14 0 400 0 0
15 0 400 0 0
16 0 400 0 0
17 0 400 0 0
18 0 400 0 0
19 0 400 0 0
20 0 400 0 0
21 0 400 0 0
22 0 400 0 0
23 0 400 0 0
24 0 400 0 0
25 0 400 0 0
26 0 400 0 0
27 0 400 0 0
28 0 400 0 0
29 0 400 0 0
30 0 400 0 0
31 0 400 0 0
32 0 400 0 0
33 0 400 0 0
34 0 400 0 0
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Table 4.7: TS3 - Transmission Parameters
i j Cost ($m) Exist# Max#

1 7 25 6 2
2 4 18 0 5
2 9 33 7 2
3 8 17 17 4
4 10 43 4 2
5 1 37 0 5
5 6 7 4 2
11 2 77 0 25
11 3 74 0 25
11 4 84 0 25
11 20 89 0 4
11 21 84 0 4
11 22 77 0 4
11 26 18 0 4
11 27 123 0 4
11 28 78 0 4
11 29 78 0 4
12 1 117 0 25
12 2 126 0 25
12 3 74 0 25
12 11 83 0 25
12 17 91 0 4
12 18 68 0 4
12 23 45 0 4
12 25 134 0 4
12 30 9 0 0
12 31 25 0 4
13 1 66 0 25
13 3 141 0 25
13 5 76 0 25
13 12 83 0 25
13 14 37 0 4
13 15 100 0 4
13 16 41 0 4
13 19 19 0 4
13 32 52 0 4
13 33 90 0 4
13 34 37 0 4
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CHAPTER V

An Iterative Test-and-Prune Algorithm for Wind Farm
Network Design with a Probabilistic Reliability Constraint

5.1 Introduction

In Chapter IV, we investigated a variant of WFND problem that incorporates

transmission losses and a loss-of-load-cost (LOLC) reliability measure. In this chap-

ter, we investigate an important variant of WFND that incorporates a probabilistic

constraint on loss-of-load-expectation (LOLE). Although little attention has been

directed to the literature on LOLE-constrained generation expansion planning prob-

lems, this problem is extremely important because, in practice, regulatory require-

ments specify reliability as a probabilistic constraint [7]; that is, the expected amount

of time that power systems meet demand must exceed a pre-defined threshold ∆rps.

Probabilistically constrained problems are extremely challenging for conventional

power systems. The difficulties are even greater for power systems that incorporate

wind resources, because conversion from wind speed to power output is highly non-

linear and discontinuous (Figure 4.2), and integrating a multivariate wind speed

distribution within this power curve is virtually impossible.

5.2 Simplified Problem

In this section, we describe the challenges faced by using traditional mathematical

programming (MP) formulations to solve a version of the LOLE-constrained WFND

137
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problem. For the sake of exposition, we reduce the WFND model presented in

Chapter IV to a system with decision variables governing only installed wind capacity

and associated fixed siting costs. Additionally, we remove from consideration all

conventional generation sources and assume infinite transmission capacity with no

losses and a single demand site. Lastly, we remove the LOLC penalty from the

objective function. These assumptions essentially have the effect of removing the

second stage problem, as wind turbines have essentially zero (or nearly so) marginal

operating cost, and therefore, the operating cost is zero everywhere. The siting

variable zi takes on the value 1 if wind turbines are installed at candidate wind farm

i and 0 otherwise. The generation expansion variable xi indicates the number of

turbines to install at wind farm i. Then the simplified LOLE-constrained WFND

problem is given by

min
∑
i∈N

hizi +
∑
i∈N

cixi(5.1a)

s.t.
∑
i∈N

ρixi ≥ ∆rps(5.1b)

∑
i∈N

κξ
ixi ≥ dξIξ ∀ ξ = 1, · · · , |Ξ|(5.1c)

|Ξ|∑
ξ=1

Iξ ≥ α|Ξ|(5.1d)

xi ≤ Mizi ∀ i ∈ N(5.1e)

xi ∈ Z+ ∀ i ∈ N(5.1f)

zi ∈ {0, 1} ∀ i ∈ N(5.1g)

Iξ ∈ {0, 1} ∀ ξ = 1, · · · , |Ξ|(5.1h)

The objective (5.1a) is to minimize the total siting and turbine installation cost.

