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1. Introduction

A supply chain is a series of value adding activities performed by independent firms that

sequentially transform raw materials into finished goods. The total profit potential in

the chain is the difference between the revenues generated by the finished product and

the costs (upstream raw material costs plus value-adding costs) along the chain. Transfer

prices for inputs serve to distribute this profit among the firms in the chain. Each firm

tries to negotiate these prices to be awarded the business and also get as much as possible

of the chain-wide profit. The conditions of trade along the chain are negotiated among the

actors in the chain, each recognizing that together they can generate positive profits but

each also wanting the largest share of that profit for themselves.

Scholarly analyses of supply chains focus on issues of efficiency (are chain-wide profits

maximized by the choices made by the independent firms?) and distribution (how are the

chain-wide profits distributed along the chain?). The former is important from a social

perspective (are resources appropriately allocated?) and the latter is important from a
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firm perspective (understanding the profitability consequences of alternative actions is

necessary to advise managers).

Despite the voluminous supply chain literature there remain some common and important

supply chain contexts for which no efficiency/distribution predictions are currently avail-

able. This paper fills that void in one such setting. Specifically, we consider a firm that

designs a new product and wishes to bring it to market, but does not have ownership or

control over all of the resources required to make that happen. We assume the product is

sufficiently differentiated from current offerings in non-price attributes that the designing

firm is, at least temporarily, a monopolist in the market. The firm must select and contract

with one of several possible tier 1 suppliers for necessary inputs, who do the same with

their (tier 2) suppliers, etc. In the tiers of the supply chain closer to the monopolist and

the finished goods market the required inputs are product-specific and, due to fixed tool-

ing and/or relationship costs, a single supplier in each tier will emerge as active. At some

point moving upstream in the supply chain the inputs become substitutable commodities

and multiple suppliers may be active, delivering standardized inputs at market competitive

prices. This general situation can be found in a range of industries including high tech,

consumer products and services, family and entertainment, food, furniture, b-to-b services,

automotive and large complex engineered products.

In practice the tier 0 monopolist will request quotes from several (typically two to five, with

three a common number) tier 1 suppliers on their approved vendor list (AVL). Suppliers

on the AVL have already been vetted for financial viability, quality systems, capacity and

other characteristics important to supply performance. The tier 1 suppliers negotiate with

approved tier 2 suppliers in the same way, before returning a quote to the monopolist. If

the tier 1 quotes are uniformly unsatisfactory another round of negotiations can ensue. So,

tier 2 suppliers compete with each other to supply tier 1 suppliers, who compete for the

contract from the monopolist.

We model this situation using a monopolist and two product-specific tiers prior to the

commodity stage. An example is shown in Figure 1a, where the tier 0 monopolist can

choose one of four possible tier 1 suppliers, each tier 1 supplier can work with one of 3

possible tier 2 suppliers, and each of the tier 2 suppliers can purchase commodity inputs

at the market price. When negotiations close, exactly one tier 1 and one tier 2 supplier

will be active (Figure 1b). The tier 2 supplier may be purchasing from one or multiple

sources, but this does not matter since inputs are standard and available at a constant
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market price. Model inputs are the market value for finished goods, the value adding costs

in each firm, the commodity prices, and the number of competing firms in each tier. When

referring to the nonfinancial structure of the chain, we will call a configuration with m

firms in tier 2 and n in tier 1 an m × n supply chain, so Figure 1 shows a 3 × 4 supply

chain.

Our model assumptions include tier-by-tier negotiations, horizontal competitition, sole

supply in tiers 1 and 2, and complete local information. The assumption of tier-wise nego-

tiations is consistent with practice in many real supply chains. Interestingly, despite some

recently publicized product failures traced to inappropriate behaviors at upper tier sup-

pliers, many companies still have only limited visibility beyond their immediate neighbors

in the chain. The assumption of horizontal competition is that firms in each tier compete

uncooperatively with each other to take the contract. So, we do not model purchasing

groups or other means by which firms in one tier cooperate with each other. Were we to

assert the existence (and persistence) of a purchasing (buying) group, we could predict the

profit flowing into the group by considering it a single actor (firm) in our model with a

cost structure driven by its most efficient internal organization. However, we do not pursue

that explicitly.

The emergence of a single active supplier-buyer pair in each tier will be a natural economic

outcome with significant economies of scale, such as significant fixed tooling or transaction

costs to set up a supply relationship. Researchers and practitioners are divided on the

relative merits of sole versus multiple sourcing (c.f. Elmaghraby 2000, Larson and Kul-

chitsky 1998, Richardson and Roumasset 1995 and references there). In practice and in

the literature this decision can depend on many factors, including the uniqueness of the

required technology and whether or not the supplier has to develop it in total or in part,

problems in exactly replicating tooling, capacity issues, the potential for cost reductions

through learning-by-doing, adoption of a lean versus more traditional supply philosophy,

issues of hedging supply uncertainty, the presence of future opportunities to recontract,

and other relationship-specific investments or context-specific characteristics. A common

current practice is “parallel sourcing” where there is one supplier for a specific product, but

another supplier of the same basic process for another product. For example, a computer

manufacturer may sole-source enclosures for product A, due to the difficulty of exactly

replicating an injection molding tool and problems of consistency with multiple vendors.

However, they will sole-source enclosures for product B from an alternative supplier, so
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while there is a single supplier in any one product’s supply chain, the manufacturer main-

tains diversified access to the injection molding process by working with different vendors

for different products. The sole vendor for enclosures for product A will contract with

a supplier for the injection molding tool, who may design the tool but then subcontract

its machining. Each stage of the chain for product A will be occupied by a single firm,

chosen among a potentially large set of potential participants, until inputs become more

standardized (e.g. steel). Another business practice is to have different supply chains for

different geographic regions, with sole sourcing in each. So, there may be two enclosure

suppliers, but only one in the North American supply chain and one in the Asian supply

chain.

The assumption of complete local information means that the costs and values for all firms

in negotiations between two tiers in the chain are common knowledge. This is clearly an

abstraction in many applied settings, but is not unrealistic in others and also provides

a starting point for more intricate analysis of bargaining with incomplete information.

Information is power in negotiations, and firms go to great lengths to figure out what

things should cost. In practice these efforts include reverse engineering, cost modeling

based on historical data, backing out component costs from competitors’ published prices

for different product configurations, direct inspection of suppliers, open books agreements,

and other tactics.

In summary, we analyze the efficiency and distributional outcomes in m×n supply chains

characterized by tier-wise negotiations, horizontal competition, sole-sourcing and complete

local information. No solution concept yet exists in the literature for this context, yet it is

a reasonable representation of many real supply chains. It is apparent that central to the

solution will be the outcome of the negotiations among the m + n firms in tiers 1 and 2.

Small numbers bargaining is one of the enduringly difficult economic settings, indeed early

economists including Edgeworth (1881), Marshall (1890) and Bowley (1928) all viewed the

outcomes of such negotiations as indeterminate in both price and quantity, since there are

many different outcomes that can support (what would later be called) a Nash equilibrium.

However, there is a substantial bargaining literature that provides predictions in special

cases of our supply chain problem (such as bilateral monopoly), some of which have been

experimentally validated. A salient feature of bargaining between two parties is that

the consent of both is required for closure, so even selfish players will realize that some

cooperation is required for anybody to benefit. It is not surprising, therefore, that the
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bargaining literature intersects that for cooperative games. Neither of these, however,

has a strong presence in the supply chain literature, despite the intuitive appeal of the

bargaining approach for many real b-to-b negotiations.

Nagarajan and Sosic (2008) review bargaining and cooperative game applications in supply

chains, attesting to their scarcity and cataloging within that small set the prevalence of

systems with a single firm in at least one tier (1 × 1, 1 × n, or m × 1 models). These

include a series of papers on assembly models in which a monopolist buyer negotiates with

each of several suppliers, all of which are required to assemble a finished product (c.f.

Granot and Yin 2008, Nagarajan and Bassok 2008, Nagarajan and Sosic 2009). This gives

each supplier veto power over any production, which is a different scenario than the one

analyzed here, and would suggest a different solution method (for example, Shapely values

may be more relevant in an assembly context than they are here, as discussed in section

8). Osborne and Rubinstein (1990, chapter 6) analyze sequential bargaining models of

exchange between two tiers of symmetrical buyers and suppliers, with random matching

among them. Horizontal competition comes not from differential costs, but from the fear

of not being matched, which is driven by the relative number of symmetric firms in each

tier.

Bargaining models with complete information generally assume that efficient outcomes will

prevail, for reasons discussed more completely in section 4. Although few in number, most

papers at the bargaining - supply chain interface agree that a bargaining chain will reach

the efficient level of output, and that the negotiations are really over the distribution of

the maximal surplus (c.f. Kohli and Park 1989, Ertogral and Wu 2001, Gurnani and Shi

2006). See Cachon and Netessine (2004) for additional references to the use of cooperative

game theory in supply chain settings. To date no results exist for the m×n supply chains

addressed here.

We develop an intuitive understanding of the model using the 3× 4 supply chain shown in

Figure 2a as an illustrative example, fixing quantity (at one unit) for transparency. The

tier 0 monopolist wishes to market a single unit of a product she developed, but will need

to subcontract some value-adding activities. Given inputs from tier 1, the monopolist can

make $16 (the net of the market price and her own value adding costs), so her net profit

will be $16 minus the price she must pay for inputs from tier 1. Any firm in tier 2 can

source commodity inputs for $1. The value adding costs to produce one unit for each firm

in tiers 1 and 2 are indicated by the numbers in the boxes. The final chain will include the
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monopolist and exactly one tier 1 and one tier 2 supplier (plus commodity suppliers). We

wish to anticipate which firms will end up being active in the supply chain, and at what

negotiated transfer prices they will do business. We focus on bargaining between tiers 1

and 2, and call firms in tier 1 the “buying” firms, who buy from the “supplying” firms in

tier 2. Let bi denote the ith buying firm (counting from the top in Figure 2a), and sj the

jth supplier in tier 2. Which firms will end up with the contract and at what price?

Figure 2b shows a possible contract configuration, with the monopolist buying inputs

from b2 for $15 and b2 buying from s2 for $9. The total social surplus available using this

chain is $3 ($16 minus the value-adding costs of $13), which is shared equally among the

monopolist, b2 and s2 (both make $1 profit). Is this a candidate for a solution to this

3× 4 bargaining problem? Myopic (that is, looking only at the near-term consequences of

one’s actions) conditions for stability would include the condition that no disenfranchised

supplier (in Figure 2b, suppliers other than s2) be able to make a more attractive offer to

buyer b2, thereby winning the supply contract. We model this aspect of the process by

the firms in tier 2 simultaneously and uncooperatively making offers to b2, and b2 choosing

rationally among these offers. This problem is tractable using familiar non-cooperative

theory. Below we will call this problem S→2 denoting the supplier tier making competitive

offers to buyer 2 in an attempt to win the supply contract. No supply chain configuration

involving supplying firm j and buying firm i is myopically stable unless firm j is an element

of the solution to problem S→i. In this specific example, s1 would be the unique winner in

problem S→2 at an offered supply price of $8 (the details will be worked out below). This

is shown in Figure 2c.

But, firms in tier 1 are also in competition with each other for the contract from the

monopolist. A condition for myopic stability of an sj -bi chain would be that no other

buying firm i′ �= i be able to simultaneously make a better offer to supplier sj and to

the monopolist. In our example (Figure 2c) the stability of the s1-b2 chain would be in

jeapardy if any buyer i′ �= 2 could, assuming revenues of $15, outbid all other buyers for the

services of supplier 1 and remain stictly profitable. This is because a successful firm in that

bidding process that retains positive profits can secure supply from s1, take the contract

with the monopolist from b2 by offering to sell to the monopolist for an infinitesimal

amount below $15, while being strictly better off relative to remaining disenfranchised.

We test the stability of an sj-bi chain by analyzing the buying (tier 1) firms (computing

their valuations for the contract using the monopolist’s current price) simultaneously and
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uncooperatively making offers to sj , a problem we denote by B→j . Any buyer not selected

by supplier j in problem B→j cannot be in a myopically stable supply chain configuration

that involves supplier sj . In our specific example starting from Figure 2c, b1 values the

contract at $13 ($15 revenues - $2 value adding costs), b2 values it at $10, b3 at $9 and b4 at

$7. Buyer b1 realizes that the most any competing buyer can afford to pay is $10 for inputs

from tier 2. So, b1 can offer to pay s1 $10 for supply (which s1 readily accepts), and still

have enough remaining surplus to offer to supply the monopolist for less than $15, which

the monopolist also accepts. This leaves b1 sourcing from s1 at a price of $10, as shown in

Figure 2d. In this specific example, b1 would be the unique winner in problem B→1 at a

price of $10 (again, details below), and would take the contract with the monopolist from

b2 by undercutting the current $15 price by the smallest amount possible, technically an

infinitesimal.

Following this logic, an sj-bi supply chain is not myopically stable unless sj is in the solution

to S→i and bi is in the solution to B→j . In this example, where we hypothesize that firms

s1 and b1 will emerge from negotiations, we need to check that b1 solves B→1, which it

does at a supply price of $10, and that s1 solves S→1, which it does at a supply price of

$8. It remains to predict a supply price between the two. We claim that a reasonable

expectation will be $9, one half way between these two solutions. We defend this further

below.

Note that in problem S→i we let the supplier tier make a single take-it-or-leave-it offer

to the buyer, granting them what is commonly known as “principal” status to make an

offer to an “agent” who can only accept or reject the offer. In problem B→j we grant

the buying tier principal status. Each of the subproblems (S→i and B→j) is a common

agency problem (c.f. Bernheim and Whinston 1986) with complete information that is

tractable using standard non-cooperative machinery. We then combine these two to get

the predicted supply price. We call this the Balanced Principal (denoted BP) solution,

because it takes two symmetrical principal’s problems and compromises between them.

The BP solution to an m × n supply chain bargaining problem predicts which two firms

will emerge with the contract, and what the transfer price between them will be. As will

be shown below, the most efficient two firms will be the contracting pair because they can

beat any other bid and remain profitable. In Figure 2 the high value buyer and the low

cost supplier (the first firms in each tier) will emerge as winners. Once these firms are

selected, the BP solution predicts a transfer price in between the solution prices to the two
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non-cooperative subproblems, which are themselves driven by the horizontal competition

in each tier. It will be shown below that this price prediction is an extension of classical

bilateral bargaining theory, in that it collapses to the classical solution when the latter is

applicable.

Figure 3 shows the supplier-buyer tiers as in Figure 2 but in a more compact way. Here,

the numbers alongside the buying firms indicate the value to them for having the contract

at $15 from the monopolist, so these equal $15 minus their value adding costs. The figures

beside the suppliers indicate their total cost of supply, which is the commodity price plus

their value-adding cost. Figure 3c shows, in this condensed form, the BP solution to the

3 × 4 supply chain from Figure 2 featuring the transfer price of $9.

Figure 3a shows another cost structure and its BP solution. Here, no other firms beside s1

and b1 can form a viable chain (no other buyer can profitably contract with any supplier,

and no other supplier can profitably contract with any other buyer) so we essentially have

a bilateral monopoly. In this case the BP solution will identify these two firms as the active

pair and predict a transfer price that is the same as the Nash bargaining solution where

the available surplus ($9) is divided equally between the two firms (each makes a profit of

$4.5). So the BP prediction is a natural one, and consistent with a well-known solution

concept in this special case. In Figure 3b supplier s2 can profitably contract with buyer b1

but not with b2, and likewise buyer b2 can profitably contract with supplier s1 but not with

s2. Although s2 and b2 are strategic players in the game, they are silenced by any price

between $5 and $9. Any price outside that range will activate them, as they are tempted

to jump in and take the contract. Intuitively b1can negotiate as if she has a credible

alternative that will supply for $9 and s1 can negotiate as if he has a credible alternative

that will pay $5. This is similar to bilateral bargaining models with disagreement values

(outside options), a situation in which existing bargaining theory has something to say (c.f.

Muthoo 1999). Any price between $5 and $9 will freeze out the competition and can be

credible as a solution. Resolving this indeterminacy by choosing a price in the middle has

appeal, and coincides with the classical Nash bargaining solution for bilateral negotiations

with the stated outside options.

Figure 3c represents the most complicated case. The BP solution is for s1 and b1 to end

up with the contract, at a transfer price of $9 between them. That the efficient pair will

end up with the contract is intuitively satisfying, but at a supply price of $9 firm s2 is

tempted to offer to supply b1 for $8.5 and take the supply contract from s1, and likewise
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firm b2 is tempted to offer to pay s1 $9.5 for supply, which would also disrupt the stability.

In contrast to the situation in Figure 3b, no offer can freeze out the second best firms

who will be tempted to jump into the negotiations. Such an offer would have to be at

least $10 but at most $8, which is infeasible. In contrast with the situation in Figure

3b, in this case the second best supplier and buyer are not at the mercy of the efficient

firms, because they can plausibly contract with each other and hence can act stragically

and cannot be treated as passive outside options to the efficient firms. Classical bilateral

bargaining theory does not address this situation. However, we will see below that the BP
solution still maximizes the bilateral Nash social welfare function, albeit without satisfying

conventional constraints on the outside option values. We will also see that whenever the

second best firms can profitably contract, no solution is myopically stable (some firm will

always have an incentive to make a better offer rather than lie idle), but that any disruption

from the BP solution can initiate a series of offers and counteroffers that do not benefit

the disrupting firm. Hence, the BP solution enjoys a form of far-sighted stability familiar

in cooperative games.

Finally, we reveal a conceit in the example in Figure 3c. Since the firms in tier 1 compete

for business from the monopolist, the raw data shown in Figure 3c are not sustainable.

Recall that the valuations shown there come from a $15 price from the monopolist and the

value-adding costs for each firm (as shown in Figure 2). Consider s1-b1 as the active firms.

Firm b2 could offer to pay firm s2 $9 for supply (readily accepted) and offer to supply

the tier 0 monopolist for $14.50, taking the contract and retaining $.50 profit for herself.

The efficient pair s1-b1 will be able to match any bid from any competing pair and remain

profitable, but will not be able to sustain revenues from the monopolist in excess of the

total supply cost of any alternative chain disjoint from both s1 and b1. In this example, the

monopolist need pay no more than $13 for supply, and at that supply price no alternative

chain (other than s1-b1) can be profitable. That is, we would never see the situation in

Figure 3c where s2 has the option to profitably work with b2. So, another feature of a

bargaining chain solution with a monopolist in tier 0 is that whatever chain ends up with

the contract, the transfer from the monopolist is sufficiently low that no alternative disjoint

chain can be strictly profitable. We will see below that for constant quantity problems,

where only price is being negotiated, appeals to concepts of far-sighted stability are not

necessary to justify the BP price, which will reduce to classical Nash bargaining transfers

between the active pair of firms. However, this will not remain true when both quantity
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and price are under negotiation.

We do not consider changes in the demands of the monopolist further, assuming rather that

whatever the revenue potential between tiers 1 and 0 are, this reality is correctly reflected

in the buyers’ (tier 1) valuations for having the contract. Only as needed will we invoke the

constraints put on those valuations that bargaining with a self-interested monopolist will

imply that no chain disjoint from an efficient pair can be profitable. For now, we consider

general m×n bargaining chains with arbitrary valuations for buyers and costs for suppliers.

By solving the general case, we clearly inform the more constrained one. The purpose of

this paper is to propose a solution concept for such general m × n bargaining chains, to

justify the proposed solution concept using appeals to classical theories in bargaining and

cooperative games (and experimental evidence when it exists), and to investigate some

of the consequences of the solution for supply chain managers. We present the formal

development next.

