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 RNAs regulate numerous cellular processes making them highly sought 

therapeutic targets. One mechanism to inhibit functional RNAs is to alter their structura-

dynamics using small molecule binders. While structure based drug design is often used 

to discover small molecule inhibitors, difficulties arise because, unlike proteins, RNAs 

undergo large conformational changes between the free and ligand-bound states that 

cannot be determined a priori. The spatial and temporal complexity of these 

conformational changes precludes accurate characterization that would allow one to 

visualize the conformational changes. While no method currently exists that can fully 

interrogate complex RNA dynamics, nuclear magnetic resonance (NMR) is a prime 

candidate because of its ability to site-specifically report on dynamics over a wide range 

of timescales (picoseconds-minutes). However, the number of measurable observables 

by NMR pales in comparison to the number of parameters needed to fully describe 

complex dynamic motions. Molecular dynamics (MD) can provide an all-atom description 

of RNA dynamics, but the force-fields governing the theoretical description are 

inaccurate and simulations remain limited to ~100 nanosecond timescales.  



 xiv 

Using NMR and MD we aim to uncover the biophysical principles governing HIV-

1 transactivation response element RNA (TAR) mediated ligand recognition and 

discover new TAR binding small molecules. First, we present an adapted Sample and 

Select (SAS) approach, which combines NMR residual dipolar couplings (RDCs) and 

MD to provide an accurate all-atom description of RNA dynamics over sub-millisecond 

timescales. RDCs measured on elongated TAR molecules are used to separate internal 

and overall motions and impose a helix-anchored reference frame. Using the SAS 

method, refined RNA ensembles that re-capitulate experimental RDCs are generated 

from an MD trajectory. Specific snapshots of the ensemble closely agree with previously 

determined ligand-bound TAR structures suggesting that the bound state conformations 

are sampled in the absence of ligand. In a second study we investigate the sequence 

dependence of TAR dynamics and show that a modest mutation greatly perturbs global 

and local dynamics giving rise to changes in small molecule binding affinity while still 

forming the same bound state RNA conformation. This suggests that RNA dynamics are 

sequence encoded and lead to pre-tuned functional dynamic ensembles. Lastly, the 

SAS ensemble structures are used in RNA structure-based drug discovery. 

Computational docking simulations are used to discover 11 TAR-binding small 

molecules, 8 of which have never before been shown to bind TAR and 2 never before 

been shown to bind RNA. NMR chemical shift perturbations and fluorescence 

polarization measurements verify that the small molecules bind TAR and inhibit the TAR-

Tat interaction with inhibition constants ranging 0.627-300 µM. RDCs measured on TAR 

bound to the small molecule netilmicin suggest that docking against the SAS structures 

accurately re-capitulates the bound-state. Remarkably, netilmicin is also shown to inhibit 

TAR-mediated HIV-1 LTR expression and HIV-1 replication in an HIV-1 indicator cell 

line, TZM-bl, with an IC50 of 23.1 µM. 
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Chapter 1 

 

 

Background and Introduction 

 

 

 

1.1 Central Role of RNA in Biology 

Watson and Crick’s discovery of the DNA structure more than 50 years ago(1) 

led to the formulation of the central dogma of biology. While it was long thought that 

DNA molecules hold the library of genetic codes that are converted into “single-tasked” 

mRNAs specifying the protein sequences responsible for carrying out cellular functions, 

an increasing number of studies have revealed that RNA plays a much more important 

regulatory role. Discovery of the self-splicing pre-ribosomal catalytic RNA in the early 

1980s(2,3) triggered an explosion in the number of studies aimed at understanding the 

role non-coding RNAs (ncRNAs) play in regulating and affecting cellular processes. 

Examples of ncRNAs include: catalytic RNAs that play key roles in protein synthesis, 

tRNA maturation, self-splicing intron removal, and viroid replication; small nuclear RNAs 

(snRNAs) that comprise the intron removal pre-mRNA splicing machinery; telomerase 

RNA required for chromosome end replication; guide RNAs critical to RNA editing; the 

signal recognition particle RNA necessary for protein translocation; small nucleolar 
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RNAs responsible for ribosomal RNA (rRNA) modification; interfering and micro RNAs 

(RNAi and miRNA) that underlie an entirely new genetic network for regulating gene 

expression(4); and riboswitches that regulate transcription(5), translation initiation(6), 

self-cleavage(7,8), degradation(9,10), and antisense mRNA production(11). While this 

list does not cover the entire breadth of regulatory RNA molecules, it illustrates the 

broadening of RNA functions beyond the traditional roles ascribed to mRNA, tRNA, and 

rRNA in the central molecular dogma  

 
 
Figure 1.1. Cellular ncRNA increases with developmental complexity. As organisms 
exhibit more complex biology the ratio of transcribed ncDNA to coding DNA increases. 

 

Recent studies indicate that the amount of transcribed ncRNA increases 

significantly with organismal complexity, and that as much as 96% of gene products in 

humans could correspond to ncRNAs whose functions remain to be elucidated. In 

comparison, only 2% is translated into proteins, leaving as much as 96% ncRNA 

available to perform diverse tasks (Figure 1.1)(12-14). Given the increasing importance 
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of ncRNAs, it is easy to appreciate the increasing scientific focus devoted to 

understanding the roles RNA plays in biology and how they can be exploited as drug 

targets. 

 

1.2 RNA as a Therapeutic Target  

A growing number of RNAs and RNA-mediated processes are emerging as 

targets for antibacterial and antiviral therapies. Targeting rRNA is already a paradigm for 

developing antibiotics. For example, preferential binding of aminoglycoside molecules to 

the bacterial A-site in the 30S ribosomal subunit leads to mistranslation of protein genes 

and provides one avenue to combat bacterial infections (other avenues for targeting 

rRNA for antibacterial treatment are reviewed in(15,16)). Many RNA structural elements 

located in the untranslated region (UTR) of retroviral genomes are considered opportune 

anti-viral targets. In the case of the human immunodeficiency virus (HIV), this includes 

the transactivation response element (TAR)(17-19), which regulates HIV transcriptional 

fidelity by forming a catalytic ribonucleoprotein complex that hyperphosphorylates RNA 

polymerase II; the rev response element (RRE)(20), which serves as the recognition site 

for the Rev protein responsible for exporting the transcribed HIV genome outside the 

nucleus; and the dimerization initiation site (DIS)(21-23), which is a key recognition site 

for HIV genome dimerization prior to capsid formation and viral maturation.  

A growing number of genetic disorders are being associated with RNA 

dependent processes. Aberrant mRNA function(s) has been linked to the genetic 

diseases Fragile X syndrome, Huntington’s disease, and Autism to name a few (an 

extensive list of such diseases can be found in the review(24)). In these genetic 

disorders it is known that specific mutations lead to defective RNA-protein recognition 

that disrupt normal alternative splicing(24). Cancer therapies aimed at targeting RNA 

have gained traction recently due to the discovery that cellular levels of miRNA are 
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directly related to cancerous cell phenotypes and therefore could potentially be targeted 

for anti-cancer therapies(25-28). Also, the ability to target telomerase RNA with small 

molecules and oligonucleotides has been explored as a potential avenue for anti-cancer 

development(29,30). In fact, the Geron corporation has developed a human telomerase 

binding oligonucleotide that has proven successful in phase III clinical trials(30).  

Targeting RNA for drug development could alleviate some of the difficulties in 

inhibiting protein function(s). While the percentage of the proteome that is druggable is a 

matter of debate, a recent study indicated that all FDA approved small molecule drugs 

target only 207 proteins, 50% of which are G-protein coupled receptors(31-38). This 

number is strikingly small compared to the 1620 known proteins that are directly linked 

to genetic disease and the hundreds of thousands of proteins translated in human 

cells(35). A recent computational study suggests that out of the entire known proteome, 

only 15% contains a druggable binding pocket(33), and the disruption of protein-protein 

interactions, which feature large interaction surfaces, has proven quite difficult(39). Thus, 

while proteins have been and will continue to be the central focus for most drug 

discovery efforts in the near future, the increasing number of potential RNA targets 

provides an alternative route for therapeutic development. 

The potential of RNA as an alternative drug target has spurred numerous studies 

aimed at understanding the molecular principles that underlie RNA-small molecule 

recognition. Figure 1.2 shows a timeline of important discoveries that have advanced the 

field of RNA-targeted drug discovery. While studies in the 1960s by Weinstein I. B. and 

Finkelstein I. B. showed the drug proflavine binds tRNA(40,41), appreciation for RNA as 

a bona fide drug target did not come to fruition until the validation that many known 

antibacterials including aminoglycosides(42-44), macrolides(45), tetracyclines(46), and 
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Figure 1.2. Timeline of important discoveries in RNA-targeted drug discovery. Nobel Prize medals indicate discoveries that 
were awarded a Nobel Prize. (2,3,6,7,40-42,47-75) 
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oxazolidinones(76) exert their function by binding rRNA. The mechanism of action has 

been extensively studied for aminoglycosides, where reports have shown that many bind 

the 30S ribosomal A-site and disrupt the translational fidelity resulting in the 

incorporation of the incorrect amino acid and thus the synthesis of aberrant proteins and 

ultimately cell death. These findings are encouraging for the field of RNA-targeted drug 

discovery, but they are also an example of the ideal situation since rRNA is catalytically 

active and abundant in cells. The “holy-grail” in RNA-targeted drug discovery is to 

specifically target a catalytically inactive low abundance RNA, which has yet to be 

realized. 

Table 1.1. Examples of RNA therapeutic targets.(16,24,77-83) 
Disease RNA Type RNA Function 
Bacterial Infection rRNA A-site translation 

Bacterial Infection rRNA 
Peptidyl-transferase 
center translation 

Bacterial Infection mRNA Riboswitch 
transcription, translation, 
splicing, mRNA degradation 

Bacterial Infection ncRNA RNase P RNA cleavage 

HIV Viral RNA 
Trans-activation 
response element transcription 

HIV Viral RNA 
Dimerization 
initiation site genome packaging 

HIV Viral RNA 
Rev-response 
element genome export 

Hepatitis C Virus mRNA 
Internal ribosome 
entry site translation 

Spinal Muscular 
Atrophy ncRNA SMN2 pre-mRNA splicing 
Amyotrophic Lateral 
Sclerosis ncRNA TARDBP RNA splicing, transport 
Wolcott-Rallison 
Syndrome mRNA EIF2AK3 translation 
Prostate Cancer mRNA SNHG5 ribosome biogenesis 
Cancer ncRNA miR-372 RNAi 
Cancer ncRNA RBM5 RNA splicing 

 

1.3 Current RNA Drug Targets 

1.3.1 Antibiotics 

Ribosome-targeting antibiotics remain the only validated success story in RNA-

targeted drug discovery. To date, all of the FDA approved RNA-targeting drugs bind 
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rRNA. In fact, nine years ago the FDA approved the use of the gram-positive targeting 

small molecule linezolid (Pfizer), which is an oxazolidinone that is thought to prevent 

initiator tRNA binding to the ribosome and thus inhibit protein synthesis(62,84,85). 

Currently there are 1604 open clinical trials investigating antibiotics, some of which likely 

employ rRNA-targeting small molecules(clinicaltrials.gov).    

Since the discovery of streptomycin in 1944(47,48) numerous studies have 

focused on developing novel rRNA-binding small molecule antibiotics. The advances in 

X-ray crystallography by Steitz T. A., Ramakrishnan V., and Yonath A. D. and other 

groups allowed the atomic resolution visualization of the ribosome in the apo-state and 

bound to various anitbacterials(67,69-71,86-95). Differences between the apo and small 

molecule bound ribosome structures answered many questions about rRNA-targeting 

antibacterial mechanism(s) and agreed with many of the previously determined rRNA-

targeting small molecule antibiotic mechanisms, including the pioneering NMR work by 

Puglisi and co-workers(42,96-98). This Nobel Prize winning accomplishment is providing 

the basis for further structure-based design of new antibiotics. The realization that 

proposed models for antibacterial aminoglycosides targeting the A-site matched those 

revealed by the ribosome crystal structures (discussion of the inhibitory mechanism of 

aminoglycosides that target the bacterial A-site can be found in section 1.4) also 

highlights an important development for RNA-targeting drug discovery -- the modularity 

of RNA allows for extensive biochemical and biophysical studies of RNA targets outside 

of more biologically relevant contexts. This motivates consideration of other RNAs as 

targets for antibiotic development. 

Many RNAs outside the ribosome are targets for small molecule antibiotics 

including tRNA(99-103), non-rRNA catalytic RNAs(78,104), and mRNA elements 

including riboswitches. Some studies are also focused on binding RNAs in the ribosome 

assembly pathway(105-110). Inhibiting aminoacyl-tRNA synthetase enzymes, which are 
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responsible for coupling the correct amino acid to the corresponding tRNA, is considered 

an attractive target for antibacterial development(99). Rather than targeting the enzyme, 

specific binding to the tRNAphe variable loop has been shown for neomycin, potentially 

indicating specificity to inhibit tRNA-amino acid charging. The catalytic nature  

 
Figure 1.3. Riboswitch mediated gene control. (a) The guanine riboswitch regulates 
gene transcription by binding the guanine nucleobase resulting in the formation of a 
terminator hairpin that prevents transcription of the open reading frame(5) and (b) the 
TPP riboswitch regulates translation of the ORF by sequestering the Shine-Dalgarno 
(SD) sequence on binding the TPP metabolite(6). 
 

of ribozymes affords easy readout for monitoring small molecule mediated inhibition. 

This combined with the multiple X-ray structures of ribozymes provides the basis for 

structure based drug design and an excellent case study for understanding RNA-ligand 
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interactions. Small molecule inhibition of ribozymes has been extensively studied since 

1991 with the first report of aminoglycoside inhibition of the group I intron(58). Since this 

initial report many studies have investigated antibiotic ribozyme particularly in the case 

of the hammerhead ribozymes(104) and the RNase P ribozyme(78). 

Along with RNAs involved in antisense-mediated translational control(111), the 

regulatory functions controlled by riboswitches serve as a very attractive mRNA 

antibacterial target. Riboswitches are generally found in the 5’ UTR of bacterial mRNA 

transcripts and bind specific cellular metabolites (e.g. guanine, adenine, S-adenosyl 

methionine, and lysine) to regulate gene expression at the transcriptional or translational 

level(112). The genes that are downstream of the riboswitch are usually involved in 

transport or synthesis of the cognate metabolite and thus are direct regulators of cellular 

metabolite concentrations. Most often if the metabolite is not present the gene is “on” 

and transcription or translation will persist, however when the metabolite is in sufficiently 

high concentration then the riboswitch will bind the metabolite and turn the gene “off” by 

forming an RNA structure that will suppress further transcription or translation(Figure 

1.3). The structure that forms on binding the cognate metabolite is often in the form of a 

terminator hairpin (GC rich helix followed by a stretch of uridines) (Figure 1.3a) when 

inhibiting transcription, or results in sequestering the Shine-Dalgarno sequence (Figure 

1.3b) to prevent ribosome recognition and thus translation of the mRNA transcript. A 

viable antibacterial drug-discovery approach would be to target these riboswitches 

thereby inducing a desirable change in metabolite regulation to kill infectious bacteria in 

the host. In a recent study, Breaker R. R. and co-workers found five lysine analogs that 

bind the lysine riboswitch within 40 fold of the native lysine binding affinity (360nM) (77). 

This study further showed that three of the compounds inhibit bacterial growth with 

minimum inhibitory concentrations ranging from 26-938µM. Mutating the riboswitch 

confirmed that these lysine analogs bind the aptamer domain of the riboswitch to inhibit 
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cell growth, which significantly increased the minimum inhibitory concentrations (1.56-

5mM) but did not affect lysine binding. This also suggested that the binding mode of 

these small molecules was different than that of lysine. Thus, it is plausible that 

riboswitch mediated regulation is a kinetically and not necessarily a thermodynamically 

controlled process, explaining why relatively weak binders can inhibit bacterial growth 

likely through formation of kinetically trapped alternative conformations. This is also 

supported by other reports(113-117). Thus, while still an infant field for antibacterial 

therapeutic development, the ability and desire to target riboswitches will likely gain 

much more traction in the near future. 

  

1.3.2 Anti-cancer 

RNA-targets provide an alternate route for anti-cancer therapies. Various cellular 

processes are being targeted for anti-cancer small molecule development including RNA 

splicing (118), translocation(119), miRNA regulation(25-28), ribosome assembly(120), 

and transcription(121-124). For example, an attractive anti-cancer mRNA drug target 

that exists in mammalian cells is the thymidylate 

synthase (TS) RNA. The TS protein is involved in 

regulating the generation of thymidine 

monophosphate that becomes further 

phosphorylated to form thymidine triphosphate 

used in DNA synthesis and repair. Inhibiting the 

TS mechanism has been at the forefront of many 

pharmaceutical research companies for years as a 

target for anti-cancer therapy(125,126). While the 

TS protein can be targeted in cells, certain classes of TS inhibitors make the TS protein 

unable to regulate its own translation, resulting in unregulated expression. Thus, as the 

 
Figure 1.4. TS RNA is an anti-
cancer target. Aminoglycosides 
have been shown to bind the 1X1 
internal loop (in red) with nM-µM 
affinity.  
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concentration of TS increases in cells, these inhibitors exhibit reduced efficacy(121-123). 

Rather than targeting the enzyme, an alternative approach would be to target the TS 

RNA. Briefly explained, the TS protein binds to the TS mRNA at two distinct sites, the 

first of which is a stem-loop RNA with two symmetric internal loops and a seven-

nucleotide apical loop (Figure 1.4) (127,128). Located within this first TS protein binding 

site RNA is the AUG start codon(127,128). Thus, the likely transcription-regulation 

mechanism for this protein is to bind its own RNA, thereby sequestering the start codon 

as a negative feedback for its own production(127). The first study targeting the TS RNA 

with small molecules to stabilize the TS RNA hairpin showed varying affinities for a 

library of aminoglycosides (Kd0.9-2.7 µM) and mutational studies indicate that the 

aminoglycosides bind the 1X1 internal loop and not the 2X2 or apical loops (Figure 

1.4)(124).  

 

1.3.3 Anti-viral  

Some of the classically studied RNAs are directly involved in the life-cycles of 

viruses and for many years have been sought as anti-viral therapeutic targets. As 

previously mentioned, three such RNAs are the TAR, RRE and DIS in the HIV genome. 

Briefly, TAR is located in the 5’ LTR sequence of the HIV genome and forms a stem-loop 

structure that serves as a scaffold for binding regulatory proteins, namely Tat, Cyclin T1, 

and Cdk9, that together ensure the fidelity of gene expression by hyper-phosphorylating 

RNA polymerase II(Figure 1.5)(129,130). Anti-HIV drug discovery efforts have focused 

on binding TAR or Tat and thus preventing their association leading to decreased viral 

efficacy. Tat forms specific and tight interactions (Kd low-sub nM) with TAR through its 

arginine rich motif (69,131-135), and numerous reports have focused on understanding 

the TAR-Tat recognition mechanism and the mode of action for many known 

inhibitors(59,136-147) (see further discussion in section 1.8). While there is debate over 
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the action of many TAR-binding small molecule inhibitors, it is likely that many small 

molecules allosterically inhibit TAR-Tat binding by locking TAR into alternate 

conformations that prevent Tat binding(148).  

 

 
Figure 1.5. TAR regulates HIV transcription fidelity. TAR is located in the 5’ LTR of 
the HIV genome (on bottom) and regulates HIV Transcription through the formation of a 
ribonucleoprotein complex. In the absence of TAR truncated transcripts are produced, 
making it a highly sought anti-HIV drug target. 
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1.4 RNA Structural Adaptation on Small Molecule Binding  

Structure-based drug design is one of the most ambitious approaches for drug 

discovery and is based on rationally using knowledge of a molecule’s 3D structure in 

identifying small molecules capable of binding that structure. Highly flexible RNA 

structures pose a unique challenge in this regard because even related ligands can bind 

very different RNA conformations that cannot, in general, be determined a priori. The 

earliest observations of post-folding rearrangements in RNA structure were made in the 

1980s by Steitz T. A., Soll D. and co-workers who showed that tRNA undergoes 

changes in the alignment of its helices on binding to glutaminyl-tRNA synthetase(55). In 

subsequent NMR studies, Williamson J. R. and Puglisi J. D. showed that even a small 

ligand, such as argininamide, can induce large changes in the conformation of TAR 

(TAR) involving large changes (~40º) in the orientation of A-form helices coupled with 

local formation of a base-triple (59). In an elegant series of NMR studies, Puglisi and co-

workers demonstrated that small molecule aminoglycoside antibiotics exert their activity 

by inducing conformational changes in the A-site RNA, underscoring the importance of 

structural transitions in RNA targeting (42,96,98,149). Briefly, the A-site (Figure 1.6) is 

located in the small 30S subunit of the ribosome and is responsible for ensuring the 

transcript codon matches the incoming tRNA anticodon to ensure correct amino acid 

incorporation. If a match is present then the two critical internal loop adenine bases 

(A1492 and A1493) flip out and permit incorporation of the amino acid, which is attached 

to the tRNA, into the polypeptide chain. When a match is not found then the adenine 

bases remain looped inside thus rejecting the tRNA and another matching event occurs. 

The A-site is the target for many antibiotics (e.g. paromomycin – Kd~200nM)(150), which 

exert their activity by binding the internal loop and stabilizing a looped out conformation 

for the two universally conserved adenine residues A1492 and A1493, thereby allowing 

incorporation of incorrect amino acids leading to the production of aberrant proteins and 
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eventually cell death. Remarkably, a single substitution of internal looped adenine A1408 

with a guanine residue, which is found in humans and mutated bacterial strains, confers 

antibiotic resistance through mechanisms that are not fully understood.  

 
Figure 1.6. A-site structural adaptation on small molecule binding. Translation 
regulation by the A-site is inhibited by the aminoglycoside paromomycin (orange). On 
binding paromomycin the internal loop adenines (yellow) loop outside the helix and 
interact with the tRNA (red) and the mRNA transcript (blue) resulting in incorporation of 
aberrant amino acids in the polypeptide. Note that A-site base numbering is truncated for 
clarity (e.g. 1492 is shown as 92). 

 

An extreme example of structural rearrangements on interaction with a small 

molecule is observed in RNA aptamers (Figure 1.7). Non-biologically native RNA 

aptamers are developed to specifically bind a small molecule ligand using the SELEX 

protocol(56,57). Largely unstructured in the free state, these aptamers fold on contact 

with the ligand to form complex tertiary structures, with multiple specific RNA-small 

molecule interactions that confer tight binding affinities (nM-µM)(151). Often times the 

small molecule ligand is almost completely buried inside the RNA. Analogously, large 

structural rearrangements are seen in the naturally occurring aptamer domains of 

riboswitches. As previously mentioned, when the concentration of the cognate 

metabolite is sufficiently high the riboswitch aptamer binds the ligand via numerous 
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specific interactions. On binding the metabolite, the aptamer induces formation of an 

RNA structure that impedes transcription or translation(112). However, in the absence of 

the metabolite an alternate aptamer conformation is adopted and transcription or 

translation proceeds (see Figure 1.3 for an example of the riboswitch 

mechanism)(5,112,152).   

 
Figure 1.7. Structural rearrangement of the malachite green aptamer. On interaction 
with the small molecule malachite green, the unstructured free RNA folds into a complex 
tertiary structure that exhibits specific stacking and hydrogen bonding interactions(154). 

 

Given that many small molecules exhibit their activity non-competitively by 

stabilizing inactive RNA conformations(155), identifying RNA-targeting small molecules 

presents a difficult challenge because high affinity does not guarantee high activity. For 

example, fluorescence studies provide strong evidence that the aforementioned 

antibacterial activity of aminoglycoside antibiotics that bind the ribosomal decoding-site, 

some of which exhibit nM binding affinity, is not determined by their binding affinity, but 

by the dynamics of the internal loop adenines in the bound RNA structure(156). 

Likewise, studies have shown that neomycin B inhibits the interaction between TAR and 

Tat by binding to TAR and preventing necessary conformational changes from taking 

place(146). Thus, the development of methodology for identifying allosteric small 

molecules is of great importance to advance the field of RNA-targeted drug discovery. 
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Numerous studies over the past two decades have focused on understanding the 

physical principles guiding RNA structural changes that take place on ligand 

binding(139,151,157,158). A deeper understanding of these transitions will not only 

provide a more thorough description of the complex mechanisms that guide RNA-

mediated biological processes, but will also serve to advance the field of RNA-targeted 

structure based drug design. Two mechanisms have been used to describe these 

structural adaptations(139,158,159). The “induced-fit” model, first described by Koshland 

D. E. in the 1950s to explain the decreased rates of protein enzyme catalysis observed 

when using substrate analogs(160), was used to explain many of the initial discoveries 

of RNA structural changes on ligand binding. Using the induced-fit model it was 

assumed that the bound state RNA conformation is not largely populated in the unbound 

state because it is thermodynamically unstable and/or separated by very high kinetic 

barriers; factors that are overcome via favorable interactions with ligands. However, 

there was also evidence that ligands do not induce the change in RNA structure but 

instead capture existing RNA conformations. An early example of “conformational 

selection” or “tertiary capture”, first introduced by Foote J. and Milstein C.(161) to explain 

kinetic data on a set of antigen-antibody interactions, was the observation that free-state 

conformations of RNA stem-loop structures are stabilized on binding the ColE1 Rom 

protein(162). Subsequently, Weeks K. M. and Cech T. R. also used conformational 

selection to explain adaptive recognition in the assembly of the CBP2-group I intron 

ribonucleoprotein complex(163,164). More recently, Al-Hashimi H. M. and co-workers 

used Elongated RNA (E-RNA) NMR to provide compelling evidence that the 

conformational selection model best describes TAR small molecule binding events(74). 

It is likely that many RNA-small molecule binding events are governed by a 

conformational selection mechanism. Thus, knowledge of free-state RNA dynamics is 

critical to discovering novel RNA-targeting small molecules. 
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1.5 Structural Basis for RNA-Small Molecule Recognition 

 In the early 1990s, NMR structures were reported for RNA in complex with small 

molecules that began to reveal the structural basis for RNA-small molecule recognition. 

Importantly, these studies allowed for interrogation of small molecule properties that lead 

to specific interactions with RNA. Structures of TAR in complex with argininamide 

revealed large global and local conformational rearrangements on binding that give rise 

to a network of specific interactions. Unbound TAR exhibits an inter-helical bend angle of 

~47o, however on binding argininamide rearranges into a coaxially stacked state that is 

nearly linear with a bend angle of ~11o (59,74,142,157,165). The global rearrangement 

is accompanied by a conformational change in the inter-helical bulge where the residue 

U23 moves from being stacked inside the bulge with A22, to being looped into the major 

groove of the upper helix forming a base triple with bases A27 and U38. These RNA 

structural rearrangements result in specific interactions that confer binding specificity 

including direct stacking interactions between U23 and argininamide, hydrogen bonding 

between the guanidinium group of argininamide and G26, and hydrogen bonding 

between argininamide and the phosphate backbone of A22 and U23(59). Subsequently, 

NMR structures of the A-site rRNA and other RNA elements in complex with 

aminoglycosides revealed the importance of hydrogen bonding, electrostatic 

interactions, and the complementarity between small molecules and the RNA 

surface(42,96,98,149,166). Studies of artificial and more recently natural RNA aptamers, 

which bind to a variety of ligands, also revealed complex RNA conformations giving rise 

to deep binding pockets and a multitude of specific small-molecule RNA interactions 

resulting in high affinity (nM-µM) binding(151,167,168).  

Much like proteins, RNAs have many structural features that make it a suitable 

target for small molecules. DNA and RNA are made up of only four chemically similar 

building blocks that tend to form regularized structures such as helices. However, the 
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DNA B-form helix differs substantially from the RNA A-form helix. While the DNA B-form 

helix has a shallow and widened major groove making it amenable to small molecule  

 

Figure 1.8. The higher order structure of RNA differs from DNA and provides more 
complex folding architectures. (a) The shallow and wide major groove of the B-form 
DNA helix makes it more amenable to small molecule binding compared to the deep and 
narrow A-form RNA major groove. (b) The TPP riboswitch exemplifies how junctions in 
RNA elements give rise to complex tertiary structures and provide highly specific small 
molecule binding pockets(169). 
 

binding, the RNA A-form helix has a narrower and deeper major groove that is less 

accessible for small molecule binding(Figure 1.8a)(170-172). However, unlike DNA, the 

interruption of RNA A-form helices by bulges, internal loops, and junctions results in 

more complex folds with deeper and more accessible binding pockets capable of 

forming tight interactions with other RNAs(173,174), proteins(175), and small 

molecules(176) (Figure 1.8b). These tertiary structures give rise to complex 

electronegative surface potentials that are more similar to those of proteins compared to 

DNA(177), albeit the contours are predominantly negative potentials in RNA whereas 

proteins exhibit both positive and negative potentials. That said, the varying 

electronegativity seen across the known RNA tertiary structures could give rise to the 

necessary specificity needed to develop high-affinity RNA-targeting drugs. 

