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ABSTRACT

Studies on the Asymptotic Behavior of Parameters in Optimal Scalar Quantization

by

Victoria B. Yee

Chair: David L. Neuhoff

The goal in digital device design is to achieve high performance at low cost, and

to pursue this goal, all components of the device must be designed accordingly. A

principal component common in digital devices is the quantizer, and frequently used

is the minimum mean-squared error (MSE) or optimal, fixed-rate scalar quantizer. In

this thesis, we focus on aids to the design of such quantizers.

For an exponential source with variance σ2, we estimate the largest finite quan-

tization threshold by providing upper and lower bounds which are functions of the

number of quantization levels N . The upper bound is 3σ logN , N ≥ 1, and the lower

bound is 3σ logN + oN (1)σ − 1.46004 σ, N > 9. Using these bounds, we derive an

upper bound to the convergence rate of N 2D (N) to the Panter-Dite constant, where

D (N) is the least MSE of any N -level scalar quantizer. Furthermore, we present two,

very simple, non-iterative and non-recursive suboptimal quantizer design methods for

exponential sources that produce quantizers with good MSE performance.

For an improved understanding of the half steps and quantization thresholds in

optimal quantizers as functions of N , we use as inspiration the result by Nitadori [19]

where, exploiting a key side effect of the source’s memoryless property, he derived an

infinite sequence such that for any N , the kth term of the sequence is equal to the

kth half step (counting from the right) of the optimal N -level quantizer designed for

a unit variance exponential source. In our work, using an asymptotic version of this

key side effect which holds for general exponential (GE) sources parameterized by

an exponential power p and a utilizing a method of our own devising, we show that

for such a source, the kth half step of an optimal N -level quantizer multiplied by the

(p−1)st power of the kth threshold approaches the kth term of the Nitadori sequence

x



as N grows to infinity. Thus, the Nitadori sequence asymptotically characterizes the

cells of MMSE quantizers for GE-sources, as well as exponential.
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CHAPTER I

Introduction

1.1 Motivation and Problem Statement.

We live in a digital world. Everywhere we look, there is plenty of evidence to sup-

port the claim that society has certainly embraced the conveniences afforded by using

digital devices such as cell phones, PDAs and laptop computers. The pervasiveness of

society’s use of digital machines is, in large part, due to technological advances which

have improved the speed, accuracy and precision with which these machines perform

tasks. Lower production and operating costs, also important factors, can often times

be brought about by improvements in the design and development of devices as well.

All of these factors, improved performance and lower cost, lead to wide availability,

affordability and utility for the public which results in the ubiquitous use of these

devices in our daily lives.

Justifiably, much of the gain in performance of these devices has been attributed

to progress made in the design and development of central processing units (CPUs)

and of the algorithms run by CPUs. This makes sense because, as seen in Figure 1.1,

each digital device contains a CPU and the CPU utilizes algorithms to manage the

process of completing a task. Thus, if the CPU has increased capability (e.g., faster

processing speed, lower operating temperature, etc.) to oversee a task, then this gain

will manifest itself in the device’s performance. Concentrating solely on improving

device performance through advances in CPU and algorithm technology, however,

limits the gains that can be achieved. This is because the CPU, through its algorithm,

acts on binary/numerical input that represents information regarding a real-world

event (e.g., outdoor temperature at 5 p.m.). If the numerical input data provided to

the CPU through the device’s interface components is crude, then the effectiveness

of the CPU to manage the task through its output is clearly hindered. Thus, to

achieve the best performance gain for the device, all components of the device must

1



be considered for improvement. In this thesis, our focus centers on one of the other

components common to digital devices: the quantizer.

Interface

0100, 1100, ....

...

Analog World

bits

quantizer

Digital Device

binary
CPUsamplersensor encoder

source coder

q (x)

to
Output

Figure 1.1: Simplified schematic of a general digital device showing its component
parts and processing chain.

Housed inside of the source coder (see Figure 1.1), a quantizer takes samples x

of an analog input, modeled as a random variable X, and produces a discrete-valued

output which is then converted into bits by the binary encoder. One of the most

simple, yet commonly used quantizers is the fixed-size scalar quantizer which takes

the real value x and maps it to another real value µi belonging to a finite subset

of N real numbers {µi}Ni=1 called quantization levels.1 In other words, a quantizer

effectively partitions the real numbers into N subsets {Si}Ni=1 and assigns to each

subset Si = [ti, ti−1), a real-value µi so that to each analog input x received by the

quantizer, the output µi that is produced corresponds to the particular subset Si that

x belongs to, i.e., x ∈ Si. From this description, it is clear that the output value µi

produced by the quantizer is generally an approximation of the input value x and

that increasing N should serve to improve the approximation. However, increasing

N increases the complexity of not only the quantizer’s implementation, but also of

its output which is seen as an increase in the range of possible output values. Since

increased complexity in the quantizer’s output requires increased complexity in all of

1The quantizer described is known in the literature as a fixed-rate scalar quantizer, and from this
point on, any reference to a quantizer will be of this type.
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the other device components following it in the processing chain shown in Figure 1.1,

it is clear that increasing N translates to a rise in overall cost. Thus, while creating

a quantizer involves

• deciding on the size N of the partition,

• deciding how to partition the real numbers into a set of N intervals [ti, ti−1),

and

• for each interval [ti, ti−1) of the partition, deciding which value µi to assign to

it,

it is the job of the quantizer designer to formulate a quantizer that provides a sufficient

level of approximation accuracy to the CPU while keeping N as small as possible in

order to minimize cost.

Minimum mean-squared error (MMSE) or optimal quantizers. A com-

monly used measure of accuracy is mean-squared error and N -level minimum mean-

squared error (MMSE) quantizers are quantizers which achieve the lowest mean-

squared error for a given partition size N . (See Figure 1.2 for a diagram of an optimal

quantizer.) The MMSE or optimal quantizer is a popular design choice that is favored

for several reasons: Performance is mathematically-based and tractable (as opposed

to task-dependent performance criteria); there is available the Lloyd-Max algorithm

([13], [15]), a general, iterative algorithm for designing optimal quantizers for a va-

riety of input sources ([7] and [23]); and perhaps most importantly, these quantizers

work pretty well for a variety of applications (i.e., low MSE seems to correspond to

high task-based accuracy). Therefore, for a given value of N , the optimal quantizer

designer must determine the positions of the quantization thresholds ti which define a

partition of the real numbers while also designating the values µi (one value for each

subset of the partition) so that the mean-squared error produced by the quantizer is

minimized.

Our goal. In this thesis, we seek to provide aids to the design of optimal quantizers

by investigating the structural relationships that exist between the partition thresh-

olds ti (called quantization thresholds) and the quantizer output values µi (called

reconstruction levels) of optimal quantizers. In particular, our study focuses on ana-

lyzing the behavior of the difference µi − ti which we will refer to as the half step of

the ith quantization cell as it relates to the corresponding half steps of neighboring

quantization cells.

3



1.2 Background and Known Results.

Optimal quantizer design: The Lloyd-Max algorithm. The Lloyd-Max algo-

rithm ([13], [15]) is a general design method which can be used to design quantizers

for a variety of input sources.2 The method is based on the observation (made inde-

pendently by Lloyd [13] and by Max [15]) that the thresholds and levels of optimal

quantizers must satisfy two optimality conditions: 1) µi must be the centroid of the

set to which it belongs, and 2) the threshold ti lying between any two adjacent levels

µi, µi+1 be equidistant from them. After being initialized with an estimate of the key

parameter or support threshold (the largest finite threshold) of the desired quantizer,

the algorithm uses the optimality conditions to iteratively converge to a numerical

solution, consisting of the set of thresholds and levels that characterize the requi-

site quantizer. The significance of starting the algorithm with an accurate support

threshold approximation can be seen by observing that fewer algorithmic iterations

are required the closer the support threshold estimate is to the optimal value. Thus,

the sensitivity of the algorithm (as measured by the number of iterations performed)

to the accuracy of the initializing support threshold estimate complicates use of this

method since it necessitates some knowledge of the desired quantizer before it has yet

been designed.

������������������������������������������� � �� � x���������	�	�	�	
�
�
�
�
�
�
�������������� � �  x
0

xxx ������������������������ ������

∆
(N)
5 ∆

(N)
3 ∆

(N)
2 ∆

(N)
1∆

(N)
4

µ
(N)
1µ

(N)
2µ

(N)
3µ

(N)
4µ

(N)
5

t
(N)
1t

(N)
2t

(N)
4 t

(N)
3t

(N)
5 t

(N)
0

∞

Figure 1.2: Diagram of a 5-level optimal scalar quantizer, where t
(N)
k are the quanti-

zation thresholds, µ
(N)
k are the quantization levels and ∆

(N)
k are the half

steps. Note: The notation used in this figure will be formally defined in
Chapter II.

Optimal exponential quantizer design: Nitadori’s method. In the special

case of optimal quantizer design for exponential sources, there exists a non-iterative,

2For more information on this topic, see Chapter II, Section 2.2, under Optimality Conditions
(especially the footnote in that discussion), where under certain source conditions, satisfying the
optimality criteria becomes sufficient to guarantee that the solution produced by the Lloyd-Max
algorithm is both unique and optimal.
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recursive design method devised by Nitadori [19] that produces the exact specifi-

cation for such quantizers. His method [19], which also uses the optimality condi-

tions ([13], [15]), advantageously exploits a special property exclusive to exponential

sources, the memoryless property. This property allows for the construction of a

generating equation, called the Nitadori generator, which when solved, yields the

quantizer specifications as sequence. In more detail, the solution sequence, referred

to as the Nitadori sequence [19], is an infinite series of values such that for any N ,

the kth term of the sequence is equal to the kth half step, defined as the distance

between the quantization level µk and the lower threshold tk of the kth quantization

cell (see Figure 1.2), of the optimal N -level quantizer designed for a unit variance ex-

ponential source. Solving the Nitadori generator in order to determine the sequence

values is, however, a recursive process, which generates the next sequence value based

on knowing the previous value, that can only be done numerically. Thus, while this

method is unlike the Lloyd-Max algorithm in that it is a non-iterative way to design

optimal exponential quantizers, the numerically generated solutions it produces ob-

scures, just as is the case when using the Lloyd-Max algorithm, any perception of the

relationships that exist between the parameters (ti, µi) of such quantizers.

Also in [19], Nitadori showed that the MSE of an optimal, N -level, unit variance

exponential quantizer is exactly equal to the square of the Nth term of the Nitadori

sequence.

Asymptotic quantization theory and asymptotically optimal quantizers.

In addition to directly studying the structure of optimal quantizers, asymptotic quan-

tization theory, which considers the case when the number of levels N is large in

a quantizer, along with the study of asymptotically optimal quantizers, quantizers

whose N -level MSE performance divided by the least achievable N -level MSE perfor-

mance converges to 1 as the number of levels N increases to infinity, have together

yielded important relationships related to the number of levels N in such quantizers.

The combined results by Bennett [2], and Panter and Dite [20] in these areas give:

• An implementation method for realizing asymptotically optimal quantizers that

utilizes companding (asymptotically optimal companding system)

• An expression (in N) for the support threshold of asymptotically optimal com-

panding systems (which does not yet exist for optimal quantizers)

• A limiting relationship that indicates how the MSE of optimal quantizers decays

as a function of N

5



• An asymptotically optimal compressor function (part of an asymptotically op-

timal companding system) which can be interpreted as a distribution-like func-

tion which “predicts” the distribution of quantization levels as a function of N

according to a specific location along the real axis (optimal point densities)

Since the connection between the MSE performance of asymptotically optimal quan-

tizers and the MSE performance of optimal quantizers is asymptotic in N , it would

seem natural that the structure of asymptotically optimal quantizers and the struc-

ture of optimal quantizers (in terms of thresholds ti, levels µi and half steps µi − ti)

should also resemble each other asymptotically in N as well. This idea that quantizers

with similar performance should have similar structure (in terms of the placement of

thresholds and levels) is the seed for some of the following results discussed next.

Known support threshold estimation results. Work on developing support

threshold estimation techniques has mostly relied on adhoc methods to produce es-

timates. Bucklew and Gallagher[3] used the support threshold of an asymptotically

optimal companding system to approximate the support threshold for an optimal

quantizer. Lu and Wise [14] constructed an estimator of the form c1 logN + c2 via

curve-fitting, by first computing the exact support thresholds of optimal quantizers

(for Gaussian, Laplacian and Rayleigh sources) with N = 4 to 64 levels. The con-

stants c1 and c2 were then determined using least squares and extrapolation was used

to generate estimates for values N > 64. Na and Neuhoff [17] proposed a numerical

method of estimating the support threshold that is based on minimizing an approx-

imation (from asymptotically optimal quantization theory) to the MSE of optimal

quantizers. Na and Neuhoff [18] also developed several other adhoc (non-numerical)

estimators (for the quantization of generalized gamma sources). All of these esti-

mators possessed the same dominant function (in N , according to the source being

quantized) which indicated the likelihood that their estimators had captured the

“correct” growth rate (in N) of the optimal support threshold function. Numerical

evaluation of these estimators against the true support threshold values appear to

confirm this.

Rigorous theoretical work on support threshold estimation for optimal quantizers

has been more difficult to come by. For optimal quantizers, only the following results

related to optimal, unit variance Laplacian quantizers (Na [16]) have been reported:

1. The ratio of the support threshold over the function 3√
2
logN (which is the

estimator given in [3]) goes to 1 as N → ∞.
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2. The lim sup (in N) of the difference between the support threshold and 3√
2
logN

is less than a small constant 0.0669.

In regards to support threshold estimation of N -level uniform scalar quantizers, a

suboptimal class of quantizers in which quantizers use N equal-sized intervals to

partition the real numbers, along with output values which are the midpoints of those

intervals, Hui and Neuhoff [10] rigorously derived the support threshold functions (in

N) of such quantizers for the family of generalized gamma sources.

1.3 Contributions.

Chapter III: Aids to the design of optimal exponential quantizers. Since

our primary interest is to study the relationships that govern the placement of thresh-

olds and levels in optimal quantizers in general so as to improve our understanding of

how to design such quantizers, we focus on the exponential case because, even though

the Nitadori design method eliminates the need to find another procedure for creating

optimal exponential quantizers, it still remains unclear how the thresholds and levels

are related to one another. Any information we ascertain, we hope to generalize as

aid in the construction of optimal quantizers designed for other sources. Thus, in a

way, the exponential case is a natural starting point from which to glean intuition on

these relationships since there already exists an expression (the Nitadori generator,

albeit an obscure one) that relates the half steps of neighboring quantization cells to

one another.

In this chapter, we focus our work primarily on the problem of rigorous support

threshold estimation in optimal exponential quantizers. From our efforts, we were

able to achieve the following results:

• We have derived theoretical bounds to the support threshold function of op-

timal, fixed-rate quantizers designed for one-sided, exponential sources with

variance σ2, where the difference between the bounds converges to a constant

that depends only on σ2. From this result, it is clear that the ratio of the bounds

converges to 1 as N → ∞, as was shown by Na [16]. The upper bound we pro-

vide, 3σ logN , for N ≥ 1, is tighter than the lim sup bound stated in [16], and

the lower bound given, 3σ logN + oN (1)σ − 1.46004 σ, for N > 9, is the first

to be reported. In addition, our result analytically confirms that the support

threshold grows logarithmically in N and that the estimates given in [3] and [18]

are essentially correct.
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• Regarding the well-known fact established by Panter and Dite [20] thatN 2D (N)

→ β

12
as N → ∞, where D (N) is the least MSE of an N -level quantizer and

β (a source dependent constant) is the Panter-Dite constant [20], we have, in

addition, used our approach to support threshold estimation to derive a result

which concerns when it is effective to use the Panter-Dite formula [20] to esti-

mate the mean-squared error performance D (N) of optimal exponential quan-

tizers. More specifically, we have derived an upper bound to the convergence

rate of N2D (N) to β

12
as a function of N . This is the first such bound.

• From our approach to constructing the support threshold lower bound, we

present two, non-iterative and non-recursive, Nitadori-like suboptimal quan-

tizer design methods for exponential sources. These methods are so simple to

use that designing one of these quantizers does not require the use of a com-

puter or a huge database of tabulated values. They can be designed by-hand,

knowing only the first eight values of the Nitadori sequence. Moreover, quantiz-

ers produced in this manner yield good (low) mean-squared error performance.

(Example: For a quantizer designed using the sequence vk = η
k
, 1 ≤ k ≤ 8,

and vk = 3
2k
, k ≥ 9, and N = 64, the ratio of the MSE for the vk quantizer

over the MSE of an optimal quantizer with 64 levels is less than 1.0014. By

comparison, for the same number of levels (N = 64), the ratio of the MSE

for an asymptotically optimal companding system over the MSE of an optimal

quantizer is greater than 1.0169.)

Chapter IV: An extension of Nitadori’s sequence in relation to optimal

quantization of sources other than exponential. The desire to continue

our pursuit to amass information on the ties that exist between the parameters of

MMSE quantizers with the goal of providing aid the problem of optimal quantizer

design provided the main impetus behind the work described in Chapter IV. In this

chapter, we set out to find a way to generalize the result by Nitadori [19] to optimal

quantizers designed for sources other than exponential. Since Nitadori’s method

depends on the memoryless property which is unique to the exponential source, a

direct generalization was not revealed in our studies. However, our investigation

into the asymptotic behavior of the parameters of optimal quantizers (half steps and

quantization thresholds, refer to Figure 1.2) designed for general exponential (GE)

sources, parameterized by an exponential power p, led to a surprising result: We show

that for a GE-source, the kth half step of an optimal N -level quantizer multiplied

by the (p− 1)st power of the kth threshold approaches the kth term of the Nitadori

8



sequence as N grows to infinity. Thus, the Nitadori sequence not only provides the

specifications for optimal exponential quantizers, it also asymptotically characterizes

the cells of MMSE quantizers for GE-sources.
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CHAPTER II

Quantization Review

This chapter provides a brief review of minimum mean-squared error (MMSE) or

optimal scalar quantization. We only describe the results from the literature that

are relevant to the work reported in this thesis. During this discussion, we will be

introducing much of the notation and symbols used to indicate quantization param-

eters of interest. For the sake of clarity, we only discuss the quantization of one-

sided, non-negative, finite variance, real-valued sources that have support equal to

the contiguous half open interval [0,∞). We remark that the extension to two-sided,

real-valued sources with finite variance and contiguous support over all of the real

numbers is a fairly straightforward extension of the one-sided case. Also, whenever

we refer to quantization, we mean scalar quantization.

2.1 Scalar Quantization.

Let X be a non-negative, real-valued, scalar random variable with finite mean,

finite variance and infinite support. Suppose we want to represent the values we

observe from the random variable X and suppose we will only be able to distinguish

between at most N different values. Questions concerning this scenario arise quickly:

Which N non-negative real numbers would best represent observed/sample values

of the source X and how should the sample values of X be assigned to these N

representative real numbers? Before addressing possible answers to the question of

what the “best representation” for X would be, we first clarify the functionality of a

“machine” who’s input is X ≥ 0 and produces an output representation of the sample

values of X, the scalar quantizer.

An N -level, scalar quantizer is defined by three objects:

• A set of quantization thresholds tk, k = 0, 1, . . . , N , where t0
4
= +∞ and t0 >

10



t1 ≥ · · · ≥ tN

• A set of reconstruction levels µk ≥ 0, k = 1, 2, . . . , N

• A quantization rule q : [0,∞) → [0,∞) such that q (x) = µk, if x ∈ [tk, tk−1) for

all x ≥ 0

In other words, it is clear that for any observed value x ≥ 0, a quantizer, with

thresholds {ti}Ni=0, levels {µi}Ni=1 and quantization rule q, maps x to the value of µk

if x belongs to the kth quantization cell [tk, tk−1).

Before leaving this brief discussion of the definition of a scalar quantizer, we point

out that the indexing scheme used in the definition begins with the quantization cell

that is farthest away from the origin, and so quantization cell indexing begins from

the right and moves left toward the origin as the index is increased. This particular

indexing scheme is a great aid to our work and this is why we call attention to it.

This indexing scheme is shown in Figure 2.1.

0 ������������������������������������������������������������������������������������� � �� � �� �� �

outer region

����������������������������������������������������������� � �� � x x

inner or support region

xx � � !�!�! "�"�"�"#�#�#�# x$�$$�$%�%%�%
t1t2t4 t3t5 t0

µ1µ2µ3µ4µ5

∆2 ∆1∆4 ∆3∆5 ∆5 ∆3∆4 ∆2 ∆1

∞

Figure 2.1: Illustration of a 5-level scalar quantizer.

Traditionally, the support region of the random variable X, in our case, the non-

negative reals, is divided into two quantization regions: The inner or support region

of the quantizer [0, t1) is defined to be the distance from the support threshold t1 to

the origin, and the outer or overload region of the quantizer [t1,∞) is defined to be

region of the reals that is greater than or equal to the support threshold t1. This

quantization region should not be confused with what we refer to as the tail region of

the source which is the region where x >> 0 or when x is far from the origin, though

often times, the outer region and tail region of the source may, in fact, coincide, as is

the case when t1 >> 0.
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2.2 Quantizer Performance: Mean-Squared Error.

Returning to the question, “What is the best representation of X?”, we arrive at

the topic of quantizer performance.

The performance of a quantizer is assessed by how well accuracy is achieved for

a given cost or constraint. Accuracy is determined by choosing a fidelity criteria (or

goodness measure) by which the effectiveness of the quantizer’s ability to present the

values of X will be measured. For our work, we have chosen the popular and tractable

mean-squared error (MSE) criterion as our “goodness” measure and we have chosen

to track the number of levels N in a quantizer as our cost variable. Thus comparing

the performance of two different N -level quantizers designed for the same source

becomes simply a matter of looking at the MSE corresponding to each quantizer

and the quantizer with the lower MSE is deemed to be superior. Note that in the

quantization literature, the number of levels N is related to the rate R = log2N or

bits used by the quantizer to index/distinguish between quantization cells, and thus

we could use rate R as our cost variable, but for our work, using N is preferable.

Assuming that X has a probability density function (pdf) f (x), x ≥ 0 (this is an

assumption that we will use throughout this thesis), the MSE or MSE distortion of

an N -level quantizer designed for X is

E
[
(X − q (X))2] 4

= D (q)
4
=

N∑

k=1

tk−1∫

tk

(x− µk)
2
f (x) dx. (2.2.1)

This is a static statistic that can be compared against the MSE of other N -level

quantizers designed for the same random variable. An N -level quantizer with the

lowest or minimum mean-squared error (MMSE) is judged to be optimal. (Through-

out this thesis, whenever we refer to an optimal quantizer, we mean a quantizer that

minimizes mean-squared error.)

Thus, with a fixed number of levels N , the goal in MMSE quantizer design is to

find a quantizer that performs with mean-squared error equal to

min
{ti}N

i=0, {µi}N
i=1

E
[
(X − q (X))2]

.

In the quantization literature, the optimum performance theoretically attainable

(OPTA) function, which gives the least MSE distortion of any scalar quantizer with
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not more than N levels, is

D (N)
4
= min

q:N(q)≤N
D (q) , (2.2.2)

where N (q) equals the number of level in the quantizer q.1 Thus, when designing

with MMSE performance in mind, the goal of MMSE quantizer design becomes a

search to find the thresholds {t(N)
i }Ni=0 and reconstruction levels {µ(N)

i }Ni=1 in an N -

level quantizer that attains the MSE given by D (N).

Optimality conditions: An aid to MMSE quantizer design. Given a fixed

source X with pdf f (x), MMSE quantization design is simplified by knowing that

the thresholds and reconstruction levels of an MMSE quantizer must adhere to the

optimality conditions [13], [15]:

1. Centroid condition. The reconstruction levels µ
(N)
k , k = 1, 2, . . . , N , are equal

to the centroids of the quantization cells to which they belong

µ
(N)
k =

∫ t(N)
k−1

t
(N)
k

uf (u) du

∫ t(N)
k−1

t
(N)
k

f (w) dw

, (2.2.3)

where it is clear that the centroid of kth quantization cell is equal to the con-

ditional mean of X given X ∈ [t
(N)
k , t

(N)
k−1).

2. Nearest Neighbor condition. The quantization threshold t
(N)
k lying between

any two adjacent finite reconstruction levels µ
(N)
k , µ

(N)
k+1 lies halfway between the

two thresholds, i.e.,

µ
(N)
k − t

(N)
k = t

(N)
k − µ

(N)
k+1 (2.2.4)

for all k = 1, 2, . . . , N − 1.

The optimality conditions are, in general, only necessary conditions for optimality,

i.e., for a quantizer to minimize mean-squared error. However, for exponential sources

and sources with strictly log convex pdfs, the thresholds and reconstruction levels for

1The OPTA is generally defined using “inf” instead of “min” in the literature. However, for finite
dimensional quantization, the OPTA is always achievable at each value of N , and thus, we state the
OPTA definition in (2.2.2) using “min”.
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an N -level MSE quantizer that satisfy the optimality conditions are unique,2 i.e., the

optimality conditions are sufficient for determining the single N -level quantizer that

minimizes MSE.

2.3 Quantizer Re-parametrization Using Half Steps.

As shown in Figure 2.1, an alternative, yet equivalent characterization of a scalar

quantizer that is more useful for our work discussed in Chapters III and IV specifies

the positions of the quantization thresholds and reconstruction levels of an N -level

scalar quantizer in terms of the lower half steps or just half steps ∆k

4
= µk − tk

and upper half steps ∆k
4
= tk−1 − µk where k = 1, 2, . . . , N is the quantization cell

index of the quantizer. With the step size of the kth quantization cell defined to be

∆k
4
= tk−1 − tk, k = 1, 2, . . . , N , the 1 − 1 correspondence between a set of half steps

and a set of quantization thresholds and reconstruction levels is made clear by the

following relationships:

1. t0 = ∞, tN = 0,

2. tk =
∑N

i=k+1 ∆i =
∑N

i=k+1 ∆i + ∆i, k = 1, 2, . . . , N ,

3. µk = tk + ∆k, k = 1, 2, . . . , N .

For an N -level, optimal scalar quantizer, the definition of the upper half step ∆
(N)

k ,

k = 1, 2, . . . , N , is actually not necessary since adherence to the nearest neighbor

condition causes ∆
(N)

k = ∆
(N)
k−1, k = 2, 3, . . . , N . In this case, the 1−1 correspondence

between the set of (lower) half steps ∆
(N)
k , k = 1, 2, . . . , N , of an N -level optimal

scalar quantizer and its set of quantization thresholds {t(N)
i }Ni=0 and reconstruction

levels {µ(N)
i }Ni=1 becomes

1. t
(N)
0 = ∞, t

(N)
N = 0,

2. t
(N)
k = ∆

(N)
N + ∆

(N)
k +

∑N−1
i=k+1 2∆

(N)
i , k = 1, 2, . . . , N ,

3. µ
(N)
k = t

(N)
k + ∆

(N)
k , k = 1, 2, . . . , N .

Thus we see that if the set of thresholds and levels for an N -level optimal scalar

quantizer is unique, then so is the set of half steps for the same quantizer. Since

knowing the set of half steps {∆(N)
i }Ni=1 belonging to an N -level optimal quantizer is

2Uniqueness for strictly log convex sources was proved by Fleischer in [7]. Fleischer [7] also
proposed uniqueness for exponential sources, but his argument was later corrected by Trushkin [23].
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sufficient to knowing {t(N)
i }Ni=0 and {µ(N)

i }Ni=1 (as shown in Figure 2.2), in our work, we

focus on determining the values of ∆k, k = 1, 2 . . . , N when trying to define N -level

optimal quantizers.
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Figure 2.2: A 5-level optimal scalar quantizer with half step parametrization shown.

Before proceeding, we remark briefly that the use of half steps in gauging quantizer

performance is also possible and indeed, in the case of exponential optimal quantiza-

tion, half steps provide a means of determining the exact MSE performance of such

quantizers [19]. We leave, however, this discussion for Chapters III and IV.

2.4 The Lloyd-Max (LM) Design Algorithm for MMSE Scalar

Quantizers and Support Threshold Estimation.

Historically, the first published algorithm for designing MMSE quantizers was in-

dependently formulated by Lloyd [13] in 1957 and Max [15] in 1960. In short, the

algorithm produces a set of thresholds and reconstruction levels that adheres to the

optimality conditions (see (2.2.3) and (2.2.4)) based on an initial estimate of the

support threshold or key parameter t
(N)
1 . Since the algorithm’s performance, as mea-

sured by the number of iterations it takes to produce an acceptable design solution,

relies heavily on the accuracy of the support threshold estimate that the algorithm

is initialized with (e.g., for a unit variance Laplacian source, an accuracy criteria of

δ = 1× 10−5, and N = 1000, the algorithm initialized with the support threshold es-

timator proposed by Na and Neuhoff in [17] required 37.5% fewer iterations than the

number required by the algorithm initialized with the Bucklew and Gallagher estima-

tor given in [3]), there is interest in finding methods for accurate support threshold

estimation as a function of N . To shed more light on the impact of the initial support

threshold estimate on algorithm performance, we give the following overview:

Suppose the goal is to design an N -level quantizer for a given source

that is optimal or, in reality, close to optimal. Since the LM algorithm
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is iterative, a stopping criteria which indicates how close to optimal a

quantizer generated after the ith iteration is must be chosen. Examples of

stopping criteria are: Stop when the decrease in MSE between consecutive

design iterations falls below a prescribed value or stop when the estimated

threshold for t
(N)
N is within a preset distance of the origin.

Using i as the iteration index, at the outset of each iteration of the LM

algorithm, an estimate of the support threshold test,i1 is made. Using test,i1 ,

along with the knowledge that all thresholds and reconstruction levels in

optimal quantizers must adhere to the optimality constraints, the remain-

ing estimated values of the quantization thresholds test,ik , k = 2, 3, . . . , N

and reconstruction levels µest,ik , k = 1, 2, . . . , N are computed. To see how

this is accomplished, with t0
est,1 = ∞, for each k = 1, 2, . . . , N − 1,

1. µk
est,1 is the centroid of [tk

est,1, tk−1
est,1).

2. µk+1
est,1 = tk

est,1−µkest,1 since µk+1
est,1 satisfies the nearest neighbor

optimality condition.

3. Since µk+1
est,1 is the centroid of [tk+1

est,1, tk
est,1), solve for tk+1

est,1.

Once allN+1 thresholds andN reconstruction levels have been estimated,

the stopping condition is checked, and if it is satisfied, the algorithm halts

and the quantizer design process is complete. If the stopping condition has

not been satisfied, the iteration index is increased (i→ i+ 1) and an up-

dated estimate of the support threshold test,i+1
1 is created so that the algo-

rithm can run again, producing an updated set of N−1 thresholds test,i+1
k ,

k = 2, 3, . . . , N and N reconstruction levels µest,i+1
k , k = 1, 2, . . . , N , and

another check against the stopping criteria is made.

It is noted that since the resulting MSE produced by the quantizers gener-

ated at the end of each iteration of the algorithm decreases, the number of

completed iterations is finite, with the final iteration being the one that

produces a quantizer with MSE or an estimate for t
(N)
N that meets the

stopping criteria.

It should be clear from the discussion above that an accurate initial estimate test,11 for

t
(N)
1 would reduce the number of iterations that the algorithm must complete in order

to produce an acceptable design solution, and hence the need for accurate support

threshold estimation. For optimal quantization of exponential sources, the topic of

support threshold estimation is discussed in Chapter III.
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2.5 Quantizer Implementation and Design: Companding.

Companding systems or companders are one method of implementing a quantizer

design. The popularity of companding as a means of quantizer implementation stems

from two facts: i) any N -level scalar quantizer can be realized through use of a

companding system, and ii) companding systems utilize the simpler-to-execute N -

level uniform scalar quantizer (USQ), a scalar quantizer that has quantization cells all

of the same size and reconstruction levels set to the midpoints of the quantization cells.

Moreover, companding system performance analysis in the case when the number of

levels N is large has yielded some important facts and relationships. We defer that

discussion for later. For now, a quick review of companding is presented.

N-level companding: Overview and optimal quantization. As shown in Fig-

ure 2.3, for a finite number of levels N , a compander (C, qUSQN , C−1) is a quantization

system that consists of three components sequentially applied to the input source X:

1. A non-linear, strictly increasing, continuous, differentiable compressor or com-

pressing function C : [0,∞) → [0, 1] which maps the source’s support region

onto [0, 1]

2. An N -level uniform scalar quantizer qUSQN with finite support over [0, 1] that

consists of N quantization cells, all of which have the same step size equal to

∆USQ,N
4
= 1

N
, with thresholds ti = 1 − i

N
, i = 0, 1, . . . , N , and reconstruction

levels µi = ti+ti−1

2
= 1 − i

N
+ 1

2N
, i = 1, 2, . . . , N

3. A non-linear decompressing function C−1 : [0, 1] → [0,∞) which is the inverse

to C

Thus the output from a compander that operates onX is qN (X) = C−1
(
q
USQ
N (C (x))

)

and the MSE performance of the overall quantizer qN is equal to

E
[
(X − qN (X))2] = E

[(
X − C−1

(
q
USQ
N (C (x))

))2
]
. (2.5.5)

Since an N -level USQ is used in every companding system that realizes an N -level

quantizer, clearly, it is the compressing function C that determines the “identity” of

the overall quantizer qN .

By virtue of the fact that any N -level quantizer can be realized by a compand-

ing system and thus, existence of a function C which corresponds to a companding

17



system realizing a quantizer is assured, it is important to understand how to con-

struct a compressor function for a companding system. Given a set of levels µk,

k = 1, 2, . . . , N , and thresholds tk, k = 0, 1, . . . , N , the compressor function C must

satisfy two requirements:

• For each k = 0, 1, . . . , N , C must map tk to 1 − k
N

, the k-th threshold of the

USQ.

• For each k = 1, 2, . . . , N , C must map µk to 1− k
N

+ 1
2N

, the kth reconstruction

level of the USQ.

We point out that the two necessary conditions stated are not sufficient to uniquely

identify C, because for any x ∈ [tk, tk−1), qN (x) = µk, there exist many compres-

sor functions C and hence companding systems, that can realize the same N -level

quantizer. Thus, while there may be a single, unique optimal scalar quantizer for a

given value of N , there are many companding systems that achieve the lowest possi-

ble MSE performance. Nevertheless, we still consider C to characterize the identity

of an N -level quantizer, and thus, for a companding system that realizes an N -level

optimal quantizer, its compressor function C is referred to as an optimal compressing

function. In this case, since the reconstruction thresholds and levels depend on the

source pdf f (x), so does C, which reinforces the observation that C is the identifying

component of a companding system of an optimal quantizer.

X qN (X)

qN

N -USQ C−1 (x)C (x)

Figure 2.3: Schematic of a compander that realizes the quantizer qN , where C is the
compressor function, N -USQ denotes an N -level uniform scalar quantizer
and C−1 is the inverse to the compressor function C.

2.6 Asymptotically Optimal Quantization.

Designing optimal scalar quantizers becomes more difficult when the number of

levels N is large. In general, when N is increased, the MSE distortion decreases
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and, by itself, it is of interest to understand how MSE distortion changes as the

number of quantization levels is increased in optimal scalar quantization. Aside from

pure intellectual interest, however, knowledge of the relationship between MSE per-

formance and N yields methods of designing high level or high rate quantizers that

have near-optimal performance with fewer design costs. For these reasons, asymptot-

ically optimal scalar quantization has been a much studied topic in the quantization

literature.

Consider two sequences of MSE quantizers, all of which have been designed for

the same random variable X: q1,N , N = 1, 2, . . . , and q2,N , N = 1, 2, . . . , where

N is the number of reconstruction levels in a quantizer. Suppose the first sequence

of quantizers q1,N consists of optimal quantizers and suppose the second sequence

q2,N consists of quantizers that are not necessarily optimal. We say the sequence of

quantizers q2,N is asymptotically optimal if

lim
N→∞

E
[
(X − q2,N (X))2]

E
[
(X − q1,N (X))2] = lim

N→∞

D (q2,N )

D (q1,N )
= 1,

i.e., the ratio of the MSE performance of q2,N to the MSE performance of q1,N goes

to 1 as the number of levels N increases. Clearly, a sequence of optimal N -level

quantizers is also asymptotically optimal by definition.

Note: The topic of asymptotically optimal quantization is also referred to as high

resolution quantization theory, where the term “high resolution” refers to the case

when the number of levels N is large, the cells in the support region of the quantizer

are small and the support threshold is sufficiently large so that the distortion or MSE

due to x ∈ [t1,∞) is small compared to the MSE distortion of the quantizer (over all

quantization cells).

Asymptotically optimal quantizer design - Companding revisited. The

study of companding systems that realize high resolution quantizers has yielded much

insight into the relationship between N and both the design (placement of quantiza-

tion thresholds and levels) and the MSE performance of these quantizers. Here, we

recount two well-known results/theorems that are relevant to our work.

Performance of companding systems when N is large.

Theorem II.1. (Bennett’s Theorem [2]. From [4].) Let X be a source such that

E [X2+ε] < ∞ for some ε > 0. Then for any quantizer qN designed for X that is

realized by a companding system (C, qUSQN , C−1), when the number of levels N is large
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and the distortion due to the overload region is negligible compared to the distortion

from the inner region, Bennett’s integral

1

N2
B (C)

4
=

1

12N2

∞∫

0

f (x)

c2 (x)
dx

provides an approximation to E
[
(X − qN (X))2] in the sense that

lim
N→∞

1
12N2

∫∞
0

f(x)
c2(x)

dx

E
[
(X − qN (X))2] = lim

N→∞

1
12N2

∫∞
0

f(x)
c2(x)

dx

E

[(
X − C−1

(
q
USQ
N (C (x))

))2
] = 1, (2.6.6)

where c (x)
4
= d

dx
C (x).

In other words, Theorem II.1 says that the approximation

E
[
(X − qN (X))2

]
≈ 1

12N2

∞∫

0

f (x)

c2 (x)
dx

holds when N is large if (C, qUSQN , C−1) is a realization of qN . Since there always

exists a companding system that realizes a given N -level quantizer, Bennett’s integral

provides a general method of approximating the MSE performance of any quantizer

with a large number of levels. Thus, it is clear that if q1,N is an optimal N -level

quantizer, then

E
[
(X − q1,N (X))2] ≈ 1

12N2
B (C1,N)

if (C1,N , q
USQ
N , C1,N

−1) is a companding system that corresponds to q1,N and N is

large.

Gauging optimal and asymptotically optimal quantizer performance with

Bennett’s Integral. Here, we summarize a connection between optimal quanti-

zation performance, asymptotically optimal quantization performance and Bennett’s

integral. Since Bennett’s integral is intimately connected to a compressing system

realization of a given quantizer through the system’s compressing function C, we first

consider an asymptotically optimal compressing function [20] which is defined to be a
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compressor C∗ that minimizes the Bennett integral3

C∗ 4
= argmin

C:c= d
dx
C

1

12N2

∞∫

0

f (x)

c2 (x)
dx. (2.6.7)

We point out that, in order to determine a suitable compressing function C∗, the

minimization of Bennett’s integral occurs over all possible compressor functions C

and that this minimization is performed irrespective of the value of N . In other words,

C∗ minimizes Bennett’s integral for all values of N . So, how does C∗ or B (C∗) relate

to the performance of optimal quantizers and/or asymptotically optimal quantizers?

To address the question, first consider a sequence of optimal N -level quantizers

q1,N realized by (C1,N , q
USQ
N , C−1

1,N). Then for each value of N ≥ 1,

1

N2
B (C∗) =

1

12N2

∞∫

0

f (x)

c∗2 (x)
dx ≤ 1

12N2

∞∫

0

f (x)

c1,N 2 (x)
dx =

1

N2
B (C1,N) ,

since C∗ minimizes Bennett’s integral and C1,N is just one particular compressing

function that may not necessarily minimize Bennett’s integral. Dividing by D (q1,N),

the inequality just stated becomes

1
N2B (C∗)

D (q1,N)
=

1
12N2

∫∞
0

f(x)
c∗2(x)

dx

D (q1,N)
≤

1
12N2

∫∞
0

f(x)
c1,N

2(x)
dx

D (q1,N )
=

1
N2B (C1,N)

D (q1,N)

for every N , and thus, using (2.6.6), we have

lim sup
N→∞

1
N2B (C∗)

D (q1,N )
≤ lim

N→∞

1
N2B (C1,N)

D (q1,N )
= 1. (2.6.8)

Now, consider the sequence of quantizers q2,N (indexed by N) realized by

(C∗, qUSQN , C∗−1), a sequence of companding systems (also indexed by N) that utilizes

an asymptotically optimal compressing function C∗. Comparing the performance of

an optimal N -level quantizer q1,N to the performance of an N -level quantizer built

using C∗, it is clear that

D (q2,N )

D (q1,N )
=

1
N2B (C∗)

D (q1,N)
· D (q2,N)

1
N2B (C∗)

3Existence of C∗ is guaranteed by the Panter-Dite Theorem to be discussed shortly.
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and thus,

lim sup
N→∞

D (q2,N)

D (q1,N)
= lim sup

N→∞

1
N2B (C∗)

D (q1,N )
· lim
N→∞

D (q2,N)
1
N2B (C∗)

(2.6.6)
= lim sup

N→∞

1
N2B (C∗)

D (q1,N )

(2.6.8)

≤ 1. (2.6.9)

Since q1,N is a sequence of optimal quantizers, we know that

D (q2,N)

D (q1,N)
≥ 1

for all N ≥ 1, and this fact implies

lim inf
N→∞

D (q2,N )

D (q1,N )
≥ 1.

Therefore, existence of limN→∞
D(q2,N)
D(q1,N)

is assured and

lim
N→∞

D (q2,N )

D (q1,N )
= 1. (2.6.10)

Thus it is clear that the sequence of quantizers q2,N , constructed about an asymp-

totically optimal compressor C∗, is a sequence of asymptotically optimal quantizers.

Moreover, from (2.6.6), since the performance of this sequence of asymptotically op-

timal quantizers can be approximated by the Bennett integral evaluated at C∗ when

N is large, it is clear that the OPTA function D (N) can also be approximated by

the Bennett integral evaluated at C∗ in the sense that

lim
N→∞

D (N)
1
N2B (C∗)

= 1, (2.6.11)

since for each N ≥ 1, the OPTA function D (N) = D (q1,N ). We remind ourselves at

this point that the relationships in (2.6.10) and (2.6.11) depend on the fact that C∗

exists and is well-defined. The following theorem guarantees the existence of C∗.

Asymptotic performance results from companding: The Panter-Dite The-

orem. The theorem stated below connects/links Bennett’s integral approximation

for MSE quantizer performance to the performance of both asymptotically optimal

and optimal quantizers.
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Theorem II.2. (Panter-Dite Theorem [20]. From [4].) Let X be a random

variable with pdf f and suppose E [x2+ε] <∞ for some ε > 0. Then

lim
N→∞

N2D (N) =
1

12
σ2β,

where D (N) is the OPTA function for the source X and

β
4
=

1

σ2




∞∫

0

f
1
3 (x) dx




3

(2.6.12)

is the Panter-Dite constant4 for the source X.

While not transparent in this review, when solving for β in (2.6.12), the proof

of this theorem also guarantees not only the existence of an asymptotically optimal

compressing function C∗ (defined in (2.6.7)) that minimizes the Bennett integral, but

also yields the form of it

C∗ (x) =

x∫

0

f
1
3 (u)∫∞

0
f

1
3 (w) dw

du (2.6.13)

or equivalently (and more familiarly),

c∗ (x) =
f

1
3 (x)∫∞

0
f

1
3 (w) dw

.

We note that β depends on the source X through its pdf f (x) but is otherwise

independent of the source variance σ2. Since we will only compare quantizer perfor-

mance across quantizers that have been designed for the same source, the actual value

of β being discussed should be clear and we feel it is unnecessary to notate explicitly

the dependence of β on X.

Thus, if qN is a sequence of quantizers that is realized by (C∗, qUSQN , C∗−1), then

the sequence is asymptotically optimal (from the argument in the previous section)

4In the literature, β
12 is also referred to as the Panter-Dite constant, with β defined as in (2.6.12).