Constraint (5.1b) states that enough wind capacity must be installed to meet the
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RPS requirement. Constraints (5.1c) state that, for each scenario ξ = 1, · · · , |Ξ|, the

indicator variable Iξ can take on the value one only if installed wind capacity exceeds

demand for that scenario. Constraint (5.1d) ensures that, across all scenarios, the

fraction of scenarios where installed wind capacity exceeds demand is greater than

our predefined limit ∆rps. Constraints (5.1e) restrict the number of turbines that

can be installed at each site to at most the site limit Mi. Constraints (5.1f)-(5.1h)

are variable integrality constraints.

5.2.1 Challenges of Mathematical Programming Approach

Unfortunately, even this simplified formulation of WFND is computationally chal-

lenging if it is solved using a MP-based approach. In this section, we highlight some

of these challenges and provide motivation for a new meta-search algorithm, which

we present in §5.3. The main challenges of LOLE-constrained WFND as described

in (5.1) stem from two issues: weak linear programming relaxation and large sample

size. We discuss each of these issues in turn.

Weak Linear Programming Relaxation

In a MP-based approach, variable integrality restrictions are typically handled by

relaxing these integrality restrictions and solving the resulting linear program within

a branch-and-bound framework. This approach works well in practice when problems

have strong LP relaxations and little symmetry between variables. However, in

LOLE-constrained WFND problems, there are incentives for all three sets of variables

(x, z, I) to be fractional.

The following simplified examples demonstrate why these three sets of variables

have weak LP relaxations. Recall that Iξ is an indicator variable that takes on the

value 1 if the current wind network design x is able to meet demand in scenario ξ and



140

0 otherwise. This indicator variable is enforced by the integrality constraints on Iξ in

conjunction with constraint (5.1c). In the LP relaxation of problem (5.1), the binary

constraint on each variable Iξ is replaced by a continuous constraint restricting Iξ

to be in [0, 1]. In this case, by setting Iξ =
∑
i∈N

pξ
ixi, we can get credit for “partially”

meeting demand, for example, if dξ = 100 and pξ
i = 0.5 and we installed 100 wind

turbines at location i and zero elsewhere. Then by setting Iξ =
∑
i∈N

pξ
ixi, a fractional

solution is constructed where we get credit for meeting 50% of the total demand

(that is, Iξ = 0.5). However, meeting demand at 50 percent for two scenarios is

not equivalent to meeting 100 percent of the demand fully in one scenario. z are

“Big-M” variables akin to fixed-costs in facility location problems. The weaknesses

of these “Big-M” variables are well known and well studied ([5] and [6]). Lastly,

there is also incentive for the x variables to be fractional: that is, to install exactly

the right number (even if it is fractional) of turbines to meet demand exactly.

The result of these difficulties is that a traditional MP approach to LOLE-constrained

WFND problems would require a large runtime to converge to a high-quality solution

and then an additional large runtime is needed in an effort to prove the quality of

these solutions, by reducing the optimality gap via tightening the lower bound.

Large Sample Size

Since each additional sample yields a corresponding indicator variable (which has

incentive to be fractional) and an associated “Big-M” constraint, the runtime grows

exponentially with the increase in sample size. Additionally, when we branch on one

of these Iξ variables, there is very little impact on the remainder of the solution.

In this problem, each indicator variable, Iξ, is independent of all other indicator

variables, unlike some MP formulations where variables are dependent and fixing

one will automatically lead to integer variables for all associated variables.
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5.2.2 Computational Experiments

In this section, we describe the computational experiments performed to assess

the tractability of solving (5.1) using standard MP approaches. We developed a set

of test systems using three-and-half years’ worth of historical wind speed data at five

candidate wind sites (in Minnesota) and coincidental loads. The number of turbines

per site is restricted to a maximum of 150 and the LOLE-reliability requirement

(∆rps) is set to 0.95. We solve six separate instances using varying levels of peak

loads (from 1MW to 40MW). Per turbine capacity rating is assumed to be 3MW.

All computational experiments were conducted on a Sun SunFire x4600 server,

using only a single AMD Opteron 8218 processor and 1.5 GB of RAM. We use

the CPLEX 11.0 callable library to solve the MIP (5.1) and restrict runtime to a

maximum of 24 hours (86,400 seconds).