2. The balanced principal (BP) solution

Here we describe the balanced principal solution in more detail and greater generality,

considering both price and quantity. As noted we combine two tractable leadership models,

one for each tier in the supply chain. In problem S→i, firms in the supplying tier make

simultaneous competitive price-quantity offers to a single buying firm i. Let S∗
i denote the

set of preferred suppliers in problem S→i, meaning that after considering all of the bids

buyer i strictly prefers any supplier in S∗
i to any firm outside that set, and is indifferent

between any two firms in S∗
i . Likewise, in problem B→j the buying tier makes offers to a

single supplier j, and we define B∗
j to be the set of preferred buyers selected by supplier

j. We define a “balanced principal” (BP) solution to the m × n bargaining problem to

be a designated active supplier j∗ and active buyer i∗, and a transfer price and quantity

between them that satisfy the following:

1) i∗ ∈ B∗
j∗

2) j∗ ∈ S∗
i∗

3) The quantity q∗ simultaneously solves both B→j∗ and S→i∗

4) The profit to buyer i∗ and supplier j∗ is in the middle of what each would get in problems

S→i∗ and B→j∗ .
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The BP solution has intuitive appeal because the combined subproblems are reasonable

representations of what suppliers (buyers) face when trying to bid the contract away from

the active supplier (buyer). Next we will analyze the two subproblems in detail, and

comment on their synthesis.

Consider an m×n supply chain stage as shown in Figure 4. Buyer i has capacity Qi ≤ ∞
and a net value (revenues minus value-added costs) for quantity q (0 ≤ q ≤ Qi) given by

the function ri(q). Supplier j has capacity Qj ≤ ∞ and can supply quantity 0 ≤ q ≤ Qj

at total cost (purchase price for inputs plus value adding cost) of cj(q). Let Qij denote

the minimum of Qi and Qj . If buyer i and supplier j contract to do business, they can

generate chain profits as high as

πM
ij = max 0≤q≤Qij

[
ri(q) − cj(q)

]
.

We assume this is finite unless ri(q) − cj(q) < 0 for all 0 ≤ q ≤ Qij in which case supplier

j is not a viable partner for buyer i and we define πM
ij = −∞. For viable pairs we assume

enough regularity in cj and ri so that any profit between 0 and πM
ij is available (continuity

with ri(0) − cj(0) = 0 will suffice). In natural fashion we define πM
i = maxj{πM

ij },
πM

j = maxi{πM
ij }, and πM = maxi,j{πM

ij }. Note that πM is the maximal possible chain-

wide surplus, and we assume that πM ≥ 0 because otherwise there would be no viable

supplier-buyer pairs and no contract would be signed.

Problem S→i: Suppliers facing buyer i

Consider the situation in Figure 4 but with only one buyer, so m suppliers face one buyer.

Problem S→i denotes the problem where the sole buyer is buyer i. Intuitively, buyer i has

the contract from downstream and the suppliers are bidding against each other to partner

with buyer i.

Define E = {j|πM
ij = πM

i }, the set of “efficient” suppliers in that they can generate maximal

profits for the chain in partnership with buyer i. Define πM2
s to be the profit potential via

the second best supplier, πM2
s = max {πM

ik | ∃j ∈ E such that j �= k}. The way we define

this, if there are multiple efficient suppliers (E has more than one firm in it) πM2
s = πM

i ,

but if E is a singleton πM2
s < πM

i . If there is only one viable firm with πM
ij ≥ 0 then E is

a singleton and πM2
s = −∞.

In problem S→i the suppliers make proposals (simultaneously and in competition) to which

buyer i responds by choosing the best among the offers. If supplier j offers to supply
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quantity qij in exchange for a transfer of pij and the buyer accepts, then the buyer’s profit

will be πb
ij = ri(qij) − pij and supplier j’s profit will be πs

ij = pij − cj(qij). Note the

price is for the transfer of qij units and is not restricted to be linear in quantity. We

will do the analysis in terms of the proposed profits to each partner, (πs
ij , π

b
ij). A profit

proposal is feasible if πs
ij ≥ 0, πb

ij ≥ 0, and (πs
ij + πb

ij) ≤ πM
ij , in which case there will exist

a price and quantity pair that attains the proposed profits to each player. With general

cost and revenue functions there may be more than one price and quantity compatible

with a profit proposal, however we will assume that for each supplier-buyer pair there is a

unique quantity that attains their maximal possible profit. This will be true, for example,

if ri − cj is strictly quasi-concave, or is monotone with finite Qij , but also under more

general conditions.

To avoid needless complexity we will make some assumptions that eliminate indifference

sets for the actors, reducing notation and increasing transparency at no intuitive cost.

We assume that if a supplier is indifferent among a set of bids, he will bid aggressively,

maximizing πb
ij on the set. If the buyer has multiple maximal offers (0 ≤ πb

ik = πb
ij are

both maximal and k �= j) we assume that she will award the contract to the supplier

with the greatest social efficiency (greatest πM
ij ; if there are multiple numbers of these

she breaks the tie randomly). This recognizes the fact that a firm with more surplus

to work with can always best any competing bid. For example, suppose the maximal

possible surplus between supplier 3 and buyer 1 equals 100, and all other suppliers bid

their maximal surplus which is 85. Supplier 3 can beat 85 by an infinitesimal amount

and get the contract, sill retaining 15 (minus an infitesimal amount) for himself. Rather

than dealing with infinitesimals and limiting arguments, we just say he bids 85 and gets

the contract. Operationally, the assumption that the contract goes to the highest bidding

firm, breaking ties using relative social surplus, accomplishes this.

Buyer i’s decision is δij , the probability that she awards the supply contract to supplier

j. So, δij = 1 if supplier j offers the uniquely maximal πb
ij . If there are multiple suppliers

with equal offers then she chooses the one with maximal social surplus. If there are K > 1

of these, then δij = δik = ... = 1/K for each of them.

The suppliers face the buyer’s δ function and have to simultaneously make proposals πb
ij to

the buyer. For any supplier j let (π)−j denote the proposals πb
ik by all other firms k �= j.
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A set of proposals is in equilibrium if for each supplier j

πs
ij = argmax

{
πs

ijδij

(
(π)−j ;πb

ij

)}

over all feasible offers πs
ij ≥ 0, πb

ij ≥ 0, πs
ij + πb

ij ≤ πM
ij . That is, each supplier submits a

bid that maximizes his profit, after considering the probability that his bid will suffice to

win the contract. The solution to this problem is characterized in the next proposition.

Proofs are in the appendix.

Proposition 1: An equilibrium in the suppliers’ problem S→i will exist and all equilibria

will share the following attributes (j∗ denotes the selected supplier):

a) All suppliers j will bid πb
ij = (πM

ij ∧ πM2
s ) ∨ 0 and in particular πb

ij∗ = (0 ∨ πM2
s ).

b) The buyer will choose an efficient supplier, j∗ ∈ E.

c) πs
ij + πb

ij = πM
ij for all viable suppliers, so in particular πs

ij∗ + πb
ij∗ = πM

i .

d) The contracted price and quantity are unique.

In Proposition 1, parts (b) and (c) imply that in equilibrium the buyer will always choose

an efficient supplier and they will contract on the efficient quantity. Part (a) implies that

the profits to the buyer depend on the competitiveness of firms left out of the contract,

as one would expect. If there is only one viable supplier (πM2
s < 0) he can extract all

the rent (πb
ij∗ = 0), as is natural given his principal’s powers. However, with supplier

competition the active supplier’s profit is limited to the difference between the total chain

profit potential with him as supplier and the next best alternative supplier. This is because

at any higher supplier’s profit level the next best supplier would jump in and steal the

contract, so the winning supplier must price low enough to keep the competition at bay.

If two or more suppliers have maximal profit potential (so |E| > 1 and πM2
s = πM

i ) they

compete their profits away and the buyer gets all the rent. All of these results are natural

ones given multiple suppliers competitively bidding for a contract from a monopolist buyer.

The solution of problem S→i takes on a particularly simple form when the quantity (q) is

fixed. In that case, let ri denote ri(q) and cj denote cj(q) and without loss of generality

assume these are ordered so that c1 ≤ c2 ≤ ... ≤ cm (c.f. Figure 5). The S→i solution is

for an efficient supplier to get the contract at a transfer price of p = (ri ∧ c2). To see this,

note that πM
i = ri − c1 (which we assume is non-negative or else no supplier can pair with
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buyer i) and πM2
s = ri − c2. Proposition 1 says that all suppliers j will offer profits to

buyer i equal to (ri − cj) ∧ (ri − c2) ∨ 0. If c1 < c2, so E = {1}, supplier 1 will win the

contract with a bid of (ri − c2) ∨ 0. If there are multiple efficient suppliers (c1 = c2) then

one of them will win, but again the winning bid is (ri − c2) ∨ 0. So, in problem S→i with

quantity fixed an efficient supplier will get the contract at price ri− (ri−c2)∨0 = (ri∧c2).

Problem B→j: Multiple buyers bidding for supply from supplier j

Problem B→j is symmetrical to problem S→i. In B→j the n buyers bid for the contract

from the sole supplier j. Define πM
ij and πM

j analogously to the suppliers’ problem and we

assume that πM
j ≥ 0 otherwise there would be no viable pairing and no contract would be

signed. We again assume enough regularity in the ri and cj functions to work in the space of

proposed profit divisions between buyer i and supplier j that sum to a value on the interval

[0, πM
ij ]. E = {i|πM

ij = πM
j } is the set of efficient buyers and πM2

b is the profit potential via

the second best buyer, that is πM2
b = max {πM

jk | ∃i ∈ E such that i �= k}. As before, if

E has more than one firm in it πM2
b = πM

j , but if E is a singleton πM2
b < πM

j . If there is

only one viable buyer with πM
j ≥ 0 then E is a singleton and we define πM2

b = −∞. We

make assumptions symmetrical to problem S→i to break ties in indifference regions and

avoid needless complexity.

Supplier j’s decision is δij , the probability that he awards the supply contract to buyer

i. From the above assumptions and the buyer’s self-interest, δij = 1 if buyer i offers the

uniquely maximal πs
ij ≥ 0 or if buyer i ties with other firms but among these has a uniquely

maximal πM
ij . If, on the other hand, there are K > 1 suppliers who maximally tie on both

of these dimensions then δ = 1/K for each of them. The proof of the following proposition

is symmetrical to that for Proposition 1, and is omitted.

Proposition 2: An equilibrium in the buyers’ problem B→j will exist and all equilibria

will share the following attributes (i∗ denotes the selected buyer):

a) All buyers i will bid πs
ij = (πM

ij ∧ πM2
b ) ∨ 0 so in particular πs

i∗j = (πM2
b ∨ 0).

b) The supplier will choose an efficient buyer, i∗ ∈ E.

c) πs
ij + πb

ij = πM
ij for all viable buyers, so in particular πs

i∗j + πb
i∗j = πM .

d) The contracted price and quantity are unique.
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Again, if there is only one viable buyer she can extract all the rent. However, with buyer

competition the active buyer’s profit is limited to the difference between the total chain

profit potential with her as buyer and the next best alternative. In particular, if two or

more buyers have maximal profit potential (|E| > 1) they compete their profits away.

Again, if quantity is fixed the solution to B→j takes on a particularly simple form. An

argument similar to that for the suppliers’ problem shows that an efficient buyer will get

the contract at a transfer price of (r2 ∨ cj).

The Balanced Principal solution

The BP solution is defined by (1) through (4) above. Intuitively, (1) and (2) say that

supplier j∗ is a winner in the competition for the contract with i∗, and vice versa. Hence

i∗ and j∗ (an efficient pair) form a natural pairing in that they would choose each other

among all suitors in the two subproblems. Part (3), that the quantity must solve both

subproblems simultaneously, comes without cost since all bidders rationally bid at their

efficient quantity. This is also intuitive based on classical logic: from any inefficient quantity

a bidder is better off proposing an efficient quantity and capturing the extra surplus. The

profit distribution in part (4) is halfway between the profits generated in the two leadership

problems S→i∗ and B→j∗ , as discussed above. That is, the predicted profit to the (efficient)

buyer is

πb
i∗j∗ = .5{(0 ∨ πM2

s ) + πM − (0 ∨ πM2
b }

and the profit to the (efficient) supplier is

πs
i∗j∗ = .5{πM − (0 ∨ πM2

s ) + (0 ∨ πM2
b }.

Both of these are non-negative since πM2
b ≤ πM and πM2

s ≤ πM , and they sum to πM

so profits are zero for all inactive firms. There can be multiple BP solutions (all efficient,

consider for example the perfectly symmetrical case where all suppliers and all buyers

have identical cost structures), in which case we assume that the active pair will be chosen

randomly among the efficient set.

Again, if quantity is fixed the BP solution is simply stated: An efficient supplier-buyer

pair will get the contract at transfer price equal to

p = .5
{
(r1 ∧ c2) + (r2 ∨ c1)

}
.

15



So far, the BP solution is a proposal for solutions to m×n bargaining chains with complete

information, where a single contract will be signed, based on the logic of competitors in

each tier trying to bid the contract away from an incumbent pair, and the semi-balanced

power inherent in bargaining situations. We now justify this solution with appeals to

existing solution concepts in bargaining theory and cooperative games. While there is no

consensus on what constitutes a solution to multi-party bargaining problems, there are

well-studied alternatives and partial results for special cases. As shown in the next two

sections the BP solution always maximizes the Nash social welfare function and reduces

to classical Nash bargaining when m = n = 1 and in special cases when m,n > 1. The

BP solution is also in the core (if it exists) of an m + n person cooperative game defined

using an appropriate characteristic value; and is a member of a solution set as defined

by von Neumann and Morgenstern (1944). However, the BP solution is not consistent

with the notion of Shapely values (Shapely 1953), which implicitly grants more power to

uncompetitive firms than is allowed by the balanced principal approach, or by intuition in

this setting.

3. Relationship of the BP solution to theories of bargaining and cooperative

games

The bargaining literature is dominated by models of bilateral monopoly (m = n = 1). In

a classic paper, John Nash (1950) proposed a set of axioms for 2-person bargaining that

imply that the parties will reach a solution that maximizes the social welfare function

(πs − ds)(πb − db) where πs and πb are the profits to the supplier and buyer, respectively,

and ds and db are their profits if negotiations break down (their disagreement payoffs).

The extension of the Nash social welfare function to more than two parties, as would be

required with horizontal competition, is not often used in a supply chain context because

it gives each player veto power. That is, the generalized Nash social welfare function

is the product Πm+n
i=1 (πi − di) where di is actor i’s disagreement value, so a single actor

defecting to her disagreement value implies zero social welfare. This is not a natural model

in many contexts, including supply chains where uncompetitive firms can be frozen out of

the negotiations and have no veto power over competitive firms who are free to contract

without them. However, bilateral bargaining models can include some aspects of horizontal

competition through the inclusion of appropriate disagreement payoffs. Assuming that an

efficient supplier-buyer pair has the contract and is negotiating about how to divide the
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surplus πM , it is natural to set the disagreement payoff for the buyer at (πM2
s ∨ 0) because

she can threaten to approach the second best (but currently disenfranchised) supplier with

an acceptable offer. Likewise, a natural disagreement payoff for the efficient supplier would

be (πM2
b ∨ 0).

It is uniformly assumed in the bilateral bargaining literature that the sum of the disagree-

ment payoffs cannot exceed the maximal social surplus, represented in this context by

(πM2
b ∨ 0) + (πM2

s ∨ 0) ≤ πM . The justification is that if this is violated then regardless of

how the social surplus is divided between the two firms, at least one firm must receive less

than its default value, and this is not rational. However, in m × n bargaining chains with

disagreement payoffs as just described, the default inequality does not have to hold. In

fact, it would be impossible for the chain with an efficient buyer and second best supplier

and the chain with an efficient supplier and second best buyer to be simultaneously active

and earn their disagreement payoffs (πM2
s and πM2

b , respectively), since only one pair can

be under contract. That is, in m × n bargaining chains the feasible set of profit outcomes

to the two efficient firms is larger than the set assumed in the bilateral bargaining litera-

ture. When we relax this constraint, we find that the BP division of profits maximizes the

bilateral Nash social welfare function with the stated disagreement payoffs.

Proposition 3: The division of the surplus πM between an efficient buyer and supplier in

the BP solution maximizes the unconstrained bilateral Nash social welfare function with

supplier disagreement payoff ds = (0∨πM2
b ) and buyer disagreement payoff db = (0∨πM2

s ).

That is, the profit to the supplier, πs, will maximize (πs −ds)(πM −πs −db) and the profit

to the buyer will be πM − πs.

Essentially, Proposition 3 says that it is appropriate to extend Nash bargaining logic beyond

its bilateral roots to the m×n supply chain context, provided we define the default values

appropriately and relax the conventional constraints on their sum. That relaxation is not

necessary in special cases. For example, using the fact that the second best options for

the efficient firms can never be better than the maximal possible surplus (πM2
b ≤ πM and

πM2
s ≤ πM ), it can be shown that the default inequality (πM2

b +πM2
s ≤ πM ) is guaranteed

to hold in bilateral monopoly (1 × 1, so (πM2
b ∨ 0) = (πM2

s ∨ 0) = 0), and with one-sided

competition (1 × n where (πM2
s ∨ 0) = 0, and m × 1 where (πM2

b ∨ 0) = 0). In each of

these standard cases, the BP solution is a natural and intuitive outcome for the bargaining

problem and coincides with a Nash bargaining representation of the problem with passive
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default options equal to the second best alternatives for the efficient firms. This will also be

the case in constant quantity problems (Figure 5) when we add the constraint (described

previously, based on the fact that the monopolist also bargains rationally) that no chain

disjoint from an efficient pair can generate positive surplus, so r2−c2 ≤ 0. To see this, note

that if the second best firms are viable partners then πM2
s = r1 − c2 and πM2

b = r2 − c1,

so πM2
s + πM2

b ≤ πM if and only if (r1 − c2) + (r2 − c1) ≤ r1 − c1 which is true if and only

if r2 − c2 ≤ 0.

However, with nonlinear costs it is easy to generate examples where disjoint chains cannot

generate positive surplus, consistent with a whole-chain bargaining outcome, yet πM2
b +

πM2
s > πM . This raises stability issues when the excluded buyers and suppliers are active

agents in the negotiations rather than passive default alternatives. Since we predict a

buyer’s profit of πb = .5{πM − πM2
b + πM2

s }, when πM2
b + πM2

s > πM we have πb < πM2
s .

That is, the second most competitive (but currently excluded) supplier can, in concert

with the efficient buyer, generate profits strictly greater than what the buyer is currently

getting. Hence, the excluded supplier can make an attractive offer to the buyer. To

further investigate the properties of the BP solution, we need to look beyond bilateral

bargaining theory with passive alternatives to what cooperative game theory has to say

about multiple strategic agents in negotiations. Specifically, we want to know if the BP
solution is consistent with existing solution concepts in those more general games.

Relationship of the BP solution to cooperative games

Like bargaining games, cooperative games have no single universally accepted notion of a

solution, but there are several alternatives in the literature that are sufficiently popular to

merit consideration. The constructs we will consider rely on a “coalitional” or “character-

istic function” representation of the game. A coalition C is any subset of the m+n players

in the two tiers. For any coalition C , let Cb(C) denote the set of buyers in C and Cs(C)

the set of suppliers in C , so that Cb(C) ∪ Cs(C) = C . We define Cg to be the “grand

coalition” of all m + n players. Define the real-valued characteristic function V on the

set of coalitions to be the profits that the coalition could generate without any help from

outside the coalition (c.f. Myerson 1991). V (C) is set to zero if either Cb(C) or Cs(C) are

empty (that is, C does not contain at least one buyer and one supplier). Contingent on

coalition C having the contract and containing at least one buyer and one supplier,

V (C) = max
i∈Cb(C);j∈Cs(C)

πM
ij
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meaning the coalition uses their lowest cost supplier and highest value buyer as their active

players to generate the most value for the coalition. Note that this implicitly assumes that

coalitions form for bargaining power only, and not to distribute production. That is, the

same fixed tooling or other costs that drive a buyer to use a single supplier are in play in

coalitions.