We will use both conventions in our text, but we will include the explicit formula that we are referring
to in order to make clear our intent. Also in the literature, β

12N2 is referred to as the Panter-Dite
formula.
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and

lim
N→∞

N2D (qN)

σ2 β

12

= 1.

Another approach to asymptotically optimal quantization - Point densi-

ties. For an alternate, yet related point of view on high resolution quantization, we

review the use of point densities in the design and performance of optimal and nearly

optimal quantizers when N is large. When designing an N -level quantizer for a source

X, instead of focusing on locating the exact placement of reconstruction levels (or

equivalently, the reconstruction thresholds), it is beneficial to think of the reconstruc-

tion levels or reconstruction points of the quantizer as being distributed throughout

the support region of the source X. Using this notion, asymptotically optimal design

can be construed as determining the asymptotic distribution of reconstruction points

in the support region of X. We characterize this distribution of points as a density

which we call an asymptotically optimal point density of X.

Informally, the concept of a point density can be described when N is large:

Consider a sequence of quantizers qN indexed by N . Fix ∆ > 0 small. When N is

large, suppose there exists a function λN (x) such that

fraction of reconstruction levels in [x, x+ ∆) ≈ λN (x) ∆

for all x ≥ 0. If λN (x) is an integrable function, then for an arbitrary half open

interval [a, b) with b > a ≥ 0,

fraction of reconstruction levels in [a, b) ≈
b b−a

∆
c∑

i=0

λN (a+ i · ∆) · ∆ ≈
b∫

a

λN (x) dx.

Now suppose that for this sequence of quantizers qN , the corresponding sequence

λN (x) converges to a well-defined limiting function λ (x) as N → ∞ in some sense.

In this case, the limiting function λ (x) is referred to as the point density belonging

to the sequence of quantizers qN .

More formally, a point density λN (x) for a sequence of quantizers qN (indexed by

N) over [0,∞) is defined to be a function that satisfies

1. λN (x) ≥ 0 for all x ≥ 0.

2.
∫∞
0
λN (x) dx = 1.
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3. For any [s, t), t > s ≥ 0,

lim
N→∞

∫ t
s
λN (x) dx

fraction of reconstruction levels or points in [s, t)
= 1.

A point density that satisfies the criteria just stated is generally referred to as a

normalized point density definition. In the literature, there is also an unnormalized

point density which is similarly defined, with the exception that the unnormalized

point density gives a count of the number of levels rather than the fraction of levels in

any particular interval. Throughout this thesis, however, reference to a point density

will always be consistent with the normalized definition.

Point densities and companding. Connecting the idea of a point density to com-

panding systems and their associated compressor functions, consider a quantizer qN

realized by the companding system (C, qUSQN , C−1). From the definition of a compres-

sor function, it is clear that c (x) = d
dx
C (x) is a point density for the quantizer qN .

To see why this is so, we note that the compressing function C can be viewed as a

cumulative distribution function (CDF) of reconstruction points for qN over [0,∞)

since it satisfies all of the following properties:

1. limx→0C (x) = 0.

2. limx→∞C (x) = 1.

3. C is right-continuous.

4. C is monotone increasing.

5. The CDF interpretation of C is reinforced by the observation that if the number

of levels N is large, then for any x ≥ 0, C (x) approximately equals the fraction

of levels to the left of the value x.

We remark that the first four properties stated come directly from the definition of a

CDF, and that the fifth property draws the connection between C as a CDF and the

quantizer qN , through qN ’s set of reconstruction points. Since it has been established

that C is a CDF and hence, its derivative is a pdf (which is well-defined by C’s

definition), it is clear that c (x) = d
dx
C (x) can, in turn, also be interpreted as a point

density for qN , where, for any given half open interval [s, t), t > s ≥ 0, the fraction

of levels or reconstruction points in [s, t) is approximately equal to C (t) − C (s) =∫ t
s
c (x) dx.
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Bennett’s Integral – The point density version. Since every compressor func-

tion C is a CDF and any quantizer can be realized by a companding system, Bennett’s

asymptotic approximation to the MSE distortion of a quantizer can be re-expressed

in terms of point densities. For a sequence of quantizers qN (indexed by N) for whom

λ is the corresponding point density for each value of N , we have

lim
N→∞

E
[
(X − qN (X))2]

1
N2B (Λ)

= 1, (2.6.14)

where

1

N2
B (Λ)

4
=

1

12N2

∞∫

0

f (x)

λ2 (x)
dx

is the point density version of the Bennett integral and Λ (x)
4
=
∫ x
0
λ (u) du.

Panter-Dite Theorem – Remarks from the point density perspective. An

alternative proof of the Panter-Dite Theorem [20] using point densities, in particular,

using the point density version of Bennett’s integral, can also be shown. In this

proof, the optimal point density function λ∗, a point density that minimizes the point

density version of Bennett’s integral,

λ∗ (x)
4
=

f
1
3 (x)∫∞

0
f

1
3 (u) du

, (2.6.15)

is used instead of the optimal compressor function C∗ (and the companding version

of Bennett’s integral), and the same results are obtained. (See Figure 2.4 for an

illustration of λ∗.)

While it may appear that the point density perspective is no different than the

compressor function perspective, point densities are a more direct, yet general way of

thinking about asymptotically optimal quantizer design and analysis than compressor

functions because companding systems are a method of implementation, albeit a

universal one.
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Figure 2.4: An optimal quantizer qN shown with an illustration of its optimal point
density λ∗.

2.7 Nitadori’s Two Results for Optimal Exponential Quan-

tization.

In his 1965 paper, Nitadori [19] derived two results for optimal quantization of

Laplacian sources, but since Laplacian sources are just two-sided exponential sources

and in this thesis, we are limiting our discussion to one-sided exponential sources in

order to simplify the discourse, we state his result for the one-sided, unit variance

case. First, he solved the N -level optimal exponential quantizer design problem by

demonstrating the existence of a unique real-valued sequence η
k
, k = 1, 2, . . . , which

provides a complete description for the quantizer. His solution

µ
(N)
k = t

(N)
k + η

k
= η

N
+

N−1∑

i=k

2η
i

t
(N)
k = µ

(N)
k+1 + η

k
= η

N
+

N−1∑

i=k+1

2η
i
+ η

k

where η
k
, which equals ∆

(N)
k , is determined from η

k−1
by solving

−
(
1 − η

k

)
e−(1−η

k
) = −

(
1 + η

k−1

)
e
−

(
1+η

k−1

)

(2.7.16)

with η
1

= 1. (2.7.16) is referred to as the Nitadori recursion and the sequence

of values η
k

is referred to as the Nitadori sequence. Solving for η
k

given η
k−1

amounts to evaluating the principal branch of the Lambert W function W0 [6] at
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−
(
1 + η

k−1

)
e
−

(
1+η

k−1

)

, or more precisely,

η
k

= W0

(
−
(
1 + η

k−1

)
e
−

(
1+η

k−1

))
+ 1,

where W0 :
[
−1
e
,∞
)
→ [−1,∞) is defined to be the inverse to the function z0 :

[−1,∞) →
[
−1
e
,∞
)

given by

z0 (W )
4
= WeW .

Figure 2.5 illustrates the recursive process of solving for values of the Nitadori se-

quences using the inverse to the principal branch of the Lambert W function.

Nitadori derived (2.7.16) by taking partial derivatives of the MSE expression for

the optimal quantizer and solving the following equations

∂

∂µ
(N)
k

N∑

i=1

t
(N)
i−1∫

t
(N)
i

(
x− µ

(N)
i

)2

e−xdx = 0

∂

∂t
(N)
k

N∑

i=1

t
(N)
i−1∫

t
(N)
i

(
x− µ

(N)
i

)2

e−xdx = 0

for k = 1, 2, . . . , N . In Chapter IV, however, we will describe an alternate way

to derive (2.7.16) that is different from the method used by Nitadori in that no

derivatives are used. This alternate method is fundamental as a guide to the way

in which we are able to generalize Nitadori’s first result to optimal quantization of

sources other than exponential, which is the focus of that chapter.

For the second result reported in his paper [19], Nitadori used his solution sequence

η
k

in the expression for MSE to show that the MSE produced by an optimal quantizer

can be expressed explicitly in terms of his solution sequence η
k

D (N) =
(
η
N

)2

. (2.7.17)

Figure 2.6 shows a plot of the first 64 values of η
k

and Table 3.1 (in Chapter III) lists

these values.
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CHAPTER III

Support Threshold Estimation and Related

Asymptotic Results for Exponential Optimal

Quantizers

3.1 Introduction.

Three areas related to the design of quantizers for an exponential source are ad-

dressed in this chapter. The first (our primary subject) deals with key parameter or

support threshold estimation of optimal quantizers, which improves the understand-

ing of how a support threshold varies as a function of the number of levels in an

optimal quantizer and is useful practically since it can be used with the Lloyd-Max

algorithm ([13], [15]) to create optimal quantizers with reduced computational cost.

The second area is related to the use of the Panter-Dite formula (Theorem II.2, Chap-

ter II) as an estimator for the MSE of optimal quantizers. The final topic concerns

a new, suboptimal quantizer design method which simplifies Nitadori-style optimal

quantizer design (Chapter II, Section 2.7) yet still offers good MSE performance. This

basis for this design method, as well as the result regarding the Panter-Dite formula,

comes out of the work completed for the support threshold estimates to be discussed.

As stated in Chapter II, the computation time required when using the Lloyd-

Max algorithm (Chapter II, Section 2.4) is highly dependent on the accuracy of the

initial support threshold estimate. A good estimate serves to reduce the number of

iterations required to arrive at a solution to the MMSE quantizer design problem

and this reduction translates to reduced computation time. With the advent of fast

digital computing readily available nowadays, it may not be clear what actually is

the impact of this reduction in computation time. One application where the impact

of the time savings resulting from a reduction in the number of iterations of the
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algorithm performed would be evident is in adaptive quantization where the design

of a quantizer is frequently updated.

To gain a better sense of how the accuracy of the initializing support threshold

affects the runtime of the Lloyd-Max algorithm for the specific case of designing

optimal exponential quantizers, it turns out that the system of equations (that comes

from using the optimality conditions, see (2.2.3) and (2.2.4)) to be solved at each

iteration of the Lloyd-Max algorithm can be pre-determined prior to running the

algorithm: For the unit variance exponential source, at each iteration i, beginning

with k = 1, followed by k = 2, up to k = N , the estimated reconstruction levels and

thresholds for the kth quantization cell are determined (in order) by

1) µ
est,i
k =

t
est,i
k e−t

est,i
k − t

est,i
k−1e

−test,i
k−1

P
[
t
est,i
k , t

est,i
k−1

) + 1 (3.1.1)

2) t
est,i
k+1 = µ

est,i
k −

(
µ
est,i
k − t

est,i
k

)
, (3.1.2)

where t
est,i
0

4
= ∞. With the relationships in (3.1.1) and (3.1.2), the sensitivity of

the algorithm to the accuracy of test,11 is made more tangible since it is easy to see

how any inaccuracy in t
est,1
1 trickles down through all of the other estimates for the

reconstruction levels and thresholds during the first iteration, which ultimately affects

all subsequent estimates in the iterations that follow.

To estimate the support threshold, since summing the half steps of an optimal

quantizer yields the quantizer’s support threshold, we adopt the half step parame-

terization view for quantizers, and look at ways to discern information regarding the

half steps of optimal quantizers. To do this, we begin by considering the half steps

of asymptotically optimal quantizers realized by companding, and this examination

leads to an upper bound on the support threshold. Next, to construct a lower bound

on the support threshold, we study the structural relationships between the half steps

of adjacent quantization cells of optimal quantizers through careful examination of

the way in which the values of these half steps are produced (numerically) by the Ni-

tadori design method for optimal exponential quantizers. While it may seem odd to

turn to a method which, at first glance, appears to obviate the need for further study

of the exponential design case (because it gives the exact specification of such quan-

tizers non-iteratively), our intent is to achieve further comprehension of the structure

of optimal quantizers (with the idea that “optimal” structure leads to optimal per-

formance), and it is to this end that we focus on the Nitadori recursion ((2.7.16) in

Chapter II). Since the recursion relates the half steps of adjacent quantization cells
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to each other (through the Lambert W function, a function that cannot be expressed

in terms of finite combinations of elementary functions1), the insight we gain on the

ties between neighboring half steps through close examination of it can be applied to

the construction of a lower bound to the support threshold.

3.2 Optimal Support for Exponential Sources - Main Result.

Definition of exponential source with variance σ2 (or parameter σ). In this

work, an exponential source X with variance σ2 (or parameter σ) has a pdf

f (x)
4
=

1

σ
e−

x
σ , x ≥ 0,

where

E [X] = σ

V ar [X] = σ2.

The main results of this section are the following theorem and corollaries, where

Corollary III.2 addresses the use of the Panter-Dite formula to approximate the MSE

of optimal quantizers. The discussion on simplified quantizer design methods is pre-

sented later in Section 3.4.3.

Theorem III.1. For an exponential source with variance σ2, the optimal support

threshold t
(N)
1 has the following bounds:

a)
t
(N)
1

σ
≤ 3 logN when N ≥ 1, where equality is achieved when N = 1.

b)
t
(N)
1

σ
> 3 logN + δ (N) − 1.46004 when N > 9, where

δ (N)
4
=

3

N − 1
− 21

4

1

N2
+

3

2N

(
1 − 2

N
+

8

N2

) 1
2

. (3.2.3)

Corollary III.2. For an exponential source with variance σ2 and pdf f (x) = 1
σ
e−

x
σ ,

x ≥ 0, if N ≥ 3,

∣∣∣∣N
2

(
D (N)

σ2

)
− β

12

∣∣∣∣ ≤
9

4

(
2

N
− 8

N2

)
,

1Elementary functions include ex, log x and nth roots.
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where β = 1
σ2

(∫∞
0
f

1
3 (x) dx

)3

= 27 is the Panter-Dite constant, and D (N) is defined

to be the least MSE distortion of any scalar quantizer with not more than N levels

(see (2.2.2)).

For a Laplacian source, which is a two-sided exponential source, with pdf

p (x) =
1√
2σ

exp−
√

2
σ
x,

we have the following corollary to Theorem III.1:

Corollary III.3. Given an M-level optimal quantizer designed for a Laplacian source

with variance σ2.

1. The optimal support threshold t
(N)
1 has the following bounds:

a) (Upper bound.) If M is even (M = 2N) and M ≥ 4 (or equivalently,

N ≥ 2), then

t
(N)
1

σ
<

3√
2

log

⌊
M

2

⌋
=

3√
2

logN. (3.2.4)

If M is odd (M = 2N + 1) and M ≥ 7 (N ≥ 3), then (3.2.4) still

holds.

b) (Lower bound.) For M > 18 and either M = 2N or M = 2N + 1,

t
(N)
1

σ
>

3√
2

log

⌊
M

2

⌋
+ ξ

(⌊
M

2

⌋)
− 1.03241

=
3√
2

logN + ξ (N) − 1.03241,

where

ξ

(⌊
M

2

⌋)
4
=

3√
2

1⌊
M
2

⌋
− 1

− 21

4
√

2

1
⌊
M
2

⌋2 +
3

2
√

2
⌊
M
2

⌋
(

1 − 2⌊
M
2

⌋ +
8

⌊
M
2

⌋2

) 1
2

=
3√
2

1

N − 1
− 21

4
√

2

1

N2
+

3

2
√

2N

(
1 − 2

N
+

8

N2

) 1
2

.

2. An upper bound to the convergence rate of M 2D (M) to the Panter-Dite constant
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β

12
2 is

∣∣∣∣M
2

(
D (M)

σ2

)
− β

12

∣∣∣∣ ≤
9

2

(
4

M
− 32

M2

)
,

when M > 18, where β = 1
σ2

(∫∞
0
p

1
3 (x) dx

)3

= 54.

Comments on Corollary III.2. The connection between Corollary III.2 and The-

orem III.1 and Corollary III.2 is made more clear if we let M = 2N , for some

N = 1, 2, . . . so that M is even. In this case, the support threshold t
(M)
1 = t

(2N)
1

for an optimal M-level quantizer designed for a unit variance Laplacian source is

equal to the support threshold 1√
2
t
(N)
1 for an optimal N -level quantizer designed for

the corresponding one-sided exponential source with variance 1
2
. Thus, since it is easy

to see how the results of Theorem III.1 and Corollary III.2 for exponential sources can

be translated to the case where the source is Laplacian and M is even, the proofs for

Corollary III.2, Parts 1a) (the even case), 1b), and 2, will not be presented, aside from

the following remarks: For Part 1b) of Corollary III.2, whenM is odd, the lower bound

to t
(M)
1 shown holds because t

(M)
1 > t

(M−1)
1 and thus t

(M)
1 is greater than any lower

bound to t
(M−1)
1 . With regards to Part 2 of Corollary III.2, the restriction on M being

even is because the result relies on Nitadori’s MSE distortion expression for optimal

exponential (one-sided) quantizers, and this expression does not extend to optimal

Laplacian quantizers with an odd number of levels. For Part 1 of Corollary III.2,

which deals with the upper bound to the support threshold t
(M)
1 , Appendix A gives

a brief discussion of the proof.

The chapter is organized as follows: We first present the proofs to Theorem III.1

and Corollary III.2. Following this, we discuss applications of these facts. We finish

the chapter with some concluding remarks and offer suggestions for future work.

3.3 Theorem III.1 and Corollary III.2 Proofs.

To facilitate the readability and reduce the notation used through out the dis-

cussion, we will present the proofs to Theorem III.1 and Corollary III.2 for the case

when the source has unit variance. The proofs for the non-unit variance exponential

source can be derived directly from the unit variance case proofs by inserting the

appropriate scale factors.

2As stated in a footnote in Chapter II, both β

12 and β are commonly referred to as the Panter-Dite
constant, where β is defined as in (2.6.12).
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3.3.1 Useful Relationships Regarding the Centroid of [0,∆) for an Expo-

nential Source.

Before proving Theorem III.1 and Corollary III.2, we will introduce some impor-

tant facts regarding centroids for the one-sided exponential source with unit variance.

Recall that the effect of the memoryless property of the exponential source on the

centroid of an arbitrary cell [t, t + ∆), t ≥ 0, ∆ > 0, is

E [X | X ∈ [t, t+ ∆)] = t+ E [X | X ∈ [0,∆)] ,

i.e., the centroid of an arbitrary cell [t, t+ ∆) equals the lower threshold value plus

the centroid of the cell [0,∆). Thus, it is of interest to us to focus some attention on

E [X | X ∈ [0,∆)].

For a (general) source with pdf f (x), x ≥ 0, we define the centroid of [0,∆),

∆ > 0, to be

∆l (∆)
4
=

1

P[0,∆)

∆∫

0

xf (x) dx,

when P[0,∆) > 0, where

P[0,∆)
4
=

∆∫

0

f (x) dx,

and we define the distance between the centroid and the upper threshold of [0,∆) to

be

∆u (∆)
4
= ∆ − ∆l (∆) .

Remark 1. It is clear from the definitions of ∆l (∆) and ∆u (∆) that both functions

are continuous and differentiable in ∆.

Remark 2. The above definitions are general and not tied to a quantization scheme.

However, if we were discussing an N -level quantizer, and if that quantizer utilized

centroids for its reconstruction levels, then for the cell at the origin [0,∆N), we would
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have

∆l (∆N ) = ∆N = µN

since tN = 0. (See Chapter II, where ∆k is defined for arbitrary quantizers and ∆
(N)
k

is defined for optimal quantizers.)

Specializing to the case of the unit variance exponential source, the expressions

for ∆l (∆) and ∆u (∆) are

∆l (∆) = 1 − ∆e−∆

1 − e−∆
(3.3.5)

∆u (∆) =
∆

1 − e−∆
− 1. (3.3.6)

For the derivation of (3.3.5) and (3.3.6), with f (x) = e−x, x ≥ 0, we have

P[0,∆) =

∆∫

0

e−xdx = −e−x
∣∣∆
0

= 1 − e−∆

and from integration by parts,

u = x du = dx

v = −e−x dv = e−xdx,

we have

∆l (∆) =
1

P[0,∆)

∆∫

0

xf(x) dx=
1

P[0,∆)


−xe−x

∣∣∣∣
∆

0

+

∆∫

0

f(x) dx




=
1

P[0,∆)

[
−xe−x

∣∣∣∣
∆

0

+ P[0,∆)

]
=

1

P[0,∆)

[
−∆e−∆

]
+ 1 = 1 − ∆e−∆

1 − e−∆

and

∆u (∆) = ∆ − 1 +
∆e−∆

1 − e−∆
= ∆

(
1 +

e−∆

1 − e−∆

)
− 1 =

∆

1 − e−∆
− 1.

We are now ready to begin the proof of Theorem III.1.
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3.3.2 The Proof of Theorem III.1.

To improve readability and to help convey the main points of the proof, we prove

Theorem III.1 for a unit variance exponential source, remarking that extension of the

proof below to the case where the variance is given by σ2 > 0 is not difficult.

The proof is presented in two halves: The first half will show the upper bound to

t
(N)
1 and second half will derive the lower bound to t

(N)
1 in Theorem III.1.

3.3.2.1 Proof of upper bound to t
(N)
1 in Theorem III.1.

To prove Part a) of Theorem III.1, we first design a special, companding-based

quantizer qcN (see Chapter II for a discussion on companding systems) with support

equal to 3 logN . It turns out that for any N ≥ 2, the half steps of qcN are always

greater than or equal to the half steps of the corresponding N -level optimal quantizer

q∗N . From this fact, it follows easily that the support of the qcN quantizer is greater

than or equal to the support threshold of q∗N .

Our companding system for a 1-sided exponential source. Fix N ≥ 2. Let

qcN be the quantizer whose thresholds are induced by the asymptotically optimal

compressor function

C∗ (x)
4
= 1 − exp−x

3 , x ≥ 0, (3.3.7)

(see Chapter II, Section 2.6, (2.6.7) and (2.6.13)) followed by an N -level quantizer

defined over [0, 1] with uniform cell size ∆
(N)
k,c = 1

N
, for k = 1, 2, · · · , N (uniform step-

size quantizer), followed by the inverse companding function C∗−1, creating thresholds

t
(N)
k,c = C∗−1

(
1 − k

N

)
, for k = 0, 1, · · · , N .

In a departure from the standard convention where the quantization levels of

a companding quantization system are derived from the midpoints of the uniform

step-size quantizer (in this case, the uniform step-size quantizer becomes a USQ),

which we will refer to as a uniform scalar quantizer companding system (USQC),

our companding system qcN has quantization levels set at each cell’s centroid and we

will refer to our companding system as a uniform threshold companding system with

centroid reconstruction levels (UTCC). Then the step widths, thresholds and levels
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of qcN are given by

∆
(N)
k,c = −3 log

(
1 − 1

k

)
, for k = 1, 2, · · · , N (3.3.8)

t
(N)
k,c = −3 log

(
k

N

)
, for k = 0, 1, · · · , N (3.3.9)

µ
(N)
k,c = t

(N)
k,c + ∆

(N)
k,c , for k = 1, 2, · · · , N (3.3.10)

where the derivation of ∆
(N)
k,c = ∆l

(
∆

(N)
k,c

)
and µ

(N)
k,c use the memoryless property of

the source. We first note that the support threshold of this companding system is

t
(N)
1,c = 3 logN and this is the upper bound in Theorem III.1. Next, we note that, as

in the case of the Nitadori sequence which is the sequence of optimal half steps [19],

the sequence of step widths ∆
(N)
k,c (and hence the sequence of half steps) depends on N

only for the length of the sequence, while the thresholds and the levels of qcN depend

directly on N .

Revisiting ∆l (∆): Centroids for our companding system. Using (3.3.5) and

(3.3.6) with (3.3.8) for qcN , we have

∆
(N)
k,c = 1 −

∆
(N)
k,c e

−∆
(N)
k,c

1 − e−∆
(N)
k,c

= 1 −
∆

(N)
k,c e

3 log(1− 1
k)

1 − e3 log(1− 1
k)

= 1 −
∆

(N)
k,c

(
1 − 1

k

)3

1 −
(
1 − 1

k

)3 (3.3.11)

and

∆
(N)

k,c = ∆
(N)
k,c − ∆

(N)
k,c = ∆

(N)
k,c −

[
1 −

∆
(N)
k,c

(
1 − 1

k

)3

1 −
(
1 − 1

k

)3

]

=
∆

(N)
k,c

[
1 −

(
1 − 1

k

)3]
+ ∆

(N)
k,c

(
1 − 1

k

)3

1 −
(
1 − 1

k

)3 − 1

=
∆

(N)
k,c

1 −
(
1 − 1

k

)3 − 1. (3.3.12)

Lemmas used in the proof of the upper bound to Theorem III.1.

Lemma III.4. For k ≥ 1, ∆
(N)

k+1,c > ∆
(N)
k,c .
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Proof. Goal: To prove that for k ≥ 1,

∆
(N)

k+1,c

∆
(N)
k,c

> 1, (3.3.13)

we will find a lower bound to the numerator in (3.3.13) and an upper bound to the

denominator in (3.3.13) and show that the ratio of these bounds is greater than 1.

Constructing ∆
(N)

k+1,cLB
and ∆

(N)
k,c UB

. From (3.3.11) and (3.3.12)

∆
(N)
k,c = 1 −

∆
(N)
k,c

(
1 − 1

k

)3

1 −
(
1 − 1

k

)3 (3.3.14)

∆
(N)

k+1,c =
∆

(N)
k+1,c

1 −
(
1 − 1

k+1

)3 − 1, (3.3.15)

it is clear that if we replace ∆
(N)
k,c by a lower bound in (3.3.14) and if we replace

∆
(N)
k+1,c with a lower bound in (3.3.15), then we will be creating an upper bound to

∆
(N)
k,c and a lower bound to ∆

(N)

k+1,c. Using a power series expansion for log (1 − x)

when 0 ≤ x < 1 [11]

log (1 − x) = −x− x2

2
− x3

3
− x4

4
− . . . ,

for k ≥ 1, we create a lower bound to ∆
(N)
k,c

∆
(N)
k,c = −3 log

(
1 − 1

k

)

= 3

[
1

k
+

1

2

1

k2
+

1

3

1

k3
+

1

4

1

k4
+ . . .

]
(3.3.16)

> 3

[
1

k
+

1

2

1

k2
+

1

3

1

k3
+

1

4

1

k4

]
(3.3.17)

and likewise, a lower bound to ∆
(N)
k+1,c

∆
(N)
k+1,c > 3

[
1

k + 1
+

1

2

1

(k + 1)2 +
1

3

1

(k + 1)3 +
1

4

1

(k + 1)4

]
, (3.3.18)
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and using these bounds, we have

∆
(N)

k+1,c

∆
(N)
k,c

=

∆
(N)
k+1,c

1−(1− 1
k+1)

3 − 1

1 − ∆
(N)
k,c (1− 1

k)
3

1−(1− 1
k)

3

>

3
[

1
k+1

+ 1
2

1

(k+1)2
+ 1

3
1

(k+1)3
+ 1

4
1

(k+1)4

]

1−(1− 1
k+1)

3 − 1

1 − 3[ 1
k
+ 1

2
1

k2 + 1
3

1
k3 + 1

4
1

k4 ](1− 1
k)

3

1−(1− 1
k)

3

=
3(3k2 − 3k + 1)k4(6k2 + 12k + 7)

(18k5 − 18k4 + 3k3 + 3k2 − 5k + 3)(k + 1)(3k2 + 3k + 1)

=
54k8 + 54k7 − 27k6 − 27k5 + 21k4

54k8 + 54k7 − 27k6 − 27k5 − 3k4 − 6k3 + k2 + 7k + 3
> 1

when k ≥ 1. Thus we have shown that (3.3.13) is true for k ≥ 1.

Remarks. From Lemma III.4, it is clear that the thresholds t
(N)
k,c relative to the

chosen levels of the companding-based qcN do not satisfy the nearest neighbor (n.n.)

condition (Chapter II). Furthermore, this lemma shows that for any adjacent quan-

tization cells, the upper half step of the quantization cell on the left is always larger

than the lower half step of the cell to the right. This is a key fact that will be used

later.

Now, we prove some general facts regarding the centroid/half step function ∆l (∆).

Lemma III.5. Suppose f is a pdf and let ∆ > 0. Then:

1. 0 < ∆l (∆) < ∆ (when P[0,∆) > 0).

2. If f > 0 a.e. (in its domain [0,∞)) then ∆l (∆) is a strictly increasing function

of ∆.

3. If f is strictly decreasing, then ∆u (∆) is a strictly increasing function of ∆.

Proof.

1. Suppose P[0,∆) > 0 (because if not, ∆l (∆) is not defined). Since f is a pdf and

P[0,∆) =
∫ ∆

0
f (x) dx > 0, the set S[0,∆)

4
=

{x ∈ [0,∆) : f (x) > 0 a.e.} ⊆ [0,∆) has Lebesgue measure greater than zero,

i.e., m
(
S[0,∆)

)
> 0 where m denotes Lebesgue measure. Then to show ∆l (∆) >
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0,

∆l (∆) =
1

P[0,∆)

∆∫

0

xf (x) dx =
1

P[0,∆)



∫

S[0,∆)

xf (x) dx+

∫

[0,∆)\S[0,∆)

xf (x) dx




=
1

P[0,∆)

∫

S[0,∆)

xf (x) dx > 0.

where the inequality is due to the fact that xf (x) > 0 a.e. in S[0,∆).

Similarly, to show ∆l (∆) < ∆,

∆ − ∆l (∆) =
1

P[0,∆)

∆∫

0

(∆ − x) f(x) dx =
1

P[0,∆)

∫

S[0,∆)

(∆ − x) f(x) dx > 0

since (∆ − x) f (x) > 0 a.e. in S[0,∆).

2. Fix ε > 0. Since i) f > 0 a.e. and ii) P[0,∆), P[0,∆+ε) > 0, ∆l (∆) and ∆l (∆ + ε)

are well-defined. Then

∆l (∆ + ε) =
1

P[0,∆+ε)

∆+ε∫

0

xf (x) dx

=
1

P[0,∆+ε)




∆∫

0

xf (x) dx+

∆+ε∫

∆

xf (x) dx




=
P[0,∆)

P[0,∆+ε)
× ∆l (∆) +

P[∆,∆+ε)

P[0,∆+ε)
×E [X | ∆<X<∆ + ε]

>
P[0,∆)

P[0,∆+ε)

×∆l(∆) +
P[∆,∆+ε)

P[0,∆+ε)

×∆l(∆)

= ∆l (∆)

where the inequality comes from the fact that since P[∆,∆+ε) > 0 (because f > 0

a.e. is assumed), E [X | ∆<X <∆ + ε] is well-defined, and

E [X | ∆<X <∆ + ε] ≥ ∆ > ∆l(∆) by Part 1.

3. Since ∆l (∆) is differentiable and since f strictly decreasing implies f > 0
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everywhere, we have

d

d∆
∆l (∆) =

d

d∆

1

P[0,∆)

∆∫

0

uf (u) du

= − 1
(
P[0,∆)

)2 × f (∆) ×
∆∫

0

uf (u) du+
∆f (∆)

P[0,∆)

=
f (∆)

P[0,∆)

[
∆ − ∆l (∆)

]
(3.3.19)

> 0,

where the inequality comes from Part 1.

Then using (3.3.19), we have

d

d∆
∆u (∆) =

d

d∆

[
∆ − ∆l (∆)

]
= 1 − f (∆)

P[0,∆)

[
∆ − ∆l (∆)

]

> 1 − f (∆)

∆f (∆)

[
∆ − ∆l (∆)

]
= 1 − ∆ − ∆l (∆)

∆
> 0,

where in the first inequality, we have used the fact that f is strictly decreasing

and the second inequality comes from Part 1.

Corollary III.6. Related to Lemma III.5, parts 2 and 3: Let ∆ > 0 and suppose f

is a pdf. Then:

1. ∆ is a strictly increasing function of ∆l when f > 0 everywhere.

2. ∆ is a strictly increasing function of ∆u when f is strictly decreasing.

Proof. These properties follow from the Inverse Function Theorem.

We are now ready to finish the proof of the upper bound in Theorem III.1.

Lemma III.7. For any N ≥ 2, ∆
(N)
k,c > ∆

(N)
k , k = 2, 3, · · · , N .

Proof. By induction. Fix N ≥ 2.
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Let k = 2. By straightforward calculation using (3.3.8) and (3.3.12),

∆
(N)

2,c =
8

7
· 3 log 2 − 1 ≈ 1.3765,

and by the translation invariance of the lower half step of optimal quantizers and

because optimal quantizers satisfy n.n. optimality,

∆
(N)

2 = ∆
(N)
1 = η

1
= 1.

Since ∆
(N)

2,c > ∆
(N)

2 and because ∆ is strictly increasing in ∆u (Corollary III.6), we

see that ∆
(N)
2,c > ∆

(N)
2 .

Now, assume that ∆
(N)
k,c > ∆

(N)
k for all 2 ≤ k ≤ m < N .

Let k = m+ 1. Then we know the following:

∆
(N)

m+1,c > ∆(N)
m,c (Lemma III.4)

> ∆(N)
m (previous assumption and from Corollary III.6)

= ∆
(N)

m+1 (n.n. condition satisfied by half steps of optimal quantizers).

Since ∆ is strictly increasing in ∆u (Corollary III.6), it is clear that ∆
(N)
m+1,c > ∆

(N)
m+1.

Thus for all k = 2, 3, . . . , N , ∆
(N)
k,c > ∆

(N)
k .

With Lemma III.7, proof of Part 1 of Theorem III.1 is a simple matter of com-

paring the sums of the step sizes of q∗N and qcN :

t
(N)
1 =

N∑

k=2

(
∆

(N)
k

)
<

N∑

k=2

∆
(N)
k,c = t

(N)
1,c .

Since t
(N)
1,c = 3 logN , we conclude that t

(N)
1 < 3 logN .

This is the end of the proof to the upper bound in Theorem III.1.

Remarks. We remark that since for any N , ∆
(N)
k,c > ∆

(N)
k for all k ≥ 2, the difference

between t
(N)
1,c and t

(N)
1 is strictly increasing in N .

We also remark that the sequence of step sizes ∆
(N)
k,c from the companding-based

quantization system in qcN is, like the Nitadori sequence, a fixed set of values that do

not change as the number of levels N is altered. This phenomenon comes from two

facts:
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1. The structure of the companding system requires that each quantization cell of

such an N -level quantizer has what we will call measure equal to

Mk,N,c =
1

N
, (3.3.20)

where the measure of the kth quantization cell of an N -level companding system

is

Mk,N,c
4
=

t
(N)
k−1,c∫

t
(N)
k,c

λ (x) dx (3.3.21)

and λ (x) = 1
3
e−

x
3 is the point density of the companding system.

2. Memoryless property with respect to Mk,N,c. The point density of the compand-

ing system, being equal to the derivative of the compressor function C∗ (x), has

the form of an exponential pdf (with mean E [X] = 3 and variance σ2 = 9)

over [0,∞). Expanding the definition of our measure, we define the measure of

reconstruction points in [t, t+ ∆) for t ≥ 0 and ∆ > 0 to be

M ([t, t+ ∆))
4
=

t+∆∫

t

λ (x) dx.

We can think of the measure M as characterizing a random variable Y in the

sense that, for an arbitrary interval [t, t+ ∆),

PY ∈[t,t+∆) = M ([t, t+ ∆)) .

Thus Y has a memoryless property which, using the convention M(Y∈[t, t+∆))=

M([t, t+ ∆)), can be expressed as

M (Y ≥ s + t |Y ≥ s) = M (Y ≥ t) (3.3.22)

Using (3.3.22), we have

M (Y ∈ [t, t+ ∆)) = M (Y ≥ t) ·M (t ≤ Y < t+ ∆ | Y ≥ t)

= M (Y ≥ t) ·M (0 ≤ Y < ∆) . (3.3.23)
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Fix N ≥ 1. Using (3.3.20) and applying (3.3.23) to (3.3.21), we have

1

N
= Mk,N,c =

t
(N)
k,N

+∆
(N)
k,c∫

t
(N)
k,c

λ (x) dx = M
(
Y ∈

[
t
(N)
k,c , t

(N)
k,c + ∆

(N)
k,c

))

= M
(
Y ≥ t

(N)
k,c

)
·M

(
0 ≤ Y < ∆

(N)
k,c

)
(3.3.24)

Since

M
(
Y ≥ t

(N)
k,c

)
= M

(
Y ∈

k⋃

j=1

[
t
(N)
j,c , t

(N)
j−1,c

))
=

k∑

j=1

Mj,N,c =

k∑

j=1

1

N
=

k

N
, (3.3.25)

(3.3.24) becomes

1

N
=

k

N
·M

(
0 ≤ Y < ∆

(N)
k,c

)

or equivalently,

M
(
0 ≤ Y < ∆

(N)
k,c

)
=

1

k
, (3.3.26)

which shows that the measure of
[
0,∆

(N)
k,c

)
is independent of N . From (3.3.26), the

expression for ∆
(N)
k,c can be determined

(
−e− 1

3
∆

(N)
k,c + 1

)
=

1

k

or equivalently,

e−
1
3
∆

(N)
k,c = 1 − 1

k

or finally,

∆
(N)
k,c = −3 log

(
1 − 1

k

)
.

Thus we see that since the measure of ∆
(N)
k,c is independent of N , we can conclude

that the step sizes ∆
(N)
k,c also do not depend on the value of N . Furthermore, the

fact that the step sizes ∆
(N)
k,c depend only on the value of k (which is less than or

equal to N) is in contrast to the fact that the thresholds t
(N)
k,c are determined by the
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relationship in (3.3.25) that is a function of both k and N . As a final observation, in

contrast to the Nitadori sequence η
k

and optimal quantizers, where the sequence of

half steps ∆
(N)
k = η

k
is fixed, irrespective of N , for these companding systems, it is

the sequence of step sizes (not half step sizes) that is fixed and does not depend on

N .

3.3.2.2 Proof of lower bound to t
(N)
1 in Theorem III.1.

To show

t
(N)
1 > 3 logN + δ (N) − 1.46004 (3.3.27)

where δ (N) has been defined in (3.2.3), we divide the analysis into two steps:

1. Show there exists a sequence sk that is a term-by-term lower bound to the

Nitadori sequence, i.e.,

sk ≤ η
k

(3.3.28)

for all k ≥ 1, which subsequently, implies that sk satisfies

t
(N)
1 = η

1
+ η

N
+ 2

N−1∑

k=2

η
k
≥ s1 + sN + 2

N−1∑

k=2

sk. (3.3.29)

2. Show that for N > 9

s1 + sN + 2
N−1∑

k=2

sk > 3 logN + δ (N) − 1.46004 (3.3.30)

(3.3.27) follows from Steps 1 and 2.

Execution of Step 1. Define the sequence sk as

sk = η
k
, for k = 1, 2, . . . , 8, and sk =

3

2k
Ωk , k ≥ 9, (3.3.31)

where for k ≥ 9,

Ωk
4
=

(
1 − 2

k
+

8

k2

) 1
2

. (3.3.32)
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As seen in Table 3.1, when 1 ≤ k ≤ 64, it appears that sk ≤ η
k
, and this observation

supports (3.3.28). However, proving (3.3.28) when k ≥ 9 is difficult to do directly

since η
k

is not easily expressed in a closed form that would facilitate a term-by-term

comparison. In fact, η
k

is defined recursively via

η
k+1

= G
(
η
k

)
+ 1, for k ≥ 1, (3.3.33)

where G is the Nitadori generator function (refer to Chapter II) and η
1

4
= 1. Thus we

take an indirect approach to arrive at (3.3.28). We will construct a function F that

satisfies

sk+1 ≤ F (sk) + 1 ≤ η
k+1

(3.3.34)

for k ≥ 1, i.e., the function F essentially produces a sequence which is sandwiched

between sk and η
k
. The following lemma lists a sufficient set of properties that, if

possessed by F , ensures that (3.3.34) is true.

Lemma III.8. Suppose a function F satisfies

a. F is a lower bound to G, where G is the Nitadori sequence generator function.

b. F is increasing.

c. For all k ≥ 1, sk+1 ≤ F (sk) + 1, where the sequence sk, k ≥ 1, is defined as

shown in (3.3.31).

Then (3.3.34) is true for all k ≥ 1.

Proof. By induction. Suppose F is a function with properties a, b, c. Let k = 1.

Since s1 = η
1

(from the definition in (3.3.31)), then

s2

c

≤ F (s1) + 1
a

≤ G
(
η

1

)
+ 1 = η

2
.

Thus for k = 1, (3.3.34) is true. Assume that for k = n− 1, (3.3.34) is also true, i.e.,

sn ≤ F (sn−1) + 1 ≤ η
n
. (3.3.35)

Now let k = n. If n ≤ 8, then

sn+1

c

≤ F (sn) + 1
a

≤ G
(
η
n

)
+ 1 = η

n+1

48



Table 3.1: The first 64 values of the sequence sk and the Nitadori sequence η
k
.

index sk η
k

index sk η
k

index sk η
k

k k k

1 1.0000 1.0000 23 0.0628 0.0637 45 0.0327 0.0329
2 0.5936 0.5936 24 0.0603 0.0611 46 0.0320 0.0322
3 0.4240 0.4240 25 0.0579 0.0587 47 0.0313 0.0315
4 0.3301 0.3301 26 0.0558 0.0565 48 0.0306 0.0309
5 0.2704 0.2704 27 0.0538 0.0544 49 0.0300 0.0303
6 0.2290 0.2290 28 0.0519 0.0525 50 0.0294 0.0297
7 0.1986 0.1986 29 0.0502 0.0507 51 0.0289 0.0291
8 0.1753 0.1753 30 0.0485 0.0491 52 0.0283 0.0285
9 0.1560 0.1570 31 0.0470 0.0475 53 0.0278 0.0280
10 0.1407 0.1421 32 0.0456 0.0461 54 0.0273 0.0275
11 0.1282 0.1298 33 0.0442 0.0447 55 0.0268 0.0270
12 0.1179 0.1194 34 0.0430 0.0434 56 0.0263 0.0265
13 0.1091 0.1106 35 0.0418 0.0422 57 0.0259 0.0261
14 0.1015 0.1030 36 0.0406 0.0410 58 0.0254 0.0256
15 0.0950 0.0964 37 0.0396 0.0399 59 0.0250 0.0252
16 0.0892 0.0906 38 0.0385 0.0389 60 0.0246 0.0248
17 0.0842 0.0854 39 0.0376 0.0379 61 0.0242 0.0244
18 0.0797 0.0808 40 0.0366 0.0370 62 0.0238 0.0240
19 0.0756 0.0767 41 0.0358 0.0361 63 0.0235 0.0236
20 0.0719 0.0730 42 0.0349 0.0352 64 0.0231 0.0232
21 0.0686 0.0696 43 0.0341 0.0344

22 0.0656 0.0665 44 0.0334 0.0337
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since sn = η
n

(by the definition of sk given in (3.3.31)). If n ≥ 9, then

sn+1

c

≤ F (sn) + 1
(3.3.35) and b

≤ F
(
η
n

)
+ 1

a

≤ G
(
η
n

)
+ 1 = η

n+1
,

i.e., (3.3.34) is true for k = n. Since n was arbitrary, we conclude that (3.3.34) is true

for all k ≥ 1.

Construction of F . The key to creating the function F with the three properties

listed in Lemma III.8 is to use the fact that the Nitadori sequence is produced recur-

sively through use of a monotonically increasing generator function G (3.3.33) and

to choose F to be a monotonic increasing lower bound to G. Clearly, this choice will

guarantee that F will possess the first two properties in Lemma III.8. By judiciously

choosing F , we can also ensure that F has the third property in Lemma III.8.

Recall that G = L ◦ Z is the composition of two functions:

• Z : (0, 1] →
(
−1
e
,− 2

e2

]
defined as

Z (w)
4
= − (w + 1) e−(w+1) (3.3.36)

and note that Z is strictly increasing on (0, 1] since

d

dw
Z (w) = −e−(w+1) + (w + 1) e−(w+1) = we−(w+1) > 0.