We present the results of these computational experiments in Table 5.1

Table 5.1: MIP performance
MIP

Peak Load (MW) time (sec.) obj. val. opt. gap %
1 86,400 73 24.9
5 86,400 256 34.1
10 86,400 481 40.3
15 86,400 712 42.7
20 86,400 919 39.3
25 86,400 1,141 34.3
40 86,400 1,926 17.2

Observe that none of the six instances can be solved to within the pre-set opti-

mality gap of one percent in the allocated runtime. Furthermore, after solving each

MIP instance for 24 hours, we are still left with an extremely large optimality gap

(17% to 42%) due largely to the computational challenges described in §5.2.1. The

results presented in Table 5.1 clearly indicate that a traditional MP-based approach

is demonstrably not a viable way to solve LOLE-constrained WFND problems.
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5.3 Test-and-Prune

In solving LOLE-constrained WFND problems, we observed that many of the

computational challenges are tied to the use of a MP-based approach; specifically,

these challenges are associated with the linearizations of the fixed-charge cost struc-

ture and the use of sampling to linearize the non-convex, discontinuous wind turbine

power curve, embedded with a multivariate wind speed distribution function. Using

an MP-based approach, the non-linear cost function requires linearization via a set

of binary variables and associated “Big-M” constraints. Likewise, the probabilistic

LOLE-constraint also leads to a large number of binary variables and associated

“Big-M” constraints.

However, we also observed that the number of possible network designs, although

it may be large, is finite. Additionally, when a network design vector x is fixed, the

resulting problem simplifies. Computing the cost of a network design can be done

via a simple vector multiplication, and the feasibility of a network design can be

computed in linear time through sampling.

Accordingly, we extend the use of a computational framework developed by [2]

call Test-and-Prune (T&P). Instead of solving one difficult (and often intractable)

optimization problem, we instead solve a series of simple feasibility problems within

a larger search algorithm. The idea behind T&P originates from recent research

([2],[3]) on integrated resource allocation and utilization problems in automotive

planning.

In T&P, we begin by enumerating all valid and viable network designs. Next, for

each network design we test its feasibility, in this case simply by sampling through

all possible scenarios ξ = 1, · · · , |Ξ| and counting the number of scenarios where



143

demand is fully satisfied. Finally, we select the lowest-cost WFND solution.
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Figure 5.1: Test-and-Prune Flowchart.

T&P is a two-phase algorithm. In the first phase, Build List, we create a pending

list of network designs based on the given lower- and upper- bounds on site capacities.

Then in the second phase, Process List, we process this list until it is empty, at which

time the incumbent solution is optimal. These two phases are illustrated in Figure

5.1 (adopted from [2]).

In the Build List phase, we create a pending list of candidate network designs.

Using the given limits on upper and lower bounds for each variable x, we check the

validity; that is, we test to ensure that constraint (5.1b) is satisfied. If x is not valid,

we delete this network design. Otherwise, we test its viability, that is, we use bounds

and other problem structure to check if x is clearly infeasible or sub-optimal (with
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respect to cost of the network design). If x is both valid and viable, then it is a

candidate network design and we add it to the pending list.

In the Process List phase, we begin by selecting a candidate network design x for

the pending list and test its feasibility; specifically, we test x to see if it satisfies the

LOLE constraint. If x is a feasible solution, we prune the pending list and remove

any network design that is within ε (the predefined optimality gap) of the cost of

x and then update the current best list with solution x. On the contrary, if x is

infeasible, we prune from the pending list any allocation that is dominated by x,

that is, network design x dominates network design x̂ if ∀ i ∈ N, xi ≥ x̂i. Since x

is infeasible in this case, any network design that has fewer resources at each site is

clearly infeasible as well.

Once x has been evaluated and the pending list updated, we can select another

network design x from the reduced pending list and repeat. The algorithm terminates

when the pending list is empty; at that point the incumbent solution is optimal.

5.4 Iterative Test-and-Prune

T&P is appropriate for problems where, given a fixed resource allocation, it is

trivial to compute the objective value of the allocation problem and it is easy to test

the corresponding utilization problem. In LOLE-constrained WFND, problem 5.1

can be solved by simply enumerating all candidate network designs and testing the

feasibility of each design. Then the provably optimal solution is simply the network

design with the smallest cost.