Clearly V (Cg) will be the maximum profit available, equal to πM . An allocation π ∈ Rm+n

is a division of profits among the m+n players. For ease of notation we will use
∑m+n

i=1 πi

to denote the sum of the allocations over all players, and
∑

k∈C πk to denote the sum over

all firms in C (buyers and sellers). An allocation is “feasible” if
∑m+n

i=1 πi = V (Cg) and for

all i, πi ≥ V ({i}) = 0. The first condition says that we don’t allocate more to players than

we have to work with, but we do allocate all available surplus (otherwise there would be an

alternative distribution of benefits that is preferred by everybody). The second condition

is that each player gets at least what she could get on her own. Feasible allocations are

called “imputations” in some of the extant literature.

Given a feasible allocation π, we say another feasible allocation π′ dominates π on C ,

denoted π′ �C π, if π′
i > πi for all i ∈ C and

∑
i∈C π′

i ≤ V (C). The first condition says

that members of C will unambiguously and unanimously prefer π′ to π, and the second

condition says that the members of C can defect from the current allocation and fund

the new allocation π′ by themselves with no additional help. Under these conditions, the

allocation π is vulnerable to disruption, because members of C see a clearly superior and

implementable alternative.

The core of a cooperative game is defined as the set of undominated feasible allocations,

that is the set of feasible allocations π for which no set C and alternative feasible allocation

π′ exist with π′ �C π. It can be shown (c.f. Myerson 1991) that the core is the set

{π | πi ≥ 0 ∀i,
∑m+n

i=1 πi = V (Cg) and for all coalitions C ,
∑

k∈C πk ≥ V (C)}. The core

is a strong contender for a solution concept to cooperative games, because it represents a

sort of stability or resistance to disruption by any coalition of actors. The problem with

the core as a solution concept is that it can be empty for many games of interest, because

it disallows myopic defections that may, with some far-sightedness, be recognized as non-

threatening in the long run to the coalition. We discuss this in more detail in the next

section.

We will ignore nonviable firms (buyers i for which πM
ij < 0 for all suppliers j, and suppliers
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j for which πM
ij < 0 for all buyers i) so in what follows m and n count only potentially

viable suppliers and buyers. If m = 0 or n = 0 no deal is struck and no business done, so

we assume that m and n are at least 1. We begin by analyzing the core in 1× 1 (bilateral

monopoly) and m×1 systems. These are intuitively straightforward in that the sole buyer

must be active in any supply chain and has discretion over which supplier(s) to work with.

Proposition 4: In m× 1 supply chains:

a) If m = n = 1 (bilateral monopoly) the core is any nonegative division of the potential

social surplus πM between the two firms.

b) If m > 1 (multiple suppliers and one buyer) let i∗ denote the sole buyer and j∗ (any one

of) the efficient supplier(s). The core is the set of allocations giving zero profit to suppliers

other than j∗, (πM2
s ∨ 0) ≤ πi∗ ≤ πM , and πj∗ = πM − πi∗ . In particular if there are

multiple efficient suppliers (πM2
s = πM ) then the only core allocation gives all surplus to

the buyer i∗.

c) The BP allocations are in the core and predict profits to each firm exactly in the middle

of its range of core values.

In m × 1 bargaining chains the core is always non-empty, and predicts that only efficient

suppliers can make positive profits, consistent with the BP solution’s selection of efficient

pairs for contracting. For an efficient pair the core allocations are not unique, but for all

firms (efficient or otherwise) the BP solution predicts profits in the middle of each firm’s

range of core profits.

The supplier-bidding scenario implicit in m × 1 systems is a familar and intuitively clear

context. However, in 1 × n and m × n systems with n > 1, the tier 2 suppliers cannot

arbitrarily choose among the tier 1 buyers, because the new partnership will not be ben-

eficial unless the tier 1 buyer can also compete successfully for the contract from the tier

0 monopolist. We revise the characteristic function definition to include this complication

(we invoke the logic presented with Figure 3c above that no alternative, disjoint chain

can generate positive profits when we consider tier 1 bidding for the contract from the

tier 0 monopolist). The details along with the proof of the following theorem are in the

appendix.

Proposition 5: In m× n supply chains with n > 1:
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a) If m = 1 (a single supplier j∗ and multiple potential buyers) the core is the set of

allocations with zero allocation to firms other than an efficient pair i∗ and j∗, where

(πM2
b ∨ 0) ≤ πj∗ ≤ πM and πi∗ = πM − πj∗ . In particular if there are multiple efficient

buyers (πM2
b = πM ) then the only core allocation gives all surplus to the supplier.

b) In m × n systems, the core is the set of allocations with zero allocation to firms other

than an efficient pair i∗ and j∗,

(πM2
s ∨ 0) ≤ πi∗ ≤ πM − (πM2

b ∨ 0)

(πM2
b ∨ 0) ≤ πj∗ ≤ πM − (πM2

s ∨ 0)

and πj∗ + πi∗ = πM . In particular, if πM2
s + πM2

b > πM the core is empty.

c) If the core exists the BP allocations are in the core and predict profits to each firm

exactly in the middle of its range of core values.

The core, when it exists, is a compelling candidate for allocations in a cooperative game

because it is features no myopic temptations to defect. In all cases in which the core exists

the BP solution is in the core and predicts profits for each firm to be exactly in the middle

of the core range. However, when πM2
s + πM2

b > πM the core does not exist. In practical

reality negotiations are still likely to close in these cases, and analytically the BP solution

still exists and can be computed as shown. But, the concept of core cannot be used to

reinforce that outcome. In the following we compare the BP prediction to an alternative,

and more far-sighted, solution concept for cooperative games.

The BP solution and von Neumann and Morgenstern’s solutions

John von Neumann and Oskar Morgenstern (1944) call a set of feasible allocations Π∗ a

solution set to a cooperative game if it equals the set of feasible allocations not dominated

by any element of Π∗. This rather circular definition clearly implies that elements of Π∗ are

not dominated by any other element of Π∗, but also that any feasible allocation π /∈ Π∗

is dominated by some element of Π∗. These solution sets allow for the possibility that

there exists a π ∈ Π∗ and a π′ /∈ Π∗ such that π′ �C π for some coalition C (which could

rationally prompt a defection), but in that case since π′ /∈ Π∗ there exists a π′′ ∈ Π∗ and

a coalition C ′ such that π′′ �C′ π′. That is, the bargaining process may rationally leave

the set but will always have a rational path back into the set, because any defection out of
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Π∗ can be counteracted by another defection that brings the allocation back into Π∗. We

will call such solution sets “VNM solution sets” or “VNM sets.”

VNM sets avoid the common criticism of core concepts that look only at myopic defections,

without regard for what will happen next, to define stability. Players can disrupt a VNM

set, but reasonable foresight suggests the gains may well be short-lived. One problem with

VNM sets is that there can be many of them. Von Neumann and Morgenstern say that

each such set represents an internally consistent standard of behavior, appropriate for a

given social order.

The core is a subset of any VNM solution set, because if any feasible allocation π is

undominated then clearly it is undominated by members of any VNM set Π∗, and so is an

element of Π∗. But, VNM solution sets are larger and more varied than the core, and can

contain some counter-intuitive outcomes. That is, while the core may be too restrictive

as a solution concept, VNM sets may be too inclusive. There is no current agreement on

what constitutes a solution to a general cooperative game, which is why we compare the

BP solution to several of them.

The proof of the next proposition shows that the set of allocations where the total social

surplus is divided between one efficient supplier and one efficient buyer is a VNM set. Since

all BP allocations have this character, it is immediate that the BPallocation is in a VNM

solution set.

Proposition 6: If i∗ and j∗ are an efficient buyer and supplier, then the set X =
{
π | πi∗+

πj∗ = πM
}

is a VNM set, so in particular the BP allocation is always contained in a VNM

set.

The BP solution and Shapely values

Shapely (1953) developed a series of axioms which, if assumed to hold, imply that there is

one and only one characteristic function that reflects the expected payoff to each player in

a cooperative game. The Shapely value is a combinatorial expression with the following

heuristic logic (c.f. Myerson 1991). Suppose you lined up all the players in a random

sequence, and had them enter a “room” (representing a coalition) in that order. What

is the expected incremental value that each brings into the coalition? The value that

player i brings to a coalition C is the difference in characteristic values, V (C ∪ {i}) −
V (C). The Shapely value is not generally consistent with horizontal competition, and in
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particular with the BP solution, because the Shapely value can be positive even for very

uncompetitive firms. As long as there is some collection of individuals, no matter how

inefficient they are, who are better off with player i than without player i, then player i

will have a strictly positive Shapely value (that is, some coalition C that can do better

as C ∪ {i}). For example, suppose quantity is fixed and suppliers’ costs are ordered as

c1 
 c2... 
 cj−1 << cj and buyers revenues ordered as r1 
 r2... 
 rk−1 >> rk,

and cj < rk. Then the Shapely values for supplying firm j and buying firm k, which

are supposed to predict their expected profits in negotiations, will be strictly positive

because firm j brings positive value to the “coalition” {k} and vice versa. But, these very

uncompetitive firms would be marginalized in actual negotiations (bid out of contention)

and make no profit. This suggests a level of horizontal sharing implicit in the Shapely

value that is not compatible with horizontal competition among firms making perfectly

substitutable products. In section 8 below we will see that the Shapely value is one of

several possible solution concepts that is broadly consistent with notions of “distributive

justice” that arise in the experimental record. These concepts are better suited for supply

situations in which each supplying firm has veto power, for example in an assembly context

where each supplier is a monopolist for one component, so each firm’s cooperation is

necessary for anybody to make any money.

The BP solution has the attractive features of addressing an important and realistic busi-

ness context with no currently known solution, yet is sufficiently close to familiar Nash

bargaining theory and the theory of cooperative games to be comfortably credible. A

natural next step would be validation of its predictions with laboratory or field data. No

experimental results yet exist for the m × n supply chain problem, in part because there

existed no predictive theory to test (a void we fill here). There is, however, some exper-

imental evidence relevant to some versions of the supply chain problem. We review this

next.

4. Bargaining experiments and intuition

The experimental economics literature is dominated by investigations of efficiency in al-

ternative market structures (Bertrand versus Cournot, one-sided versus double auctions,

open versus sealed bidding, etc.) and/or individual decision making (testing theories of

individual choice). The subset of that literature devoted to bargaining is relatively small,

but does contain some material relevant to the m × n supply chain problem. In these the
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bargaining problem and context are sufficiently simple that transactions costs or bounded

rationality issues are not significant. The experimental findings with substantial support

are:

a) In small-numbers bargaining with complete information we can expect efficient out-

comes.

b) In symmetrical bilateral monopolies we can expect an even division of the available

surplus.

c) Non-cooperative game theoretic solutions are poor predictors of actual behaviors in

simple laboratory experiments.

We discuss each of these in turn.

In small-numbers bargaining with complete information we can expect efficient outcomes

In contrast to early economists (e.g. Edgeworth 1881, Marshall 1890, and Bowley 1928)

who considered small numbers bargaining problems indeterminate, Stigler (1942) and Fell-

ner (1949) occupied the intermediate position that in bilateral monopoly the negotiators

will agree on the efficient quantity but price remains indeterminate. Their reasoning is

that the surplus maximizing quantity is in the bargainers’ mutual interests, because from

any other quantity it would be possible to re-open negotiations and increase the profits

of both. So, the efficient quantity will be decided first because they can agree on that,

and then they will bargain over the division of the total surplus (the price). The clas-

sic experiments of Siegel and Fouraker (1960) support this position. In the same year a

seminal paper by Coase (1960) argued that in bilateral bargaining over economic external-

ities, with complete information and in the absence of transactions costs a socially efficient

arrangement will arise regardless of how property rights are assigned (provided they are

assigned unambiguously). This was a rejoinder to economists (e.g. Pigou) advocating

governmental interventions in the form of taxes or subsidies to address externalities and

restore social efficiency. Because of their significant policy implications, Coase’s claims re-

ceived a lot of experimental attention. Most of the results strongly supported the efficiency

result (c.f. Hoffman and Spitzer 1982, Harrison and McKee 1985 and references there).

These experiments involved bilateral rather than multi-lateral negotiations, but in one set

of four-person cooperative games conducted by Michener et al (1979) efficiency was again

the norm. None of these experiments involved the selection (or rejection) of active firms

in addition to bargaining over price and quantity, so they do not align exactly with the

24



supply chain context. Still, unless and until further experiments refine our understanding

the weight of existing evidence is in favor or Stigler’s and Fellner’s early intuition that in

unstructured, small-numbers bargaining with complete information we can expect efficient

outcomes.

In symmetrical bilateral monopolies we can expect an even division of the available surplus

At the efficient quantity there are many different possible divisions of the total surplus

(transfer prices), leading to the remaining indeterminateness in Stigler and Fellner’s posi-

tions. For example, in bilateral monopoly the price can vary anywhere between the seller’s

cost and the buyer’s revenues, corresponding to Edgeworth’s contract curve or Pareto’s

optima. Some economists, however, went further to predict a specific price that will be

realized along this curve. Pigou (1908) argues that when bargaining powers are equal the

solution that each party interprets as a draw is the most likely, and that usually this will

be an equal division of the payoffs. Zeuthen (1930), Nash (1950), Raiffa (1953), Harsanyi

(1956) and Schelling (1960) all agree that this makes sense. In the absence of any salient

differences in who is “deserving,” 50/50 splits seem to be recognized as a “fair” outcome,

and therefore compelling, in a wide range of cultures (c.f. Roth et al 1991 and Henrich et

al 2004). This also has experimental support (Siegel and Fouraker 1960, Roth and Malouf

1979). In fact, an even division of wealth appears to be a strong attractor (Schelling 1960

calls it a “focal point”) even when contrary to self-interest. For example, in tests of Coase’s

claims unambiguous property rights (which were essentially rights to wealth) were granted

to just one party in the negotiations, yet 50/50 splits appeared more frequently than one

would expect given purely self-interested behavior (c.f. Hoffman and Spitzer 1982, Harri-

son and McKee 1985 and references there). Given the experimental evidence to date, we

can expect an even division of the surplus in bilateral monopolies (1 × 1 chains) with no

differentiating features between the actors.

Non-cooperative game theoretical solutions are poor predictors of actual behaviors in simple

laboratory experiments

In contrast to Nash’s (1950) axiomatic approach to bargaining theory, there is another class

of bilateral bargaining models based on non-cooperative game theory that was initiated

by Rubinstein’s (1982) alternating offers model. In a single-stage version of this model

(called the “ultimatum game”) one player is declared the principal and can make a single

take-it-or-leave-it offer to the other player (agent), who can only accept (in which case the
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principal-specified offer is implemented) or reject (nobody gets anything) the offer. This 2-

stage game has a unique subgame perfect equlibrium (SPE) in which the principal makes

the smallest possible positive offer to the agent, essentially taking all of the wealth for

herself. Even in experiments specifically designed to test the required sequence of events,

the SPE is almost never observed. The deviations from SPE were significant and pervasive,

generating substantial interest in the experimental community and fostering repeat studies

to confirm and understand it. The result of all of this work is a substantial confirmation

that the SPE is not predictive of actual behaviors (Guth et al 1982, Kahneman et al 1986,

Forsythe et al 1994, Eckel and Grossman 2001), and that deviations from SPE tend to be

in the direction toward a more egalitarian division of wealth.

Hoffman et al (1998) speculate that deviations from individual profit maximization to

achieve fair outcomes is fundamental to humans as social animals, and has evolved over

millennia to solve problems of social exchange long before our ancestors had markets or

monetary systems. They cite evidence that included in these norms of social exchange are

equality (gains should be shared equally in the absence of any objective difference between

individuals) and equity (individuals who contribute more to an accomplishment should

benefit with a larger share of the rewards). This notion of equity aligns with Guths (1988)

invocation of “distributive justice” to explain the results of his bargaining experiments. It

is not clear how or if our primordial tendencies have been modified by modern cultures,

but if any behaviors are fundamental to our species there is hope for some cross-cultural

consistency in behavioral models. Indeed, the work of Roth et al (1991) and Henrich et

al (2004) suggests that deviations from the ultimatum game SPE in the direction of a

more egalitarian division of the wealth is internationally and culturally robust. In another

bid for universality, Brett (2001) advises managers negotiating across cultural boundaries

that the two major sources of power in negotiations are one’s best available alternative to

agreement (the default or disagreement values in bilateral bargaining) and fairness as a

universal norm.

Consistency of the balanced principal solution with the experimental record

The experimental record for bargaining chains is incomplete. Most experiments were set

up to test something else, most are bilateral, and none involve the simultaneous selection of

active firms and price-quantity negotiations between them. When we depart from undiffer-

entiated bilateral monoplies, there is much less that can be said with confidence based on
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current evidence. Personal and structural attributes that may bias the bargaining outcome

in one direction or another include (c.f. the reviews in Hagel and Roth 1995, and Camerer

2003) bargaining prowess, risk aversion or impatience, starting endowments, levels of in-

formation and familiarity, social versus unilateral utility functions (both for the bargainer

and assumed for the opponent based on experience or culture), structure of the interac-

tion (face-to-face or electronically mediated), levels of horizontal competition (alternative

sources/buyers), longer term considerations (relationships and reputation) if negotiations

will repeat, and socio-cultural issues related to race, gender, and/or personal history. An

abundance of additional evidence will be required to sort through this complexity.

However, some features of the existing experimental record recur sufficiently often to be

tentatively accepted pending further evidence. These include efficiency in simple, small-

numbers bargaining situations with complete information, an equal division of wealth in

undifferentiated bilateral monopolies, and behaviors that deviate significantly from non-

cooperative predictions. The BP solution is consistent with these. Among the many

potentially influential structural and personal features of a negotiation, alternatives (to

closure) and notions of fairness are frequently encountered drivers of the eventual division

of the wealth. The BP prediction is consistent with that reduction. In b-to-b negotia-

tions with horizontal competition, the next best alternative for any player is their next

best supplier (buyer). After adjusting for the effects of horizontal competition, the BP
solution divides the remaining surplus equally (as does the Nash bargaining solution when

it applies).

It is interesting, against this backdrop, that the current supply chain literature is dominated

by P-A models and assumptions of some form of inefficiency (requiring address, in the

form of a scholarly intervention). In addition to differing on issues of efficiency, P-A and

bargaining approaches generally predict different distributions of wealth in the chain. This

is important because advice to managers must be based on how the distribution of profits

to individual firms will vary with different managerial options. In the next section we

compare P-A and BP predictions for cost-reduction initiatives. A continued accumulation

of institutional knowledge and empirical research will be necessary to know which model

and recommendations are appropriate in different managerial contexts.

5. Managerial consequences

Current industrial practice includes buyers investing in cost-reducing process improvements
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in themselves and/or their suppliers. It aligns with business intuition and practice that

developing competing suppliers can also be beneficial to the buyer. What intuition emerges

from our complete information m×n bargaining model? Is it more beneficial to reduce your

own costs, or reduce your supplier’s costs? Is it better to reduce your direct supplier’s costs,

or reduce a competing supplier’s costs? If you are a buyer and it is possible to increase

your tier 1 competitor’s costs (by lobbying for legislation, for example, that works to your

advantage and to the detriment of competing buyers) is that preferable to working on your

own (or your suppliers’) costs? Are the prescriptions based on our bargaining model the

same or different than those implicit in P-A models?