• The principal branch of the Lambert W function L :
(
−1
e
,− 2

e2

]
→ (−1, 0] is

defined such that for any x ∈
(
−1
e
,− 2

e2

]
, L (x) is the unique value of x ∈ (−1, 0]

such that wew = x. We note that L is strictly increasing on
(
−1
e
,− 2

e2

]
.

Then G : (0, 1] → (−1, 0] is a strictly increasing function due to the combination of

the monotonicity of both Z and L on their domains, and the Nitadori sequence η
k

is

generated by

η
k

= G
(
η
k−1

)
+ 1 = L ◦ Z

(
η
k−1

)
+ 1 = L

(
−
(
η
k−1

+ 1
)
e
−

(
η

k−1
+1

))
+ 1.

In order to create “F”, we will modify the individual functions that comprise G.

First, we replace L by a lower bound function LLB :
(
−1
e
,− 2

e2

]
→ (−1, 0] that is

strictly increasing. To do this, we start with the composite representation for L given
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in [6]:

L = B ◦ p, (3.3.37)

where p :
(
−1
e
,− 2

e2

]
→
(
0,
√

2
√

1 − 2
e

]
is

p (z)
4
=

√
2
√

1 + z e,

and

B (p)
4
= −1 + p− 1

3
p2 +

11

72
p3 − 43

540
p4 +

760

17280
p5 − 221

8505
p6 + . . . (3.3.38)

is an infinite series that converges for |p| <
√

2, and is derived by inverting a power

series expansion. (See [6] for details.) Focusing on the series B and truncating it to

the fourth order, we define the polynomial BLB :
(
0,
√

2
√

1 − 2
e

]
→ (−1, 0] as

BLB
4
= −1 + p− 1

3
p2 +

11

72
p3 − 43

540
p4

which is a lower bound to B.3 Replacing B with BLB in (3.3.37) produces a lower

bound to L: LLB
4
= BLB ◦ p (z) where

LLB (z) = BLB (p (z))

= −1 + p (z) − 1

3
p2 (z) +

11

72
p3 (z) − 43

540
p4 (z) .

The monotonicity of LLB (z), z ∈
(
−1
e
,− 2

e2

]
, follows from the monotonicity of p and

BLB which we now show:

1. Monotonicity of p (z):

d

dz
p (z) =

1√
2

e√
1 + z e

> 0

for all z > −1
e
. Hence p (z) is strictly increasing on

(
−1
e
,− 2

e2

]
.

2. Monotonicity of BLB (p):

d

dp
BLB (p) = 1 − 2

3
p+

11

24
p2 − 43

135
p3

3The proof of this statement is contained in Appendix C.
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and when p ∈
(
0,
√

2
√

1 − 2
e

]
, this derivative is positive, i.e., BLB (p) is strictly

increasing on
(
0,
√

2
√

1 − 2
e

]
.

Now, consider the function

LLB ◦ Z (x) = BLB ◦ p ◦ Z (x) .

(See Figure 3.1 for a visualization.) While this function is both a lower bound to G

and increasing, the form of this function is still not easy to work with. Thus, we will

go one step further and create a lower bound to it that is also increasing. For this

modification, we will lower bound the composition p ◦ Z using a lower bound to ex

that results from truncating a continued fraction expansion for ex. Specifically, we

will truncate the continued fraction expansion [1]

ex = m0 +
x

m1 +
x

m2 +
x

m3 +
x

m4 + · · ·

, (3.3.39)

where the convergents mn are given by

m2n = 2 (−1)n and m2n+1 = (2n+ 1)n , n = 1, 2, . . . ,

with

m0 = 1 and m1 = 1,

to a ratio of fourth order polynomials

ecf8 (x)
4
=

1680 + 180x2 + 840x+ 20x3 + x4

1680 + 180x2 − 840x− 20x3 + x4
(3.3.40)

which was created by truncating to the eighth convergent of the expansion in (3.3.39).

We remark that ecf8 (−x) = (ecf8 (x))−1, just like e−x = (ex)−1.

The main reasons behind using a continued fraction approximation to the expo-

nential function are two-fold:

• Good accuracy is achieved using a small number of convergents (as opposed to
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−1+η
2

−1

0

z

LLB(z)
L(z)

−1+s9

LLB
(
− (1+s8) e

−(1+s8)
)

− (1 + s8) e
−(1+s8)

−
2
e2

=−

(

1+η
1

)

e
−
(

1+η
1

)

=
−

1
e

−

(

1+η
8

)

e
−
(

1+η
8

)

−1+η
9

Figure 3.1: Illustration of L (z) = B (p (z)) and LLB (z) = BLB (p (z)), showing how
LLB

(
− (1 + s8) e

−(1+s8)
)
> −1 + s9, where s8 = η

8
. Note that LLB (z) is

a precursor to the final function F (x) which is a lower bound to G (x).
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the number of terms required in a Taylor series expansion of the same function

to achieve the same accuracy).

• The continued fraction expansion yields an approximation in a convenient poly-

nomial form that is easy to work with.

Note:

d

dx
ecf8 (x) =

60x2 + 4x3 + 360x+ 840

x4 − 20x3 + 180x2 − 840x+ 1680
−

(x4 − 20x3 + 180x2 − 840x+ 1680) (4x3 − 60x2 + 360x− 840)

(x4 − 20x3 + 180x2 − 840x+ 1680)2

= − 40 (x6 − 54x4 + 2520x2 − 70560)

(x4 − 20x3 + 180x2 − 840x+ 1680)2

> 0

when

|x| <
√

2

√(
2304 + 147

√
345
) 2

3 − 129 + 9
(
2304 + 147

√
345
) 1

3

(
2304 + 147

√
345
) 1

6

≈ 6.101171636.

Lower bound to p ◦ Z. Concentrating on the p (Z (x)) term, we have

p (Z (x)) =
√

2
√

1 + Z (x) · e =
√

2
√

1 − (x+ 1) e−(x+1) · e =
√

2
√

1 − (x+ 1) e−x

≥
√

2
√

1 − (x+ 1) ecf8 (−x)

=
√

2

√
1 − (x+ 1)

(
1680 + 180x2 + 840x+ 20x3 + x4

1680 + 180x2 − 840x− 20x3 + x4

)
(using (3.3.40))

=
√

2 ·
√

− (x3 − 20x2 + 140x− 840)x2

x4 + 20x3 + 180x2 + 840x+ 1680

=
√

2x ·
√

− x3 − 20x2 + 140x− 840

x4 + 20x3 + 180x2 + 840x+ 1680

=
√

2x ·
√

840 − 140x+ 20x2 − x3

x4 + 20x3 + 180x2 + 840x+ 1680

4
= (p ◦ Z)LB (x) . (3.3.41)
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Remark on (p ◦ Z)LB (x). The function (p ◦ Z)LB (x) defined for x ∈ [0, 1] is

strictly increasing since

d

dx
(p ◦ Z)LB (x) =

√
2

2

numpZLB

denpZLB

= −
√

2

2

(x7 + 40x6 − 2160x4 + 100800x2 − 2822400)√
−(x3−20x2+140x−840)
x4+20x3+180x2+840x+1680

(x4 + 20x3 + 180x2 + 840x+ 1680)2
.

This derivative is greater than zero when the polynomial term in the numerator is

negative, and this polynomial was observed to be negative for |x| < 5.8963 when

plotted.

Putting it all together to make F . We define

F (x)
4
= BLB ◦ (p ◦ Z)LB (x)

= −1 + (p ◦ Z)LB (x) − 1

3
(p ◦ Z)2

LB (x) +
11

72
(p ◦ Z)3

LB (x) − 43

540
(p ◦ Z)4

LB (x)

(3.3.42)

and by construction, we know that F is both monotone increasing and a lower bound

to G on (0, 1].

It remains to show the third property of Lemma III.8. To do this, we will find an

upper bound to sk+1 and a lower bound to F (sk)+1. Both of these will involve bounds

to expressions of the form (1 + α)
1
2 that are obtained by truncating or tweaking the

binomial expansions for such.

Binomial Theorem. From [1], for |α| < 1,

(1 + α)
1
2 = 1+

α

2
+

1
2

(
1
2
− 1
)
α2

2!
+

1
2

(
1
2
−1
)(

1
2
−2
)
α3

3!
+

1
2

(
1
2
−1
)(

1
2
−2
)(

1
2
−3
)
α4

4!
+ . . .

= 1 +
1

2
α− 1

8
α2 +

1

16
α3 − 5

128
α4 + . . .

and thus for α ∈ [0, 1],

(1 − α)
1
2 = 1 − 1

2
α− 1

8
α2 − 1

16
α3 − 5

128
α4 − . . . . (3.3.43)

Note that truncating the expansion in (3.3.43) at any point always results in an upper

bound to (1 − α)
1
2 .
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Upper bound to sk+1. To find an upper bound to sk+1, we first write sk+1 from

(3.3.31) (with k = k + 1) as

sk+1 =
3

2

1

k + 1

[
1 − 2

k + 1
+

8

(k + 1)2

] 1
2

=
3

2

1

k

[
k2

(k + 1)2 ·
(

1 − 2

k + 1
+

8

(k + 1)2

)] 1
2

=
3

2

1

k

[
k2

(k + 1)2 ·
(

1 − 2

k + 1
+

8

(k + 1)2

)] 1
2

× Ωk

Ωk

=
3

2

1

k
× Ωk

[
k2

(k + 1)2 ·
(

1 − 2
k+1

+ 8
(k+1)2

Ω2
k

)] 1
2

=
3

2

1

k
× Ωk

[
k2

(k + 1)2 ·
(

1 − 2
k+1

+ 8
(k+1)2

1 − 2
k

+ 8
k2

)] 1
2

=
3

2

1

k
× Ωk

[
k4(k2 + 7)

(k + 1)4(k2 − 2k + 8)

] 1
2

=
3

2

1

k
× Ωk

[
k6 + 7k4

k6 + 2k5 + 6k4 + 24k3 + 41k2 + 30k + 8

] 1
2

, (3.3.44)

where we have used the definition of Ωk given in (3.3.32).

Then using long division on the ratio of polynomials in (3.3.44), we have

sk+1 =
3

2

1

k
× Ωk

[
1 − 2

k
+

5

k2
− 22

k3
+

21

k4
+

22

k5
+

205

k6
+R7,sk+1

] 1
2

≤ 3

2

1

k
× Ωk

[
1 − 2

k
+

5

k2
− 22

k3
+

21

k4
+

22

k5
+

205

k6

] 1
2

, (3.3.45)

since

R7,sk+1
= − 278 + 1999

k
+ 6276

k2 + 9233
k3 + 6326

k4 + 1640
k5

k6 + 2k5 + 6k4 + 24k3 + 41k2 + 30k + 8
< 0

for any k ≥ 1. Thus by truncating R7,sk+1
, we obtain the upper bound on the right

hand side of (3.3.45). Since this upper bound is expressed as a square root, we will

need to find an upper bound to it that is not expressed as a square root. Re-expressing

(3.3.45) and using the binomial expansion in (3.3.43) with α = 2
k
− 5
k2 + 22

k3− 21
k4− 22

k5− 205
k6

and noting that |α| =
∣∣ 2
k
− 5

k2 + 22
k3 − 21

k4 − 22
k5 − 205

k6

∣∣ < 1 when k ≥ 1, we have for
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k ≥ 54

(3.3.45)RHS =
3

2

1

k
× Ωk

[
1 −

(
2

k
− 5

k2
+

22

k3
− 21

k4
− 22

k5
− 205

k6

)] 1
2

=
3

2

1

k
× Ωk

[
1 − 1

2

(
2

k
− 5

k2
+

22

k3
− 21

k4
− 22

k5
− 205

k6

)
− 1

8

(
2

k
− 5

k2
+

22

k3
− 21

k4
− 22

k5
− 205

k6

)2

− 1

16

(
2

k
− 5

k2
+

22

k3
− 21

k4
− 22

k5
− 205

k6

)3

−

6

128

(
2

k
− 5

k2
+

22

k3
− 21

k4
− 22

k5
− 205

k6

)4

− . . .

]
.

To obtain an upper bound to sk+1, we truncate this expansion after the fourth

term5 and expand

sk+1 ≤
3

2

1

k
× Ωk

[
1 − 1

k
+

2

k2
− 9

k3
+

1

8k4
+

185

8k5
+

2125

16k6
− 1251

8k7
+

12473

16k8
−

3951

4k9
+

34175

8k10
− 95603

8k11
+

244177

16k12
− 171987

4k13
+

168381

8k14
− 1097371

8k15
+

2945235

16k16
+

1386825

8k17
+

8615125

16k18

]
4
= sk+1,UB (3.3.46)

Now that we have an upper bound to sk+1, it is time to find a lower bound to F (sk)+1.

Preparation for finding a lower bound to F (sk)+1. k ≥ 3. Since with x = sk,

F(sk)+1 = (p ◦ Z)LB(sk)−
1

3
(p ◦ Z)2LB(sk)+

11

72
(p ◦ Z)3LB(sk)−

43

540
(p ◦ Z)4LB(sk), (3.3.47)

we expect the square root terms in sk (see (3.3.31), (3.3.32)) and (p ◦ Z)LB (sk) (see

(3.3.41)) to appear throughout an expanded version of this function, and thus, finding

a lower bound to F (sk) means swapping an upper bound for square root terms

that are negative and using lower bounds to positive square root terms in sk and

(p ◦ Z)LB (sk).

4Note: Through out the remainder of this derivation, we have used the constraint k ≥ 5 whenever
we make decisions on truncating expansions and verifying bounds when, in reality, we really only
needed to use the restriction that k ≥ 9 (which comes from the definition of Ωk). The resulting
lower bound function F that is produced at the end of this discussion is, perhaps, slightly more
complicated (and may be tighter) than necessary since it was derived to hold for k ≥ 5 (which is
overly restrictive) instead of k ≥ 9. Nevertheless, the F function that we produce fulfills all of the
requirements in Lemma III.8.

5Truncating after the third term (or any earlier term) did not yield an upper bound with sufficient
accuracy to (3.3.45)RHS under the constraint that k ≥ 5.
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The two square root expressions that will be appear throughout the expression

for F (sk) + 1 are:

1. Ωk which was introduced in (3.3.32)

2.

ψk
4
=

√
k4 − 1

4
Ωkk3 + 3

56
Ω2
kk

2 − 9
2240

Ω3
kk

k4 + 3
4
Ωkk3 + 27

112
Ω2
kk

2 + 9
224

Ω3
kk + 27

8960
Ω4
k

(3.3.48)

which is an expression that will be seen later in (p ◦ Z)LB (sk).

Bounds for Ωk. We define the following upper and lower bound to Ωk:

Ωk,UB
4
= 1 − 1

2

(
2

k
− 8

k2

)
= 1 − 1

k
+

4

k2
(3.3.49)

Ωk,LB
4
= 1 − 1

k
. (3.3.50)

It is clear that Ωk,UB is an upper bound to Ωk since

(Ωk,UB)2 − Ω2
k =

(
1 − 1

k
+

4

k2

)2

−
(

1 − 2

k
+

8

k2

)

=

(
1 − 2

k
+

9

k2
− 8

k3
+

16

k4

)
−
(

1 − 2

k
+

8

k2

)

=
1

k2
− 8

k3
+

16

k4
=

1

k4

(
k2 − 8k + 16

)
=

1

k4
(k − 4)2

> 0

for k ≥ 5, and it is also clear that when k ≥ 5, Ωk,LB is a lower bound to Ωk

Ω2
k − (Ωk,LB)2 =

(
1− 2

k
+

8

k2

)
−
(

1− 1

k

)2

=

(
1 − 2

k
+

8

k2

)
−
(
1− 2

k
+

1

k2

)
=

7

k2
> 0.

Summarizing: We have three functions, Ωk defined for k ≥ 9, and the bounds Ωk,UB

and Ωk,LB to Ωk that hold when k ≥ 9.6

6Just to re-iterate, the bounds actually hold for k ≥ 5.
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A lower bound for ψk. First, we use long division to evaluate the ratio of poly-

nomials underneath the square root in (3.3.48), where the ratio of polynomials is

k4 − 1
4
Ωkk

3 + 3
56

Ω2
kk

2 − 9
2240

Ω3
kk

k4 + 3
4
Ωkk3 + 27

112
Ω2
kk

2 + 9
224

Ω3
kk + 27

8960
Ω4
k

. (3.3.51)

If we stop the long division after the fourth iteration7, we have

ψk =

[
1 − Ωk

k
+

9

16

Ω2
k

k2
− 9

40

Ω3
k

k3
+R4,(3.3.51)

] 1
2

where

R4,(3.3.51) =
9

128
Ω4
k + 621

17920

Ω5
k

k
+ 1053

143360

Ω6
k

k2 + 243
358400

Ω7
k

k3

k4 + 3
4
Ωkk3 + 27

112
Ω2
kk

2 + 9
224

Ω3
kk + 27

8960
Ω4
k

.

Since, for k ≥ 5, the range where Ωk is defined, R4,(3.3.51) is always positive, dropping

it will produce a lower bound to ψk. With α =
(

Ωk

k
− 9

16

Ω2
k

k2 + 9
40

Ω3
k

k3

)
and noting that

when k ≥ 5, |α| < 1, we can use the binomial expansion in (3.3.43) to express the

newly created lower bound to ψk as an infinite series

ψk ≥
[
1−
(

Ωk

k
− 9

16

Ω2
k

k2
+

9

40

Ω3
k

k3

)]1
2

= 1− 1

2

(
Ωk

k
− 9

16

Ω2
k

k2
+

9

40

Ω3
k

k3

)
−1

8

(
Ωk

k
− 9

16

Ω2
k

k2
+

9

40

Ω3
k

k3

)2

− 1

16

(
Ωk

k
− 9
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Ω2
k

k2
+

9

40

Ω3
k

k3

)3

− 5

128

(
Ωk

k
− 9

16

Ω2
k

k2
+

9

40

Ω3
k

k3

)4

− . . . . (3.3.52)

To create a useable lower bound to ψk, we will have to truncate the infinite series

in (3.3.52). Truncation of this binomial series, however, produces an upper bound

and we require a lower bound. Thus, we first truncate the binomial expansion after

four terms, which yields an upper bound to (3.3.51),

1− 1

2

(
Ωk

k
− 9

16

Ω2
k

k2
+

9

40

Ω3
k

k3

)
−1

8

(
Ωk

k
− 9

16

Ω2
k

k2
+

9

40

Ω3
k

k3

)2

− 1

16

(
Ωk

k
− 9

16

Ω2
k

k2
+

9

40

Ω3
k

k3

)3

,

and then, we “tweak” the resulting upper bound to obtain a lower bound: We drop

all terms with powers of k less than or equal to −4. and increase the magnitude of

the coefficient of the k−3 coefficient to get the following lower bound to (3.3.51) which

7While truncation after an even number of terms always yields a lower bound, we only obtain
sufficiently tight lower bounds to ψk (under the constraint that k ≥ 5) if we truncate after the fourth
term. Moreover, truncating after the fourth term produces a lower bound to ψk with the simplest
form (fewest number of terms).
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is, in turn, also a lower bound to ψk:

ψk ≥ 1 − 1

2

Ωk

k
+

5

32

Ω2
k

k2
− 12

320

Ω3
k

k3
= 1 − 1

2

Ωk

k
+

5

32

Ω2
k

k2
− 3

80

Ω3
k

k3

4
= ψk,LB. (3.3.53)

To check that ψk,LB in (3.3.53) is a lower bound to ψk:

ψ2
k − ψ2

k,LB =

[
k4 − 1

4
Ωkk

3 + 3
56

Ω2
kk

2 − 9
2240

Ω3
kk

k4 + 3
4
Ωkk3 + 27

112
Ω2
kk

2 + 9
224

Ω3
kk + 27

8960
Ω4
k

]
−
[
−1

2

Ωk

k
+

5

32

Ω2
k

k2
− 3
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Ω3
k

k3

]2

=

[
k4 − 1

4
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3 + 3
56

Ω2
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2 − 9
2240

Ω3
kk

k4 + 3
4
Ωkk3 + 27

112
Ω2
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2 + 9
224

Ω3
kk + 27

8960
Ω4
k

]
− 1

25600k6

[
25600k6−

25600Ωkk
5 + 14400Ω2

kk
4 − 5920Ω3

kk
3 + 1585Ω4

kk
2 − 300Ω5

kk + 36Ω6
k

]

=
numψ2

k
−ψ2

k,LB

denψ2
k
−ψ2

k,LB

,

where

numψ2
k
−ψ2

k,LB

4
= Ω3

k

(
1433600k7 + 3001600Ωkk

6 + 331200Ω2
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5 + 12240Ω3
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4−

4680Ω4
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3 − 12555Ω5
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2 − 4860Ω6
kk − 972Ω7

k

)
(3.3.54)

denψ2
k
−ψ2

k,LB

4
= 25600k6

(
8960k4 + 6720Ωkk

3 + 2160Ω2
kk

2 + 360Ω3
kk + 27Ω4

k

)
.

Since denψ2
k
−ψ2

k,LB
> 0 when k ≥ 5, then if numψ2

k
−ψ2

k,LB
> 0, then ψ2

k−ψ2
k,LB > 0. We

have used Maple to find that numψ2
k
−ψ2

k,LB
in (3.3.54) only has one real root with a

value approximately equal to .3051153731Ωk. Since for each k ≥ 5, k is also greater

than or equal to the root of (3.3.54), and since the coefficient of the leading term of

numψ2
k
−ψ2

k,LB
is also positive for every k ≥ 5, we conclude that ψ2

k − ψ2
k,LB > 0 when

k ≥ 5.

A lower bound to F (sk) + 1 when k ≥ 5. Since F (sk) + 1 is a fourth order

polynomial in (p ◦ Z)LB (sk) (see (3.3.47)), it is time to evaluate (p ◦ Z)LB (x). From
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(3.3.41) with x = sk

(p ◦ Z)LB (sk)

=
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2sk ·
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Using (3.3.55) in (3.3.47), along with the definitions for Ωk and ψk in (3.3.31) and

(3.3.48), we have

F (sk) + 1 =
3
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, (3.3.56)

where
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Using long division, one can express
num(3.3.56)

den(3.3.56)
from (3.3.56) as the sum quotients

num(3.3.56)

den(3.3.56)

= Q1 +Q2 +Q3 +Q4 +Q5 + . . . , (3.3.58)

where Qk is the quotient that results from the kth iteration of long division. We

obtain a lower bound by stopping the long division process after the kth iteration

when the remainder Rk > 0 for k ≥ 5 is produced. At the fourth iteration of long

division on
num(3.3.56)

den(3.3.56)
, we have just such a remainder
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where the remainder is
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with
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for k ≥ 5. Since den(3.3.56) in (3.3.57) is positive when k ≥ 5, if we drop the remainder

R4,(3.3.59) from (3.3.59), we obtain a lower bound to F (sk) + 1

3

2k
× Ωk ×

[
ψk −

1

2

Ωk

k
+

1

32

(
11ψ3

k + 16
) Ω2

k

k2
− 11

20

Ω3
k

k3

]
. (3.3.60)

Substituting ψk,LB from (3.3.53) for ψ in (3.3.60), we have

F (sk) + 1 ≥ 3
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To obtain the final form of our lower bound to F (sk) + 1, we must substitute

the upper and lower bounds to Ωk (appropriately) from (3.3.49) and (3.3.50) for Ω in

(3.3.61), ignoring the Ωk that has been factored out of the term in square brackets
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6281797

163840k6
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+
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+
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+
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+
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Finally, using the lower bound (F (sk) + 1)LB in (3.3.62) and the upper bound

sk+1,UB in (3.3.46), we have

F (sk) + 1 − sk+1 ≥ (F (sk) + 1)LB − sk+1,UB

where the right hand side equals
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+
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]
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32768000
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2000
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100
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50
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125
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125
k − 9504

125
. (3.3.63)

Using Maple, we have discovered that num in (3.3.63) has only two real roots which

are approximately equal to −.6772223804 and 4.740419301, and thus, we conclude

that

F (sk) + 1 − sk+1 > 0

when k ≥ 5.

We have now shown that for k ≥ 9,8 the function F defined in (3.3.42) satis-

fies Property c) from Lemma III.8. Since F also satisfies Properties a) and b) in

Lemma III.8, and since for k = 1, 2, . . . , 8, sk = η
k
, Lemma III.8 tells us that sk ≤ η

k

for all k ≥ 1. This conclusion completes Step 1 of the proof of the lower bound to

t
(N)
1 in Theorem III.1.

8Actually, we have shown it to be true for k ≥ 5.
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Execution of Step 2. To show (3.3.30) is true, we evaluate the sum in (3.3.29)

using the definition of sk in (3.3.31) when N > 9:

s1 + sN + 2

N−1∑

k=2

sk = s1 + sN + 2

8∑

m=2

sm + 2

N−1∑

k=9

3

2k
Ωk

= η
1
+ sN + 2

8∑

m=2

η
m

+ 2
N−1∑

k=9

3

2k
Ωk

= 1 + sN + 2

8∑

m=2

η
m

+ 2

N−1∑

k=9

3

2k
Ωk. (3.3.64)

Using the binomial expansion given in (3.3.43) with α =
(

2
i
− 8

i2

)
, we can express Ωk

as

Ωk =

[
1 −

(
2

k
− 8

k2

)] 1
2

= 1− 1

2

(
2

k
− 8

k2

)
−1

8

(
2

k
− 8

k2

)2
− 1

16

(
2

k
− 8

k2

)3

− 5

128

(
2

k
− 8

k2

)4

− 7

256

(
2

k
− 8

k2

)5

−. . .

= 1−
(

1

k
− 4

k2

)
−1

2

(
1

k2
− 8

k3
+

16

k4

)
− 1

16

(
2

k
− 8

k2

)3

− 5

128

(
2

k
− 8

k2

)4

− 7

256

(
2

k
− 8

k2

)5

−. . .

= 1− 1

k
+

4

k2
+

1

k2

[
−1

2
+

4

k
− 8

k2
− k2

16

(
2

k
− 8

k2

)3

− 5k2

128

(
2

k
− 8

k2

)4

− 7k2

256

(
2

k
− 8

k2

)5

−. . .
]

= 1− 1

k
+

7

2

1

k2
+

1

k2

[
4

k
− 8

k2
− k2

16

(
2

k
− 8

k2

)3

− 5k2

128

(
2

k
− 8

k2

)4

− 7k2

256

(
2

k
− 8

k2

)5

−. . .
]

= 1− 1

k
+

7

2

1

k2
+εk,

where

εk
4
=

1

k2

[
4

k
− 8

k2
− k2

16

(
2

k
− 8

k2

)3

− 5k2

128

(
2

k
− 8

k2

)4

− 7k2

256

(
2

k
− 8

k2

)5

− . . .

]

=
1

k2

[
4

k
− 8

k2
+

(
Ωk −

[
1 − 1

2

(
2

k
− 8

k2

)
− 1

8

(
2

k
− 8

k2

)2
])]

=
1

2k2

[
2 (Ωk − 1) k2 + 2k − 7

]
(3.3.65)

is o (k−2). Using Maple, we find that the numerator of εk in (3.3.65) has three roots:

−.9151112632, .9004449069, 1.955242680. Since the leading coefficient of the domi-

nant term of this numerator is positive (because Ωk > 1 for k ≥ 4), we know that
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εk > 0 when k ≥ 5 since for these values of k is greater than the largest positive root

of the numerator.

Then using (3.3.65) in (3.3.64),

1 + sN + 2
8∑

m=2

η
m

+ 2
N−1∑

k=9

3

2k
Ωk

= 1 + sN + 2

8∑

m=2

η
m

+ 3

N−1∑

k=9

1

k

(
1 − 1

k
+

7

2

1

k2
+ εk

)

= 1 + sN + 2
8∑

m=2

η
m

+ 3
N−1∑

k=9

1

k
− 1

k2
+

7

2

1

k3
+
εk

k

= 1 + sN + 2

8∑

m=2

η
m

+ 3

[
N−1∑

k=9

1

k
−

N−1∑

k=9

1

k2
+

N−1∑

k=9

7

2

1

k3
+
εk

k

]

= 1 + sN + 2
8∑

m=2

η
m

+ 3

[
N−1∑

k=9

1

k
−

N−1∑

k=9

1

k2
+

N−1∑

k=9

7

2

1

k3
+

N−1∑

k=9

εk

k

]
. (3.3.66)

Since Riemann upper and lower sums provide bounds to Riemann integrals, we have

the following inequalities

N−1∑

i=9

1

i
≥

N∫

9

1

x
dx = log x

∣∣∣
N

9
= logN − log 9

N−1∑

i=9

1

i2
≤

N−1∫

8

1

x2
dx = −1

x

∣∣∣∣
N−1

8

=
1

8
− 1

N − 1

N−1∑

i=9

1

i3
≥

N∫

9

1

x3
dx = − 1

2x2

∣∣∣∣
N

9

=
1

2 · 92
− 1

2N2
=

1

162
− 1

2N2
,

and using these relationships in (3.3.66), we have

(3.3.66)RHS ≥ 1+sN+2

8∑

m=2

η
m

+3

[
logN−log9− 1

8
+

1

N−1
+

7

2

(
1

162
− 1

2N2

)]
+3

N−1∑

k=9

εk

k

= 1+sN+2
9∑

m=2

η
m

+3

[
logN+

1

N−1
−7

4

(
1

N2

)]
+3

[
7

324
−log9− 1

8

]
+3

N−1∑

k=9

εk

k
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= 3

[
logN+

1

N−1
−7

4

1

N2

]
+

[
1+sN+2

8∑

m=2

η
m
−3 log9− 3 · 67

648

]
+3

N−1∑

k=9

εk

k

=

[
3 logN+

3

N−1
−7

4

3

N2
+sN

]
+

[
1+2

8∑

m=2

η
m
−3 log9− 67

216

]
+3

N−1∑

k=9

εk

k

=

[
3 logN+

3

N−1
−21

4

1

N2
+

3

2N

(
1− 2

N
+

8

N2

) 1
2

]
+

[
1+2

8∑

m=2

η
m
−

3 log9− 67

216

]
+3

N−1∑

k=9

εk

k

=

[
3 logN+δ(N)

]
+

[
1+2

8∑

m=2

η
m
−3 log9− 67

216

]
+3

N−1∑

k=9

εk

k

≥
[
3 logN+δ(N)

]
+

[
1 + 2

8∑

m=2

η
m
− 3 log 9 − 67

216

]
(3.3.67)

> 3 logN + δ (N) − 1.46004 (3.3.68)

where

1 + 2
8∑

m=2

η
m
− 3 log 9 − 67

216
≈ −1.46003439868863

and

δ (N) =
3

N − 1
− 21

4

1

N2
+

3

2N

(
1 − 2

N
+

8

N2

) 1
2

is as defined in (3.2.3). Also, we note that in (3.3.67), we have dropped the term

3
∑N−1

k=9
εk
k

because it is strictly positive when k ≥ 5.

Since (3.3.68) is the lower bound stated in Theorem III.1, this concludes Step 2.

Since, as already stated, (3.3.27) follows directly from the relationships obtained

in Step 1 and Step 2, we have completed the proof of Theorem III.1.

3.3.3 The Proof of Corollary III.2.

Now we prove that the rate at which N 2D (N) converges to β

12
σ2, which is the

Panter-Dite constant scaled by the factor σ2

12
, is no greater than 9

4
σ2
(

2
N
− 8

N2

)
and

we remark that the extension to case where the variance of the source is given by σ2

is not difficult since ∆
(N)
N = η

N
σ for N ≥ 1.
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Proof of Corollary III.2. Again, just as in the proof of Theorem III.1, we prove

this corollary for the unit variance exponential source.

To prove Corollary III.2, we use Nitadori’s result and the bounds in Theorem III.1.

To produce an upper bound to D (N), we remember that the half steps of qcN were

always larger than the corresponding half steps of q∗N . Therefore, we have

D (N) =
(
∆

(N)
N

)2

(Nitadori’s distortion result)

=
(
η
N

)2

(unit variance exponential source)

≤ (cN,c)
2

=
(
∆

(N)
N,c

)2

(unit variance)

=

[
∆l

(
−3 log

(
1 − 1

N

))]2

=

[
1 −

∆
(N)
N,c

(
1 − 1

N

)3

1 −
(
1 − 1

N

)3

]2

(used (3.3.11))

=

[
1 − −3 log

(
1 − 1

N

) (
1 − 1

N

)3

1 −
(
1 − 1

N

)3

]2

=

[
1 −

(
3
[

1
N

+ 1
2

1
N2 + 1

3
1
N3 + 1

4
1
N4 + . . .

]) (
1 − 1

N

)3

1 −
(
1 − 1

N

)3

]2

(used (3.3.16))

=

[
1 −

(
3
[

1
N

+ 1
2

1
N2 + 1

3
1
N3 + 1

4
1
N4 + . . .

]) (
1 − 1

N

)3

1 −
(
1 − 3

N
+ 3

N2 − 1
N3

)
]2

=

[(
3
N
− 3

N2 + 1
N3

)
−
(
3
[

1
N

+ 1
2

1
N2 + 1

3
1
N3 + 1

4
1
N4 + . . .

]) (
1 − 1

N

)3
3
N
− 3

N2 + 1
N3

]2

=

[(
3 − 3

N
+ 1

N2

)
−
(
3
[
1 + 1

2
1
N

+ 1
3

1
N2 + 1

4
1
N3 + . . .

]) (
1 − 1

N

)3

3 − 3
N

+ 1
N2

]2

=

[(
1 − 1

N
+ 1

3N2

)
−
[
1 + 1

2
1
N

+ 1
3

1
N2 + 1

4
1
N3 + . . .

] (
1 − 1

N

)3

1 − 1
N

+ 1
3N2

]2

=

[(
1 − 1

N
+ 1

3N2

)
−
[
1 + 1

2
1
N

+ 1
3

1
N2 + 1

4
1
N3 + . . .

] (
1 − 3

N
+ 3

N2 − 1
N3

)

1 − 1
N

+ 1
3N2

]2

=
num

1 − 1
N

+ 1
3N2

.
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Concentrating on just the numerator, we have

num =

(
1− 1

N
+

1

3N2

)
−
[
1+

1

2

1

N
+

1

3

1

N2
+

1

4

1

N3
+. . .

](
1− 3

N
+

3

N2
− 1

N3

)

=

(
1− 1

N
+

1

3N2

)
−
[
1+

1

2N
+

1

3N2
+

1

4N3
+. . .

]
+

3

N

[
1+

1

2N
+

1

3N2
+

1

4N3
+. . .

]

− 3

N2

[
1+

1

2N
+

1

3N2
+

1

4N3
+. . .

]
+

1

N3

[
1+

1

2N
+

1

3N2
+

1

4N3
+. . .

]

=

(
−1

N
+

1

3N2

)
−
[

1

2N
+

1

3N2
+

1

4N3
+. . .

]
+

[
3

N
+

3

2

1

N2
+

1

N3
+

3

4

1

N4
+. . .

]

−
[

3

N2
+

3

2

1

N3
+

1

N4
+

3

4

1

N4
+. . .

]
+

[
1

N3
+

1

2

1

N4
+

1

3

1

N5
+

1

4

1

N6
+. . .

]

=

(
−1

N
− 1

2N
+

3

N

)
+

(
1

3N2
− 1

3N2
+

3

2

1

N2
− 3

N2

)
+

[
− 1

4N3
+

1

N3
−3

2

1

N3
+

1

N3

]
+

O

(
1

N4

)

=

(
3

2

1

N

)
+

(
−3

2

1

N2

)
+

[
− 1

4N3
+

2

N3
−3

2

1

N3

]
+O

(
1

N4

)

=

(
3

2

1

N

)
+

(
−3

2

1

N2

)
+

[
− 1

4N3
+

1

2

1

N3

]
+O

(
1

N4

)

=

(
3

2

1

N

)
+

(
−3

2

1

N2

)
+

[
1

4N3

]
+O

(
1

N4

)
=

3

2

1

N

[
1− 1

N
+

1

6

1

N2
+O

(
1

N3

)]
.

Then

D (N) ≤
[

3

2

1

N

1 − 1
N

+ 1
6

1
N2 +O

(
1
N3

)

1 − 1
N

+ 1
3N2

]2

=
9

4

1

N2

[
1 − 1

N
+ 1

6
1
N2 +O

(
1
N3

)

1 − 1
N

+ 1
3

1
N2

]2

=
9

4

1

N2

[
1 − 1

6

1

N2
+O

(
1

N3

)]2

=
9

4

1

N2

[
1 − 1

3

1

N2
+O

(
1

N3

)]
. (3.3.69)

Similarly for a lower bound to D (N), we recall that the sequence sk is a lower

bound to the sequence of optimal half steps η
k
. Again, starting with Nitadori’s result,
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we have

D (N) =
(
∆

(N)
N

)2

=
(
η
N

)2

≥ 1

2
(sN)2

=

[
3

2

1

N

(
1 − 2

N
+

8

N2

) 1
2

]2

(from (3.3.31))

=
9

4

1

N2

(
1 − 2

N
+

8

N2

)
. (3.3.70)

Noting that both bounds in (3.3.69) and (3.3.70) are less than β

12N2 = 9
4N2 (which

means that N2D (N) approaches β

12
from below), we have

9

4

(
1

3

1

N2
+O

(
1

N3

))
<

β

12
−N2D (N) <

9

4

(
2

N
− 8

N2

)
.

For our upper bound to the convergence rate to β

12
, we choose 9

2

(
2
N
− 8

N2

)
, since

it is the larger of the two bounds in the limit as N goes to infinity.

3.4 Discussion and Applications of Theorem III.1 and Its

Corollaries.

This section is comprised of two discussions. The first one deals with support

threshold estimation where we consider the functions given in Theorem III.1 as ap-

proximations to t
(N)
1 . Following this, we look at support threshold estimation using the

sk sequence and compare the results we get against the bounds in Theorem III.1, as

well as t
(N)
1 . The second discussion focuses on quantizer design using the sk sequence

and on design using a variation on the sk sequence. We compare the performance of

these quantizers against the best performance achieved by optimal quantizers. Note

that throughout these discussions, we will make our comments with regards to quan-

tization of a unit variance exponential source, remarking that similar statements can

be made for the quantization of an exponential source with arbitrary variance.
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3.4.1 Accuracy of Bounds in Theorem III.1.

The upper and lower bounds

t
(N)
1,c = 3 logN, N ≥ 1

t
(N)
1,LB,Thm III.1

4
= 3 logN + δ (N) − 1.46004, N > 9 (see (3.3.27))

reported in Theorem III.1 can be used as estimators for the support threshold t
(N)
1 of

optimal exponential quantizers. The suitability of these bounds as t
(N)
1 estimators is

seen in how accurate they are in tracking the behavior of t
(N)
1 as the number of levels

N increases. In Figure 3.2, we look at the quantities

t
(N)
1,c − t

(N)
1

and

t
(N)
1,LB,Thm III.1 − t

(N)
1

at low numbers of levels (N ≤ 16, the low rate case) and at high numbers of

levels (N ≤ 4096, the high rate case). From examination of the data shown, it

appears that both t
(N)
1,c and t

(N)
1,LB,Thm III.1 are able to track the rate of growth of

t
(N)
1 as a function of the number of levels N since it appears that t

(N)
1,c − t

(N)
1 and

t
(N)
1,LB,Thm III.1 − t

(N)
1 are converging monotonically to constant values. It is also ap-

parent that t
(N)
1,LB,Thm III.1 represents a better approximation to t

(N)
1 than t

(N)
1,c when

N ≥ 9 since
∣∣∣t(N)

1,LB,Thm III.1 − t
(N)
1

∣∣∣ < 0.3 as opposed to
∣∣∣t(N)

1,c − t
(N)
1

∣∣∣ > 0.5 when

N ≥ 9. We also remark that when N ≤ 8, t
(N)
1,LB,Thm III.1 is greater than t

(N)
1 and thus

t
(N)
1,LB,Thm III.1 is only a lower bound to t

(N)
1 when N ≥ 9.

3.4.2 Tighter Support Threshold Estimation.

Since the sequence sk is a lower bound to the Nitadori sequence η
k

and because

sk, in contrast to η
k
, can be expressed in closed-form, it is natural to use sk to

estimate parameters that are used to design MMSE exponential quantizers. As a

first application, we use sk to estimate the key parameter or support threshold t
(N)
1

of an N -level optimal quantizer, which is an important initializing value used in the

Lloyd-Max algorithm for the design of optimal quantizers [13], [15]. To construct an
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estimate for t
(N)
1 , recall that t

(N)
1 is equal to a sum of Nitadori sequence terms

t
(N)
1 = η

1
+ η

N
+ 2

N−1∑

k=2

η
k
. (3.4.71)

To create our support threshold estimate t
(N)
1,s , we replace each η

k
for sk for in (3.4.71)

to get

t
(N)
1,s

4
= s1 + sN + 2

N−1∑

k=2

sk

=





t
(N)
1 for N ≤ 8

t
(8)
1 + η

8
+ sN + 2

N−1∑

i=9

si

= t
(8)
1 + η

8
+ 3

2N

(
1 − 2

N
+ 8

N2

) 1
2 + 2

∑N−1
i=9

3
2i

(
1 − 2

i
+ 8

i2

) 1
2

for N ≥ 9

(3.4.72)

which is a lower bound to t
(N)
1 since sk ≤ η

k
for all k.

For the unit variance exponential source, Figure 3.2 shows that the lower bound

t
(N)
1,s is a rather close approximation to t

(N)
1 since the absolute difference between t

(N)
1

and t
(N)
1,s is less than 0.1, at least for all values of N ≤ 4096. Thus for N ≤ 4096, we

have

t
(N)
1 ≥ t

(N)
1,s ≥ t

(N)
1 − 0.1

or equivalently,

t
(N)
1,s ≤ t

(N)
1 ≤ t

(N)
1,s + 0.1. (3.4.73)

Recall from Figure 3.2 that the absolute difference between t
(N)
1 and the lower bound

t
(N)
1,LB,Thm III.1 given in Theorem III.1 is less than 0.15. We remark that while t

(N)
1,s

seems to be a better lower bound than t
(N)
1,LB,Thm III.1, t

(N)
1,LB,Thm III.1 can be expressed

as a function of N in closed form and this is in contrast to t
(N)
1,s which does not have a

closed form expression in N but can be expressed as a the sum in (3.4.72). We remind

ourselves that the ability to express the bound t
(N)
1,s as the sum in (3.4.72) is (when

N ≥ 9), however, an improvement over the expression for t
(N)
1 in (3.4.71) which does

not have a closed form expression even in terms of the individual η
k

terms since η
k

cannot be expressed in closed form.
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Also recall from Figure 3.2 that the absolute difference between t
(N)
1 and the

corresponding support threshold for the UTCC quantizer t
(N)
1,c = 3 logN (see (3.3.8))

is less than 0.78 and that for N = 128, 129, . . . , 4096, the difference appears to remain

constant. Thus based on what has been seen, we remark that the upper bound t
(N)
1,c

to t
(N)
1 seems able to track the growth rate of t

(N)
1 , but it is not nearly as tight a t

(N)
1

estimator as the lower bounds t
(N)
1,s and t

(N)
1,LB,Thm III.1.

Overall, it appears that t
(N)
1,s is the best approximation of t

(N)
1 of the estimates

shown in Figure 3.2. Summarizing these observations, for N ≤ 4096, we observe that

t
(N)
1 ≥ t

(N)
1,LB,Thm III.1 ≥ t

(N)
1 − 0.2 (3.4.74)

or

3 logN + δ (N) − 1.46004 ≤ t
(N)
1 ≤ 3 logN + δ (N) − 1.26004

and

t
(N)
1 ≤ t

(N)
1,c = 3 logN ≤ t

(N)
1 + 0.8

or

3 logN ≥ t
(N)
1 ≥ 3 logN − 0.8,

and

t
(N)
1,s ≤ t

(N)
1,c − 0.9 = 3 logN − 0.9. (3.4.75)

Combining the observations we have made from Figure 3.2 and using (3.4.73),

(3.4.74),(3.4.75), we observe the following bounds to t
(N)
1,s when N ≤ 4096,

3 logN+δ(N) − 1.36004 = t
(N)
1,LB,Thm III.1+0.2−0.1 ≤ t

(N)
1 −0.1 ≤ t

(N)
1,s ≤ 3 logN−0.9.