 Many RNA-binding small molecules resemble nucleic acid structures in that they 

contain pyrimidine-like moieties, purine-like moieties, phosphates, or sugars (reviewed in 
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(81)). These moieties specify the types of interactions known to confer specific RNA 

binding. Hydrogen bonding likely gives rise to the majority of specificity in RNA-small 

molecule complexes. The large amount of energy held within hydrogen bonds (~1-3 

kcal/mol), which are often formed with exposed nucleobases and/or the phosphate 

backbone, largely determines the small molecule binding conformation(s). An example 

of such specificity is seen in the guanine and adenine riboswitches where out of nine 

potential hydrogen-bond donors and acceptors in the nucleobase ligand, eight are 

occupied by hydrogen bond interactions with the RNA, three of which are in exact 

Watson-Crick (WC) geometry between the ligand and the RNA(Figure 

1.9a)(152,153,178). Batey R. and co-workers show that mutating the C74 residue, which 

forms WC base-pairing with the guanine ligand, to U74 changes the specificity of the 

guanine riboswitch to bind adenine through the formation of an adenine-U74 WC base-

pair(113,179). They also show that the guanine analog benzimidazole, which has only 

two of the nine hydrogen bond donors and acceptors, does not bind the riboswitch, likely 

due to the lack of specificity(179). Aminoglycoside recognition by the A-site also 

highlights the importance of hydrogen bonding in small molecule recognition where ring-

1 of the aminoglycoside paromomycin forms two hydrogen bonds with the WC face of 

A1408 and on mutation of A1408 to a guanine eliminates paromomycin binding(180-

182). It should be mentioned that water mediated hydrogen bonds are also highly critical 

to recognition of RNA-binding small molecules especially in solvent-exposed complexes, 

which are often seen in the aminoglycoside-A-site crystal structures(150). 

Electrostatic interactions also play a critical role in small molecule-RNA 

recognition. Cationic functional groups in small molecules often compete for metal ion 

binding sites. For example, studies show that tobramycin competes for Mg2+ binding to 

tRNAAsp(103), and neomycin and pentamidine compete for Mg2+ or Ca2+ binding to the 

group I intron(183,184). As expected, the addition of metal ions significantly reduces the 



  20 

binding affinity of these small molecules. A-site recognition of aminoglycosides is 

another example of a highly electrostatically dependent binding mechanism, where most 

of the amino groups that are charged at physiologically pH(185) are directly involved in 

dipole-dipole or charge-charge interactions with the RNA backbone phosphates and 

water molecules(68,166,180-182). Electrostatic interactions via metal ion coordination 

also plays a major role in RNA-small molecule recognition as seen in the TPP 

riboswitch, where the ligand phosphates are recognized by small molecule-RNA bridging 

Mg2+ ions(6).  

Stacking (π-π) interactions that are critical for the formation of DNA and RNA 

helices and complex tertiary structures are often observed in RNA-small molecule 

complexes(1,49,53,186-190). In fact, all riboswitches that bind nucleic-acid-like small 

molecules exhibit significant RNA-ligand π-π stacking interactions. The guanine and 

adenine riboswitches, which recognize their respective cognate ligands via hydrogen 

bonding and extensive π-π stacking on both sides of the purine ring (Figure 1.9b), result  

 
Figure 1.9. Hydrogen bonding and  π-π  stacking interactions are critical for 
conferring small molecule-RNA binding specificity. (a) Eight out of nine possible 
hydrogen bond donors and acceptors specify the guanine orientation in the guanine 
riboswitch binding pocket. (b)  Significant π-π stacking interactions are also observed in 
the guanine riboswitch, depicted by the space-filling representation, resulting in ~98% 
burial of guanine(153). 
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in ~98% burial of the small molecule(153). Significant π-π stacking is also observed in 

the binding of acetylpromazine by TAR where the anthracene-like moiety stacks with 

U25, G26, and U40 in the bulge binding pocket(145). Other somewhat ignored stacking 

mechanisms are the CH-π and cation-π interactions which have been observed between 

ring I of aminoglycosides on binding the A-site(166) and GlcN6P and a guanine in the 

GlmS ribozyme(191-193), and in TAR recognition of argininamide(194,195). 

With “drug-like” guidelines in place, the questions remain: do these parameters 

permit the design of RNA-binding drugs given the types of known interactions listed in 

this section, and can a small molecule be designed to bind a specific target RNA? Using 

a library of known clinically tested small molecules, Lipinski laid out the classic Rule of 

5(196) (<5 hydrogen bond donors, <10 hydrogen bond acceptors, molecular 

weight<500, LogP<5), which describes necessary small molecule “drug-like” properties. 

While the recently FDA approved oxazolidinone linezolid(197) meets the “drug-likeness” 

criteria, many of the known RNA-binding small molecules violate the Lipinski rules. 

Difficulties in specifically binding a target RNA arise from the somewhat ubiquitous 

nature of many RNA interaction surfaces and the abundance of tRNA, estimated to 

comprise ~15% of cellular RNA(198). A major challenge in RNA-targeted therapeutic 

development will be to advance the design of small molecules with the necessary 

functionalities that meet the pharmacological criteria developed over the years of 

protein-targeted drug discovery that can bypass off-target binding events.  

 

1.6 Techniques for Discovering RNA-binding Small Molecules 

 Contemporary tools for drug discovery have been designed to target proteins and 

are often inadequate for targeting RNAs, which have unique structural and functional 

properties (reviewed in(111)). Most high throughput drug screening methodology relies 

on measuring enzymatic activity, which is absent for most RNA drug targets. While a 
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variety of assays can be used to probe binding of small molecules to RNA targets, most 

cannot be implemented in a high throughput manner particularly for flexible and 

structurally delicate RNAs. To date, very few studies have been reported that 

successfully utilize modern high-throughput screening technology to identify small 

molecules. The reported high-throughput screens have been focused on well 

characterized RNA targets such as TAR(199,200) and the bacterial A-site(66,201), and 

implementation of a de novo high-throughput screen has not been reported. Initial 

attempts to use microarrays to detect RNA-small molecule binding in a high throughput 

manner failed to reproduce the rank-order of small molecules that bind the A-site RNA in 

solution likely because the glass surface, linker and linker position substantially affect 

the RNA binding properties of small molecules, again underscoring the structural 

delicateness of highly dynamic RNA systems(201). The inability to use high-throughput 

screening techniques against RNA targets explains the largely unexplored chemical 

space of RNA-binding small molecules.  

The most common biochemical assays aimed at identifying RNA-specific small 

molecule binders utilize fluorescence. Often a fluorescent tag is inserted into an RNA 

sequence or appended to the terminus with the premise that conformational 

rearrangements on small molecule binding can be monitored by the changes in 

fluorescence intensity. Due to the chemical similarity of 2-aminopurine to pyrimidines, 

the fluorophore is often substituted in the RNA sequence giving site-specificity and has 

been used to monitor ligand binding in numerous studies(202-206). In the event that the 

binding site is not known for a particular RNA system a bulkier fluorescent tag, such as 

fluorescein or pyrene, is often attached to the terminus and in some cases to the 2’ 

position of the ribose(73,207-211). Although these assays are relatively straightforward 

and provide an accurate measurement of small molecule binding, a major flaw in both of 

these fluorescence-based assay examples is the need to modify the RNA construct in 



  23 

order to monitor small molecule binding. An alternative to labeling the RNA with a 

fluorescent tag is to fluorescently label a native binding molecule and monitor its 

fluorescence on competition with an inhibitor(212). While fluorescently labeling a native 

binding molecule can overcome the need to chemically modify the target RNA, not all 

systems are amenable to such methods for de novo drug discovery. Other techniques 

for measuring binding, including surface plasmon resonance, isothermal titration 

calorimetry, NMR, and footprinting, cannot be implemented in a high throughput manner 

and are more appropriately used as validation rather than lead discovery tools.  

Computational docking provides the means to rapidly screen millions of small 

molecules against an RNA target, however prior knowledge of the 3-D RNA structure is 

required. Using a 3-D static RNA structure as a small molecule receptor, computational 

docking simulates the binding of a small molecule to the target by optimizing the 

interactions based on a force-field that describes intermolecular interactions (e.g. 

hydrogen bonding, electrostatic interactions, Van der Waals contacts) and small 

molecule properties (e.g. configurational entropy and solvent dissociation on binding) to 

determine the optimal small molecule binding pose. Although computational docking has 

proven quite successful in protein docking studies, the much larger conformational 

rearrangements that occur on RNA-ligand binding events prevent widespread success. 

Numerous successes have been realized from protein docking efforts(213,214). 

For example, small molecule inhibitors against DNA gyrase(215), tyrosine 

phosphatase(216), dihydrodipicolinate reductase(217), and HIV integrase(218,219), 

which led to the FDA approved drug Isentress (Merck & Co.), were discovered using 

computational docking. In a more recent study(220), Jorgensen W. L. and co-workers 

docked 41,000 small molecules into the macrophage migration inhibitory factor, which is 

a cytokine that binds the cell surface receptor CD74 and plays key roles in inflammatory 

diseases and cancer(221,222). Out of the 23 commercially available small molecules 
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found 11 were confirmed to inhibit protein-protein binding with IC50 values <5 µM. The 

ability to predict protein-binding small molecules based on crystal structure or homology 

model receptors is likely in part due to smaller dynamic motions in protein binding 

pocket(s) and the use of protein-centric small molecule virtual libraries.  

Despite the limitations in accurately accounting for RNA structural adaptation on 

small molecule binding, a few success stories have been reported. James T. L. and co-

workers have reported two such studies, one targeting TAR(72,145,223) and a second 

where they developed a docking software named MORDOR(224). In the former study a 

static structure of TAR was used to screen against 181,000 small molecules in which 

they identified acetylpromazine that binds TAR with a Kd of 270 µM and inhibits TAR-Tat 

mediated HIV transcription in-vitro. In the latter report James T. L. and co-workers 

implement a “fully flexible” docking scheme that first holds the RNA static while docking 

the small molecules, and then implements an all atom docking simulation that allows for 

RNA and small molecule fluctuations simultaneously with restricted movement of the 

RNA atoms in an attempt to account for structural adaptation on binding(30). Using this 

protocol they screened 5750 small molecules against the human telomerase RNA and 

found 48 small molecules that bind the RNA, which were confirmed using saturation-

transfer difference NMR experiments (no binding affinities were reported). Other studies 

have focused on developing RNA specific docking software by modifying the existing 

Autodock code with knowledge based potentials(225) and another using empirical 

potentials that include RNA-specific interaction terms (e.g. π-π stacking)(226). The most 

recent study reported modifications to the DOCK6 software that implements high-level 

solvent approximations and RNA flexibility as a subsequent docking step analogous to 

that reported by James T. L. to account for local adaptation on small molecule 

binding(227). In this report, they find that the accuracy of predicting the correct docking 

pose of a small molecule compared to the experimentally determined crystal or NMR 
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structure strongly depends on the number of small molecule flexible bonds, with the 

most accurate predictions for rigid molecules. This was also discovered in the Al-

Hashimi lab and is discussed in Chapter 4.  

While recent developments make it possible to accommodate limited flexibility in 

proteins(228) with little sacrifice in computational speed, no method exists to 

accommodate the inherently much greater RNA flexibility. Indeed, the current inability to 

predict how RNA structures adapt following small molecule binding is a major obstacle 

for identifying RNA-binding small molecules using computational docking. Recent 

developments in the Al-Hashimi lab have resulted in the generation of the first ever 

experimentally generated structural ensemble of TAR providing the necessary global 

and local conformational details to accurately predict small molecule-RNA binding 

affinities and is the focus of this dissertation. 

 

1.7 Structure, Dynamics, and Intermolecular Interactions Using NMR 

The site-specific resolution afforded by NMR is a unique advantage over other 

techniques and provides the ability to critically investigate interactions between proteins 

or nucleic acids and ligands. Chemical shifts are exquisitely sensitive to their electronic 

environment and perturbations can easily be monitored using NMR. They are often the 

first step to identify critical regions of macromolecules involved in ligand binding. 

Experiments to more accurately identify direct RNA-ligand or protein-ligand interactions 

include NOEs, saturation transfer, transfer-NOE, and cross relaxation experiments(229-

231). In Appendix 1 we present a study on the oligomycin sensitivity conferral protein 

where binding to the small molecule inhibitor Bz-423 is investigated by monitoring 

chemical shift perturbations and cross-relaxation. Using these two techniques we are 

able to identify the most likely small molecule binding site and provide insight into the 

inhibitory mechanism. 
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The ability to monitor structural and dynamic fluctuations from ps-m timescales 

makes NMR one of the most powerful techniques to study the behavior of biomolecules. 

Classic spin relaxation measurements monitor the nuclear relaxation rates as a result of 

thermal redistribution (R1), inhomogeneity of the local magnetic field (R2), and the inter-

nuclear dependence of saturation on relaxation rates between bonded species 

(NOE)(232). These techniques have been widely used to probe the ps-ns timescale 

motions of biomolecules, and information regarding site-specific internal motions can be 

obtained using these relaxation rates in a model-free analysis(233,234). Relaxation 

dispersion measurements, which utilize an external radiofrequency field to spin-lock 

magnetization in the rotating frame (R1ρ) (235,236) or implement a train of 180o pulses 

with precisely chosen delay times (CPMG)(237,238), are sensitive to exchange 

processes occurring on µs-ms timescales. Other NMR techniques used to probe slower 

motions include: ZZ exchange, which monitors the exchange of longitudinal 

magnetization between multiple populated states on ms-s timescales(239); lineshape 

analysis, which relies on monitoring changes in lineshapes as a result of external 

perturbations (e.g. temperature, denaturant, ligand) and can be used to probe ms-s 

timescale processes(240); and hydrogen-deuterium exchange methods, which probe s-

m timescales and have been widely used in monitoring the global stability and local 

dynamic fluctuations in proteins(241,242). Residual dipolar couplings (RDCs) and 

residual chemical shift anisotropies (RCSAs) can be used to probe motions on the sub-

ms timescales(243-246). Unlike the aforementioned methods, RDC and RCSA 

measurements report on the orientational distribution of bond vectors and a common 

reference frame, often the external magnetic field, and thus relative to one another. 
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1.7.1 Residual Dipolar Couplings 

  RDCs arise due to incomplete averaging of the dipolar interaction in partially 

aligned molecules(243,245,246). The time-averaged Hamiltonian between two spins (I 

and S) separated by a distance r is given by,  

 

,          [1.1] 

 

where I and S are the spin angular momentum operators, γI and γs are the gyromagnetic 

ratios for the individual spins, µo is the permittivity in a vacuum,   is Planck’s constant, r 

is the inter-nuclear distance, and θ is the angle between the inter-nuclear vector and the 

external magnetic field (Figure 1.10a). This gives rise to the expression for the dipolar 

coupling (Dij) between two directly bonded spin ½ nuclei (i and j),  

 

,           [1.2] 

 

where rij is the inter-nuclear distance between the spins. The angular term in Equation 

[1.2] is the second rank Legendre polynomial, P2(cosθij), and is a function of the angle θ 

between the inter-nuclear vector and the external magnetic field (Figure 1.10a). The 

angular bracket denotes a time average over all angles sampled by the inter-nuclear 

vector due to both overall motions and internal motions occurring at timescales shorter 

than the inverse of the dipolar interaction (<ms). An effective bond length, rij, eff, 

subsumes the effects of distance averaging. 
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Figure 1.10. Measurement of RDCs in partially aligned molecules. (a) Residual 
dipolar couplings between spins i and j provide long-range constraints on the average 
orientation (θ) of the inter-nuclear bond vector relative to the external magnetic field (Bo). 
(b) Measurement of residual dipolar couplings (D) arise as new contributions to the 
splittings of resonances (J) observed upon partial molecular alignment. 
 

 Motional averaging will generally reduce the value of the angular term 
 

and thus the magnitude of observed dipolar couplings (which can be on the order of kHz 

for non-reorienting directly bonded spins). When overall tumbling is isotropic, the angular 

term averages to zero, and dipolar couplings are not observed under solution conditions. 

However, if the molecule can be aligned in the magnetic field, the angular term will no 

longer average to zero. The greater the degree of alignment the greater the value of the 

angular term and magnitude of observed dipolar couplings. As is the case for through-

bond scalar couplings (J), through-space dipolar couplings (D) effectively increase or 

decrease the average magnetic field at a given nucleus, resulting in splitting of 

resonances. Dipolar couplings are therefore often measured as new contributions to 

scalar couplings (J) that are observed under conditions of molecular alignment 

(J+D)(Figure 1.10b). 
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 The measurement of RDCs in solution NMR relies on inducing an appropriate 

degree of alignment(247). Imparting a degree of alignment where approximately 1 in 

10,000 molecules are on average completely aligned (≤10-5) lead to RDCs that are too 

small compared to NMR line widths and do not allow measurements at a useful level of 

precision. At much higher degrees of alignment (≥10-2), extensive dipolar couplings 

render RDCs too large and compromise the spectral resolution needed to analyze large 

biomolecules. In general, an optimum balance is achieved for when 1 in 1000 (~10-3) 

molecules are completely aligned. Under these conditions, many RDCs can be 

measured with optimal magnitude, precision, and with minimal sacrifice in spectral 

resolution. Alignment on the order of 10-4 can allow measurements of a smaller subset of 

RDCs with suboptimal magnitude/precision ratios. 

 
Figure 1.11. Partial alignment of nucleic acids using ordering media. Pf1 phage 
(gray) transmits order through steric and electrostatic mechanisms resulting the principal 
direction of order (Szz) being oriented along the long axis of the molecule. Dimensions of 
phage and a representative dimension of an RNA are shown. 
 

 Most commonly, partial alignment on the order of 10-3 is introduced by dissolving 

the solute in an alignment medium (for reviews see(248,249)). Ordered media can 

transmit some of their order to solute molecules through mechanisms that are believed 

to involve a combination of steric obstruction and charge-charge interactions. This was 
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first demonstrated for liquid crystalline disc-shaped phospholipids called “bicelles”(245), 

which were originally used as a mimic of membrane bilayers in studies of membrane 

associated biomolecules(250,251). While the original neutral bicelle medium has been 

employed in studies of nucleic acids, other media have become more popular. In 

general, media with high tolerance to ionic strength are desired for nucleic acid 

applications. Also, positively charged ordering media are likely not useful as they may 

partake in unfavorable interactions. The most widely used medium to study nucleic acids 

is the filamentous bacteriophage (Pf1) (Figure 1.11)(252-254). Pf1 phage is negatively 

charged reducing the possibility for adverse interactions with nucleic acids and induces 

alignment through electrostatic and steric mechanisms(255,256). Owing to the uniform 

distribution of charge in polyanionic nucleic acids, the steric and electrostatic forces are 

believed to have a similar functional form(255,256). Consequently, nucleic acids 

generally align in ordering media with the principal direction of order (Szz) oriented along 

the long axis of the molecule(Figure 1.11). In general, one expects positive alignment 

(Szz> 0) with the Szz direction being, on average, oriented parallel to the magnetic field. 

Experimentally, RDCs are computed from the difference in splittings measured in the 

absence and presence of ~20-25 or ~6-8 mg/ml Pf-1 phage for ~30 residue and ~80 

residue RNAs, respectively (Figure 1.10b). 

 In nucleic acids, two strategies have been developed and applied for interpreting 

RDCs in terms of the structure and dynamics of RNA. The most widely used approach 

involves a variant of the simulated annealing approach in which individual helical 

domains are allowed to have independent order and/or alignment tensors. Here, RDCs 

and other experimental and non-experimental restraints are combined to simultaneously 

determine the local structure of molecular fragments as well as their order 

tensors(257,258). This approach can be generally applied to a variety of RNA fragments 

provided that a sufficient number of experimental restraints (including RDCs) are 



  31 

measured and care has been taken to exclude RDCs that may have been attenuated by 

local motions. A second approach uses the idealized A-form helix geometry to model 

contiguous stretches of non-terminal Watson-Crick (WC) base-pairs(165,259). The 

validity of this approach was recently supported by a statistical survey(260) of 421 WC 

base-pairs in 40 unbound and bound RNA X-ray structures (solved with < 3Å resolution) 

and the 2.4 Å X-ray structure of the ribosome(261). This study showed that the local 

conformation of two or more non-terminal contiguous WC base-pairs can, for the 

purpose of determining order tensors using RDC accurately, be modeled a priori using a 

standard idealized A-form helix geometry(262,263). These WC base-pairs can be 

experimentally identified/verified using NOESY connectivity and trans-hydrogen bond 

JNN-COSY type NMR experiments for directly detecting N-H--N hydrogen 

bonds(264,265). The study also developed approaches for taking into account structural 

noise in the A-form geometry in the determination of order tensors and provided 

evidence that local motions in such helical fragments will not compromise the accuracy 

of derived order tensors. By eliminating the need to solve the local helix structure, a 

number of applications are possible using the idealized A-form helix geometry. First, one 

can determine the relative orientation and dynamics of helices for RNAs that may be too 

large for complete high-resolution structure determination. Second, the order tensor 

analysis of RDCs can be conducted with high efficiency making possible systematic 

studies of how RNA’s global conformational dynamics varies in response to changes in 

environmental conditions(165,266-270). The latter method is subsequently described. 

The time-averaged angular term in Equation [1.2] can be expressed in terms of 

the time-independent orientation of an inter-nuclear vector relative to an arbitrary frame 

(α) and the five order tensor elements (Skl)(271,272), 
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,          [1.3] 

 

where αn
 is the angle between the inter-nuclear vector and the nth axis of the arbitrary 

frame. Assuming A-form geometries for a helix-bulge-helix RNA motif, the measurement 

of more than five independent RDCs for each helix allows determination of five elements 

of an order or alignment tensor(272,273). The order tensor consists of five independent 

parameters and describes the average alignment of the two helices relative to the 

external magnetic field. Three Euler angles specify a helix-fixed order tensor frame 

(Sxx, Syy, Szz) that depict the average orientation of helices relative to the external 

magnetic field. The average relative fragment orientations can be obtained by 

superimposing their order tensor frames, assuming that the helical fragments share a 

common view of the magnetic field direction when properly assembled (see refs. 

(165,271,274)). Two principal order parameters(274) define the degree (GDO = 

; |Szz| ≥ |Syy| ≥ |Sxx|) and asymmetry (η = ) of molecular 

alignment and can be used to obtain information on sub-millisecond timescale inter-

helical motions.  

 

1.7.2 Domain-Elongation to Decouple Internal and Overall Motions 

 Use of RDCs in constructing RNA structural ensembles requires the ability to 

predict RDCs for a given proposed structural ensemble in which conformers interconvert 

at timescales shorter than the inverse of the dipolar interaction (<ms). This task is 

considerably simplified when one can (i) assume that internal motions are not correlated 

to overall alignment (the so-called “decoupling approximation”) and (ii) determine the 

overall order or alignment tensor governing partial alignment of the molecule. Studies 
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have shown that the decoupling approximation does not always hold for highly flexible 

and extended nucleic acid structures(275-280). In particular, changes in the relative 

orientation of helical domains can result in large changes in the overall RNA shape, 

which can in turn alter overall alignment of the molecule relative to the magnetic field 

(Figure 1.12a). The ensuing breakdown in the decoupling approximation can make it 

difficult if not impossible to compute RDCs for a proposed structural ensemble.   

 One approach developed in the Al-Hashimi H. M. laboratory to overcome this 

problem is to elongate a target helix such that the overall RNA shape and hence its 

overall alignment is dominated by 

the elongated helix and is no 

longer as sensitive to internal 

motions occurring elsewhere in the 

molecule (Figure 1.12b)(74,279). 

The elongation also serves to 

predefine the overall order tensor 

to be axially symmetric with 

principal direction oriented nearly 

parallel to the axis of the elongated 

helix. The RDCs measured in the 

elongated helix can be used to 

experimentally determine the 

overall order tensor (Skl). Thus, the 

time-averaged angular term in 

Equation [1.4] can be expressed 

for the nth conformer in terms of 

 
Figure 1.12. Decoupling internal and overall 
motions in RNA by domain-elongation.  (a) 
Collective helix motions lead to coupled changes 
in overall alignment as described by the principal 
axis of the order tensor (Szz). (b) Decoupling 
collective motional modes by domain elongation 
effectively renders Szz parallel to the long-axis of 
the RNA. (c) NMR invisible elongation of TAR 
RNA is accomplished using isotopically 
unlabelled residues (gray). Two terminal GC 
base-pairs are added to helix-I in EI-TAR to 
maximize transcription yields. 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the time-independent orientation of an inter-nuclear vector relative to an arbitrary frame 

(αi) and the five order tensor elements (Skl) describing overall alignment(271,272). For a 

structural ensemble consisting of N conformers that interconvert at timescales shorter 

than the inverse of the dipolar interaction (<ms), the observed RDCs will be a 

population-weighted average over the ensemble 

 

.             [1.4]
 

             

 The elongation of an RNA target is typically preformed by extending the length of a 

terminal helix using a stretch of Watson-Crick base-pairs(281). To avoid increasing 

spectral overlap due to elongation residues, an isotopic labeling strategy is used to 

render elongation residues “NMR invisible”(281). Here, two constructs are prepared in 

which stretches of alternating unlabelled A–U/U-A (E-AU-RNA) and G–C/C-G (E-GC-

RNA) base-pairs are employed for elongation using otherwise uniformly 13C/15N labeled 

G–C and A–U nucleotides, respectively (Figure 1.12c)(281). Two G-C base pairs are 

added to the terminal end of E-AU-RNA to facilitate RNA synthesis by in vitro 

transcription. The two constructs thus allow acquisition of NMR data over the entire RNA 

target while keeping elongation residues “NMR invisible”.  

 Care must be taken to ensure that the elongation does not perturb the structural 

and functional integrity of the RNA. This can be conveniently accomplished by 

comparing spectra of elongated and non-elongated RNA samples. In general, elongation 

of terminal helices is not expected to give rise to significant RNA structural perturbations. 

However, depending on the RNA context, elongation of other non-terminal helices, 

which can allow the measurement of independents set of RDCs (and RCSAs) that can 
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be applied to generate structural dynamics with enhanced spatial resolution(74), may 

cause unwanted perturbations and should be carefully analyzed.  

 The degree of helix elongation needed to sufficiently decouple internal and overall 

motions will vary depending on the RNA target. In general, the elongation should render 

a target helix at least 4-5-fold longer than other helices in the RNA. If a structure for the 

RNA target is available, one can perform simulations using programs such as 

PALES(282), using idealized A-form helices to model the elongated helix(74), to 

examine the degree of motional coupling. In these simulations, one computes the 

variance in the predicted overall alignment tensor relative to the elongated helix as a 

function of varying the relative orientation of other shorter helices in the RNA. In general, 

the principal direction of order (Szz) should not vary more than ±7 degrees about the 

elongated axis and the asymmetry (η) should always be <0.15. The secondary structure 

of an E-RNA construct should be verified using a secondary structure prediction 

programs such as mfold 3.3 to make sure that no alternative secondary structures can 

form(283). 

 

1.8 HIV-1 TAR: A Paradigm for Targeting RNA 

TAR is an RNA stem-loop that is located at the 5' end of the HIV-1 genome that 

plays essential roles in the transcription of viral RNA and is a major target for developing 

anti-HIV therapeutics. As previously mentioned, the minimum TAR RNA consists of two 

helices that are linked by a trinucleotide bulge and capped by a hexanucleotide apical 

loop (Figure 1.5). The bulge and apical loop form two distinct protein recognition centers 

that can be targeted in the development of anti-HIV therapeutics(284). The viral 

transactivator protein Tat(129,285) binds residues in and around the TAR bulge (A22, 

U23, G26 and A27) and apical loop (G34) and enhances viral transcription by recruiting 

the positive transcription elongation factor b, which consists of Cyclin T1 (CycT1) and 
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Cdk9(286,287)(Figure 1.5). Tat can bind TAR in the absence of other cellular co-

factors(288) whereas CycT1 does not bind TAR in the absence of Tat and the two 

proteins bind TAR cooperatively by mechanisms that remain poorly understood(129). 

Biochemical studies suggest that CycT1 interacts with the U31 region of the TAR apical 

loop(289) and forms other interactions with Tat. NMR structures of TAR bound to Tat-

derived peptides and ligands indicate that Tat binds residues in and around the highly 

conserved bulge and that recognition leads to large structural rearrangements involving 

reorientation of the two helical stems accompanied by formation of a U23-A27-U38 

base-triple(136-140). There are no structures for HIV-1 Tat (86-101 residues) in complex 

with TAR and there is controversy regarding the unbound structure of Tat, which are 

complicated by use of different conditions and constructs.  

The discovery that small molecules, such as aminoglycosides, can inhibit TAR-Tat 

complex formation(19) and significantly reduce HIV-1 viral replication rates(17,18) 

spurred numerous studies that continue to date and are directed towards the 

development of agents that can bind TAR and disrupt its interaction with Tat (reviewed in 

(17,79)). The collective effort of many investigators over the course of eighteen years 

has resulted in 38 publications reporting TAR-binding small molecules. These studies 

identified 205 small molecules, which bind TAR with Kds ranging between 5nM-5mM 

(80µM average), and 159 small molecules comprising 14 different motifs/scaffolds, 

which bind TAR and inhibit the TAR-Tat interaction with Kis ranging between 39nM-4mM 

or IC50s ranging 20nM-500µM. Although these studies strongly suggest that TAR is a 

druggable target, only two of these compounds have been sufficiently potent to proceed 

to pre-clinical trials showing intraperitoneal acute toxicity LD50s of 320 and 104 mg/kg in 

mice(290).  

TAR exemplifies the major challenges encountered when targeting RNA. In the 

case of TAR, the difficulties in high-throughput screening can be appreciated by noting 
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that none of the TAR binding compounds were discovered by modern high-throughout 

experimental screens. Rather, most TAR binding small molecules have been identified 

by painstaking efforts that are focused on derivatizing specific classes of compounds, 

such as aminoglycosides, using various mimetics of the TAR protein target Tat, 

rationally designing small-molecule scaffolds that have certain electrostatic and 3D 

features, and in a more recent effort using split pool synthesis(199). 

 
Figure 1.13. HIV-1 TAR structural adaptation. The solved TAR structures vary 
significantly in RNA conformation (inter-helical bend angle ranges from ~5o to ~47o) and 
small molecule identity(59,144-147,194,291). The large structural rearrangements 
observed for TAR are likely governed by a conformational selection mechanism. 