However, for WFND problems of practical size, the number of candidate network

designs may be too large to handle directly within T&P. For example, with five

candidate wind sites, each with a maximum site limit of 200 turbines, there are over
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300 billion possible network designs. Clearly, direct application of T&P, even with

strong validity and viability tests, may not be sufficient, since the resulting pending

list may be enormous.

In preliminary research, we observed high-quality solutions at a coarse granu-

larity, for example, when we consider installing turbines in blocks of ten. In the

previous example, with five candidate wind sites, each with a maximum site limit

of 200 turbines, using blocks of ten turbines reduces the number of possible network

designs from 300 billion to roughly 4 million possible network designs, a much more

manageable number. Additionally, solutions obtained using a coarse granularity can

be further improved by searching the neighborhood of the incumbent best solution

at a finer granularity.
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Figure 5.2: Solving T&P with coarse granularity.
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However, a neighborhood search around the incumbent solution does not guar-

antee you will find an optimal solution. For example, consider the simple two-site

problem illustrated in Figure 5.2. Suppose z is the optimal solution obtained by

solving the coarse granularity problem defined by the intersections of the grid lines.

If z is the optimal solution, then searching all points in the neighborhoods of blocks

1-4 at a granularity of 1 turbine, we will still miss the optimal solution at y.

Additionally, observe that it is unnecessary to search block 2, or as a matter of

fact, any block to the upper right of z, since any network design in block 2 will have

a higher cost. Analogously, we do not have to search blocks 5-23 since the upper

right corner (the network design that dominates all other network design within

that block) is infeasible. This is because if any network design represented by the

upper right corner of blocks 5-23 is feasible, then the optimality of z (at the current

granularity) is contradicted.

Lastly, we make a final observation that the optimal solution at granularity 1 can

be found only in one of the unnumbered blocks satisfying the two following “active”

conditions:

Active condition 1: The upper right corner of the optimal block is feasible (and

thus clearly cannot have a lower cost), and

Active condition 2: The lower left corner of the optimal block has a lower cost

than the current best incumbent solution (and thus clearly cannot be feasible).

We refer to blocks that satisfy these two active conditions as “active” blocks.

Using these active conditions, we can efficiently search the feasible region for the

optimal solution by making recursive calls to T&P at varying granularity levels.

This process is describe in Figure 5.3.
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Figure 5.3: I–T&P FlowChart.

5.4.1 Computational Results

In this section, we re-solve the six test systems described in §5.2.2 using I–T&P

(using granularities of 25, 5, and 1) and compare these results to those obtained by

a traditional MP.

Table 5.2: Comparison of MIP performance to I–T&P performance
MIP I–T&P

Peak Load (MW) time (sec.) obj. val. opt. gap % time (sec.) obj. val. opt. gap %
1 86,400 73 24.9 8 73 < 1
5 86,400 256 34.1 278 256 < 1
10 86,400 481 40.3 364 481 < 1
15 86,400 712 42.7 629 700 < 1
20 86,400 919 39.3 1,025 925 < 1
25 86,400 1,141 34.3 1,119 1,135 < 1
40 86,400 1,926 17.2 102 1,935 < 1

First, observe that using I–T&P all six test systems are solved within the prede-

fined time limit of 24 hours: the fastest instance was solved in a mere 8 seconds and
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the slowest instances was solved in less than 20 minutes. This solution time is in

stark contrast to the solution times of a traditional MP approach, in which none of

the instances is solved within the 24 hour time limit and in which, at termination,

a large optimality gap of 17% to 42% remained. Comparing the solution quality of

the MP approach to the I–T&P approach, we notice that for all six instances the

objective values are comparable. However, using I–T&P, we are able to find provable

optimal solutions in a small fraction of the runtime of the MP approach. While the

solution qualities of these two approaches are comparable, it is important to note

that if we had solved these instances as a standard MP only, we would be unable

to know the true optimality gap. Additionally, if we use other test systems, there

are no guarantees that the MP solutions would remain competitive with the much

faster, and provably optimal, I–T&P solutions.

We conclude this section by summarizing the benefits of I–T&P.