As an additional remark, since t
(N)
1,s appears to be a superior approximation to

t
(N)
1 than is t

(N)
1,LB,Thm III.1, it may be possible to find a tighter theoretical lower bound

to t
(N)
1 than the one reported in Theorem III.1. Indeed, the possibility of finding a

tighter upper bound to t
(N)
1 also exists.
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Figure 3.2: Gauging the accuracy of the estimators t
(N)
1,s , t

(N)
1,v against t

(N)
1 . Also shown

are the t
(N)
1 bounds from Theorem III.1, where t

(N)
1,c is the upper bound.
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3.4.3 Quantizer Design Using Half Step Sequences.

Recall from Chapter II that while quantizer design is typically expressed in terms

of a set of quantization thresholds and reconstruction levels, optimal quantizer design

can also be expressed succinctly as a single set of (lower) half step lengths. Indeed, for

suboptimal quantizers that have been designed under the nearest neighbor constraint,

this half step parameterization provides a complete and compact description of such

quantizers. Motivated by this observation, in this section, we examine quantizer

design using half steps under the nearest neighbor constraint using two different half

step sequences.

3.4.3.1 Quantizer design using sk.

Since the sk sequence can be thought of as an approximation to the Nitadori

sequence η
k
, it would be of interest to design suboptimal quantizers using sk and

then to measure the MSE performance as a function of the number of levels N in

order to see how close to optimal these quantizers are. Since there is a closed form

expression for sk, this application of the sk sequence provides a simpler, more practical

way of designing quantizers with known performance.

An easy way to use sk to design quantizers is to follow the method used to design

optimal quantizers from the Nitadori sequence η
k
. First, we fix the number of levels

N . Then we take the first N values of the sk sequence, s1, s2, . . . , sN and we assign

the half steps of the quantizer to the values of sk as ∆k = sk, for k = 1, 2, . . . , N .

The quantizer’s quantization thresholds tk and quantization levels lk are determined

as follows:

1. t
(N)
k,s =

∑N

i=k+1 ∆
(N)
i,s =

∑N

i=k+1 ∆
(N)
i,s + ∆

(N)
i−1,x =

∑N

i=k+1 si + si−1, for k =

1, 2, . . . , N with t
(N)
N,s

4
= 0 and t

(N)
0,s

4
= +∞.

2. l
(N)
k,s

4
= t

(N)
k,s + ∆

(N)
k,s = t

(N)
k,s + sk, for k = 1, 2, . . . , N .

Using the general expression (2.2.1) from Chapter II, the MSE performance of such

a quantizer with N levels is

Dsk
(N)

4
=

N∑

k=1

t
(N)
k,s

+∆
(N)
k,s∫

t
(N)
k,s

(
x− l

(N)
k,s

)2

e−xdx. (3.4.76)
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Remarks on this particular method of quantizer design. As a consequence

of the design algorithm described, since we have set the quantizer’s half steps to

values of the sk sequence, we have produced a quantizer whose thresholds satisfy the

nearest neighbor requirement of the optimality conditions. The centroid condition,

however, has, in general, not been met by the quantizer’s reconstruction levels. But

even in spite of a lack of adherence to the centroid condition, quantizers produced

in this manner, using sk in place of η
k
, appear to have very good MSE performance.

Evidence of this is seen in Figure 3.3 Row a where it also seems that such quantizers

may be asymptotically optimal since the data appears to show that
Dsk

(N)

D(N)
converge

to 1 as N increases. Moreover, this convergence behavior of the ratio D(N)
β
12

can been

seen even for small values of N , say N ≤ 128 (see Figure 3.3 plot (a− i)) where the

maximum value of this ratio (which occurs at around N = 28) is within 0.05% of 1.

Examining the performance of an N -level quantizer designed using sk more closely

by breaking down the expression for the MSE from (3.4.76), we have

Dsk
(N)

IBP
=

N∑

k=1

−
(
x− l

(N)
k,s

)2

e−x
∣∣∣∣
t
(N)
k,s

+∆
(N)
k,s

t
(N)
k,s

+

t
(N)
k,s

+∆
(N)
k,s∫

t
(N)
k,s

2
(
x− l

(N)
k,s

)
e−xdx (3.4.77)

= ρsk
(N) + dsk

(N) , (3.4.78)

where we have used IBP

u =
(
x− l

(N)
k,s

)2

du = 2
(
x− l

(N)
k,s

)
dx

v = −e−x dv = e−xdx

to obtain (3.4.77) and we have defined

ρsk
(N)

4
=

N∑

k=1

−
(
x− l

(N)
k,s

)2

e−x
∣∣∣∣
t
(N)
k,s

+∆
(N)
k,s

t
(N)
k,s

dsk
(N)

4
=

N∑

k=1

t
(N)
k,s

+∆
(N)
k,s∫

t
(N)
k,s

2
(
x− l

(N)
k,s

)
e−xdx.
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Figure 3.3: The MSE performance of quantizers qsk
designed using sk compared

against the performance of optimal quantizers. The data shown in plots
(*-i) are for N ≤ 128 and highlights the performance for quantizers de-
signed for low levels, while the data shown in plots (*-ii) also depict
asymptotic performance (N ≤ 4096).
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Evaluating just the first term in (3.4.78),

ρsk
(N) =

N∑

k=1

−
[(
t
(N)
k,s + ∆

(N)
k,s − l

(N)
k,s

)2

e
−

(
t
(N)
k,s

+∆
(N)
k,s

)

−
(
t
(N)
k,s − l

(N)
k,s

)2

e−t
(N)
k,s

]

=

N∑

k=1

−
[
∆2
k−1e

−
(
t
(N)
k,s

+∆
(N)
k,s

)

− ∆2
ke

−t(N)
k,s

]
(n.n. optimality and ∆0 = ∞)

=

N∑

k=1

−∆2
k−1e

−t(N)
k−1,s + ∆2

ke
−t(N)

k,s

=
N∑

i=2

−∆2
k−1e

−t(N)
k−1,s + ∆2

ke
−t(N)

k,s − ∆2
1e

−t(N)
0,s

=
N∑

k=2

−∆2
k−1e

−t(N)
k−1,s + ∆2

ke
−t(N)

k,s − 0 (since t
(N)
0,s = ∞)

= ∆2
Ne

−t(N)
N,s = ∆2

N (since t
(N)
N,s = 0)

= s2
N . (3.4.79)

The first remark we make is that, up to this point, we have not used any fact specific

of the sk sequence to arrive at (3.4.79) other than knowing that sk is a sequence of

half steps for the quantizer. Second, we can interpret the value of ρsk
(N) as reflection

of how well the nearest neighbor optimality condition is adhered to by scrutinizing

how close ρsk
(N) is to s2

N . (In this case, they are equal since our quantizer satisfies

the nearest neighbor condition. For an arbitrary quantizer q, ρq (N) may not equal

∆
(N)
N

2
.)

Examining the second term of (3.4.78), we can interpret dsk
(N) as indicating how

well the centroid optimality condition is satisfied by our quantizer. Since the value of

dsk
(N) is more obscure than ρsk

(N), we will observed its behavior as a function of

N by looking at numerical data.

Thus, using (3.4.79), the MSE of an N -level quantizer designed using the sk

sequence can be expressed as

Dsk
(N) = s2

N + dsk
(N) , (3.4.80)

where

dsk
(N) = 2

N∑

k=1

(
x− l

(N)
k,s

)
P[

t
(N)
k,s

,t
(N)
k,s

+∆
(N)
k,s

) (3.4.81)
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and, as already noted, can be considered general and applicable to any N -level, unit

variance exponential quantizer that has been designed in accordance to a sequence

of half steps since no fact specific to the sk sequence was used to generate these two

expressions. From (3.4.80), we study the contribution to distortion of each component

expression by multiplying each component by N 2. Figure 3.3 Row b and Row c show

evidence to support the conjecture that the first term s2
N in (3.4.80) is the dominant

contributor to the MSE produced by such quantizers since it appears to converge

to β

12
in Row b and

s2
N

η2
N

appears to converge to 1, while the second term in (3.4.80)

appears to go to zero when multiplied by N 2 (in Row b) and the ratio of the second

term over η2
N

appears to go to zero when N becomes large.

Since it is true that N2s2
N → β

12
as N → ∞ (see lemma below), if one could

show analytically that the first term in (3.4.80) is dominant over the second term in

(3.4.80), then designing quantizers using sk in the manner we have described would

yield asymptotically optimal quantizers. However, at present, this problem is still

open for future work.

Lemma III.9. N2s2
N → β

12
as N → ∞.

Proof. Evaluating the limit, we have

lim
N→∞

N2Dsk
(N) = lim

N→∞
N2s2

N = lim
N→∞

N2

[
3

2N

(
1 − 2

N
+

8

N2

) 1
2

]2

= lim
N→∞

9

4

(
1 − 2

N
+

8

N2

)
=

9

4
=

27

12
=

β

12

since for the unit variance exponential source β = 27.

3.4.3.2 Simplified quantizer design.

Since it appears that designing quantizers using the sk sequence yields quantizers

with good MSE performance, it may be prudent to consider a further simplification of

this design method. To this end, we use the exact same procedure to design quantizers

but we swap sk for the sequence vk
4
= 3

2k
which is constructed by removing Ωk from

each term of the sk sequence when k ≥ 9, i.e., vk is defined as

vk = η
k
, k = 1, 2, . . . , 8 vk =

3

2k
, k ≥ 9.
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Thus, using (3.4.80), it is clear that the MSE of an N -level quantizer designed for the

exponential source using the half step sequence vk is

Dvk
(N) = v2

N + dvk
(N) ,

where

dvk
(N) = 2

N∑

k=1

(
x− l

(N)
k,v

)
P[

t
(N)
k,v

,t
(N)
k,v

+∆
(N)
k,v

)

which is similar to (3.4.81).

Figure 3.4(a) shows MSE performance data for such quantizers designed with vk

for the unit exponential source when N ≤ 128, where the data has been presented as

ratios:
Dvk

(N)

D(N)
and

Dsk
(N)

D(N)
. Here, we observe that even for quantizers designed using

the simplified sequence vk, that
Dvk

(N)

D(N)
lies within 0.3% of 1. In Figure 3.4(b), the

contribution to MSE distortion given by each component in N 2Dvk
(N) is compared to

β

12
= 2.25, where we note that vk overestimates η

k
and consequently, the contribution

of the second component to the overall distortion is negative. Thus it appears that

the sequence vk is an upper bound to the Nitadori sequence η
k

which is in contrast

to sk which is a lower bound to η
k
. Summarizing, we know (from the proof of Part 2

of Theorem III.1)

sk = vk · Ωk ≤ η
k

for all k ≥ 1, and from the data, we observe the following trend

vk ≥ η
k

when N ≤ 128.

The support threshold for quantizers designed using vk is

t
(N)
1,v = vN+v1+2

N−1∑

k=2

=
3

2N
+η

1
+2

8∑

k=2

η
k
+2

N−1∑

k=9

3

2k
=

3

2N
+
(
t
(8)
1 −η

8

)
+ 3

N−1∑

k=9

1

k
.

when N > 9. Using a Riemann integral, for an upper bound to the last sum

N−1∑

k=9

1

k
≤

N−1∫

8

1

x
dx = log x|N−1

8 = log (N − 1) − log 8,
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we obtain the following upper bound to t
(N)
1,v

t
(N)
1,v ≤ 3

2N
+
(
t
(8)
1 −η

8

)
+3 log(N−1)−3 log 8

< 3 log(N−1)+
3

2N
+−0.7965 = 3 logN+3 log

(
1− 1

N

)
+

3

2N
−0.7965 (3.4.82)

for N ≥ 9. Since the support threshold estimate in (3.4.82) is greater than t
(N)
1 but

it is less than t
(N)
1,c , we know the following:

t
(N)
1,s ≤ t

(N)
1 ≤ t

(N)
1,v ≤ t

(N)
1,(3.4.82) ≤ t

(N)
1,c .
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Figure 3.4: The MSE performance of quantizers qvk
designed using vk compared

against the performance of quantizers designed using vk and optimal quan-
tizers. The data shown in these plots is for N ≤ 128. Plot (a) shows rep-
resents the distortion data in terms of the ratio of the MSE for quantizers
designed with vk over the minimum achievable MSE against the ratio of
the MSE for quantizers designed with sk over the minimum achievable
MSE and Plot (b) highlights data for N 2 times the MSE contribution by
each distortion component for quantizers designed with vk.

Performance of quantizers designed using our companding method: UTCC

(Uniform Threshold Compander with Centroid Reconstruction Levels)

quantizers. For the sake of comparing the MSE performance of all quantizers dis-

cussed in this chapter against each other as well as against the performance of optimal

quantizers, here, we briefly comment on the performance of quantizers designed using

the companding method described in the proof of the upper bound to the support
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threshold t
(N)
1 in Theorem III.1. (For more remarks, see Appendix B.)

The MSE performance of an N -level UTCC quantizer can be expressed as the

sum of two parts

DUTCC (N) =

N∑

k=1

t
(N)
k,c

+∆
(N)
k,c∫

t
(N)
k,c

(
x− l

(N)
k,c

)2

f (x) dx

IBP
=




N∑

k=1

−
(
x− l

(N)
k,c

)2

e−x
∣∣∣∣
t
(N)
k,c

+∆
(N)
k,c

t
(N)
k,c


+ dUTCC (N) , (3.4.83)

where the sum in (3.4.83) (in square brackets) equals

−
N∑

k=1

(
t
(N)
k,c +∆

(N)
k,c −l

(N)
k,c

)2
e
−

(
t
(N)
k,c

+∆
(N)
k,c

)

−
(
t
(N)
k,c−l

(N)
k,c

)2
e−t

(N)
k,c =−

N∑

k=1

∆
2

k,ce
−

(
t
(N)
k,c

+∆
(N)
k,c

)

−∆2
k,ce

−t(N)
k,c

and

d
(N)
UTCC = 2

N∑

k=1

(
µ

(N)
k − l

(N)
k

)
P[

t
(N)
k,c

,t
(N)
k,c

+∆
(N)
k,c

) = 0

since UTCC quantizers have centroid reconstruction levels.

Evaluating (3.4.83) and using (3.3.8), we have

DUTCC(N) =
N∑

k=1

∆2
k,ce

−t(N)
k,c − ∆

2

k,ce
−

(
t
(N)
k−1,c

)

=
N∑

k=1

[
1−−3 log

(
1− 1

k

)
·
(
1− 1

k

)3

1−
(
1− 1

k

)3

]2(
k

N

)3
−
[
−3 log

(
1− 1

k

)

1−
(
1− 1

k

)3 −1

]2(
k−1

N

)3

. (3.4.84)

(See Appendix B for complete derivation.) While not compact, (3.4.84) gives an exact

formula for computing the MSE of an N -level UTCC quantizer.

In Figure 3.5, we have plotted performance data for all of the quantizers that

we have discussed in this chapter, including the performance of UTCC quantizers as

indicated by (3.4.84). We see that for N ≤ 1024, quantizers designed with sk perform

closest to optimal quantizers, followed by quantizers designed with vk, then UTCC

quantizers and finally, USQC quantizers. We remark that quantizers designed using

sk perform approximately and vk perform significantly better than UTCC quantizers

and USQC quantizers. More specifically, max
Dck

(N)

D(N)
= 1.08480647707816 and occurs
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when N = 2, and for vk, we have max
Dvk

(N)

D(N)
= 1.00302509854578 when N = 17 and

for sk, we have max
Dsk

(N)

D(N)
= 1.00035593710511 when N = 31.

3.4.4 Concluding Remarks.

In this section we have considered suboptimal quantizer design using the half

step sequences sk and vk. To gauge how well these two design schemes are, we first

compared their respective support thresholds t
(N)
1,s and t

(N)
1,v , along with the support

threshold t
(N)
1,c of UTCC and USCQ quantizers, for use as estimates for the support

threshold t
(N)
1 of optimal quantizers. As a second comparison, we looked at the

MSE performance of all of these quantizers as well. From these comparisons, we

observed that quantizers designed with sk gave the closest approximation to t
(N)
1

and also had the smallest MSE of the quantizers discussed. Quantizers designed

with vk, while not as good as quantizers designed using sk for support threshold

estimation or for minimizing MSE, offer a much simpler, analytically tractable means

of attaining quantizers with good performance and support threshold estimation.

UTCC quantizers, while giving the least accurate estimates of t
(N)
1 and the worst

MSE of the quantizers in the group (even though these quantizers are known to

be asymptotically optimal), nevertheless yielded an sequence of support threshold

estimates that as a function of N appears able to track to the growth rate of t
(N)
1 to

within a constant term. Thus, from what we have observed, it appears that quantizers

designed using either sk or vk are also asymptotically optimal.

During the course of studying quantizer design using half step sequences, we uti-

lized a decomposition of the general MSE for an arbitrary quantizer that decomposes

MSE into the sum of two expressions. The first expression is highly sensitive to

whether the nearest neighbor condition has been satisfied and the second expression

is highly sensitive to whether the centroid condition has been satisfied. Using this

decomposition to compute the MSE of quantizers designed using half steps, we have

been to make the following observation regarding quantizers designed using half step

sequences:

If an N -level quantizer has been designed using a half step sequence hk, k ≥ 1,

and if the resulting reconstruction levels are equal to the centroids of the quantization

cells, then these quantizers are optimal. This conclusion is equivalent to the result

by Fleischer [7] and Trushkin [23] which states that a quantizer designed for an

exponential source whose thresholds and reconstruction levels satisfy the optimality

conditions is optimal and unique. Elaborating further on this reasoning:
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Figure 3.5: Comparing the MSE performance of all quantizers discussed against the
performance of optimal quantizers. Plot (a) is a close-up view with N ≤
16 and highlights trends for the low level case. Plot (b) shows when
N ≤ 1024 and illustrates the overall trend for the high level case.
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1. Use of a half step design sequence means that the thresholds of any such quan-

tizer satisfies the nearest neighbor condition for optimality, and also implies that

the MSE contribution of the first term in the distortion sum is easily evaluated

and is equal to ρhk
= h2

N . (Refer to (3.4.79).)

2. The fact that the resulting reconstruction levels are centroids of the quantization

cells means that the centroid condition for optimality is also satisfied by such

quantizers and this implies that the second term’s contribution to distortion is

dhk
= 0. (Refer to (3.4.81).)

3. Thus the overall MSE of an N -level quantizer designed using hk is Dhk
(N) =

h2
N .

4. But we already know that quantizers that satisfy the two optimality conditions

are both optimal and unique if the source is exponential ([7],[23]). Thus it is

clear that hk = η
k
, i.e., hk is the Nitadori sequences, and so Dhk

(N) = η2
N

for

all N ≥ 1.

3.5 Future Work.

While examining the topics addressed in this chapter, several ideas arose that can

be investigated or studied further in the future. The following list briefly describes

these avenues for more work:

• A tighter lower bound to t
(N)
1 . Recall that the support threshold lower

bound t
(N)
1,LB,Thm III.1 (in Theorem III.1) was created as a lower bound to the

support threshold function t
(N)
1,s . (See (3.3.29) and (3.3.30).) In the discussion

section, based on what we observed in the data shown in Figure 3.2, there

appears to be room to improve t
(N)
1,LB,Thm III.1 when compared to t

(N)
1,s . Thus, it

may be possible to construct a new, tighter theoretical lower bound to t
(N)
1 for

Theorem III.1.

• Asymptotic optimality of quantizers designed using sk and vk. From

inspecting the performance data for quantizers designed using sk and vk in

Figure 3.5, we observed that these quantizers produce MSE that is less than

the MSE produced by qUTCC and qUSQC quantizers. Since it is known that

qUSQC quantizers are asymptotically optimal, we suspect that qsk
and qvk

are as

well. Thus, it may be possible to prove theoretically that quantizers designed

using sk and vk are asymptotically optimal.
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• A test for conformity to the optimality conditions. Investigate the use

of the MSE expression in (3.4.78) as a method to test an arbitrary quantizer qN

for conformity to the optimality conditions. Clearly, a first application would

be to use (3.4.78) as a way to rule out quantizers that do not conform to these

conditions by checking to see if

ρqN (N) =
(
∆qN

)2
(3.5.85)

which is the square of the value of the half step of the cell containing the origin.

If equality has not been achieved in (3.5.85), then clearly, the nearest neighbor

rule has not been used in the design of qN . Similarly, a check to see if

dqN (N) = 0 (3.5.86)

would reveal if the centroid optimality condition has been followed. If equality

has not been achieved in (3.5.86), then this optimality condition was not used

in the design of qN . Thus, a quantizer qN which does not satisfy (3.5.85) and

(3.5.86) is not optimal.

The next step in the investigation would be to determine whether a quantizer

could achieve (3.5.85) and (3.5.86) yet still not be optimal. This examination

would require ascertaining the non-optimal design scenarios under which qN

could achieve equality in (3.5.85) and (3.5.86). In this way, a test for optimality

may be constructed for exponential quantizers.

Furthermore, since the MSE expression in (3.4.78) is applicable to any quantizer

designed for a source with finite mean and variance, the next direction to take

would be to try to construct tests for conformity to the optimality conditions

and a (possible) test for optimality when for a quantizer that has been designed

for a source that is not exponential, yet has finite first and second moments.

• Investigate the importance of adhering to the nearest neighbor con-

dition by studying its effect on MSE. Begin by examining the performance

of the family of quantizers which satisfy the nearest neighbor condition using

the MSE expression in (3.4.78). The goal of this study would be to ascertain the

influence of setting thresholds optimally (without regard to the placement of

reconstruction levels) on MSE by constructing a performance bound on quan-

tizers that satisfy the nearest neighbor condition and comparing it against the

MSE achieved by optimal quantizers. Some questions to keep in mind after this
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comparison are:

1. Are these quantizers asymptotically optimal?

2. If not, what additional constraint would be necessary to achieve asymptotic

optimality?

Next, relax the constraint that the nearest neighbor condition has been satisfied

and replace it with the condition in (3.5.85). For this scenario, perform similar

analysis, i.e., construct a performance bound under this scenario and compare

it to the bound already created, check for asymptotic optimality and the design

constraints that achieve asymptotic optimality.

Finally, perform this study for quantizers designed for sources with finite mean

and variance.
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CHAPTER IV

On the Asymptotic Behavior of Half Steps in

General Exponential Optimal Scalar Quantizers

4.1 Introduction and Main Result.

Optimal scalar quantizer design is a non-trivial problem that involves specifying

the exact position of quantization cell thresholds and reconstruction levels that min-

imize mean-squared error. For the normalized exponential source,1 however, aided

through implicit simplifications made possible by the source’s memoryless property,

i.e., P (X ≥ s+ t |X ≥ s) = P (X ≥ t), for any s, t ≥ 0, Nitadori solved the optimal

scalar quantizer design problem by taking partial derivatives of the distortion func-

tion. He showed that for an optimal N -level quantizer, ∆
(N)
k does not depend on N ,

and because of this, there is a sequence of numbers η
1
, η

2
, η

3
, . . ., where η

k
= ∆

(N)
k ,

that provides a complete and unique2 specification of an optimal N -level scalar quan-

tizer designed for a normalized exponential source. The following relationships illus-

trate this fact:

1. The support threshold can be calculated by

t
(N)
1 = η

1
+

N−1∑

i=1

2η
i
+ η

N
(4.1.1)

1We define the normalized exponential source to be the source with pdf of the form e−x, x ≥ 0,
where E [X ] = 1 and σ2 = 1. Note that while Nitadori [19] actually considered optimal quantization
of a two-sided, zero mean, unit variance exponential source, the resulting sequence that was derived
by him also holds for optimal quantization of a (one-sided) normalized exponential source.

2Uniqueness for an exponential source was first proposed by Fleischer [7], but the argument was
later corrected by Trushkin [23]. Fleischer [7] did prove uniqueness for strictly log convex sources,
however.
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and the reconstruction level in the outer region can be calculated as

µ
(N)
1 = t

(N)
1 + η

1
. (4.1.2)

2. For i = 2, 3, . . . , N , the thresholds and reconstruction levels are determined

using

t
(N)
i+1 = t

(N)
i −

(
η
i
+ η

i+1

)
(4.1.3)

and

µi+1 = t
(N)
i − η

i
. (4.1.4)

3. t
(N)
0 = ∞.

Nitadori’s sequence η
k

also provides a simple expression for the MSE perfor-

mance [19] of each optimal, N -level, normalized exponential quantizer, namely,

N∑

i=1

t
(N)
i−1∫

t
(N)
i

(
u− µ

(N)
i

)2

e−u du = η
N

2.

As already noted in Chapter II, knowing the set of N half steps belonging to an

optimal quantizer is equivalent to knowing both the set of quantizer thresholds and

levels that specify that quantizer. In general, the set of half steps belonging to an

N -level quantizer depends on N . In the case of optimal quantization of exponential

sources,3 however, the set of half steps for an optimal N -level quantizer is independent

of the number of levels N in that quantizer. For this case, quantizer design reduces

down to truncating the Nitadori sequence after the Nth term with {η
k
}Nk=1 providing

a complete specification for an optimal N -level quantizer. While the fact that the

Nitadori sequence provides a simple, exact specification for optimal quantizers of all

levels is astonishing by itself, it is even more remarkable that this same sequence of

values also provides the MSE performance of any optimal N -level quantizer.

3For the rest of this chapter, reference to an exponential source will refer to the normalized
exponential source. We note, however, that for a zero mean, exponential source with variance σ2,
there exists a Nitadori sequence ση

k
, k = 1, 2, . . . , and that the MSE performance for an optimal

N -level quantizer designed for this source is given by σ2η
k

2.
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The utility of the Nitadori sequence η
k

with regard to exponential MMSE quan-

tizer design and performance naturally leads to a search for a similar result for MMSE

quantization of other sources. Derivation of the Nitadori sequence required use of the

exponential source’s memoryless property, however, and since in general, an arbitrary

source distribution does not possess this property, it does not appear possible to solve

for a single sequence that specifies all N-level MMSE scalar quantizers for an arbi-

trary source. On closer inspection of how the memoryless property is used within

the Nitadori sequence derivation, we find that only one key effect of the memoryless

property is required:

f (x) =

∞∫

x

f (u) du,

where f (x) = e−x, x ≥ 0. With this observation in mind and to improve the chances

of success in deriving a result similar to Nitadori’s with regard to MMSE quantizer

design and performance, we limit the scope of our work in two ways:

1. Large N . Instead of considering N -level MMSE quantizer design for any value

of N , we consider MMSE quantization when N is large.

2. General exponential sources. Instead of MMSE quantization design for an

arbitrary source, we consider only sources from the general exponential (GE)

family whose probability density functions have the form

f (x) = cp e
−xp

p , x ≥ 0, (4.1.5)

where cp > 0 is a proportionality constant and p ≥ 1 is a parameter which in-

dexes amongst members in this one-sided source family.4 Members of this family

include the one-sided exponential source (p = 1) and the one-sided Gaussian

source (p = 2). The decision to focus on sources from this particular family is

due to the fact that each pdf in the family possesses an asymptotic version of

the key effect.5

Under this restricted, but still useful, quantization context, we will show that

sequences that asymptotically describe N -level MMSE quantizers when truncated to

N terms is possible. For each member of the GE distribution family, and for each

4In the literature, this family is sometimes referred to as generalized Gaussian.
5Also, since GE-sources have pdfs that are strictly convex, for each value of N ≥ 1, MMSE

quantizers designed for such a source are unique. ([7], [23])
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quantization cell k ≥ 1 of an MMSE quantizer designed for that particular source,

we have discovered that the sequence

α
(N)
k,p

4
= ∆

(N)
k

(
t
(N)
k

)p−1

(4.1.6)

asymptotically satisfies the generating relationship that produces the Nitadori se-

quence η
k

as N → ∞. This find is the main result of this chapter and a formal

statement of this result is as follows:

Theorem IV.1. Fix k ≥ 1. For an optimal N-level quantizer designed for a GE-

source with parameter p ≥ 1, the kth quantization cell satisfies

1 . lim
N→∞

α
(N)
k,p = η

k
.

2 . lim
N→∞

∆
(N)
k

∆
(N)
k+1

=
η
k

η
k+1

.

With regard to asymptotic MMSE quantizer design, Theorem IV.1 indicates that

the role of the Nitadori sequence η
k

is broader than just design for the exponential

source, as is the case in (non-asymptotic) MMSE quantization. While the Nitadori

sequence η
k

provides the exact half cell sizes for optimal N -level quantization of an ex-

ponential source, Theorem IV.1, Part 1 indicates that for a general exponential source

with p > 1, the Nitadori sequence η
k

provides a way to asymptotically approximate

the optimal half cell sizes ∆
(N)
k when N is large via

∆
(N)
k ≈

η
k(

t
(N)
k

)p−1 (4.1.7)

and subsequently, to approximate the optimal set of thresholds and levels via (4.1.1)-

(4.1.4). Moreover, for each 1 ≤ k << N , the approximation in (4.1.7) gives an indi-

cation of how the optimal half cell sizes ∆
(N)
k vary across the GE-family of sources

(via the p parameter) with respect to their optimal thresholds t
(N)
k .

Curiously and perhaps more useful than Part 1, Part 2 of Theorem IV.1 states

that for every GE-source with p > 1, as N grows large, the ratio of optimal half

steps
∆

(N)
k

∆
(N)
k+1

belonging to adjacent quantization cells approaches a constant
η

k

η
k+1

that,

surprisingly, is independent of p. Since the limiting constant
η

k

η
k+1

goes to 1 as the cell
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index k → ∞, it follows from Theorem IV.1 that

lim
k→∞

lim
N→∞

∆
(N)
k

∆
(N)
k+1

= 1. (4.1.8)

For optimal quantizers that have cells which become smaller as N increases, it is

expected that for any fixed x > 0, the half steps of cells near x are expected to be

approximately the same since the conditional source density of these neighboring cells

become asymptotically constant. Since for each k ≥ 1, t
(N)
k → ∞ when N → ∞,

(4.1.8), however, is a stronger statement than this because, for any fixed value of

k ≥ 1, it states that the ratio between the half steps on either side of t
(N)
k converges

to 1 as t
(N)
k increases without bound:

Fix k ≥ 1. For ε > 0, there exists kε such that for all k ≥ kε,

∣∣∣∣∣
∆

(N)
k

∆
(N)
k+1

− 1

∣∣∣∣∣ < ε

when N is sufficiently large.

It is also interesting to note that the nature of Theorem IV.1 is complementary to

the conventional sort of asymptotic quantization result. In particular, conventional

asymptotic quantization theory, such as the Panter-Dite formula [20], deals with the

performance of quantizers in the region where the pdf is large, and basically ignores

the tail of the source pdf. In contrast, Theorem IV.1 is based exclusively on the tail

of the source pdf. What is interesting is the degree of impact/influence that the tail

behavior of the source has regarding MMSE quantization of cells in regions where the

pdf is large.

The proof of Theorem IV.1 (to be given later) centers on showing that for each

fixed value k ≥ 1, limN→∞ α
(N)
k,p exists and that as N → ∞, α

(N)
k,p asymptotically

satisfies the Nitadori sequence generating equation, the recursive relationship that

generates successive terms of the Nitadori sequence when initialized with η
1
. (More

discussion on this generating relation is given later.) Our approach to the proof of

Theorem IV.1 begins by studying a specific method of deriving the Nitadori sequence,

or equivalently, of solving the N -level MMSE quantization design problem for an

exponential source. This method uses only the aforementioned key effect of the

exponential source’s memoryless property along with the optimality conditions and

makes it easy to point out when and where use of the key effect of the memoryless

property is made. When presenting this derivation, we break with convention, which
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would dictate deriving the Nitadori generating equation first and then solving for the

initial sequence value η
1
. Instead, we start by establishing the initial sequence value

η
1

since the fact η
1

does not depend on the number of levels N is entirely due to

the memoryless property and is the central fact that makes the existence of Nitadori

sequence possible. After η
1

is known, we proceed to derive the Nitadori generating

equation, discovering, as in the case of the initial value η
1
, that successive terms of

the Nitadori sequence are also independent of the number of levels N .

We present our work in this chapter by first giving a brief review of Nitadori’s result

using a derivation similar in approach and style to the one we use to prove our results

regarding the sequence α
(N)
k,p . After the review, we state an asymptotic key effect that

holds for the GE-source family and establish an asymptotic fact regarding the value

of α
(N)
1,p , which is the foundation of Theorem IV.1 and is, in essence, analogous to the

fact that η
1

= 1.

Since Theorem IV.1 is a result concerning the behavior of α
(N)
k,p = ∆

(N)
k (t

(N)
k )p−1

in cells that lie in the tail region of the source pdf, our method of proof consists of

investigating properties of quantizers that are optimal for tail regions of the source of

the form [τ,∞), asymptotically as τ goes to infinity. Referring to these quantizers as

conditionally optimal because they have been optimized for the conditional distribu-

tion X given that X ≥ τ , our approach allows us to prove a result that is analogous

to the statement in Theorem IV.1 but for conditionally optimal quantizers. We then

use this intermediate result to prove the theorem.

Once the proof of Theorem IV.1 has been demonstrated, several corollaries to it are

presented and proven true. The bulk of the rest of this chapter deals with applications

of Theorem IV.1. The first application concerns half step estimation. The second

application discusses support threshold estimation. Closing out the chapter, ideas for

further study are proposed and briefly commented on.

While Nitadori’s result assumed a two-sided source distribution, we will restrict

the scope of our work to one-sided sources that have pdf support on the non-negative

reals to improve the readability of the analysis, with the notion that extending the

results to the two-sided case is easy to do.

4.2 Review of Nitadori’s Result.

Instead of reviewing the exact method used by Nitadori in 1965, we will re-derive

the sequence η
k

for the one-sided exponential source in a manner similar to the method

we will use to derive the sequence limN→∞ ∆
(N)
k (t

(N)
k )p−1 in Part 1 of Theorem IV.1.
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The method of choice is a simple one, using only three relationships: the two opti-

mality conditions and the memoryless property’s key effect, along with a single tool,

integration-by-parts (IBP). Since our goal will be to explicitly derive the Nitadori

sequence, we will have obtained our goal when we have derived the sequence genera-

tor equation, a well-defined relationship between η
i
and η

i−1
for any i ≥ 2, and the

initial value η
1

for this generator equation, so that when η
1

is used with the generator

equation, the terms of the Nitadori sequence η
k

are generated in succession.

The re-derivation is organized as follows: We begin the derivation by considering

the centroid of an arbitrary half open interval and the impact the key effect has

on its expression, in a non-quantization setting. We use this general setting, not

only to simplify the notation we use and to improve clarity of the discussion, but

also to emphasize the fact that the resulting simplified expression for the centroid

is a side effect of the key effect, which is a property of the exponential source and

not due to any special circumstance/restrictions imposed by the MSE quantization

scenario. Since the centroid optimality condition requires that all reconstruction levels

of MMSE quantizers to be the centroids of the quantization cells they belong to, this

is a reasonable way to begin the derivation.

Next, we consider the special case when the half open interval has infinite step

size, and we switch our focus from the centroid to the half step of such an interval.

Here, an important observation is made: The half step (or the distance between the

centroid and the endpoint of the interval) of such an interval is independent of the

endpoint of the interval. This is, perhaps, the most important observation to be made

since without the independence of this particular half step from the threshold t, the

Nitadori result would not be possible.

After those brief remarks, we will apply the simplified centroid expression to N -

level, exponential MMSE quantization design to derive the initial value of the Nitadori

sequence η
1

and the Nitadori sequence generator equation, discovering that none of

the half step sizes belonging to the cells of an optimal N -level quantizers depend on

N .

4.2.1 Property of the Exponential Source: Impact of the Key Effect on

the Conditional Mean.

Let

f (x) = e−x, x ≥ 0,
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be the one-sided exponential source pdf and let

Q (x)
4
=

∞∫

x

f (u) du

be the tail function for f . In this case, the exponential source’s memoryless property

(P (X ≥ s+ t | X ≥ s) = P (X ≥ t), for any s, t ≥ 0) produces the key effect for f ,

expressed as

Q (x) = f (x) , x ≥ 0.

Let [t, t + ∆) be a half open interval with lower threshold t ≥ 0 and step size ∆ > 0.

Consider now what happens to the conditional mean of X given X ∈ [t, t+ ∆), or

equivalently, the centroid

µ[t,t+∆)
4
=

∫
[s,t)

xf (x) dx

P[s,t)

of this interval when the key effect is used to simplify it. Using integration by parts

(IBP)

u = x du = dx

v = −e−x = −
∞∫

x

f (x) dx = −Q (x)
k.e.
= −f (x) dv = e−xdx = f (x) dx (4.2.9)

we have

µ[t,t+∆) =
1

P[t,t+∆)

t+∆∫

t

xf(x) dx =

∫ t+∆

t
xf (x) dx

Q (t) −Q (t+ ∆)
IBP
=

−xQ (x)|t+∆
t +

∫ t+∆

t
Q (x) dx

Q (t) −Q (t+ ∆)

(4.2.10)

=
tQ (t) − (t+ ∆)Q (t+ ∆)

Q (t) −Q (t+ ∆)
+

∫ t+∆

t
Q (x) dx

Q (t) −Q (t+ ∆)
(4.2.11)

where IBP has been used to obtain the last equality in (4.2.10). Since no special

property of the exponential source has been used yet, (4.2.11) is a general expression

for the centroid µ[s,t) for differentiable source pdfs, and it is completely expressed

in terms of the thresholds t, t + ∆ and the tail function Q (x) evaluated at these

thresholds.
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Using the key effect on (4.2.11) simplifies the centroid expression to

µ[t,t+∆) =
tQ (t) − (t+ ∆)Q (t+ ∆)

Q (t) −Q (t + ∆)
+

∫ t+∆

t
f (x) dx

Q (t) −Q (t+ ∆)

=
tQ (t) − (t+ ∆)Q (t+ ∆)

Q (t) −Q (t + ∆)
+
Q (t) −Q (t+ ∆)

Q (t) −Q (t+ ∆)
(4.2.12)

=
tQ (t) − (t+ ∆)Q (t+ ∆)

Q (t) −Q (t + ∆)
+ 1, (4.2.13)

where in (4.2.13), use of the key effect caused

∫ t+∆

t
Q (x) dx

Q (t) −Q (t + ∆)
= 1. (4.2.14)

Special case ∆ → ∞: Letting ∆ → ∞, we now consider the half step length of

the infinite half open interval with threshold t

∆[t,∞)

4
= µ[t,∞) − t.

From (4.2.13), we have

µ[t,∞) = lim
∆→∞

µ[t,t+∆) =
tQ (t)

tQ (t)
+ 1 = t + 1

or equivalently,

∆[t,∞) = 1. (4.2.15)

In (4.2.15), we observe that the impact of the key effect on the conditional mean is to

cause the half step of an infinite half open interval to be independent of the threshold

t. Later more will be stated on this point. This independence from t or translation

invariance is the most important consequence of the key effect and in effect, frees the

half step solution to the N -level MMSE quantizer design problem from a dependence

on the number of levels N .

4.2.2 Generating Nitadori’s Sequence.

Fix N ≥ 1 and consider an optimal N -level quantizer that has been designed for

the exponential source. We begin with the half step for the outermost quantization

cell ∆
(N)
1 and then we solve for the Nitadori generator equation that produces the
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remaining half steps ∆
(N)
k , k = 2, 3, . . . , N , of the quantizer.

Initial value of the Nitadori sequence – The half step of the outermost cell:

Since the outermost quantization cell (k = 1) of the optimal quantizer is [t
(N)
1 ,∞),

using (4.2.15), we deduce that η
1

= ∆
(N)
1 = ∆

[t
(N)
1 ,∞)

= 1 which is independent of t
(N)
1

and hence, also independent of N .

Finding the Nitadori recursion equation: The existence of the remaining terms

of the Nitadori sequence η
k
, k = 2, 3, . . . , N , is assured if it can be shown that ∆

(N)
k , for

k = 2, 3, . . . , N , does not depend onN . Demonstrating the independence of ∆
(N)
k with

respect to N is accomplished by finding a well-defined relationship between ∆
(N)
k and

∆
(N)
k−1, for k = 2, 3, . . . , N − 1, that does not depend on N . This relationship emerges

after applying both optimality conditions and the memoryless effect Q (x) = f (x) to

and then re-expressing the expression for the optimal reconstruction level for the kth

quantization cell [t
(N)
k , t

(N)
k−1).

Fix k ∈ {2, 3, . . . , N}. Let us start with (4.2.13) (which is the centroid optimality

condition applied to the kth cell),

µ
(N)
k =

1

P[
t
(N)
k

,t
(N)
k−1

)

t
(N)
k−1∫

t
(N)
k

xf (x) dx (optimality cond.: cond. mean)

=
t
(N)
k Q

(
t
(N)
k

)
− t

(N)
k−1Q

(
t
(N)
k−1

)

Q
(
t
(N)
k

)
−Q

(
t
(N)
k−1

) + 1

or equivalently,

(
Q
(
t
(N)
k

)
−Q

(
t
(N)
k−1

))(
µ

(N)
k − 1

)
= −t(N)

k−1Q
(
t
(N)
k−1

)
+ t

(N)
k Q

(
t
(N)
k

)

or equivalently,

Q
(
t
(N)
k

)(
µ

(N)
k − 1 − t

(N)
k

)
= Q

(
t
(N)
k−1

)(
µ

(N)
k − 1 − t

(N)
k−1

)

or equivalently with ∆
(N)
k = µ

(N)
k − t

(N)
k and ∆

(N)
k−1 = t

(N)
k−1 − µ

(N)
k (by the nearest

neighbor condition),

Q
(
t
(N)
k

)(
∆

(N)
k − 1

)
= Q

(
t
(N)
k−1

)(
−∆

(N)
k−1 − 1

)
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or equivalently with Q (x) = f (x) = e−x (key effect),

f
(
t
(N)
k

)(
∆

(N)
k − 1

)
= f

(
t
(N)
k−1

)(
−∆

(N)
k−1 − 1

)
(key effect) (4.2.16)

e
−

(
µ

(N)
k

−∆
(N)
k

) (
∆

(N)
k − 1

)
= e

−
(
µ

(N)
k

+∆
(N)
k−1

) (
−∆

(N)
k−1 − 1

)
,

where we have used t
(N)
k = µ

(N)
k − ∆

(N)
k ; t

(N)
k−1 = µ

(N)
k + ∆

(N)
k−1, or equivalently,

e∆
(N)
k

(
∆

(N)
k − 1

)
= e−∆

(N)
k−1

(
−∆

(N)
k−1 − 1

)
(4.2.17)

or finally,

e∆
(N)
k

(
1 − ∆

(N)
k

)
= e−∆

(N)
k−1

(
1 + ∆

(N)
k−1

)
. (4.2.18)

(4.2.18) is a relationship of the form

ey (1 − y) = e−x (1 + x)

that, when solved for y (more on this topic is below), produces y = ∆
(N)
k if given

x = ∆
(N)
k−1. It is clear that if ∆

(N)
k−1 is independent of N , then ∆

(N)
k is also independent

of N . Furthermore, if ∆
(N)
k−1 is independent of N , then the relationship in (4.2.18) is

independent of N . Since η
1

is independent of N and the generating relationship in

(4.2.18) is independent of N , we conclude that the infinite sequence η
k
, k = 1, 2, . . . ,

is independent of N . Thus, the independence of ∆
(N)
1 from N causes all of the other

half steps to be independent of N as well. This is a very important point.

It is now clear that (4.2.18) is the Nitadori sequence generator equation and the

initial condition to be used with it is η = 1. It is also clear that the solution to the

N -level, exponential MMSE quantizer is found by truncating the Nitadori sequence

to the first N terms and that these terms are equal to the set of N half steps that

uniquely specify the quantizer.