In Table 1 we compare the price and profitability consequences of these initiatives, and

also compare the BP solution with a P-A model when one exists, for different competitive

scenarios. We use a constant quantity model for transparency, and assume the firms are

ordered (as in Figure 5) with strict differences between the two most efficient firms in a

tier, so that r1 > r2 ≥ ... ≥ rn and c1 < c2 ≤ ... ≤ cm. The entries in Table 1 are from the

perspective of the efficient buyer (with value r1). The cost to the efficient supplier is c1.

So, πM = r1 − c1, πM2
s = (r1 − c2) ∨ 0 and πM2

b = (r2 − c1) ∨ 0. In the BP solution the

efficient buyer and supplier will be active at a transfer price of p = .5
(
(r1 ∧ c2)+(r2 ∨ c1)

)
,

(where c2 = ∞ and/or r2 = −∞ if these competitors do not exist), and the profit to the

efficient buyer equals r1 − p. The entries in Table 1 are for a one unit improvement in one

of the four parameters r1, r2, c1 or c2. From the perspective of the efficient buyer, this

would be a one-unit decrease in c1, c2 or r2, or a one unit increase in r1, as indicated in

the top row of each set of outcomes in Table 1.

Table 1 shows only the benefits of the various improvements, and does not include the

costs of achieving these. Practical application would have to include a consideration of

how difficult it is to effect these changes. For example, suppose Table 1 shows that an

improvement in r1 is more beneficial than a reduction in c1. The reduction in c1 can still

be preferable if it is less costly to achieve, for example if an efficient buyer is sourcing from

a poorly managed supplier for which cost reductions are easy to identify and implement.

Of course, if Table 1 shows a reduction in c1 offers no benefit, the costs of the reduction

are irrelevant.

Where to invest according to the BP model?

Looking first at the bargaining outcomes, we see that a unit improvement in one’s own
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cost is always at least as beneficial, and sometimes more so, than a unit change in the

costs for any other firm. This makes intuitive sense, since the profit to the efficient buyer

is r1 − p so improvements in r1 have a direct effect, while improvements elsewhere can

only impact the buyer via price. Further, a unit improvement elsewhere would translate

into a full unit price reduction only if the buyer captured all of the benefits of the remote

improvement, which bargaining solutions seldom do. Note that the only maximal entry (a

“1”) in the net benefit row for the BP solution is in the r1 column, referring to a reduction

in the buyer’s own costs. The reasons for this dominance, however, differ by competitive

scenario. When there is supply-side competition (2×1 and 2×2 systems) an improvement

in r1 need not be shared with the supplier via an increase in price, giving it a natural

advantage. In bilateral monopoly (1 × 1 systems) all improvements are shared equally.

With only buyer-side competition (1 × 2) improvements in r1 must be shared with the

supplier, but improvements in the supplier’s costs are not shared with the buyer, again

giving improvements in r1 the edge.

Now consider changes other than to r1. First, there is no benefit to improving any firm that

is not the most or second most efficient in each tier. Increasing the number of competitors,

for example, has no effect beyond two (unless the new firms are more efficient than one

of the existing firms, in which case they replace the inefficient firm in the competitive

analysis). When we hold r1 constant investments in other firms affect the efficient buyer’s

profit via price, mediated by the degree of competition. A monopolist buyer is indifferent

between improvements in her direct supplier’s costs or a viable competing supplier. For

example, in 2×1 systems reducing c1 or c2 yields the same benefit, because the buyer wants

to demand c1 but the efficient supplier need not bid less than c2, so the price is determined

equally by c1 and c2. However, when the efficient buyer has viable competition investing in

her direct supplier has no benefit. For example, in 2× 2 systems the buyer’s demands are

limited by competition to r2 and the efficient supplier’s demands by c2, so the negotiated

price is determined by c2 and r2. In that case, reducing c2 is strictly better for the buyer

than reducing c1, which would provide no benefit.

In summary, for the efficient buyer reducing her own costs weakly dominates adjusting

the costs in any other firm. However, with viable supplier competition investing in the

alternative supplier weakly dominates investing in her direct supplier. With strong buyer

power she is indifferent between the two, but with two-sided competition the marginal

firms determine the price so working with the alternative supplier dominates working with
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her direct supplier.

Bargaining and principal-agent models compared

The currently dominant approach in the supply chain literature is to grant one of the play-

ers principal status and solve the resulting principal-agent (P-A) problem using standard

non-cooperative machinery. We can compare the BP recommendations to those of P-A

models in three of the four cases. For bilateral monopolies and 2×1 systems, we grant the

buyer principal status. For 1× 2 systems we use the B→1 solution, which grants the buy-

ing tier principal status and is a simple case of common agency (Bernheim and Whinston

1986). For 2× 2 systems no P-A solution is available. Prat and Rustichini (2003) provide

an analysis of m×n systems where the n principals get to make offers first, but restricted to

the case where an individual agent’s reward depends only on his/her unilateral action. In

our case the awarding of the contract depends on the actions of all agents in competition,

a situation for which Prat and Rustichini say no general characterization is available.

Table 1 shows that there are two major differences between the predictions of the P-A and

bargaining models. First, in a P-A model it is never beneficial to invest in a competing

supplier. For example, in a 2×1 system the principal buyer can extract all of the rent (make

the efficient supplier a take-it-or-leave-it offer of c1 regardless of what c2 is), so reducing

c1 is very beneficial but reducing c2 has no value. In contrast, in the bargaining model the

supplier need not agree to accept only c1, because as long as he is pricing his competitor

out of the market (asking for less than c2) he has as much monopoly power as the buyer.

The negotiated price, therefore, is somewhere between c1 and c2, so reducing either will

benefit the buyer. The second major difference between the bargaining and P-A models

is that, when both predict some value for an improvement, the predicted benefit in the

P-A model weakly dominates that in the bargaining model. This reflects the advantages of

principal status relative to the more egalitarian outcomes familiar in bargaining solutions.

Process improvement efforts generate societal benefits that in a bargaining outcome will

be partially shared along the chain, so the private gains to a buyer for such efforts will be

less than she expects if she anticipates keeping all the benefits for herself.

Consistency with business practice

Cost reduction efforts in one’s direct supplier is common business practice, and is consistent

(under the stated conditions) with both the P-A and bargaining intuition. The biggest

difference between these approaches concerns investments in competing suppliers, which
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in a complete information setting is supported (again, under the stated conditions) by the

bargaining approach but not by the P-A approach. In this, the bargaining predictions

are more consistent with industrial practice (as described to the author in a series of

interviews with supply chain managers), in which the development of alternative suppliers

for key inputs is common practice. Supply chain managers interviewed by the author

explained that a strong supply alternative strengthened one’s hand in bargaining, and lack

of an alternative (that is, a monopolist supplier) would result in the supplier getting more

of the potential surplus. That is bargaining power is driven, in part, by ones next best

alternative. This is consistent with bargaining theory and the intuition developed here,

and with Brett’s (2001) identification of alternatives as the key driver of bargaining power

in global business negotiations.

The recommendation to expand the approved supply base is also consistent with P-A

intuition, but only with incomplete information and for different reasons. In theoretical

treatments of auctions under incomplete and asymmetric information (c.f. Myerson 1981,

Krishna 2002) adding more bidders has the advantage of driving supply prices down as each

bidder strategically considers what it will take to win the auction, which in an incomplete

information setting is an extreme value (low bid) statistic over all bidders. So, more bidders

(even beyond two) is always better from the perspective of the buyer. This consideration

is moot in a complete information setting where the optimal “auction” design reduces

to the principal making a single take-it-or-leave-it offer to the efficient supplier at their

indifference point, and alternative suppliers are irrelevant. Industrial practice reflects both

of these intuitions, with some additional nuances. If a buyer is uncertain of costs it makes

sense to get bids from more than one supplier, for its information revelation advantages.

While theoretically it can be beneficial to continue to add bidders indefinitely, in practice

the overhead of processing bids will keep the numbers low. If a buyer is confident of costs

(this was common in testimony to the author) then the potential to use the second best

supplier is used to argue for a “fair allocation more beneficial to the buyer. This was

mentioned specifically by supply chain managers in the author’s interviews and reinforces

bargaining intuition. Another business consideration not addressed by either of these

approaches is the possibility of collusion among suppliers or buyers, which is easier with

small numbers. A modest expansion of the supply base (essentially developing another

supplier, or reducing her costs to be a viable competitor) can reduce the risk of collusion,

especially if the new supplier is in a different geographical region. Current industrial

31



practice combines all of these considerations. In summary, current industrial practice and

intuition (as described to the author) have the following features:

• A buyer’s next best alternative supplier is a significant source of bargaining power, so

developing such suppliers can be beneficial.

• Monopolists anywhere upstream in the chain can extract extaordinary rents, so develop-

ing some competition in that tier will benefit the buyer.

• Information is power in negotiations, so firms go to great lengths to understand what

inputs “should” cost.

• If despite those efforts cost information remains incomplete, then having more bidders

for a contract has information revelation advantages.

• Practicality demands a limited number of bidders.

• When collusion is suspected, spreading the bidders out (geographically for example) may

reduce that risk.

The model here, which assumes complete information and horizontal competition (no

collusion) is consistent with the first three of these. The model can anticipate the effects

of collusion on profits to all parties in the chain by assuming the colluding actors are

present in negotiations as one single firm. However, we do not explicitly consider when

such collusive sets will be stable or, given stability, how internally they would divide the

total profit to firms in the set. An assumption of complete information is surprisingly

consistent with testimony to the author, which came primarily from large mature firms

who go to great lengths to understand the cost structure of their suppliers. However, some

of the suppliers the author spoke with were more skeptical of buyers’ knowledge. We will

say some more about incomplete information in section 7 below.

The BP solution allows us to predict the distribution of profits between two tiers in an

m × n supply system. In the next section we concatenate several of these systems into

longer supply chains and investigate the distribution of profits along the chain as a function

of the degree of horizontal competition in each tier.

6. Multi-echelon bargaining chains

Having provided a solution for general m × n two-tier systems, we can link these up to

model supply chains with an arbitrary number of tiers downstream of the commodity
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inputs. Because many firms have only limited visibility upstream in their own chains, it

is important to understand what longer-chain phenomena may be managerially relevant.

We will assume quantity is fixed, delaying comment on the general case until later in this

section. It is common in practice for tier 0 firms to forecast their sales volumes (based on

product attibutes, market research and assumed price points) prior to requesting quotes

for supply. So, the RFQ’s go out to potential tier 1 suppliers at a specified volume or

volume range.

We need to expand our notation to accomodate supply chains with an arbitrary number

of tiers and an arbitrary number of firms in each tier. Figure 6 shows a generic two-tier

subchain consisting of tiers k (the buyers) and k + 1 (the suppliers). There are mk firms

in tier k. If buyer i is active, she can sell the output for pk−1 (the money received from

the downstream tier k − 1), and if supplier j is active he can buy inputs from tier k + 2

for pk+1. Firm i in tier k has value adding costs ci
k, which without loss of generality we

assume are ordered so that c1
k ≤ c2

k ≤ ..., and likewise for tier k + 1. So, the valuation of

the contract for buyer i is pk−1 − ci
k and the cost of supply for supplier j is pk+1 + cj

k+1.

These mk+1 + mk firms bargain over who will be active and what the transfer price will

be. We denote the number of tiers by nT .

A supplying firm becomes active by being chosen as the supplier to the active buyer. A

buying firm becomes active by competing successfully for supply from the active supplier.

The active pair must be the simultaneous choices of each other among all of the competing

bids. Put into a multi-echelon context, this reflects a fairly extensive set of rounds of

negotiations. Buyers in tier k compete for the services of suppliers in tier k+1 so that they

are better positioned to compete for the contract to supply tier k−1 (moving downstream

to the next pair of tiers, tier k contains the suppliers to the tier k − 1 buyers). This

competition to supply tier k − 1 may change the price pk−1 which will touch off another

round of negotiations between tiers k and k+1 because the firms in tier k now have altered

valuations. Likewise, suppliers in tier k+1 compete with each other to supply tier k in the

usual fashion, wishing to bid aggressively enough to get the contract but to simultaneously

maximize their own profits and have enough surplus remaining to compete successfully

for supply from tier k + 2. Negotiations between tiers k + 1 and k + 2 may change the

price pk+1, to which the tier k to k + 1 negotiations must then adjust. The solution to

this multi-echelon bargaining problem will feature simultaneous stability. That is, transfer

price pk must be consistent with the valuations of the bargaining firms in tiers k + 1 and
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k (at their input and output prices pk+1 and pk−1), but pk−1 must also be consistent with

the valuations of firms in tiers k and k− 1 at their input and output prices (pk and pk−2),

etc.

In business practice it is common for tier 0 to request quotes from tier 1, who first negotiate

with tier 2 over the supply price p1 before supplying their quote to tier 0, so the results

of the p1 negotiations are incorporated into tier 1’s valuation for the contract and their

negotiations over their supply price p0. Tier 2 behaves likewise with their suppliers when

responding to tier 1. Our model captures these interdependencies among the negotiations

along the supply chain. However, for long complex supply chains our model is likely an

idealized limit of practical reality. That is, for very short supply chains (and trivially for

two tiers only) it may be that these tier-wise negotiations continue until they are self-

consistent. But, for longer and more complex supply chains practical considerations likely

truncate the interdependencies somewhere short of complete consistency (for example a

small change in supply price to tier 4 may in practice have little effect on the negotiated

price between tiers 1 and 0). So our model is an idealized limit of the practical, boundedly

rational world of business.

The ability of a firm to capture surplus in negotiations is its “bargaining power,” which is

driven in our model by horizontal competition. The competitive structure in each two-tier

bargaining module is a function of the number of firms and their value adding costs in the

tiers, and the available surplus (determined by the upstream and downstream prices) that

they have to work with. Their negotiations determine the transfer price between them,

which affects the available surplus to neigboring tiers. To develop some intuition in this

complicated interdependent environment we begin with a more transparent model that

admits a closed form solution, treating “bargaining power” as an exogenous attribute of

each firm in a chain of tandem monopolies.

Tandem monopolies with exogenous bargaining power

Consider a supply chain of tandem monopolies (a single firm in each tier) bringing a fixed

quantity of product to market, where each firm in the chain must incur some value-adding

costs. Figure 7 shows such an nT + 1-firm (tiers 0 through nT ) supply chain. Firm 0 has

designed and will launch a product that society rewards with revenues r, but must garner

inputs from firm 1 to do so, who must secure supply from firm 2, etc. Firm nT must

secure raw material inputs costing crm. In addition to its procured inputs, firm k incurs
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value-added costs ck to process its inputs into outputs acceptable to firm k − 1. Because

there is just one firm per tier in this section, we may interchangeably refer to “firm” k and

“tier” k and we also drop the superscript i in the value-adding cost ci
k, since i = 1 always

with tandem monopolies.

Firm k + 1 will incur total cost pk+1 + ck+1 to supply the required inputs to firm k, and

firm k values those inputs at pk−1 − ck. So, if doing business makes sense (that is, if

pk+1 + ck+1 ≤ pk−1 − ck) the transfer price pk between firms k + 1 and k will be in the

range [pk+1 + ck+1, pk−1 − ck]. Where in this range the price ends up depends on the

relative bargaining power between firms k and k + 1. Specifically, negotiations will end

up at pk = λk(pk+1 + ck+1) + (1 − λk)(pk−1 − ck) for some λk ∈ [0, 1]. That price will

divide the total surplus available to tiers k and k + 1 (equal to pk−1 − ck − ck+1 − pk+1)

between the two firms, with the profit to firm k being πk = pk−1 − ck − pk and that to

firm k + 1 equal to πk+1 = pk − ck+1 − pk+1. A simple rearrangement of these expressions

reveals that λk is the fraction of the total available profit that goes to firm k, and fraction

(1 − λk) goes to firm k + 1. That is, λk represents the bargaining power of firm k relative

to firm k + 1. λk = 1 means firm k will extract all of the available surplus and λk = 0

means that firm k + 1 will extract that surplus. Most bargaining models try to predict λ

from more primitive inputs (e.g. horizontal competition, bargaining prowess, impatience,

risk aversion, etc.). Here we use λ as the system primitive, without a detailed exploration

of its source, and predict the distributional consequences as a function of the vector of λ

values in the chain. Below we will look specifically at the situation when bargaining power

is endogenously driven by horizontal competition.

Given any λ ∈ RnT (with elements λk for 0 ≤ k ≤ nT − 1) representing the relative

bargaining strength between each adjacent pair of firms in the chain, we say a price vector

p ∈ RnT +2 is a bargaining solution if

pk = λk(pk+1 + ck+1)+ (1−λk)(pk−1 − ck) = λkpk+1 +(1−λk)pk−1 +λkck+1− (1−λk)ck

for 0 ≤ k ≤ nT − 1, p−1 = r and pnT = crm. That is, a bargaining solution is a set of self-

consistent prices throughout the chain. This definition can be rewritten as p = Bp + C ,

< e−1, p >= r and < enT , p >= crm where < ... > denotes the inner product and ek

denotes the unit vector with a 1 in the kth position. The column vector C ∈ RnT +2 is

given by (C ′ denotes transpose)

C ′ = (0, λ0c1 − (1 − λ0)c0, λ1c2 − (1 − λ1)c1, . . .
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. . . λkck+1−(1−λk)ck, . . . λnT−1cnT −(1−λnT−1)cnT−1, 0), and B is an (nT +2)×(nT +2)

“bargaining matrix” with the form

⎛
⎜⎜⎜⎝

1 0 0 0 . . . 0 0 0
1 − λ0 0 λ0 0 . . . 0 0 0

0 1 − λ1 0 λ1 . . . 0 0 0
0 0 0 0 . . . 1 − λn−1 0 λn−1

0 0 0 0 . . . 0 0 1

⎞
⎟⎟⎟⎠ .

Note that the row sums of B equal 1, so that B has the structure of a transition matrix

for a Markov chain with nT + 2 states, which we label states −1 to nT . States −1 and nT

are absorbing, and constitute two different recurrent classes. There may be more recurrent

classes in B, depending on the λ values. The following proposition leverages known results

for such transition matrices to characterize bargaining solutions. All proofs are in the

appendix.

Proposition 7: The following are equivalent:

a) There exists a unique bargaining solution.

b) There are exactly two recurrent classes in the bargaining matrix B.

c) There do not exist indices i and j with 0 ≤ i < j ≤ nT − 1 such that λi = 1 and λj = 0.

�

We will provide the intuition behind Proposition 7 in the discussion following the next

result, which shows how the unique solution in profits and prices can be computed in

closed form.

Proposition 8: If the bargaining solution is unique, then the unique associated profit

vector can be computed from:

πk =
βk∑nT

j=0 βj
(r −

nT∑
j=0

cj − crm) 0 ≤ k ≤ nT

where

βk =
(
ΠnT −1

j=k λj

)(
Πk−1

j=0 (1 − λj)
)

and the unique bargaining solution p ∈ RnT +2 can be generated from p−1 = r, pk =

pk−1 − ck − πk for 0 ≤ k ≤ nT . We define the product Πb
j=aλj to equal to one if b < a. �
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Define πtot to be the total potential surplus generated by the chain, that is πtot = r −∑nT

k=0 ck − crm. If there is a unique bargaining solution, then all firms will share some

portion of the total surplus. The profit to firm k is proportional to βk, which is a function

of the total bargaining strength upstream of firm k (upstream strength in negotiations

will lower the input price that buyers pay for goods) and the total bargaining weakness

downstream of k (downstream weakness will raise the output price that suppliers receive for

goods). If the basic Nash bargaining model is invoked between each pair of firms (λk = 1/2

for all k), then βk = (1/2)n for all k and πk = πtot/(n + 1); that is all firms (0 through

nT ) share the total potential chain-wide surplus equally. However, with asymmetrical

bargaining power the profit to firm k can depend on the bargaining strength of firms far

removed from k in the chain. In fact, if λj = 0 for any firm j upstream of k, or if λj = 1 for

any firm j downstream of k, the profits to firm k will be zero. We illustrate why this is true

using Figure 8. In Figure 8a we show the consequences for the rest of the chain when firm

2 has absolute bargaining power (λ2 = 1) . In this case p2 = p3 +c3, that is firm 2 bargains

firm 3 down to its zero profit position. Suppose all upstream pairs involving firms k ≥ 3

feature λk values strictly between zero and one. Then, these firms will share any available

surplus, meaning each will be strictly profitable as long as the total surplus available to

them is strictly positive. In fact, each firm k ≥ 3 will be strictly profitable as long as the

total surplus available to that subchain (which is p2 −
∑9

j=3 cj − crm) is strictly positive.