 

A major obstacle in employing structure based drug design to develop specific 

TAR binders is the lack of knowledge of the free state beyond the calcium bound crystal 

structure(291,292). Numerous studies have shown that TAR undergoes dramatic 

conformational rearrangements involving large rigid-body movements of its two helical 

domains (averaging ~47° and as large as 71°)(165) that allow it to bind diverse targets in 

and around the bulge, including peptide derivatives of its cognate protein 

Tat(59,141,142), divalent ions(143), and five different small molecules that inhibit the 



  38 

TAR-Tat interaction(144-147) (Figure 1.13). While the structures for these states have 

been solved, the physical principles underlying the structural transitions and the effects 

on the small molecule binding pocket(s) remains poorly understood.  

We recently published the first ever experimentally NMR based ensemble of an 

RNA using the elongation strategy developed in the Al-Hashimi H. M. laboratory(74) 

(Stelzer A. C. was second author on the publication in the journal Nature). We 

transformed the basic 

NMR experiment by 

anchoring frames of 

reference onto individual 

RNA helices and thereby 

measuring their dynamics 

directly as motions of one 

helix relative to the other 

using multiple sets of 

RDCs. The frames were 

anchored using the 

method described in 

section 1.7.2, which involves elongating helices(281) so that they dominate overall 

alignment of the elongated RNA (E-RNA) in ordering media, with the elongated axis 

being on average orientated parallel to the magnetic field (Figure 1.14). This effectively 

disentangles helix motions from overall alignment and renders RDCs dependent on the 

angle (Ω) between bond vectors and the internal elongated axis, and not a detached 

external magnetic field. By anchoring the frame of reference onto different helices, the 

same helix motions can be measured from different helix-centered perspectives, 

opening a new avenue for extending the achievable spatial sensitivity with which 

 
Figure 1.14. Measurement of RNA helix motions in 3D 
using helix-anchored frames and RDCs. (a) NMR 
reference frames are anchored by elongating helices so that 
the RNA aligns with the elongated axis being on average 
oriented parallel to the magnetic field (B0). (b) Independent 
elongation of HI and HII in TAR using a strategy that renders 
elongation residues NMR invisible. 13C/15N labeled and 
unlabelled nucleotides are shown in color and gray, 
respectively. 
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motions can be characterized. For example, while RDCs probe inter-helical bending (β) 

and twisting (α) motions of the short helix, they are insensitive to twisting motions (γ) 

around the axially symmetric elongated helix (Figure 1.14a). This vanishing sensitivity 

can be resurrected, and helix motions thereby measured with complete 3D rotational 

sensitivity, by inverting which helix is elongated and measuring RDCs that probe the 

angles β and γ, but not α (Figure 1.14a). By measuring motions in this relativistic 

manner, the helix-anchored frames also allow spatial correlations between motions of 

two or more helices to be directly established. 

Using the two sets of elongated RDCs we were able to visualize the spatially 

non-random inter-helical motions, by performing a search over ensembles(293) with up 

to three (N = 3) equally populated inter-helical conformers that can reproduce the nine 

independent parameters afforded by the RDCs. The conformers within the ensemble 

define key points along the trajectory that serve to capture its essential 3D spatial 

features even if the trajectory involves many more conformations. Loose steric 

constraints were also implemented in the conformational search. Both the search over 

ensembles with N=1 and 2 yielded a very poor RDC fit, confirming the existence of an 

inter-helix motional trajectory that is more complex than a simple two-state jump. In 

contrast, a very good fit was obtained for N=3 with very slight improvements obtained 

with N=4. Strikingly the three state ensemble, which also yields good agreement with 

magnetic field induced RDCs measured in non-elongated TAR(279), gives rise to a 

motional trajectory in which HI and HII twist by ~53° and ~110°, respectively in a highly 

synchronized manner (R=0.97) while simultaneously (R=0.81-0.92) bending by ~94° 

(Figures 1.15a-b), thus the bending motions between the two TAR helices are 

accompanied by a correlated twisting motions about the respective helix axes. 

 



  40 

Figure 1.15. Correlated TAR dynamics guide ligand-induced transitions. (a) The 
best-fit TAR ensemble (in green) in which each conformer (1, 2 and 3) is specified by 
three Euler angles defining twisting around HI (-γ), HII (α) and inter-helical bending (β). 
The 3D best-fitted line is shown together with its 2D projections along each plane and 
the associated correlation coefficient (R). (b) The three TAR conformers in the best-fit 
TAR ensemble. Helices are elongated for clarity. (c) The three TAR dynamical 
conformers (in green) and the TAR conformation (in gray) bound to peptide derivatives 
of Tat (1ARJ)(144,194), divalent ions (397D) (145), and five different small molecules 
(1QD3, 1LVJ, 1UUD, 1UUI, 1UTS) (59,146,147,291). Shown on each 2D plane is the 
correlation coefficient (R) between angles for the ligand bound conformations. For 
bound structures, the s.d. is over the family of reported NMR models. Only one model 
was reported in structures 397D, 1UUI, and 1UUD, thus no s.d. is reported. (d) 
Comparison of the three TAR dynamical conformers (in green) and ligand bound TAR 
conformations (in gray). Sub-conformers along the linear pathway linking conformers 
1→2, 2→3, and 3→1 are shown in light green and the direction of the trajectory shown 
using arrows. Horizontal view following superposition of HI (top right), vertical view 
down and up the helix axis of HI (bottom right) and HII (bottom left) following 
superposition of HI and HII, respectively.  

 

Visualization of the TAR inter-helical trajectory provided us the means to 

interrogate the role TAR plays in directing ligand-induced structural transitions. 

Specifically, it allowed us to test the hypothesis that TAR samples all of the bound states 
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in the absence of ligand and thus recognition is governed by a conformational selection 

mechanism(157,158). Remarkably, we found that the seven bound TAR conformations 

fall along various positions of the dynamical trajectory (Figure 1.15c). The bound 

conformers also trace out a similar linear trajectory in the 3D inter-helix Euler space 

(R=0.70-0.82), confirming that correlated dynamics is an intrinsic property of the TAR 

structure (Figure 1.15c). The dynamic space traced out by the three TAR conformers 

encapsulates nearly all of the ligand bound conformations (Figure 1.15d), indicating that 

ligands can induce the TAR structural transitions by capturing existing conformers along 

various positions of the free RNA dynamical trajectory. Thus, a highly flexible RNA can 

be spatially tuned to undergo structured motions that direct functional transitions along 

specific pathways. 

While the experimental NMR based three state ensemble provided strong 

evidence that TAR, and possibly many other RNAs, bind small molecules via a 

conformational selection mechanism, currently only rigid body “movies” of A-form helices 

can be generated using this method. One of the objectives of this Dissertation is to 

better understand the physical principles guiding RNA structural transitions on small 

molecule binding and expand the methodology to generate “movies” with the global and 

local conformational details necessary to improve the accuracy of computational docking 

and establish a high-throughput method of RNA-targeted drug design. 
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Chapter 2 

 

 

Filtering MD Trajectories Using Motionally Decoupled NMR RDCs Reveals New 

Insights Into TAR Dynamics and Adaptive Ligand Recognition 

 

 

2.1 Introduction 

Characterization of RNA at atomic resolution has been a major focus of structural 

biology and biophysics for many years and ongoing research is aimed at developing new 

techniques to probe the structural architecture, however insights into mechanistic RNA 

structure-function questions have been impeded by the lack of biophysical techniques 

that afford 3D visualization of intrinsic RNA dynamics over biologically relevant 

timescales. NMR spectroscopy is one of the most powerful techniques for characterizing 

structural-dynamics of biomolecules providing comprehensive information regarding the 

amplitude, timescale, and - in favorable cases - direction of motions with site-specific 

resolution(1-3). However, even with the abundant number of measurements that can be 

made using NMR, the total number of parameters that can be directly determined from 

NMR data are much fewer than the total number of observables. While Molecular 

Dynamics (MD) simulations provide an all-atom description of dynamics, the force fields 

that govern the theoretical description of time-resolved dynamic transitions remain to be 

thoroughly validated particularly for nucleic acids and simulation timescales are limited to 

~100 ns(4,5). 
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Because they are complementary on the spatial and temporal scales, the 

limitations inherent to NMR and MD could in principle be overcome by combining the two 

techniques; MD can fill the shortage of information available through NMR data by 

providing an all-atom time-resolved model, and NMR can provide a means for validating 

and potentially correcting force fields and accelerate MD conformational sampling to 

millisecond timescales. Several studies have emerged in which MD and NMR are used 

in concert in studies of nucleic acid dynamics(6-10). The two techniques can also be 

integrated to yield a unified view of structural dynamics. While such combined NMR/MD 

approaches have successfully been used in studies of protein dynamics(11-14), 

extension to RNA can prove very difficult because, unlike globular proteins, overall 

motions in highly flexible RNAs can be strongly coupled to internal motions making it 

difficult, if not impossible, to predict NMR data from an MD trajectory(9,15,16).  

Recently, a domain-elongation strategy was introduced for decoupling internal 

and overall motions in RNA(17,18). As discussed in Chapter 1, a target helix is 

elongated so that the overall motion is slowed down relative to internal motions and 

rendered less sensitive to internal fluctuations in other parts of the molecule. The 

elongation also simplifies analysis of NMR spin relaxation(19) and residual dipolar 

coupling (RDC)(20,21) data because it predefines the overall diffusion or alignment 

tensor to be axially symmetric with principal axis oriented nearly parallel to the elongated 

helix axis. This makes elongated RNAs ideally suited for computing NMR observables 

from a given MD trajectory of a corresponding non-elongated RNA in which snapshots 

are aligned by superimposing the reference elongated helix.  

In this chapter we describe the implementation of a general strategy that 

combines MD simulations and NMR RDCs measured in elongated RNAs for 

constructing atomic resolution ensembles of RNA structures with timescale sensitivity 

extending up to milliseconds. The ensembles of HIV-1 TAR (TAR) and HIV-2 TAR 
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constructed in this manner provide new insights into the bulge-length dependence of 

RNA dynamics and the mechanism of conformational adaptation on target recognition.  

 

2.2 RDC-based Sample and Select Method 

 Simulations of wild-type TAR and HIV-2 TAR were generated using the 

CHARMM package(22) with force field parameter set 27(23). Model 3 of the unbound 

TAR NMR-determined structure (PDB ID# 1ANR)(24) was used as the starting 

coordinates for the simulations. For HIV-2 TAR, starting coordinates were obtained by 

removing argininamide from model 1 of the argininamide-bound NMR-determined 

structure (PDB ID# 1AKX)(25). The RNAs were charge-neutralized using sodium 

counter ions and solvated in a 35 Å and 33 Å sphere of TIP3 water, for TAR and HIV-2 

TAR, respectively(26). A spherical boundary potential was applied to maintain the 

density of water around the RNA site(27). The system was minimized and heated to 

300K while harmonically constraining the heavy atoms of the RNA with a force constant 

of 62 kcal/mol/Å for 100 ps, after which constraints were removed and the system 

equilibrated for 1 ns. A Nosé-Hoover thermostat(28,29) was used to maintain a constant 

temperature of 300 K throughout the simulation, with a 1 fs time-step and a coupling 

constant of 50 ps-1. 50 distinct trajectories were initiated from this equilibrated structure, 

by assigning different initial velocities. It has previously been demonstrated that this 

technique can be used to enhance conformational sampling relative to a single trajectory 

of the same total duration(30,31). The first 0.5 ns of each trajectory was discarded and 

next 1.6 ns used for analysis. Conformations from each of the 50, 1.6 ns, trajectories 

were pooled to give a total effective simulation time of 80 ns. These 80,000 

conformations were used as a structural pool for the “selection” phase of the select-and-

sample strategy (SAS, see below).  
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In the original implementation, Chen and coworkers used S2 NH spin relaxation 

order parameters to select structural ensembles for a series of protein systems(11). We 

adapted this “sample and select” (SAS) approach to allow use of RDC data which probe 

the orientational dynamics of individual bond vectors over timescales extending up to 

milliseconds. In the SAS approach, one generates a set of conformations for the system 

of interest, in which we use MD to generate such structures. One then searches for an 

N-membered subset of structures that minimizes a cost function. Specifically, an N-

membered subset of structures is randomly selected from a total pool of M structures 

and an initial  χ2 value is evaluated using Equation [2.1]. Next, one of the N-membered 

structures is randomly chosen and replaced, by a random structure from the remaining 

M-N conformational pool. The “move” from step k to k+1 is then accepted if χ2
(k+1) < χ2

(k). 

If χ2
(k+1) > χ2

(k), the move is accepted with a probability p = exp((χ2
(k) - χ2

(k+1))/Teff), where 

Teff is an effective temperature that is linearly decreased in a simulated annealing 

scheme. The cost function is, 

 

,
            [2.1] 

 

where   and  are the calculated and measured RDCs, respectively, L is the total 

number bond vectors, and  is calculated using, 

 

 ,           [2.2] 
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where γi or j is the gyromagnetic ratio of the ith or jth nucleus, rij is the bond length, θ is the 

angle between the internuclear bond vector and the external magnetic field and the 

angular brackets denote a time-average over all sampled orientations. As described in 

Chapter 1, the time-averaged angular term can be expressed in terms of the time-

independent orientation of an internuclear vector relative to an arbitrary frame and the 

five order tensor elements (Skl)(32,33), 

 

,
          [2.3] 

 

where 〈n is the angle between the internuclear vector and the nth axis of the arbitrary 

frame. Equation [2.3] assumes that internal motions do not affect overall alignment of the 

molecule. This assumption can break down in RNA because collective motions of helical 

domains can lead to large changes in the overall shape and thus overall alignment of the 

molecule(15,16,34). This can make it impossible to accurately compute Dij
cal for a given 

ensemble and thus to use RDCs in selecting conformers from an MD trajectory. Domain-

elongation allows one to overcome this problem by rendering the overall shape of the 

molecule far less sensitive to internal motions(17,18). Elongation also predefines the 

overall order tensor to be axially determined with principal direction oriented 

approximately parallel to axis of the elongated helix(17). This overall order tensor can be 

conveniently determined experimentally using RDCs measured in the elongated 

helix(17).  

 The SAS RDC approach was implemented using C++ programs written by Frank 

A. T. F. The previously reported(17) 47 and 35 TAR one-bond base and sugar C-H 

RDCs measured in elongated helix-I TAR (EI-TAR) and elongated helix-II TAR (EII-
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TAR), respectively, were used independently or in combination to select an TAR 

structural ensemble from a pool of 80,000 conformers derived from the combined 80 ns 

MD trajectory. For HIV-2 TAR, 35 RDCs measured in helix-1 elongated HIV-2 TAR (HIV-

2 EI-TAR) were used. Note that although RDCs were measured on a TAR construct in 

which the apical loop was replaced by a UUCG loop, a detailed NMR study recently 

showed that this apical loop replacement does not affect interhelical motions or local 

motions at the TAR bulge(35). When used in combination, both the EI-TAR and EII-TAR 

sets of RDCs were used (L =47+35=82) in computing the χ2 in Eq. [1]. In all cases, the 

overall alignment tensor was assumed to be axially symmetric (η=0) with principal 

direction (Szz) oriented parallel to the elongated helix axis as computed using the 

program CURVES(36,37). The magnitude of Szz was obtained from an order tensor 

analysis as described previously.  

 Each RDC-SAS run was initiated from N randomly selected conformers. A Monte 

Carlo (MC) simulated annealing scheme was then used to minimize the cost function in 

Eq. [1] as described above. Simulations were started at a high effective temperature 

where the MC acceptance probability was high (~0.99), and slowly decreased until the 

MC acceptance probability was ~10-5. At a given effective temperature 105 MC steps 

were carried out. The effective temperature was then decreased, with Ti+1 = 0.9Ti. The 

same protocol was used for HIV-2 TAR, except that only 35 RDCs measured in the 

helix-I elongated sample were used in the SAS analysis. Here, there was less motivation 

to acquire an additional set of helix II elongated RDCs given the near linear alignment of 

the two helices which renders the two sets of data degenerate. 

 The base angles, buckle (κ), opening (σ), propeller twist (ω) and twist (Ω), were 

calculated for eight non-terminal base pairs for each of the SAS selected TAR 

conformers using the program 3DNA(38). The interhelical Euler angles 〈h, βh, and  γh 
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were also computed for each member of the ensemble, using the lower helix as a 

reference, as previously described(39). Note that degenerate sets of Euler angles reflect 

the same interhelical orientation(39) and the set of Euler angles were selected to 

minimize the equation . 

 

2.3 Selection of  Distinct Conformers from a Large Conformational Pool 

 The ability to select discrete conformers to capture distinct features of a large 

conformational pool was investigated using 20 ns of the 80 ns TAR MD trajectory, 

resulting in a total conformational pool 

of 20,000 structures. For thee 

simulations, all 20,000 conformers 

were considered as the TAR 

ensemble. RDCs for bond vectors 

that were experimentally measured 

(47 from EI-TAR and 35 from EII-

TAR) were back-calculated from each 

conformer assuming helix-1 and helix-

2 alignment tensors from measured 

EI-TAR and EII-TAR RDCs, 

respectively(17). The 20,000 sets of 

RDCs were then averaged 

independently for each elongation to 

give the final input RDCs. Using all 

20,000 conformers as the selection 

pool, we performed a series of SAS 

 
Figure 2.1. SAS selection of 20 structures 
to model a structurally diverse ensemble. 
(a) A selected ensemble size of N=20 
minimized the cost function below 1 Hz 
RMSD. (b) The 20 selected conformers span 
the range of Euler angles and are more 
densely populated in regions that are often 
sampled in the MD trajectory. 
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simulations with various ensemble sizes of N=1, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 

100, and calculated the root mean square derivation (RMSD) between measured and 

predicted RDCs. An ensemble size of N=20 minimized the cost function below 1 Hz with 

minimal decrease on increasing the ensemble size and was used as the final set of 

selected conformers (Figure 2.1a). Euler angles were used to compare the 20 selected 

conformers to the MD trajectory. The relative orientation of two helices i and j can be 

defined using three interhelical Euler angles that describe the twist angle  〈h about helix i, 

the interhelix bend angle  βh, and the twist angle  γh about helix j(17,39). Indeed, the 

Euler angles of the 20 discrete conformers largely span the range of conformations 

sampled in the trajectory and are more densely populated in regions that are often 

sampled in the MD trajectory (Figure 2.1b). Thus, using SAS, a discrete set of structures 

can be used to model an ensemble of many conformations. 

 The ability to select a particular set of 20 from the pool of 20,000 was examined by 

using the first 20 conformers of the trajectory to represent the “known” theoretical 

ensemble. RDCs for the 20 structures were calculated as previously described. The 20 

sets of RDCs were then averaged independently for each elongation to give the final 

input RDCs. All 20,000 conformers were used as the selection pool and SAS simulations 

run using input RDCs from theoretical EI-TAR, EII-TAR, and both EI-TAR and EII-TAR 

RDCs. For all three SAS simulations, the RMSD between input and selected RDCs was 

<1 Hz. Only 8 of the 20 conformers were selected using EI-TAR RDCs, and the 

remaining 12 selected conformers are within 3Å backbone heavy-atom RMSD to the 

unselected structures  (Figure 2.2a). When only considering EII-TAR RDCs, 3 of the 20 

conformers are selected and the remaining 17 conformers exhibit a backbone heavy-

atom RMSD < 3Å to the remaining structures (Figure 2.2b). Remarkably, when EI-TAR 

and EII-TAR RDCs are used all 20 conformers are selected (Figure 2.2c). The ability to 

more accurately select the correct structures using EI-TAR and EII-TAR RDCs is most 
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likely a result of the increased sensitivity to helical motions that is realized when 

combining both elongations(17). To simulate experimental error, a 3 Hz error was added 

to the theoretical RDCs. When using EI-TAR and EII-TAR theoretical RDCs with 

simulated 3 Hz experimental error, 16 of the 20 structures are selected and the 

remaining 4 are within 4Å backbone heavy-atom RMSD to the unselected theoretical 

structures (Figure 2.2d). Thus, experimental error does not preclude selecting most all of 

the 20-members of the ensemble using SAS. 

 
Figure 2.2. Using SAS to select a 20-member ensemble. Back-calculated RDCs from 
the first 20 MD conformers represent the “known” TAR ensemble and are used as input 
for the SAS selection. Results from SAS simulations using (a) EI-TAR RDCs, (b) EII-
TAR RDCs, (c) EI-TAR and EII-TAR RDCs, and (d) EI-TAR and EII-TAR RDCs 
including a simulated 3 Hz experimental error are shown. 
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 The SAS methodology can be used to accurately select 20 conformers provided 

that enough input experimental RDCs are measured in different reference frames. 

However, the first 20 conformers of MD trajectory are quite similar and cover relatively 

limited conformational space(Figure 2.3a). For example, the interhelical bend angles 

range only 24.3-36.7o. To test the ability to select 20 conformers that cover a wide range 

of conformational space, 20 structures were randomly chosen from the MD trajectory. 

Interhelical angles for the 20 random conformers range 12.4-60.9o (Figure 2.3a). 

Simulated EI-TAR and EII-TAR RDCs were calculated as stated above and combined to 

give the input RDCs. To simulate experimental conditions, a second set of “known”  

 
Figure 2.3. SAS selection of  structurally diverse conformers. (a) The first 20 
snapshots from the MD trajectory (red) cover a small conformational space as shown by 
the Euler angles, whereas the 20 randomly selected conformers (green) span more of 
the Euler angle space in the MD trajectory (gray). (b) SAS-selected 20-member 
ensembles selected assuming no experimental error (orange) and a 3 Hz error (blue) 
exhibit Euler angles in close agreement with the 20 randomly selected snapshots. (c) 
Most of the 20 randomly selected conformers are selected within 3Å backbone heavy-
atom root mean square deviation (RMSD). 
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RDCs was generated by adding 3 Hz to each RDC. Although the exact 20 conformers 

are not selected using either set of “known” RDCs, the RMSD between the input and 

selected RDCs for both data sets is <1 Hz. Thus, for structurally diverse ensembles, 

there exist degenerate solutions that minimize the cost function.    

 Success in selecting the input structures was verified by comparing Euler angles 

and backbone heavy-atom RMSD for the input and selected structures(Figure 2.3). Euler 

angles for the input and selected conformers are in close agreement (Figure 2.3b). The 

average 〈h, βh, and γh angles for the input structures (26.0o, 35.1o, 10.6o) are in close 

agreement with those selected using the input RDCs assuming no experimental error 

(26.0o, 34.7o, 6.2o) and an error of 3 Hz (29.0o, 34.0o, 6.2o).  Standard deviations for the 

〈h, βh, and γh are also similar for the input structures (24.9o, 11.9o, 28.4o), structures 

selected using RDCs with no experimental error (24.1o, 10.8o, 33.7o), and the structures 

selected assuming a 3 Hz error (20.8o, 10.6o, 30.4o). While the exact structures are not 

selected using either set of input data, small backbone heavy-atom RMSDs are 

calculated between the input and selected conformers. We define the success rate as 

the percentage of structures selected within a defined heavy atom RMSD cutoff. Using a 

cutoff of 3 Å, 13 of the 20 conformers are selected using input RDCs assuming no 

experimental error, and 16 of the 20 conformers are selected when a 3 Hz experimental 

error is introduced (Figure 2.3c). All 20 conformers are selected at an RMSD of 6 Å 

assuming no experimental error and 8 Å assuming an error of 3 Hz (Figure 2.3c). Thus, 

the SAS methodology can be used to select 20 conformers that sufficiently re-capitulate 

the input data, and it is likely that more RDC data will minimize the differences between 

the input and selected conformers and eliminate the degenerate solutions for structurally 

diverse ensembles. Note that in all experiments discussed in section 2.3, similar results 

were obtained using all 80,000 conformers from the TAR MD trajectory, but only 20,000 

were used to ensure computational efficiency. 
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2.4 Analysis of E-TAR SAS Ensemble 

In Figure 2.4, we compare the RDCs measured previously(26) in EI-TAR and EII-

TAR with those predicted based on the combined 50 x 1.6 = 80 ns MD trajectory. 

Though some correlation is observed between the measured and predicted RDCs for 

both EI-TAR (Figure 2.4b) and EII-TAR (Figure 2.4c), the deviations (RMSD ranging 

between 13-16 Hz) remains substantially larger than the estimated RDC measurement 

uncertainty (~3-4 Hz). The MD trajectory does not systematically under or overestimate 

the RDCs measured throughout the RNA, indicating that it does not significantly over or 

underestimate the amplitude of motions present. This is the case even though the RDC 

timescale sensitivity to motions (<ms) is greater than that of MD (~80 ns). Thus, it 

appears that the motions in TAR saturate at nanosecond timescales consistent with 

relaxation dispersion studies that provide no evidence for s-ms motions in the helix-

bulge-helix element of TAR(35).  

We examined if SAS could be used to pull out sub-ensembles from the MD 

trajectory that satisfy the measured RDCs. Similar to the validation simulations in section 

2.3, we first conducted a series of SAS runs with various ensemble sizes of N=5, 10, 20, 

30, 40, 50 and 100. The RMSD between measured and predicted RDCs when 

combining the EI-TAR and EII-TAR RDCs is shown in Figure 2.4d as a function of N. 

Increasing the ensemble size beyond N=20 did not lead to significant improvements in 

the fit and in fact a deterioration was observed for N >20. This is likely due to sampling 

problems during the Monte Carlo simulated annealing minimization of the cost function 

as the number of possible combinations increases steeply with N and the cost function 

exhibits, due to the frustration stemming from the underdetermined nature of the 

problem, a vast number local minima. An ensemble size of N=20 was used in all 

subsequent SAS runs. 
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Figure 2.4. SAS selection of E-TAR RDCs. (a) Secondary structure of TAR with helix-I 
highlighted in red, helix-II in green and tri-nucleotide bulge in orange. HIV-2 TAR lacks 
bulge residue C24. (b-c) Plots of experimental RDCs versus values computed from the 
80 ns MD trajectory for (b) EI-TAR and (c) EII-TAR. Data for helix-I, helix-II, and bulge, 
are shown in red, green and orange, respectively. Also shown is the root mean square 
deviation (RMSD) and correlation coefficient (R). (d) RMSD (Hz) between calculated and 
experimental RDCs as a function of N, following a SAS analysis using both EI-TAR and 
EII-TAR RDCs. (e-g) Plots of experimental RDCs versus values calculated from the 
N=20 SAS ensemble using (e) EI-TAR (f) EII-TAR, and (g) EI-TAR and EII-TAR RDCs. 
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The RDCs calculated using a 20-member ensemble selected using the SAS 

approach exhibit a markedly improved fit to the EI-TAR (Figure 2.4e), EII-TAR (Figure 

2.4f) and EI-TAR+EII-TAR (Figure 2.4g) RDCs as compared to those calculated from the 

entire MD trajectory. Importantly, sub-ensembles can be determined that simultaneously 

reproduce the EI-TAR and EII-TAR RDCs with an RMSD (4.8 Hz) that is comparable to 

the estimated experimental RDC uncertainty (~3-4 Hz) (Figure 2.4g). The SAS selected 

conformers also did not lead to any steric collisions with the elongated helices for both 

EI-TAR and EII-TAR despite the fact that the helices were not actually elongated in the 

MD simulations (data not shown). 

 
Figure 2.5. Interhelical Euler angles of SAS selected TAR conformers with N = 10, 
20, and 40. 

 

As shown in section 2.3, degenerate solutions exist for structurally diverse 

ensembles with N=20. To examine the uniqueness of the selected TAR ensemble, we 

carried out 100 independent N = 20 SAS runs. Here, a maximum of 2000 unique 

snapshots can be selected. However, repeated runs resulted in selection of a narrow set 

of similar conformations. The total number of unique snapshots selected by the RDC-

SAS optimization algorithm was 422, 48, and 121 for EI-TAR, EII-TAR, and EI-TAR+EII-

TAR RDCs, respectively. Thus, the RDC data favors selection of specific conformations 

from the available pool. As expected, the conformers selected did vary when changing 

the value N. However, the overall distribution of conformations remained similar as 

shown for example for the interhelical orientation in Figure 2.5. 
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2.5 SAS Ensemble Provides Details of Local and Collective Motions  

In Figure 2.6a, we plot (in black) the average and standard deviation for various 

base angles computed for the 121 unique TAR conformers obtained from 100 N=20 

SAS runs. For comparison, the mean value and standard deviation for idealized A-form 

helical geometry computed from a statistical comparison of high-resolution X-ray 

structures is shown in red(40). For the majority of the residues, very good agreement is 

observed between the SAS ensemble and canonical values. Large deviations are 

however observed for the junctional A22-U40 base-pair, which in the MD simulation 

frequently deviates from a hydrogen bonded alignment. This is in excellent agreement 

with previous NMR data showing that while the junctional G26-C39 base-pair forms a 

detectable hydrogen bond, the A22-U40 base-pair is flexible and does not form the 

expected base-pair in TAR(41-43). 

 The bulge residues exhibit different levels of motions. As shown in Figure 2.6b, 

the highly conserved U23 bulge stacks onto A22 in the majority of the conformations, 

consistent with observation of NOE connectivity between A22 and U23. These two 

residues undergo limited motions consistent with previous 13C relaxation studies of 

dynamics in elongated TAR(42). Interestingly, select conformations exist in which U23 

adopts a looped out conformation as observed in several ligand bound TAR structures 

(PDB ID# 1QD3, 1UTS, and 397D) In contrast, residues C24 and U25 predominantly 

exist in a looped out conformation and are significantly more flexible, again in agreement 

with the previous 13C relaxation studies(42).  