Generating η
k
, k = 2, 3, . . . , using (4.2.17). Since ∆

(N)
l = η

l
, l = 1, 2, . . . , N , for

each 2 ≤ k ≤ N , solving for ∆
(N)
k given ∆

(N)
k−1 in (4.2.17) is equivalent to solving for

η
k

given η
k−1

. To solve for η
k
, we multiply both sides of (4.2.17) by e−1 to get

eηk
−1
(
η
k
− 1
)

= e
−η

k−1
−1
(
−η

k−1
− 1
)
. (4.2.19)
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Each side of (4.2.19) is of the form

z (W )
4
= WeW , (4.2.20)

where for the left hand side of (4.2.19), W = η
k
− 1 and for the right hand side of

(4.2.19), W = −η
k−1

− 1. Since the exponential pdf is decreasing, intuitively, it is

clear that η
k
≤ η

k−1
≤ η

1
= 1 for all k ≥ 2, and thus, η

k
∈ [0, 1] for all k ≥ 1. Then

for the left hand side of (4.2.19), W ∈ [−1, 0] and for the right hand side of (4.2.19),

W ∈ [−2,−1]. Given the value of η
k−1

, a unique solution for η
k

on the left hand side

of (4.2.19) is guaranteed since, for W ∈ [−1, 0], the function Z (W ) is 1 − 1. A plot

of z (W ) is shown in Figure 4.1, along with the corresponding W values for η
1
, η

2

and η
3
, as graphical examples of how successive values of the Nitadori sequence are

generated once we know η
1
. Also, it can be shown (as seen in this figure) that the

W ’s (as given by −1− η
k−1

and −1 + η
k
) are converging to −1 or, equivalently, that

the η
k
’s are converging towards 0 as k increases.

−2.5 −2 −1.5 −1 −0.5 0
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

W

z
(W

)

−e−1

−1 − η
1

−1 + η
2

−1 − η
2

−1 + η
3

−1 − η
3

WLHS eqnWRHS eqn

Figure 4.1: Illustration of the function z (W ) = WeW . Also shown are the values of
W corresponding to the values of η

1
, η

2
, η

3
.
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Recap. To recap, in the case of the MMSE quantization of the exponential source,

the initial value and the Nitadori recursion are given by

η
1

= 1 (4.2.21)

eηk

(
1 − η

k

)
= e

−η
k−1

(
1 + η

k−1

)
(4.2.22)

for k = 2, 3, . . . . (For a table of these values, refer to Table 3.1 in Chapter III. To see

a plot of these values, go to Figure 2.6 in Chapter II.) Figure 4.2 is a visualization

of the half steps of an optimal exponential quantizer where the half step values equal

the Nitadori sequence values.

MMSE quantizer performance from the Nitadori sequence η
k
. Nitadori

also showed that from the sequence η
k
, the exact mean-squared error distortion of

any optimal N -level quantizer designed for the exponential source is given by η2
N

.

(See Chapter II, Section 2.7, (2.7.17).) His derivation (not given in Chapter II) is

repeated below for reference.

D (N) =

N∑

i=1

t
(N)
i +∆

(N)
i∫

t
(N)
i

(
x− µ

(N)
i

)2

f (x) dx

IBP
=

N∑

i=1

(
x− µ

(N)
i

)2

Q (x)

∣∣∣∣
t
(N)
i +∆

(N)
i

t
(N)
i

−
t
(N)
i +∆

(N)
i∫

t
(N)
i

2
(
x− µ

(N)
i

)
Q (x) dx

=
N∑

i=1

−
(
x− µ

(N)
i

)2

f (x)

∣∣∣∣
t
(N)
i +∆

(N)
i

t
(N)
i

+

t
(N)
i +∆

(N)
i∫

t
(N)
i

2
(
x− µ

(N)
i

)
f (x) dx

=

N∑

i=1

−
[(
t
(N)
i +∆

(N)
i −µ(N)

i

)2

f
(
t
(N)
i +∆

(N)
i

)
−
(
t
(N)
i −µ(N)

i

)2

f
(
t
(N)
i

)]
+0

=

N∑

i=1

−
[(

∆
(N)
i−1

)2
f
(
t
(N)
i +∆

(N)
i

)
−
(
∆

(N)
i

)2
f
(
t
(N)
i

)]
(n.n. cond.; ∆

(N)
0

4
=∞)

=
N∑

i=1

−
(
∆

(N)
i−1

)2

f
(
t
(N)
i−1

)
+
(
∆

(N)
i

)2

f
(
t
(N)
i

)

=

N∑

i=2

−
(
∆

(N)
i−1

)2

f
(
t
(N)
i−1

)
+
(
∆

(N)
i

)2

f
(
t
(N)
i

)
−
(
∆

(N)
1

)2

f
(
t
(N)
0

)
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=

N∑

i=2

−∆
(N)
i−1

2
f
(
t
(N)
i−1

)
+
(
∆

(N)
i

)2

f
(
t
(N)
i

)
− 0 (since t

(N)
0 =∞)

=
(
∆

(N)
N

)2

f
(
t
(N)
N

)
=
(
∆

(N)
N

)2

(since t
(N)
N =0)

= η2

N
.

... x

...
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Figure 4.2: Visualization of the Nitadori sequence η
k
.

4.3 Rumination: Extending to General Exponential Sources.

Observations made from the Nitadori sequence derivation. It is clear from

deriving the Nitadori sequence that the cornerstone to its existence lies in two facts:

1. Fact #1: The distance between µ
(N)
1 and t

(N)
1 is fixed regardless of the value

of t
(N)
1 as shown in (4.2.15), and thus ∆

(N)
1 is independent of N , the number of

levels in the MMSE quantizer. This independence from N implies that depen-

dence of µ
(N)
1 and t

(N)
1 on N is exactly the same and by taking the difference

between the two values, ∆
(N)
1 becomes independent of N .

2. Fact #2: The Nitadori generator equation is independent of N .

Uniqueness of the Nitadori sequence is assured since for each N , there is only one

quantizer designed for an exponential source that minimizes MSE.

Does Fact #1 hold for any other source? Suppose we have an optimal N -level

quantizer that has been designed for a source that, while not exponential, still has a

differentiable pdf. Let us consider the expression for ∆[t,∞) for this case, and compare

it against the analogous expression shown in (4.2.15) that holds for the exponential

case: Returning to (4.2.11), and knowing that ∆ → ∞, we have

µ[t,∞) =
tQ (t)

Q (t)
+

∫∞
t
Q (x) dx

Q (t)
= t +

∫∞
t
Q (x) dx

Q (t)
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or

∆[t,∞) =

∫∞
t
Q (x) dx

Q (t)
. (4.3.23)

From (4.3.23), it is clear that for any fixed t ≥ 0 and for any arbitrary source with

a differentiable pdf, ∆[t,∞) = µ[t,∞) − t is not independent of the threshold t since

the key effect (or any scaled version of the key effect) does not hold. Furthermore,

suppose we allow t → ∞. Using L’Hopital’s rule, for a source with a differentiable

pdf, we have

lim
t→∞

∆[t,∞) = lim
t→∞

∫∞
t
Q (x) dx∫∞

t
f (u) du

L′H
= lim

t→∞

−Q (t)

−f (t)
= lim

t→∞

Q (t)

f (t)
. (4.3.24)

In (4.3.24), we see that as t grows large, the value of ∆[t,∞) converges to a non-

zero constant if and only if asymptotically Q (t) behaves like f (t), i.e., there exists

a constant 0 < c < ∞ such that when t is large, Q (t) ≈ cf (t), or, in words,

that a (scaled) version of the key effect holds for large t. Calling this phenomenon

tail exponentiality (when in the tail region of the source, the pdf behaves like an

exponential pdf), it is clear that tail exponentiality and not perfect exponentiality is

required for (4.3.24) to equal a non-zero constant since the key effect holds only for

exponential sources. In general, tail exponentiality is not property of a source and

its pdf, for example, the Gaussian source. However, it is well-known that for this

particular source, Q(t)
f(t)

≈ 1
t

when t is large, and this suggests looking for a limit to

∆[t,∞)t as t → ∞. By extension, these observations lead us to consider the behavior

of ∆[t,∞)t
p−1 as t→ ∞ for sources belonging to the GE-family.

4.4 A Property of General Exponential Sources.

Recall that we have defined one-sided, zero mean general exponential (GE) source

densities to have the form

f (x) = cp e
−xp

p , for all x ≥ 0,

where cp = 1∫ ∞
0

exp(−xp

p
) dx

and p ≥ 1. In order to study limt→∞ ∆[t,∞)t
p−1, we start by

looking at the expression for the centroid of an arbitrary interval when the source is

from the GE-family.
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Proposition IV.2. Let t > 0 be any positive number and let ∆ > 0. For any

GE-source X, the conditional mean of X given X ∈ [t, t+ ∆) has the form

µ[t,t+∆) =

f(t)
tp−2 − f(t+∆)

(t+∆)p−2

Q (t) −Q (t + ∆)
+

(−p+ 2)
∫ t+∆

t
x−p+1f (x) dx

Q (t) −Q (t+ ∆)
.

Proof. Using

P[t,t+∆)
4
=

t+∆∫

t

f (x) dx,

we start with a general expression for the centroid of [t, t + ∆)

P[t,t+∆)µ[t,t+∆) =

t+∆∫

t

xf (x) dx =

t+∆∫

t

xp−1f (x)

xp−2
dx

and use integration by parts (IBP),

u = x−p+2 du = (−p+ 2) x−p+1dx

v = −f (x) dv = xp−1f (x) dx,

to get

P[t,t+∆)µ[t,t+∆) = −f (x)

xp−2

∣∣∣∣
t+∆

t

+ (−p + 2)

t+∆∫

t

x−p+1f (x) dx

=
f (t)

tp−2
− f (t+ ∆)

(t + ∆)p−2 + (−p + 2)

t+∆∫

t

x−p+1f (x) dx.

Since

P[t,t+∆) =

t+∆∫

t

f (x) dx = Q (t) −Q (t+ ∆) ,
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when y ≥ 0, we have

µ[t,t+∆) =

f(t)
tp−2 − f(t+∆)

(t+∆)p−2

Q (t) −Q (t + ∆)
+

(−p+ 2)
∫ t+∆

t
x−p+1f (x) dx

Q (t) −Q (t+ ∆)
.

Remarks: Highlighting the role of the key effect – Comparing Proposi-

tion IV.2 to (4.2.12). The expression in Proposition IV.2, since it applies to any

GE-source, is more general than the one in (4.2.12) which only holds for an expo-

nential source and it is clear that when p = 1, Proposition IV.2 reduces exactly to

(4.2.12). The case when p > 1 is more interesting. Comparing term-by-term using

the expressions shown in Table 4.1, we see from the first term comparison, it appears

that f(t)
tp−2 from Proposition IV.2 corresponds to Q (t) from (4.2.12).

Table 4.1: Comparing the terms from Proposition IV.2 to (4.2.11) and (4.2.12).

Proposition IV.2 (4.2.11) (4.2.12)
GE-sources Exp. source Exp. source

key effect applied

First term
f(t)

tp−2 −
f(t+∆)

(t+∆)p−2

Q(t)−Q(t+∆)
tQ(t)−(t+∆)Q(t+∆)

Q(t)−Q(t+∆)
tQ(t)−(t+∆)Q(t+∆)

Q(t)−Q(t+∆)

Second term
(−p+2)

∫ t+∆
t

f(x)

xp−1 dx

Q(t)−Q(t+∆)

∫ t+∆
t

Q(x)dx

Q(t)−Q(t+∆)
Q(t)−Q(t+∆)
Q(t)−Q(t+∆)

= 1

When comparing second terms, the correspondence is more difficult to see. How-

ever, we will comment that use of the key effect on (4.2.11) simplified the second term

to the value of 1 as seen in (4.2.12). Since the key effect holds only when p = 1, we

will pay particular attention to what happens to the second term in Proposition IV.2

when we apply a substitute for the key effect that holds not only when p = 1, but

when p > 1 as well.

4.5 Key Effect Substitute.

Several times now, we have pointed out that there appears to be a connection

between Q (x) and f(x)
xp−1 when the source pdf belongs to the GE-family. It turns

out that this connection can be expressed by a well-known asymptotic relationship

105



between the tail function Q (x) of a GE-source and its pdf f (x). We state this

approximation below.

Asymptotic tail function expression for general exponential distributions

– The asymptotic key effect. For any p ≥ 1, the tail function Q (x) belonging

to a GE-source can be expressed asymptotically [22] as: For large x > 0,

Q (x) =
f (x)

xp−1
×
[
1 + (−p+ 1)

(
1

xp
+ (−2p + 1)

1

x2p
+O

(
1

x3p

))]
.6 (4.5.25)

(See Appendix D for more details on this expansion.)

Equation (4.5.25) appears to be a good choice as an asymptotic form of the key

effect of the memoryless property since for x >> 0, Q (x) ≈ f(x)
xp−1 when p > 1 and when

p = 1, the source is exponential and (4.5.25) becomes the key effect Q (x) = f (x)

for large values of x. Since (4.5.25) is only a valid approximation of the tail function

for general exponential sources (specifically when p > 1), the decision to use the

approximation in (4.5.25) limits the scope of our work to asymptotic results that

hold only when x > 0 is large and p > 1.

Impact of the key effect substitute on the conditional mean for GE-sources:

Asymptotic expression for µ[t,∞) − t leading to the analogue to Nitadori

initial sequence value. Just as in the Nitadori re-derivation, where the key effect

was applied to µ[t,∞) for an exponential source, with ∆ → ∞ to obtain µ[t,∞) − t = 1

for all t ≥ 0, we use the asymptotic tail function expression in (4.5.25) to simplify

the expression in Proposition IV.2 to find an analogous asymptotic expression that

holds for GE-source distributions.

Proposition IV.3. Let t > 0. For any GE-source X, the conditional mean of X

given X ∈ [t,∞) has the form

µ[t,∞) = t
[
1 + t−p + (−p+ 1)

(
2t−2p +O

(
t−3p

))]

= t+
1

tp−1
+

2 (−p + 1)

t2p−1
+ (−p+ 1)O

(
1

t3p−1

)
.

6Big O Notation conventions. Let f (x) and g (x) be real-valued functions. When we say,
“f (x) is O (g (x)),” we are using the conventional definition that states that there exists x0 > 0
and M > 0 such that |f (x)| ≤ M |g (x)| when x > x0. Suppose we now have two real functions
fy (x) and gy (x) that have an implicit dependence on another real variable y. When we say, “fy (x)
is Oy (gy (x)),” we mean that there exists y0 > 0 and M > 0 such that |fy (x)| ≤ M |gy (x)| when
y > y0.
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Proof. Letting ∆ → ∞, Proposition IV.2 implies

µ[t,∞) =
f(t)
tp−2 + (−p + 2)

∫∞
t
x−p+1f (x) dx

Q (t)
.

Since

∞∫

t

x−p+1f (x) dx = t−2p+2f (t) + (−2p+ 2) t−3p+2f (t) + (−2p + 2) (−3p+ 2)×

t−4p+2f (t) + (−2p+ 2) (−3p+ 2) (−4p + 2)

∞∫

t

x−4p+1f (x) dx

and

Q (t) =
f (t)

tp−1
×
[
1 + (−p + 1)

(
1

tp
+ (−2p + 1)

1

t2p
+O

(
1

t3p

))]
,

we have

µ[t,∞) = f (t) t−p+2

[
1 + t−p + (−2p+ 2) t−2p + (−2p+ 2) (−3p+ 2) t−3p+

(−2p + 2) (−3p+ 2) (−4p+ 2)
tp−2

f (t)

∞∫

t

x−4p+1f (x) dx

]
× tp−1

f (t)
×

[
1 + (−p+ 1)

(
1

tp
+ (−2p+ 1)

1

t2p
+O

(
1

t3p

))]−1

= f (t) t−p+2

[
1 + t−p + (−2p+ 2) t−2p + (−2p+ 2) (−3p+ 2) t−3p+

(−2p + 2) (−3p+ 2) (−4p+ 2)
tp−2

f (t)
· f (t) t−p+2O

(
t−4p

)
]
× tp−1

f (t)
×

[
1 + (−p+ 1)

(
1

tp
+ (−2p+ 1)

1

t2p
+O

(
1

t3p

))]−1

= t

[
1+t−p+(−2p+2)t−2p+(−2p+2)(−3p+2)t−3p+(−2p+2)(−3p+2)×

(−4p + 2)O
(
t−4p

)
]
×
[
1 + (−p + 1)

(
1

tp
+ (−2p + 1)

1

t2p
+O

(
1

t3p

))]−1
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since
∫∞
t
x−4p+1f (x) dx is f (t)O (t−5p+2) and is also f (t) t−p+2O (t−4p) because

∞∫

t

x−4p+1f (x) dx =

∞∫

t

x−5p+2 · xp−1f (x) dx

≤ t−5p+2

∞∫

t

xp−1f (x) dx = t−5p+2 −f (x)|∞t = t−5p+2f (t) .

Using long division, we finally have

µ[t,∞) = t
[
1 + t−p + (−p + 1)

(
2t−2p +O

(
t−3p

))]
.

Proposition IV.3 shows that the centroid µ[t,∞) of the half open interval [t,∞)

can be expressed as t + tp−1 + O (t2p−1) which is function of both t and the source

parameter p. Thus, it is clear that the distance between the centroid µ[t,∞) and t

can be expressed as tp−1 + O (t2p−1). The next corollary is a direct consequence of

this fact and establishes that the product ∆[t,∞)t
p−1 =

(
µ[t,∞) − t

)
tp−1 converges to

a limit as t→ ∞.

Corollary IV.4. limt→∞
(
µ[t,∞) − t

)
tp−1 = 1.(

µ[t,∞) − t
)
tp−1 = 1 +O

(
1
tp

)
.

Proof. From Proposition IV.3 and t > 0,

(
µ[t,∞) − t

)
tp−1 =

(
1

tp−1
+

2 (−p+ 1)

t2p−1
+ (−p + 1)O

(
1

t3p−1

))
tp−1

=

(
1 +

2 (−p + 1)

tp
+ (−p+ 1)O

(
1

t2p

))
, (4.5.26)

we observe that

lim
t→∞

(
µ[t,∞) − t

)
tp−1 = 1.

Corollary IV.4 presents us with a general, asymptotic version of the exponential

source property ∆[t,∞) = µ[t,∞) − t = 1, t ≥ 0, a property which was shown using the
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key effect and the fact that the effect is valid for all values t ≥ 0. Corollary IV.4,

by comparison, relies on the GE-sources’ asymptotic key effect (the asymptotic tail

function approximation in (4.5.25)) which is only valid when t > 0 is large. The

consequences of using this asymptotic key effect are easy to see in the expression shown

in Corollary IV.4. When p = 1, Corollary IV.4 reduces to limt→∞ ∆[t,∞) = 1 which

is trivially true since ∆[t,∞) = 1 for all t ≥ 0 when the source is exponential. When

p > 1, i.e., when we consider general exponential sources other than the exponential

distribution, Corollary IV.4 shows us that another effect of using the asymptotic

tail function in (4.5.25) is to append a polynomial multiplicative factor of tp−1 to

∆[t,∞) = µ[t,∞) − t so that
(
µ[t,∞) − t

)
tp−1 ≈ 1 only when t is large. Thus, we see

that while the statement in Corollary IV.4 is more general (since it applies to sources

other than exponential), it is a weaker statement regarding the behavior of ∆[t,∞)t
p−1

since it is a remark regarding limiting behavior in t rather than a fact that holds for

arbitrary values of t ≥ 0.

4.6 Initial Limiting Value of α
(N)
1,p as N → ∞ for GE-sources.

Here we discuss our asymptotic generalization to the initial value η
1

= ∆
(N)
1 of the

Nitadori sequence. Choose any GE-source by fixing p ≥ 1. Consider now a sequence

of MMSE quantizers (indexed by the number of levels N) that have all been designed

for this GE-source. Recalling that the quantization interval containing the support

threshold t
(N)
1 is [t

(N)
1 ,∞) and knowing that as N increases, the support threshold

t
(N)
1 corresponding to each quantizer in the sequence also increases, Corollary IV.4

tells us that ∆
(N)
1 t

(N)
1

p−1
= (µ

[t
(N)
1 ,∞)

− t
(N)
1 ) (t

(N)
1 )p−1 → 1 as N → ∞. Using the

definition in (4.1.6), we have just demonstrated that for each p ≥ 1,

lim
N→∞

α
(N)
1,p = lim

N→∞
∆

(N)
1 (t

(N)
1 )p−1 = 1

and this is the initial value of the limiting sequence in Part 1 of Theorem IV.1.

4.7 More Properties of GE-sources.

At this point in the discussion, if we were to strictly follow the Nitadori re-

derivation, we would begin considering asymptotic MMSE quantization of GE-sources.

However, because our derivation becomes more complicated than the Nitadori deriva-

tion and to keep the notation as simple as possible for as long as possible, we now

prove several more relationships in preparation for further discussion on asymptotic
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Figure 4.3: Plot of various GE-source pdfs with p = 1, 2, 3, 4, 5, 6.
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optimal quantization of GE-sources, bearing in mind that the ultimate goal is, for

each p > 1, to derive expressions for limN→∞ α
(τ)
k|j,p when k > 1. We note that these

relationships are source properties only and hence, they do not rely on any construct

related to quantization.

The lemma below states a relationship that we use to prove Theorem IV.1.

Lemma IV.5. Let t > s ≥ 0. Then for any GE-source pdf,

1.

f (s)

f (t)
= e−

1
p
(sp−tp)

2.

f (s)

f (t)
=

1
tp−2 + (−p+ 2) Int(t)

f(t)
− Q(t)

f(t)
µ[s,t)

1
sp−2 + (−p + 2) Int(s)

f(s)
− Q(s)

f(s)
µ[s,t)

,

where

Int (s)
4
=

∞∫

s

x−p+1f (x) dx.

Proof.

Part 1. This proof is trivial.

f (s)

f (t)
=
c e−

1
p
sp

c e
− 1

p
tp

=
e−

1
p
sp

e
− 1

p
tp

= e
− 1

p
(sp−tp)

.

Part 2. To prove Lemma IV.5, part 2, we just re-express the relationship in Propo-

sition IV.2 by bringing out the term f(s)
f(t)

to one side of the equality.

Let k ≥ 2. Choose t > s > 0. From Proposition IV.2, we obtain

µ[s,t) =
f(s)
sp−2 − f(t)

tp−2 + (−p + 2)
∫ t
s
x−p+1f (x) dx

Q (s) −Q (t)

=
f(s)
sp−2 − f(t)

tp−2

Q (s) −Q (t)
+

(−p+ 2) (Int (s) − Int (t))

Q (s) −Q (t)

=

[
f(s)
sp−2 + (−p + 2) Int (s)

]

Q (s) −Q (t)
−

[
f(t)
tp−2 + (−p + 2) Int (t)

]

Q (s) −Q (t)
. (4.7.27)
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Manipulating (4.7.27), we have

µ[s,t) (Q (s) −Q (t)) =

[
f (s)

sp−2
+ (−p + 2) Int (s)

]
−
[
f (t)

tp−2
+ (−p + 2) Int (t)

]

which is equivalent to

[
f (s)

sp−2
+ (−p + 2) Int (s) −Q (s)µ[s,t)

]
=

[
f (t)

tp−2
+ (−p+ 2) Int (t) −Q (t)µ[s,t)

]

which is also equivalent to

f (s)

f (t)
=

1
tp−2 + (−p+ 2) Int(t)

f(t)
− Q(t)

f(t)
µ[s,t)

1
sp−2 + (−p + 2) Int(s)

f(s)
− Q(s)

f(s)
µ[s,t)

.

The next lemma simply states that the centroid of a cell is always less than or

equal to the midpoint of the cell for source pdfs that behave nicely.

Lemma IV.6. Suppose f is a non-increasing, first order differentiable pdf with sup-

port on the non-negative reals. Then for any interval [s, t) with t > s ≥ 0, the centroid

µ[s,t) is less than or equal to the midpoint m[s,t)
4
= 1

2
(s+ t).

Proof. We show that µ[s,t) −m[s,t) ≤ 0. With P[s,t) =
∫ t
s
f (x) dx,

P[s,t)µ[s,t) =

t∫

s

xf (x) dx =

t∫

s

m[s,t)f (x) dx+

t∫

s

(
x−m[s,t)

)
f (x) dx

= m[s,t)

t∫

s

f (x) dx+

t∫

s

(
x−m[s,t)

) (
f
(
m[s,t)

)
+R0

(
x,m[s,t)

))
dx

= m[s,t)P[s,t) +

t∫

s

(
x−m[s,t)

) (
f
(
m[s,t)

)
+ f ′ (γx)

(
x−m[s,t)

))
dx,
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where R0

(
x,m[s,t)

)
= f ′ (γx)

(
x−m[s,t)

)
is the 0th order Taylor’s series remainder

and γx ∈ [s, t). Then

P[s,t)

(
µ[s,t) −m[s,t)

)
=

t∫

s

(
x−m[s,t)

) (
f
(
m[s,t)

)
+ f ′ (γx)

(
x−m[s,t)

))
dx

= f
(
m[s,t)

)
t∫

s

(
x−m[s,t)

)
dx+

t∫

s

f ′ (γx)
(
x−m[s,t)

)2
dx

= 0 +

t∫

s

f ′ (γx)
(
x−m[s,t)

)2
dx

≤ 0

since f is non-increasing in [s, t).

4.8 Foundation for the Recursion Derivation: Conditionally

Optimal Quantizers.

Having established the initial value limN→∞ α
(N)
1,p = 1, it is time to concentrate on

deriving an asymptotic recursion relationship between

lim
N→∞

α
(N)
k,p = lim

N→∞
∆

(N)
k (t

(N)
k )p−1

and

lim
N→∞

α
(N)
k−1,p = lim

N→∞
∆

(N)
k−1(t

(N)
k−1)

p−1

when k ≥ 2.

Fix p ≥ 1. Recall that, for a fixed cell index k ≥ 1, in order to ascertain the

limiting behavior of limN→∞ α
(τ)
k|j,p, we need only consider the behavior of the first k

quantization cells of quantizers belonging to a sequence of optimal quantizers that

is indexed by N , and because for any value of N , the first k quantization cells of

an optimal quantizer are exactly the same as a k-cell optimal quantizer designed

for the conditional distribution of X given X ∈ [t
(N)
k ,∞), which we have already

referred to, in the introduction, as a conditionally optimal quantizer, it makes sense

to use conditionally optimal quantizers to study the behavior of ∆(N)
m (t

(N)
m )p−1 for cells
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m = 1, 2, . . . , k.

Conditionally optimal τ, j quantizers and some of their properties. As

illustrated in Figure 4.4, given a source X with pdf f (x), x ≥ 0, for each integer

j > 0 and each τ ≥ 0, we define a conditionally optimal (or just optimal, for short)

τ, j quantizer

qτ,j
4
=
(
t0|j, t1|j , t2|j, . . . , tj|j;µ1|j, µ2|j, . . . , µj|j

)
,

to be an optimal, j-level quantizer designed for a conditional source with the condi-

tional distribution

fX|X≥τ (x)
4
=

1

P[τ,∞)

f (x) ,

where ti|j and µi|j are the lower threshold and reconstruction level belonging to the

ith quantization cell of the τ, j quantizer with τ = tj|j and t0|j = +∞. (Note that

while tk|j and µk|j depend on the source X (as indicated by the value of p) and on the

value of τ , we have omitted this dependence in the notation to facilitate readability.)

Hence, the vector of thresholds and reconstruction levels qτ,j satisfy the optimality

criteria for MMSE quantization and, if the source X is GE, then qτ,j is unique.

As with MMSE quantizers, we make the following definitions for the kth quanti-

zation cell of an optimal τ, j quantizer:

∆k|j
4
= µk|j − tk|j (the half step)

∆k|j
4
= tk−1|j − tk|j (the step size)

α
(τ)
k|j,p

4
= ∆k|jtk|j

p−1, 1 ≤ k ≤ j

α
(τ)
k|j,p

4
= ∆k|j(tk|j)

p−1, 1 ≤ k ≤ j (4.8.28)

r
(τ)
k|j,p

4
=

∆k−1|j
∆k|j

, 2 ≤ k ≤ j.

We remark that, for any fixed k ≥ 1, any MMSE scalar quantizer with thresholds

{t(N)
i }Ni=0, reconstruction levels {µ(N)

i }Ni=1, and N ≥ k quantization levels “contains”

exactly N optimal τ, j quantizers. Let τ = t
(N)
j . Then, we have on the right of (and

including) t
(N)
j an optimal τ, j quantizer, i.e., for each 1 ≤ j ≤ N ,

qτ,j = (t
(N)
0 , t

(N)
1 , t

(N)
2 , . . . , t

(N)
j ;µ

(N)
1 , µ

(N)
2 , . . . , µ

(N)
j )
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Figure 4.4: Example of an optimal τ, 6 quantizer. Note: The hash marks in the
picture are intended to illustrate that adjacent upper and lower half steps
belonging to neighboring reconstruction cells are equal in size.

is an optimal τ, j quantizer with j-levels.

Working with optimal τ, j quantizers (indexed in τ) instead of optimal quantizers

(indexed in N), we can recast Theorem IV.1 as:

Theorem IV.7. Choose p ≥ 1 and for each quantization cell k of an optimal τ, j

quantizer, define

νk
4
= lim

τ→∞
α

(τ)
k|j,p = lim

τ→∞
∆k|j,p(tk|j)

p−1

if the limit exists.

1. (a) ν1 exists and is equal to η
1
.

(b) If νk−1 exists, then νk exists and satisfies

eνk (1 − νk) = e−νk−1
(
1 + νk−1

)
. (4.8.29)

(c) νk = η
k
, k ≥ 1.

2. For 1 ≤ k ≤ j − 1, rk
4
= limτ→∞ r

(τ)
k|j,p exists and

rk =
η
k

η
k+1

. (4.8.30)

Before proving Theorem IV.7, we present a corollary along with its proof. This

corollary finishes the proof of Theorem IV.1 by providing the connection between the

statement in Theorem IV.7, which is a fact regarding optimal τ, j quantization of

GE-sources, and the statement in Theorem IV.1, which is a fact regarding MMSE

quantization of GE-sources.

115



Corollary IV.8. Choose p ≥ 1and fix k ≥ 1. For any sequence of optimal scalar

quantizers designed for the GE-source indicated by the value of p, where the sequence

is indexed by the number of levels N , the following two facts are true:

1. α
(N)
k,p → η

k
as N → ∞. (Theorem IV.1, Part 1.)

2.
∆

(N)
k

∆
(N)
k+1

→ η
k

η
k+1

as N → ∞. (Theorem IV.1, Part 2.)

Proof. Fix p ≥ 1. Consider any sequence qN of optimal, N -level quantizers designed

for this GE-source, where the sequence is indexed by N .

Part 1. Choose any k ≥ 1. Then for all N ≥ k, qN contains an optimal τ, k quantizer

where τ = tk|k = t
(N)
k . Then

α
(N)
k,p = ∆

(N)
k (t

(N)
k )p−1 = ∆k|k(tk|k)

p−1 = α
(τ)
k|k,p

when N ≥ k.

Since letting N → ∞ (for the optimal quantizers) implies that τ → ∞ (for the

embedded sequence of optimal τ, j quantizers), using Theorem IV.7, Part 1, we have

lim
N→∞

α
(N)
k,p = lim

τ→∞
α

(τ)
k|k,p = νk

Thm IV.7,P.1
= η

k
.

Part 2. Fix k ≥ 1 and choose j = k + 1. Since for any N > k + 1, qN contains an

optimal τ, k+1 quantizer, we have a sequence of optimal τ, k+1 quantizers, indexed

by N , when N ≥ k + 1. With

∆
(N)
k = ∆k|j and ∆

(N)
k+1 = ∆k+1|j,

and the fact that as N → ∞, it is clear that τ → ∞ since τ = t
(N)
k+1 and t

(N)
k+1 → ∞ if

N → ∞, we have

lim
N→∞

∆
(N)
k

∆
(N)
k+1

= lim
τ→∞

∆k|j
∆k+1|j

= lim
τ→∞

r
(τ)
k|j,p

Thm IV.7,P.2
= rk.

A property of optimal τ, j quantizers designed for any source. Returning

to the business of proving Theorem IV.7, the following fact is quite general in that it
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holds for any source and depends only on the MMSE optimality conditions.

Lemma IV.9. Suppose we have an optimal τ, j quantizer where j ≥ 2. Then for any

1 ≤ k ≤ j,

∆k|j =
k∑

n=2

(−1)k−n ∆n|j + (−1)k−1 ∆1|j.

Proof. Since for optimal τ, j quantizers, ∆i|j = ∆i+1|j for all i = 1, 2, . . . , j − 1,

then for any 1 ≤ k ≤ j,

∆k|j = ∆k|j + ∆k|j − ∆k−1|j − ∆k−1|j + ∆k−2|j + ∆k−2|j − · · ·+ (−1)k−2 ∆2|j+

(−1)k−2 ∆2|j + (−1)k−1 ∆1|j

=
(
∆k|j + ∆k|j

)
−
(
∆k−1|j + ∆k−1|j

)
+
(
∆k−2|j + ∆k−2|j

)
− · · ·+ (−1)k−2 ×

(
∆2|j + ∆2|j

)
+ (−1)k−1 ∆1|j

= ∆k|j − ∆k−1|j + ∆k−2|j − · · · + (−1)k−2 ∆2|j + (−1)k−1 ∆1|j

=

k∑

n=2

(−1)k−n ∆n|j + (−1)k−1 ∆1|j.

Note that while we have stated Lemma IV.9 as a property of optimal τ, j quan-

tizers, the relationship actually holds for any quantizer whose thresholds and recon-

struction levels satisfy the optimality conditions.

A property of optimal τ, j quantizers designed for non-increasing, first

order differentiable pdf sources. The next fact states that the step sizes ∆k|j

of an optimal τ, j quantizer are non-increasing in the cell index k when the source

pdf is non-increasing and first order differentiable. Proving this fact requires just a

simple application of Lemma IV.6: Since the reconstruction levels and thresholds for

cells in an optimal τ, j quantizer, j ≥ 2, satisfy the optimality conditions for MMSE

quantization, if f is non-increasing and differentiable, then Lemma IV.6 tells us that

∆k|j ≤ ∆k|j, and thus, the step sizes
{
∆k|j, k ≤ j

}
are non-increasing. Lemma IV.10

is the formal statement of this observation and we have stated it without proof.

Lemma IV.10. Suppose we have an optimal τ, j quantizer, j ≥ 2, designed for a

non-increasing pdf. Let
[
tm|j , tm−1|j

)
and

[
tn|j , tn−1|j

)
, n > m, be any two quantization

cells of this quantizer with m,n ≤ j. Then ∆m|j ≥ ∆n|j.
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Asymptotic properties of optimal τ, j quantizers designed for GE-sources.

With Lemma IV.9 and Lemma IV.10 in hand, we begin our study of the asymptotic

behavior of ∆k|j(tk|j)
p−1 in optimal τ, j quantizers designed for general exponential

sources by establishing three asymptotic quantizer properties that will allow us to

formulate a generator equation for the limits of ∆k|j(tk|j)
p−1 as τ → ∞.

The next lemma expresses the reconstruction level of a quantization cell in an

asymptotic form that depends on the values of the step sizes and thresholds of the

cells to its left.

Lemma IV.11. Suppose we have an optimal τ, j quantizer where j ≥ 2. If the

quantizer was designed for a GE-source, then for 1 ≤ k ≤ j,

µk|j = tk|j +

k∑

n=2

(−1)k−n∆n|j + (−1)k−1

[
1

t1|j
p−1 + (−p + 1)

(
2

t1|j
2p−1 +Oτ

(
1

t1|j
3p−1

))]
.

Proof. Using Lemma IV.9, for any 1 ≤ k ≤ j,

µk|j = µk|j ± tk|j = tk|j +
(
µk|j − tk|j

)
= tk|j + ∆k|j

= tk|j +

k∑

n=2

(−1)k−n ∆n|j + (−1)k−1 ∆1|j .

Since tk|j ≥ τ >> 0 and ∆1|j = µ1|j − t1|j, we use Proposition IV.3 to get

µk|j = tk|j +

k∑

n=2

(−1)k−n∆n|j + (−1)k−1

[
1

t1|j
p−1 + (−p + 1)

(
2

t1|j
2p−1 +Oτ

(
1

t1|j
3p−1

))]
.

The following lemma provides two simple, but useful, properties of optimal τ, j

quantizers that are designed for GE-sources. These properties reveal the relative

behavior of quantizer thresholds (to each other) as τ → ∞.

Lemma IV.12. Consider an optimal τ, j quantizer designed for a GE-source.

1. If j ≥ 1, then
t1|j−tj|j

τ
→ 0 as τ → ∞.

2. Suppose j ≥ 2. Let tm|j, tn|j, m,n ≤ j, be any thresholds of the quantizer.

Then the ratio
tm|j
tn|j

→ 1 as τ → ∞.
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Proof.

Part 1. Suppose j ≥ 1. If j = 1, then
t1|j−tj|j

τ
= 0 for all τ so limτ→∞

t1|j−tj|j
τ

= 0.

Now let j > 1. Since
t1|j−tj|j

τ
> 0 and

t1|j − tj|j
τ

=

∑j

i=2 ∆i|j
τ

≤ j · ∆2|j
τ
,

then

lim
τ→∞

t1|j − tj|j
τ

≤ lim
τ→∞

j · ∆2|j
τ

= j · lim
τ→∞

∆2|j
τ

= j · lim
tj|j→∞

∆2|j
tj|j

= j · 0 = 0

since for the second to last equality, ∆2|j = ∆2|j + ∆1|j ≤ 2∆1|j (Lemma IV.6) and

there exists 0 < c <∞ such that ∆1|j < c (Corollary IV.4).

Part 2. Since for any 1 ≤ m ≤ j,

0 ≤ tm|j − tj|j
τ

≤ t1|j − tj|j
τ

,

from Lemma IV.12, Part 1, we know that limτ→∞
tm|j−tj|j

τ
= 0 and thus

lim
τ→∞

tm|j
tn|j

= lim
τ→∞

tm|j
τ
tn|j
τ

= lim
τ→∞

τ+(tm|j−τ)
τ

τ+(tn|j−τ)
τ

= lim
τ→∞

1 − (τ−tm|j)
τ

1
(τ−tn|j)

τ

=
1 − limτ→∞

τ−tm|j
τ

1 − limτ→∞
τ−tn|j
τ

=
1 − limτ→∞

tj|j−tm|j
τ

1 − limτ→∞
tj|j−tn|j

τ

= 1.

Using the definition of α
(τ)
k|j,p in (4.8.28), since

α
(τ)
k|j,p =

(
∆k|j + ∆k|j

)
(tk|j)

p−1 =
(
∆k|j + ∆k−1|j

)
(tk|j)

p−1

= ∆k|j(tk|j)
p−1 + ∆k−1|j(tk−1|j)

p−1 ·
(

tk|j
tk−1|j

)p−1

= α
(τ)
k|j,p + α

(τ)
k−1|j,p ·

(
tk|j
tk−1|j

)p−1

, (4.8.31)
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we see that from Lemma IV.12, Part 2 and (4.8.31), we now know that

lim
τ→∞

α
(τ)
k|j,p = lim

τ→∞
α

(τ)
k|j,p + lim

τ→∞
α

(τ)
k−1|j,p

if these limits exist. Existence of these limits and the fact that these limits asymp-

totically satisfy the Nitadori generating recursion is established in the proof of The-

orem IV.7 for optimal τ, j quantizers and holds for MMSE quantizers as well.

Applying Lemma IV.5 to optimal τ, j quantization. We have one more lemma

to prove, and it is an important one since it provides the means by which we can gen-

eralize the method used in the Nitadori derivation to derive an asymptotic recursion

relation between successive terms of α
(τ)
k|j,p. Recall that Lemma IV.5 was derived for

any arbitrary interval [s, t), t ≥ s > 0, and without any sort of quantization scheme

in mind. We are now going to translate the result in Lemma IV.5 to optimal τ, j

quantizers when τ is large since this is the scenario we are working in. For an optimal

τ, j quantizer with quantization cell index 2 ≤ k ≤ j, we can re-express Lemma IV.5,

Part 1 as

f
(
tk|j
)

f
(
tk−1|j

) = e
β

(τ)
k|j,p , (4.8.32)

where β
(τ)
k|j,p

4
= −1

p

(
tk|j

p − tk−1|j
p
)

is, in some sense, asymptotically the same as α
(τ)
k|j,p

when tk|j >> 0, as will be made clear in a later discussion.

We are now ready to apply Part 2 of Lemma IV.5 to optimal τ, j quantizers with

large τ > 0.

Lemma IV.13. Suppose we have an optimal τ, j quantizer designed for a GE-source

with j ≥ 2. For 2 ≤ k ≤ j,

f
(
tk|j
)

f
(
tk−1|j

) =

(
1 + oτ

(
1

tk|j

))
× numk

denk

=

(
1 −

∆k|j
tk−1|j

)2p−2

× numk

denk

=

(
tk|j
tk−1|j

)2p−2

× numk

denk
,
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where

numk = 1 + ∆k−1|jtk−1|j
p−1 + (−p + 1)Oτ

(
1

tk−1|j

)

= 1 + α
(τ)
k−1|j,p + (−p+ 1)Oτ

(
1

tk−1|j

)

denk = 1 − ∆k|jtk|j
p−1 − (−p + 1)Oτ

(
1

tk|j

)

= 1 − α
(τ)
k|j,p − (−p + 1)Oτ

(
1

tk|j

)
.

Proof. To convert the result in Lemma IV.5 into an asymptotic form, we substi-

tute asymptotic expressions for the tail function terms Q (s) , Q (t) and the integral

function terms Int (s) , Int (t). To do this, we use the asymptotic key effect from

(4.5.25) as a direct substitute for the Q (s) , Q (t) terms, and in an indirect way when

formulating an asymptotic expression for the integral Int (s) with s > 0.

Let k ≥ 2 and let τ >> 0. Since tk|j ≥ τ >> 0,

Int
(
tk|j
)

=

∞∫

tk|j

x−p+1f (x) dx

= f
(
tk|j
) (
tk|j

−2p+2 + (−2p+ 2) tk|j
−3p+2 + (−p+ 1)Oτ

(
tk|j

−4p+2
))

(General-exp-type-conditional-mean-vby.tex, Aside section.)

= f
(
tk|j
)
tk|j

−2p+2
(
1 + (−2p + 2) tk|j

−p + (−p + 1)Oτ

(
tk|j

−2p
))

= f
(
tk|j
)
tk|j

−2p+2
(
1 + (−p + 1)

(
2tk|j

−p +Oτ

(
tk|j

−2p
)))

= f
(
tk|j
)
tk|j

−2p+2
(
1 + (−p + 1)Oτ

(
tk|j

−p)) . (4.8.33)

Substituting the expressions for Int
(
tk−1|j

)
, Int

(
tk|j
)

into the expression in Part 2

of Lemma IV.5, we have

f
(
tk|j
)

f
(
tk−1|j

) =

1
tk−1|jp−2 + (−p+ 2)

f(tk−1|j)(tk−1|j)
−2p+2

(1+(−p+1)Oτ(tk−1|j
−p))

f(tk−1|j)
− Q(tk−1|j)

f(tk−1|j)
µk|j

1
tk|jp−2 + (−p + 2)

f(tk|j)tk|j−2p+2(1+(−p+1)Oτ(tk|j−p))
f(tk|j)

− Q(tk|j)
f(tk|j)

µk|j
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=

1
tk−1|j p−2 + (−p + 2)

(
tk−1|j

)−2p+2 (
1 + (−p+ 1)Oτ

(
tk−1|j

−p))− Q(tk−1|j)
f(tk−1|j)

µk|j

1
tk|jp−2 + (−p + 2) tk|j

−2p+2
(
1 + (−p + 1)Oτ

(
tk|j

−p))− Q(tk|j)
f(tk|j)

µk|j

=

(
tk|j

p−2

tk−1|j
p−2

)
×




1 + (−p + 2) tk−1|j
−p (1 + (−p + 1)Oτ

(
tk−1|j

−p))− tk−1|j
p−2Q(tk−1|j)
f(tk−1|j)

µk|j

1 + (−p + 2) tk|j
−p (1 + (−p + 1)Oτ

(
tk|j

−p))− tk|jp−2Q(tk|j)
f(tk|j)

µk|j




=

(
tk|j
tk−1|j

)p−2

×



1+(−p+2) tk−1|j
−p (1+(−p+1)Oτ

(
tk−1|j

−p))−tk−1|j
p−2µk|j

Q(tk−1|j)
f(tk−1|j)

1+(−p+2) tk|j
−p (1+(−p+1)Oτ

(
tk|j

−p))−tk|jp−2µk|j
Q(tk|j)
f(tk|j)


. (4.8.34)

Define

numk
4
= 1 + (−p+ 2) tk−1|j

−p (1 + (−p + 1)Oτ

(
tk−1|j

−p))− tk−1|j
p−2µk|j

Q
(
tk−1|j

)

f
(
tk−1|j

)

and

denk
4
= 1 + (−p + 2) tk|j

−p (1 + (−p+ 1)Oτ

(
tk|j

−p))− tk|j
p−2µk|j

Q
(
tk|j
)

f
(
tk|j
) .