• explicit calculation of cost: Since I–T&P calculates cost explicitly, there are

no fractionally associated with fixed-costs;

• explicit calculation of feasibility: Since feasibility is not imbedded within

a mathematical program, we can simply sample each scenario and count the

number of scenarios where demand is fully satisfied (this has the added benefit

that as sample size increases runtime increases linearly);

• invariant to adding multiple time periods and stochasticity in con-

ventional generation sources: Both of these considerations can be handled

within the sampling, therefore, no additional constraints are needed to express

these considerations within the model.
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5.5 Summary and Conclusion

In this chapter, we developed a computationally-efficient means to identify the

optimal wind farm network configuration for LOLE-constrained power systems. We

discuss the fundamental challenges that traditional mathematical programming (MP)

approaches encounter in solving this problem and present computational results to

demonstrate these challenges. We present a novel algorithmic framework, which we

call Iterative Test-and-Prune (I–T&P), for solving discrete optimization problems

with non-linear, non-convex, discontinuous, and stochastic constraints and objective

functions. Although the motivation for I–T&P is LOLE-constrained WFND prob-

lems, this algorithm has broad applicability to other SNDF and resource allocation

problems, for example, facility location problems with uncertain capacity such as

those encountered in disaster relief efforts ([1], [4], and [8]).

Several avenues for future research exist. One important extension would consider

the addition of transmission decisions, multiple demand points, and conventional

generators. This is a natural extension since, given a network design, testing its

feasibility must be expanded to solving a set of minimum cost flow problems, each

of which will be easy to solve and well suited for parallel implementation. Another

interesting avenue of future research would be to investigate the structural relation-

ship between I–T&P and Benders Decomposition. As seen in Chapter IV, Benders

seems well suited to the LOLC-penalty version of WFND problems but not to the

LOLE-constrained version; the opposite is true for I–T&P. Thus, it would be in-

teresting to explore the structural relationship between these two algorithms in the

hope of developing a hybridization that can serve as the foundation for solving the

real-world applications of WFND problems with both a LOLC penalty and a LOLE
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constraint.
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CHAPTER VI

Conclusions

6.1 Conclusions

This dissertation discusses stochastic network design and flow problems in two

application contexts: truckload procurement auctions and wind farm network design.

In truckload procurement our contributions are in:

• developing a new implicit bidding approach (IBA) for truckload procurement

and other combinatorial auctions;

• developing models to solve a basic CTPA to optimality, in a single round, fully

considering (implicitly) the exhaustive set of all possible bids;

• conducting numerical analysis on the characteristics of fully enumerated CTPA

solutions;

• developing models and decomposition algorithms for fully-enumerated S–CTPAs,

where carriers have uncertain repositioning capacities and costs;

• developing an efficient solution framework for fully enumerated S–CTPAs;

• generalizing the model and algorithmic approach presented for S–CTPAs to a

broader class of SNDF problems.

In wind farm network design our contributions are in:
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• presenting a new model for the design of wind farm networks in a multi-area

power system;

• modeling an integrated generation and transmission expansion problem with

explicit considerations for system uncertainties, fixed-siting costs and nonlinear

transmission losses;

• introducing an accelerated decomposition algorithm that efficiently solves WFND

problems with a large number of scenarios;

• presenting a new model for the design of wind farm networks that incorporates

probabilistic constraints on LOLE;

• developing a hybrid algorithm, Iterative Test-and-Prune, for solving WFND

problems with a LOLE constraint and demonstrating its efficacy via computa-

tional experiments.

In future work, we plan to extend our results for S–CTPAs to encompass uncer-

tainty in the shipper’s bid lane volumes. By further analyzing problem structures

and parametric uncertainties of the recourse function of the S-CTPA problem, we

may be able to reduce subproblem solution times (which is currently the bottleneck

operation).

We are also interested in continuing our research on WFND problems. An inter-

esting avenue would be to investigate the structural relationship between I–T&P and

Benders Decomposition. As seen in Chapter IV, Benders seems well suited to the

LOLC-penalty version of WFND problems but not to the LOLE-constrained version;

the opposite is true for I–T&P. Thus, it would be interesting to explore the structural

relationship between these two algorithms in the hope of developing a hybridization
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that can serve as the foundation for solving WFND problems with both a LOLC

penalty and a LOLE constraint.