We computed the three interhelical Euler angles for the 121 SAS selected TAR 

conformers and compared them to angles obtained for the entire MD trajectory. As 

shown in Figure 2.7a, the MD trajectory spans a large range of interhelical angles. The 

SAS conformers are widely distributed across the MD trajectory (Figure 2.7a). For both 

the MD trajectory and SAS ensembles, significant correlation is observed between the  
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Figure 2.6. Local motions in the TAR dynamical ensemble. (a) Shown in black are 
the mean values for the base opening (⌠), buckle (), propeller twist () and twist (∧) 
angles and their standard deviation calculated over 121 TAR conformers obtained from 
multiple N=20 SAS runs. For comparison, shown in red are corresponding values for an 
idealized A-form helix as obtained from a statistical survey of high resolution X-ray 
structures(40). (b) Average conformation of the TAR bulge and neighboring base-pairs 
calculated from the 121-membered SAS ensemble. The bases of the bulge and flanking 
base pairs are color coded based on the root mean square fluctuations (RMSF) 
calculated over the ensemble. 

 

three interhelical angles, particularly between the twist angles 〈h and  γh. Such spatial 

correlations were reported previously based on an a three-state rigid-body refinement of 

the TAR interhelical orientation(17). As shown in Figure 2.7b, the conformations 

obtained by SAS sample orientations that are in very good agreement with those 

obtained by a previous 3-state analysis of the RDCs(17). The only significant deviations 

are observed in the 〈h-γh plane for the near coaxial conformer (βh~-21°). This is not 

surprising given that for this near coaxial conformer, the RDCs measured in both EI-TAR 

and EII-TAR are highly insensitive to the twist angles 〈h and γh. We also examined if 

there exists any correlation between the geometry of base-pairs at the junction and the 

interhelical bend angles. The only significant observation was anti-correlation (R ~-0.70) 

between the base-pair step angle (Ω) at the G26-C39 junctional base-pair and 〈h the 
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twist angle about helix II. Thus, the unraveling of the G26-C39 base-pair may give rise to 

twisting motions around the axis of helix II.  

 
Figure 2.7. Global interhelical dynamics in the TAR dynamical ensemble. (a) 
Shown in gray are the interhelical twist (〈h and γh) and bend (βh) angles for 80,000 TAR 
conformers derived from an 80ns MD trajectory (conformer selected every 1 ps). In blue 
are the corresponding SAS selected conformers. The correlation coefficient (R) is shown 
on individual planes. (b) Comparison of the SAS selected interhelical angles and those 
derived previously(26) based on a 3-state rigid body ensemble analysis of E-TAR RDCs.   
 

2.6 Comparison of TAR and HIV-2 TAR SAS Ensembles 

We used the SAS approach to analyze RDCs previously measured in HIV-2 EI-

TAR(26) in which the bulge residue C24 is omitted. Poor agreement (RMSD = 15.1 Hz) 

was again observed between the measured EI-TAR RDCs and values computed using 

entire MD trajectory (Figure 2.8a). By using SAS, we were able to find an N=20 sub-

ensemble that yields an RMSD of 1.7 Hz (Figure 2.8b). Compared to TAR, repeated 

SAS runs resulted in selection of a larger number (276) of unique conformers for HIV-2 

TAR. This could be attributed to a smaller RDC sensitivity to twisting motions both 

because the HIV-2 TAR structure is more linear and because only RDCs measured in 

EI-TAR were available for analysis. 
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Figure 2.8. HIV-2 TAR dynamical ensemble. Plot of experimental HIV-2 EI-TAR RDCs 
versus values calculated from (a) an 80 ns MD trajectory of HIV-2 TAR and (b) following 
SAS selection of N=20 conformers from the MD trajectory based on HIV-2 EI-TAR 
RDCs. Coloring scheme is same as in Figure 2.4. (c) Shown in black are the mean 
base-pair angles and their standard deviation calculated over a 279-membered HIV-2 
TAR SAS ensemble. For comparison shown in green are corresponding angles for an 
idealized A-form helix as obtained from a statistical survey of high resolution X-ray 
structures(48). (d) Average conformation of the bulge of HIV-2 TAR calculated from the 
279-membered HIV-2 TAR SAS ensemble. Bases of the bulge and flanking base pairs 
are color coded based on the root mean square fluctuations (RMSF) calculated over the 
ensemble. (e) Comparison of SAS selected TAR (blue) and HIV-2 TAR (red) interhelical 
conformations. The correlation coefficient (R) is shown on individual planes. 
 

Comparison of the SAS selected HIV-2 TAR conformers with those obtained for 

TAR revealed that reducing the length of the bulge in HIV-2 TAR led to a marked 
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decrease in the local motions in the junctional A22-U40 base-pair (Figure 2.8c). In TAR 

the standard deviations are approximately 30°, 45°, 13°, 16° for the base angles κ, σ, ω 

and Ω respectively. In HIV-2 they reduce to 10°, 6°, 8°, and 6° respectively. In contrast, 

we observe significant static deviations in the opening angle for the G26-C39 junctional 

base-pair. Likewise, a significant reduction is observed in the local dynamics of bulge 

residues U23 and C25 (Figure 2.8d). U23 is less flexible and forms more stable stacking 

interactions on an also less flexible A22. The root mean square fluctuations (RMSF) of 

the atomic positions of U23 and U25 decrease from 1.89 Å and 3.49 Å respectively in 

TAR to 1.45 Å and 1.49 Å respectively, in HIV-2 TAR.  

 The reduction in the local motions in and around the bulge linker is as expected, 

accompanied by a reduction in the interhelical motional amplitudes, as shown in Figure 

2.8e. Such a reduction is clearly observed for the interhelical bending which decreases 

in standard deviation from ~33° to ~12°. This is in agreement with an order tensor 

analysis of RDCs, which 

reported a reduction in the 

GDOint (which ranges 

between 0 and 1 for 

maximum and minimum 

interhelical motional 

amplitudes, respectively) 

from 0.45±0.10 to 

0.77±0.04(17). As expected, 

the HIV-2 conformers cluster 

more tightly around more 

linear (h~0°) conformations 

 
Figure 2.9. Interhelical Euler angles of the HIV-2 
TAR dynamical ensemble. Euler angles obtained from 
an 80 ns MD trajectory are shown in gray and the SAS 
selected structures shown in red. The correlation 
coefficient (R) is shown on individual planes. 
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(Figure 2.9). While we do not observe a significant reduction in the amplitude of twisting 

motions about the two helices (αh and γh) in HIV-2, the RDC sensitivity to these angles is 

diminished in HIV-2 TAR both because the structure is on average more linear and 

because RDCs were only measured on the helix-I elongated construct (Figure 2.9). 

Nevertheless, we observe a stronger correlation between the twisting motions indicating 

that the 〈h and γh correlations originates in part from the steric drag one helix exerts on 

the other.  

 

2.7 Insights into TAR-Ligand Recognition by Conformational Selection 

Numerous studies have shown that TAR undergoes large conformational 

rearrangements that allow binding of diverse targets in and around the bulge, including 

peptide derivatives of its cognate protein Tat(44-46), divalent ions(47), and five 

chemically distinct small molecules(48-51). The three interhelical conformers obtained 

by a 3-state ensemble analysis of RDCs measured in unbound TAR revealed a global 

interhelical motional trajectory that encapsulated many of the ligand bound 

conformations(17). As shown in Figure 2.10a, the SAS selected interhelical conformers 

trace orientations similar to the ligand-bound TAR conformations, supporting the notion 

that unbound TAR can dynamically access its ligand-bound global conformations. This 

can also be seen in Figure 2.10b in which we compare the best matching ligand-bound 

TAR conformers and SAS-selected conformers as determined by superimposing all 

heavy atoms excluding the flexible terminal base-pairs (G17-C45) and the apical loop. 

 The SAS dynamical ensembles also allowed us to examine to what extent are 

local features of the ligand binding pocket dynamically preformed in the absence of 

ligands. In Figure 2.10c, we compare the best matching ligand-bound TAR conformers 

and SAS-selected conformers as determined by superimposing heavy atoms in the 

bulge and immediately neighboring base-pairs. In general, the largest deviations are 
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seen for the highly flexible residues C24 and U25, which are also known to be flexible in 

many of the ligand bound TAR conformations(17,52,53). Overall, these results suggest 

that local dynamics in and around the TAR bulge likely facilitate formation of the ligand 

binding pocket.  

 
 
Figure 2.10. Comparison of the SAS derived TAR dynamical ensemble and ligand-
bound TAR conformations. (a) Shown in blue are the SAS selected angles and  seven 
distinct ligand-bound TAR structures in gray. (b, c) Shown is the comparison of the (b) 
global and (c) local structure of SAS TAR conformers and seven distinct ligand-bound 
TAR conformations (PDB ID#s 1QD3, 1UUI, 1UTS, 1UUD, 1ARJ, 1LVJ, and 397D). 
Shown are the pairs yielding the lowest RMSD fit when superimposing (b), all heavy 
atoms excluding terminal base-pairs G17-C45 and the apical loop and (c), all heavy 
atoms in the bulge and immediately adjacent base-pairs. Every model in the ligand 
bound NMR ensembles was used in the superposition. The corresponding ligand is 
colored yellow. 
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2.8 Conclusion 

RNA elongation provides a reliable approach for computing time-averaged RDCs 

in highly flexible RNAs providing a basis for integration with MD as we showed here 

using the SAS approach. That the measured RDCs in both TAR and HIV-2 TAR can be 

satisfied using conformers selected from the MD trajectory suggests that neither TAR 

nor HIV-2 TAR undergo significant s-ms motions that are not sampled in the MD 

trajectory. This is consistent with relaxation dispersion NMR studies of TAR, which 

provide no evidence for s-ms motions in and around the bulge(35).  

However, it should also be noted that the SAS conformers represent a “discrete” 

approximation to what is more likely a continuous complex distribution of many more 

conformations. The SAS conformers can be thought of as discrete points along the 

configuration space that may help define salient features of the motional trajectory(54). It 

should be kept in mind that averaging over such a discrete number of conformers leads 

to efficient averaging of the RDCs. A correspondingly larger continuous distribution of 

many more conformations will likely be required to accomplish the same level of 

motional averaging. It is therefore not surprising that the MD trajectory evolves outside 

the envelope defined by the SAS conformers and that the SAS envelope increases with 

the size of the ensemble (Figure 2.7). Thus, the most likely source of discrepancy 

between the measured RDCs and the MD simulation is the assignment of the relative 

weights to the various conformers. RDC studies of partially unfolded proteins have 

emphasized the exquisite sensitivity of RDCs to the underlying conformational 

distribution(55). 

The comparison of the dynamical ensembles generated for TAR and HIV-2 TAR 

provide fundamental new insights into the dependence of RNA dynamics on the bulge 

length. As would be expected, reducing the length of the TAR trinucleotide bulge by a 

single nucleotide led to a significant reduction in the local motions in and around the 
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bulge, as well as global interhelical motions. In both TAR and HIV-2 TAR, we observe 

spatial correlations between twisting motions about individual helices, and to a lesser 

extent between twisting and bending as first reported based on the 3-state ensemble 

analysis of the RDCs(17). Importantly, the spatial correlations between the twisting 

motions increase significantly in HIV-2 TAR (Figure 2.8e). This is expected if one were to 

consider limiting cases for the bulge length; at the limit of not having a bulge linker, the 

twisting dynamics becomes perfectly correlated, whereas for an infinitely long bulge, one 

would expect little correlation.  

 The TAR dynamical ensemble allowed us to directly examine if unbound TAR 

dynamically samples diverse ligand-bound conformations that have been reported to 

date. Our results suggest that many of the key features of the ligand bound TAR 

conformations, including the global interhelical orientation and local aspects of the 

ligand-binding pocket appear to be dynamically preformed in unbound TAR. However, a 

detailed comparison of the SAS conformations and the ligand bound TAR structures 

remains complicated by a number of factors. As mentioned above, the SAS conformers 

only represent an approximate discrete state ensemble to what is likely a more 

continuous conformational distribution. One also has to consider the uncertainty in ligand 

bound TAR structures, both due to experimental imprecision and because the ligand 

bound states may be flexible themselves. Previous NMR studies reveal significant 

mobility in the TAR bulge especially residues C24 and U25 when in complex with 

argininamide(43,56) and Mg2+(52,57). The ACP bound TAR structure also exhibits a 

large degree of interhelical motions(53). Notwithstanding these complications, our 

results suggest that local dynamics in and around the bulge together with global motions 

of helices can drive much of the conformational adaptation required to bind to different 

ligand targets.  
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Our results also suggest that some of the TAR conformational changes require 

ligand binding to occur efficiently. For example, we do not observe the key U38-A27•U23 

base-triple in either of the TAR or HIV-2 TAR SAS conformers that is known to form in 

the TAR-argininamide complex(46). In this regard, it is interesting to note that larger 

deviations between the SAS and ligand bound conformations are generally observed for 

the weaker binding ligands and vice versa. It is possible that the weaker binding ligands 

expend a greater fraction of the binding energy changing the TAR conformation. 

Additional studies are needed to shed light on these key energetic questions. 

 

This work has been published in the journals Nucleic Acids Research (58) and Methods (59). The idea was conceived by 
Stelzer A. C. and Frank A. T. under the guidance Al-Hashimi H. M. and Andricoaei I. MD simulations were generated and 
SAS program written and implemented by Frank A. T.  Frank A. T. analyzed the A-form nature of the SAS structures. 
Stelzer A. C. analyzed the Euler angles and SAS ensemble in comparison to previously determined structures. 
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Chapter 3 

 

A Conservative Sequence Mutation in HIV-1 TAR Pre-tunes the Free-State 

Dynamics Towards the Argininamide-Bound Conformation 

 

 

3.1 Introduction 

Previous studies comparing the dynamics of HIV-1 TAR (TAR) and HIV-2 TAR 

show that the internal motions are strongly dependent on the RNA secondary 

structure(1). TAR, which contains a trinucleotide bulge, exhibits greater interhelical 

motions and distinct local dynamics in and around the bulge in comparison to HIV-2 

TAR, which contains a dinucleotide bulge. In this chapter, we investigate whether 

changing the TAR sequence without significantly perturbing the secondary structure 

leads to changes in dynamical behavior. In particular, the local flexibility at the pivotal 

A22-U40 base-pair below the bulge, which does not form a typical Watson-Crick base-

pair, may be important for activating collective helical motions and also affect local 

motions within the bulge. Here, the dynamic properties of a mutant TAR construct, in 

which the labile A22-U40 base pair is replaced with a G22-C40 base-pair (ΔGCTAR), 

are investigated. We test the hypothesis that the stronger GC hydrogen bonds leads to 

base-pairing and attendant changes in the local and global helical dynamics. Note that 

the GC mutant is not strictly a mutant since it is observed in the HIV subtype-O 

isolate(2,3). The effects of perturbing the free-state dynamical properties on ligand 

binding are also investigated by titrating two known TAR-binding small molecules, 
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argininamide (ARG), which stabilizes a linear TAR structure, and neomycin B, which 

stabilizes a bent TAR conformation, on TAR and ΔGCTAR.  

 

3.2 Materials and Methods  

3.2.1 Sample Preparation and Assignments 

 Uniformly 13C/15N labeled RNAs were prepared by run-off in-vitro transcription 

using synthetic double-stranded DNAs containing the T7 promoter and RNA sequence 

of interest (Integrated DNA Technologies). Elongated RNA constructs were purified by 

15% (w/v) denaturing polyacrylamide gel electrophoresis containing 8M urea and 1x 

TBE followed by electroeultion in 20 mM Tris pH 8 buffer and EtOH precipitation. The 

resultant RNA pellet was dissolved and exchanged into NMR buffer (15 mM sodium 

phosphate, 0.1 mM EDTA, and 25 mM NaCl at pH ~6.4) using a Centricon Ultracel YM-3 

concentrator to a final concentration of ~0.5mM (Millipore Corp.). All NMR samples 

contained 10% D2O. The ΔGCTAR NMR spectra were assigned using conventional 

NMR methods such as 3D exchangeable 1H-15N NOESY-HSQC, 2D non-exchangeable 

1H-13C NOESY-HSQC, 2D HCN, 2D IP-COSY (correlated H5/H6 resonances) and 

spectral overlays with similar RNA constructs. 

 

3.2.2 Normalized Intensity and Chemical Shift Analysis 

 Resonance intensities are normalized to a baseline value of 0.1 by dividing all 

resolved resonance intensities by 10x the lowest resonance intensity for a similar 

residue and spin type with known Watson-Crick A-form geometry.  For example, the 

C8H8 of adenines were all normalized to A20 and the C6H6 uridine resonances to U42. 
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Weighted average chemical shifts were calculated using the equation, 

 

.       [3.1] 

 

3.2.3 RDC Measurements and Order Tensor Analysis 

One bond RDCs for ΔGCTAR were measured by computing the difference in 

splittings measured in NMR buffer (J) and after suspending the RNA sample in ~7mg/ml 

of pf1 bacteriophage (J+D) as described in(4).  Because we implement the elongation 

strategy(1, 2) to decouple internal and overall motions, TROSY detection was employed 

in the pulse sequence to enhance sensitivity(5). CH splittings in the nucleobases 

(C2H2/C8H8 of adenosine and guanosine bases, C5H5/C6H6 of uridine and cytosine, 

and C1’H1’ of the ribose) were measured as the difference between the upfield and 

downfield components of the 1H –13C doublet along the 1H dimension using the narrow 

TROSY component in the 13C dimension. NH splittings in the nucleobases (N1H1 and 

N3H3 of the guanine and uracil bases, respectively) were measured using a coupled 

HSQC experiment. 

The relative orientation and dynamic amplitudes for the helices in ΔGCTAR were 

determined using order tensor analysis as reported previously(6-8). RDCs measured for 

each elongated construct were combined by normalizing adenine and uridine RDCs by a 

coefficient L that minimizes the quality factor Q(1,9). Order tensors describing the partial 

alignment of each helix relative to the magnetic field were determined by fitting 

measured RDCs to idealized A-form helices(6,8). Due to deviations from Watson-Crick 

geometry, terminal base-pairs were excluded from the analysis. The program AFORM-



  91 

RDC was used to estimate errors in the order tensor arising from “structural noise” and 

RDC measurement uncertainty(8).  

 

3.2.4 Calculation of Dissociation Constants  

 Dissociation constants were calculated from the change in weighted average 

chemical shift for each titration point using the equation(10), 

 

,     [3.2] 

 

where [Arg]T is the total argininamide concentration, [RNA]T is the RNA concentration 

based on UV absorbance at 260 nm, ΔδT is the difference in chemical shifts between the 

free and ligand-associated states (in ppm), δobs is the observed chemical shift (in ppm), 

and δFree is the chemical shift in the free state (in ppm). The data was fit using the Origin 

software (OriginLab Corporation) in which ΔδT and Kd were allowed to float during the fit. 

 

3.3 Impact of the G22-C40 Mutation on TAR Structural Dynamics 

Previous studies have shown that while the A22-U40 base-pair exists in an A-

form geometry, there is significant flexibility and no direct evidence for Watson-Crick 

hydrogen bonding(11,12). In particular, the U40 imino resonance has only been 

observed in HIV-2 TAR at low temperatures (13) or for TAR in the ARG bound 

state(TAR-ARG)(11,14). In stark contrast, we were able to directly observe the G22 

resonance in ΔGCTAR, which was assigned using a 3D 1H-15N NOESY-HSQC 

experiment. The observation of this imino proton resonance together with sequential 
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NOEs between G21 and G22 strongly supports Watson-Crick base-pairing for G22-C40 

in ΔGCTAR (Figure 3.1).  

 
Figure 3.1. Overlay of short and elongated ΔGCTAR. The ΔGCTAR construct is 
shown in the left-most panel, where ΔGCTAR contains residues 17 to 45 and EΔGCTAR 
contains residues -22 to +22 where X-Ys refer to sequential AU or GC base pairs used 
in the elongation strategy as previously described(1,15). Similar resonance positions for 
the both RNAs indicate that the elongation does not cause structural perturbations. 

 

3.3.1 Domain-Elongation Does Not Impact the Integrity of ΔGCTAR 

One of the most difficult problems to address when analyzing dynamic motions of 

biomolecules is the coupling between internal and overall motions. Al-Hashimi H. M. and 

co-workers showed that fast-timescale (ps-ns) local and collective motions in TAR are 

masked by the diffusion timescale dependence of internal and interhelical motions, 

which remain unresolved in transverse and longitudinal relaxation rates(15). To 

overcome this problem, they elongated helix-1 to slow overall diffusion  thus resurrect 

previously un-detectable local and collective interhelical motions. More recently we 
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showed that the elongation technique 

can also be used in RDC 

measurements(1). Interhelical motions 

in TAR affect the overall alignment of 

the molecule in the presence of 

alignment media preventing accurate 

definition of the order tensor for each 

helix. Elongating either helix leads to 

well-defined alignment along the axial 

direction of the elongated helix and 

affords accurate calculation of the order 

tensor. Thus, the dynamics of TAR are 

more precisely described. In this study, helix-1 of ΔGCTAR was elongated (EΔGCTAR) 

by 22 base-pairs as previously described(1,2). Aside from resonances belonging to 

terminal residues the close agreement between the short and elongated ΔGCTAR 

spectra indicate no significant structural perturbations result from the elongation (Figure 

3.1).  

 

3.3.2 Analysis of Chemical Shift Perturbations 

To analyze the effects of mutating A22-U40 to G22-C40, we compared 2D CH 

HSQC spectra of EΔGCTAR and ETAR and computed chemical shift perturbations 

(CSPs) that reflect changes in chemical shift due to introduction of the mutation. 

Interestingly, the largest CSPs were observed for residues that have been shown to be 

critical for ARG binding (Figure 3.2)(16-18). A large downfield shift is observed for the 

U23 C6H6 resonance in EΔGCTAR along both the 1H and 13C dimension(Figure 3.3). 

 
Figure 3.2. ETAR constructs. Residues 
exhibiting significant changes in weighted 
average chemical shift are indicated with a 
filled circle and the sequential X-Ys refer to 
sequential AU or GC base pairs used in the 
elongation strategy as previously 
described(1,15). 
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This is consistent with the looping out of the U23 base as observed in the Mg2+ bound 

state (19). Large CSPs are observed for the G26 C8H8 resonance, which moves 

towards a position similar to that observed for HIV-2 TAR and TAR bound to Mg2+ 

(Figure 3.3) suggesting increased coaxial stacking. Likewise, large CSPs are observed 

for C6H6 resonances of C24 and U25 in ΔGCTAR that move toward positions that 

closely agree with those observed for ETAR-ARG (Figure 3.3)(18,20). Indeed, with the 

exception of U23, all of the CSPs observed in EΔGCTAR are along directions that are 

similar to those induced by ARG binding and some fall at a position that is a midway 

between free and ARG-bound ETAR, such as the C5H5 resonance of U25. Thus, the 

GC mutation seems to have the same effects on the conformation of TAR as does ARG 

binding and to a lesser extent Mg2+ binding (Figure 3.3).  

 
Figure 3.3. 2D CH HSQC ETAR, EΔGCTAR, ETAR-ARG, and TAR-Mg2+ spectra. 
EΔGCTAR, ETAR-ARG, and TAR-Mg2+ resonances that do not closely overlay are 
shown in orange, purple, and green respectively. 

 



  95 

3.3.3 Sub-nanosecond Motions from Motional Narrowing of Resonances and Domain-

Elongation 

Comparison of the normalized resonance intensities observed for ETAR, 

EΔGCTAR, and ETAR-ARG provide additional insights into the effects on fast sub-

nanosecond internal motions.  In unbound ETAR, we observe elevated intensities for 

helix-II compared to helix-I due to collective motions and elevated intensities for residues 

A22, U40, C24 and U25 that reflect local motions. Binding of ARG arrests collective 

motions and local motions involving A22, U40 but leads to increased dynamics of C24 

and U25, which are looped out in the ARG bound state. Remarkably, the corresponding 

 
Figure 3.4. Normalized resonance intensities. Normalized resonance intensities for 
(a) ETAR (b) EΔGCTAR and (c) ETAR-ARG show similarities between ΔGCTAR and 
TAR-ARG. Helix-1 is colored red, the trinucleotide bulge orange, and helix-2 green. 
Open symbols are resonances that could not be measured in all three RNAs. Inset 
correlation plots show a greater correlation between EΔGCTAR and ETAR-ARG 
normalized intensities. 
 

resonance intensities observed in the EΔGCTAR mutant are far more similar to those of 

ETAR-ARG (R=0.94) compared to free ETAR (R=0.73). This is in excellent agreement 

with the above CSP results. The most significant differences between the resonance 

intensities include residues that are involved in the U23-A27-U38 base-triple, which 

forms in TAR upon binding to ARG. For example, much higher intensities are observed 

for U23 C6H6 and C1’H1’ resonances in the EΔGCTAR mutant compared to ETAR-

ARG. The high intensity and local mobility observed for U23 suggests that the U23-A27-

U38 base-triple is not formed in EΔGCTAR as observed for ETAR-ARG. In general, 
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higher intensities are observed for bulge resonances C24 and U25 in ETAR-ARG and 

likely reflect more complete coaxial stacking of the helices and extrusion of the 

nucleobases. Interestingly, much lower intensities are observed for U38 C1’H1’ in 

EΔGCTAR and ETAR-ARG compared to ETAR (Figure 3.4). This likely reflects 

increased co-axial stacking and possibly transient and/or incomplete formation of the 

base-triple. Taken together, the CSP and resonance intensity data strongly suggest that 

that the GC mutation has the same effect on the TAR conformation as does ARG 

binding (Figure 3.3 and 3.4).  

 

3.3.4 Analysis of 15N Relaxation Data 

In order to quantitatively analyze of the global and local dynamic effects of the 

G22-C40 mutation, we measured imino 15N longitudinal (R1) and transverse (R2) rates 

for all resolved 15NH resonances in EΔGCTAR and compared findings with previous 

results reported for ETAR and ETAR-ARG(15). Shown in Figure 3.5 are the R2/R1 

values, which are insensitive to fast local motions occurring at the picosecond timescale 

and report on slower motions occurring at nanosecond timescales including collective 

motions of helical domains(15). Here, 

elongation of helix-1 is critical for 

decoupling collective helix motions from 

overall rotational diffusion(15). 

The R2/R1 values observed in 

ETAR are in very good agreement with 

hydrodynamic predictions(15). The similar 

values observed across different residues is 

consistent with having similar local motions 

 
Figure 3.5. 15N Relaxation. 15N R2/R1 
relaxation data obtained for ETAR 
(black), EΔGCTAR (orange), and 
ETAR-ARG (purple). The Average 
R2/R1 values for each helix are 
indicated by dotted lines. 
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at nanosecond timescales. The R2/R1 values measured in helix-2 are uniformly 

attenuated relative to values in helix-1 indicating that helix-2 residues experience an 

additional internal dynamic process at nanosecond timescales. The uniformity of the 

attenuation across different residues is consistent with having a collective dynamic 

process that leads to similar levels of reorientation for distinct residues. The addition of 

ARG results in near total arrest of these collective motions and the helix-2 R2/R1 values 

become more similar to the helix-1 counterparts. The small changes observed in the 

helix-1 R2/R1 values likely reflect changes in the overall structure of ETAR-ARG and 

thus changes in its overall rotational diffusion.  Interestingly, while the R2/R1 values 

observed for helix-2 in EΔGCTAR are attenuated relative to values in helix-1, the level of 

attenuation is diminished by a factor of 2.5 compared to ETAR-ARG. Thus, the collective 

helical motions are significantly reduced in EΔGCTAR compared to ETAR but not to the 

extent on ARG binding. This again most likely originates from formation of the G22-C40 

base-pair and stronger preference for co-axial stacking of the two helices. The 15N 

relaxation data therefore supports the notion that the GC mutation leads to a 

perturbation towards a TAR conformation similar to that observed in the ARG-bound 

state.  

 

3.3.5 Structural Dynamics at Sub-millisecond Timescales from Residual Dipolar 

Couplings 

We further characterized the impact of the GC mutation by measuring RDCs in 

EΔGCTAR . RDCs probe sub-millisecond motions and thus provide a larger window to 

investigate the G22-C40 mutation effects. In ETAR we observe a systematic reduction in 

helix-2 RDCs suggesting more dynamics compared to helix-1(Figure 3.6).  The bulge 

RDCs exhibit a large range of RDCs indicating dynamic variability, which is not 

unexpected since U23 is known to be looped inside the bulge and stacked on A22(11). 
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On binding ARG, the average RDCs for both helices are nearly identical suggesting 

attenuated interhelical dynamics. As expected, on binding ARG the U23 RDCs are 

significantly increased due to the formation of the U23-A27-U38 base-triple, and the C24 

and U25 RDCs are closer to zero indicative of being looped out. Remarkably, EΔGCTAR 

exhibits similar features as ETAR-ARG where the average RDCs for both helices are  

Figure 3.6. RDCs measured for ETAR, EΔGCTAR, and ETAR-ARG. RDCs measured 
in EΔGCTAR and ETAR-ARG indicate attenuated interhelical dynamics and similar 
bulge dynamics compared to ETAR.  
 

nearly identical. Interestingly, except for U23 in ETAR-ARG, the bulge RDCs for 

EΔGCTAR and ETAR-ARG all have magnitudes near zero indicative of highly isotropic 

motions likely resulting from the looped out bulge conformation (Figure 3.6). The larger 

RDC magnitudes for U23 in ETAR-ARG are due to the formation of the U23-A27-U38 

base triple. In the case of EΔGCTAR, the G22 C1’H1’ RDC is 2.2 Hz.  While it can not 

be ruled out that the orientation of the G22 C1’H1’ bond vector gives rise to the small 

RDC value, it is in agreement with the increased A22 C1’H1’ resonance intensity in the 

more coaxially stacked HIV-2 TAR RNA (1) potentially indicating unexpected increases 

in local dynamics on forming a more coaxially stacked state. Unfortunately, the A22 

C1’H1’ RDC could not be measured for ETAR-ARG due to spectral overlap and line 

broadening on addition of pf1 phage precluding further comparison.   
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To further characterize the structural dynamics of EΔGCTAR, we subjected the 

RDCs measured in A-form helices to an order tensor analysis. Assuming an idealized A-

form helical geometry, the RDCs are used to determine five parameters of an order 

tensor describing the overall alignment relative to the magnetic field. By superimposing 

the order tensor frames obtained for each helix, we were able to compute an average 

interhelical bend angle. In addition, by considering the generalized degree of order 

(GDO) for each helix, which describes dynamic averaging resulting from overall 

alignment and internal motions independent of the average orientation of a molecule 

fragment and the magnetic field, the internal GDO (GDOint) is computed to separate 

contributions from overall alignment and internal motions resulting in a measure of 

interhelical dynamics, where a GDOint of 1 corresponds to interhelical rigidity and a 

GDOint of 0 reflects isotropic interhelical motions.  