Evaluating and simplifying numk by using the fact that when y >> 1,

Q (y)

f (y)
=

1

yp−1
×
[
1 + (−p + 1)

(
1

yp
+ (−2p+ 1)

1

y2p
+O

(
1

y3p

))]
, (4.8.35)

we have

numk = 1 + (−p+ 2) tk−1|j
−p (1 + (−p + 1)Oτ

(
tk−1|j

−p))− tk−1|j
p−2µk|j

Q
(
tk−1|j

)

f
(
tk−1|j

)

= 1 + (−p+ 2) tk−1|j
−p (1 + (−p + 1)Oτ

(
tk−1|j

−p))− tk−1|j
p−2µk|j ×

1

tk−1|j
p−1 ×

[
1 + (−p + 1)

(
1

tk−1|j
p

+ (−2p + 1)
1

tk−1|j
2p +Oτ

(
1

tk−1|j
3p

))]

= 1 + (−p+ 2) tk−1|j
−p (1 + (−p + 1)Oτ

(
tk−1|j

−p))− tk−1|j
−1µk|j ×[

1 + (−p + 1)

(
1

tk−1|j
p

+ (−2p + 1)
1

tk−1|j
2p

+Oτ

(
1

tk−1|j
3p

))]
. (4.8.36)
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Using the fact that

µk|j = tk−1|j − ∆k−1|j,

then

tk−1|j
−1µk|j = tk−1|j

−1
(
tk−1|j − ∆k−1|j

)
= 1 −

∆k−1|j
tk−1|j

,

and then µk|j in (4.8.36) becomes

numk = 1 +
(−p+ 2)

tk−1|j
p

(
1 + (−p+ 1)Oτ

(
1

tk−1|j
p

))
−
(

1 −
∆k−1|j
tk−1|j

)
×
[
1+

(−p + 1)

(
1

tk−1|j
p

+ (−2p+ 1)
1

tk−1|j
2p +Oτ

(
1

tk−1|j
3p

))]

= 1 +
(−p+ 2)

tk−1|j
p

(
1 + (−p+ 1)Oτ

(
1

tk−1|j
p

))
−
[
1 + (−p+ 1)

(
1

tk−1|j
p
+

(−2p+ 1)
1

tk−1|j
2p +Oτ

(
1

tk−1|j
3p

))]
+

∆k−1|j
tk−1|j

×
[
1 + (−p+ 1)

(
1

tk−1|j
p
+

(−2p+ 1)
1

tk−1|j
2p +Oτ

(
1

tk−1|j
3p

))]

=
(−p+ 2)

tk−1|j
p

(
1 + (−p + 1)Oτ

(
1

tk−1|j
p

))
−(−p+ 1)

(
1

tk−1|j
p
+(−2p+ 1)×

1

tk−1|j
2p

+Oτ

(
1

tk−1|j
3p

))
+

∆k−1|j
tk−1|j

×
[
1+(−p+ 1)

(
1

tk−1|j
p

+ (−2p+ 1)×

1

tk−1|j
2p +Oτ

(
1

tk−1|j
3p

))]

=
1

tk−1|j
p
×
{

(−p + 2)

(
1 + (−p + 1)Oτ

(
1

tk−1|j
p

))
− (−p+ 1)×

(
1 + (−2p + 1)

1

tk−1|j
p

+Oτ

(
1

tk−1|j
2p

))
+ ∆k−1|jtk−1|j

p−1 ×

[
1 + (−p+ 1)

(
1

tk−1|j
p

+ (−2p+ 1)
1

tk−1|j
2p +Oτ

(
1

tk−1|j
3p

))]}

=
1

tk−1|j
p
×
{[

(−p+2) − (−p+1) + ∆k−1|jtk−1|j
p−1

]
+

[
−(−p+1)(−2p+1)

tk−1|j
p

+

∆k−1|jtk−1|j
p−1 (−p+1)

tk−1|j
p

+(−p+2) (−p+1)Oτ

(
1

tk−1|j
p

)]
+

[
− (−p+1)×
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Oτ

(
1

tk−1|j
2p

)
+∆k−1|jtk−1|j

p−1 (−2p+1)

tk−1|j
2p

]
+∆k−1|jtk−1|j

p−1Oτ

(
1

tk−1|j
3p

)}

=
1

tk−1|j
p
×
{[

1 + ∆k−1|jtk−1|j
p−1

]
+

(−p + 1)

tk−1|j
p

[
− (−2p+ 1) + ∆k−1|jtk−1|j

p−1+

(−p+ 2)Otk−1|j (1)

]
+

1

tk−1|j
2p

[
−(−p+1)Otk−1|j (1)+∆k−1|jtk−1|j

p−1(−2p + 1)

]
+

∆k−1|jtk−1|j
p−1Oτ

(
1

tk−1|j
3p

)}

=
1

tk−1|j
p
×
{[

1 + ∆k−1|jtk−1|j
p−1

]
+ (−p+ 1)Oτ

(
1

tk−1|j
p

)}
.

Similarly using (4.8.35), we have

denk = 1 +
(−p + 2)

tk|j
p

(
1 + (−p + 1)Oτ

(
1

tk|j
p

))
− tk|j

p−2µk|j
Q
(
tk|j
)

f
(
tk|j
)

= 1 +
(−p + 2)

tk|j
p

(
1 + (−p + 1)Oτ

(
1

tk|j
p

))
− tk|j

p−2µk|j ×
1

tk|j
p−1

×
[
1 + (−p+ 1)

(
1

tk|j
p

+ (−2p + 1)
1

tk|j
2p +Oτ

(
1

tk|j
3p

))]

= 1 +
(−p + 2)

tk|j
p

(
1 + (−p + 1)Oτ

(
1

tk|j
p

))
− tk|j

−1µk|j

[
1 + (−p + 1)×

(
1

tk|j
p

+ (−2p + 1)
1

tk|j
2p +Oτ

(
1

tk|j
3p

))]
.

Since

µk|j = tk|j + ∆k|j

then

tk|j
−1µk|j = 1 +

∆k|j
tk|j

,

and we have

denk = 1 +
(−p + 2)

tk|j
p

(
1 + (−p + 1)Oτ

(
1

tk|j
p

))
−
(

1 +
∆k|j
tk|j

)
×
[
1 + (−p + 1)×

(
1

tk|j
p

+
(−2p + 1)

tk|j
2p +Oτ

(
1

tk|j
3p

))]
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= 1 +
(−p+ 2)

tk|j
p

(
1 + (−p+ 1)Oτ

(
1

tk|j
p

))
− [1 + (−p + 1)

(
1

tk|j
p

+
(−2p+ 1)

tk|j
2p

+

Oτ

(
1

tk|j
3p

))]
−

∆k|j
tk|j

×
[
1 + (−p + 1)

(
1

tk|j
p

+
(−2p + 1)

tk|j
2p +Oτ

(
1

tk|j
3p

))]

=
(−p+ 2)

tk|j
p

(
1 + (−p+ 1)Oτ

(
1

tk|j
p

))
− (−p + 1)

(
1

tk|j
p

+
(−2p+ 1)

tk|j
2p +

Oτ

(
1

tk|j
3p

))
−

∆k|j
tk|j

×
[
1 +

(
(−p + 1)

tk|j
p

+
(−2p+ 1)

tk|j
2p +Oτ

(
1

tk|j
3p

))]

=
1

tk|j
p
×
{

(−p+ 2)

(
1 + (−p+ 1)Oτ

(
1

tk|j
p

))
− (−p + 1)

(
1 +

(−2p+ 1)

tk|j
p

+

Oτ

(
1

tk|j
2p

))
− ∆k|jtk|j

p−1 ×
[
1 + (−p + 1)

(
1

tk|j
p

+
(−2p+ 1)

tk|j
2p

+Oτ

(
1

tk|j
3p

))]}

=
1

tk|j
p
×
{[

(−p+ 2) − (−p+ 1) − ∆k|jtk|j
p−1

]
+

[
−(−p + 1) (−2p + 1)

tk|j
p

−

∆k|jtk|j
p−1 (−p+ 1)

tk|j
p

+ (−p + 2) (−p + 1)Oτ

(
1

tk|j
p

)]
+

[
−∆k|jtk|j

p−1×

(−p + 1) (−2p+ 1)

tk|j
2p

− (−p+ 1)Oτ

(
1

tk|j
2p

)]
− ∆k|jtk|j

p−1 (−p+ 1)Oτ

(
1

tk|j
3p

)}

=
1

tk|j
p
×
{[

1 − ∆k|jtk|j
p−1

]
+

(−p+ 1)

tk|j
p

[
− (−2p+ 1) − ∆k|jtk|j

p−1+

(−p + 2)Otk|j (1)

]
+

(−p+ 1)

tk|j
2p

[
−∆k|jtk|j

p−1 (−2p+ 1) − Otk|j (1)

]
−

∆k|jtk|j
p−1 (−p + 1)Oτ

(
1

tk|j
3p

)}

=
1

tk|j
p
×
{[

1 − ∆k|jtk|j
p−1
]
+ (−p + 1)Oτ

(
1

tk|j
p

)}
.

Since
(

tk|j
tk−1|j

)
→ 1 as τ → ∞ (from Lemma IV.12, Part 2), (4.8.34) now becomes

f
(
tk|j
)

f
(
tk−1|j

) =

(
1 + oτ

(
1

tk|j

))
× numk

denk
,
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where

numk =
[
1 + ∆k−1|jtk−1|j

p−1
]
+ (−p+ 1)Oτ

(
1

tk−1|j
p

)

denk =
[
1 − ∆k|jtk|j

p−1
]
+ (−p + 1)Oτ

(
1

tk|j
p

)
.

Lemma IV.13 is an important step in the process of deriving an asymptotic version

of the Nitadori recursion for optimal τ, j quantizers designed for general exponential

sources. As can be seen Table 4.2, it is clear when comparing left hand terms and

comparing right hand terms that Lemma IV.13 is an asymptotic generalization of

(4.2.16) since when p = 1, the expressions are the same, except for multiplication

by −1 on both the left hand side and the right hand side of the expressions taken

from Lemma IV.13. We remark that it is crucial that we are able to make this

generalization for (4.2.16) since this equation is the direct result of applying the key

effect in the Nitadori derivation.

Table 4.2: Comparing relations in Lemma IV.13 to (4.2.16) in the Nitadori derivation.

Lemma IV.13 relation Nitadori (4.2.16)
(GE-sources) (Exp. source)

(optimal τ, j quantizers) (MMSE quantizers)

LHS f
(
tk|j
) (

1− ∆k|j
tk−1|j

)2p−2

×
(
1−∆k|jtk|j

p−1−(−p+1)Oτ

(
1
tk|j

))
f
(
t
(N)
k

)(
∆

(N)
k −1

)

RHS f
(
tk−1|j

)
×
(
1+∆k−1|jtk−1|j

p−1+(−p+1)Oτ

(
1

tk−1|j

))
f
(
t
(N)
k−1

)(
−∆

(N)
k−1 −1

)

To review, we have been able to follow the outline of the steps taken in the Nitadori

sequence derivation up to and including the point at which the key effect was applied.

We are now ready to derive an analogous asymptotic form of the Nitadori sequence

generator equation in (4.2.19), and this derivation will shown in the next section with

the proof of Theorem IV.7.

4.9 Proof of Theorem IV.7.

Fix p ≥ 1 and fix j ≥ 2. We start by assuming we have an optimal τ, j quantizer

that has been designed for the GE-source indicated by the value of p.
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Part 1(a). Show ν1 exists and equals η
1
.

We remark that we have already shown this to be true for MMSE quantizers, but, for

completeness, we briefly go over it again for optimal τ, j quantizers.

Since optimal τ, j quantizers are optimal for the source with conditional distribution

fX|X≥τ (x), we can apply Corollary IV.4 to the first (k = 1) quantization cell [t1|j ,∞)

to get

lim
τ→∞

∆1|jt1|j
p−1 = lim

τ→∞

(
µ[t1|j ,∞) − t1|j

)
t1|j

p−1 (Cor. IV.4)
= 1,

since t1|j ≥ tj|j = τ and so t1|j → ∞. Thus ν1 = limτ→∞ ∆1|jt1|j
p−1 exists and since

η
1

= 1, we have ν1 = η
1
.

Part 1(b). Show if νk−1 exists, then νk exists and satisfies (4.8.29):

eνk (1 − νk) = e−νk−1
(
1 + νk−1

)
.

This proof has five steps. Choose k ∈ {2, 3, . . . , j}.

Step 1. Show

e
α

(τ)
k|j,p

(
1 − α

(τ)
k|j,p

)
= e

−α(τ)
k−1|j,p

×
(
1+oτ

(
1

tk|j

))

×
[
1 + α

(τ)
k−1|j,p

]
×
(
1 + oτ

(
1

tk|j

))
×e−

(
β

(τ)
k|j,p

−α(τ)
k|j,p

)

×


1 +

(−p + 1)Oτ

(
1

tk−1|j

)

1 + α
(τ)
k−1|j,p


×


1 −

(−p + 1)Oτ

(
1
tk|j

)

1 − α
(τ)
k|j,p



−1

(4.9.37)

which is an approximation to the recursive equation in (4.2.19).

To show (4.9.37), we re-express the equation in Lemma IV.13 by moving quantities

from either side of the equal sign and by substituting in α
(τ)
k−1|j,p, α

(τ)
k|j,p, β

(τ)
k|j,p where

possible.

With tk|j ≥ τ >> 0, we begin by equating (4.8.32) to the expression in Lemma IV.13
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to obtain

e
β

(τ)
k|j,p =

(
1 + oτ

(
1

tk|j

))
×

1 + ∆k−1|jtk−1|j
p−1 + (−p + 1)Oτ

(
1

tk−1|j

)

1 − ∆k|jtk|j
p−1 − (−p+ 1)Oτ

(
1
tk|j

)

=

(
1 + oτ

(
1

tk|j

))
×

1 + α
(τ)
k−1|j,p + (−p + 1)Oτ

(
1

tk−1|j

)

1 − α
(τ)
k|j,p − (−p+ 1)Oτ

(
1
tk|j

) . (4.9.38)

By multiplying both sides of (4.9.38) by the denominator of the right side of (4.9.38),

we have

e
β

(τ)
k|j,p ×

[
1 − α

(τ)
k|j,p − (−p+ 1)Oτ

(
1

tk|j

)]

=

(
1 + oτ

(
1

tk|j

))
×
[
1 + α

(τ)
k−1|j,p + (−p + 1)Oτ

(
1

tk−1|j

)]
.

(4.9.39)

Concentrating on just the left-hand side of (4.9.39), we multiply the left side by

e
α

(τ)
k|j,p

(
1 − α

(τ)
k|j,p

)

e
α

(τ)
k|j,p

(
1 − α

(τ)
k|j,p

)

to get

(4.9.39)LHS =
e
α

(τ)
k|j,p

(
1 − α

(τ)
k|j,p

)

e
α

(τ)
k|j,p

(
1 − α

(τ)
k|j,p

) × e
β

(τ)
k|j,p ×

[
1 − α

(τ)
k|j,p − (−p+ 1)Oτ

(
1

tk|j

)]

= e
α

(τ)
k|j,p

(
1 − α

(τ)
k|j,p

)
× e

β
(τ)
k|j,p

e
α

(τ)
k|j,p

×
1 − α

(τ)
k|j,p − (−p+ 1)Oτ

(
1
tk|j

)

1 − α
(τ)
k|j,p

= e
α

(τ)
k|j,p

(
1 − α

(τ)
k|j,p

)
× e

β
(τ)
k|j,p

−α(τ)
k|j,p ×


1 −

(−p+ 1)Oτ

(
1
tk|j

)

1 − α
(τ)
k|j,p


 .

Since

α
(τ)
k|j,p = ∆k|jtk|j

p−1 =
(
∆k|j + ∆k−1|j

)
tk|j

p−1 = ∆k|jtk|j
p−1 + ∆k−1|jtk|j

p−1

= α
(τ)
k|j,p + ∆k−1|j

(
tk−1|j − ∆k|j

)p−1
= α

(τ)
k|j,p + ∆k−1|jtk−1|j

p−1

(
1 − ∆k|j

tk−1|j

)p−1
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= α
(τ)
k|j,p + α

(τ)
k−1|j,p

(
1 − ∆k|j

tk−1|j

)p−1

= α
(τ)
k|j,p + α

(τ)
k−1|j,p

(
tk−1|j − ∆k|j

tk−1|j

)p−1

= α
(τ)
k|j,p + α

(τ)
k−1|j,p

(
tk|j
tk−1|j

)p−1

= α
(τ)
k|j,p + α

(τ)
k−1|j,p

(
1 + oτ

(
1

tk|j

))
(Lemma IV.12, Part 2),

we find that

(4.9.39)LHS

= e
α

(τ)
k|j,p

+α
(τ)
k−1|j,p

(
1+oτ

(
1

tk|j

))(
1 − α

(τ)
k|j,p

)
×eβ

(τ)
k|j,p

−α(τ)
k|j,p×


1−

(−p+ 1)Oτ

(
1
tk|j

)

1 − α
(τ)
k|j,p


.

Concentrating on the right-hand side of (4.9.39), we have

(4.9.39)RHS =

(
1+oτ

(
1

tk|j

))
×
[
1+α

(τ)
k−1|j,p+(−p+1)Oτ

(
1

tk−1|j

)]
×

1+α
(τ)
k−1|j,p

1+α
(τ)
k−1|j,p

=

(
1+oτ

(
1

tk|j

))
×




1+α
(τ)
k−1|j,p+(−p+1)Oτ

(
1

tk−1|j

)

1+α
(τ)
k−1|j,p


×
(
1+α

(τ)
k−1|j,p

)

=

(
1+oτ

(
1

tk|j

))
×


1+

(−p+1)Oτ

(
1

tk−1|j

)

1+α
(τ)
k−1|j,p


×
(
1+α

(τ)
k−1|j,p

)
.

Multiplying both sides of (4.9.39) by

e
−α(τ)

k−1|j,p

(
1+oτ

(
1

tk|j

))

× e
α

(τ)
k|j,p

−β(τ)
k|j,p ×


1 −

(−p+ 1)Oτ

(
1
tk|j

)

1 − α
(τ)
k|j,p



−1

,

we have

e
α

(τ)
k|j,p

(
1−α(τ)

k|j,p

)

=

(
1+oτ

(
1

tk|j

))
×


1+

(−p+1)Oτ

(
1

tk−1|j

)

1+α
(τ)
k−1|j,p


×

(
1+α

(τ)
k−1|j,p

)
× e

−α(τ)
k−1|j,p

(
1+oτ

(
1

tk|j

))

× e
α

(τ)
k|j,p

−β(τ)
k|j,p


1−

(−p+1)Oτ

(
1
tk|j

)

1−α(τ)
k|j,p



−1
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= e
−α(τ)

k−1|j,p

(
1+oτ

(
1

tk|j

))

×
(
1+α

(τ)
k−1|j,p

)

×
(
1+oτ

(
1

tk|j

))
× e

α
(τ)
k|j,p

−β(τ)
k|j,p ×


1+

(−p+1)Oτ

(
1

tk−1|j

)

1+α
(τ)
k−1|j,p


×


1−

(−p+1)Oτ

(
1
tk|j

)

1−α(τ)
k|j,p



−1

,

which is (4.9.37).

Step 2. Show lim supτ→∞ α
(τ)
k|j,p < 1.

The purpose of this step is to prove that the term

[
1 −

(−p+1)Oτ

(
1

tk|j

)

1−α(τ)
k|j,p

]
in (4.9.37) is

bounded away from zero so that the term

[
1 −

(−p+1)Oτ

(
1

tk|j

)

1−α(τ)
k|j,p

]−1

does not blow up as

τ → ∞.

This is proof by contradiction. Since α
(τ)
k|j,p ≤ α

(τ)
2|j,p and tk|j ≥ τ for all 2 ≤ k ≤ j, it

suffices to show that lim supt2|j→∞ α
(τ)
2|j,p < 1. With

α
(τ)
2|j,p = ∆2|jt2|j

p−1 ≤ ∆1|jt2|j
p−1 ≤ ∆1|jt1|j

p−1 = α
(τ)
1|j,p,

we know that

lim sup
τ→∞

α
(τ)
2|j,p ≤ lim sup

τ→∞
α

(τ)
1|j,p = lim

τ→∞
α

(τ)
1|j,p = 1. (Corollary IV.4)

Now suppose lim supτ→∞ α
(τ)
2|j,p = 1. Then

0 =

(
1 − lim sup

τ→∞
α

(τ)
2|j,p

)

=

(
1 − lim sup

τ→∞
α

(τ)
2|j,p − lim

τ→∞
(−p+ 1)Oτ

(
1

t2|j

))

= lim inf
τ→∞

(
1 − α

(τ)
2|j,p − (−p + 1)Oτ

(
1

t2|j

))
. (4.9.40)

Working to find an equivalent expression to the right hand side of (4.9.40), we can

re-write (4.9.37) from Step 1 with k = 2, to obtain
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e
α

(τ)
2|j,p

(
1 − α

(τ)
2|j,p

)
×


1 −

(−p+1)Oτ

(
1
t2|j

)

1 − α
(τ)
2|j,p




= e
−α(τ)

1|j,p
×
(

t2|j
t1|j

)p−1

×
[
1+α

(τ)
1|j,p

]
×
(
t2|j
t1|j

)2p−2

×e−
(
β

(τ)
2|j,p

−α(τ)
2|j,p

)

×


1+

(−p+1)Oτ

(
1
t1|j

)

1+α
(τ)
1|j,p




or equivalently,

e
α

(τ)
2|j,p

(
1 − α

(τ)
2|j,p

)
×




1 − α
(τ)
2|j,p − (−p+1)Oτ

(
1
t2|j

)

1 − α
(τ)
2|j,p




= e
−α(τ)

1|j,p
×
(

t2|j
t1|j

)p−1

×
[
1+α

(τ)
1|j,p

]
×
(
t2|j
t1|j

)2p−2

×e−
(
β

(τ)
2|j,p

−α(τ)
2|j,p

)

×


1+

(−p+1)Oτ

(
1
t1|j

)

1+α
(τ)
1|j,p




or equivalently,

(
1 − α

(τ)
2|j,p

)
×




1 − α
(τ)
2|j,p − (−p+ 1)Oτ

(
1
t2|j

)

1 − α
(τ)
2|j,p


 =

e
−α(τ)

2|j,p × e
−α(τ)

1|j,p
×

(
t2|j
t1|j

)p−1

×
[
1 + α

(τ)
1|j,p

]
×
(
t2|j
t1|j

)2p−2

× e
−

(
β

(τ)
2|j,p

−α(τ)
2|j,p

)

×

1 +

(−p + 1)Oτ

(
1
t1|j

)

1 + α
(τ)
1|j,p




or equivalently,

[
1 − α

(τ)
2|j,p − (−p+ 1)Oτ

(
1

t2|j

)]

= e
−α(τ)

1|j,p
×

(
t2|j
t1|j

)p−1

×
[
1 + α

(τ)
1|j,p

]
×
(
t2|j
t1|j

)2p−2

× e
−α(τ)

2|j,p × e
−

(
β

(τ)
2|j,p

−α(τ)
2|j,p

)

×

1 +

(−p + 1)Oτ

(
1
t1|j

)

1 + α
(τ)
1|j,p
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= e
−α(τ)

1|j,p
×

(
t2|j
t1|j

)p−1

×
[
1 + α

(τ)
1|j,p

]
×
(
t2|j
t1|j

)2p−2

× e
−β(τ)

2|j,p×


1+

(−p+1)Oτ

(
1
t1|j

)

1+α
(τ)
1|j,p


 (4.9.41)

We see that the left hand side of (4.9.41) is almost the same as the right hand side

of (4.9.40). Now taking the lim inf as τ → ∞ on both sides of (4.9.41), we obtain an

equivalent expression to the right hand side of (4.9.40)

lim inf
τ→∞

[
1−α(τ)

2|j,p−(−p + 1)Oτ

(
1

t2|j

)]

= lim inf
τ→∞

e
−α(τ)

1|j,p
×
(

t2|j
t1|j

)p−1

×
[
1+α

(τ)
1|j,p

]
×
(
t2|j
t1|j

)2p−2

×e−β
(τ)
2|j,p×


1+

(−p+1)Oτ

(
1
t1|j

)

1+α
(τ)
1|j,p




= e
− limτ→∞ α

(τ)
1|j,p

×limτ→∞

(
t2|j
t1|j

)p−1

× lim
τ→∞

[
1+α

(τ)
1|j,p

]
× lim
τ→∞

(
t2|j
t1|j

)2p−2

× lim inf
τ→∞

e
−β(τ)

2|j,p

× lim
τ→∞


1+

(−p+1)Oτ

(
1
t1|j

)

1+α
(τ)
1|j,p




= e−1 × 2 × 1 × lim inf
τ→∞

e
−β(τ)

2|j,p × 1 (Part 1(a))

= 2e−1 × e
− lim supτ→∞ β

(τ)
2|j,p (4.9.42)

Substituting (4.9.42) for the right hand side of (4.9.40), we have

0 = 2e−1 × e
− lim supτ→∞ β

(τ)
2|j,p .

Thus if we can prove that β
(τ)
2|j,p is bounded for all τ , we will have our contradiction.

Consider expanding the expression for β
(τ)
2|j,p

β
(τ)
2|j,p =−1

p

(
t2|j

p−t1|jp
)

=−1

p

(
t2|j

p−
(
t2|j+∆2|j

)p)
=−1

p

(
t2|j

p−
p∑

n=0

(
p

n

)
∆2|j

nt2|j
p−n

)

= −1

p

(
t2|j

p − t2|j
p −

p∑

n=1

(
p

n

)
∆2|j

nt2|j
p−n

)
=

1

p

(
p∑

n=1

(
p

n

)
∆2|j

nt2|j
p−n

)

≤ 1

p

(
p∑

n=1

(
p

n

)
∆2|jt2|j

p−1

)
(since ∆2|jt2|j

p−1 is the dominant term)

=
1

p
(2p − 1) ∆2|jt2|j

p−1 ≤ 1

p
(2p − 1) 2∆1|jt1|j

p−1
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where the last inequality is due to the fact that t2|j ≤ t1|j, and from Lemma IV.6,

∆2|j = ∆2|j + ∆2|j ≤ 2∆2|j = 2∆1|j.

Since lim supτ→∞ β
(τ)
2|j,p ≤ lim supτ→∞

1
p
(2p − 1) 2∆1|jt1|j

p−1 = 2
p
(2p − 1), β

(τ)
2|j,p is

bounded for all τ and (4.9.43) becomes

0 ≤ 2e−1 · e− 2
p
(2p−1)

> 0.

Contradiction. Therefore, we conclude that 2 ≤ k ≤ j, lim supτ→∞ α
(τ)
k|j,p < 1.

We now know that the term

[
1 −

(−p+1)Oτ

(
1

tk|j

)

1−α(τ)
k|j,p

]
in (4.9.37) is bounded away from

zero and thus the term

[
1 −

(−p+1)Oτ

(
1

tk|j

)

1−α(τ)
k|j,p

]−1

does not blow up as τ → ∞.

Step 3. Show limτ→∞ β
(τ)
k|j,p − α

(τ)
k|j,p = 0.

We are examining another term in (4.9.37), the term e
−

(
β

(τ)
k|j,p

−α(τ)
k|j,p

)

, whose behavior

as τ → ∞ we want to understand.

Since tk|j ≥ τ , it suffices to show that limtk|j→∞ β
(τ)
k|j,p − α

(τ)
k|j,p = 0. With tk−1|j =

tk|j + ∆k|j, we have

β
(τ)
k|j,p =−1

p

(
tk|j

p−tk−1|j
p

)
=−1

p

(
tk|j

p−
(
tk|j+∆k|j

)p)
=−1

p

(
tk|j

p−
p∑

n=0

(
p

n

)
∆k|j

ntk|j
p−n

)

=−1

p

(
tk|j

p−tk|jp−p∆k|jtk|j
p−1−

p∑

n=2

(
p

n

)
∆k|j

ntk|j
p−n

)

=

(
∆k|jtk|j

p−1+
1

p

p∑

n=2

(
p

n

)
∆k|j

ntk|j
p−n

)
=

(
α

(τ)
k|j,p+

1

p

p∑

n=2

(
p

n

)
∆k|j

ntk|j
p−n

)
. (4.9.43)

Then

β
(τ)
k|j,p ≥ α

(τ)
k|j,p

and

lim inf
τ→∞

β
(τ)
k|j,p − α

(τ)
k|j,p ≥ 0.
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Also, since

tk|j
p−2∆k|j

2 = max
{
tk|j

p−2∆k|j
2, tk|j

p−3∆k|j
3, . . . , tk|j

2∆k|j
p−2, tk|j∆k|j

p−1,∆k|j
p
}

when τ is large in (4.9.43), we know that

β
(τ)
k|j,p ≤ α

(τ)
k|j,p + (p− 1)Oτ

(
tk|j

p−2∆k|j
2
)

or

β
(τ)
k|j,p − α

(τ)
k|j,p ≤ (p− 1)Oτ

(
tk|j

p−1∆k|j ·
(

∆k|j
tk|j

))
.

Since from Step 2 and Corollary IV.4,

lim sup
τ→∞

∆k|jtk|j
p−1 ≤ lim sup

τ→∞
2∆k−1|jtk−1|j

p−1 ≤ 2

for all k ≥ 2, and ∆k|j is bounded for k ≥ 2, we know that

lim sup
τ→∞

β
(τ)
k|j,p ≤ lim sup

τ→∞
(p− 1)Oτ

(
tk|j

p−1∆k|j ·
(

∆k|j
tk|j

))
= 0

and thus,

lim sup
τ→∞

β
(τ)
k|j,p − α

(τ)
k|j,p ≤ 0.

Therefore since lim infτ→∞ β
(τ)
k|j,p − α

(τ)
k|j,p = lim supτ→∞ β

(τ)
k|j,p − α

(τ)
k|j,p,

lim
τ→∞

β
(τ)
k|j,p − α

(τ)
k|j,p = 0.

Step 4. Confirm the following statements are true:

term1 = lim
τ→∞

e
−

(
β

(τ)
k|j,p

−α(τ)
k|j,p

)

= 1 (from Step 3)

term2 = lim
τ→∞


1 +

(−p + 1)Oτ

(
1

tk−1|j

)

1 + α
(τ)
k−1|j,p


 = 1, if lim

τ→∞
α

(τ)
k−1|j,p exists.

term3 = lim
τ→∞


1 −

(−p+ 1)Oτ

(
1
tk|j

)

1 − α
(τ)
k|j,p




−1

= 1. (from Step 2)
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We want to determine the asymptotic behavior of the complete expression in (4.9.37)

as τ → ∞. We do this by first pinpointing the asymptotic behavior of each individual

term in (4.9.37) from Step 1.

For term1, since ex is a strictly monotone function, we apply Step 3 to obtain the

result for any 2 ≤ k ≤ j.

For term2, if limτ→∞ α
(τ)
k−1|j,p exists, then it is clear that since α

(τ)
k|j,p ≥ 0, that

limτ→∞ α
(τ)
k−1|j,p ≥ 0 and thus term2 = 1.

For term3, we know from Step 2 that lim supτ→∞ α
(τ)
k|j,p < 1. Then 1−α(τ)

k|j,p is bounded

away from zero for all τ > 0. Thus term3 = 1.

Step 5. Show if νk−1 exists, then νk exists and satisfies

eνk (1 − νk) = e−νk−1
[
1 + νk−1

]
.

This is the final step of Part 1(b).

Assume νk−1 = limτ→∞ ∆k−1|jtk−1|j
p−1 exists. From Step 2, we know that νk−1 < 1

since k ≥ 2. Then taking the limit as τ → ∞ to each side of (4.9.37) and starting on

the right-hand side of (4.9.37), we have

lim
τ→∞

(4.9.37)RHS = lim
τ→∞

e
−α(τ)

k−1|j,p
×

(
1+oτ

(
1

tk|j

))

×
[
1+α

(τ)
k−1|j,p

]
×
(
1+oτ

(
1

tk|j

))
×

e
−

(
β

(τ)
k|j,p

−α(τ)
k|j,p

)

×


1+

(−p+1)Oτ

(
1

tk−1|j

)

1+α
(τ)
k−1|j,p


×


1−

(−p+1)Oτ

(
1
tk|j

)

1 − α
(τ)
k|j,p



−1

.

Since νk−1 exists, we can use all of the results from Step 4 to evaluate this limit as

τ → ∞:

lim
τ→∞

(4.9.37)RHS = lim
τ→∞

e
−α(τ)

k−1|j,p × lim
τ→∞

(
1 + α

(τ)
k−1|j,p

)
(Step 4, terms 1, 2, 3, 4)

= e
− limτ→∞ α

(τ)
k−1|j,p ×

(
1 + lim

τ→∞
α

(τ)
k−1|j,p

)

= e−νk−1
[
1 + νk−1

]
,

where, in the first equality, we have used the fact limτ→∞

(
1 + oτ

(
1
tk|j

))
= 1, along

with the observation that since τ = tj|j and tj|j ≤ tk|j, as τ → ∞, we know that

135



tk|j → ∞. Taking the limit as τ → ∞ on the left-hand side of (4.9.37), we have

lim
τ→∞

(4.9.37)LHS = lim
τ→∞

e
α

(τ)
k|j,p

(
1 − α

(τ)
k|j,p

)
,

and thus

lim
τ→∞

e
α

(τ)
k|j,p

(
1 − α

(τ)
k|j,p

)
= lim

τ→∞
(4.9.37)LHS = lim

τ→∞
(4.9.37)RHS

= e−νk−1
[
1 + νk−1

]
. (4.9.44)

Next, we want to show that limτ→∞ α
(τ)
k|j,p exists. We do this by examining the func-

tion in (4.9.37)LHS and use proof by contradiction: Consider the function h (x)
4
=

ex (1 − x) defined over [0, 1]. Then h is 1-1, onto and differentiable on [0, 1], and

it is clear that h is strictly decreasing over the same closed interval. Suppose that

limτ→∞ α
(τ)
k|j,p does not exist. Then there are two values a1, a2 ∈ [0, 1] (Step 2), such

that a1 6= a2, and two increasing subsequences τn, τm such that limm→∞ τm = ∞,

limn→∞ τn = ∞ and limm→∞ αk|j,p
(τm) = a1 6= a2 = limn→∞ αk|j,p

(τn). Since h (x) is

continuous,

h
(

lim
m→∞

αk|j,p
(τm)
)

= lim
m→∞

h
(
αk|j,p

(τm)
)

= lim
τ→∞

h
(
α

(τ)
k|j,p

)
(4.9.44)

= e−νk−1
(
1 + νk−1

)

and

h
(

lim
n→∞

αk|j,p
(τn)
)

= lim
n→∞

h
(
αk|j,p

(τn)
)

= lim
τ→∞

h
(
α

(τ)
k|j,p

)
(4.9.44)

= e−νk−1
(
1 + νk−1

)
.

But h (x) is also 1−1 so h
(
limm→∞ αk|j,p

(τm)
)
6= h

(
limn→∞ αk|j,p

(τn)
)
. Contradiction.

Thus a1 = a2 and limτ→∞ α
(τ)
k|j,p exists and we now know that

eνk (1 − νk) = e−νk−1
[
1 + νk−1

]
.

Proof of Part 1(c). Show νk = η
k
, k ≥ 1.

This is proof by induction. From Theorem IV.7, Part 1 (a), we already know that

ν1 = 1 = η
1
. Now assume that νk−1 = η

k−1
. Using Theorem IV.7, Part 1 (b), we
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know that νk satisfies

ex (1 − x) = e−νk−1
[
1 + νk−1

]
= e

−η
k−1

[
1 + η

k−1

]
. (4.9.45)

Since η
k−1

∈ [0, 1], there is only one real solution to (4.9.45). Since (4.9.45) is the

Nitadori recursion relation from (4.2.19), we conclude that νk = η
k
.

(This is the end of the first part of Theorem IV.7.)

Part 2. Show that for an optimal τ, j quantizer with j ≥ 2, for each 1 ≤ k ≤ j − 1,

with

r
(τ)
k|j,p =

∆k|j
∆k+1|j

,

that rk = limτ→∞ r
(τ)
k|j,p exists and is given by

rk =
η
k

η
k+1

.

Assuming that we already know that νk = limτ→∞ α
(τ)
k|j,p exists and that νk = η

k
(from

Theorem IV.7, Part 1(c)), for any 1 ≤ k ≤ j − 1,

r
(τ)
k|j,p =

∆k|j
∆k+1|j

=
α

(τ)
k|j,p

α
(τ)
k+1|j,p

·
(
tk+1|j
tk|j

)p−1

.

Then using Lemma IV.12, Part 2, we know that

rk = lim
τ→∞

r
(τ)
k|j,p =

η
k

η
k+1

.

(This is the end of the proof of the second part of Theorem IV.7.)

The proof of Theorem IV.7 is now complete.

4.10 Corollaries to Theorem IV.7.

In this section we present several corollaries to Theorem IV.7 which hold true for

optimal τ, j quantizers designed for GE-sources, remarking that these corollaries also
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hold true for optimal scalar quantizers designed for the same sources.

The first corollary to Theorem IV.7 shows that when considering limits to ∆k|j(tl|j)
p−1,

k 6= l, as τ → ∞, this limit exists and that it is the index k of the half step, not the

index l of the threshold that determines what this limit will be.

Corollary IV.14. Suppose we have an optimal τ, j quantizer, j ≥ 2. Suppose for

some 1 ≤ k ≤ j, limτ→∞ α
(τ)
k|j,p exists, then for any 1 ≤ l ≤ j, limτ→∞ ∆k|j(tl|j)

p−1 =

η
k
.

Proof. First, let 1 ≤ k ≤ j and suppose that limτ→∞ α
(τ)
k−1|j,p exists. Now let

1 ≤ l ≤ j. If tk|j > 0, then from Lemma IV.12, Part 2, we know that

lim
τ→∞

(
tl|j
tk|j

)p−1

= 1,

and thus

lim
τ→∞

∆k|j(tl|j)
p−1 = lim

τ→∞
∆k|j

(
tk|j ·

tl|j
tk|j

)p−1

= lim
τ→∞

∆k|j(tk|j)
p−1 ×

(
tl|j
tk|j

)p−1

= lim
τ→∞

∆k|j(tk|j)
p−1 × lim

τ→∞

(
tl|j
tk|j

)p−1

= η
k
.

Similar to the definition of η
k

with respect to the half step ∆k|j , we define ηk
4
=

limτ→∞ ∆k|j(tk|j)
p−1, a limit that focuses on the interaction between the whole step

∆k|j and the cell threshold tk|j. The next corollary shows that the relationship between

ηk, ηk, and η
k−1

is much like the relationship between the size of an optimal τ, j

quantization cell ∆k|j and its two half cell widths ∆k|j and ∆k−1|j. Not only does

this corollary provide a quick way to generate the sequence ηk from the sequence η
k
,

but the fact that ηk, ηk, and η
k−1

“behave” like ∆k|j, ∆k|j, and ∆k−1|j provides some

insight on how we might use ηk and η
k

for asymptotic cell size estimation, a topic

that will be discussed later.

Corollary IV.15. Suppose we have an optimal τ, j quantizer designed for a GE-

source with j ≥ 2. Define ηk
4
= limτ→∞ α

(τ)
k|j,p. Then for 2 ≤ k ≤ j, ηk exists and

ηk = η
k
+ η

k−1
.
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Proof. Let 2 ≤ k ≤ j, j ≥ 2. Since ∆k|j(tk|j)
p−1 = ∆k|j(tk|j)

p−1 + ∆k−1|j(tk|j)
p−1,

using Corollary IV.14, we have

lim
τ→∞

∆k|j(tk|j)
p−1 = lim

τ→∞
∆k|j(tk|j)

p−1 + ∆k−1|j(tk|j)
p−1

= lim
τ→∞

∆k|j(tk|j)
p−1 + lim

τ→∞
∆k−1|j(tk|j)

p−1

= η
k

+ lim
τ→∞

∆k−1|j(tk|j)
p−1

= η
k

+ η
k−1

.

Thus ηk = η
k

+ η
k−1

.

The following corollary is an extension of the result for rk in Theorem IV.7. Just

as ηk focuses on the whole step ∆k|j as compared to η
k

and its focus on ∆k|j, we

define rk as a ratio of whole steps as opposed to rk which is a ratio of half steps. The

corollary also shows how to generate the extension of rk from the sequence ηk.

Corollary IV.16. Suppose we have an optimal τ, j quantizer designed for a GE-

source with j ≥ 3. Then for 2 ≤ k ≤ j − 1, define

r
(τ)
k|j,p

4
=

∆k|j
∆k+1|j

.

Then

rk
4
= lim

τ→∞
r
(τ)
k|j,p

exists and

rk =
ηk

ηk+1
.

Proof. Let 2 ≤ k ≤ j − 1, j ≥ 3. Since

∆k+1|j = ∆k|j + ∆k+1|j

and if tk|j > 0, we have

lim
τ→∞

r
(τ)
k|j,p = lim

τ→∞

∆k|j(tk|j)
p−1

(
∆k|j + ∆k+1|j

)
(tk|j)p−1
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=
limτ→∞ ∆k|j(tk|j)

p−1

limτ→∞ ∆k|j(tk|j)
p−1 + limτ→∞ ∆k+1|j(tk|j)

p−1

=
η
k

+ η
k−1

η
k

+ η
k+1

=
ηk

ηk+1
,

where to get the second equality we have used the fact that limit in the numerator

exists by Corollary IV.15 and that the limit in the denominator exists by Corol-

lary IV.14 and Theorem IV.7. The last equality comes from Corollary IV.15. Thus

rk = ηk

ηk+1
.

Intuitively, since we’ve shown in Corollary IV.15 that ηk “behaves” like a step

size, we see that the ratio rk can be “thought of” as the ratio of consecutive cell sizes

in an optimal τ, j quantizer when τ >> 0.

The following corollary will be used later during the discussion on applications of

Theorem IV.1.

Corollary IV.17. Suppose we have an optimal τ, j quantizer designed for a GE-

source with p > 1 and j ≥ 2. Fix 2 ≤ k ≤ j. Then limτ→∞
∆k|j
∆1|j

= 1
ρ
1
·ρ

2
···ρ

k−1

, where

ρ
k

4
=

η
k

η
k+1

.

Proof. With j ≥ 2, for any 2 ≤ k ≤ j,

∆k|j
∆1|j

=
∆k|j

∆k−1|j
· ∆k−1|j

∆k−2|j
· · · ∆2|j

∆1|j
= 1

r
(τ)
k−1|j,p

· 1

r
(τ)
k−2|j,p

· · · 1

r
(τ)
1|j,p

,

where r
(τ)
k|j,p

4
=

∆k|j
∆k+1|j

. Then

lim
τ→∞

∆k|j
∆1|j

= lim
τ→∞

1

r
(τ)
k−1|j,p · r

(τ)
k−2|j,p · · · r

(τ)
1|j,p

=
1

limτ→∞ r
(τ)
k−1|j,p · limτ→∞ r

(τ)
k−2|j,p · · · limτ→∞ r

(τ)
1|j,p

=
1

ρ
k−1

· ρ
k−2

· · · ρ
1

.

There are obvious, analogous corollaries to Theorem IV.1. Rather than making

formal statements for optimal scalar quantization of GE-sources, Table 4.3 summa-

rizes these three corollaries to Theorem IV.1 and Theorem IV.7.