But, since λ2 = 1 any time firm 3 enjoys a positive profit it will be taken by firm 2 via a

lowering of the input price p2. The only possible self-consistent end to these negotiations

is for firms 3 and above to get zero profits and for firms 2 and those downstream of firm

2 to share the surplus πtot, as shown in Figure 8a. Figure 8b illustrates the fact that this

situation does not change if some firm (firm 6 say) upstream of firm 2 also has complete

bargaining power (λ6 = 1). Firm 6 will guarantee that all firms k ≥ 7 make no money, but

firm 2 will guarantee that the subchain of firms 3 through 6 also makes no money. Only

the most downstream λk = 1 matters. All upstream bargaining power is wasted for the

firms that have it. They cannot capture any rent. We summarize this as follows.

• If there is a unique bargaining solution and for any k, firm k has complete bargaining

power (λk = 1), then all upstream firms will make zero profit. Letting k∗ denote the most

downstream firm with complete bargaining power, then firms k∗ + 1 to nT will have zero

profits, and firms 1 to k∗ will share the potential surplus πtot.
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The same logic applies, in mirror image, if any firm has no bargaining power (λk = 0),

as shown in Figure 8c. Note again that multiple firms with no bargaining power do not

change anything, the most upstream firm with no power pre-ordains that all downstream

firms make zero profit.

• If there is a unique bargaining solution and for any k, firm k has no bargaining power

(λk = 0), then all downstream firms will make zero profit. Letting k∗ denote the most

upstream firm with no power, then firms 0 to k∗ will have zero profits, and firms k∗ +1 to

nT will share the potential surplus πtot.

Figure 8d shows the solution if some downstream firm has no bargaining power, while a

firm further upstream has complete bargaining power (recall there is still a unique solution

in this situation). The chain separates into zero profit subchains on the upstream and

downstream ends, and the “middle” firms share the potential surplus. Again, it does

not matter if we have several nested sets of firms with this configuration, only the most

downstream λk = 1 and the most upstream λk = 0 matter.

• If there is a unique bargaining solution and firm i is the most upstream firm with λi = 0

and firm j is the most downstream firm with λj = 1, then if i < j firms 0 to i and firms

j + 1 to nT will all make zero profits, and the potential social surplus πtot will be shared

by firms i + 1 to j.

Finally, Figure 8e shows what happens when the bargaining solution is not unique. For

this to happen, there must be a downstream firm with complete bargaining power and an

upstream firm with no bargaining power. In that case, the middle subchain between these

two firms will make zero profits and the upstream and downstream subchains will share the

social surplus πtot, but there are an infinite number of bargaining solutions that achieve

this. For example, in the special case of ck = 0 for k = 0 to nT so πtot = r−crm, the prices

along the middle (zero profit) subchain (which will all be equal) can be any p ∈ [crm, r]

and the downstream subchain profits will total r − p while the upstream subchain profits

total p − crm.

Complete bargaining power (λ = 1) or no bargaining power (λ = 0) are extreme situations,

in that they “separate the chain” and make one portion independent of another, regardless

of how rich the other side of the divide is. For example, λk = 1 implies that firm k + 1
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must give up all profit to firm k, and has no power to use firm k’s valuation of the contract

(pk−1 − ck) in negotiations. That is, pk = pk+1 + ck and is independent of pk−1. Likewise,

λk = 0 means that firm k must give up all potential profits to firm k +1, so pk = pk−1− ck

is independent of pk+1. In the absence of absolute power (or weakness) separating the

chain the bargained prices are unique, because a change in price at one part of the chain

must ripple through all tiers, which is disallowed by the fixed endpoints (revenues r and/or

the raw material costs crm).

Also, from Proposition 8, firm k may enjoy a very strong bargaining position with her

neighbors (λk is high) but if a firm further upstream has very low bargaining power or a

firm further downstream has very high power then firm k may be bargaining over just a

small amount of the total surplus. That is, there can be profit bottlenecks that prevent

profits from flowing to entire subchains, so that a firm may believe it is very competent in

its negotiations and is getting the best deal it can from its neighbors (which it is), but they

can be bargaining locally over a greatly diminished potential surplus because the majority

has been siphoned away at a remote part of the chain. This is important because in many

applied supply chain contexts firms bargain closely and carefully with their neighboring

tiers, but have much less knowledge about remote tiers. Yet, it may be at remote tiers

that the major influences on their profits are exercised.

The analysis in this section proceeded as if the λ values were system primitives, unchanging

even if the potential surplus being bargained over changes. This is unlikely to be the case

for horizontal competition as a driver of bargaining power because with different value-

adding costs the viability of different coalitions of buyers and suppliers (and hence the

degree of horizontal competition) is a function of the available surplus. However, we will

see in the next section that the intuition generated here remains valid.

Bargaining power driven by horizontal competition

We now consider multi-echelon bargaining chains with an arbitrary number of tiers (nT )

and an arbitrary number of competing firms in each tier (mk in tier k), focusing on hor-

izontal competition as the sole driver of bargaining power. We continue to assume that

quantity is fixed and that firms bargain over transfer prices along the chain. We use the

BP solution for each two-tier (mk+1×mk) subsystem, which when quantities are constant

is easily stated: The efficient (lowest value adding costs) firms will get the contract at a
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transfer price of

pk =
1
2
{(pk+1 + c2

k+1) ∧ (pk−1 − c1
k) + (pk+1 + c1

k+1) ∨ (pk−1 − c2
k)} (1)

where p0 = r and pnT = crm. Note that only the two most competitive firms in each tier

matter, so that in terms of its solution a general mk+1×mk bargaining module reduces to

the 2 × 2 module consisting of its most efficient firms. This is a consequence of complete

local information and the bargaining context, because the potential surplus and the next

best alternative to any agreement are completely determined by the two most efficient

firms in each tier.

An intuitive feel for the BP bargaining solution can be gained by considering the different

possible competitive structures, as shown in Figure 9. To make this figure transparent, we

have defined r̃i = pk−1 − ci
k, the “net revenues” or total willingness-to-pay for the contract

by the ith most efficient buying firm in tier k. Likewise, we have defined c̃j = pk+1 + cj
k+1,

the “total cost” of supply for the jth most efficient firm in the supplying tier k +1. In this

abbreviated notation, the BP price is

pk =
1
2
[
(r̃1 ∧ c̃2) + (r̃2 ∨ c̃1)

]
.

Note that buying firm i and supplying firm j can only viably contract with each other

if r̃i ≥ c̃j, leading to four different possible competitive structures as shown in Figure 9.

The left hand side labels the cases A through D and gives the conditions under which

they exist. The middle graphic section visually illustrates the competitive contexts by

showing the viable buyer-supplier pairs being linked by an arc, and showing the firms

that influence price as shaded boxes. The dotted line in case D indicates that the price

is the same whether or not r̃2 = pk−1 − c2
k ≥ pk+1 + c2

k+1 = c̃2. The right hand side in

Figure 9 gives the BP price in each case. For example, case C is essentially a 2× 1 system

because while r̃1 ≥ c̃2 ≥ c̃1 (so the efficient buying firm can feasibly contract with either

supplier) we also have r̃2 ≤ c̃1 ≤ c̃2 so the second best buyer is not viable. The type

of competition (corresponding to the four cases shown in Figure 9) can change along the

chain, as a function of both the system primitives (revenues, value adding costs, and raw

material costs) but also as a function of the local surplus being bargained over (itself a

function of pricing behaviors throughout the chain).

Multi-echelon BP solutions to the system of equations (1) with non-negative profit con-

straints can be generated with the following linear program:
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Min
∑n−1

k=1 xk − yk

subject to

x0 = p1 + c1
1

xk ≥ pk+1 + c1
k+1 for k = 1 to nT − 1

xk ≥ pk−1 − c2
k for k = 1 to nT − 1

yk ≤ pk+1 + c2
k+1 for k = 0 to nT − 1

yk ≤ pk−1 − c1
k for k = 0 to nT − 1

pk = 1
2
(xk + yk) for k = 0 to nT − 1

p−1 = r

pnT = crm

pk−1 − c1
k − pk ≥ 0 for k = 0 to nT .

In any optimal solution to this linear program xk = (pk+1 + c1
k+1) ∨ (pk−1 − c2

k) and

yk = (pk+1+c2
k+1)∧(pk−1−c1

k). Hence, pk will be correctly computed. The first constraint

recognizes that a monopolist occupies tier 0 (so c2
0 is essentially infinite), and the last set

of constraints ensures that all firms make non-negative profits. For general problems

uniqueness can be inferred from the solution to the LP in the usual manner, but we can

be more definitive with specific problem structures, as we will show below. We first show

that a multi-echelon BP solution will exist.

Proposition 9: If there is available social surplus, that is if r −∑nT

k=0 c1
k − crm ≥ 0, then

a multi-echelon BP solution will exist. �

If there is any way to do profitable business a BP solution will exist for the multi-echelon

bargaining chain. In some cases the solution is guaranteed to be unique, driven as we

might expect by conditions on the level of competitiveness within tiers throughout the

chain. Define Δck = c2
k − c1

k to be the degree of competition in tier k (the difference in

value adding costs between the most efficient and second most efficient firms in the tier).

The next proposition states that if Δck is decreasing in k then case B is impossible and the

BP solution is unique. The intuition is that with the cost advantage of the efficient firm

declining as we move up the supply chain, we will never be in a situation such as B with

strong supplier advantage relative to the buyers. Then, by eliminating case B we preserve

a strict dependence of price pk on price pk+1, so the chain never “separates” and changing
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any price pk implies a strict change in all upstream prices, leading to a contradiction with

fixed raw materials prices. So, there can be only one BP-feasible price vector.

Proposition 10: If Δck is decreasing in k then case B is impossible and the BP solution

is unique. �

Given that many new product supply chains feature sole-sourced suppliers making unique,

product-specific items downstream in the chain, shifting toward more generic inputs up-

stream (eventually becoming substitutable commodities), it is not unreasonable to expect

Δc to decrease going upstream in a chain. Mathematically, the logic in Proposition 10

could be replicated, for the most part, by eliminating case C which would imply a price

propagation going downstream in an analogous manner, but with a monopolist in tier 0

we cannot eliminate case C in all tiers.

The next result gives the structure of the unique BP solution when Δck is decreasing,

which facilitates a simple algorithm for its computation. Recall that the total available

surplus to the chain is πtot = r − ∑nT

k=0 c1
k − crm. A profit vector πk is feasible if πk ≥ 0

for all k, and
∑nT

k=0 πk = πtot. There is a one-to-one relationship between feasible profit

vectors and prices via p−1 = r, pnT = crm and pk = pk−1 − c1
k − πk for 0 ≤ k ≤ nT − 1, or

going the other way πk = pk−1 − c1
k − pk for 1 ≤ k ≤ nT .

Corollary 10.1: If Δck is decreasing in k then there exists a kA such that the unique BP
solution is for the efficient firms in each tier to be active at transfer prices that generate

firm profits as follows:

a) πk = .5(c2
k − c1

k) for k > kA + 1, so profits are declining in k in that range.

b) πk = 1
kA+2

[
r −∑kA+1

j=0 c1
j − pkA+1

]
for 0 ≤ k ≤ kA + 1, so profits are equal for all firms

in that range.

c) The unique BP prices can be recovered from pnT = crm and pk = πk+1 + c1
k+1 + pk+1

for 0 ≤ k ≤ nT − 1. Case C holds for pk negotiations when kA + 1 ≤ k ≤ nT − 1 (unless

this is vacuous) and case A holds for all other negotiations. �

The proof of Corollary 10.1 justifies the following algorithm for generating the unique BP
price vector when Δck decreases in k. Because the solution is unique, we simply have to

find a BP-feasible set of prices, and one is guaranteed to be found by considering case A
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throughout, or case C for some set of upstream firms and case A for the rest. Begin by

computing equal profits to each firm π̄ = 1
nT +1 (r−∑n

k=0 ck−crm) in the entire chain (tiers

0 through nT ) and compare to the hypothesized case C profit of .5ΔcnT for the efficient

firm in tier nT . If π̄ ≤ .5ΔcnT then assuming case A throughout the chain is BP-feasible.

If not then set πnT = ΔcnT which pre-ordains transfer price pnT−1. Using that transfer

price, compute what π̄ would be if case A held for tiers 0 to nT − 1. That is, the efficient

firms in each of those tiers would enjoy profits equal to

π̄ =
1

nT

[
r −

nT−1∑
j=0

c1
j − pnT−1

]
.

Compare π̄ to the case C profit for tier nT − 1 (.5ΔcnT−1). If π̄ ≤ .5Δcn−1 then setting

profits equal to π̄ for tiers 0 through nT − 1 is BP-feasible. If not, continue moving

downstream, at each tier comparing the case C profits Δck to what the profits would have

to be if case A held for tiers 0 to k. In the end, either a point will be reached where

case C gives way to case A, or case C will continue to hold throughout. In any event, a

BP-feasible profit and price scenario is generated, which by uniqueness is the only possible

solution.

Under the conditions of Corollary 10.1 if there is so little total surplus, or the second best

firms in each tier are so inefficient, that all negotiations are esssentially between bilateral

monopolies then the total surplus is divided evenly throughout the chain. This is equiv-

alent to the tandem monopolies model with λk = .5 for all k. However, if there is viable

competition in any tier, it will be in the upstream tiers since by assumption competition

becomes more intense as we move up the supply chain (Δck declines). So, upstream we

are most likely to be in case C in which the transfer prices are determined by supply-side

competition. This may remain the case for all tiers but since Δck is increasing going down-

stream, there may also be a downstream negotiation where the cost separation between

the efficient and inefficient firms is too large for the remaining surplus to cover. In that

case, with no viable alternatives for either the buyer or seller, the negotiations are between

firms of equal bargaining power and negotiations end with equal profits to both. Since the

cost differences between the efficient and inefficient firms increase going downstream, once

the bilateral monopoly point is reached it is maintained for all downstream negotiations.

By assuming that competition increases going upstream, we are assuming that the down-

stream firms have a competitive advantage and profits move that way (that is profits will

be non-decreasing moving downstream in the chain).
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Two examples are shown in Figure 10, where nT = 6 and the value-adding costs are

shown in the boxes corresponding to the efficient and second best firms in each tier. Note

that the value-adding costs vary considerably, but Δck decreases systematically in both

examples, allowing us to easily compute the unique BP solution as above. In the Figure

10(a) kA = 1 so case C holds for the negotiations over pk for 2 ≤ k ≤ 5 and the profits

to firms 3 through 6 are just .5Δc. The second best firms in tiers 0 through 2 are not

competitive, so the efficient firms in these tiers bargain as monopolists and end up dividing

the remaining surplus equally. For example, in the negotiations between tiers 1 and 2

over the transfer price p1, note that the final prices p0 − p2 = 304.7 − 242 = 62.7 do

no provide enough surplus to cover the subchains incurring c1
1 + c2

2 = 12 + 53 = 65 or

c2
1 + c1

2 = 61 + 12 = 73, leaving essentially a negotiation between two monopolists with

no alternative outlets (case A). Figure 10(b) features the same parameters as Figure 10(a)

with the exception of the second best firms in tiers 1 and 2, which have improved their

performance. Now the negotiations result in final prices satisfying p0−p2 = 296−242 = 54

which will cover c1
1 + c2

2 = 12 + 33 = 45 (so that alternative subchain is viable) but will

not cover c2
1 + c1

2 = 51 + 12 = 63 (so that subchain is not viable), implying case C. In

moving from Figure 10(a) to 10(b), c2
2 has decreased more than c2

1. The efficient firm in

tier 1 loses some power relative to tier 0 because of the increased competition in her own

tier, but gains power relative to tier 2 because of the increased competition among her

suppliers. In the end, her profits do not change much, as she is able to extract profits

from her tier 2 supplier (who suffers significant profit losses) and pass them on to the

monopolist, who naturally does better with the increased competitiveness in the chain.

Note that the profits of the previous (Figure 10a) case C firms do not change between

scenarios, since these prices are completely determined by supply-side competition and

independent of downstream prices. If c2
k for each of these firms decreased all the way to

c1
k, so that Δck = 0 (perfect competition), then these firms would make zero profit and

that entire subchain would supply goods at marginal cost to the downstream subchain. If

Δck = 0 for 1 ≤ k ≤ nT then the supply chain would feature perfect competition with

zero profit suppliers delivering product to the tier 0 monopolist, who would enjoy all the

surplus.

Varying competitive intensities and non-unique solutions

In the analysis of tandem monopolies we saw that loss of uniqueness was associated with a

disconnect between one transfer price pk and its neighbors (upstream pk+1 and/or down-
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stream pk−1). There a separation of the pk negotiations from upstream and/or downstream

prices occured only in the extreme cases (λk equal to 0 or 1), so complete (or zero) bar-

gaining power and price separations were synonymous and non-uniqueness occured only

when we had complete power downstream and no power upstream.

When bargaining power derives from horizontal competition we can have a separation

of pk from pk+1 or pk−1, or both, without complete bargaining power. For example, in

Figure 9 it can be seen that complete bargaining power by firm k holds in case C with

Δck+1 = c2
k+1 − c1

k+1 = 0, because then pk = pk+1 + c1
k+1 so firm k extracts any possible

profit from firm k +1. Similary, firm k has zero bargaining power in case B with Δck = 0,

in which case firm k gives up all possible profit to firm k + 1. But we can have price

separations without complete power because whether or not Δck+1 = 0 in case C pk is

driven by supply side competition and will be independent of pk−1, and likewise in case

B pk is independent of pk+1. In either of these two cases we have a separation of the

profit flows, and drawing on our previous intuition we expect non-unique solutions if we

have case C downstream and case B upstream. But this can easily happen because the

tier 0 firm is assumed to be a monopolist, so with any viable competition in tier 1 we

automatically have case C for the price p0 negotiations. If there is another monopolist,

or a tier with very weak competition, anywhere upstream we would expect a non-unique

profit distributions along the chain. We will shortly demonstrate this with an example.

Also, when bargaining power is driven by horizontal competition the relative powers in

neighboring price negotiations are not independent of each other (in our tandem monopoly

terminology, λk cannot be adjusted independently of neighboring λ values). For example,

Δck+1 = 0 gives firm k bargaining power due to intense supply side competition, but also

implies that firm k+1 has little bargaining power in negotiations over pk+1. Intuitively, case

C in negotiations over pk will likely be accompanied by case B for negotiations over pk+1.

It is worthwhile for the tier 0 monopolist to consider the possibility of non-unique profit

distributions because none of the alternative solutions has a more compelling economic

justification than the others, yet the monopolist’s profits can vary signficantly among

them.