 
Figure 3.7. Order tensor analysis derived parameters describing the structure and 
dynamics of ETAR, EΔGCTAR, and ETAR-ARG. The interhelical bend angle (β) 
describes the angle between the principal axis of alignment and helix-2, and the GDOint 
describes the interhelical motional amplitude where 1 corresponds to complete 
interhelical rigidity and 0 to fully isotropic motions. 

 

Previous order tensor analysis of RDCs measured in ETAR and ETAR-ARG 

showed that ETAR exhibits significant interhelical motions (GDOint=0.45±0.10) with an 

average interhelical bend angle (β) of 28.3±3.0o. These motions are significantly reduced 
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on binging ARG resulting in a GDOint of 1.09±0.09 and β of 7.8±3.5o consistent with a 

coaxially stacked and rigid conformation. SVD order tensor analysis was used to probe 

the interhelical dynamics of EΔGCTAR. The measured and back-calculated RDCs 

closely correlate for all three RNAs as indicated by the small RMSD values and Q 

factors reported in Table 3.1. Decreased interhelical bend angle (β=11.9±6.5o) and 

increased GDOint (1.02±0.09) (Figure 3.7 and Table 3.1) indicate that the G22-C40 

mutation significantly reduces interhelical motions. In fact, the β and GDOint values are in 

much closer agreement with ETAR-ARG compared to ETAR (Figure 3.7).  

 
Table 3.1. Structural parameters derived from SVD order tensor analysis of ETAR, 
EΔGCTAR, and ETAR-ARG. N is the number of RDCs included in the analysis for each 
helix, RMSD is the root mean square deviation between measured and back-calculated 
RDCs, CN# is the condition number, Q is the quality factor between the measured and 
back-calculated RDCs, η describes the asymmetry of the order tensor (where 0 
indicates a fully symmetric tensor), R is the correlation between measured and back-
calculated RDCs after the order tensor analysis, GDO, is the generalized degree of 
order for each order tensor, GDOint describes the magnitude of interhelical motions with 
1 describing interhelical rigidity and 0 fully isotropic motions,  and βo is the interhelical 
bend angle, Full descriptions of these parameters can be found in reference (6). 

 

 

3.4 ARG Captures Common Conformations from the Distinct ΔGCTAR and TAR 

Dynamic Ensembles  

Our results suggest that the GC mutation perturbs the TAR structural dynamics 

towards the ARG bound state. Thus, the ARG bound state is still, and perhaps even 
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more, dynamically accessible in ΔGCTAR. Given that A22 and U40 are not involved in 

any sequence specific interactions with ARG, we can expect that ΔGCTAR binds to ARG 

using similar binding modes. To investigate this hypothesis, we performed CSP NMR 

studies with ARG and ΔGCTAR. Titration of ARG led to significant CSPs for many 

residues that are know to interact with ARG including U23, G26, A27, U38, and 

C39(14,21). Remarkably, despite large differences between the starting spectra of 

ΔGCTAR and TAR, the resultant spectra for ΔGCTAR-ARG and TAR-ARG are in 

excellent agreement (Figure 3.8). These results strongly suggest that ARG captures 

similar coaxial conformations from the distinct ΔGCTAR and TAR dynamic ensembles.  

 

Figure 3.8. Comparison of TAR-ARG and ΔGCTAR-ARG spectra. Saturated TAR-
ARG and ΔGCTAR-ARG spectra are overlaid. Resonances that do not closely overlay 
are shown in purple and orange for TAR and ΔGCTAR respectively. The largest 
differences between chemical shifts are observed for residues immediately neighboring 
the A22-U40 to G22-C40 mutation.  
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 In order to assess the changes in binding affinity between ΔGCTAR and TAR-

ARG, dissociation constants were independently calculated for residues exhibiting large 

ARG-induced CSPs in ΔGCTAR and TAR (Figures 3.9). Comparison of the binding 

affinities for the residues A22/G22, U23, and G28 show a 2-4 fold tighter ARG binding 

for ΔGCTAR compared to TAR. Fitting the data globally to determine an overall 

dissociation constant results in ~3 fold increase in binding affinity for ΔGCTAR (47.7±9.3 

µM) compared to TAR (140±9.0 µM).  It is very likely that the GC mutation increases the 

ARG binding affinity by preferentially stabilizing the ARG bound conformation; 

specifically coaxial stacking of the two helices and looping out of U23. The binding 

affinity of ARG to TAR matches that calculated by Gdaniec Z. and co-workers who report 

a 300 ±100 µM Kd using fluorine NMR (22).  

 
Figure 3.9. Enhanced binding affinity for ΔGCTAR-ARG. Dissociation constants for 
similar resolved resonances that shift greater than the weighted average chemical shift 
are shown, indicating that the modest A22-U40 to G22-C40 mutation results in a ~2-4 
fold increase in binding affinity. 
 

3.5 Neomycin B Stabilizes Conformations in TAR that are Inaccessible in ΔGCTAR  

 As a second test the known TAR-binding small molecule neomycin B was 

independently titrated onto ΔGCTAR and TAR. Neomycin B has been shown to stabilize 

a bent TAR conformation that is flexible in the bound state(23). Surprisingly, neomycin B 

does not appear to bind ΔGCTAR (Figure 3.10). In fact, many resonances follow linear 

CSP trajectories at a 2:1 neomycin B:ΔGCTAR ratio and then begin to shift in other 

directions on further addition of neomycin B (Figure 3.10). Also, the CSPs for ΔGCTAR 
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compared to TAR are not in the same directions as was observed in the ARG titrations 

indicating different binding modes. These data most likely indicates non-specific binding 

and precludes the calculation of dissociation constants. Thus, it is likely that the G22-

C40 mutation does not allow access to the bent conformation necessary to bind 

neomycin B.  

 
Figure 3.10. Neomycin B does not specifically bind ΔGCTAR. 2D C6/C8 HSQC 
spectra from titration of neomycin B onto TAR and ΔGCTAR are shown. Initially linear 
changes in chemical shift are observed for ΔGCTAR, but deviate at >2:1 neomycin 
B:ΔGCTAR ratios. Residues that shift significantly on titration of neomycin B are labeled.  
 

3.6 Conclusion  

 This study highlights that small sequence mutations can lead to dramatic 

changes in the average structure and dynamics. Reduction in the average R2/R1 values, 

decreased β, and increased GDOint for EΔGCTAR indicate that stabilizing the labile A22-

U40 base-pair leads to a drastic reduction in collective interhelical motions that closely 

resemble ETAR-ARG. Sequence effects are also observed for local motions where 

hydrogen bonding of the G22-C40 base-pair results in significant reduction of the G22-
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C40 resonance intensities that are accompanied by formation of a U23 looped out 

conformation giving rise to the increased U23 resonance intensities and reduced RDCs. 

Thus, modest sequence mutations can lead to dramatic perturbations of functionally 

important junctions that result in very different local and global motions. The results 

presented here also suggest that the dynamic perturbations observed for ΔGCTAR pre-

tunes the dynamic equilibrium toward a coaxially stacked state. This is analogous to a 

previous study showing that on binding Mg2+ the dynamic equilibrium of TAR is biased 

toward the coaxially stacked state and the population of bent TAR conformations is 

significantly reduced(19). On saturation with argininamide, TAR and ΔGCTAR form the 

same bound-state conformation as indicated by nearly identical chemical shifts, 

however, on titration with neomycin B very different chemical shifts are observed for 

TAR and ΔGCTAR suggesting different binding modes. Thus, biasing the conformational 

ensemble toward the coaxial state increases the affinity for argininamide, which 

stabilizes a linear TAR conformation, but does not allow access to the bent state 

necessary to bind neomycin B.   

 Due to the ever-increasing evidence that RNA is critical in regulating cellular 

processes making it a highly sought drug target, many studies have aimed to 

characterize the physical basis for RNA structural plasticity. One question that remains 

unanswered is the effects of sequence mutations on dynamics and intermolecular 

interactions. Using TAR as a model system to interrogate the effects of sequence 

mutations, we show that by modestly changing one base-pair, the free-state dynamics 

are modified from a flexible and bent state toward a more coaxially-stacked and rigid 

conformation. This leads to an ~3 fold increase in binding affinity for ARG, which could 

indicate that transition to the bound state involves first pre-forming the coaxially aligned 

and looped out bulge conformation prior to binding ARG. Overall, these results show that 

conservative RNA sequence mutations can have dramatic effects on the free-state 
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dynamics and structurally bias RNA-ligand interactions, which is critically important in 

many biological processes. 

  

The idea was conceived by Al-Hashimi H. M. and Stelzer A. C. Stelzer A. C. and Kratz J. D. synthesized RNA 
oligonucleotides and collected and analyzed NMR data. 
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Chapter 4 

 

 

Dynamics-Based Screening Affords Efficient Discovery of Novel HIV-1 TAR-

Binding Small Molecules  

 

 

4.1 Introduction 

 Structure-based drug design is one of the most ambitious approaches for drug 

discovery and is based on rationally using knowledge of a molecule’s 3D structure to 

identify small molecule binders. The flexible nature of RNA presents a unique challenge 

in this regard because even related ligands can bind very different RNA conformations 

that cannot, in general, be determined a priori. Characterizing the large conformational 

rearrangements that occur in RNA on ligand binding has been impeded by the lack of 

experimental techniques capable of reporting on motions at biologically important 

timescales. Thus, RNA structure-based predictions of RNA-ligand interactions have 

largely not proven successful. In Chapter 2 we showed that NMR and MD can be used 

in concert to characterize RNA dynamics up to millisecond timescales provided that 

internal and overall motions are decoupled. Using a Sample and Select (SAS) approach 

we were able to generate ensembles comprised of 20 HIV-1 TAR (TAR) conformers that 

precisely re-capitulate the experimental RDCs and suggest that bound-state TAR 

conformations are present in the absence of ligands(1). Here, we test the hypothesis 

that computational docking can be used to calculate a docking score, which reports on 
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the RNA-ligand interaction energy, that correlates with the experimentally determined 

change in binding free energy (ΔGexp) provided an accurate description of the ligand-

bound RNA conformation is known. Virtual screening simulations conducted using the 

ensemble of 20 SAS-generated TAR structures result in the identification of the small 

molecule netilmicin, which shows the ability to inhibit HIV-1 replication in-vitro. 

 

4.2 Materials and Methods 

4.2.1 ICM Computational Docking 

 ICM (Molsoft LLC) employs internal coordinate mechanics (based on bond 

angles, bond lengths, torsion angles, and phase angles) in grid-based docking 

simulations to efficiently determine interaction energies and optimal small molecule 

binding conformations in receptor-ligand complexes(2). Since the energy function is 

expressed analytically in internal coordinates, ICM uses a Monte Carlo gradient 

minimization algorithm during docking simulations, which has been shown to greatly 

increases the search area from which the global minimum can be found and also 

significantly reduce computational time(2). In order to rank the interactions of ligands 

with macromolecules, ICM implements a scoring function containing eight terms,  

 

,      [4.1] 

 

where Nat
 is a correction term to prevent biasing toward larger small molecules, Nflex 

represents the change in energy due to entropy loss of the ligand on binding,  is 

an angle and distance dependent hydrogen bonding term,  characterizes Van der 

Waals interactions between the ligand and receptor accounting for the quality of steric fit, 

 is the internal energy of the ligand calculated using the ECEPP/3 force field, 
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 takes into account the disruption of hydrogen bonds between the ligand and 

solvent,  is the solvation electrostatics energy on binding that is calculated using 

a distance dependent dielectric constant, and reports on the hydrophobic free 

energy gain according to the amount of buried surface area upon binding. Each term is 

weighted using a coefficient, , that affords optimization of the scoring function to 

agree with experimental data. 

 ICM docking simulations were conducted using rigid RNA receptors and fully 

flexible small molecule ligands. In all simulations the RNA binding pocket was pre-

defined in order to efficiently target probable binding sites and minimize the size of the 

calculated grid maps. Small molecule-bound RNA structures used to validate the ability 

of ICM to accurately dock RNA targets were downloaded from the Protein Data Bank 

(PDB) (www.pdb.org). The small molecule was separated from the RNA, the RNA was 

converted into an ICM object, and the RNA binding pocket was defined as all atoms 

within 5 Å of the bound small molecule. For structures with multiple binding sites, each 

site was defined as a receptor, independently docked, and the lowest score recorded as 

the final docking result. Docking simulations against TAR employed individual SAS-

ensemble structures. These RNA structures were first converted into ICM objects and 

probable binding pockets were predicted using the ICM PocketFinder module, which 

calculates the surface area and volume of cavities on the receptor surface. All binding 

pockets that fall within the “druggable” range (volume=150-500 Å3 and surface 

area=200-550 Å2), as determined by ICM(3), were set as receptor centroids and the final 

receptor defined as all atoms within 5 Å of the predicted binding site. In the event that 

multiple “druggable” binding pockets were identified for one structure, all RNA binding 

pockets were docked independently.  
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All small molecules used to dock against the RNA receptors were converted to 

SDF files.  In the validation simulations the small molecule protonation states were 

assigned according to reported studies of the RNA-small molecule complex. In the event 

that the protonation state was not known, all protonation states for pH 5.4-9.4 were 

calculated using the majormicrospecies module of ChemAxon© (www.chemaxon.com) 

and docked against the RNA receptor. When multiple protonation states were found, 

each small molecule protonation state was docked and the minimum score recorded. 

Predicted small molecule protonation states were also used in the docking simulations 

against the SAS-ensemble structures. 

 

4.2.2 Sample Preparation and Assignments 

 All RNAs (both 13C/15N and non-isotopically labeled) were prepared as described 

in section 3.2.1. The same NMR data were collected as described in section 3.2.1 

including an additional 13C-edited-NOESY-HSQC experiment to help determine the 

resonance assignments of TAR bound to netilmicin. N-terminal-labeled-fluorescein Tat 

peptide (FTat), was purchased from Genscript Corp. 

 

4.2.3 Weighted Average Chemical Shift Perturbations, RDC Measurements, and Order 

Tensor Analysis 

 Methods to calculate weighted average chemical shift perturbations are 

described in section 3.2.2, and methods used to measure RDCs and implement order 

tensor analysis are described in section 3.2.3. 

 

4.2.4 Fluorescence Polarization 

 Fluorescence polarization (FP) measurements were collected using 384 well 

plates read with a PHERAstar Plus plate reader (BMG LABTECH) and a 485 nm 
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excitation wavelength and 520 nm detection wavelength optic module. All 

measurements were run in triplicate and averaged to give the final data. Elongated AU 

HIV-1 TAR (EAUTAR) was used to increase the dynamic range of the FP 

measurements. The FP buffer consisted of 50mM Tris (pH 7.4), 100mM NaCl, and 

0.01% nonidet-P40. If soluble in aqueous solution, small molecules were dissolved in the 

FP buffer.  Otherwise, they were initially suspended in DMSO followed by dilution into 

the FP buffer. Determination of the TAR-Tat Kd was performed by adding sequentially 

higher concentrations of TAR to 10nM Tat with a final volume of 32 µL. The Kd was fit 

using the equation,  

,        [4.2]  

 

where Pbound and Pfree are the measured fluorescence polarization values of the bound 

and unbound FTat peptide, respectively, [L]T is the total concentration of FTat, [RNA]  is 

the EAU-TAR concentration, and Kd is the dissociation constant. The data was fit using 

the Origin software (OriginLab Corporation) in which Pbound, Pfree, and Kd were allowed to 

float during the fit. The data was collected for 30 minutes at 5 minute intervals to ensure 

no change in the Kd over time. After 10 minutes no change in the Kd was found. 

Small molecules were tested to inhibit the TAR-Tat interactions using 10 nM 

FTat, 60 nM EAU-TAR, and varying concentrations of small molecule in each well. The 

small molecules were first incubated with TAR for 10 minutes, followed by addition of 

FTat and a second 10 minute incubation period after which the FP was collected for 20 

minutes at 5 minute intervals to ensure stability. IC50  values were calculated using the 

equation, 
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,                   [4.3] 

 

where Pbound and Pfree are the measured fluorescence polarization values of the RNA-

bound and RNA-unbound FTat peptide, respectively, [I] is the log of the concentration of 

the small molecule inhibitor, IC50 is the 50% small molecule inhibitory concentration, and 

m is the slope of the linear portion of the sigmoidal curve. The data was fit using the 

Prizm software (GraphPad Software Inc.).  Inhibition constants (Ki) were calculated with 

the Prizm software (GraphPad Software Inc.) using the equation, 

 
 

,          [4.4] 

 

where [FTat] is the concentration of FTat and Kd is the dissociation constant of the FTat-

TAR complex. The Kis reported in this manuscript are the exact Kis calculated from the 

IC50 and a range of Kis based on the 95% confidence interval. On identification of a 

FTAR-Tat inhibitor, the UV absorption spectrum was recorded to ensure no spectral 

overlap with fluorescein. 

 

4.3 Validation of ICM to Computationally Dock RNA Targets 

 A database of 107 small molecule-bound RNA crystal and NMR structures, which 

is the largest set of small molecule-bound RNA structures interrogated by docking to 

date, was constructed by downloading previously determined RNA-small molecule 

complexes from the PDB (www.pdb.org). These structures included a number of 

bacterial/human A-site, riboswitch, ribozyme, and aptamer structures that provide a 
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representative example of diverse RNA-ligand interactions. 56 of the 107 structures had 

reported Kds and were used to test the accuracy of the ICM scoring function to predict 

the experimental change in binding free energy (ΔGexp=RTLn(Kd)), and all 107 structures 

were used to assess the accuracy of predicting the bound-state small molecule 

conformation. It should be noted that structures with metal-mediated RNA-small 

molecule interactions were omitted from testing the correlation between the docking 

score and ΔGexp because ICM fails to accurately score these interactions.  

 All small molecule-bound RNA crystal and NMR structures were “self-docked”. 

For each structure, the small molecule was removed and the protonation states 

assigned as described in section 4.2.1. The small molecule was subsequently docked 

onto the RNA using the suggested “maximum” number of Monte-Carlo iterations 

according to the ICM manual (thoroughness=10), and the lowest scoring binding pose 

recorded. A larger number of Monte-Carlo iterations were tested without improvement in 

the scoring predictions (data not shown). For the A-site structures with two internal loop 

binding sites, each site was defined as a receptor, independently docked, and the lowest 

score was recorded as the final docking result. For the 56 structures tested, ICM predicts 

the binding scores relatively well resulting in a correlation of R=0.62 between the 

docking score and  ΔGexp (Figure 4.1a). The two outliers in Figure 4.1a (shown in open 

circles) are (i) the FMN aptamer, for which the solved RNA structure is different than that 

used to determine the Kd(4), and (ii) the 2,4,6-triaminopyrimidine bound purine 

riboswitch, which exhibits a substantially different Kd (>1 order of magnitude) in the 

reported study when using different biochemical methods(5). Interestingly, the 

agreement between docking score and ΔGexp continuously improves as the small 

molecule flexibility decreases (defined by the number of flexible torsion angles; Nflex), 

most likely because conformational sampling and entropic contributions become less 
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problematic. Very good agreement (R = 0.73) is observed for 43 of the 56 small 

molecules that have Nflex <15 (Figure 4.1b), and 25 of the 56 small molecules with 

Nflex<10 (Figure 4.1c). Thus, even without further MD refinement of initial or final poses, 

the binding affinity can be predicted at a useful level of accuracy provided the bound 

RNA structure is well defined.   

 
Figure 4.1. Crystal and NMR docking validation. Small molecules were “self-docked” 
to their respective crystal and NMR structures and correlated to ΔGexp. The correlation 
increases with decreasing Nflex. All 56 structures are plotted in (a), structures with 
Nflex<15 are plotted in (b) and Nflex<10 plotted in (c). The success rate of predicting the 
bound small molecule conformation for all 107 RNA-small molecule structures is plotted 
in (d). Error bars in (a-c) are obtained from experimental studies reporting the Kd or ΔG. 
 
 

The success rate is a second metric used to determine the accuracy of ICM to 

dock RNA targets.  The success rate is defined as the percentage of small molecules 

whose predicted bound conformation matches the crystal or NMR structure to within a 
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defined heavy-atom root mean square deviation (RMSD) cutoff. An RMSD threshold of 

2.5 Å was used, which is the same cutoff reported in recent RNA-docking studies(6,7). 

The lowest scoring small molecule pose was used as the final docking result for 

comparison to the solved structure. We calculate a success rate of ~45% when 

considering all 107 structures. While this is disappointingly low, the success rate rapidly 

increases with decreasing Nflex, where the success rate is ~53% for Nflex<15 and ~65% 

for Nflex<10 (Figure 4.1d). Thus, it is likely that the increased success rate on decreasing 

Nflex is also a result of conformational sampling and entropic contributions.   

Potential errors in the success rate could result from the dynamics of RNA-small 

molecule complexes(8). Often, small molecules bound to RNA are solvent-exposed and 

in some cases regions of the small molecules are not directly interacting with the RNA.  

Since it is likely that the regions of the small molecule not in contact with the RNA 

remain flexible in the bound state, which is not accurately represented in crystal or NMR 

structures, prediction of these small molecule conformations cannot be expected.  The 

variability in NMR structure determination results in an average RMSD of 1.8Å between 

different models for RNA-ligand structures in the PDB and in some cases can exhibit 

RMSDs >3Å(7). Each member of an NMR ensemble represents a solution to the 

observed NMR and the dynamics of the RNA-small molecule complex will influence the 

variability in the ensemble structures.  When considering only RNA-small molecule 

structures solved by X-ray crystallography, we calculate a dramatic increase in success 

rate, where ~65% of small molecules with Nflex<15 and ~83% with Nflex<10 are accurately 

predicted(Figure 4.1d).  This is likely a result of more accurately defined RNA and ligand 

conformations. Also, it is likely that more strongly interacting complexes will exhibit less 

dynamics in the bound state. When only considering small molecules from NMR and X-

ray structures with a Kd<1 µM, the success rates increase to ~60% for Nflex<15 and 

~70% for Nflex<10. Thus, using a static representation of an otherwise flexible system 
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precludes accurate prediction of the bound state small molecule conformation.  

However, the flexibility of the bound state could explain why the docking scores correlate 

with ΔGexp while the correct small molecule binding conformation is not always predicted.  

 
 
Table 4.1. Small molecule-bound RNA structures used to validate ICM. A (**) 
indicates that the structure was used to correlate docking scores with  ΔGexp. 

PDB Receptor Ligand 
Res. 
(Å) Nflex 

RMSD 
(Å) 

Score 
(kcal/mol)  

1F1T 
Malachite green 

aptamer 
Tetramethyl 

rosamine 2.80 1 0.98 -42.89 ** 

1F27 Biotin aptamer Biotin 1.30 5 1.77 -14.91 ** 

1I9V tRNA Neomycin 2.60 17 11.30 -30.15  

1J7T rRNA A-site Paromomycin 2.50 17 3.16 -27.62 ** 

1LC4 rRNA A-site Tobramycin 2.54 11 2.76 -16.69 ** 

1MWL rRNA A-site Genticin 2.40 12 10.95 -21.10 ** 

1NTA 
Streptromycin 

aptamer Streptomycin 2.90 16 4.43 -5.15  

1NTB 
Streptromycin 

aptamer Streptomycin 2.90 16 2.05 -29.21  

1O9M rRNA A-site Antibiotic 2.40 23 6.77 -6.05 ** 

1U8D Guanine riboswitch Hypoxanthine 1.95 0 0.16 -29.98 ** 

1Y26 Adenine riboswitch Adenine 2.10 0 2.41 -36.56 ** 

1Y27 Guanine riboswitch Hypoxanthine 2.40 0 0.20 -53.38 ** 

1YRJ rRNA A-site Apramycin 2.70 12 9.04 -26.12 ** 

1ZZ5 rRNA A-site 
Restricted 
neomycin 3.00 10 4.64 -25.02 ** 

2A04 rRNA A-site Neomycin 2.95 16 4.49 -29.19 ** 

2B57 
Guanine riboswitch 

Mutant 
2,6-diamino 

purine 2.15 0 0.19 -50.50 ** 
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2BE0 rRNA A-site JS5 2.63 22 11.01 -25.07  

2BEE rRNA A-site JS4 2.60 23 13.70 -30.97  

2CKY TPP riboswitch TPP 2.90 8 2.66 -24.44  

2EES 
Guanine riboswitch 

Mutant Hypoxanthine 1.75 0 0.12 -32.35 ** 

2EET 
Guanine riboswitch 

Mutant Hypoxanthine 1.95 0 0.20 -33.02 ** 

2EEU 
Guanine riboswitch 

Mutant Hypoxanthine 1.95 0 0.16 -23.91 ** 

2EEV 
Guanine riboswitch 

Mutant Hypoxanthine 1.95 0 0.18 -27.26 ** 

2EEW 
Guanine riboswitch 

Mutant Hypoxanthine 2.25 0 0.30 -27.57 ** 

2ESI rRNA A-site Kanamycin A 3.00 13 6.36 -15.29 ** 

2ESJ rRNA A-site Lividomycin A 2.20 22 9.98 -29.56 ** 

2ET3 rRNA A-site Gentamicin C1A 2.80 9 0.33 -18.56 ** 

2ET4 rRNA A-site Neomycin B 2.40 16 7.31 -26.71 ** 

2ET5 rRNA A-site Ribostamycin 2.20 12 10.61 -18.48 ** 

2ET8 rRNA A-site Neamine 2.50 7 11.23 -16.79 ** 

2F4S rRNA A-site Neamine 2.80 7 11.85 -17.26 ** 

2F4T rRNA A-site Antibiotic 3.00 6 2.35 -26.99 ** 

2F4U rRNA A-site Antibiotic 2.60 19 10.04 -19.67 ** 

2FCX DIS Neamine 2.00 7 1.37 -19.00 ** 

2FCY DIS Neomycin B 2.20 16 8.54 -32.40 ** 

2FCZ DIS Ribostamycin 2.01 12 1.70 -21.29 ** 

2FD0 DIS Lividomycin A 1.80 22 8.23 -17.59 ** 
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2G5K rRNA A-site Apramycin 2.80 12 7.03 -15.32 ** 

2G5Q rRNA A-site Amikacin 2.70 19 13.30 -14.39  

2G9C Purine riboswitch 

2,4,6-
Triaminopyrimidi

ne 1.70 0 0.22 -49.44 ** 

2GDI TPP riboswitch TPP 2.05 8 1.92 -15.84  

2GIS SAM riboswitch 

 S-
adenosylmethion

ine 2.90 10 1.24 -40.69 ** 

2HOJ TPP riboswitch TPP 2.50 8 1.52 -25.45  

2HOK TPP riboswitch TPP 3.20 8 1.76 -41.78  

2HOL TPP riboswitch TPP 2.90 8 1.79 -26.79  

2HOM TPP riboswitch TMP 2.89 6 1.61 -14.90  

2HOO TPP riboswitch Benfotiamine 3.00 11 5.04 -39.90  

2HOP TPP riboswitch Pyrithiamine 3.30 5 5.78 -19.60 ** 

2NZ4 GlmS ribozyme GL6P 2.50 7 2.52 -0.98  

2O3V rRNA A-site 
Paromamine 

derivative 2.80 15 8.94 -19.03  

2O3W rRNA A-site Paromomycin 2.80 17 9.60 -23.99  

2O3X rRNA A-site 
Paromamine 

derivative 2.90 12 8.69 -20.18  

2OE5 RNA fragment Apramycin 1.51 12 3.56 -27.58 ** 

2OE8 RNA fragment Apramycin 1.80 12 4.64 -25.02 ** 

2PWT rRNA A-site 
LHABA 

aminoglycoside 1.80 28 9.82 -13.53 ** 

2QWY SAM II riboswitch 

 S-
adenosylmethion

ine 2.80 10 0.87 -32.96 ** 

3C44 DIS Paromomycin 2.00 18 8.80 -39.84  

3D0U Lysine riboswtich Lysine 2.80 7 1.30 -34.17  
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3D2G TPP riboswitch TPP 2.25 8 2.14 -16.22  

3D2V TPP riboswitch 
Pyrithiamine 

Pyrophosphate 2.00 8 4.30 -27.38  

3D2X TPP riboswitch 
Oxythiamine 

Pyrophosphate 2.50 8 2.60 3.10  

3DIG Lysine riboswtich 

S-(2-
aminoethyl)-L-

cystine 2.80 7 1.00 -55.72  

3DIL Lysine riboswtich Lysine 1.90 7 1.30 -48.54  

3DIM Lysine riboswtich Lysine 2.90 7 1.40 -41.29  

3DIO Lysine riboswtich Lysine 2.40 7 1.30 -48.03  

3DIQ Lysine riboswtich Homoarginine 2.70 7 0.80 -51.31  

3DIR Lysine riboswtich 
N6-1-iminoethyl-

L-Lysine 2.90 7 1.60 -34.81  

3DIX Lysine riboswtich Lysine 2.90 7 1.30 -53.32  

3DIY Lysine riboswtich Lysine 2.71 7 1.30 -46.84  

3DIZ Lysine riboswtich Lysine 2.85 7 1.40 -54.19  

3DJ0 Lysine riboswtich L-4-oxalysine 2.50 7 0.80 -43.80  

3DJ2 Lysine riboswtich Lysine 2.50 7 1.70 -45.62  

3DVV DIS 
Ribostamycin(U

267OMe) 2.00 12 2.30 -24.99  

3E5C SAM III riboswitch 

 S-
adenosylmethion

ine 2.25 10 3.00 -33.92 ** 

3E5E SAM III riboswitch 

 S-
adenosylmethion

ine 2.90 10 8.00 -27.25  

3E5F SAM III riboswitch 

 S-
adenosylmethion

ine 2.70 10 5.30 -25.48  

1FUF Mismatched Duplex Spermine 1.70 13 0.96 -39.95  

1YKV Ribozyme 
N-

pentylmaleamide 3.30 6 0.67 -17.98  
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1XPF DIS Spermine 2.30 13 7.91 -25.46  