Table 4.4 shows some values from the sequences η
k
, ηk, rk, and rk.
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Table 4.3: Table of Additional Corollaries that Hold for Optimal Scalar Quantization
of GE-sources.

Corollary Optimal τ, j quantization Optimal scalar quantization

IV.14 ∆k|j(tl|j)
p−1 τ→∞−→ η

k
∆

(N)
k (t

(N)
l )p−1 N→∞−→ η

k

IV.15 ∆k|j(tk|j)
p−1 τ→∞−→ η

k
+ η

k−1
∆

(N)
k (t

(N)
k )p−1 N→∞−→ η

k
+ η

k−1

IV.16
∆k|j

∆k+1|j

τ→∞−→ ηk

ηk+1

∆
(N)
k

∆
(N)
k+1

N→∞−→ ηk

ηk+1

IV.17
∆k|j
∆1|j

τ→∞−→ 1
ρ

k−1
·ρ

k−2
···ρ

1

∆
(N)
k

∆
(N)
1

N→∞−→ 1
ρ

k−1
·ρ

k−2
···ρ

1

4.11 Applications.

4.11.1 Asymptotic Approximations to ∆
(N)
k .

Since the facts stated in Theorem IV.1 describe limiting relationships between the

Nitadori sequence and 1) the combined behavior of the half step and quantization

threshold of a quantization cell, and 2) the behavior of the half steps of neighboring

quantization cells in optimal GE-quantizers, these facts naturally lend themselves to

the creation of a hamster estimator which uses the values of the Nitadori sequence.

We define, for each p > 1 and N ≥ 2, our half step estimator to be

∆̂
(N)

k

4
=

η
k

(t
(N)
k )p−1

. (4.11.46)

Given this estimator, a natural question to ask is: For a given GE-source with

parameter p, how large must N be in order for (4.11.46) to yield good approximations

to ∆
(N)
k (and by association,

∆
(N)
k

∆
(N)
k+1

)? Another related question is: How does changing

the value of p affect the accuracy of the approximations given by Theorem IV.1?

To investigate these questions, we have computed the threshold and half step data of

optimal scalar quantizers for GE-sources with p = 1.5, 2 (Gaussian case), 10 for values

of N = 32, 64, 128, 256, 512, 1024. (For reference, see Figure 4.5 for an illustration of

the pdfs of the GE-sources with p = 1.5, 2, 10, along with the pdf for the one-sided

exponential source (p = 1).) For each N -level, p-determined, optimal scalar quantizer,

we have used this data to compute ∆̂
(N)

k for each quantization cell k in the N -level

quantizer, and we compare it to the actual, corresponding value for ∆
(N)
k .
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Table 4.4: Table of Selected η
k
, ηk, rk, and rk Sequence Values.

k η
k

ηk rk rk

1 1.0000 Not defined 1.6846 Not defined
2 0.5936 1.5936 1.4002 1.5661
3 0.4240 1.0176 1.2844 1.3495
4 0.3301 0.7540 1.2209 1.2558
5 0.2704 0.6004 1.1807 1.2025
6 0.2290 0.4993 1.1530 1.1678
7 0.1986 0.4276 1.1326 1.1434
8 0.1753 0.3739 1.1170 1.1252
16 0.0906 0.1870 1.0604 1.0624
32 0.0461 0.0936 1.0307 1.0312
64 0.0232 0.0468 1.0155 1.0156
128 0.0117 0.0234 1.0078 1.0078
256 0.0058 0.0117 1.0039 1.0039
512 0.0029 0.0059 1.0020 1.0020
1024 0.0015 0.0029 1.0010 1.0010
2048 7.3222e− 004 0.0015 1.0005 1.0005

Does the data show ∆̂
(N)

k is a good approximation for ∆
(N)
k ? When is ∆̂

(N)

k

useful? In Figure 4.6, we have plotted data for the ratio
∆̂

(N)

k

∆
(N)
k

=
η

k

∆
(N)
k

(t
(N)
k

)p−1
versus

cell index k. On initial inspection of the curves shown in this figure, it is easy to see

the macro trends influenced by the facts of Theorem IV.1 as well as trends that are

not explained or predicted by Theorem IV.1. The trends resulting from basing our

estimator ∆̂
(N)

k on Theorem IV.1 are:

• The numerical results confirm our theoretical expectations, namely that, for all

values of p and for all values of N , the ratio
∆̂

(N)

k

∆
(N)
k

=
η

k

∆
(N)
k

(t
(N)
k

)p−1
is close to one

for small k (which corresponds to quantization cells far from the origin, residing

in the pdf tail region) and this is true even for moderate values of k.

• In general, the closer p is to 1, the better ∆̂
(N)

k is at estimating ∆
(N)
k .

• As N increases, the number of quantization cells for which ∆̂
(N)

k is a reliable

estimator increases. Again, this is due to the fact that as N increases, the

number of quantization cells that lies in the pdf tail region increases.

The trends that we observe that are outside the scope of Theorem IV.1 are:

• For quantization cells that are close to the origin (i.e., k close to N), ∆̂
(N)

k loses

its ability to accurately estimate ∆
(N)
k . This observation is not unexpected since:
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Figure 4.5: GE-sources considered for data comparison with p = 1, 1.5, 2, 10.

1) Theorem IV.1 does not contain information regarding the behavior of ∆̂
(N)

k

as N increases for cells near the origin, and 2) close to the origin, t
(N)
k << 1 and

is on the same order as ∆
(N)
k and thus taking t

(N)
k to the power (p − 1) causes

∆̂
(N)

k to blow up.

• For quantization cells lying somewhere between the origin and the pdf tail

region, ∆̂
(N)

k seems to have some ability to track the size of ∆
(N)
k (most likely

due to the fact that t
(N)
k is bounded away from zero in this region) but this ability

declines as k increases to N (since t
(N)
k decreases towards zero). Theorem IV.1

also makes no statement about how ∆̂
(N)

k behaves in this part of the pdf support

region so this observation is somewhat interesting.

In Figure 4.7, we have re-plotted data for the ratio
∆̂

(N)

k

∆
(N)
k

versus relative cell index

k
N

. Curiously, we observe that, for each value of p, the ratio curves for
∆̂

(N)

k

∆
(N)
k

appear

to be superimposed on top of each other, indicating that the behavior of
∆̂

(N)

k

∆
(N)
k

as a

function of k
N

is relatively insensitive to the value of N . To investigate this apparent
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insensitivity to N (and bearing in mind that the scales used to plot the data may

be skewing our perception of insensitivity), we look at how changing the value of N

affects the accuracy achieved by ∆̂
(N)

k . To do this, for each p and each N , we fix a

value T ≥ 0 and initially define the maximum cell index for tolerance T%

kT,N,p
4
=

{
k ∈ {1, 2, . . . , N} : ∀i ≤ k,

∣∣∣∣
∆̂

(N)

k

∆
(N)
k

− 1

∣∣∣∣ ≤
T

100

}
, (4.11.47)

i.e., kT,N,p is the largest cell index for which
∆̂

(N)

k

∆
(N)
k

is within T% of the value 1. Using

this definition, we define the maximum relative cell index for tolerance T% as

kT,N,p

N
.

In Figure 4.8, we have plotted
kT,N,p

N
for tolerances T = 10%, 20%, 30%, 50%, 100%,

200%, and we note that across all values of p shown, the curves appear to be con-

verging as N increases, with
kT,N,p

N
increasing as N increases. This observation con-

curs with the observation made from viewing Figure 4.7 where we saw that for each

source, as indicated by p, the ratio curves seem to be superimposed on top of each

other. If we use the fact that for GE-sources, the point densities converge to opti-

mal point densities as N increases, we can postulate a limiting connection (in N)

between
kT,N,p

N
and the tail function of the optimal cumulative point distribution

1 − Λp (x), x ≥ 0, to hypothesize that for each T%, there is a limiting value x for

which 1 − Λp (x) = limN→∞
kT,N,p

N
such that for any y ≥ x,

∆̂
(N)

k

∆
(N)
k

is within T% of 1.

Finally, we note again that as p increases, the estimator ∆̂
(N)

k produces less accurate

estimates for ∆
(N)
k and this is easily seen in our data by the fact that for fixed T and

fixed N , we see that the values for
kT,N,1.5

N
≥ kT,N,2

N
≥ kT,N,10

N
.
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Figure 4.6: The ratio
∆̂

(N)

k

∆
(N)
k

plotted versus cell index k for various N -level GE-source

optimal scalar quantizers in two different scales: (a) p = 1.5, (b) p = 2, (c)
p = 10. Note: The larger the cell index k is, the closer the quantization
cell is to the origin.
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Figure 4.7: The ratio
∆̂

(N)

k

∆
(N)
k

plotted against the relative cell index k
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for various N -level

GE-source optimal scalar quantizers: (a) p = 1.5, (b) p = 2, (c) p = 10.
Note: (*-i) plots are linear scale and (*-ii) are semilog scale. Also, note
that the larger the relative cell index k
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is, the closer the quantization cell

is to the origin.
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Figure 4.8: Maximum relative index for tolerance T% (given by
kT,N,p

N
) vs. N for

various N -level GE-MMSE quantizers with N = 32, 64, 128, 256, 512 and
p = 1.5, 2, 10.

The flip-side of looking at when our estimator can be used reliably is to consider

when our estimator is not useful at all. Re-examining the plots shown in Figure 4.7, we

notice that for relative cell indices around 0.85 − 0.95, every ratio curve (regardless

of p or N) shows a sudden increase in slope, indicating a dramatic breakdown in

the estimator’s ability to approximate ∆
(N)
k . To be more concrete, we somewhat

arbitrarily define the knee of the
∆̂

(N)

k

∆
(N)
k

curve to be the point at which the slope of

each of the semilog plots in Figure 4.7 is 45◦ (relative to the scale shown in those

plots). The corresponding relative index will be called the relative breakdown index

bknee,N,p so that, in this way, we have tied relative indices to the knee of the ratio

curves shown. Related to bknee,N , we also define the breakdown threshold tknee,N,p
4
=

t
(N)

round(N×bknee,N,p)
. Table 4.5 lists the actual slope values at the knee of the curve and

it also lists the approximate values for bknee,N,p and tknee,N,p according to p and N ,
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where the value for bknee,N corresponds to the x−coordinate of the data point that is

closest to the point of tangency between the
∆̂

(N)

k

∆
(N)
k

curve and a 45◦ line.

For each p, the values of bknee,N,p do not appear to vary much with N . However,

we note that as p increases, for each N , bknee,N,p appears to decrease. (The average

values are bknee,1.5 = 0.92658, bknee,2 = 0.89804, bknee,10 = 0.87656.) We remark that

the corresponding breakdown thresholds are all much less than 1, indicating that they

all reside near the origin. Since for these sources, it is known that the point densities

of N -level optimal quantizers converge to the optimal point density for each source [2]

and because we have already seen that changing N does not appear to have much of

an effect on bknee,N,p, the fact that, for each p, the values for tknee,N,p appear to cluster

is not unexpected. It is interesting to note, however, that tknee,N,2 seems to be larger

than either tknee,N,1.5 and tknee,N,10.

Table 4.5: Table of slope values and breakdown thresholds tknee at the knee of the
curve bknee.

p actual slope breakdown threshold tknee, N = 32, 64, 128, 256, 512

1.5 18.52 0.1523, 0.1537, 0.1744, 0.1765, 0.1816

2 35.71 0.1338, 0.1348, 0.1534, 0.1525, 0.1527

10 3.33 × 1011 0.0824, 0.0825, 0.0919, 0.0989, 0.1078

Thus, summarizing what we have seen in our data, we make the following obser-

vations regarding the usefulness of the ∆̂
(N)

k estimator:

1. The overall performance of the estimator is best when p is close to 1. As p

increases away from 1, the estimator becomes less accurate.

2. For each p, the estimator is very good for cells in the pdf tail region (when

k << N and k
N
<< 1), and surprisingly, it is moderately good (appears to be

bounded) for .2 < k
N
< .87 which we will refer to as the mid-range of relative

indices.

3. To find the quantization cells for which the estimator has good performance,

we can use
kT,N,p

N
.

4. For relative cell indices greater than 0.87, the estimator fails. Alternate methods

should be used for the quantization cells that corresponding to relative cell

indices in this region.
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5. There appears to be rapid convergence (in N) for the function
∆̂

(N)

k

∆
(N)
k

with respect

to relative index k
N

. For each p, there may exist a limiting function which gives

the best performance that ∆̂
(N)

k can attain (as measured by the ratio
∆̂

(N)

k

∆
(N)
k

) for

a given value of k
N

.
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Figure 4.10: Close-up view: The ratio
∆̂

(N)

k

∆
(N)
k

re-plotted against the relative cell index

k
N

for various N -level GE-source optimal scalar quantizers in linear scale,
but at a close-up view of the small relative cell index region (outer sup-
port region): (a) p = 1.5, (b) p = 2, (c) p = 10. Note: (*-i) plots and
(*-ii) plots are at different scales.
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Table 4.6: Table of (
kT,N,p

N
)LB values for T = 5%, 10%, 20%, 50%, for GE-sources with

p=1.5, 2, 10.

T% p = 1.5 p = 2 p = 10

N = 32, . . . , 512 N = 32, . . . , 2048 N = 32, . . . , 1024

50% 0.5313 for N ≥ 32 0.2500 for N ≥ 32 0.0078 for N ≥ 128

30% 0.3125 for N ≥ 32 0.0938 for N ≥ 32 0.0020 for N ≥ 512

20% 0.1563 for N ≥ 32 0.0313 for N ≥ 32 0 for N ≤ 1024

10% 0.0156 for N ≥ 32 0 for N ≤ 2048 0 for N ≤ 1024

5% 0 for N ≤ 512 0 for N ≤ 2048 0 for N ≤ 1024

Table 4.6 lists some value of (
kT,N,p

N
)LB for various N and p = 1.5, 2, 10.

4.11.2 Support Threshold Estimation.

Since the Nitadori sequence η
N

provides an exact description of anyN -level MMSE

quantizer designed for an exponential source, the question naturally arises of how

the Nitadori sequence η
N

can be used to aid in the design of general exponential

MMSE quantizers. Since for GE-sources with p > 1 and N >> 0, for each fixed k,

Theorem IV.1 yields the relationship ∆
(N)
k ≈ η

k

(t
(N)
k

)p−1
and this relationship does not

lead to a direct design method for MMSE quantizers, since the approximation for

∆
(N)
k also requires knowledge of each t

(N)
k , we focus on estimating design parameters

that assist the MMSE design process.

Key Parameter Estimation for GE-MMSE quantizers. As stated in the brief

review in Chapter II, the key parameter or support threshold t
(N)
1 of an N -level opti-

mal scalar quantization is historically important because it is used as an initializing

value for the Lloyd Max algorithm ([13], [15]). In the case of exponential MMSE

quantizers, computing the exact support threshold t
(N)
1 using the Nitadori sequence

is a simple matter of summing up the first N terms of the Nitadori sequence since

η
k

= ∆
(N)
k , irrespective of N : Starting with the general expression for the support
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threshold,

t
(N)
1 =

N∑

i=2

∆
(N)
i =

N∑

i=2

∆
(N)
i + ∆

(N)

i =

N∑

i=2

∆
(N)
i + ∆

(N)
i−1

= ∆
(N)
1 + ∆

(N)
N + 2

N−1∑

i=2

∆
(N)
i (4.11.48)

exp. case
= η

1
+ η

N
+ 2

N−1∑

i=2

η
i
= t

(N)
1 exp. src.. (4.11.49)

Now, consider the expression for the support threshold when we have an N -level

MMSE quantizer designed for a GE-source with p > 1 and N >> 0. In this case,

Theorem IV.1 and Lemma IV.12, Part 2 tell us that for fixed k ≥ 1, where k does

not depend on N ,

∆
(N)
k

Thm. IV.1≈
η
k

(t
(N)
k )p−1

4
= ∆̂

(N)

k

Lemma IV.12, P. 2≈
η
k

(t
(N)
1 )p−1

. (4.11.50)

Using the expression for t
(N)
1 in (4.11.48) and keeping in mind the restrictions required

in using Theorem IV.1 and Lemma IV.12, Part 2, we have

t
(N)
1 = ∆

(N)
1 + ∆

(N)
N + 2

N−1∑

i=2

∆
(N)
i

?≈
η

1

(t
(N)
1 )p−1

+
η
N

(t
(N)
N )p−1

+ 2
N−1∑

i=2

η
i

(t
(N)
i )p−1

4
= t

(N)
1, (4.11.51), ((4.11.50), Thm. IV.1)

(4.11.51)

where we point out that in order to get t
(N)
1, (4.11.51), we have applied Theorem IV.1 in a

non-rigorous way to each half step ∆
(N)
k in the expression for t

(N)
1 , and we have used

the symbol
?≈ to highlight this fact. We also remark that in order to get the expression

on the right-hand side of (4.11.51), we are ignoring the fact that t
(N)
N = 0 in the second

term. (We make a further note on this remark by stating that we could drop this

term from the expression in (4.11.51) since this term is supposed to represent ∆
(N)
N ,

and ∆
(N)
N , being the smallest half step in the support, is asymptotically insignificant

to compared to the value of t
(N)
1 .)
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Continuing with this speculative line of thought, we have

t
(N)
1, (4.11.51) =

η
1

(t
(N)
1 )p−1

(
t
(N)
1

t
(N)
1

)p−1

+
η
N

(t
(N)
1 )p−1

(
t
(N)
1

t
(N)
N

)p−1

+ 2

N−1∑

i=2

η
i

(t
(N)
i )p−1

(
t
(N)
1

t
(N)
i

)p−1

?≈
η

1

(t
(N)
1 )p−1

+
η
N

(t
(N)
1 )p−1

+ 2

N−1∑

i=2

η
i

(t
(N)
1 )p−1

=
t
(N)
1 exp. src.

(t
(N)
1 )p−1

,

where at
?≈, similar to what was done in to create t

(N)
1, (4.11.51), we have non-rigorously

applied Lemma IV.12, Part 2 (see also (4.11.50)) because, strictly speaking, we cannot

say that

lim
N→∞

t
(N)
1

t
(N)
k

exists when the cell index k is a function of N .

Summarizing, we have

t
(N)
1

? Thm. IV.1 ?≈ t
(N)
1, (4.11.51)

? L IV.12, P.2 ?≈
t
(N)
1 exp. src.

(t
(N)
1 )p−1

,

or equivalently,

(t
(N)
1 )p

? Thm. IV.1 ?≈ (t
(N)
1 )p−1 · t(N)

1, (4.11.51)

? L IV.12, P.2 ?≈ t
(N)
1 exp. src.

or equivalently,

t
(N)
1

? Thm. IV.1 ?≈
(
(t

(N)
1 )p−1 · t(N)

1, (4.11.51)

) 1
p ? L IV.12, P.2 ?≈ (t

(N)
1 exp. src.)

1
p .

Define

t
(N)

1, est
4
= (t

(N)
1 exp. src.)

1
p . (4.11.52)

While it is obvious from the discussion that the relationship between t
(N)
1 and t

(N)

1, est is

ambiguous since the construction of t
(N)

1, est was based on using asymptotic relationships

that are only valid when quantization cells reside in the tail region of the pdf support,

nevertheless, we will use t
(N)

1, est to estimate t
(N)
1 in spite of these issues, noting that it

will be interesting to see how accurate t
(N)

1, est is. (As will be seen later, t
(N)

1, est turns

out to be surprisingly good.)

155



Observation on support and support length estimation for optimal τ, j

quantizers. Having constructed a support threshold estimator for MMSE quantiz-

ers when N >> 0 using Theorem IV.1, we turn our attention to the support length

Lτ,j,p
4
= t1|j − tj|j of optimal τ, j quantizers and estimation based on the statements

in Theorem IV.7.

Consider an optimal τ, j quantizer with j ≥ 2 fixed. First, we will remark that it

is clear that Lτ,j,p → 0 as τ → ∞, since Lτ,j,p equals a fixed sum of half steps ∆k|j

and each of these half steps ∆k|j are decreasing to zero as τ increases. To discover

what more Theorem IV.7 can tell us about Lτ,j,p, we will start by using an approach

similar to one used in the previous discussion, but this time we can be more rigorous.

Using Theorem IV.7 and Lemma IV.12, Part 2 (applied to optimal τ, j quantizers),

we have

Lτ,j,p = t1|j − tj|j = ∆1|j + ∆j|j + 2

j−1∑

i=2

∆i|j (4.11.53)

τ>>0≈
η

1

(t1|j)p−1
+

η
j

(t1|j)p−1
+ 2

j−1∑

i=2

η
i

(ti|j)p−1
, (4.11.54)

where (4.11.53) is a general expression for the support length of a τ, j quantizer and

is analogous to (4.11.48) which equals the support threshold for a j-level MMSE

quantizer. Then multiplying both sides by (t1|j)
p−1, we have

Lτ,j,p · (t1|j)p−1 ≈ η
1
+ η

j
+ 2

j−1∑

i=2

η
i

(4.11.49)
= t

(j)
1 exp. src.

or when τ >> 0,

Lτ,j,p ≈
t
(j)
1 exp. src.

(t1|j)p−1
,

or more rigorously,

lim
τ→∞

Lτ,j,p · (t1|j)p−1 = t
(j)
1 exp. src.. (4.11.55)

Note that since for optimal τ, j quantizers, the smallest threshold tj|j grows away

from the origin as τ increases, we do not have validity issues as is the case with t
(N)
1

estimation of MMSE quantizers. Thus (4.11.55) is a valid asymptotic result regarding

the support length of optimal τ, j quantizers.
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GE-MMSE quantization: How does the estimate t
(N)

1, est compare to the

actual values for t
(N)
1 ? Before looking at the data shown in Figure 4.14, we will

ruminate over what we might expect to see and then check our thoughts against the

actual data. Our approach in this discussion will be to run-through the iterations we

took to create t
(N)

1, est (where each step culminates in the creation of a new intermediate

estimator), pausing after each step taken, to see if the intermediate support threshold

estimator just created is either too big or too small relative to t
(N)
1 .

Fix N >> 0. Beginning with the general expression for t
(N)
1 from (4.11.48)

t
(N)
1 = ∆

(N)
1 + ∆

(N)
N + 2

N−1∑

i=2

∆
(N)
i ,

the first change we make is to drop ∆
(N)
N since its contribution to t

(N)
1 is negligible

when N >> 0, so that we have

t
(N)
1,as

4
= ∆

(N)
1 + 2

N−1∑

i=2

∆
(N)
i , (4.11.56)

where it is clear that limN→∞ |t(N)
1 − t

(N)
1,as| = 0.

To create the first support threshold estimator t̂, we substitute
η
1

tp−1 for ∆
(N)
1 in

(4.11.56) to get an equation that t̂ should satisfy:

t =
η

1

tp−1
+ 2

N−1∑

i=2

∆
(N)
i

or

t− c1 =
η

1

tp−1
(4.11.57)

where

c1 = 2

N−1∑

i=2

∆
(N)
i .

As seen in Figure 4.12, t̂ is the unique real solution to (4.11.57). What is the rela-

tionship between t̂ and t
(N)
1,as? Since

t
(N)
1 < ∆

(N)
1 + c1
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and since ∆
(N)
1 <

η
1

(t
(N)
1 )p−1

, then

t
(N)
1 <

η
1

(t
(N)
1 )p−1

+ c1

thus the unique real solution t̂ to (4.11.57) satisfies t̂ > t
(N)
1,as.

For a second estimator ˆ̂t, we make another substitution by replacing c1 for the

constant

c2 = 2

N−1∑

i=2

η
i

(t
(N)
i )p−1

,

which is created by swapping each ∆
(N)
i in the sum by

η
i

(t
(N)
i )p−1

, where we have assumed

that t
(N)
2 , t

(N)
3 , . . . , t

(N)
N−1 are known values, and we define ˆ̂t to be the unique positive,

real value that satisfies

t− c2 =
η

1

tp−1
. (4.11.58)

Using our empirical observation that ∆
(N)
k <

η
k

(t
(N)
k

)p−1
, it is clear that c2 > c1, and thus

we know that ˆ̂t > t̂ > t
(N)
1,as. (This last relationship is shown pictorially in Figure 4.12.)

To create our final support threshold estimator t
(N)

1, est, we replace c2 in (4.11.58)

for the expression

2

N−1∑

i=2

η
i

tp−1

which is not a constant but a function in t. This leads to t
(N)

1, est as the unique real-

valued solution to

t =
η

1

tp−1
+ 2

N−1∑

i=2

η
i

tp−1

=
1

tp−1
·
(
η

1
+ 2

N−1∑

i=2

η
i

)
(4.11.59)

=
1

tp−1
· t(N)

1 exp. src..

What is the relationship between t
(N)

1, est and ˆ̂t? Between t
(N)

1, est and t̂? Between t
(N)

1, est
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and t
(N)
1,as?

To answer the first question, consider again the expression for which ˆ̂t satisfies

ˆ̂t =
η

1

ˆ̂tp−1
+ c2.

If we replace each t
(N)
k , k = 2, 3, . . . , N−1 for ˆ̂t > t

(N)
2 (since ˆ̂t > t

(N)
1,as) in this equation,

then

ˆ̂t >
η

1

ˆ̂tp−1
+ 2

N−1∑

i=2

η
i

ˆ̂tp−1
. (4.11.60)

In order to achieve equality in (4.11.60), t
(N)

1, est must be smaller than ˆ̂t.

To see what relationship t
(N)

1, est has with respect to t̂, we re-examine the relation-

ship that t̂ satisfies

t̂ =
η

1

t̂p−1
+ c1.

Since empirically we know that ∆
(N)
k <

η
k

(t
(N)
k

)p−1
, then

t̂ >
η

1

t̂p−1
+ 2

N−1∑

i=2

η
i

t̂p−1

since t̂ > t
(N)
1,as ≥ t

(N)
2 . To achieve equality in this expression, t̂ must be decreased so

that we have t
(N)

1, est < t̂. Since t̂ > t
(N)
1,as, the relationship between t

(N)

1, est and t
(N)
1,as (and

hence t
(N)
1 ) is still unclear even though we know that ˆ̂t > t̂ > t

(N)

1, est and ˆ̂t > t̂ > t
(N)
1,as.

Figure 4.13 illustrates the relative locations of t̂, ˆ̂t, and t
(N)

1, est.

Now, let us see what the data shows. We have computed data for GE-sources with

p = 1.5, 2, 10. As seen in plots on the left-side of Figure 4.14, the actual values for t
(N)
1

and the corresponding estimate t
(N)

1, est for N -level MMSE quantizers, the estimator

t
(N)

1, est appears to be tracking the behavior of t
(N)
1 as a function of N quite well,

especially in light of the nature of t
(N)

1, est’s construction. On closer inspection, t
(N)

1, est
appears to be diverging from each other as N increases, with t

(N)

1, est underestimating

t
(N)
1 . This observation seems to support the notion that t

(N)
1 is much too large when

using it in
η

k

(t
(N)
1 )p−1

to approximate ∆
(N)
k . The rate of divergence, however, appears to

be decreasing as N increases. This decrease in rate is more easily seen in the plots
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on the right-hand side of Figure 4.14, where the ratio
t
(N)
1

t
(N)

1, est
seems to be flattening

out as N increases.

Also from Figure 4.14, it appears that, as p increases, the rate at which the curves

on the right-hand side are flattening increases as N increases. In other words, it

appears that, if
t
(N)
1

t
(N)

1, est
is converging to a limit in N , then the larger p is, the faster

t
(N)
1

t
(N)

1, est
converges in N . For a reason that would support this observation, see the

shape of the pdfs for the GE-sources with p = 1.5, 2, 10 in Figure 4.5. As p increases,

the pdf shape becomes more and more like that of the uniform distribution on [0, 1].8

Thus, as the number of levels in an N -level MMSE quantizer increases, we would

expect that t
(N)
1 would grow much more slowly for an optimal quantizer designed for

a GE-source with high p over that of an optimal quantizer designed for a GE-source

with low p.

8It can be easily shown that as p→ ∞, the GE-pdf converges to the uniform pdf on [0, 1].
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Figure 4.11: Weaker half step estimator: (a) The ratio
∆̂

(N)

k

∆
(N)
k

plotted against cell index

k, and (b) the ratio
∆̂

(N)

k

∆
(N)
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plotted against relative cell index k
N

, for various

N -level GE-source optimal scalar quantizers.
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t− c2t− c1

t̂

c1

η
1

tp−1

c2

ˆ̂
t

Figure 4.12: Illustration of t̂ and ˆ̂t as the intersection point of two sets of functions:
t− c1 and

η
1

tp−1 , and t− c2 and
η
1

tp−1 .
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1
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∑N−1

i=2 η
i

tp−1

t
(N)

1, est

η
1

tp−1

Figure 4.13: Illustration of the relative locations of t
(N)

1, est, t̂ and ˆ̂t when N >> 0.
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For clues as to why t
(N)

1, est is performing so well as an estimator to t
(N)
1 , see Fig-

ure 4.15, where we have plotted data for the ratio

η
k

(t
(N)
1

)p−1

∆
(N)
k

as a function of both the

cell index k and the relative cell index k
N

for various values of N and p. From what

is shown,
η

k

(t
(N)
1 )p−1

< ∆
(N)
k , for k = 1, 2, . . . , N , and thus from (4.1.1), we conclude

t
(N)
1 < t

(N)

1, est.

We also note that in contrast to the behavior of
∆̂

(N)

k

∆
(N)
k

as a function of relative cell

index k
N

does not exhibit the same phenomenon of lying on top of each other across

all values of N . Rather, the curves in Figure 4.15 appear to be converging towards

the function

l (x) =

{
1 k

N
= 0

0 else
(4.11.61)

which might seem contradictory to the fact that t
(N)

1, est grows with N , but in actuality,

it is not because as N increases, while the proportion of k
N

having
η

k

(t
(N)
1 )p−1

approaching

zero increases, as N increases, the value of
η

k

(t
(N)
1 )p−1

is always greater than zero, and

thus for each value of N , when summing over all values of k, t
(N)

1, est still grows with

N .
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Figure 4.14: Comparing support threshold estimates created using the Nitadori se-
quence against the actual t

(N)
1 vs. N for various N -level MMSE quan-

tizers designed for GE-sources with p = 1.5, 2, 10. The plots on the
left-hand side show actual t

(N)
1 and estimated support threshold t

(N)

1, est

vs. N . The plots on the right-hand side show the ratio
t
(N)
1

t
(N)

1, est
vs. N .

Note: The dashed lines in the plots on the right-hand side represent the

asymptotic limit p
1
p in (4.11.63).
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Figure 4.15: The ratio

η
k

(t
(N)
1 )p−1

∆
(N)
k

plotted versus cell index k (*-i) and versus relative cell

index k
N

(*-ii) for various optimal N -level GE-quantizers: (a) p = 1.5,
(b) p = 2, (c) p = 10. Note: The larger the cell index k is, the closer the
quantization cell is to the origin. Also, all plots are linear scale.
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More discussion of the support threshold estimator t
(N)

1, est for MMSE quan-

tization of GE-sources when p > 1. Ideally, in order to see how good the asymp-

totic usefulness of the estimator in (4.11.52) is, we would compare it against a closed-

form analytic expression for t
(N)
1 for each value of p. Since closed-form expressions

for t
(N)
1 are not available for GE-sources (if there were, it would obviate the need for

support threshold estimation of GE-MMSE quantizers), we will compare our estima-

tor to known closed-form functions that also estimate t
(N)
1 . We choose the functions

described in [18], which were derived through informal arguments, were compared

against empirical support threshold data, and were concluded to be accurate and

correct. Specifically from [18], the functions that we compare against, which we will

refer to as the support threshold benchmark functions (t
(N)
1 )(bm), have the form

(t
(N)
1 )(bm) = (3 · p lnN)

1
p (1 + o (lnN)) .

With t
(N)

1, est
4
= (t

(N)
1 exp. src.)

1
p , which is the estimator in (4.11.52), we have

(t
(N)
1 )(bm)

t
(N)

1, est

=
p

1
p · (3 lnN)

1
p

(t
(N)
1 exp. src.)

1
p

(1 + o (lnN)) .

As was discussed in the previous chapter, the support threshold for an N -level, ex-

ponential MMSE quantizer is

t
(N)
1 exp. src. = (3 lnN) (1 + o (lnN)) .

Then

(t
(N)
1 )(bm)

t
(N)

1, est

=
p

1
p · (3 lnN)

1
p (1 + o (lnN))

(3 lnN)
1
p (1 + o (lnN))

1
p

= p
1
p

(1 + o (lnN))

(1 + o (lnN))
1
p

(4.11.62)

or equivalently,

lim
N→∞

(t
(N)
1 )(bm)

t
(N)

1, est

= p
1
p . (4.11.63)
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From (4.11.63), we now have evidence to support the conjecture that
t
(N)
1

t
(N)

1, est
is con-

verging. Again, returning to Figure 4.14 (plots on the right-hand side), we can now

remark that for each value of p shown, convergence of
t
(N)
1

t
(N)

1, est
towards p

1
p , which is the

dashed line shown in the figure, is seen.

Using (4.11.63) and taking the limit as p→ ∞, we have

lim
p→∞

lim
N→∞

(t
(N)
1 )(bm)

t
(N)

1, est

= 1 (4.11.64)

since limp→∞ p
1
p = 1. The implication of (4.11.64) is that for large values of N ,

the estimator function t
(N)

1, est becomes a better approximation for the benchmark

function (t
(N)
1 )(bm) as p is increased, which in turn, implies that t

(N)

1, est becomes a

better approximation for t
(N)
1 . Evidence of this trend as a function of p can also be

seen in Figure 4.14 (right-hand side).

Thus, from what we’ve shown and as a final remark, we can now propose an

improved support threshold estimator

t̃
(N)
1

4
= p

1
p ·
(
t
(N)
1 exp. src.

) 1
p

,

which is just t
(N)

1, est multiplied by the factor p
1
p , that will be asymptotically correct in

N assuming (t
(N)
1 )(bm) from [18] is correct, i.e.,

lim
N→∞

t
(N)
1

t̃
(N)
1

= 1,

if (t
(N)
1 )(bm) from [18] is correct. Moreover, we note that as p increases, t̃

(N)
1 becomes

closer and closer to our original support threshold estimator t
(N)

1, est, i.e.,

lim
p→∞

t̃
(N)
1

t
(N)

1, est

= 1,

and so for large values of p, our original support threshold estimator t
(N)

1, est is expected

to perform nearly as well as our improved estimator t̃
(N)
1 when N is large.

168



4.12 Future Work.

Several topics for future work arose during our study on the role of the Nitadori

sequence and MMSE quantization of GE-sources. We briefly list them below:

• Extending Theorem IV.1 to GE-sources with 0 < p < 1. It may be

possible to extend the results of Theorem IV.1 to include GE-sources with

p ∈ (0, 1). For such sources, the pdf tail is quite heavy and thus, we expect,

for example, that both t
(N)
1 and ∆

(N)
1 will grow as N increases. Such behavior,

especially in ∆
(N)
1 is, in stark contrast to the case when p > 1 (pdf’s with lighter

tails), where ∆
(N)
k decreases (while t

(N)
1 increases) as N grows. Furthermore, if

Theorem IV.1 can be shown to be true for any GE-source with p > 0, it would

interesting to see how quickly, α
(N)
k,p = ∆

(N)
k

(
t
(N)
k

)p−1

converges to η
k
, when

p < 1 as opposed to when p ≥ 1.

• Characterizing the behavior of
∆̂

(N)

k

∆
(N)
k

as a function of k
N
. In the discus-

sion dealing with half step approximation and support threshold estimation, we

witnessed an interesting phenomenon in the data shown in Figure 4.7, where

for each value of N shown, the data curves for
∆̂

(N)

k

∆
(N)
k

as a function of relative cell

index k
N

appear, not only to have the same kind of shape, but also to be lying on

top of each other. This observation could be suggesting that as a function of N ,
∆̂

(N)

k

∆
(N)
k

in terms of relative cell index k
N

may be converging to a limiting function.

It would be interesting to see not only if such a limiting function exists, but

also to know what it is.

Tie-in with the asymptotic theory of optimal point densities. Since,

due to our indexing scheme, k
N

indicates the number of quantization levels to

the right of the kth quantization threshold, if such a limiting function does

indeed exist, we can use the asymptotic theory of optimal point densities (see

Chapter II, Section 2.6) to suggest that the accuracy of ∆̂
(N)

k with respect to

∆
(N)
k as N increases (with k increasing proportionally to N) is tied to a specific

location x along the real axis.

• Issues related to rigorous support threshold estimation. Recall that

t
(N)

1, est was created using the asymptotic facts in Theorem IV.1 and Lemma IV.12

to estimate every half step in an N -level optimal quantizer (not just the ones

in the pdf’s tail region). This approach produced a surprisingly good approxi-

mation to t
(N)
1 , even though it lacked a completely sound theoretical basis. A
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search for a more formally strict way to apply these results to support threshold

estimation is a topic for further study.

Another topic for investigation that also pertains to t
(N)

1, est concerns that fact

that we could not, at this point, rigorously evaluate t
(N)

1, est’s effectiveness in ap-

proximating t
(N)
1 . Perhaps more progress can be made if a different approach

were used to think about the relationship between t
(N)

1, est and t
(N)
1 .

In the very last section on support threshold estimation, the factor p
1
p turned out

to be the proportionality constant that our initial support threshold estimator

t
(N)

1, est lacked. With more work, it may be possible to theoretically substantiate

the existence and need for this factor when using the Nitadori sequence to

estimate the support threshold of an optimal GE-quantizers with large N .

• Generalizing Nitadori’s MSE result. Finally, another topic, not yet ad-

dressed, has its roots in the fact that the Nitadori sequence also gives the

exact MSE performance of optimal scalar quantizers designed for an exponen-

tial source (Nitadori’s second result, Chapter II, Section 2.7). Since GE-sources

have pdfs that are a natural extension of the exponential source’s pdf and since

we now know that the Nitadori sequence provides an asymptotic connection

between the product ∆
(N)
k

(
t
(N)
k

)p−1
for GE-MMSE quantizers and the half steps

of exponential MMSE quantizers, we feel that there may be an analogous ex-

tension of Nitadori’s second result for optimal exponential quantizers (repeated

here, from (2.7.17) in Chapter II)

D (N) =
(
η
N

)2

to optimal GE-quantizers as well.

170



APPENDICES

171



APPENDIX A

The Upper Bound to t
(N)
1 of Optimal, M-level

Laplacian Quantizers: M Odd Case

This appendix gives a brief comment on the upper bound to t
(N)
1 stated in (3.2.4)

of Corollary III.3, Part 1a), when the number of levels M is odd. While the case

when M is even is not explicitly discussed because it is a straightforward application

of Theorem III.1, we will mention specific results from it that are used in the case

when M is odd. Furthermore, we will only consider the case when σ2 = 1 since

extending this result to arbitrary σ2 > 0 is a simple matter of multiplying everything

by σ.

Notation. In the discussion below, we will be referring to the quantization pa-

rameters of both exponential (one-sided, unit variance) quantizers and Laplacian

(two-sided, unit variance) quantizers. To avoid confusion, we will use the following

conventions for this appendix only:

• For N -level exponential quantizers, the half step of the kth quantization cell is

∆
(N)
k and the support threshold is t

(N)
1 , and for UTCC exponential quantizers,

the half step is ∆
(N)
k,c and the support threshold is t

(N)
1,c . (This is the same

notation used in Chapter III.)

• For M-level Laplacian quantizers, the half step of the kth quantization cell is
?

∆
(M)
k and the support threshold is

?

t
(M)
1 , and for UTCC Laplacian quantizers,

the half step is
?

∆
(M)
k,c and the support threshold is

?

t
(M)
1,c .

Since a Laplacian source with variance σ2 is the same as a one-sided exponential source

with variance = 1
2
σ2 defined on both the negative reals and on the non-negative reals,
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the following relationships hold between the quantization parameters of Laplacian

(unit variance) quantizers and exponential (unit variance) quantizers when M = 2N

(even): For an optimal Laplacian quantizer,

?

∆
(M)
k =

1√
2
∆

(N)
k (A.1)

?

t
(M)
1 =

1√
2
t
(N)
1 (A.2)

when k = 1, 2, . . . , N , and for a UTCC Laplacian quantizer,

?

∆
(M)
k,c =

1√
2
∆

(N)
k,c (A.3)

?

t
(M)
1,c =

1√
2
t
(N)
1,c (A.4)

when k = 1, 2, . . . , N .

M odd. Let M = 2N + 1. (M is odd.) We show that if M ≥ 7 (or N ≥ 3),

?

t
(M)
1 =

?

t
(2N+1)
1 =

?

t
(2N)
1 +

?

∆
(M)
N

(A.1)
=

?

t
(2N)
1 +

1√
2
∆

(N)
N

(A.2)
=

1√
2

(
t
(N)
1 + ∆

(N)
N ± t

(N)
1,c

)

=
1√
2
t
(N)
1,c +

1√
2
∆

(N)
N − 1√

2

(
t
(N)
1,c − t

(N)
1

)

<
1√
2
t
(N)
1,c +

1√
2

(
∆

(N)
N − ∆

(N)
N

)
(A.5)

=
1√
2
t
(N)
1,c

(A.4)
=

?

t
(2N)
1,c

which is the upper bound stated in Corollary III.3.

To show (A.5), it must be true that

t
(N)
1,c − t

(N)
1 > ∆

(N)
N (A.6)

when N ≥ 3. To show (A.6), recall that when M is even, using Lemma III.4,

Lemma III.5, Part 2, followed by Lemma III.5, Part 1, that the half steps of opti-

mal quantizers and UTCC quantizers both designed for the one-sided, unit variance

exponential source satisfy ∆
(N)
k < ∆

(N)
k,c for k ≥ 2, (i.e., the lower half step of an

optimal quantizer are always less than the corresponding lower half step of a UTCC

quantizer when k ≥ 2). Since t
(N)
1 and t

(N)
1,c is equal to the sum of the half steps

for an optimal quantizer and likewise for a UTCC quantizer, it is clear that as N
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increases, the difference between t
(N)
1 and t

(N)
1,c increases. Since ∆

(N)
N and ∆

(N)
N,c are

both (strictly) decreasing as N increases, there exists an N0 such that for all N ≥ N0,

the difference between t
(N)
1,c and t

(N)
1 is greater than ∆

(N)
N , i.e., there exists N0 such

that for all N ≥ N0,

∆
(N)
N <

(
∆

(N)
N,c − ∆

(N)
N

)
+ 2
(N−1∑

i=2

∆
(N)
i,c − ∆

(N)
i

)
+
(
∆

(N)
1,c − ∆

(N)
1

)

=
(
∆

(N)
N,c + 2

N−1∑

i=2

∆
(N)
i,c + ∆

(N)
1,c

)
−
(
∆

(N)
N + 2

N−1∑

i=2

∆
(N)
i + ∆

(N)
1

)

< t
(N)
1,c − t

(N)
1 . (A.7)

By trial and error, the smallest N0 for which (A.7) holds is when N0 = 3 (which is

equivalent to M0 = 6.

Thus, when M ≥ 7, (A.5) is true and consequently, the statement in Corol-

lary III.3, Part 1a) for the case when M is odd is true.
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APPENDIX B

Facts About Exponential UTCC and USQC

Quantizers

The following appendix contains both facts and remarks regarding the MSE per-

formance of UTCC and USQC quantization systems designed for a one-sided expo-

nential source with unit variance, including the derivation for the MSE expressions

of these quantizers. The MSE derivations (along with necessary facts) are presented

first, followed by remarks regarding performance. Note that the terminology used in

this appendix is the same as that used in Chapter III and it is necessary to be familiar

with the material in that chapter to understand what is presented here.