For example, consider the cost structure in Figure 11(a), where the total social surplus to

be bargained over is 20, and the second best firms in each tier are so inefficient that they

are irrelevant. Case A holds throughout and there is one unique BP solution with all firms

sharing the social surplus equally. In Figure 11(b) the second best firms in each tier (except
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tier 4) have greatly improved their operations and can potentially be competitive. We show

two feasible profit vectors for this case. In both of these, case B holds for negotiations

over p3 and case C for those over p4, and we expect either the tier 0 monopolist or the

strong tier 4 firm to enjoy high profits. This is demonstrated in the two BP-feasible

solutions shown. Managerially, and consistent with the intuition developed previously, the

tier 0 monopolist may be very pleased with her bargaining situation because she is getting

closely competitive quotes from her immediate tier 1 suppliers, giving her confidence that

she has found the market price for inputs and can do little better. But if there is a profit

bottleneck upstream because of a strong firm there, even if quite distant in the chain, the

tier 0 monopolist may be bargaining over a small fraction of the total available surplus.

Further, a remote bottleneck can alter the local surplus sufficiently to change the local

bargaining context (from case C to case A, for example, as local surplus is squeezed and

only the most efficient firms are viable). So, the upstream firm both reduces the surplus

available to the tier 0 firm and also reduces the degree of supply side competition that firm

can leverage forcing more sharing of the already reduced profits.

In those cases, there may be alternative feasible multi-echelon bargaining solutions that

are consistent with bargaining logic and could greatly benefit the tier 0 firm. If via a

supply chain audit the tier 0 monopolist recognizes this, she has at least two alternatives.

She could bargain more aggressively over p0, confident that as prices ripple back there is

plenty of surplus to cover her demands. Or, if possible, she could work to improve the

alternative supplier in the distant tier (tier 4 in Figure 11b), breaking the profit bottleneck

and enjoying higher profits as a result. For example, in Figure 11(c) when all inefficient

firms have value-adding costs of 15 the solution is unique with the tier 0 monopolist

enjoying profits equal to her best outcome among the non-uniqe examples in Figure 11(b).

If competing suppliers continue to improve operations throughout the chain so that each

tier beyond tier 0 features perfect competition (Δck = 0 for 1 ≤ k ≤ nT ) then as suggested

above that subchain will be comprised of zero-profit firms supplying a very profitable tier

0 monopolist (Figure 11d).

Consistency with business practice

In a series of conversations between supply chain managers and the author, most tier

0 respondents interviewed said they stay in close contact with and monitor their key

tier 1 suppliers, but have more limited visibility upstream. Some upstream integrity is

maintained by an approved vendor list (AVL) for tier 2 firms and some firms also take
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explicit steps to monitor upstream sources for key components (that is, firms use a mixed

model where they deal with their direct supplier but also with a few higher tier suppliers

of key, strategic components). But, it costs time and resources to maintain visibility

upstream so this effort is limited to differentiating components and key technologies. Why?

In addition to the overhead costs already mentioned, some firms said that their tier 1’s

understood and were better at navigating their local markets (where most low cost tier 2

and 3 suppliers will be located), so it is better to leave that in their hands. The decision to

scrutinize, or not, higher tiers in the supply chain is a rational risk/return trade off. Firms

carefully decide where they want to invest in upstream visibility based on a cost/benefit

calculation. It is no secret that the tier 0 firm can get hurt by leaving the management

of higher tier suppliers to others (one respondent described a situation where a higher

tier supplier made bad parts leading to a massive recall). So, there is some risk that

everybody recognizes. But, especially in longer chains, trying to continuously monitor

complete whole-chain performance would be infeasible or prohibitively expensive. Some

things have to be managed in a more decentralized fashion.

Asked specifically what would create a profit bottleneck upstream in the chain, and what

they could do about it, managers suggested that monopolists anywhere in the supply

chain will enjoy robust rents and cultivating a competitor to bid against the monopolist

will reduce these rents, consistent with the multi-tier BP solution. In a large energy

equipment company, it was recognized that a supplier two tiers away was enjoying very

high margins due to inefficient competition. The company worked to upgrade a second

supplier to compete with the primary supplier and drive prices down. Another division

in the same company chose to purchase a high-margin supplier to accomplish two things.

First, the supplier’s service (large-scale precision machining) was strategically critical and

purchasing the company secured supply. Second the supplier also supplied a competitor,

so purchasing it left the competitor with less competition among her suppliers (reducing

her profits).

Variable quantities with more than two tiers

The above results suggest no loss of efficiency in either two-tier supply chains negotiating

over price and quantity, or multi-tier chains negotiating over price only. In theory the logic

supporting this prediction (from any inefficient quantity all parties can move to an efficient

quantity and divide the extra surplus so all are strictly better off) remains operative
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even for long, complex supply chains. Practically, however, a thorough investigation of

the quantity-cost relationship for each potentially active firm in a long chain may be

unrealistically expensive in time and energy. This is a form of “bounded rationality” in

negotiatied outcomes that implies that all cost-quantity pairs may not be considered in

chain-wide negotiations. We expect these practical issues to be more serious the longer and

more complex the chain is. As an example of how complicated optimality can be, consider a

variable quantity model in which a tier features suppliers’ costs as shown in Figure 12. The

buyer facing these suppliers would experience a different competitive context at different

quantity levels. At low quantities the suppliers are very competitive and the buyer will

enjoy a lot of bargaining power in a case C situation (recall Figure 9). However, at higher

quantities there is a lot of cost separation between the suppliers and she is likely to be in

a case A situation of bilateral monopoly. Clearly, she might prefer lower quantities and

case C, although this may not be chain-wide efficient. That is, myopic preferences may

be contrary to chain-wide efficiency, so simple local explorations in contracting may miss

the globally efficiency quantity entirely. In Figure 12 the first supplier is always lower cost

(more efficient) and so will likely end up with the contract regardless of quantity, but in

more complex situations the cost curves may cross. Then, as quantities change different

firms can end up with the contract, further complicating the situation and increasing

the probability (in a boundedly rational world) that an inefficient firm ends up with the

contract.

The supply chain managers the author consulted for this paper generally described a

model of tier-wise negotiations over a prescribed quantity, and many professed to know

their immediate suppliers very well but had less knowledge of remote tiers. The tier-wise

bargaining model over a fixed quantity studied here is consistent with that testimony.

In those instances where quantity was not fixed, firms still did not explore the entire

quantity-cost curve. For example, one supply chain manager reported asking for tiered

pricing (asking for quotes at several different quantity levels) when they did not know

what quantities were appropriate. That is, they reduced the search to a few discrete

points. Analyzing the efficiency of the firms and quantities chosen when all costs and

revenues are quantity-dependent in long chains will require an extra level of complexity,

and will have to be attentive to boundedly rational realities in the decentralized negotiating

process.
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7. Asymmetric Information

Theoretical models of bargaining with asymmetrical information have yet to reach a sat-

isfying level of representation. Information asymmetries are predominantly assumed to be

one-sided (only one agent in bilateral negotiations has private information). The unin-

formed partner is commonly designated the principal in a P-A setting, granted by assump-

tion the special priviledge of declaring the rules of the game by which the other parties

must play. It is assumed that all parties share the same beliefs about everybody else’s

valuation of the contract, an unlikely circumstance. A Baye’s Nash equilibrium solution

concept is invoked. Because of the way the principal must declare the rules of the game

to optimally overcome her information disadvantage, it is common for parties to wish to

re-open negotiations and change the outcome ex post. But, it is assumed they cannot do

this. Clearly this is not representative of most actual supply chain negotiations.

There is little laboratory evidence (that the author is aware of) about actual thoughts,

strategies and behaviors in bargaining with asymmetrical information. Anecdotal observa-

tions include deliberate attempts to influence others’ beliefs about one’s true valuation via

a variety of tactics (bluffing, or making the first offer to anchor the discussion at a desirable

point). Also, if a supplier really does not know anything about a buyer’s valuation, he

may adopt the cost-plus strategy of being satisfied to cover his costs plus a good margin,

without worrying too much about how much the buyer is making. There is a need for

more laboratory and field work to ground our models in realistic behaviors.

For all of its modeling deficiencies, however, the theoretical literature provides two qualita-

tive insights that have intuitive appeal and some empirical validity. The first is the notion

of “information rents,” meaning that information is power in bargaining and the lesser

informed party will likely give something up to the better informed party. The second

intuitive take-away is a potential loss of efficiency in bargaining with asymmetrical infor-

mation. The wrong firm may end up with the contract, or negotiations may fail to close

even in cases where surplus is available. Both of these conclusions (information as power

and an increased probability of failure to close a deal with asymmetrical information) have

some experimental support (c.f. Hagel and Roth 1995 and references there).

Here we briefly review the theoretical origins of these intuitive results, and present some

hypotheses and (speculative) conclusions for supply chain managers. Consider negotiations

between agents i and i + 1 in the chain, and define the value of the contract to agent i by
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vi = pi−1−ci (the net benefit for having the contract, so agent i will pay no more than this

sum to close the deal) and the value of the contract to agent i + 1 by vi+1 = pi+1 + ci+1

(the cost incurred by having the contract, so the negotiated price must at least equal this

value). Each agent knows her own valuation but is uncertain about the valuation of her

negotiating partner. In a complete information setting individually rational people will

close a deal if vi < vi+1, will not close if vi+1 > vi, and will be indifferent if vi = vi+1.

With incomplete information we hypothesize that there will exists a γi ≥ 0 such that trade

is likely to occur between agents i and i+1 if vi ≥ vi+1 +γi, but not otherwise. We further

hypothesize that for fixed real valuations γi will increase the more the supports of the two

agents’ beliefs intersect (the more uncertain the agents are about each other’s valuation).

If vi �= vi+1 and information is complete we expect γi = 0, but with one-sided or mutual

uncertainty we expect γi > 0. What this means is that when the agents are unsure of each

other’s valuation, they may not trade even if in reality it is efficient to do so. For trade to

occur, the valuation of the buyer must exceed the valuation of the seller by at least γ.

This hypothesis is grounded in theoretical auction and bargaining models with asym-

metrical information. For example, it is well-known that in auctions with asymmetrical

information (c.f. Krishna 2002, Myerson 1981) the buyer optimizes her expected profit

by setting a “reservation price” above which she will not pay, and this is typically lower

than the highest possible valuation for the supplier, denying trade in some instances even

when ex-post both parties would have preferred to trade. An intuitive way to see this is

to consider two agents who have one and only one chance to submit sealed bids, and trade

occurs if and only if the bid from the buyer is higher than the bid from the seller. Neither

agent is likely to submit their true indifference point (which would guarantee them zero

utility) but will strike some tradeoff between their expected utility (with respect to their

beliefs about the other’s valuation) and the possibility that negotiations break down (c.f.

Chatterjee and Samuelson 1987 for such a model). While this one-shot sealed bid mecha-

nism is a poor model of actual bargaining situations, the intuition extends to more general

models. In fact, it is well-known (c.f. Myerson and Satterthwaite 1983, Muthoo 1999)

from bargaining theory that if the supports of the beliefs (of each agent about the other’s

valuation) intersect on a set of positive probability, then no possible ex-post efficient (that

is, trade occurs every time the valuations justify it) mechanism exists. Sometimes, trade

does not take place simply because of the information asymmetry and the self-interest of

each agent, regardless of which specific bargaining format one adopts.
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To understand the role of the proposed γ values more completely, and how they vary

with the beliefs of the agents, we briefly review some classical results in bargaining theory.

Consider any bargaining game, whether it is one-shot or alternating offers or anything

else, with a non-cooperative Baye’s Nash solution concept. From the Revelation Principle

(c.f. Myerson 1979) we know that we can replicate the outcomes (whether or not trade

occurs, and the transfer price if trade takes place) that can arise in any Baye’s Nash

equilibrium in the game by using an incentive-compatible direct-revelation mechanism

(rules of play) in which each agent has an incentive to report her true valuation into the

process. From Myerson and Satterthwaite (1983) we know when trade will take place in

any such mechanism, making the results very general.

For example, suppose agent i believes agent i+1’s valuation is distributed over an compact

interval [ai
i+1, b

i
i+1] with distibution function F i

i+1 and density f i
i+1 (densities are assumed

positive over their support). A similar situation obtains for agent i + 1, who harbors

beliefs about agent i captured in a distribution function F i+1
i and density f i+1

i on support

[ai+1
i , bi+1

i ]. Define the “virtual valuation” for agent i by cvi(vi) = vi − 1−F i+1
i

(vi)

fi+1
i (vi)

and for

agent i + 1 by cvi+1(vi+1) = vi+1 + F i
i+1(vi+1)

fi
i+1(vi+1)

. These quantities are familiar from auction

and mechanism design theory. In the bargaining setting, Myerson and Satterthwaite show

that any individually rational, incentive compatible bargaining process must satisfy

∫ bi+1
i

ai+1
i

∫ bi
i+1

ai
i+1

[cvi(vi) − cvi+1(vi+1)]t(vi, vi+1)f i+1
i (vi)f i

i+1(vi+1)dvidvi+1 ≥ 0

where t(vi, vi+1) is the probability that trade occurs if the downstream agent has value vi

and the upstream has value vi+1 for the contract. As is now familiar in the mechanism

design literature, our natural intuition regarding what “should” happen is intact if we

replace actual valuations with virtual valuations. For example, in the above we might

choose to trade by setting t = 1 if and only if cvi ≥ cvi+1, ensuring the mechanism satsifies

the stated condition. Myerson and Satterthwaite go further to show that if the virtual

values are monotone and we want to adopt a mechanism that maximizes the expected

gains from trade, we do so by setting the above double integral to zero, and that this

can be accomplished using a probability of trade defined as follows. Let α be a number

between zero and one, and extend the notion of virtual values by defining

cvi+1(vi+1, α) = vi+1 + α
F i

i+1(vi+1)
f i

i+1(vi+1)
and cvi(vi, α) = vi − α

1 − F i+1
i (vi)

f i+1
i (vi)

.
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For any α we trade if and only if these adjusted virtual values suggest it. That is, set

t(vi, vi+1) = 1 if cvi(vi, α) − cvi+1(vi+1, α) ≥ 0 and zero otherwise. If we find an α ∈ [0, 1]

such that the above double integral is zero and set t as suggested, we have constructed the

trading portion of bargaining mechanism that maximizes the expected gains from trade

over all mechanisms. Note that using this construction, we trade if and only if

vi ≥ vi+1 + α
(1− F i+1

i (vi)
f i+1

i (vi)
+

F i
i+1(vi+1)

f i
i+1(vi+1)

so, setting γi = α(1−F i+1
i

(vi)

fi+1
i

(vi)
+ F i

i+1(vi+1)

fi
i+1(vi+1)

) we trade if and only if vi ≥ vi+1 +γi. Hence, our

hypothesis is consistent with the most general theoretical results available for bargaining

processes under asymmetric information.

To make these concepts more concrete, let “b” (for “buyer”) denote the downstream agent

(agent i), and “s” (for “seller”) denote the upstream agent (agent i+1). Let U represent the

uniform distribution and suppose that vs ∼ U [as, bs] and vb ∼ U [ab, bb]. Then, cvs(vs, α) =

(1+α)vs −αas and cvb(vb, α) = (1+α)vb −αbb and we will trade if and only if vs ≤ vb −γ

where γ = α
1+α (bb − as). So, vb must exceed vs by a margin that increases the greater the

span (bb − as) of the supports of the two belief distributions. This is the second part of

our hypothesis.

Tedious but straightforward calculus shows that the double integral above equals a cubic

equation in γ. Specifically, I = k3γ
3 +k2γ

2 +k1γ +k0 where k3−2/3; k2 = (3/2)(as − bb);

k1 = b2
b −a2

b −2as(bb −ab); and k0 = (1/3(b3
b −a3

b)− (1/2)(as + bb)(b2
b −a2

b)+asbb(bb −ab).

As α ranges over 0 to 1, γ ranges over 0 to (bb − as)/2 and we seek a zero of the cubic

equation in that range. If the supports of the belief sets intersect, this zero is unique. The

following table shows the unique γ for several uniform belief distributions:

as bs ab bb γ

0 1 0 1 .33

0 .8 .2 1 .30

0 .7 .3 1 .26

0 .6 .4 1 .23

As the intersection of the beliefs (bs − ab) becomes smaller, so does the required excess

of vb over vs for trade to occur. When the supports do not intersect (bs > ab) trade will

likely occur between rational actors.
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To see how trade may not occur and how parties can experience ex-post regret, it suffices

to consider the theoretical recommendation of acting on virtual values instead of actual

values (the latter being unknown). If a supplier is the principal in an auction, she optimizes

her expected revenues by granting the contract to the bidder with the highest virtual value,

which may not be the firm with the highest actual value (that is, an inefficient firm can win

the contract). If the highest virtual value is negative no trade occurs, even if the highest

actual value is positive (there are potential gains from trade).

What managerial recommendations flow from these hyotheses? With information asym-

metries, as the available surplus at any stage of the chain gets smaller the probability

increases that negotiations will fail. So, if any player in the chain extracts a lot of rent,

it leaves less to bargain over elsewhere in the chain and increases the chance of failed ne-

gotiations. That is, there are benefits for a more egalitarian distribution of profits in the

presence of information asymmetries. Whereas previously this was a natural consequence

of bargaining behaviors, here we see it may have benefits as a conscious strategic choice,

even for players with a lot of bargaining power to exploit.

These hypotheses are based on a principal-agent based theory that will not reduce to what

we know occurs as information gets better (that is, it converges to the empirically weak

P-A predictions as information becomes increasingly complete), and makes a number of

suspect assumptions en route. More work is required to know whether or not the existing

theory of economic exchange with asymmetrical information practically informs supply

chain bargaining contexts.

8. Other supply chain contexts

Assembly and category management

The applied context for our model was a firm developing a new product and initiating the

formation of a supply chain to bring it to market. The BP solution leverages the assump-

tions of a single active firm emerging in each tier, and transfer prices driven by horizontal

competition within each tier. Horizontal competition allows us to employ familiar non-

cooperative machinery in each tier’s subproblem, which are then balanced to generate the

prediction. It’s plausibility is enhanced by maximizing the familiar Nash social welfare

function, which occupies a central place in bargaining theiry. Hence, the BP solution can

be considered an extension of Nash bargaining into the complex territory of small numbers

supply chain negotiations among multiple strategic agents.
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Different supply contexts can suggest different models. For example, another common

context is a retailer stocking several brands of the same product class. The products are

partial substitutes in that consumers may perceive some differentiation among them, yet if

they find one brand stocked out they might choose another. The retailer will pay a whole-

sale price to each brand supplier in exchange for the delivery of some contracted quantity.

In the general case the efficient (consistent with an operations management perspective,

we interpret this as maximizing chain-wide profits and ignore consumer surplus) outcome

will include stocking some positive quantity of several different brands, so more than one

supplier must be active. Further, supplier 1 cannot compel supplier 2 to action without

supplier 2’s consent, and so no single supplier can make a unilateral proposal to the retailer

at the efficient solution. The retailer and supplier 1 still require supplier 2’s cooperation

to effect the efficient outcome. In contrast to the new product scenario with horizontal

competition, the consent of all parties is required to achieve efficiency and a greater degree

of within-tier cooperation is implied.

Another common supply setting is an assembly operation, in which input from each com-

ponent supplier is required to complete a finished product (the inputs are therefore pure

complements). In reality the tier 1 component suppliers are likely to be selected com-

petitively, as in the BP context. However, a pure form model in which all suppliers are

monopolists shares with the retail model the feature that the buyer and any single sup-

plier cannot, by themselves, achieve the efficient outcome. Again, the consent of all parties

is required, suggesting a semi-cooperative horizontal outcome. What sorts of solution

approaches are appropriate for these contexts?