2TOB Aptamer Tobramycin NA 11 0.70 -42.85 ** 

1TOB Aptamer Tobramycin NA 11 1.36 -26.23 ** 

1BYJ rRNA A-site Gentamicin C1A NA 13 1.44 -30.75 ** 

1UTS TAR Rbt550 NA 8 9.03 -25.62  

1Q8N Aptamer 
Malachite green 

A NA 1 7.52 -27.92 ** 

2AU4 Aptamer GTP NA 11 4.35 -19.93 ** 

1LVJ TAR Acetylpromazine NA 4 6.83 -12.16 ** 

1NEM Aptamer Neomycin B NA 17 0.54 -33.17 ** 

1PBR rRNA A-site Paromomycin NA 22 0.74 -26.11 ** 

1EHT Aptamer Theophylline NA 0 3.53 -28.71 ** 

1O15 Aptamer Theophylline NA 0 3.30 -20.65 ** 

1FMN Aptamer 
Flavin 

Mononucleotide NA 11 2.61 -53.56 ** 

1EI2 Tau exon 10 Neomycin NA 16 6.97 -18.06  

1UUD TAR Rbt203 NA 10 2.81 -45.79  

1AM0 Aptamer AMP NA 7 3.63 -47.76  

1QD3 TAR Neomycin B NA 22 13.38 -25.39 ** 

1FYP rRNA A-site Paromomycin NA 22 1.31 -38.03 ** 

1KOC Aptamer Arginineamide NA 8 9.74 -21.70 ** 

1KOD Aptamer Citrulline NA 6 10.28 -26.09 ** 

1AJU HIV-2 TAR Arginineamide NA 8 2.74 -25.26  
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1RAW Aptamer AMP NA 7 12.78 -7.04 ** 

1UUI TAR Rbt158 NA 6 8.89 -22.26  

1NBK Aptamer Arginineamide NA 8 2.38 -22.98  

3C3Z DIS Duplex Ribostamycin NA 12 -21.81 14.39  

3C7R DIS Duplex Lividomycin A NA 22 -0.1829 0.8  

3C5D DIS Duplex Neomycin B NA 16 -28.69 8.59  

1AKX HIV-2 TAR Arginineamide NA 5 -29.4 3.56  

2JUK 
HIV-1 Frameshift 

RNA 
Guanidino-
Neomycin B NA 22 -30.15 11.2  

 

4.4 Docking to the TAR SAS Ensemble Recapitulates ΔGexp 

 Results from the validation simulations suggest that ICM can be used to 

accurately calculate a score that correlates with ΔGexp provided that the bound-state 

RNA conformation is known. Structures in the SAS-generated TAR ensemble were 

shown to recapitulate the experimental RDCs and closely resemble previously 

determined ligand-bound TAR conformations, suggesting that the bound-state TAR 

conformations are present in the absence of ligand (see Chapter 2). Thus, using the 20 

SAS ensemble TAR structures as docking receptors should afford docking scores that 

re-capitulate ΔGexp for known TAR-binding small molecules. To test this hypothesis, 

known 33 TAR-binding small molecules with reported Kds and Nflex<15 were docked 

against the SAS ensemble structures. Remarkably, docking scores are calculated that 

correlate with ΔGexp (R=0.69) (Figure 4.2a). In fact, the correlation coefficient is only 

slightly lower than the results of the solved RNA structure validation simulations. The 

error bars in Figure 4.2 are calculated from the average residual error in the crystal and 

NMR structural validation simulations for small molecules with Nflex<15. Within the 
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residual error, only two small molecules do not agree with the best-fit line. Interestingly, 

the best-fit lines are different for the validation and SAS ensemble simulations. This 

likely arises from the increased accuracy of the crystal and NMR structures, which 

provide details of local RNA rearrangements on small molecule binding that is not 

accounted for when docking small molecules to the SAS structures.  

 
Figure 4.2. Docking known TAR binders to the SAS structures affords scores that 
correlate with ΔGexp. (a) Docking scores of 33 known TAR binders with Nflex<15 onto 
the 20 SAS ensemble structures strongly correlate with ΔGexp. Control simulations using 
(b) the apo-TAR crystal structure(9), (c) all 20 models of the apo-TAR structure solve by 
NMR(10), and (d) 20 random MD structures as docking receptors do not afford a strong 
correlation between docking score and ΔGexp. 
 

Control simulations were run using the Mg2+-bound TAR structure (PDB ID# 397D)(9) 

(Figure 4.2b), the 20 ensemble structures from the apo-TAR structure determined using 
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NMR (PDB ID# 1ANR)(10) (Figure 4.2c), and 20 random snapshots from the MD 

simulation  (Figure 4.2d). In all three cases the docking scores failed to correlate with 

ΔGexp. The crystal structure fails to generate docking scores that correlate with ΔGexp 

likely because TAR is highly dynamic and a static representation does not accurately 

represent the TAR structure. The apo-TAR structure solved by NMR and the random MD 

conformers afford an increased correlation between the docking score and ΔGexp 

compared to the apo-TAR crystal structure, but the correlation coefficient is still much 

lower than when using the SAS-generated TAR structures. These results suggest that 

the longer timescale (sub ms) and angular sensitivity of RDCs afford a more robust 

ensemble compared to NOEs (ps-ns) used to determine the apo-TAR structure by NMR, 

and force-field errors present in the random MD conformers give rise to artificial 

conformations that are filtered using the SAS approach.    

 

4.5 Virtual Screening Using TAR SAS Ensemble Structures 

 The SAS-generated TAR ensemble structures were virtually screened against 

two small molecule libraries: (i) ~60,000 small molecules used at the Center for 

Chemical Genomics (CCG) at the University of Michigan used in high-throughput  

screening assays and (ii) ~2500 small molecule library that was built in-house and 

represents published RNA-binding small molecules. The former collection includes 

various small molecules obtained from commercial suppliers such as Chembridge, 

ChemDiv, and Maybridge, and also includes collections from the National Cancer 

Institute as well as FDA approved drugs. The in-house library includes RNA-binding 

small molecule scaffolds including macrocyclic antibiotics, aminoglycosides, and various 

combinations of aromatic and charged moieties. Only small molecules with Nflex<15 were 

docked against the 20 SAS structures. Of the ~60,000 small molecules in the CCG 

library and ~2500 in the in-house library, 49,166 and 2045 small molecules have an 
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Nflex<15. Two rounds of docking were used with the initial round using less Monte-Carlo 

iterations (thoroughness=1) and the top 20% scoring small molecule re-docked with the 

maximum number of Monte-Carlo iterations (thoroughness=10). The lowest score for 

each small molecule was recorded.   

Virtual screening results from both libraries yield Gaussian distributions. The 

distribution of scores for the CCG library gives an average of -17.3 kcal/mol and a 

standard deviation of 4.17 (Figure 4.3a). Interestingly results from docking the in-house 

library yields two Gaussian distributions, one giving an average of -19.5 kcal/mol and a 

standard deviation of 5.97, and the second an average of 4.47 kcal/mol and a standard 

deviation of 5.90 (Figure 4.3b).  The latter of the two histograms calculated for the in- 

 
Figure 4.3. Minimum scores of the CCG and in-house small molecule libraries 
against the SAS ensemble structures. (a) and (b) are the histograms of the minimum 
scores for the CCG and in-house libraries for small molecules with Nflex<15, respectively. 
(c) and (d) Score distributions of small molecules with Log(P)<-1 for the CCG and in-
house libraries, respectively. 
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house library is largely comprised of the erythromycin-like ribosome-binding small 

molecules that are too large to form favorable interactions with TAR. Small molecules 

with predicted Log(P)<-1, where P is the octanol:water ratio of small molecule 

concentration in the two phases of a water-octanol mixture, also yield Gaussian 

distributions with slightly more negative average scores (Figure 4.3c-d). The significance 

of the soluble distributions will be discussed below. A “good” score is defined here as <-

20 kcal/mol. 

  Top scoring small molecules from the virtual screening simulations were 

validated to bind TAR using fluorescence polarization (FP) measurements and NMR 

chemical shift perturbations (CSPs). In the FP assay, a N-terminal-labeled-fluorescein 

Tat peptide (FTat), comprised of 9 

residues of the Tat arginine rich 

motif(11), was bound to EAU-TAR 

and displaced by small molecules. 

To confirm that a small molecule 

inhibitor binds TAR and not the 

Tat peptide, CSPs were monitored 

on titration of the small molecule 

to TAR. Initially, the Kd was 

measured for the TAR-FTat binding (40.6±11.4 nM) (Figure 4.4), which agrees with 

previous studies using similar Tat peptides(12,13). Displacement of FTat from TAR was 

tested using known TAR-binding small molecules with nM-mM dissociation constants 

(Kd)(Figure 4.5).   

Many small molecules from the CCG library can be purchased from commercial 

vendors, while most of the in-house library was derived from literature and thus could not 

be easily obtained. Only three small molecules from the in-house library were tested due  

 
Figure 4.4. FTAR-Tat Kd determined by FP. (a) 
The EAU-TAR and N-labeled-fluorescein Tat 
peptides using the FP assay. (b) Binding isotherm 
for titrating EAU-TAR onto FTat. 



 127 

 
Figure 4.5. Known TAR-binding small molecules displace the FTat peptide. Three 
known TAR-binders were tested to displace FTat peptide. 
 

to commercial unavailability.  Initially we obtained the top 39 commercially available hits 

from the CCG library with scores ranging from -45.53 to -33.22 kcal/mol, and the three 

commercially available small molecules from the in-house library. These 42 small 

molecules were tested to inhibit the TAR-Tat interaction. The three aqueous-soluble 

small molecules (10 mM) from the in-house library, butirosin (score= -35.18 kcal/mol), 

netilmicin (score= -29.58 kcal/mol) and amikacin (score= -25.65 kcal/mol), inhibited 

TAR-Tat binding interaction with inhibition constants (Kis) of 12.7  µM, 11.5  µM and 13.1 

µM, respectively, and were confirmed to bind TAR by monitoring CSPs (Figure 4.6a-c). 

However, only three of the 39 small molecules from the CCG library were soluble in 

aqueous solution at 10 mM, and of these only mitoxantrone displaced FTat (Ki=1.54 µM) 

and was confirmed to interact with TAR using CSPs (Figure 4.6e). The other 36 

aqueous-insoluble small molecules were dissolved in DMSO at 10mM and serially 

diluted into aqueous buffer and failed to displace the Tat peptide. To ensure that 

suspending these 36 small molecule in DMSO followed by dilution into aqueous buffer 

did not prevent detection of small molecule binding, DMSO was titrated onto the TAR-

Tat complex up to 20% DMSO. No perturbations that indicate interference from DMSO 

were observed (data not shown). We hypothesize that the source of scoring 

inaccuracies are a result of the hydrophobic and aromatic small molecules in the CCG 

library not being amenable to binding the solvent exposed grooves of TAR. ICM uses a 
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distant dependent dielectric to simulate an aqueous environment, which is not as 

accurate as using a higher-level approximation such as the Generalized-Born, Poisson-

Boltzmann, or explicit solvent models, which could be a source of error in the ICM 

scoring function. Also, the ΔGHphob term in the ICM scoring could be over-approximated 

for RNA docking resulting in artificially low docking scores for hydrophobic small 

molecules. 

To experimentally test the hypothesis that soluble molecules will give rise to 

more accurate docking predictions, only hits with a Log(P)<-1 were considered. Out of 

the initial 49,166 small molecules with Nflex<15, only 446 have a predictedLog(P)<-1. Of 

these 446 small molecules, the top 38 commercially available hits were obtained from 

commercial vendors. Interestingly, three of these small molecules are previously known 

TAR binders kanamycin (score= -27.72 kcal/mol), ribostamycin (score= -25.37 kcal/mol), 

and tobramycin (score= -24.86 kcal/mol), which were tested by FP and shown to inhibit 

the FTAR-Tat interaction with Kis of 4.89  µM, 85.6 µM, and 2.83 µM, respectively. Of 

the remaining 35 small molecules, 32 were soluble in aqueous solution and subjected to 

the FP displacement assay. Remarkably, four small molecules inhibit the TAR-FTat 

interaction. In fact, this is the first evidence that the small molecules amiloride (score= -

23.73 kcal/mol) and 5-(N,N)-diemthyl amiloride (14) (score= -28.31 kcal/mol) bind RNA. 

In total, of the 35 water-soluble small molecules tested, seven more inhibitors were 

discovered with Kis ranging from 5.85-300 µM (Figure 4.6). The four hits other than the 

previously known TAR binders were also shown to bind TAR using CSPs (Figure 4.6e-

4.7h). Thus, only considering the CCG library, the hit rate increases from 2.6% to 25% 

when pre-filtering the docking scores according to the predicted Log(P)<-1, and overall 

the SAS ensemble affords the discovery of 11 TAR binders resulting in a 31% hit rate. 

Table 4.2 summarizes the Tat displacement assay results. 
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Figure 4.6. Eight newly discovered TAR binders. FP and CSP data validate that the 
eight newly discovered small molecules (a) amikacin, (b) butirosin, (c) netilmicin, (d) 
sisomicin, (e) mitoxantrone, (f) amiloride, (g) DMA, and (h) spermine bind TAR. Each 
panel displays the C2/C6/C8 NMR spectra from titration of the small molecule (left), the 
Tat-displacement FP data (bottom right), and the docking model (top right). Atoms 
depicted by red spheres are resonances that shift >0.1 ppm. Red spheres are not shows 
for mitoxantrone, amiloride and DMA because they intercalate with TAR and cause 
perturbations throughout the entire RNA. 
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Table 4.2. Summary of FTat displacement assay results. 

Molecule Score 
(kcal/mol) IC50 (µM) Ki (µM) 

Neomycin1, 2 -30.49 1.3 0.492 (0.310-0.780) 

Paromomycin1, 2 -27.81 68.4 23.6 (13.9-40.3) 

Argininamide1, 2 -26.43 2260 450 (320-633) 

Mitoxantrone -45.53 1.54 0.627 (0.382-1.03) 

Tobramycin2 -24.86 8.73 2.83 (1.61-4.96) 

Sisomicin -33.04 14 5.85 (3.77-9.07) 

Netilmicin -29.58 28.7 11.5 (5.93-22.4) 

Butirosin -35.18 36.8 12.7 (8.47-19.1) 

Amikacin -25.65 43.6 13.1 (6.65-25.8) 

Kanamycin2 -27.72 48.1 4.89 (2.33-10.3) 
5-(N,N-dimethyl)-amiloride -28.31 398 137 (70.4-267) 

Ribostamycin2 -25.37 435 85.6 (59.2-124) 

Amiloride -23.73 517 128 (83.7-194) 

Spermine -29.25 2340 300 (215-418) 
 1Small molecules used to test FP assay 
 2Previously known TAR binders 
 

4.6 Docking Model Accuracy 

4.6.1 Chemical Shift Perturbations 

 While changes in chemical shift of RNA resonances can arise for many different 

reasons, such as interaction with a small molecule or a conformational change, they do 

provide a means to qualitatively validate the accuracy of the docking predicted models. 

All small molecules were titrated in the same TAR:ligand ratio except for netilmicin and 

mitoxantrone which precipitate TAR at ratios of >2:1 and >4:1, respectively. All 

C8H8/C6H6/C2H2, C5H5, C1’H1’, and NH spectra are shown at the end of this section. 

On titration with mitoxantrone, amiloride and DMA many TAR resonances become 

progressively weaker and coalesce, indicating that all three likely intercalate with TAR. 

The docking models agree with this mode of action for amiloride and DMA where the 

small molecules stack on top of the C30-G34 apical loop base-pair and insert into the 
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apical loop (Figure 4.6f-g).  However, the model for mitoxantrone only predicts stacking 

with G26 suggesting intercalation is less likely (Figure 4.6e). This could be explained by 

the larger size of mitoxantrone compared to amiloride and DMA and is a potential source 

of error in the docking predictions. Resonances that exhibit significant CSPs are not 

indicated on the structure models due to the large change in chemical for shift for many 

resonances. This highlights one disadvantage of being unable to simulate binding 

induced RNA conformational changes. CSPs are observed in many regions of TAR on 

binding the four newly discovered aminoglycosides, amikacin, butirosin, netilmicin, and 

sisomicin. The  

 
Figure 4.7. Weighted average CSPs indicate differentiating binding modes for the 
four newly discovered aminoglycosides. Examples of interesting weighted average 
CSPs for amikacin (red), butirosin (green), netilmicin (yellow), and sisomycin (blue) are 
shown. Weighted average CSPs are calculated between the saturated and free TAR. 
 

docking predictions for all four aminoglycosides indicate a helix-2 binding mode, which 

largely agrees with the helix-2 CSPs(Figure 4.6a-d). However, the CSPs in the bulge 

region and helix-1 cannot be explained by the lowest scoring binding modes. 
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Perturbations in these regions could result from >1 stoichiometry, conformational 

changes on binding, and/or incorrect docking predictions. More positive scoring poses 

are predicted to bind the bulge, loop, and the major groove of helix-1 suggesting that 

alternative small molecule conformations or >1 binding stoichiometry is possible. Some 

CSPs also agree with spermine docking model, but the small size and linearity of 

spermine affords predictions of largely buried poses, whereas it is more likely spermine 

binds the major groove similar to argininamide(15). 

Comparison of the CSPs on titration of the four newly discovered 

aminoglycosides also reveals interesting trends that in some cases can be explained by 

the docking predicted binding conformations. The difference in weighted average 

chemical shift for the endpoints of amikacin, butirosin, netilmicin, and sisomicin were 

computed. As expected, similar shifts are observed for many resonances such as the 

C6H6 resonance of U23 (Figure 4.7), which shifts downfield in both dimensions 

indicative of a looped out conformation similar to TAR binding to Mg2+(16,17).  Also, the 

C5H5 resonance of C24, the C8H8 resonance of G34, the C8H8 resonance of A22, and 

the C5H5 resonance of U40 exhibit similar CSP directions, albeit different magnitudes, 

likely indicating similar bound state conformations (Figure 4.7). Interestingly, there are 

differentiating chemical shifts between the four aminoglycosides that group together 

according to the chemically similar amikacin and butirosin, and netilmicin and sisomicin. 

Some of the perturbations can be explained by the different predicted bound-state 

conformations. For example, the C8H8, C2H2, and C1’H1’ resonances of A35 shift in 

two general directions with similar shifts for amikacin and butirosin, and netilmicin and 

sisomicin (Figure 4.7). These varying shifts for the two groups of aminoglycosides can 

be explained by the different docking-predicted TAR-aminoglycoside interactions. 

Amikacin and butirosin both have the L-haba substituent that interacts with the RNA 

backbone below A35 likely giving rise to the similar chemical shifts, whereas only 
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netilmicin interacts with the A35 nucleobase and neither netilmicin or sisomicin interact 

with the A35 backbone region. While not clearly re-capitulated in the docking models, 

other data such as the C8H8 resonance of G33, the C1’H1’ resonance of G32, the C5H5 

resonance of C30, and the C8H8 resonance of G28 indicate differential binding for 

amikacin compared to the other three aminoglycosides (Figure 4.7). While these data 

suggest that the four aminoglycosides likely stabilize alternative RNA conformations, the 

subtle differences cannot be adequately characterized with the current methodology. 

Further improvements to the SAS and docking methods will likely improve these 

predictions. 

 

 



 134 



 135 

 

 



 136 

 



 137 

 

Figure 4.8. NMR spectra of TAR on titration with the eight docking-predicted hits. 

  

4.6.2 RDC Validation of the Netilmicin-TAR Docking Model 

 To quantitatively test the ability of docking to accurately predict the small 

molecule bound RNA structure, RDCs measured for TAR bound to netilmicin were 

compared to predicted RDCs based on the docked SAS ensemble structures. SVD order 

tensor analysis was performed to determine the time-averaged netilmicin-bound TAR 

conformation. Results from the order tensor analysis show that the back-calculated and 

measured RDCs closely match to within experimental uncertainty (~2 Hz) (Figure 4.9). 

Euler angles calculated from the RDC determined structure indicate that on binding 

netilmicin, TAR exhibits a β of 22.92±2.7o, an α of 51.21o, and a γ of -56.17o (Figure 4.9) 

(A description of the interhelical Euler angles can be found in section 2.3). These angles 

are in relatively close agreement with the docking predicted top-scoring SAS structure, 
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which exhibits an α of 114.9o, a β of 56.94o, and a γ of -46.19o. Interestingly, the 

interhelical generalized degree of order (GDOint) describing the interhelical dynamic 

amplitude, where 1 corresponds to complete interhelical rigidity and 0 to fully isotropic 

motions, is 0.68±0.09 indicating that TAR remains dynamic when bound to netilmicin.  

 
Figure 4.9. SVD order tensor analysis of TAR bound to netilmicin. Results from 
SVD order tensor analysis of TAR bound to netilmicin measured RDCs. Helix-1 RDCs 
are shown in blue and helix-2 in red. N is the number of RDCs included in the analysis 
for each helix, RMSD is the root mean square deviation between measured and back-
calculated RDCs, CN# is the condition number, Q is the quality factor between the 
measured and back-calculated RDCs, η describes the asymmetry of the order tensor 
(where 0 indicates a fully symmetric tensor), R is the correlation between measured and 
back-calculated RDCs after the order tensor analysis, GDO, is the generalized degree of 
order for each order tensor, GDOint describes the magnitude of interhelical motions with 
1 describing interhelical rigidity and 0 fully isotropic motions, and αo, βo, and γo are the 
interhelical Euler angles. Full descriptions of these parameters can be found in 
reference(18). 
 

To further probe the accuracy of netilmicin-bound TAR model, RDCs were 

predicted based on the SAS structure structures docked to netilmicin and compared to 

experimental values. A previous study by Al-Hashimi H. M. and co-workers showed that 

on average all RNA structures in the PDB exhibit A-form helices(19), thus A-form helices 

were used in place of the SAS ensemble helices. Since the experimentally determined 
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principal axis of the order tensor (Szz) for TAR bound to netilmicin is greater for helix-2 

(1.75x10-3) compared to helix-1 (1.20x10-3), we assumed that helix-2 aligned collinear 

with the z-axis and all 20 SAS structures were superimposed onto the experimentally 

determined helix-2 principal axis system (PAS). Next, A-form helices comprising 

residues 17-22 and 40-45 

(Figure 4.10) were 

superimposed onto helix-1 of 

the SAS structures. The 

resulting structure for each SAS 

snapshot consisted of an 

idealized A-form helix-1 and 

helix-2, and the trinucleotide 

bulge and apical loop from the 

SAS structures. These 

structures were then used to calculate theoretical RDCs. Since TAR remains dynamic 

when bound to netilmicin, RDCs calculated for each SAS structure were weighted using 

a partition function. The netilmicin-bound docking score for each SAS structure was 

converted into a ΔG using the best-fit line equation from the Nflex<15 crystal and NMR 

structure validation data. These free energies were then used to calculate a probability 

(P) using a partition function, 

 

.                         [4.5] 

 

 

Figure 4.10. Normalized resonance intensities 
for TAR bound to netilmicin. 
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P was used to weight contribution from each SAS structure to the predicted RDCs. 

RDCs for atoms that exhibit large normalized intensities (>0.15) were eliminated from 

comparison to experimental RDCs because these nuclei likely exhibit fast local motions 

that cannot be accurately determined in this analysis (Figure 4.10).  Since apical loop 

RDCs were not used in the  

 
Figure 4.11. Netilmicin-bound SAS structures predict experimental RDCs. (a) The 
experimental RDCs are plotted against the back-calculated RDCs that are partition 
weighted according to the docking score for each structure. Helix-1 RDCs are shown in 
blue, helix-2 RDCs in red, bulge RDCs in orange, and apical loop RDCs in green. RDCs 
that were excluded based on high resonance intensity are shown as open circles. (b) 
RMSDs for each SAS structure generally increase as the docking score becomes more 
positive and all are significantly larger than the partition weighted (PW) RMSDs. 
 

generation of the SAS ensemble, only atoms for residues that contact the small 

molecule should be stabilized on binding netilmicin and were used in the predictions. 

Remarkably, the resulting theoretical and experimental RDCs exhibit an RMSD of 5.55 

Hz (Figure 4.11a). Although the trend is not uniform, increasing RMSDs are calculated 

for poorer scoring snapshots, and the lowest RMSD is calculated for the partition 

weighted RDCs from all 20 structures (Figure 4.11b). These data suggest that docking 

against the 20 SAS structures affords an accurate prediction of the experimental RDCs 
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that cannot be accounted for by one structure. This is consistent with TAR being flexible 

in the netilmicin-bound state.  

 

4.7 Netilmicin Inhibits HIV-1 Replication 

Results from the FP assay indicate that netilmicin binds TAR and inhibits binding 

of the Tat peptide. To determine if netilmicin inhibits the TAR-Tat interaction in a more 

biological setting, we tested the ability to inhibit Tat-mediated activation of the HIV-1 LTR 

using a luciferase reporter assay. Mammalian cells were transiently transfected with an 

HIV-1 LTR luciferase reporter, a reporter plasmid for normalization of transfection 

efficiency (Renilla luciferase), and either an expression vector expressing HIV-1 Tat 

(Tat101) or the vector alone (Tat0). The LTR contains the same TAR sequence used in 

the NMR, FP, and computational studies. The cells were then incubated with netilmicin 

or PBS and then harvested for measuring luciferase activity. As can be seen in Figure 

4.12a, addition of 100 µM netilmicin inhibits the Tat-mediated activation of the HIV-1 

promoter by ~71% when compared to the PBS-treated control. Addition of phorbol 12-

myristate 13-acetate (PMA) to the cells can activate the HIV-1 LTR in the absence of 

Tat. Since this activation is also independent of TAR, we would expect no inhibition of 

PMA-mediated HIV-1 LTR activation by netilmicin, and this was indeed the case. Mock 

treatments of cells not containing the LTR or Tat expression vector with netilmicin further 

ensures that netilmicin decreases luciferase expression by binding TAR.  

Having shown that netilmicin inhibits Tat-mediated activation of the HIV-1 LTR in 

reporter gene assays, we next asked whether this would translate into inhibition of HIV-1 

replication by netilmicin. Sisomicin, which differs from netilmicin by an ethylene group, 

was also tested in these experiments (Figure 4.12b). An HIV-1 indicator cell line, TZM-bl, 

was used in this experiment. The cells contain the luciferase and β-galactosidase genes 

under the control of the HIV-1 promoter, as well as the HIV-1 receptors CD4, CXCR4, 
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and CCR5. Thus, when they are 

infected with HIV, the replication 

genes are activated, allowing for 

assessment of HIV-1 infection by 

measuring reporter gene 

expression. The virus used was 

the HIV-1 isolate NL4-3 virus 

containing the same TAR 

sequence used NMR, FP, and 

computational studies. When 

netilmicin was added to the cells 

prior to infection, we observed 

decreased HIV-1 LTR activation, 

demonstrating a decrease in 

infection (Figure 4.12b). Using 

non-linear regression, we 

calculated the IC50 value of 

netilmicin to be 23.1 µM, which is nearly identical to the value measured using the Tat 

displacement assay. The IC50 value for sisomicin (157 µM) is approximately 100X 

greater than the value measured in the FP assay. These results corroborate the results 

of the transient transfection experiment and show that netilmicin can inhibit HIV-1 

replication. Therefore, netilmicin, a compound selected through the use of NMR and 

computational modeling, can block TAR-Tat interaction in vitro, specifically inhibit Tat-

mediated activation of the HIV promoter, and interfere with HIV replication in vivo. 

 

 

 
Figure 4.12. Netilmicin inhibits Tat mediated 
HIV-1 transcription and HIV-1 replication.  (a) 
Netilmicin reduces HIV-1 LTR-controlled luciferase 
expression. Tat101 indicates a cell line transfected 
with a Tat expression vector, Tat0 cells contain 
the LTR but no Tat expression vector, PMA 
indicates Tat-independent activation of the LTR, 
and Mock indicates cells were not transfected but 
were treated with (b) Netilmicin and sisomicin 
inhibit HIV-1 replication in live HIV-1 mimic cell 
lines (TMZ-bl). 
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4.8 Conclusion 

 Computational docking provides the ability to rapidly screen small molecules 

against an RNA provided the structure is known a-priori. Validation of docking to 

accurately predict  ΔGexp is shown here to depend on the accuracy of the RNA structure 

and the conformational flexibility of the small molecule. When the structure of the RNA-

small molecule complex is well characterized using X-ray crystallography or NMR, ICM 

can be used to accurately calculate docking scores that correlate strongly with the ΔGexp. 