Recall that the only difference between an N -level UTCC quantization system

and an N -level USQC quantization system is the fact that the UTCC quantizer

uses centroid reconstruction levels while the USQC quantizers uses reconstruction

levels that are determined by mapping the midpoints of an N -level USQ defined over

[0, 1] with (C∗)−1, the inverse to the asymptotically optimal compressing function

C∗. In order to formulate the MSE performance expressions for UTCC and USQC

quantizers, we repeat, from Chapter III, the specifications for the thresholds, step

sizes and reconstruction levels of both types of quantizers for easy reference. From
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(3.3.8), (3.3.9), (3.3.10):

UTCC and USQC ∆
(N)
k,c = −3 log

(
1 − 1

k

)
, k = 1, 2, · · · , N (B.1)

UTCC and USQC t
(N)
k,c = −3 log

(
k

N

)
, k = 0, 1, · · · , N (B.2)

UTCC reconstruction levels µ
(N)
k,c = t

(N)
k,c + ∆

(N)
k,c , k = 1, 2, · · · , N

USQC reconstruction levels l
(N)
k,USQC = −3 log

(
2k − 1

2N

)
, k = 1, 2, · · · , N, (B.3)

where (B.3), included above, but not given in Chapter III, is derived in the last section

of this appendix.

Also for reference are the expressions for the half steps of a N -level UTCC quan-

tizers:

∆
(N)
k,c = 1 −

∆
(N)
k,c

(
1 − 1

k

)3

1 −
(
1 − 1

k

)3 (B.4)

and

∆
(N)

k,c =
∆

(N)
k,c

1 −
(
1 − 1

k

)3 − 1. (B.5)

MSE for UTCC quantizers. The MSE performance of an N -level UTCC quan-

tizer can be expressed as the sum of two parts

DUTCC (N) =
N∑

k=1

t
(N)
k,c

+∆
(N)
k,c∫

t
(N)
k,c

(
x− µ

(N)
k,c

)2

f (x) dx

IBP
=




N∑

k=1

−
(
x− µ

(N)
k,c

)2

e−x
∣∣∣∣
t
(N)
k,c

+∆
(N)
k,c

t
(N)
k,c


+ dUTCC (N) .

Before evaluating the first expression, we see that the second expression dc,k can be

simplified since UTCC quantizers have centroid reconstruction levels

d
(N)
UTCC = 2

N∑

k=1

(
µ

(N)
k − µ

(N)
k,c

)
P[

t
(N)
k,c

,t
(N)
k,c

+∆
(N)
k,c

) = 0.
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Thus the first expression is equal to Dck . The first expression, however, is not so easily

to reduce (which is in contrast to the case for optimal quantizers and for quantizers

designed using the sequences sk and vk). The reason for this is because UTCC

quantizers do not satisfy the nearest neighbor optimality condition, i.e., ∆k 6= ∆k−1

for any k ∈ {1, 2, . . . , N} (as was shown in Lemma III.7. Working on the first term,

we have

N∑

k=1

−
(
x− µ

(N)
k,c

)2

e−x
∣∣∣∣
t
(N)
k,c

+∆
(N)
k,c

t
(N)
k,c

= −
[

N∑

k=1

(
t
(N)
k,c + ∆

(N)
k,c − µ

(N)
k,c

)2

e
−

(
t
(N)
k,c

+∆
(N)
k,c

)

−
(
t
(N)
k,c − µ

(N)
k,c

)2

e−t
(N)
k,c

]

= −
[

N∑

k=1

∆
2

k,ce
−

(
t
(N)
k,c

+∆
(N)
k,c

)

− ∆2
k,ce

−t(N)
k,c

]
,

where we define ∆1,c = ∞. Since t
(N)
k,c +∆

(N)
k,c = t

(N)
k−1,c and because we have established

that the first expression is equal to DUTCC , we have

DUTCC (N) =

N∑

k=1

∆2
k,ce

−t(N)
k,c − ∆

2

k,ce
−

(
t
(N)
k,c

+∆
(N)
k,c

)

=

N∑

k=1

∆2
k,ce

−t(N)
k,c − ∆

2

k,ce
−

(
t
(N)
k−1,c

)

.

Finally, using (B.2), (B.4) and (B.5), we can express the MSE of an N -level UTCC

quantizer as

DUTCC(N)=

N∑

k=1

∆2
k,ce

−t(N)
k,c − ∆

2

k,ce
−

(
t
(N)
k−1,c

)

=

N∑

k=1

[
1 −

∆
(N)
k,c

(
1 − 1

k

)3

1 −
(
1 − 1

k

)3

]2

e3 log( k
N ) −

[
∆

(N)
k,c

1 −
(
1 − 1

k

)3 − 1

]2

e3 log( k−1
N )

=

N∑

k=1

[
1 −

∆
(N)
k,c

(
1 − 1

k

)3

1 −
(
1 − 1

k

)3

]2(
k

N

)3

−
[

∆
(N)
k,c

1 −
(
1 − 1

k

)3 − 1

]2(
k − 1

N

)3

=

N∑

k=1

[
1−−3 log

(
1− 1

k

)
·
(
1− 1

k

)3

1−
(
1− 1

k

)3

]2(
k

N

)3

−
[
−3 log

(
1− 1

k

)

1−
(
1− 1

k

)3 −1

]2(
k−1

N

)3

, (B.6)

where in the last equality we have used (B.1). While not compact, (B.6) gives an

exact, closed-form formula for computing the MSE of an N -level UTCC quantizer.
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MSE for USQC quantizers. The MSE of an N -level USQC quantizer can also

be decomposed as the sum of two expressions

DUSQC (N) =

N∑

k=1

t
(N)
k,c

+∆
(N)
k,c∫

t
(N)
k,c

(
x− l

(N)
k,USQC

)2

f (x) dx

IBP
=




N∑

k=1

−
(
x− l

(N)
k,USQC

)2

e−x
∣∣∣∣
t
(N)
k,c

+∆
(N)
k

t
(N)
k,c


+ dUSQC (N) , (B.7)

where we note that the thresholds (and consequently the step sizes) of USQC quan-

tizers are the same as for the corresponding UTCC quantizer.

Using (B.2) and (B.3),we evaluate the first expression in (B.7)

N∑

k=1

−
(
x− l

(N)
k,USQC

)2
e−x
∣∣∣∣
t
(N)
k−1,c

t
(N)
k,c

=
N∑

k=1

−
(
t
(N)
k−1,c − l

(N)
k,USQC

)2
e−t

(N)
k−1,c +

(
t
(N)
k,c − l

(N)
k,USQC

)2
e−t

(N)
k,c

=

N∑

k=1

−
(
−3 log

(
k − 1

N

)
−
(
−3 log

(
2k − 1

2N

)))2

e−−3 log( k−1
N ) +

(
−3 log

(
k

N

)
−

(
−3 log

(
2k − 1

2N

)))2

e−−3 log( k
N )

=

N∑

k=1

−
(
−3 log

(
k−1

N
× 2N

2k−1

))2

e3 log( k−1
N ) +

(
−3 log

(
k

N
× 2N

2k−1

))2

e3 log( k
N )

=

N∑

k=1

−
(
−3 log

(
2k − 2

2k − 1

))2(
k − 1

N

)3

+

(
−3 log

(
2k

2k − 1

))2(
k

N

)3

=
N∑

k=1

−
(

3 log

(
2k − 1

2k − 2

))2(
k − 1

N

)3

+

(
3 log

(
2k − 1

2k

))2(
k

N

)3

=

N∑

k=1

−
(

3 log

(
1 +

1

2k − 2

))2(
k − 1

N

)3

+

(
3 log

(
1 − 1

2k

))2(
k

N

)3

. (B.8)
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Working on the second expression,

dUSQC (N)

= 2

N∑

k=1

(
µ

(N)
k − l

(N)
k,USQC

)
P[

t
(N)
k,c

,t
(N)
k,c

+∆
(N)
k

)

= 2
N∑

k=1

(
t
(N)
k,c + ∆

(N)
k,c − l

(N)
k,USQC

)
P[

t
(N)
k,c

,t
(N)
k,c

+∆
(N)
k

)
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N∑
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(
−3 log

(
k

N

)
+

(
1 −

∆
(N)
k,c

(
1 − 1

k

)3

1 −
(
1 − 1

k

)3

)
−
(
−3 log

(
k

N
− 1

2N

)))
P[

t
(N)
k,c

,t
(N)
k,c

+∆
(N)
k

)

= 2

N∑
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(
−3 log

(
k

N

)
+ 3 log

(
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2N

)
+

(
1 −

∆
(N)
k,c

(
1 − 1

k

)3

1 −
(
1 − 1

k

)3
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t
(N)
k,c

,t
(N)
k,c

+∆
(N)
k

)
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N∑
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(
−3 log

(
k

N
× 2N

2k − 1

)
+

(
1 −

∆
(N)
k,c

(
1 − 1

k

)3

1 −
(
1 − 1

k

)3
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P[

t
(N)
k,c

,t
(N)
k,c

+∆
(N)
k

)

= 2

N∑

k=1

(
−3 log

(
2k

2k − 1

)
+

(
1 −

∆
(N)
k,c

(
1 − 1

k

)3

1 −
(
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k

)3

))
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t
(N)
k,c

,t
(N)
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+∆
(N)
k

)

= 2
N∑
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(
3 log

(
2k − 1

2k

)
+

(
1 −

∆
(N)
k,c

(
1 − 1

k

)3

1 −
(
1 − 1

k

)3

))
P[

t
(N)
k,c

,t
(N)
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+∆
(N)
k

)

= 2

N∑

k=1

(
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(
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)
+

(
1 −

∆
(N)
k,c

(
1 − 1

k

)3

1 −
(
1 − 1

k

)3
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P[

t
(N)
k,c

,t
(N)
k,c

+∆
(N)
k

)

= 2
N∑

k=1

(
3 log

(
1 − 1

2k

)
+

(
1 − −3 log

(
1 − 1

k

) (
1 − 1

k

)3

1 −
(
1 − 1

k

)3

))
P[

t
(N)
k,c

,t
(N)
k−1,c

)

= 2

N∑

k=1

(
3 log

(
1− 1

2k

)
+

(
1−−3 log

(
1 − 1

k

)(
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k

)3

1 −
(
1 − 1

k

)3
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k

N

)3

−
(
k − 1

N

)3
]
, (B.9)

where again, we have used the expression for reconstruction levels in (B.3), half steps

in (B.4), step sizes in (B.1), and

P[
t
(N)
k,c

,t
(N)
k−1,c

) =

t
(N)
k−1,c∫

t
(N)
k,c

e−xdx = −e−x
∣∣∣∣
t
(N)
k−1,c

t
(N)
k,c

= et
(N)
k,c − et

(N)
k−1,c

= e−−3 log( k
N ) − e−−3 log( k−1

N ) =

(
k

N

)3

−
(
k − 1

N

)3

.
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Thus, with (B.8) and (B.9), we have

DUSQC (N) =
N∑

k=1

−
(

3 log

(
1 +

1

2k − 2

))2(
k − 1

N

)3

+

(
3 log

(
1 − 1

2k

))2(
k

N

)3

+

2

(
3 log

(
1− 1

2k

)
+

(
1−−3 log

(
1 − 1

k

) (
1 − 1

k

)3

1 −
(
1 − 1

k

)3

))[(
k

N

)3

−
(
k − 1

N

)3
]
.

Comments. Here are some remarks on the MSE performance of UTCC quantizers

and USQC quantizers:

• We expect the performance of UTCC quantizers to be better than that of USQC

quantizers with step sizes ∆
(N)
k,c (as defined in (3.3.8)) which are quantizers that

are well-known and well-studied.

• Improved performance is due to the fact that for each N , while UTCC quan-

tizers and USQC quantizers share the same quantization cells, they differ in

their placement of the reconstruction levels: Specifically, UTCC’s have centroid

reconstruction levels whereas USQC’s do not.

• Asymptotic optimality: Since it is known that a sequence in N of USQC quan-

tizers is asymptotically optimal [5], we can conclude that a sequence in N of

UTCC quantizers is also asymptotically optimal.

Derivation of (B.3): Reconstruction levels of an N-level USQC quantizer.

Since the reconstruction levels of anN -level USQC quantizer come from the midpoints

of the quantization cells of the USQ with support on [0, 1] and step size ∆ = 1
N

as

yk
4
= 1 − k

N
+

1

2

1

N
= 1 − 2k − 1

2N
,

we can express the reconstruction levels as

l
(N)
k,USQC

4
= C∗−1 (yk) = C∗−1

(
1 − 2k − 1

2N

)

(where C∗−1 is the inverse to the optimal compressor function for the one-sided expo-

nential source) or equivalently, using the definition of C∗ from (3.3.7) in Chapter III

C∗
(
l
(N)
k,USQC

)
= 1 − e−

l
(N)
k,USQC

3 = 1 − 2k − 1

2N
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or equivalently,

e−
l
(N)
k,USQC

3 =
2k − 1

2N

or equivalently, we get (B.3)

l
(N)
k,USQC = −3 log

(
2k − 1

2N

)
.

Since t
(N)
k,c = −3 log

(
k
N

)
and since the k-th (lower) half step is defined to be the

distance between the reconstruction level and the (lower) threshold of the kth quan-

tization cell, the (induced) half step of the kth cell of an N -level USQC quantizer

is

∆
(N)
k,USQC

4
= l

(N)
k,USQC − t

(N)
k,c = −3 log

(
1 − 1

2k

)
.
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APPENDIX C

The BLB Lower Bound Proof

This appendix contains the proof that BLB (p) is a lower bound to the function

B (p) for p ∈
[
0,
√

2
(
1 − 2

e

)]
, and is self-contained in that all of the necessary facts

and definitions previously established in the chapters of this thesis have been re-stated

here. Note that there are function definitions used here that are slightly different than

those used in the chapters and that this was done to facilitate the discussion as much

as possible. We also make several new definitions that further clarify the proof.

Facts, definitions and terminology.

1. Recall that from [6], a portion of the principal branch of the Lambert W function

W0 (p) can be expressed as W0 (p) = B ◦ p (z), where

B(p)=

∞∑

n=0

ξnp
n=−1+p− 1

3
p2+

11

72
p3− 43

540
p4+

760

17280
p5− 221

8505
p6+. . . (C.1)

is a power series in p with a region of convergence defined as ROCp
4
=
[
0,
√

2
)
1

and p (z) =
√

2
√

1 + z e with z ∈
[
−1
e
, 0
]
. As reported in [6], the series coeffi-

1In [6], ROCp is actually defined to be
(

−
√

2,
√

2
)

. If p (z) is alternatively defined by multiplying
the current definition by −1, other branches of the Lambert W function may be approximated using
the composition B ◦ p (z). However, since we are not concerned with these other branches, we have
defined ROCp to be non-negative.
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cients ξn are obtained via a series inversion and can be generated via

ξn =
n− 1

n+ 2

(
ξn−2

2
+
γn−2

4

)
− γn

2
− ξn−1

n+ 1

γn =

n−1∑

m=2

ξm ξn+1−m

with γ0 = 2, γ1 = −1, ξ0 = −1, ξ1 = 1.

2. Establishing the regions of interest. Since we are ultimately concerned

with approximating a generating function (which utilizes the principal branch

of the Lambert W function W0 (z)) for the terms of the Nitadori sequence η
k
,

we are only interested in specific subsets of the domains of W0 (z) and p (z). To

make the discussion easier to read, we will refer to each the following half open

intervals as a region of interest (ROI): Let the region of interest with respect

to z be defined as ROIz
4
=
(
−1
e
,− 2

e2

]
. Also, since p (z) =

√
2 (1 + ze) is an

increasing function over ROIz, and hence bijective onROIz, we define the region

of interest with respect to p as ROIp
4
= p (ROIz) =

(
0,
√

2
(
1 − 2

e

)]
. Finally,

since the principal branch of the Lambert W function is also increasing over

ROIz, we define the region of interest with respect to w as ROIw
4
= L (ROIz) =(

−1, L
(
− 2
e2

)]
, where L

(
− 2
e2

)
≈ −.4063757398.

Additionally, we will refer to the closure of a region interest as union of an

ROI with its lower endpoint: The closure of ROIp will be given by ROIp
4
=[

0,
√

2
(
1 − 2

e

)]
, the closure of ROIz will be given by ROIz

4
=
[
−1
e
,− 2

e2

]
and

the closure of ROIw will be given by ROIw
4
=
[
−1, LambertW

(
− 2
e2

)]
.

3. Definition of L (z) , BLB (p) and construction of LLB (z). Since we are only

interested in a W0 (z) defined over the restricted domain ROIz ⊂
[
−1
e
, 0
]

and

because we want to be able to distinguish this function from the principal branch

of the Lambert W function W0 (z) defined over the domain
[
−1
e
, 0
]

for which

W0 = B ◦ p (z), we define the function

L (z)
4
= W (z) = B ◦ p (z) (C.2)

when z ∈ ROIz. Based on this definition, we also define

LLB (z)
4
= BLB ◦ p (z) (C.3)
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when z ∈ ROIz, where

BLB (p)
4
= −1 + p− 1

3
p2 +

11

72
p3 − 43

540
p4 (C.4)

is the partial sum of B (p) that is truncated to the fourth order and defined

over ROIp.

Lemma C.1. BLB (p) ≤ B (p) for p ∈ ROIp.

Before proceeding to the proof of Lemma C.1, we need a few facts that we will

prove in the following two lemmas.

Lemma C.2. Define Z (w)
4
= wew for w ∈ ROIw. With this definition, the following

are true:

1. dL
dz

(z) over ROIz is well-defined and can be determined from:

dL

dz
(z) =

1

(w + 1) ew
(C.5)

where z = Z (w) and w ∈ ROIw.

2. dB
dp

(p) over ROIp exists, and for p ∈ ROIp, it can be determined from:

dB

dp
(p) =

dB

dp

∣∣∣∣
p=p(Z(w))

=

√
2
√

1 + wew+1

(w + 1) ew+1
(C.6)

where p (Z (w)) =
√

2 (1 + wew+1) and w ∈ ROIw.

3. dBLB

dp
(p) over ROIp is well-defined and has the form

dBLB

dp
(p) = 1 − 2

3
p+

11

24
p2 − 43

135
p3 (C.7)

which can also be determined from

dBLB

dp
(p) =

dBLB

dp

∣∣∣∣
p=p(z)

=

(
1 +

11

12

(
1 + wew+1

))
−
(

2

3
+

86

135

(
1 + wew+1

))
×

√
2
√

1 + wew+1 (C.8)

where p =
√

2 (1 + wew) and w ∈ ROIw.
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Proof. We prove each item stated in Lemma C.2.

1. With the inverse to L (z) defined as

Z (w)
4
= wew (C.9)

for w ∈ ROIw, (C.5) is established by using the Inverse Function Theorem [12]:

L is differentiable on ROIz because Z (w) is differentiable on ROIw and dZ
dw

> 0

over ROIw:

dL

dz
(z) =

1
dZ
dw

=
1

(w + 1) ew
, (C.10)

where z = Z (w), w ∈ ROIw.

2. Since B (p) is a power series and ROIp ⊂ ROCp, we know that B (p) is (in-

finitely) differentiable on ROIp. However, given the form of B (p) in (C.1), it

is difficult to directly determine the expression for dB
dp

(p). So proceeding in an

indirect manner, using the definition for L (z) in (C.2), we know that

dL

dz
=
dB

dp

∣∣∣∣
p=p(z)

× dp

dz
(C.11)

for z ∈ ROIz. From (C.11), we can use the fact that

dp

dz
=

e

p (z)
> 0 (C.12)

when z ∈ ROIz along with the expression in (C.5) from Part 1 of this lemma,

to obtain

dB

dp

∣∣∣∣
p=p(z)

=
dL

dz
× 1

dp

dz

=
1

(w + 1) ew
× p (z)

e
. (C.13)

With z = Z (w) = wew for w ∈ ROIw, we use (C.13) to get

dB

dp

∣∣∣∣
p=p(Z(w))

=
p (z)

(w + 1) ew+1
=

√
2
√

1 + ze

(w + 1) ew+1
=

√
2
√

1 + wew+1

(w + 1) ew+1
(C.14)

when w ∈ ROIw. Since p (Z (w)) is bijective over ROIw (onto ROIp), it is clear
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that for w ∈ ROIw,

dB

dp
(p) =

dB

dp

∣∣∣∣
p=p(z)

.

Thus dB
dp

(p) for p ∈ ROIp can be determined from (C.14).

3. Since BLB (p) is a polynomial (see (C.4)),

dBLB

dp
= 1 − 2

3
p+

11

24
p2 − 43

135
p3 (C.15)

and it is defined over ROIp.

If we make the substitutions z = Z (w) and p (z) = p (Z (w)) =
√

2
√

1 + wew+1,

we have

dBLB

dp

∣∣∣∣
p=p(Z(w))

= 1 − 2

3
p (Z (w)) +

11

24
p (Z (w))2 − 43

135
p (Z (w))3

= 1 − 2

3

(√
2
√

1 + wew+1
)

+
11

24

(√
2
√

1 + wew+1
)2

−
43

135

(√
2
√

1 + wew+1
)3

= 1 − 2

3

√
2
√

1 + wew+1 +
11

12

(
1 + wew+1

)
− 86

135

√
2×

(
1 + wew+1

)√
1 + wew+1

=

(
1 +

11

12

(
1 + wew+1

))
−
(

2

3
+

86

135

(
1 + wew+1

))
×

√
2
√

1 + wew+1, (C.16)

where z = Z (w) and w ∈ ROIw. Since p (Z (w)) is the composition of two

bijective functions, p (z) and Z (w), it is clear that dBLB

dp
(p) over ROIp can be

determined from (C.16).

Lemma C.3. dB
dp

(p) ≥ dBLB

dp
(p) over ROIp.

Proof. There are two parts to this proof. First, we consider the value of dBLB

dp
(p)

and dB
dp

(p) at p = 0 and then we consider the relationship between dBLB

dp
(p) and dB

dp
(p)

for p ∈ ROIp.
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For the first part, by taking the first derivative with respect to p of (C.1) and

using (C.15), we have at p = 0

dB

dp
(p)

∣∣∣∣
p=0

= 1 =
dBLB

dp
(p)

∣∣∣∣
p=0

.

Since dB
dp

(p) = dBLB

dp
(p) when p equals the lower end point of ROIp, it remains to

show that

dB

dp
(p) ≥ dBLB

dp
(p) (C.17)

for p ∈ ROIp.

Using the relationships in Lemma C.2 from (C.6) and (C.8), we know that (C.17)

is true for p ∈ ROIp if and only if

√
2
√

1+wew+1

(w+1) ew+1
≥
(

1+
11

12

(
1+wew+1

))
−
(

2

3
+

86

135

(
1+wew+1

))√
2
√

1+wew+1 (C.18)

is true for w ∈ ROIw.

With some algebraic manipulation (C.18) becomes

√
2
√

1+wew+1≥
[(

1+
11

12

(
1+wew+1

))
−
(

2

3
+

86

135

(
1+wew+1

))√
2
√

1+wew+1

]
(w+1)ew+1

(C.19)

or

√
2
√

1 + wew+1 +

(
2

3
+

86

135

(
1 + wew+1

))√
2
√

1 + wew+1 (w + 1) ew+1

≥
(

1 +
11

12

(
1 + wew+1

))
(w + 1) ew+1

or

[
1+

(
2

3
+

86

135

(
1 + wew+1

))
(w + 1) ew+1

]√
2
√

1 + wew+1

≥
(

1 +
11

12

(
1 + wew+1

))
(w + 1) ew+1
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or

{[
1+

(
2

3
+

86

135

(
1+wew+1

))
(w+1) ew+1

]√
2
√

1+wew+1

}2

≥
{(

1+
11

12

(
1+wew+1

))
(w+1) ew+1

}2

or

2

[
1+

(
2

3
+

86

135

(
1+wew+1

))
(w+1) ew+1

]2(
1+wew+1

)

≥
(

1+
11

12

(
1+wew+1

))2 [
(w+1) ew+1

]2

or

2

[
1+

2

3

(
1+

43

45

(
1+wew+1

))
(w+1) ew+1

]2(
1+wew+1

)

≥
(

1+
11

12

(
1+wew+1

))2 [
(w+1) ew+1

]2
. (C.20)

Consider the expression obtained by subtracting the right side of (C.20) from the

left side of (C.20):

2

[
1+

2

3

(
1+

43

45

(
1+wew+1

))
(w+1) ew+1

]2(
1+wew+1

)
−
(
1+

11

12

(
1+wew+1

))2[
(w+1) ew+1

]2

(C.21)

which is a continuous function over ROIw. To make things simpler (for now), we

define the dummy function/variable D
4
= ew+1 and substitute D for ew+1 in (C.21)

to get

2

[
1 +

2

3

(
1 +

43

45
(1 + wD)

)
(w + 1)D

]2(
1 + wD

)
−
(

1 +
11

12
(1 + wD)

)2[
(w + 1)D

]2

.

(C.22)

Expanding (C.22) and then collecting terms, we have

(C.22) = term5 + term4 + term3 + term2 + term1 + term0, (C.23)

188



where

term5
4
=

14792

18225
w3 (w + 1)2

D5

term4
4
=

320117

97200
w2 (w + 1)2

D4

term3
4
=

1

48600
w(w + 1)(279721w+155881)D3 = w(w + 1)

(
279721w

48600
+

155881

48600

)
D3

term2
4
=

1

291600
(w + 1)(2183687w−79993)D2 = (w + 1)

(
2183687w

291600
− 79993

291600

)
D2

term1
4
=

(
704

135
+

974

135
w

)
D =

974

135
(w + 1)D − 2D

term0
4
= 2.

If we combine term1 and term0, we get

term1+0
4
=

974

135
(w + 1)D + 2 (1 −D) .

Using the Taylor series expansion for ew+1

D =
∑

n≥0

1

n!
(w + 1)n , (C.24)

we re-express (C.23) by replacing D with its Taylor series in (C.24)

(C.21) = (C.22) = term5 + term4 + term3 + term2 + term1+0

=
14792

18225
w3 (w + 1)2

D5 +
320117

97200
w2 (w + 1)2D4 + w (w + 1)

(
279721w

48600
+

155881

48600

)
D3+(w + 1)

(
2183687w

291600
− 79993

291600

)
D2+

974

135
(w + 1)D + 2(1−D)

=

[
14792

18225
w3(w + 1)2

∑

n≥0

1

n!
(w + 1)5n

]
+

[
320117

97200
w2(w + 1)2

∑

n≥0

1

n!
(w + 1)4n

]
+

[
w(w + 1)

(
279721w

48600
+

155881

48600

)∑

n≥0

1

n!
(w + 1)3n

]
+

[
(w + 1)

(
2183687w

291600
−

79993

291600

)∑

n≥0

1

n!
(w + 1)2n

]
+

[
974

135
(w + 1)

∑

n≥0

1

n!
(w + 1)n

]
−

[
2
∑

n≥0

1

(n+ 1)!
(w + 1)n+1

]
(C.25)
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=
∑

n≥0

1

n!

{[
14792

18225
w3 (w + 1)2 (w + 1)5n

]
+

[
320117

97200
w2 (w + 1)2 (w + 1)4n

]
+

[
w(w + 1)

(
279721w

48600
+

155881

48600

)
(w + 1)3n

]
+

[
(w + 1)

(
2183687w

291600
−

79993

291600

)
(w + 1)2n

]
+

[
974

135
(w + 1)n+1

]
−
[

2 · n!

(n+ 1)!
(w + 1)n+1

]}
(C.26)

=
∑

n≥0

1

n!

{[
14792

18225
w3 (w + 1)5n+2

]
+

[
320117

97200
w2 (w + 1)4n+2

]
+

[(
279721w

48600
+

155881

48600

)
w (w + 1)3n+1

]
+

[(
2183687w

291600
− 79993

291600

)
×

(w + 1)2n+1

]
+

[
974

135
(w + 1)n+1

]
−
[

2

n + 1
(w + 1)n+1

]}
(C.27)

= (w + 1)
∑

n≥0

1

n!

{[
14792

18225
w3 (w + 1)5n+1

]
+

[
320117

97200
w2 (w + 1)4n+1

]
+

[(
279721w

48600
+

155881

48600

)
w (w + 1)3n

]
+

[(
2183687w

291600
− 79993

291600

)
×

(w + 1)2n

]
+

[
974

135
(w + 1)n

]
−
[

2

n+ 1
(w + 1)n

]}
(C.28)

= (w + 1)
∑

n≥0

1

n!
(w + 1)n

{[
14792

18225
w3 (w + 1)4n+1

]
+

[
320117

97200
w2 (w + 1)3n+1

]
+

[(
279721w

48600
+

155881

48600

)
w (w + 1)2n

]
+

[(
2183687w

291600
− 79993

291600

)
×

(w + 1)n
]

+

[
974

135
− 2

n + 1

]}
, (C.29)

where:

• To get (C.25), we have used the fact that

1 −D = 1 − ew+1 = 1 −
∑

n≥0

(w + 1)n

n!
= −

∑

n≥1

(w + 1)n

n!
= −

∑

n≥0

(w + 1)n+1

(n + 1)!
.

• To get (C.26), we use the fact that we can move the infinite sum to the outside
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and rearrange terms inside the infinite sum because we are dealing with a finite

sum of absolutely convergent series on ROIw.

• To get (C.28), we factored (w + 1) out of the infinite sum.

• To get (C.29), inside of the infinite sum, we factored out (w + 1)n and then

combined the last two terms of (C.28).

Since w + 1 > 0 for w ∈ ROIw, (C.29) is non-negative if and only if

∑

n≥0

1

n!
(w + 1)n

{[
14792

18225
w3 (w + 1)4n+1

]
+

[
320117

97200
w2 (w + 1)3n+1

]
+

[(
279721w

48600
+

155881

48600

)
w (w + 1)2n

]
+

[(
2183687w

291600
− 79993

291600

)
(w + 1)n

]
+

[
974

135
− 2

n+ 1

]}
≥ 0 (C.30)

for all w ∈ ROIw. If we can show that the expression on the left in (C.30) is the

infinite sum of non-negative terms, then (C.30) is true for all w ∈ ROIw and we will

have proven this lemma.

Consider the expression in (C.30) that is inside of the infinite sum (without the
1
n!

(w + 1)n factor since it is always positive with the usual convention that 1
0!

= 1):

An (w)
4
=

[
14792

18225
w3(w + 1)4n+1

]
+

[
320117

97200
w2(w + 1)3n+1

]
+

[(
279721w

48600
+

155881

48600

)
×

w(w + 1)2n

]
+

[(
2183687w

291600
− 79993

291600

)
(w + 1)n

]
+

[
974

135
− 2

n + 1

]
, (C.31)

where we note that as n increases, 2
n+1

decreases. For each n ≥ 0, (C.31) is a

polynomial in w of order 4n+ 4. Checking at n = 0, we have

A0 (w) =

[
14792

18225
w3 (w + 1)

]
+

[
320117

97200
w2 (w + 1)

]
+

[(
279721w

48600
+

155881

48600

)
w

]
+

[
2183687w

291600
− 79993

291600

]
+

[
974

135
− 2

]

=
14792

18225
w4 +

1197023

291600
w3 +

879559

97200
w2 +

3118973

291600
w +

1440647

291600
(C.32)

is a 4th degree polynomial in w. To show that A0 (w) ≥ 0 over ROIw, first, we
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observe that A0 (−1) = 0. Next, we see that

d

dw
A0 (w) =

59168

18225
w3 +

1197023

97200
w2 +

879559

48600
w +

3118973

291600
> 0

over w ∈ ROIw because for w ∈ ROIw, w is greater than the only real root of
d
dw
A0 (w) which equals approximately −1.591135770. Thus, we have established that

for n = 0, An (w) ≥ 0 over ROIw.

Now consider An (w) when n ≥ 1:

An (w) =

[
14792

18225
w3 (w + 1)4n+1

]

︸ ︷︷ ︸
an

+

[
320117

97200
w2 (w + 1)3n+1

]

︸ ︷︷ ︸
bn

+

[(
279721w

48600
+

155881

48600

)
w (w + 1)2n

]

︸ ︷︷ ︸
cn

+

[(
2183687w

291600
− 79993

291600

)
(w + 1)n

]

︸ ︷︷ ︸
dn

+

[
974

135
− 2

n+ 1

]

︸ ︷︷ ︸
en

. (C.33)

By inspection, when n is large, the term en dominates An (w), i.e., the value of

An (w) ≈ en. This observation is supported by the fact that when n is large, the other

terms in An (w), an, bn, cn, and dn, are scaled by the magnitude of w and w+ 1; thus

for large n, |an| , |bn| , |cn| , |dn| are small since |w| , |w + 1| < 1 for each w ∈ ROIw. In

contrast, en does not depend on w, and in fact, en ↑ 974
135

≈ 7.214814815 as n increases.

Then if n is large enough, since en ≥ 704
135

≈ 5.214814815, there exists n = n0 such

that for all n ≥ n0, − (an + bn + cn + dn) <
704
135

≤ en and thus An (w) ≥ 0.

Consider n = 1:

A1 (w) =

[
14792

18225
w3 (w + 1)5

]

︸ ︷︷ ︸
a1

+

[
320117

97200
w2 (w + 1)4

]

︸ ︷︷ ︸
b1

+

[
w

(
279721w

48600
+

155881

48600

)
(w + 1)2

]

︸ ︷︷ ︸
c1

+

[(
2183687w

291600
− 79993

291600

)
(w + 1)

]

︸ ︷︷ ︸
d1

+

[
974

135
− 1

]

︸ ︷︷ ︸
e1

. (C.34)
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We find bounds for an, bn, cn, and dn:

a1 =
14792

18225
w3 (w + 1)5 >

14792

18225
(−1)3

(
LambertW

(
− 2

e2

)
+1

)5

≈ −0.05982980232

b1 =
320117

97200
w2 (w + 1)4

> 0

c1 = w

(
279721w

48600
+

155881

48600

)
(w + 1)2

> −1 ·
(

279721

48600
·LambertW

(
− 2

e2

)
+

155881

48600

)

︸ ︷︷ ︸
maximium positive value in ROIw

·
(
LambertW

(
− 2

e2

)
+1

)2

≈ −.3060510284

d1 =

(
2183687w

291600
− 79993

291600

)
(w + 1)>

(
−1· 2183687

291600
− 79993

291600

)(
LambertW

(
− 2

e2

)
+1

)

≈ −4.608283146

e1 =

(
974

135
− 1

)
=

839

135
≈ 6.214814815.

Using these bounds, we have

A1 (w) > 1.240650838 ≥ 0.

Since it is clear that for n > 1, en’s domination of the expression An (w) will increase

even further, we see that for all n ≥ 0, An (w) ≥ 0. Thus, we have established that

(C.30) is true for every w ∈ ROIw which what we needed to show to prove this

lemma.

Proof of Lemma C.1. Using (C.1) and (C.4), we can evaluate B (p) and BLB (p)

at p = 0 to get

B (p)

∣∣∣∣
p=0

= −1 = BLB (p)

∣∣∣∣
p=0

.

Using this fact and Lemma C.3, we conclude that B (p) ≥ BLB (p) for p ∈ ROIp.

In Figure C.1, we have plotted the function
dB
dp

(W )
dBLB

dp
(W )

for w ∈ ROIw. This figure

provides visual evidence to support the fact in Lemma C.3. In Figure C.2 and Fig-

ure C.3, we see that for z ∈ ROIz, the composition of BLB (p) with p (z) appears to

approximate L (z) quite well, but that outside of ROIp, the approximation degrades
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considerably.
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e
2 ) ≈ −0.4064

Figure C.1: Plot of
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vs. w for w ∈ ROIw =
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.
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Figure C.2: Plot of BLB (p (z)) = LLB (z) and the principal branch of the Lambert
W function L (z) for z ∈

[
−1
e
, 0
]
. Note that ROIz =

(
−1
e
, 2
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]
.
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Figure C.3: Plot of BLB (p (z)) − L (z) for z ∈
[
−1
e
, 0
]
, showing that BLB (p (z)) is a

lower bound to L (z) in this region.
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APPENDIX D

An Asymptotic Expansion for the Tail Function of

General Exponential Sources

This appendix contains the derivation of the well-known tail function approxima-

tion used in (4.5.25) of Chapter IV. This approximation is also found in [22] for the

case when p = 2. We remark that although the derivation to follow is for the case

when f is a one-sided pdf, the derivation also holds for a two-sided pdf of the same

form. Furthermore, while we have restricted ourselves to a family of pdfs for which

p ≥ 1 (which we call general exponential pdfs), the most of the formulation below

only requires p > 0. (We will note specifically where p ≥ 1 is required.)

Q-approximation for general exponential-type pdfs. Recall from (4.1.5), for

p ≥ 1, that a general exponential source has a pdf

f (x) = cp e
−xp

p ,

where cp > 0 such that

∞∫

0

f (x) dx = 1.

For such f , we observe that

d

dx
f (x) = cp e

−xp

p · −px
p−1

p
= f (x) · −xp−1.

197



Goal. We want to construct a Q-function (tail function) approximation similar to

Q (y) ≈ f (y)

yp−1
,

where

Q (y)
4
=

∞∫

y

f (u) du.

Fact.

d

dx
Q (x) = −f (x) .

For x > 0, we use the product rule to obtain

d

dx

f (x)

xp−1
=

d

dx
x−p+1f (x) = x−p+1 · d

dx
f (x) + f (x) · d

dx
x−p+1

= x−p+1 ·
(
−xp−1f (x)

)
+ f (x) · (−p+ 1)x−p

= −f (x) + f (x) · −p+ 1

xp
.

Re-arranging, we have

f (x) = −
(
d

dx

f (x)

xp−1

)
+ f (x) · −p + 1

xp
= −

(
d

dx

f (x)

xp−1

)
+ (−p + 1)

f (x)

xp
,

and so for y > 0,

Q (y) =

∞∫

y

f (u) du =

∞∫

y

−
(
d

du

f (u)

up−1

)
dy + (−p + 1)

∞∫

y

f (u)

up
dy

= −f (u)

up−1

∣∣∣∣
∞

y

+ (−p + 1)

∞∫

y

f (u)

up
du = −0 +

f (y)

yp−1
+ (−p + 1)

∞∫

y

f (u)

up
du

=
f (y)

yp−1
+ (−p + 1)

∞∫

y

f (u)

up
du

︸ ︷︷ ︸
I1

.
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Using IBP,

v = u−2p+1 dv = (−2p+ 1)u−2pdu

w = −f (u) dw = up−1f (u) du,

we have

I1 = (−p + 1)

∞∫

y

f (u)

up
du = (−p+ 1)


− f (u)

u2p−1

∣∣∣∣
∞

y

+ (−2p+ 1)

∞∫

y

f (u)

u2p
du




= (−p + 1)
f (y)

y2p−1
+ (−p+ 1) (−2p + 1)

∞∫

y

f (u)

u2p
du.

Then for y > 0,

Q (y) =
f (y)

yp−1
+ (−p+ 1)

f (y)

y2p−1
+ (−p+ 1) (−2p+ 1)

∞∫

y

f (u)

u2p

︸ ︷︷ ︸
I2

.

Using IBP,

v = u−3p+1 dv = (−3p+ 1)u−3pdu

w = −f (u) dw = up−1f (u) du,

we have

I2 = (−p+ 1) (−2p+ 1)


− f (u)

u3p−1

∣∣∣∣
∞

y

+ (−3p+ 1)

∞∫

y

f (u)

u3p
du




= (−p+ 1) (−2p+ 1)
f (y)

y3p−1
+ (−p+ 1) (−2p + 1) (−3p+ 1)

∞∫

y

f (u)

u3p
du.

Then for y > 0,

Q (y) =
f (y)

yp−1
+ (−p+ 1)

f (y)

y2p−1
+ (−p + 1) (−2p+ 1)

f (y)

y3p−1
+

(−p + 1) (−2p + 1) (−3p+ 1)

∞∫

y

f (u)

u3p
du

︸ ︷︷ ︸
I3

.
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Using IBP,

v = u−4p+1 dv = (−4p+ 1)u−4pdu

w = −f (u) dw = up−1f (u) du,

we have

I3 = (−p+ 1) (−2p+ 1) (−3p + 1)


− f (u)

u4p−1

∣∣∣∣
∞

y

+ (−4p + 1)

∞∫

y

f (u)

u4p
du




= (−p+ 1) (−2p+ 1) (−3p + 1)
f (y)

y4p−1
+ (−p + 1) (−2p+ 1) (−3p+ 1) ·

(−4p+ 1)

∞∫

y

f (u)

u4p
du.

Then for y > 0,

Q (y) =
f (y)

yp−1
+ (−p+ 1)

f (y)

y2p−1
+ (−p+ 1) (−2p+ 1)

f (y)

y3p−1
+ (−p+ 1) (−2p + 1) ·

(−3p+ 1)
f (y)

y4p−1
+

≥0 for p≥1︷ ︸︸ ︷
(−p + 1) (−2p+ 1) (−3p+ 1) (−4p + 1)

∞∫

y

f (u)

u4p
du

︸ ︷︷ ︸
I4

.

Using IBP,

v = u−5p+1 dv = (−5p+ 1)u−5pdu

w = −f (u) dw = up−1f (u) du,

we have

I4 = (−p+ 1) (−2p + 1) (−3p+ 1) (−4p+ 1)


− f (u)

u5p−1

∣∣∣∣
∞

y

+ (−5p+ 1)

∞∫

y

f (u)

u5p
du




= (−p+ 1) (−2p + 1) (−3p+ 1) (−4p+ 1)
f (y)

y5p−1
+ (−p+ 1) (−2p+ 1) ·

(−3p+ 1) (−4p + 1) (−5p+ 1)

∞∫

y

f (u)

u5p
du.
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Then for y > 0,

Q (y) =
f (y)

yp−1
+ (−p+ 1)

f (y)

y2p−1
+ (−p+ 1) (−2p+ 1)

f (y)

y3p−1
+ (−p+ 1) (−2p + 1) ·

(−3p+ 1)
f (y)

y4p−1
+ (−p + 1) (−2p+ 1) (−3p+ 1) (−4p + 1)

f (y)

y5p−1
+

≤0 for p≥1︷ ︸︸ ︷
(−p + 1) (−2p+ 1) (−3p+ 1) (−4p + 1) (−5p+ 1)

∞∫

y

f (u)

u5p
du

︸ ︷︷ ︸
I5

.

Summary: Expression for Q(y)
f(y)

when y > 0. We have

Q (y)

f (y)
=

1

yp−1
×
[
1 + (−p + 1)

1

yp
+ (−p + 1) (−2p+ 1)

1

y2p
+ (−p+ 1) (−2p+ 1) ·

(−3p+ 1)
1

y3p
+ (−p+ 1) (−2p+ 1) (−3p + 1) (−4p+ 1)

1

y4p
+ κ5I5

]

and

Q (y)

f (y)
≤ 1

yp−1
×
[
1 + (−p + 1)

1

yp
+ (−p+ 1) (−2p+ 1)

1

y2p
+ (−p + 1) (−2p + 1) ·

(−3p + 1)
1

y3p
+ (−p + 1) (−2p+ 1) (−3p + 1) (−4p+ 1)

1

y4p

]

since I5 ≤ 0 (when p ≥ 1), and

Q (y)

f (y)
≥ 1

yp−1
×
[
1 + (−p + 1)

1

yp
+ (−p+ 1) (−2p+ 1)

1

y2p
+ (−p + 1) (−2p + 1) ·

(−3p + 1)
1

y3p

]

since I4 ≥ 0 (when p ≥ 1). Note that the upper and lower bound to Q(y)
f(y)

depend on

the fact that p ≥ 1.

Asymptotic expression for Q(y)
f(y)

using big O notation. When y > 0 is large,

Q (y)

f (y)
=

1

yp−1
×
[
1 + (−p+ 1)

1

yp
+ (−p+ 1) (−2p + 1)

1

y2p
+ (−p + 1)O

(
1

y3p

)]

=
1

yp−1
×
[
1 + (−p+ 1)

(
1

yp
+ (−2p+ 1)

1

y2p
+O

(
1

y3p

))]
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=
1

yp−1
×
[
1 + (−p+ 1)

1

yp
+ (−p + 1) (−2p+ 1)

1

y2p
+O

(
1

y3p

)]
,

or for an even cruder approximation,

Q (y)

f (y)
=

1

yp−1
×
[
1 + (−p+ 1)

(
1

yp
+O

(
1

y2p

))]

=
1

yp−1
×
[
1 + (−p+ 1)

1

yp
+O

(
1

y2p

)]
.
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