One of the few results that has been robustly confirmed in the experimental record is

efficiency in small numbers bargaining with complete information. So, one approach is

to begin by assuming the efficient outcome and work on how the total surplus might be

allocated in the negotiated result. We will illustrate this approach with an example of a

retail category manager (R) wanting to stock three different brands of a product (Figure

13). The supplier of brand i is denoted by Si.

Let V denote the characteristic function for the cooperative supply chain game, so for

example V (B,S1) refers to the value that can be generated by a coalition consisting of

only the buyer and supplier 1 with no cooperation from any other supplier. We use

G = {B,S1, S2, S3} to represent the grand coalition of all players, so V (G) is the maximal

total profit available to the supply chain. Building on the existing experimental record, we
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assume that V (G) will be achieved and distributed among the three actors. The question

is, how will it be distributed?

As noted in section 4 notions of distributive justice (c.f. Guth 1988) can define focal points

for the parties in negotiations, suggesting an allocation of rewards based on how much value

each firm contributes to the whole. This intuitive concept can take on several mathematical

forms. In one, we might expect player i’s profit as a part of any coalition C to be non-

decreasing in the value they contribute to the coalition, ΔVi(C) = (V (C)−V (C−{i}))∨0.

One might also suspect that if ΔVi(G) ≥ ΔVj(G) then the final profits to player i should

be no less than those to player j. There are at least two solution concepts that satisfy

both of these criteria. One is the well-known Shapely value (Shapely 1953). The second,

newly defined here, will be referred to as the “Distributive Justice” or DJ allocation. The

DJ allocation predicts firm i’s profit to be proportional to ΔVi(G). That is, letting

T =
∑

j ΔVj(G) the predicted profit to player j is (ΔVj(G)/T ) × V (G). As yet no

experimental evidence exists to suggest which of these two, if either, is most predictive

of actual outcomes (except in bilateral monopoly where both reduce to a 50/50 split,

which has robust empirical support).

Both of these solution concepts have problems when mapped into managerial intuition.

For example, the Shapely value does not reduce to what one would naturally assume as

a solution in some special cases. Assume, for example, that supplier 3 actually destroys

value once products 1 and 2 are already being stocked. That is, brand 3 cannibalizes sales

from brands 1 and 2, but has lower margins. We would expect a rational category manager

to exclude supplier 3 from the solution. But, the Shapely value will grant supplier 3 some

fraction of the surplus. The reason is that the Shapely value grants allocations based on

an average over a firm’s contribution to any possible coalition, not just the one that will

be operative at the final solution. So, in this example, if the buyer and supplier 3 can

generate positive profits in isolation (if suppliers 1 and 2 are not present), then supplier 3

adds value to the coalition {R,S3} and will enjoy positive profits in the Shapely forecast.

Or, consider the perfect substitution case (where any supplier can supply full value so

V (B,S1) = V (B,S2) = V (B,S3) = V (G)). In that case, there is no reason for the buyer

to contract with more than one supplier, so one expects two suppliers to be closed out of

any profits. But, the Shapely value will grant all suppliers positive profits, for the same

reason described above. The problem, again, is that the Shapely value grants profits to

players based on their average contribution to all possible coalitions, not just those relevant
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to the actual solution, and so can give uncompetitive (and practially irrelevant) suppliers

positive profits.

However, the DJ allocation also has some questionable managerial implications. While

a value destroying supplier 3 will receive no profit, the DJ predicted profit to the buyer

(stocking products from the remaining two suppliers) is

V 2(G)
3V (G) − V (B,S1) − V (B,S2)

which (depending on how V (B,Sj) interacts with V (G)) can be decreasing with increases

V (B,S1) or V (B,S2) or both. Managerially, a retailer could lose money as a result of cost

reductions in the processes of the either supplier.

More work, theoretically and experimentally, is necessary for these supply contexts. Our

conclusion here is that the appropriate bargaining model may differ for different institu-

tional contexts. A thorough understanding of the institutional context is required to know

what can and cannot be assumed. That is, there is an operational anthropology step

prior to theory building, in which the context is understood sufficiently to build a credible

model of its behavior. Then, a theoretical model can be developed, analyzed and validated

with experimental or field data. Finally, the managerial consequences that follow from the

analysis can be fed back into real supply chains, forming a reciprocal and self-reinforcing

dynamic between theory and practice.

Other extensions

In general the loss of efficiency in supply relations can derive from

a) Potentially profitable negotiations fail to close

b) The wrong firms are placed under contract

c) The wrong quantity is selected

d) Delays are incurred reaching closure

Efficient outcomes can be expected in small numbers bargaining with complete informa-

tion, in contexts simple enough to allow a complete exploration of all possible outcomes.

We have already mentioned that we can lose efficiency in situations with incomplete or

asymmetrical information. We have also alluded (section 6) to a potential loss of efficiency

due to boundedly rational behaviors in complex situations (such as long supply chains with

different cost functions in each potential supplier in each tier). In fact, one suspects that
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these will be the two primary sources of inefficiency in real supply chains. More work is

needed to understand how to manage when both of these issues are present, but endoge-

nously so. That is, it is a conscious choice based on cost/benefit considerations to invest in

understanding (or not) cost structures throughout the chain, and information asymmetries

can be remedied with money and effort. More work is needed to know how to recognize

when problems exist somewhere in the chain, and what to do about it, using only available

information or that which can be garnered at practical cost.

9. Conclusions

We consider the supply chain context of a monopolist bringing a new product to market

through a multi-tier supply chain with horizontal competition among the several firms

in each tier. How does the chain form (which of the potential suppliers in each tier will

be active) and what is the resulting profit distribution throughout the chain? This pa-

per provides a previously unavailable answer to that question. En route we draw some

contrasts between the currently dominant principal-agent (P-A) paradigm and an alterna-

tive bargaining approach to supply chain analysis. The latter has more face validity as a

metaphor for real b-to-b negotiations and has an edge in empirical support as well, yet is

currently under-represented in the supply chain literature. This is an important distinc-

tion because the managerial recommendations following from P-A and bargaining models

can differ significantly. For example, with complete information the bargaining solution

will recommend that a buyer invest more energy in developing competing suppliers (rather

than investing in one’s direct supplier) relative to P-A models of the same competitive

context.

Historical supply chain papers have focused on efficiency and the contract forms that

support it. In the bargaining literature efficiency is naturally expected in small numbers

bargaining with complete information, an expectation that has robust empirical support.

Hence, the bargaining literature focuses primarily on the distribution of the surplus, and

tends to predict more egalitarian distributions of wealth than P-A models, as might be

expected when we do not grant any of the parties the extraordinary powers of a principal.

It is these different distributions of wealth that drive, in part, the different managerial im-

plications from the two approaches. Further experimental evidence is required to validate

or refute these, or alternative, supply chain models.

Given the way real supply chains form in practice, a key component for their analysis is
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the negotiations between two adjacent tiers, each with multiple competing firms. When

we solve this small-numbers bargaining problem, and then concatenate several two-tier

bargaining modules into a longer chain, we see several interesting outcomes. First, there

can be entire sections of the chain (likely the upstream firms) where profits are driven only

by the cost differential between the two most efficient firms in a tier and independent of the

prices or surplus available elsewhere in the chain. Second, there can be profit bottlenecks

that prevent profits from flowing to entire subchains. In that case, a firm may believe it

is very competent in its negotiations and is getting the best deal it can from its neighbors

(which it is), but all local firms can be bargaining over a greatly diminished potential

surplus because the majority has been siphoned away at a remote part of the chain. This

is important because in many applied supply chain contexts firms bargain closely and

carefully with their neighboring tiers, but have much less knowledge about remote tiers.

Yet, it may be at remote tiers that the major influences on their profits are exercised.

Future work includes the experimental validation (or refutation) of our proposed solution

(or alternatives, including non-cooperative and P-A models) for the sorts of small num-

bers bargaining situations found in supply chains, and the development and validation of

solution methods for other supply chain contexts beyond the new product context (for

example, assembly or category management situations). Finally, we should translate our

validated solutions into managerial recommendations for real supply chains.
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Appendix: Proofs of Propositions

Proposition 1: An equilibrium in the suppliers’ problem S→i will exist and all equilibria

will share the following attributes (j∗ denotes the selected supplier):

a) All suppliers j will bid πb
ij = (πM

ij ∧ πM2
s ) ∨ 0 and in particular πb

ij∗ = (0 ∨ πM2
s ).

b) The buyer will choose an efficient supplier, j∗ ∈ E.

c) πs
ij + πb

ij = πM
ij for all viable suppliers, so in particular πs

ij∗ + πb
ij∗ = πM

i .

d) The contracted price and quantity are unique.

Proof: We will prove the proposition by proving the following two claims.

Claim 1: All equilibrium bids will satisfy πs
ij +πb

ij = πM
ij for all viable suppliers (πM

ij ≥ 0).

Claim 2: For any viable supplier (πM
ij ≥ 0) no equilibrium can feature δij < 1 and πb

ij < πM
ij .

To prove claim 1, if πM
ij = 0 then only πs

ij = πb
ij = πM

ij = 0 is feasible, so consider suppliers

with πM
ij > 0. If πs

ij + πb
ij < πM

ij and 0 < δij ≤ 1 then supplier j can maintain πb
ij (and

δ) but strictly increase πs
ij to πM

ij − πb
ij and be strictly better off. So, this leaves the case

where πs
ij + πb

ij < πM
ij and δij = 0. If there is any possible alternative bid that attains

δij > 0 and does not give all profits away to the buyer, the supplier is strictly better off

so the status quo cannot be an equilibrium. If there is no possible bid that can raise δij

above zero, or none that can do so without bidding πb
ij = πM

ij , then supplier j is indifferent

to any bid and by assumption sets πb
ij = πM

ij . This proves claim 1, which proves part (c).

To prove claim 2, if πM
ij ≤ πb

ik for some competitive supplier k �= j, then supplier j is

destined to be either uncompetitive or unprofitable, so is indifferent to any bid and will

bid πb
ij = πM

ij by assumption. So, assume the current bids feature πM
ij > πb

ik for all

competitive suppliers k �= j yet πb
ij < πM

ij and δij < 1. Whether δij = 0 (supplier j is

currently outbid) or 0 < δij < 1 (supplier j is currently tied with others for the most

competitive bid), it is both feasible and strictly beneficial for supplier j to slightly exceed

the current bid, grabbing all of the business for himself (achieving δij = 1). This proves

claim 2.

To prove (a), if δij < 1 for all j then multiple firms tie for the most competitive bid. Since

in this case πb
ij = πM

ij (claim 2) for all j, multiple suppliers tie for maximal πM
ij . That is,

|E| > 1, so πM2
s = πM

i and for all j, πM
ij ≤ πM

i = πM2
s . Since all suppliers bid πM

ij ∨ 0

62



this proves part (a) in the case δij < 1 for all j. If, alternatively, δij = 1 for some supplier

j, then all other suppliers k �= j are bidding πb
ik = πM

ik ∨ 0 (Claim 2) the best of which is

πM2
s ∨ 0. So, all firms k �= j bid πb

ik = πM
ik ∨ 0 = (πM

ik ∧ πM2
s ) ∨ 0 , proving (a) for firms

k �= j. For supplier j to enjoy δij = 1 he must either be bidding πb
ij > πM2

s ∨ 0 or be

bidding πb
ij = πM2

s ∨ 0 and feature πM
ij > πM2

s . In the latter case part (a) holds. In the

former case we must have πM
ij ≥ πb

ij > πM2
s ∨0 and firm j can retain δij = 1 and be strictly

better off by reducing his bid to πM2
s ∨ 0. So, πb

ij = πM2
s ∨ 0 = (πM

ij ∧ πM2
s ) ∨ 0 and again

part (a) holds.

To prove (b), we restrict attention to viable suppliers (πM
ij ≥ 0, of which there is at least

one by assumption). If δij < 1 for all suppliers j then πb
ij = πM

ij for all j by claim 2. The

buyer selects from among the highest of these bids (suppliers in the set E), breaking ties

randomly, so (b) holds. If, in contrast, δij = 1 for some supplier j, then that supplier either

has the uniquely best bid (πM2
s < πb

ij ≤ πM
ij ) or ties and has uniquely higher efficiency

(πM2
s = πb

ij < πM
ij ) so either way supplier j is the uniquely most efficient supplier. This

proves part (b).

We have a unique price and quantity in equilibrium, because by assumption the quantity

achieving πs
ij∗ + πb

ij∗ = ri(qij∗ ) − cj∗(qij∗ ) = πM is unique, and the unique price is pij∗ =

πs
ij∗ + cj∗(qij∗). QED

Proposition 3: The division of the surplus πM between an efficient buyer and supplier in

the BP solution maximizes the unconstrained bilateral Nash social welfare function with

supplier disagreement value ds = (0 ∨ πM2
b ) and buyer disagrement value db = (0 ∨ πM2

s ).

That is, the profit to the supplier, πs, will maximize (πs −ds)(πM −πs −db) and the profit

to the buyer will be πM − πs.

Proof: The Nash social welfare function with disagreement outcomes ds and db is (πb −
db)(πs−ds) = (πb−db)(πM −πb−ds) , which is strictly concave in πb with an unconstrained

maximum at πb = .5(πM − ds + db). This is the BP solution with the assumed default

values. QED

Proposition 4: In m× 1 supply chains:

a) If m = n = 1 (bilateral monopoly) the core is any nonegative division of the potential

social surplus πM between the two firms.
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b) If m > 1 (multiple suppliers and one buyer) let i∗ denote the sole buyer and j∗ (any one

of) the efficient supplier(s). The core is the set of allocations giving zero profit to suppliers

other than j∗, (πM2
s ∨ 0) ≤ πi∗ ≤ πM , and πj∗ = πM − πi∗ . In particular if there are

multiple efficient suppliers (πM2
s = πM ) then the only core allocation gives all surplus to

the buyer i∗.

c) The BP allocations are in the core and predict profits to each firm exactly in the middle

of its range of core values.

Proof: (a) There are only two firms, i∗ and j∗, so if πj∗ +πi∗ < πM the allocation cannot

be in the core. Hence, any core allocation is nonnegative and has πj∗ + πi∗ = πM . Going

the other way, note that {j∗}, {i∗}, and Cg = {j∗, i∗} are the only possible coalitions and

if πj∗ ≥ 0, πi∗ ≥ 0 and πj∗ + πi∗ = πM then πj∗ ≥ V ({j∗}) = 0, πi∗ ≥ V ({i∗}) = 0

and πi∗ + πj∗ = V (Cg) = πM so the allocation is in the core. To prove part (b), recall

that j∗ denotes any efficient supplier and any core allocation must satisfy πi∗ + πj∗ ≥
V ({i∗, j∗}) = πM

i∗j∗ = πM , but of course πi∗ + πj∗ ≤ πM so together we must have

πi∗ + πj∗ = πM . That is, the entire available surplus πM must be allocated between

the two firms i∗ and j∗, leaving nothing for any other supplier (πj = 0 for any j �= j∗).

But if for any j �= j∗ we have (0 ∨ πM
i∗j) > πi∗ then supplier j can offer buyer i∗ strictly

more than she is getting currently, and be strictly better (than zero) himself, instigating a

defection. The most competitive among suppliers j �= j∗ can offer up to πM2
s , so any core

allocation must have (πM2
s ∨ 0) ≤ πi∗ ≤ πM , with πj∗ = πM − πi∗ . To go the other way,

assume an allocation satisfies these conditions. For any coalition containing both i∗ and

j∗, V (C) = πM =
∑

i,j∈C πi. If neither i∗ nor j∗ are in C then V (C) = 0 =
∑

k∈C πk.

If only i∗ is in C but not j∗, then V (C) ≤ (πM2
s ∨ 0). But since πj = 0 for j �= j∗ and

πi∗ ≥ (πM2
s ∨ 0), we have V (C) ≤ (πM2

s ∨ 0) ≤ ∑
k∈C πk. If only j∗ and not i∗ is in C then

V (C) = 0 ≤ ∑
k∈C πk. So, π is a core allocation. Part (c) follows directly from inspection.

QED

Proposition 5 preamble: Before proving the theorem we first describe the characteristic

functions used to define the cooperative game in the cases where there are multiple viable

buyers (n > 1). Consider the negotiations between tier 1 and the tier 0 monopolist in

the supply chain (an n × 1 bargaining chain). From Proposition 4(b) any core solution in

that negotiation game will feature an efficient supplier getting the contract and the tier

0 monopolist extracting rents up to the profit potential of working with the next best
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supplier. But, in negotiations with the monopolist the tier 1 “suppliers” represent a tier

1 - tier 2 subchain. This means that if tier 2 firm j∗ and tier 1 firm i∗ form an efficient

subchain to supply the tier 0 monopolist, then no alternative tier 1 - tier 2 subchain

completely disjoint from firms i∗ and j∗ can generate a strictly positive subchain value,

once we account for the price that has to be paid to the tier 0 monopolist. In our condensed

m × n notation, where the presence of the tier 0 monopolist is implicit in the net revenue

values (the r(q) values in Figure 4) for the tier 1 firms, this means that in a chain-wide

consistent bargaining solution, no pair of firms i and j completely disjoint from any efficient

pair i∗ and j∗ can feature πM
ij > 0. So in m × n systems with n > 1 any coalition C that

is completely disjoint from the set of potentially efficient firms must have V (C) = 0. This

is the only change we make in the characteristic function when n > 1. We first identify

the firms in either tier 1 or tier 2 that could potentially be part of an efficient pair. Any

coalition disjoint from that set has V (C) = 0. All other coalitions have values defined

as before, V (C) = maxi∈Cb(C);j∈Cs(C) πM
ij .The proof of Proposition 5 assumes this revised

characteristic function.

Proposition 5: In m× n supply chains with n > 1:

a) If m = 1 (a single supplier j∗ and multiple potential buyers) the core is the set of

allocations with zero allocation to firms other than an efficient pair i∗ and j∗, where

(πM2
b ∨ 0) ≤ πj∗ ≤ πM and πi∗ = πM − πj∗ . In particular if there are multiple efficient

buyers (πM2
b = πM ) then the only core allocation gives all surplus to the supplier.

b) In m × n systems, the core is the set of allocations with zero allocation to firms other

than an efficient pair i∗ and j∗,

(πM2
s ∨ 0) ≤ πi∗ ≤ πM − (πM2

b ∨ 0)

(πM2
b ∨ 0) ≤ πj∗ ≤ πM − (πM2

s ∨ 0)

and πj∗ + πi∗ = πM . In particular, if πM2
s + πM2

b > πM the core is empty.

c) If the core exists the BP allocations are in the core and predict profits to each firm

exactly in the middle of its range of core values.

Proof: If j∗ and i∗ are an efficient supplier-buyer pair, and C = {i∗, j∗}, then V (C) = πM

and for any core allocation πM = V (C) ≤ πi∗ + πj∗ ≤ V (Cg) = πM , so we must have

πi∗ + πj∗ = πM in any core allocation. It follows that and no core allocation can give any
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profit to any firm other than an efficient pair. Also in any core allocation and any coalition

C we must have V (C) ≤ ∑
k∈C πk. So, letting i be any buyer except i∗ we must have

πi + πj∗ ≥ V ({i, j∗}) = πM
ij∗ , or since πi = 0 for i �= i∗ this implies that πj∗ ≥ πM

ij∗ for

all i �= i∗. In particular πj∗ ≥ (πM2
b ∨ 0). So, any core allocation must satisfy πi = 0 for

i �= i∗, πj∗ ≥ (πM2
b ∨0), and πi∗ +πj∗ = πM . Going the other way it can be confirmed that

any such allocation satisfies the conditions for core. With just one supplier (j∗ is the only

possible supplier) this suffices to prove part (a). For part (b) using the same argument

any core allocation must satisfy πi∗ + πj ≥ V ({i∗, j}) = πM
i∗j for all j �= j∗, so taking the

maximum over j �= j∗ yields πi∗ ≥ (πM2
s ∨ 0). These facts imply the stated conditions.