Also, the small molecule conformation is more accurately predicted for less flexible small 

molecules, X-ray structures, and small molecules with tight binding affinities likely due to 

less flexibility in the bound-state. The ability to use the SAS ensemble structures as 

docking receptors was investigated by docking 33 known TAR-binding small molecules 

with Nflex<15 and reported ΔGexp. Remarkably, ICM is able to predict docking scores that 

correlate strongly with ΔGexp (R=0.69). Virtually screening ~60,000 small molecules from 

the CCG and ~2500 from an in-house RNA-binding small molecule library resulted in the 

identification of 11 TAR binding small molecules that inhibited the TAR-Tat interaction 

with Kis ranging from 5.85-300 µM, resulting in a 31% hit rate. The eight small molecules 

were confirmed to bind TAR using NMR CSPs. The CSPs strongly suggest that 

mitoxantrone, amiloride, and DMA intercalate with TAR, and all four aminoglycosides 

exhibit similar helix-2 binding profiles.  Support for the docking predicted models of the 

eight newly discovered TAR-binders is reinforced by the CSP data, however there are 

outlying data that suggest higher stoichiomety binding or alternative binding 

conformations, which could be due to the inaccuracy of the SAS and docking methods. 

These potential errors may be alleviated with more input NMR data. Validation that the 

SAS ensemble predicts the correct netilmicin-bound TAR conformation suggests that the 

SAS ensemble is able to capture dynamical features of TAR that afford accurate docking 
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predictions and together recapitulate the experimental RDC data. Overall, the SAS 

ensembles can be used to generate RNA conformational ensembles that are beneficial 

as a pre-processing docking method and provides more accurate predictions of small 

molecule docking scores, efficient identification of lead compounds, and reliably predict 

experimental small molecule-bound RNA structures. 

 
The idea was conceived by Al-Hashimi H. M. and Stelzer A. C. Stelzer A. C. and Kratz J. K. synthesized RNA 
oligonucleotides and collected and analyzed NMR and FP data. Docking simulations were conducted and analyzed by 
Stelzer A. C. The in-cell experiments were conducted in the Markovitz D. laboratory by Gonzalez-Hernandez M. (gene 
reporter assays) and Swanson M. (TMZ-bl assays). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 145 

4.9 References 
 
1. Frank, A.T., Stelzer, A.C., Al-Hashimi, H.M. and Andricioaei, I. (2009) 

Constructing RNA dynamical ensembles by combining MD and motionally 
decoupled NMR RDCs: new insights into RNA dynamics and adaptive ligand 
recognition. Nucleic Acids Research, 37, 3670-3679. 

2. Abagyan, R., Totrov, M. and Kuznetsov, D. (1994) Icm - a New Method for 
Protein Modeling and Design - Applications to Docking and Structure Prediction 
from the Distorted Native Conformation. Journal of Computational Chemistry, 15, 
488-506. 

3. An, J., Totrov, M. and Abagyan, R. (2004) Comprehensive identification of 
"druggable" protein ligand binding sites. Genome Inform, 15, 31-41. 

4. Fan, P., Suri, A.K., Fiala, R., Live, D. and Patel, D.J. (1996) Molecular 
recognition in the FMN-RNA aptamer complex. Journal of Molecular Biology, 
258, 480-500. 

5. Gilbert, S.D., Mediatore, S.J. and Batey, R.T. (2006) Modified pyrimidines 
specifically bind the purine riboswitch. Journal of the American Chemical Society, 
128, 14214-14215. 

6. Detering, C. and Varani, G. (2004) Validation of automated docking programs for 
docking and database screening against RNA drug targets. Journal of Medicinal 
Chemistry, 47, 4188-4201. 

7. Guilbert, C. and James, T.L. (2008) Docking to RNA via root-mean-square-
deviation-driven energy minimization with flexible ligands and flexible targets. 
Journal of Chemical Information and Modeling, 48, 1257-1268. 

8. Pitt, S.W., Zhang, Q., Patel, D.J. and Al-Hashimi, H.M. (2005) Evidence that 
electrostatic interactions dictate the ligand-induced arrest of RNA global 
flexibility. Angew Chem Int Ed Engl, 44, 3412-3415. 

9. Ippolito, J.A. and Steitz, T.A. (1998) A 1.3-angstrom resolution crystal structure of 
the HIV-1 trans-activation response region RNA stem reveals a metal ion-
dependent bulge conformation. Proceedings of the National Academy of 
Sciences of the United States of America, 95, 9819-9824. 

10. Aboul-ela, F., Karn, J. and Varani, G. (1996) Structure of HIV-1 TAR RNA in the 
absence of ligands reveals a novel conformation of the trinucleotide bulge. 
Nucleic Acids Research, 24, 3974-3981. 

11. Long, K.S. and Crothers, D.M. (1995) Interaction of Human-Immunodeficiency-
Virus Type-1 Tat-Derived Peptides with Tar Rna. Biochemistry, 34, 8885-8895. 

12. Matsumoto, C., Hamasaki, K., Mihara, H. and Ueno, A. (2000) A high-throughput 
screening utilizing intramolecular fluorescence resonance energy transfer for the 
discovery of the molecules that bind HIV-1 TAR RNA specifically. Bioorganic & 
Medicinal Chemistry Letters, 10, 1857-1861. 

13. Hamasaki, K. and Ueno, A. (2001) Aminoglycoside antibiotics, neamine and its 
derivatives as potent inhibitors for the RNA-protein interactions derived from HIV-
1 activators. Bioorganic & Medicinal Chemistry Letters, 11, 591-594. 

14. Henzler-Wildman, K. and Kern, D. (2007) Dynamic personalities of proteins. 
Nature, 450, 964-972. 

15. Puglisi, J.D., Tan, R., Calnan, B.J., Frankel, A.D. and Williamson, J.R. (1992) 
Conformation of the TAR RNA-arginine complex by NMR spectroscopy. Science, 
257, 76-80. 

16. Casiano-Negroni, A., Sun, X.Y. and Al-Hashimi, H.M. (2007) Probing Na+-
Induced changes in the HIV-1 TAR conformational dynamics using NMR residual 



 146 

dipolar couplings: New insights into the role of counterions and electrostatic 
interactions in adaptive recognition. Biochemistry, 46, 6525-6535. 

17. Al-Hashimi, H.M., Pitt, S.W., Majumdar, A., Xu, W.J. and Patel, D.J. (2003) 
Mg2+-induced variations in the conformation and dynamics of HIV-1 TAR RNA 
probed using NMR residual dipolar couplings. Journal of Molecular Biology, 329, 
867-873. 

18. Bailor, M.H., Musselman, C., Hansen, A.L., Gulati, K., Patel, D.J. and Al-Hashimi, 
H.M. (2007) Characterizing the relative orientation and dynamics of RNA A-form 
helices using NMR residual dipolar couplings. Nature Protocols, 2, 1536-1546. 

19. Musselman, C., Pitt, S.W., Gulati, K., Foster, L.L., Andricioaei, I. and Al-Hashimi, 
H.M. (2006) Impact of static and dynamic A-form heterogeneity on the 
determination of RNA global structural dynamics using NMR residual dipolar 
couplings. Journal of Biomolecular Nmr, 36, 235-249. 

 
 



147 
 

 

 

 

Conclusion 

 

 

 

 

 

 

5.1 Conclusion  

 The role of RNA dynamics in biological processes has been extensively studied 

over the past few decades(1, 2).  Recent discoveries continue to highlight the need to 

extensively characterize the change in global and local RNA conformation on recognition 

of an effector molecule(1, 2). The realization that RNA exhibits complex tertiary 

structure, allosterically mediates biological processes, and can be targeted by small 

molecules birthed the field of RNA-targeted drug discovery. However, specifically 

targeting cellular RNA molecules has been largely unsuccessful. While some of the 

classic principles learned from protein-targeted drug-discovery can be applied when 

binding RNAs, many are not suited to tackle their highly dynamic nature. A complete 

description of the biophysical principles governing the large global and local 

conformational changes that take place between the unbound and ligand-bound state(s), 

would greatly increase our understanding of RNA-mediated recognition processes and 

advance the field of RNA-targeted drug discovery.   

While no technique can probe the vast range of timescales and large amplitude 

motions necessary to fully characterize RNA motions, employing a combination of 
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experimental (i.e. NMR) and theoretical (i.e. Molecular Dynamics) techniques can 

overcome the shortages of information garnered from each technique and afford the 

necessary temporal and spatial accuracy. The RDC SAS approach is a large step 

forward in this regard. However, SAS currently remains limited by (i) NMR data density 

(ii) RDC timescale sensitivity (<ms). A recent theoretical study by Al-Hashimi H. M. and 

co-workers shows that all 25 elements of the Wigner matrix, which fully describes the 

order-tensor, and in this case RNA helix, orientation and dynamics, can be obtained with 

five independent sets of RDCs(3). However, we are currently limited to two, obtained by 

elongating either helix of a helix-bulge-helix RNA. To obtain all 25 Wigner matrix 

elements, alternative RNA alignment frames need to be designed. Using the RDC data 

from five linearly independent RDC sets with the SAS method would afford more 

accurate refinement of the MD trajectory. Incorporation of NOEs and RCSAs into the 

SAS methodology will also aid in a higher-definition ensemble. New developments by Al-

Hashimi H. M. and co-workers show that lowly populated (~1%) nucleic acid 

conformations can be characterized using NMR relaxation dispersion measurements(4). 

While these methods do not give angular description of bond vectors like RDCs, they 

can be used to bias MD simulations toward RNA ensembles that agree with 

experimental data. Incorporation of these data will entail using novel MD methods (e.g. 

Replica Exchange, steered MD, and variable temperature MD) to theoretically generate 

these lowly populated species.  
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Appendix 1 

 

 

NMR Study of an Immunomodulatory Benzodiazepine Binding to its Molecular 

Target on the Mitochondrial F1F0-ATPase 

 

 

A1.1 Introduction 

Bz-423 is a 1,4-benzodiazepine that potently suppresses disease in autoimmune 

mice by selectively killing pathogenic lymphocytes(1,2).  Affinity-based screening of a 

phage-display human cDNA expression library identified the oligomycin-sensitivity 

conferring protein (OSCP), a component of the mitochondrial F1F0-ATPase, as the 

molecular target of Bz-423(3).  Binding of Bz-423 to the OSCP in the context of intact 

enzyme inhibits both synthesis and hydrolysis of ATP(4).  Consistent with inhibition of 

the F1F0-ATPase, Bz-423 increases the generation of superoxide from the mitochondrial 

respiratory chain and this reactive oxygen species is the signal initiating apoptosis (as 

opposed to changes in ATP concentration)(5,6). 

The OSCP is a 213 amino-acid long protein (including the 23 amino acid 

mitochondrial leader sequence) that is conserved among mammals and is not present in 

other ATPases(7).  The OSCP along with subunits b, d, and F6 form the peripheral stalk 

in mammalian F1F0-ATPases(8). The stalk links the integral membrane F0 component of 

the enzyme with its soluble catalytic F1 domain, which is located in the mitochondrial 

matrix. The peripheral stalk is believed to act as a stator, holding the F1 α3β3 hexamer 
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static while the central stalk (γδεc10) rotates(9,10).  In order to function properly, the stalk 

subunits must act in concert with one another; while the peripheral stalk subunits do not 

need to move in relation to one another during catalysis, disrupting the connections 

between the subunits disrupts coupling between F0 and F1(11).  In addition, the stalk 

must be anchored at each end for proper function:  the transmembrane domain of 

subunit b holds the stalk in the mitochondrial membrane, while the N-terminal end of the 

OSCP sits on top of the α3β3 hexamer with the C-terminus protruding almost 100 Å 

along the surface of F1 towards F0(12).  The N-terminal tails of the α-subunits are critical 

for binding to OSCP(13).   

The structure of a 134-amino acid long N-terminal fragment of the δ-subunit from 

E. coli, the equivalent of the bovine OSCP, has been studied by NMR spectroscopy(14).  

The protein adopts a 6-helix bundle with a disordered C-terminus.  NMR studies using 

the N-terminal domain of the bovine OSCP (OSCP-NT, residues 1–120) reveals a 

similar fold(15,16).  Binding experiments with peptide fragments from the N-termini of F1 

α-subunits suggests that the interaction site on OSCP-NT comprises a hydrophobic 

groove between helices I and V.  Hence, this interface, which is essential for the rotary 

mechanism of the enzyme, probably consists of helix–helix interactions.   

Since Bz-423 does not bind at the active site of enzyme, we hypothesized that it 

may bind at, or near the F1-OSCP interface where it can perturb one or more of the 

conformational transitions associated with the rotary (binding-change) mechanism of 

catalysis(4).  To gain support for this hypothesis, we studied the binding of water soluble 

Bz-423 analogs (Figure 1) with OSCP-NT and a construct representing amino acids 1-

145 by NMR spectroscopy using chemical shift perturbation and cross-relaxation 

experiments to localize the binding site.  Our data identified a recognition site near the 

F1-OSCP interface and a conformational change in the protein upon drug binding.  
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Collectively, these data suggest that Bz-423 like inhibitors may function in an allosteric 

manner inducing a conformational change that hinders catalysis.   

 

 
Figure 1.  Chemical structure of (a) Bz-423 and the molecules used in this study: (b) 5-
(3-(aminomethyl)phenyl)-7-chloro-1-methyl-3-(naphthalen-2-ylmethyl)-1H-
benzo[e][1,4]diazepin-2(3H)-one (1) and (c) (aminomethyl)phenyl)-7-chloro-1-methyl-1H-
benzo[e][1,4]diazepin-2(3H)-one (2). Protons of 1 that were saturated in cross-relaxation 
experiments are labeled. Based on prior structure-reactivity studies as a guide, 1 was 
designed to replace the critical phenolic proton with an ammoninum group to enhance 
aqueous solubility.  The activity of 1 in enzyme and cellular assays is comparable.   
Removing the naphthyl group in 2 abolishes all activity against the enzyme. 
 

A1.2 Materials and Methods 

A1.2.1 Synthesis of Benzodiazepines 

Benzodiazepines 1 and 2 were synthesized and characterized as previously 

described(15).  Samples of both compounds used in the NMR titration experiments were 

>98% pure.   

 

A1.2.2 OSCP Isolation 

A 360-base-pair long insert encoding a truncated bovine OSCP, containing 

amino acids 1-120, was prepared via PCR using forward 

(5’CACCATGTTTGCCAAGCTTGTGAGGCC3’) and reverse 

(5’CTAAACTGTGCATGGTACTTCTCC3’) oligonucleotide primers (25 µM each) in the 

presence of dNTPs (0.5 mM), pOSCP (1 ng), PFU Turbo DNA polymerase (3-5 U; 
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Stratagene, La Jolla, CA), and 1X PFU Turbo DNA polymerase buffer.  PCR conditions 

consisted of 30 s at 94 oC, 30 s annealing at 55 oC, and a 1 min extension at 72 oC for 31 

cycles(17)  A 435-base-pair long insert encoding a truncated bovine OSCP containing 

amino acids 1-145 was prepared in a similar manner using the same forward 

oligonucleotide primer as above together with a reverse 

(5’CTGGCCTTTACTTAGGAAGCTCTTCAGG3’) oligonucleotide primer.  The PCR 

products were purified using a Qiagen (Valencia, CA) PCR Clean Up kit following the 

manufacturer’s instructions.  Both inserts were cloned into expression vectors provided 

in the TOPO 10 kit following the manufacture’s instructions (Invitrogen, Carlsbad, CA). 

The OSCP 1-120 insert was ligated into pCRT7/NT-TOPO which contains both an 

ExpressTM Epitope coding sequence and a hexa-his tag, placing the OSCP 1-120 coding 

region C-terminal to these sequences.   The OSCP 1-145 insert was ligated into 

pCRT7/CT-TOPO, which contains both a V5 Epitope coding sequence and a hexa-his 

tag, placing the OSCP 1-145 coding region N-terminal to these sequences.  Thus, 

OSCP120 contains an N-terminal hexa-his tag connected by the linker sequence 

GMASMTGGQQMGRDLYDDDDKDPTL, while the OSCP145 construct contains a C-

terminal hexa-his tag connected by the linker sequence 

KGNSKLEGKPIPNPLLGLDSTRTG. Primary structures for all OSCP constructs are 

shown in Figure A1.2.  Ligation products were transformed into TOP-10 cells and 

selected on LB-ampicillin (50 µg/mL) plates.  Colonies were screened for inserts via 

PCR using mini-prep plasmid DNA and both the forward and reverse T7 primers.  The 

presence of the correct inserts was confirmed by automated DNA sequencing 

(Sequencing Core Facility, University of Michigan, Ann Arbor, MI). 

 

NT-OSCP120   
1           10            20           30          40         50 
MRGSHHHHHHGMASMTGGQQMGRDLYDDDDKDPTLFAKLVRPPVQIYGIE  
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51         60           70          80          90          100 
GRYATALYSAASKQNKLEQVEKELLRVGQILKEPKMAASLLNPYVKRSVK  
 
101        110         120   130    140      150 
VKSLSDMTAKEKFSPLTSNLINLLAENGRLTNTPAVISAFSTMMSVHRGE 
 
CT-OSCP145  
1          10          20          30          40          50 
FAKLVRPPVQIYGIEGRYATALYSAASKQNKLEQVEKELLRVGQILKEPK     
 
51         60          70           80         90          100 
MAASLLNPYVKRSVKVKSLSDMTAKEKFSPLTSNLINLLAENGRLTNTPA        
 
101        110         120         130        140          150 
VISAFSTMMSVHRGEVPCTVTTASALDETTLTELKTVLKSFLSKGQKGNS 
 
151       160         170            
KLEGKPIPNPLLGLDSTRTGHHHHHH 
 
OSCP190   
1                   10                   20                    30                   40                   50 
FAKLVRPPVQIYGIEGRYATALYSAASKQNKLEQVEKELLRVGQILKEPK        
 
51                  60                   70                     80                 90                    100 
MAASLLNPYVKRSVKVKSLSDMTAKEKFSPLTSNLINLLAENGRLTNTPA               
 
101               110                  120                130                140                 150 
VISAFSTMMSVHRGEVPCTVTTASALDETTLTELKTVLKSFLSKGQVLKL       
 
151              160                 170                 180                 190 
EVKIDPSIMGGMIVRIGEKYVDMSAKTKIQKLSRAMREIL 

 
Figure A1.2. Sequences of OSCP120, OSCP145, and OSCP190. Hexa-his tag and 
linker sequences are shown in blue. 
 

 OSCP constructs pCRT7/NT- OSCP120 and pCRT7/CT-OSCP145 were 

transformed into One Shot BL21(DE3)pLysS (Invitrogen, Carlsbad, CA) using the 

manufacturer’s procedure.   Individual colonies were picked immediately to inoculate 1-

10 mL LB overnight cultures supplemented with ampicillin (200 µg/mL).   Cultures were 

incubated at 37 oC with rotary shaking at 250 RPM.   One-liter cultures containing either 

Spectra 9-N (>98% 15N), Spectra 9-CN (>98% 15N, >98% 13C, or Spectra 9-dCN (>97% 

D2O, >98% 15N, >98% 13C) media (Spectra Stable Isotopes, Columbia, MD), were 
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supplemented with ampicillin (200 µg/mL) and inoculated with the overnight culture.  

Cultures were grown at 37 oC with rotary shaking at 250 RPM until A595 reached 0.6-1 

(Spectra 9-dCN required double the growth time compared to the other media) at which 

point cultures were removed to 4 oC while the rotary shaker temperature was brought 

down to 20 oC using a heat exchanger over a period of 1 h.  IPTG was added to a final 

concentration of 0.02 mM.  Growth and expression continued for 20 h at 20 oC.  Cell 

pastes were harvested via centrifugation in a Beckman JLA8.1 at 6,000 X g for 10 min at 

4 oC.  Cell pastes were re-suspended in ice-cold Nickel NTA buffer (25 mL; 50 mM Tris-

HCl pH 8, 300 mM NaCl, 0.001% phenylmethanesulfonyl fluoride, and Roche Complete 

protease inhibitors w/o EDTA as per manufacturers instruction).  The suspension was 

transferred to a 50 mL Falcon tube on ice and stored at -80 oC. 

Cell paste was thawed at room temperature and placed immediately on ice.  The 

suspension was transferred to a 50 mL beaker on ice and sonicated using the standard 

horn (set at output = 8.5) for 6 20-s long intervals between which was a 2-min long rest 

on ice to dissipate heat.  After sonication, the mixture was transferred to two Beckman 

JA35.5 centrifuge tubes and centrifuged at 21,000 RPM at 4 oC for 45 min.  The soluble 

extract was loaded (0.5 mL/min) onto a Ni-NTA affinity column (1 cm diameter X 5 cm 

long) equilibrated in Nickel NTA Buffer at 4 oC.  The column was washed with Nickel 

NTA Buffer-25 mM imidazole (25 mL) and protein was eluted with Nickel NTA Buffer-250 

mM imidazole (25 mL).  Fractions of about 1 mL were collected and those from fractions 

3-14 were direct placed into snakeskin dialysis tubing (7,000 MWCO, Pierce, Rockville 

IL) immersed in of OSCP Buffer (4 L; 50 mM Tris-Cl pH 8, 30 mM NaCl, 1 mM EDTA, 5 

mM β-mercaptoethanol).  Complete Protease inhibitors (with or without EDTA) were 

added following the manufacturer’s instructions, directly to the fractions in the dialysis 

bag.  Following overnight dialysis at 4 oC with stirring, the dialysate was cleared by 

centrifugation using a Beckman JA 25.5 rotor for 20 min at 21,000 RPM and 4 oC.  The 
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clarified extract was loaded into a ÄKTA prime super loop (50 mL) at 4 oC and injected at 

1.3 mL/min onto a 5 mL HiTrap SpHP column (Pharmacia) equilibrated in at least 5 

volumes of modified OSCP Buffer (50 mM Tris-Cl pH 8, 30 mM NaCl, 1 mM EDTA, 

0.001% phenylmethanesulfonyl fluoride, Roche Complete protease inhibitors w/o EDTA, 

5 mM β-mercaptoethanol; MOB) at 4 oC.  The column was washed with two bed volumes 

of the same buffer and then eluted with a 75 mL linear gradient (MOB and MOB + 500 

mM NaCl) at 1 mL/min while collecting 1 mL fractions.  OSCP 120NT eluted in a sharp 

band centered around 250 mM NaCl while OSCP 145CT eluted in a similar manner at 

280 mM NaCl. 

A1.2.4 NMR Spectroscopy 

All NMR experiments were performed at 25 °C unless indicated otherwise using 

an Avance Bruker 600 MHz spectrometer equipped with a 5 mm triple-resonance 

cryogenic probe. NMR spectra were processed and analyzed using NMRPipe and 

SPARKY 3(18,19) The NMR buffer consisted of 90/10% H2O/D2O containing 50 mM 

Tris, 5 mM KCl, 5 mM β-mercaptoethanol, 0.001% PMSF and protease inhibitor cocktail 

at pH ~7. For cross-relaxation experiments, a 2H/15N labeled OSCP120 (0.3 mM) sample 

was used in an NMR buffer consisting of 90/10% D2O/H2O containing deuterated TRIS 

(50 mM) and deuterated β-mercaptoethanol (5 mM) at pH ~7 without PMSF and 

protease inhibitor cocktail to minimize spectral overlap with 1. 93% of the OSCP120 

backbone amides could be assigned based on a previous NMR study (BMRB entry 

6564) (Figure A1.3).(20)  The OSCP120 resonances in OSCP145 were assigned by 

overlaying spectra and using standard triple resonance experiments on a doubly labeled 

(13C/15N) OSCP145 sample (0.5 mM).  

Two-dimensional 1H-15N HSQC spectra of 15N labeled OSCP were recorded 

following incremental addition of 1 from a stock solution (20 mM) in NMR buffer for 
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protein:ligand ratios of 1:1, 1:2, 1:4, and 1:8. Weighted average chemical shift 

perturbations were calculated using,  

 

,                                                                

[A1.1] 

 

where δH and δN are the proton and nitrogen amide chemical shift values in ppm. 

Weighted average chemical shifts >0.01 ppm were considered significant.  

Cross-relaxation experiments were performed at 14 oC to improve cross-

relaxation efficiency by modifying a 2D 1H-15N HSQC experiment from the Bruker pulse 

program library (hsqcfpf3gpphwg)(21). A 1.8 s adiabatic Wurst pulse was applied 

following a pre- 
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Figure A1.3. Spectrum of free OSCP120 with resonance assignments taken from the 
Biological Magnetic Resonance Databank (BMRB Entry 6564). A (*) indicates a 
resonance resulting from the hexa-his tag linker sequence.  
 

delay of 1.4 s for saturating one of three different ligand proton resonances (protons 7, 

10, and 24 see Figure 1) with a total saturation bandwidth of ~30 Hz(22). An additional 

reference experiment was also recorded with off-resonance (-50 ppm) saturation. Each 

experiment required ~23 h of acquisition time. Peak intensity errors were calculated 

using NMRPipe and ranged between 4-19%(18,19). Cross-relaxation intensity ratios 

were calculated by taking the ratio of peak intensities measured with on-resonance (Isat) 

and off-resonance (Io) saturation. Only well resolved resonances with a signal:noise ratio 

>10 were analyzed. Chemical shift perturbations and cross-relaxation results were 

mapped onto OSCP structures and visualized using Pymol.(23)  
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A1.3 Bz-423 Specifically Binds to the Shoulder Region of OSCP  

In a first group of studies, we attempted chemical shift perturbation experiments 

using full-length, 15N labeled OSCP (OSCP190) (Figure A1.2).  However, the 2D HSQC 

spectra of OSCP190 were intractable due to aggregation identified by uniform reduction 

in NMR signal intensities(16,20).  We subsequently prepared two truncated constructs 

for binding measurements.  The first protein comprised residues 1-120 (OSCP120) and 

has been studied previously by NMR, and the second construct contained residues 1-

145 (OSCP145).   Titration of 1 into 15N labeled OSCP120 at protein:ligand ratios of 1:1, 

1:2, 1:4, and 1:8 led to chemical shift perturbations that suggest rapid exchange on the 

NMR timescale consistent with µM affinity, which agreed with previous data for Bz-423 

(Figures 1 and 2 and Table A1.1)(4).  To assess the significance of the OSCP chemical 

shift perturbations, a second set of titration experiments were conducted using an analog 

lacking the naphthalene substituent (2).  This analog possesses no activity in the F1F0-

ATPase or cell based assays (data not shown) and therefore we hypothesized should 

not to bind to the protein. Indeed, chemical shift perturbations were not observed in 

titration experiments with 2 (Figure A1.4), indicating that the perturbations observed with 

1 reflect specific binding interaction(s) that presumably are related to its inhibitory 

activity. 

The chemical shift perturbations induced by 1 were distributed at different sites 

within the OSCP120 construct (Figure A1.4). This observation suggests that 1 either 

binds at multiple sites and/or binding at one site causes conformational changes 

elsewhere in the protein. The range of intensities observed in OSCP120 suggests that 

the protein is highly flexible and potentially prone to ligand-induced (allosteric) 

conformational changes. In addition, previous studies of Bz-423 suggest a 1:1 

stoichiometry upon binding to the F1F0-ATPase(4). Collectively, these observations are 

consistent with ligand-induced conformational changes away from the binging site.  
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Table A1.1: Chemical shift perturbations for OSCP120 and OSCP145 where (--) 
represents unmeasurable resonances, (NS) represents no significant chemical shift, and 
(S) indicates a significant shift greater than the threshold cutoff. A (*) indicates residues 
that had similar free resonance positions in free OSCP120 and OSCP145, which were 
used to compare titration data. Cross-relaxation data for OSCP120 is also shown where 
(--) represents unmeasurable resonances, (NR) represents no significant intensity 
reduction, and (R) indicates a reduction in intensity greater than the threshold cutoff of 
0.8. 

Residue 120 CSP  145 CSP  120 CR   

2ALA -- -- --  

3LYS NS -- NR  

4LEU -- NS --  

5VAL -- -- --  

6ARG -- -- --  

9VAL -- -- --  

10GLN -- -- --  

11ILE -- -- --  

12TYR -- S --  

13GLY -- S --  

14ILE -- -- NR  

15GLU -- -- --  

16GLY NS S --  

17ARG -- -- --  

18TYR NS -- --  

19ALA -- -- --  

20THR S S --  

21ALA -- NS --  

22LEU S -- --  
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23TYR -- S --  

24SER NS NS --  

25ALA S S --  

26ALA NS NS --  

27SER NS S --  

28LYS NS NS R  

29GLN NS NS -- * 

30ASN NS NS -- * 

31LYS NS S R * 

32LEU -- NS -- * 

33GLU NS NS NR * 

34GLN -- -- --  

35VAL -- -- --  

36GLU S S NR  

37LYS NS NS -- * 

38GLU NS -- --  

39LEU NS NS --  

40LEU S S --  

41ARG NS S R  

42VAL NS NS -- * 

43GLY NS NS -- * 

44GLN NS NS -- * 

45ILE -- -- --  

46LEU NS S -- * 
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47LYS S S R * 

48GLU NS S -- * 

50LYS NS NS R * 

51MET S S NR * 

52ALA NS S R * 

53ALA NS NS NR * 

54SER NS NS -- * 

55LEU -- S --  

56LEU S S -- * 

57ASN -- NS -- * 

59TYR NS NS NR * 

60VAL NS NS R * 

61LYS NS NS NR * 

62ARG -- -- --  

63SER NS NS --  

64VAL -- S -- * 

65LYS S S -- * 

66VAL S S R * 

67LYS NS S -- * 

68SER NS NS NR * 

69LEU -- -- --  

70SER NS NS NR * 

71ASP -- -- --  

72MET -- -- --  
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73THR NS S -- * 

74ALA NS NS -- * 

75LYS S S -- * 

76GLU NS NS -- * 

77LYS S NS NR * 

78PHE NS NS --  

79SER NS S R  

81ILE -- -- --  

82THR S NS --  

83SER S S NR  

84ASN NS -- --  

85LEU -- -- --  

86ILE NS -- R  

87ASN NS -- R  

88LEU S NS NR  

89LEU NS NS --  

90ALA -- -- --  

91GLU NS S --  

92ASN S S --  

93GLY NS NS NR  

94ARG NS S --  

95LEU NS NS NR * 

97ASN NS NS --  

98THR NS S --  
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100ALA NS NS --  

101VAL -- S --  

102ILE S -- -- * 

103SER NS NS -- * 

104ALA NS S -- * 

105PHE S S --  

106SER NS NS -- * 

107THR -- -- --  

108MET S -- --  

109MET -- NS --  

110SER S S NR  

111VAL S -- R  

112HIS -- NS --  

113ARG S -- NR  

114GLY NS NS NR  

115GLU NS -- NR  

116VAL S NS --  

118CYS S NS --  

119THR S S --  

120VAL NS S NR   
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Figure A1.4. Chemical shift perturbations from titrations of 1 and 2 onto OSCP120 are 
shown in (a) and (b), respectively. Free OSCP120 (red), 1:2 OSCP120:1 (24), 1:4 
OSCP120:1 (blue), and 1:4 OSCP120:2 (gray) spectra are shown. Only resonances that 
exhibited significant chemical shift perturbations are labeled in (a), and peaks labeled in 
(b) are for comparison purposes. Weighted average of chemical shift perturbations (c) 
are color coded to match coloring on the OSCP120 structure (d) with blue representing 
resonances that showed no significant perturbation and red showing those resonances 
with shifts greater than the threshold of 0.01 ppm. Residues that could not be monitored 
are colored in gray and the shoulder region is circled in (d). Protein precipitation was 
observed at 1:8 OSCP:ligand ratios, which precluded further increasing the ligand 
concentration.   
 