Going the other way, it can be directly verified that an allocation satisfying the conditions

also satisfies the definition of core. Allocating πj∗ ≥ πM2
b and πi∗ ≥ πM2

s is impossible

if πM2
b + πM2

s > πM , so in that case the core is empty. Part (c) follows from inspection.

QED

Proposition 6: If i∗ and j∗ are an efficient buyer and supplier, then the set X =
{
π | πi∗+

πj∗ = πM
}

is a VNM set, so in particular the BP allocation is always contained in a VNM

set.

Proof: Let j∗ and i∗ denote an efficient supplier-buyer pair. A BP allocation is always

contained in a set X = {π|πj∗ + πi∗ = πM}. No element of this set dominates any other

element of the set, because giving strictly more to the buyer means giving strictly less

to the supplier. So, we need to show that for any feasible allocation π′ /∈ X there exists

a π ∈ X such that π �C π′. But any π′ /∈ X must feature π
′
i∗ + π

′
j∗ < πM (and so

must feature π
′
k > 0 for some k /∈ {i∗, j∗}). But letting ε = πM − π

′
i∗ − π

′
j∗ > 0 the

alternative allocation π
′′
i∗ = π

′
i∗ + ε/2 and π

′′
j∗ = π

′
j∗ + ε/2 features π

′′ ∈ X and π
′′ �C π

′

for C = {i∗, j∗}. QED

Proposition 7: The following are equivalent:

a) There exists a unique bargaining solution.

b) There are exactly two recurrent classes in the bargaining matrix B.

c) There do not exist indices i and j with 0 ≤ i < j ≤ nT − 1 such that λi = 1 and λj = 0.

Proof: We first prove that (a) ⇔ (b). The price vector p ∈ RnT +2 is a bargaining solution

if and only if it satisfies (I − B)p = C , < e−1, p >= r and < en, p >= crm. If there
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are only two recurrent classes, they must be the absorbing states −1 and nT . We know

(c.f. Puterman 1994, Appendix A) that if W refers to the submatrix of transitions among

transient states (in our case the submatrix of rows and columns corresponding to states 0

through nT − 1) then the nT × nT matrix (I − W ) is nonsingular. Since (I − B) is⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 . . . 0 0 0
λ0 − 1 1 −λ0 0 . . . 0 0 0

0 λ1 − 1 1 −λ1 . . . 0 0 0

0
. . .

0 0 0 0 . . . λnT−1 − 1 1 −λnT−1

0 0 0 0 . . . 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

the nT × nT submatrix omitting the first and last row and column is nonsingular and

has full column rank. Let ξi denote these nT columns, indexed 0 through nT − 1 to be

consistent with the matrix B from which they were extracted. Since these columns are

linearly independent, if there exist scalars αi (0 ≤ i ≤ nT − 1) such that
nT−1∑
i=0

αiξi = 0

(here 0 is the zero vector in RnT ), then all of the αi values must be identically zero. Clearly

the two rows of zeroes in the matrix (I − B) add nothing to the system of equations

(I − B)p = C and can be ignored. So, augmenting this system of equations with the

additional constraints < e−1, p >= r and < enT , p >= crm is equivalent to solving Zp = C̃

where Z is the (nT + 2) × (nT + 2) matrix⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 . . . 0 0 0
λ0 − 1 1 −λ0 0 . . . 0 0 0

0 λ1 − 1 1 −λ1 . . . 0 0 0

0
. . .

0 0 0 0 . . . λnT−1 − 1 1 −λnT−1

0 0 0 0 . . . 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

and C̃ equals C with the first and last elements altered to r and crm, respectively, that is

C̃t = (r, λ0c1 − (1 − λ0)c0, λ1c2 − (1 − λ1)c1, . . .

λkck+1 − (1 − λk)ck, . . . λn−1cn − (1 − λn−1)cn−1, crm).

This will have one unique solution if Z is non-singular. To show this, let zi denote the

columns of Z and assume that for scalars βi (−1 ≤ i ≤ nT ) we have
nT∑

k=−1

βkzk = 0.
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The structure of Z implies that β−1 = βnT = 0. But, that means that we must have∑nT−1
k=0 βkzk = 0. That is, a linear combination of the columns of the submatrix (I−W ) ∈

RnT×nT must be zero. But since we know W is nonsingular, this implies that β1 = β2 =

. . . βnT −1 = 0, so all of the β coefficients must be zero, meaning Z is nonsingular. This

completes the proof that if there are exactly two communicating classes in B, then there is

a unique bargaining solution. To prove the “only if” part of the proposition we know that

there are at least two communicating classes, so if there are not exactly two there must

be more than two. But, in that case we know that the matrix (I − B) has rank strictly

less than nT so augmenting that matrix with just two additional rows cannot bring the

rank up to nT + 2. Hence, there will be a multiplicity of solutions to the bargaining

problem. This completes the proof of (a) ⇔ (b). To show (b) ⇔ (c) it is apparent from

the structure of B that if all the λi’s are strictly between 0 and 1, then B will have exactly

two recurrent classes (absorbing states −1 and nT ). Also, B will always have at least these

two. So, B will have two recurrent classes if and only if we cannot add another class by

some configuration of 1’s and 0’s among the λ values. Note that λk = 1 implies a certain

transition from state k to state k + 1, and if the process starts at state k or above it is

trapped there. This is not a problem if all λj values for j > k are strictly greater than

zero, because entering state k or above just guarantees eventual absorption in state nT

and no recurrent class has been added. Likewise, λk = 0 implies a certain transition from

state k to state k − 1, and if the process starts at state k or below it is trapped there.

This is not a problem if all λi values for i < k are strictly less than one, because entering

state k or below just guarantees eventual absorption in state −1, and no recurrent class

has been added. The only way to add another recurrent class is if some λk = 1 (trapping

the process at k or above) and then we also have λj = 0 for some j > k (trapping the

process in state j or below). QED

Proposition 8: If the bargaining solution is unique, then the unique associated profit

vector can be computed from:

πk =
βk∑nT

j=0 βj
(r −

nT∑
j=0

cj − crm) 0 ≤ k ≤ nT

where

βk =
(
ΠnT −1

j=k λj

)(
Πk−1

j=0 (1 − λj)
)

and the unique bargaining solution p ∈ RnT +2 can be generated from p−1 = r, pk =

pk−1 − ck − πk for 0 ≤ k ≤ nT . We define the product Πb
j=aλj to equal to one if b < a.
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Proof: Define the set P = {p ∈ RnT +2|p−1 = r} and mapping π : P → RnT +1 defined by

πk(p) = pk−1 − ck − pk (0 ≤ k ≤ nT ) which is 1:1 with its inverse p(π) defined by p−1 = r,

pk(π) = pk−1(π)−ck−πk (0 ≤ k ≤ nT ). So, starting with a profit vector π defined as in the

proposition, the proof is complete if we show that p(π) is a bargaining solution, because by

uniqueness it is the only bargaining solution and the stated π is the unique associated profit

vector. p(π) will always satisfy p−1 = r, and from the form of p(π), pk = r−∑k
j=0(cj +πj)

for 0 ≤ k ≤ nT . From the stated form for πk,
∑nT

k=0 πk = r −∑nT

k=0 ck − crm, so pnT (π) =

r − ∑nT

j=0 cj −
∑nT

j=0 πj = r − ∑nT

j=0 cj − (r − ∑nT

j=0 cj − crm) = crm. It remains to show

that p(π) satisfies pk = λk(pk+1 + ck+1) + (1 − λk)(pk−1 − ck) for 0 ≤ k ≤ nT − 1, or

equivalently

pk = r −
k∑

j=0

(πj + cj) = λk(r −
k+1∑
j=0

(πj + cj) + ck+1) + (1 − λk)(r −
k−1∑
j=0

(πj + cj) − ck).

The right-hand-side of this expression is r − ck − ∑k−1
j=0 (πj + cj) − λk(πk + πk+1) so the

total equation reduces to showing that πk = λk(πk + πk+1). We prove the equivalent

λkπk+1 = (1−λk)πk . Substituting the proposed expressions for the profit into this equation

shows that it will hold if

λkβk+1 = (1 − λk)βk.

From the definition of the βk factors: λkβk+1 = λk

(
Πn−1

j=k+1λj

)(
Πk

j=0(1 − λj)
)

=
(
Πn−1

j=k λj

)(
Πk−1

j=0 (1 − λj)(1 − λk)
)

= βk(1 − λk). QED

Proposition 9: If there is available social surplus, that is if r −∑nT

k=0 c1
k − crm ≥ 0, then

a multi-echelon BP solution will exist.

Proof: Consider an alternative constraint set to the BP linear program, with c1
k = c2

k = ck

for k ≥ 1. If a solution exists in this case, it will exist in general because the constraint

set is relaxed as we increase c2
k for any or all k (recall c2

k ≥ c1
k in the general case).

But, with c1
k = c2

k = ck the system of equations defining the BP solution reduces to

pk = 1
2{(pk+1+ck+1)∧(pk−1−ck)+(pk+1+ck+1)∨(pk−1−ck)} = 1

2(pk+1+ck+1+pk−1−ck)

for k = 1 to nT − 1, and the monopolist pays p0 = p1 + .5(c1 + c1) = p1 + c1. We need

to find a set of prices that satisfy these equations, and that give non-negative profits

to all firms. But, it can be directly verified that giving all of the surplus to firm 0 (so

p0 = crm +
∑nT

k=1 ck) and zero profits to all other firms (so pk = pk−1 − ck for 1 ≤ nT − 1)
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is a BP solution, and all firms make non-negative profits providing r−c0 ≥ crm +
∑nT

k=1 ck,

meaning there is non-negative total social surplus available. QED

Proposition 10: If Δck is decreasing in k then case B is impossible and the BP solution

is unique.

Proof: We first prove that if Δck is decreasing in k then case B is impossible. Case B

implies that r̃1 ≤ c̃2 and r̃2 ≥ c̃1. The first means that pk−1 − c1
k ≤ pk+1 + c2

k+1 and the

second that pk−1−c2
k ≥ pk+1+c1

k+1, which rearranged imply that c1
k+1+c2

k ≤ pk−1−pk+1 ≤
c1
k + c2

k+1. But we cannot have c1
k+1 + c2

k ≤ c1
k + c2

k+1, or equivalently c2
k − c1

k ≤ c2
k+1− c1

k+1

if Δck = c2
k − c1

k is decreasing in k. So case B cannot occur. We now move to proving the

uniqueness of the BP solution when case B cannot occur. Let p ∈ RnT +2 and p′ ∈ RnT +2

be any two BP solutions with p′ �= p. For any component k define Δpk = p′k − pk. Since

p′−1 = p−1 = r we have that |Δp−1| = 0. If |Δp0| > 0 let k = 0, and otherwise move

to k = 1, etc. until we reach a k with |Δpk| = ε > 0 and |Δpk−1| = 0. Such a k must

exist since p′ �= p. We use this k to initiate an induction, needing only that for some k,

|Δpk| ≥ ε > 0 and |Δpk| ≥ |Δpk−1|. We now consider the feasible cases (A, C and D) and

show that for each the inductive hypothesis survives to tier k + 1. Considering the cases

in turn:

Case A: pk+1 = 2pk − pk−1 + c1
k − c1

k+1

Case C: pk+1 = pk − .5(c1
k+1 + c2

k+1)

Case D: pk+1 = 2pk − pk−1 + c1
k − c2

k+1

we have that if |Δpk| ≥ ε > 0 and |Δpk| ≥ |Δpk−1| then in cases A and D |Δpk+1| =

|2Δpk − Δpk−1| ≥ 2|Δpk| − |Δpk−1| ≥ |Δpk| ≥ ε > 0. In case C |Δpk+1| = |Δpk| ≥ ε > 0.

In any case the induction is complete, which means that we must have a strictly positive

change in all prices upstream of k. This is impossible, since pnT = crm is fixed, so no

p′ �= p can exist, which completes the proof. QED

Corollary 10.1: If Δck is decreasing in k then there exists a kA such that the unique BP
solution is for the efficient firms in each tier to be active at transfer prices that generate

firm profits as follows:

a) πk = .5(c2
k − c1

k) for k > kA + 1, so profits are declining in k in that range.
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b) πk = 1
kA+2

[
r −∑kA+1

j=0 c1
j − pkA+1

]
for 0 ≤ k ≤ kA + 1, so profits are equal for all firms

in that range.

c) The unique BP prices can be recovered from pnT = crm and pk = πk+1 + c1
k+1 + pk+1

for 0 ≤ k ≤ nT − 1. Case C holds for pk negotiations when kA + 1 ≤ k ≤ nT − 1 (unless

this is vacuous) and case A holds for all other negotiations.

Proof:

We will use a series of preliminary results to construct the proof.

Preliminary result 1: If we define profits to be πk = .5(c2
k − c1

k) for k̂ ≤ k ≤ nT then for

k̂ − 1 ≤ k ≤ nT − 1 the prices pk are pre-ordained at pk =
∑nT

j=k[c1
j + .5(c2

j − c1
j)]− crm =∑nT

j=k[.5(c2
j + c1

j)] − crm, and for k̂ ≤ k ≤ nT − 1 these prices are BP-feasible for case C

negotiations.

Proof: πk = pk−1 − c1
k − pk so pk−1 = πk + c1

k + pk. Substituting the assumed πk for

k̂ ≤ k ≤ nT − 1 yields

pk−1 = .5(c2
k − c1

k) + c1
k + pk

= .5(c2
k − c1

k) + c1
k + πk+1 + c1

k+1 + pk+1

= .5(c2
k − c1

k) + c1
k + .5(c2

k+1 − c1
k+1) + c1

k+1 + pk+1

= .5(c2
k + c1

k + c2
k+1 + c1

k+1) + pk+1

So pk−1 − pk+1 = .5(c2
k + c1

k + c2
k+1 + c1

k+1). But because Δck is decreasing in k we have

c2
k+1 − c1

k+1 ≤ c2
k − c1

k or equivalently c2
k+1 + c1

k ≤ c2
k + c1

k+1, so that

c1
k + c2

k+1 = .5(2c1
k + 2c2

k+1) ≤ .5(c1
k + c2

k+1 + c2
k + c1

k+1) = pk−1 − pk+1 = .5(c1
k + c2

k+1 +

c2
k + c1

k+1) ≤ .5(2c2
k + 2c1

k+1) = c2
k + c1

k+1.

Case C obtains when pk−1 − c1
k ≥ pk+1 + c2

k+1 and pk−1 − c2
k ≤ pk+1 + c1

k+1, which is

equivalent to the above two inequalities. So, as long as we define πk as described for tiers

k̂ ≤ k ≤ nT , case C will hold for negotiations over pk (k̂ ≤ k ≤ nT − 1), and the price

pk = c1
k+1 + .5(c2

k+1 − c1
k+1) + pk+1 = .5(c1

k+1 + c2
k+1) + pk+1 =

∑nT

j=k+1[.5(c1
j + c2

j)] + crm

will be BP-feasible for tiers k̂ to nT − 1. In fact, pk̂−1 =
∑nT

j=k̂
[.5(c1

j + c2
j)] + crm is also

pre-ordained, but the negotiations over pk̂−1 need not be case C. QED.

If case C holds for negotiations over pk for k̂ ≤ k ≤ nT − 1, then pk̂−1 is pre-ordained

as shown above, and is the upstream claim on the the downstream subchain that begins
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at the market interface with revenues r and ends at tier kA + 1 = k̂ − 1. If that claim

is ever sufficiently large that all second-best firms in that downstream subchain (tiers

kA + 1, kA, ..., 1, 0) are not viable, then case A will hold for negotiations over pk for 0 ≤
k ≤ kA.

Preliminary result 2: If for some tier kA we are given pkA+1 and divide the total available

surplus for the chain from tier 0 to tier kA +1 equally among these firms, then if the equal

profits to each efficient firm, π̄, satisfies π̄ ≤ .5ΔckA+1 the assignment of prices and profits

on the subchain is BP-feasible with case A holding for negotiations over pk for 0 ≤ k ≤ kA.

Proof: Case A holds for negotiations over pk when pk−1 −pk+1 ≤ (c1
k + c2

k+1)∧ (c2
k + c1

k+1).

But by assumption Δck is decreasing in k, so c2
k − c1

k ≥ c2
k+1 − c1

k+1 or equivalently

c2
k + c1

k+1 ≥ c2
k+1 + c1

k, meaning that all we need for case A to hold is pk−1 − pk+1 ≤
(c2

k+1 + c1
k). Now if we are given pkA+1 and assume equal profits for firm kA + 1 and all

downstream firms, then each of these firms must enjoy profits of π̄ equal to an equal share

of the total available surplus, or

π̄ =
1

k + 2
[
r −

kA+1∑
j=0

c1
j − pkA+1

]

and the prices are then completely determined by pk−1 = 2π̄ + c1
k + c1

k+1 + pk+1 for

0 ≤ k ≤ kA + 1. If we can show these prices imply case A negotiations for each two-tier

module in that subchain, then the proof of the preliminary result is complete because case

A implies prices that divide the local surplus equally. But, that expression for the prices

is equivalent to pk−1 − pk+1 = 2π̄ + c1
k + c1

k+1 and to show case A holds we must show

that this is ≤ c2
k+1 + c1

k. So case A holds if 2π̄ + c1
k + c1

k+1 ≤ c2
k+1 + c1

k or equivalently

π̄ ≤ .5(c2
k+1 − c1

k+1) = .5Δck+1. It remains to show that if this inequality holds for kA + 1

it holds for all k ≤ kA +1, but that follows from the fact that Δck is decreasing in k. QED

Combining these results, we see that if case C holds for negotiations over pk for k̂ ≤
k ≤ nT − 1 then the price pk̂−1 is pre-ordained. If we set kA = k̂ − 2, and invoke the

second preliminary result, we see that if the drain pk̂−1 on the subchain from tiers 0 to

kA + 1 = k̂ − 1 is sufficiently large that π̄ ≤ .5Δck̂−1 then setting profits equal to π̄ on

that subchain is BP-feasible, with case A holding throughout the subchain. It remains to

show that the pre-ordained pk̂−1 = c1
k̂
+ .5Δck̂ + pk̂ is BP-feasible for case C. Case C holds

if for negotiations over pk if

c1
k + c2

k+1 ≤ pk−1 − pk+1 ≤ c2
k + c1

k+1.
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Let k = k̂−1 = kA+1. Our construction implies that πk+1 = .5Δck+1 so pk = πk+1+c1
k+1+

pk+1 = .5Δck+1 + c1
k+1 + pk+1. Also, πk = π̄ so pk−1 = π̄ + c1

k + pk. Together these imply

that pk−1 − pk+1 = π̄ + c1
k + c1

k+1 + .5Δck+1 = π̄ + c1
k + .5c2

k+1 + .5c1
k+1. But, we also know

that at the transition stage .5Δck+1 ≤ π̄ ≤ .5Δck. Plugging in these bounds on π̄ reveals

that c2
k+1 + c1

k ≤ pk+1 − pk−1 ≤ .5(c2
k + c1

k + c2
k+1 + c1

k+1). So, case C holds for negotiations

over pk and the proof is complete if we can show that .5(c2
k +c1

k +c2
k+1 +c1

k+1) ≤ c2
k +c1

k+1.

But, because Δck is decreasing in k, we have that c2
k − c1

k ≥ c2
k+1 − c1

k+1 or equivalently

c1
k + c2

k+1 ≤ c2
k + c1

k+1. So, pk+1 − pk−1 ≤ .5(c2
k + c1

k + c2
k+1 + c1

k+1) ≤ .5(2c2
k + 2c1

k+1) =

c2
k + c1

k+1. QED
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