The chemical shift perturbations caused by 1 fall in three general regions of 

OSCP120; one is located between helices III, IV, and V (“shoulder”) and includes 

residues M51, L56, K65, V66, K75, K77, T82, S83, and N92; the second is located at the 

C-terminal tails of helices I and VI (“tail region”) and includes residues V111, R113, 

V116, C118, and T119; a third potential locus is located between the “tail” and “shoulder” 



 

 165 

regions (Figure A1.5).  Interestingly, the latter region includes residues A35 and L88, 

which were previously shown to interact directly with the α peptide mimicking the F1 

domain of the F1F0-ATPase(16,20).  

  

Figure A1.5. The structure of OSCP120 (PDB ID# 2BO5) is shown with helices, termini, 
shoulder, and tail regions labeled. 
 

To confirm the data obtained with OSCP120, we used a second OSCP construct 

comprising 145 amino acids (OSCP145).  Unlike the OSCP190, this truncated protein 

did not aggregate and was amenable to chemical shift perturbation experiments with 1. 

Comparing the OSCP120 and OSCP145 spectra reveals that the majority of the 

OSCP120 resonances are not altered due to the additional 25 amino acids in the 

OSCP145 construct (Figure A1.6).  Not surprisingly, residues that showed significant 

differences between the two constructs were primarily located at the N- and C- termini.  

However, chemical shift differences were observed at helix V, which interacts with the F1 

peptide(16). This region, which also undergoes perturbations with 1, may be subject to 
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allosteric conformational perturbations that could be important in mediating OSCP 

interactions with the F1F0-ATPase F1 domain(4).  

 

Figure A1.6. The overlay of OSCP120 (red) and OSCP145 (24) is shown in (a) with 
overlapping residues labeled. Spectra from the titration of 1 onto OSCP145 (b) show 
chemical shift perturbations (labeled) of similar residues between OSCP120 and 
OSCP145. Chemical shift perturbations from the titration of 1 on OSCP120 (c) and 
OSCP145 (d) show that the shoulder region is common in both sets of data and thus is 
likely the biologically relevant binding site. In (c) and (d), residues with weighted average 
chemical shift perturbations greater than the threshold cutoff of 0.01 are shown in red, 
and amino acids showing no significant weighted average chemical shift perturbations 
are colored in blue. Residues that could not be measured are colored in gray and the 
shoulder region is circled in (c) and (d). 
 

Titration with 1 induced chemical shift perturbations in OSCP145 whereas 2 did 

not (Figure A1.7). Several resonances from the shoulder (M51, L56, K65, V66, K75, and 

N92) and middle region of the protein (A35, E36, L40, K47, I102, and F105) that overlaid 

in OSCP120 and OSCP145 showed similar perturbations with 1, including A35, which 
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interacts with the F1 helix (Figure A1.6). Many residues in the shoulder region (E48, A52, 

K67, T73, S79, S83, E91, and R94) also showed larger perturbations with 1 in OSCP145 

compared to OSCP120.  By contrast, some of the perturbations observed in the “tail” 

(residues V116 and C118), middle (L88), and shoulder (T82) regions were less 

pronounced in OSCP145.  Taken together, these data indicate that the shoulder region 

is the most probable binding site for 1 on OSCP. 

 
Figure A1.7. Overlay of free OSCP145 (red) and titration of 2 at a protein:ligand ratio of 
1:4 (gray). The magnitude of chemical shift perturbations is null compared to titrations 
with 1. A (*) indicates peaks that were identified as C-terminal hexa-his tag resonances 
that perturb upon titration with 2 but are not relevant in the biologically native form of 
OSCP. 
 

Since chemical shift perturbations can arise from binding and/or conformational 

changes, cross-relaxation experiments were employed to localize the binding site of 1 on 
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OSCP120(25)  For these studies, 2D HSQC spectra of OSCP following saturation of 

specific 1H resonances in 1, and an equivalent reference spectrum with off-resonance (-

50 ppm) saturation were measured.  A reduction in OSCP resonance intensities in the 

on-resonance (Isat) versus off-resonance (Io) experiment indicates cross-relaxation 

processes due to proximity of ligand protons to OSCP amide protons resulting from a 

specific binding interaction.   

 

Figure A1.8. Intensity ratios (Isat/Io) from cross-relaxation experiments saturating protons 
at positions (7), (10), and (24) and their average is shown in (a). The 32 residues that 
were measured are color coded according to intensity reductions with those showing no 
significant reduction in intensity colored in blue and resonances showing intensity 
reductions greater than the threshold cutoff of 0.8 colored in red. The same color 
scheme is used in (b) with labeled residues being those that showed significant intensity 
reductions in any of the three sets of cross-relaxation data. Residues that could not be 
monitored are colored in gray and the shoulder region is circled in (b). 
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Although the cross-relaxation experiment is inherently insensitive since it 

recorded in 90% D2O to avoid saturation of the water resonance, and despite the limited 

solubility of OSCP, which further limited sensitivity, 32 well-resolved resonances with 

sufficient signal:noise were observed in the OSCP120•1 complex.  As shown in Figure 

A1.8, significant intensity reductions (>20%) are observed for a number of residues.  The 

majority of these residues (R41, K50, A52, V60, V66, S79, I86, and N87) fall in the 

“shoulder” region.  Cross-relaxation to residues in the tail region (K28, K31 and V111) 

was also observed and V111 corresponds to a residue for which significant chemical 

shift perturbations upon titration of 1 were measured. However, this site is most likely 

cryptic and only present in the truncated OSCP constructs since the perturbations are 

diminished or otherwise significantly altered in OSCP145.  Taken together, the chemical 

shift perturbation and cross relaxation studies are consistent with a unique binding site 

for 1  on the OSCP.   

 

A1.4 Conclusion 

 Inhibitors of the mitochondrial F1F0-ATPase are powerful tools for probing the 

structure and function of the enzyme and like Bz-423, some have therapeutic potential. 

A diverse group of molecules inhibit the enzyme by binding within the F1 domain(26-28).  

Representative compounds here include the antibiotics aurovetrin and efrapeptin, 

phytochemicals like resveratrol, and the naturally occurring peptide inhibitor, IF1.  

Aurovetrin binds to βTP and βE states of the enzyme and is thought to function by 

preventing closure of the interfaces necessary for catalytic cycling between subunit 

conformational states(4,29-32). Efrapeptin interacts with the γ and βE subunits where it 

can block re-charging after catalysis(29). Similarly, resveratrol inhibits the F1F0-ATPase 

by binding between the γ and βTP subunits where it can block the rotation of the γ subunit 

so that the catalytic cycle cannot progress(33). IF1 inhibits ATP hydrolysis when the 
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ability of the enzyme to synthesize ATP is compromised.  IF1 is thought to function by 

hindering the closure of the αDP-βDP catalytic interface thereby blocking ATP 

hydrolysis(34).  Several molecules such as the macrolide oligomycin inhibit the F1F0-

ATPase by binding to the embedded F0 domain(8). Biochemical studies suggest that 

oligomycin binding blocks the flow of protons through the c-subunit.  

Here we used NMR spectroscopy to investigate binding of a water-soluble Bz-

423 analog to OSCP constructs of varying length in an effort to define the binding site for 

these inhibitory benzodiazepines on the protein.  The chemical shift perturbation data on 

both OSCP120 and OSCP145 together with cross-relaxation data for OSCP120 suggest 

that 1 most likely binds to the shoulder region in a pocket defined by residues M51, L56, 

K65, V66, K75, K77, and N92. The peak intensities of unbound OSCP120 suggest that 

both the shoulder and tail regions are more flexible relative to the rest of the protein, 

potentially allowing for local rearrangements to occur upon ligand binding (data not 

shown).  While we cannot rule out a possible secondary binding site in OSCP120 

involving the tail region, this interaction was diminished in OSCP145, indicating that 

interactions at this site are not likely relevant and probably result as a consequence of 

the truncation only present in the 120-amino acid long OSCP construct.  

Several residues show chemical shift perturbations in the titration experiments 

but no significant cross-relaxation, which is most consistent with conformational changes 

on binding to 1.  These residues include A35 and L88, which are thought to directly 

interact with the F1 (16,35). L88 along with other residues in its vicinity also shift when 

comparing free OSCP120 and OSCP145, even though the 25 amino acids are added to 

the C-terminal end of OSCP145. Based on the NMR structure of OSCP120, L88 is 

distant from the additional 25 amino acids.  These data further support the hypothesis 

that this region of the OSCP is susceptible to conformational changes, which may be 
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important for the function of the protein in the fully assembled enzyme and the activity of 

Bz-423 like inhibitors.   

Based on our data, we propose an allosteric model for the inhibitory action of 1.  

Binding of 1 to the shoulder region of OSCP results in conformational rearrangements at 

a site that contacts the F1 domain of F1F0-ATPase, which interferes with the rotary 

mechanism of catalysis (Figure A1.9).  Allosteric communication between 1 and F1 

binding sites may be achieved by relative twisting motions of helices I and VI.  Such a 

structural rearrangement could explain the widespread perturbations observed in the 

middle region linking 1 and the F1 binding site.  

 

Figure A1.9. Proposed allosteric model where binding of 1 causes conformational 
rearrangements (at helices I, V, and VI) in OSCP thus altering OSCP-F1 interactions. 
Stars indicate site for the OSCP-F1 peptide interaction that were perturbed during 
titration experiments with 1. 

 

Another group of benzodiazepines have been reported that are structurally 

similar to Bz-423(24).  Unlike Bz-423, these compounds selectively inhibit ATP 

hydrolysis catalyzed by the mitochondrial F1F0-ATPase and may have use as anti-

ischemia drugs.  Preliminary studies suggest that these benzodiazepines also function 

through binding to the OSCP(36).  Together, these data highlight the important role the 

OSCP plays in regulating both the synthetic and hydrolytic the function of the 
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mitochondrial F1F0-ATPase.  A better understanding how these compounds interact with 

the OSCP and inhibit the enzyme should assist in further elucidating the function of the 

OSCP and may also provide additional opportunities for drug discovery.   

 

This work was published in the journal Biopolymers(37). Experimental Design was conceived by Al-Hashimi H. M. and 
Stelzer A. C. OSCP was synthesized by Frazee R. Stelzer A. C. collected and analyzed the NMR data. 
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Appendix 2 

 

 

SAS Methodology 

 

 

A2.1 Design of “NMR invisible” elongated RNA 

 The elongation of an RNA target is typically preformed by extending the length of a 

terminal helix using a stretch of Watson-Crick base-pairs(1). To avoid increasing spectral 

overlap due to elongation residues, an isotopic labeling strategy is used to render 

elongation residues “NMR invisible”(1). Here, two constructs are prepared in which 

stretches of alternating unlabelled A–U/U-A (E-AU-RNA) and G–C/C-G (E-GC-RNA) 

base-pairs are employed for elongation using otherwise uniformly 13C/15N labeled G–C 

and A–U nucleotides, respectively(1). Two G-C base pairs are added to the terminal end 

of E-AU-RNA to facilitate RNA synthesis by in vitro transcription. Structure prediction 

software such as mfold 3.3 are used to ensure that no alternate structures form as the 

result of elongation (34). The two constructs thus allow acquisition of NMR data over the 

entire RNA target while keeping elongation residues “NMR invisible”.  

 One must ensure that the elongation does not perturb the structural and functional 

integrity of the RNA. This can be conveniently done by comparing spectra of elongated 

and non-elongated RNA samples. In general, elongation of terminal helices is not 

expected to give rise to significant RNA structural perturbations. However, depending on 

the RNA context, elongation of other non-terminal helices, which can allow the 
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measurement of independents set of RDCs (and RCSAs) that can be applied to 

generate structural dynamics with enhanced spatial resolution (2), may cause unwanted 

perturbations and should be carefully analyzed.  

 The degree of helix elongation needed to sufficiently decouple internal and overall 

motions will vary depending on the RNA target. In general, the elongation should render 

a target helix at least 4-5-fold longer than other helices in the RNA. If a structure for the 

RNA target is available, one can perform simulations using programs such as PALES(3), 

using idealized A-form helices to model the elongated helix(2), to examine the degree of 

motional coupling. In these simulations, one computes the variance in the predicted 

overall alignment tensor relative to the elongated helix as a function of varying the 

relative orientation of other shorter helices in the RNA. In general, the principal direction 

of order (Szz) should not vary more than ±7 degrees about the elongated axis and the 

asymmetry (η) should always be <0.15. The secondary structure of an E-RNA construct 

should be verified using a secondary structure prediction programs such as mfold 3.3 to 

make sure that no alternative secondary structures can form(4). The E-RNA NMR 

samples (> 0.2 mM) are prepared using standard in vitro transcription reactions 

employing the appropriately 13C/15N labeled nucleotides(5,6). Formation of the elongated 

helix can be verified using NMR(1). First, one expects to observe an intense 1H signal 

corresponding to the chemically degenerate Watson-Crick hydrogen bonded imino 

protons of guanines and uridines used in the elongation in 1D 1H spectra. Second, one 

expects to observe signals that are characteristic of sequential 13C/15N enriched terminal 

GC base-pairs in the elongated helix, which are included to enhance transcription 

efficiency. 

 

 A2.2 Partial alignment of E-RNA  
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 The measurement of RDCs in solution NMR is contingent upon inducing an 

appropriate degree of alignment typically on the order of 10-3(7). These levels of 

alignment can now be routinely achieved by dissolving biomolecules in inert ordered 

media (for reviews see(8,9)) that transmit some of their order to solute molecules 

through mechanisms that are believed to involve a combination of steric obstruction and 

charge-charge interactions. The most popular and commercially available ordering 

medium is Pf1 phage(10,11). Relative to other media, Pf1 phage is tolerant to the high 

salt concentrations used in nucleic acid samples and is negatively charged thus reducing 

the possibility for adverse inter-molecular interactions. Pf1 phage is available 

commercially or can be prepared using the methods described in reference(10). 

Typically, a Pf1 solution is exchanged into NMR buffer by repeated (at least three) 

rounds of ultracentrifugation (1hr in a Beckman TLA-100.3 rotor at 95,000 rpm, or 3-6 

hrs in a VTi50 rotor at 40,000 rpm) followed by re-suspension of the pellet into the NMR 

buffer. Alternatively, one can dialyze Pf1 phage into the desired buffer. After completing 

the aligned experiments, the same ultracentrifugation procedure can in principle be used 

to recover the nucleic acid (supernatant) from the phage solution (pellet). Note that it will 

generally be difficult to achieve perfect separation of the nucleic acid sample from the 

phage medium.  

 Owing to their large structural anisotropy, the concentration of Pf1 phage needed 

to align E-RNA samples (~6-8 mg/ml) is usually considerably smaller than for non-

elongated RNA (~20-25 mg/ml). If a model structure for the RNA is available, programs 

for predicting steric alignment such as PALES(3) can be used to assess relative levels of 

order and the Pf1 phage concentration be adjusted accordingly. The aligned RNA 

sample is typically prepared by adding a pre-concentrated RNA solution (~0.5-1.5 mM) 

in NMR buffer to a desired volume of Pf1 phage (50 mg/mL) in NMR buffer in an 

Eppendorf tube and the sample gently transferred into the NMR tube avoiding formation 
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of bubbles. It is important to verify that the ordering medium does not interfere with the 

RNA conformation by comparing chemical shifts obtained in the unaligned and aligned 

samples. Note that small variations in the chemical shifts of nucleobase carbons and 

nitrogens are expected between unaligned and aligned samples due to incomplete 

averaging of Residual Chemical Shift Anisotropies (RCSAs) (12-14). These RCSA 

contributions scale linearly with the magnetic field and degree of order.  

 It should be noted that an alternative approach for aligning nucleic acids involves 

spontaneous alignment due to interactions with the magnetic field itself. Although the 

degree of field induced alignment remains smaller than optimal, there are reasons to 

believe that optimal levels will inevitably be reached as larger nucleic acids are 

investigated and magnetic field strengths continue to rise. This approach is not 

described here and the reader can consult reviews on this topic. 

 

A2.3 Measurement of RDCs in E-RNA 

 A large number of pulse sequences have been reported for the measurement of a 

wide variety of RDCs in nucleic acids. These experiments are not described in detail 

here as they have been reviewed elsewhere.(52) The RDCs are generally computed 

from the difference in splittings observed in the absence (J) and presence of alignment 

media (J+D). For large E-RNA, it is important to employ TROSY schemes for measuring 

RDCs in the nucleobases(15). For example, CH splittings in the nucleobases are 

measured as the difference between the upfield and downfield components of the 1H –

13C doublet along the 1H dimension using the narrow TROSY component in the 13C 

dimension. For E-RNA, the most commonly targeted RDCs are those between directly 

bonded C-H and N-H nuclei (e.g. C2H2/C8H8 of the adenine and guanine bases, 

C5H5/C6H6 of the uracil and cytosine bases, N1H1 and N3H3 of the guanine and uracil 

bases, and C1’H1’ of the ribose), which yield the largest RDC magnitudes. While 
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additional one, two, and three bond RDCs can also be measured, these RDCs are 

smaller and may prove difficult to measure in larger E-RNAs (>60 nt).   

 When using frequency domain experiments to measure splittings, phase distortions 

due to improper calibration of timing delays and/or imperfections in shaped pulses can 

yield splitting measurement errors that are larger than theoretical limits (approximately 

given by 0.7*Linewidth*(1/Signal:Noise))(16). To avoid differential contributions from 

magnetic field induced RDCs and relaxation interference effects, splittings in unaligned 

and aligned samples should be measured at the same magnetic field strength. It is 

advisable to estimate the experimental RDC uncertainty from the standard deviation in 

duplicate measurements. Resonances exhibiting significant differences (>3σ) as a result 

of considerable broadening, overlap, presence/absence of unresolved multiplets should 

not be used in subsequent data analysis.  

 

A2.4 Normalizing RDCs measured in distinct E-RNA samples 

 The RDCs measured in the different E-AU and E-GC samples need to be 

normalized to take into account possible differences in the degree of alignment before 

the data can be pooled together and analyzed in constructing atomic-resolution 

ensembles(2). The normalization is carried out using RDCs measured in contiguous 

Watson-Crick base-pairs, which can be modeled assuming an idealized A-form 

geometry (see below). The errors introduced due to A-form structural noise can be 

estimated as described previously(53). The normalization is accomplished by repeatedly 

fitting the total pool of RDCs to individual idealized A-form helices following uniform 

scaling of the RDCs measured in one sample (typically the sample with the lesser 

number of measured RDCs) by a normalization factor L. The L value that minimizes the 

Quality factor (Q)(17) is computed using(2): 
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.        

 (4) 

 

Fitting of the RDCs to the A-form helices can be accomplished using various programs 

including ORDERTEN-SVD(18), REDCAT(19), PALES(3), iDC(20), CONFORMIST(21) 

and RAMAH(12). 

 

 

A2.5 Determining the overall order tensor 

  The interpretation of E-RNA RDCs is greatly simplified by determining the overall 

order tensor governing alignment. The overall order tensor can be determined using 

RDCs measured in the reference elongated helix using a procedure that has been 

described in detail elsewhere(22,23). The procedure is briefly outlined below: 

1. Build idealized A-form helices (PDB files) corresponding to the sequence of the 

reference helix. For example, to build an A-form helix using the Biopolymer 

module of Insight II 2000.1 (Molecular Simulations, Inc): click on the module icon 

in the upper left corner and select append from the nucleotide menu. In the pop-

up box, select “A_RNA_Duplex”.  Input a name for the molecule into the text 

field. Next, select the appropriate Watson-Crick base-pair in the Nucleotide text 

field. Continue to append base-pairs – following along in sequence from 5’ to 3’ – 

until you have completed building the desired helix. Click cancel and then select 

the File menu and choose the desired export option for the helix coordinates. The 

idealized A-form helices should conform to published parameters(23-25). If 

building helices using INSIGHT II 2000.1 (Molecular Simulations, Inc.), care 
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needs to be taken to correct the propeller twist angles to the proper value of -

14.50. We have a program named HPmod to correct for the improper propeller 

twist (available from Author upon request). Programs such as Curves 5.1(26), 

FreeHelix98(27), 3DNA(25,28) , SCHNAaP(29), NUPARM and NUCGEN(30) 

can be used to compute relevant helix parameters.  

2. Compute five order tensor elements for each A-form helix by fitting the RDCs to 

the A-form PDB coordinates. Several programs are available to carry out such 

calculations including ORDERTEN-SVD(18), REDCAT(19), PALES(3), iDC(20), 

CONFORMIST(21) and RAMAH(12). Note, non-ideal WC base-pairs are 

excluded from this analysis. In our lab RAMAH is used to determine the five 

order tensor elements.  

3. Examine the correlation between measured and back-calculated RDCs. Major 

outliers should be interrogated for possible measurement errors.  

4. Use AFORM-RDC(23) or other approaches(31) to estimate the order tensor error 

due to structural noise and RDC measurement uncertainty.  

 Owing to the uniform distribution of charge in polyanionic nucleic acids, the steric 

and electrostatic forces are believed to have a similar functional form(32,33). 

Consequently, E-RNAs are expected to align in ordering media with the principal 

direction of order (Szz) oriented along the elongated axis. In general, one expects 

positive alignment (Szz> 0) with the Szz direction being, on average, oriented parallel to 

the magnetic field(2). The asymmetry of alignment is also expected to be nearly axially 

symmetric (η~0)(2). 

 

A2.6 Molecular Dynamics (MD) simulations of RNA 

 MD simulations are used in this case to generate a large conformational pool that 

can be filtered using experimental RDCs so as to generate a more accurate ensemble of 
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RNA conformers. A variety of MD simulation packages and force-fields can be employed 

to simulate nucleic acids. Here we describe a protocol for simulating RNA using the 

CHARMM MD package(34) with force-field parameter set 27 for nucleic acids(35). 

A) System Preparation using MMTSB Toolkit: To prepare the system for simulation with 

CHARMM, the MMTSB Toolset (http://blue11.bch.msu.edu/mmtsb/Main_Page)(36) is 

used. The Toolset consists of a set of perl scripts that can be used to prepare, initiate 

and analyze a system for MD simulation. Here they are only described in terms of 

preparing a system for an MD simulation: 

i. Obtain coordinates for the RNA from the Protein Data Bank (PDB) 

(http://www.pdb.org) or the Nucleic Acid Database (NDB) 

(http://ndbserver.rutgers.edu/). Use the MMTSB toolset script convpdb.pl to 

add solvent and ions to the system using the command: convpdb.pl -solvate -

cutoff 15 -cubic -ions SOD:27 hivtar-0.pdb > hivtar-0-solvated-ions.pdb. In this 

example -solvate flag indicates that pdb solvent molecules will be added,  

-cutoff 15 specifies the distance (15 Å) from the RNA to the edge of the 

solvent cube, -cubic specifies a solvent shape (alternatively a octahedron 

water box could be specified with -octahedron flag), -ions SOD:27 specifies 

that 27 sodium ions be added to make the system charge neutral, and hivtar-

0.pdb indicates the input pdb file.    

ii. Use the MMTSB toolset script genPSF to generate protein structure file (PSF) 

and CHARMM formatted coordinate file using the command: genPSF.pl -par 

nodeoxy -crdout hivtar-0-solvated-ions.cor hivtar-0-solvated-ions.pdb > hivtar-

0-solvated-ions.psf. Here the -par nodeoxy flag specifies that the system is an 

RNA molecule, -crdout and hivtar-0-solvated-ions.cor specifies the filename 

for the output CHARMM formatted coordinate, and is hivtar-0-solvated-

ions.psf is the output PSF file.  
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B)  Equilibration using CHARMM 

i) Read in parameter and topology file set 27 for nucleic acids 

ii) Read in generate PSF and coordinates files 

iii) Do 500 steps Steepest Descent (SD) minimization to remove bad contacts 

using the CHARMM MINI SD module 

iv) Place harmonic constraints on heavy atoms of the RNA using CONS HARM 

(see CHARMM’s cons.doc manual) and perform 1000 steps of SD 

minimization, followed by 2000 steps of Adopted Basis Newton-Raphson 

(ABNR) minimization or until energy converges (see CHARMM’s minimiz.doc 

manual). This process allows solvent and counter-ions to relax around the 

RNA. 

v) The energy minimized structure is heated up to 300 K, by carrying out a 

series of constant temperature simulations starting at 0 K for ~20 ps at each 

temperature. The temperature is increased by 25 K each incremental time-

step using coordinates from the previous run as input for the next 20 ps 

simulation. We usually use the Nosé Hoover thermostat with a coupling 

constant of 100 ps -1 together with the Velocity Verlet (VVER) integrator with a 

integration time-step of 1 fs. Periodic boundary conditions are used, with 

electrostatics calculated using particle-mesh Ewald and Lenard-Jones 

interaction truncated at 12 Å, with a switching function applied between 10 to 

12 Å. 

vi) At 300 K the harmonic constraint is gradually removed by decreasing the 

force constant. 

vii)  Equilibration is continued at 300 K and without any harmonic constraints for 

an additional 500 ps. 
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viii) Generation of trajectory: Generation of structural ensembles from an MD 

derived pool of conformations hinges on the ability to adequately sample the 

relevant regions of conformational space. It has been shown that using 

multiple short trajectories may enhance the rate of conformational 

sampling(37,38) when compared to a single long trajectory of same effective 

length, which is advantageous to our methods since we use experimental data 

to filter unrealistic conformations. In this protocol we will describe the use of 

multiple short trajectories to generate such selection pools. 

ix) Initiate a set of independent MD constant temperature replica trajectories 

starting from the same equilibrated structure generated in part-A. We have 

found 50 replicas to be sufficient. The thermostat, integrator and non-bonded 

energy calculation options are same as stated above. 

x) Assign each replica a different set of initial velocities by specifying a different 

seed value for the random number generator used to assign initial velocities 

using the ISEED input flag into DYNA. 

xi) Generate trajectories of about ~ 3 ns, while saving conformations each 1 ps.  

xii) Discard the first 1 ns and pool the remaining ~ 2 ns trajectories for each 

replica to create a selection pool.  In this case we generated ~100,000 

conformations. Use this pool for selection of structural ensembles as 

described below. 

 

A2.7 Combine NMR RDCs and MD to generate a structural ensemble – Sample and 

Select 

 he Sample and Select method was originally implemented as a tool to generate 

structural ensembles of proteins using a combination of MD and NMR derived NH spin 

relaxation order parameters (S2)(39). The basic idea is to sample the relevant 
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conformational space and then select a sub-ensemble that is most consistent with the 

experimental data. We adapted this method to use RDCs measured on E-RNA to select 

structural ensembles of RNA from a selection pool derived from an MD simulation(40). 

The SAS selection is preformed following the recently described procedure(40) in which 

one minimizes a cost function utilizing a Monte-Carlo simulated annealing approach: 

i) Randomly select an N-membered subset of structures from the total pool of M 

structures and calculate  using , where  and 

 are the calculated and measured RDCs, respectively, and L is the total 

number of bond vectors. 

ii)  Randomly replace one of the N-membered structures with a randomly chosen 

structure from the remaining M-N conformational pool. Accept the move for 

step k to k+1 if . If , accept the move with a 

probability , where Ti is the effective temperature. We 

typically use a linear cooling schedule, specifically Ti+1 = 0.9Ti, where the 

index i runs over the temperature increments.  

iii) Continue Monte-Carlo annealing simulations until  converges. In our    

simulations with M = 80000, N=20 and L=82, convergence was achieved within 

100 temperature increments with each consisting of 100,000 MC steps. 

  

Once an ensemble is constructed, it is important to have the means to establish 

its validity. This can be done using experimental data that is not included in the selection 

process. In addition to RDCs, future studies can also include RCSAs(43, 45), NOEs, as 

well as spin relaxation order parameters(69, 70), or data from other experimental 

techniques such as SHAPE foot printing(71) data and fluorescence(72). The constructed 
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ensembles can also be compared with expected parameters. For example, average and 

standard deviations for various base angles have been reported for Watson-Crick base-

pairs that are flanked by other Watson-Crick base-pairs in A-form helices(53). Last but 

not least, the ensemble can be interpreted in light of known mechanistic aspects of the 

RNA function. 
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