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Abstract 

The Reynolds-averaged, unsteady Navier-Stokes 
equations were solved numerically to predict flow- 
fields in a two-dimensional supersonic inlet. First, 
a brief description of numerical procedures, as well 
as boundary conditions is given. The discussion of 
calculated results follows. A flaw at supercritical 
conditions was calculated and found to be unsteady. 
Hence, detailed spectral information for the comput- 
ed data is given and the boundary-layer parameters, 
e . g . ,  skin friction coefFicients, are shown. Several 
physically interesting phenomena are discussed. We 
also give the distribution of the entropy change 
indicating the performance of the inlet under the 
chosen set of conditions. 

Introduction 

The unsteadiness of a supersonic flow in an in- 
let is a dominant issue related to the unstart of an 
air-breathing propulsion system. Inlet designers 
usually apply boundary-layer removal (bleed o r  by- 
pass systems) andlor scheduling of the inlet geo- 
metry to achieve optimum positioning of shock waves 
within the inlet. The development of a system to 
start, maintain and, when necessary, restart a super- 
sonic inlet is a major undertaking which has had to 
rely upon ground-test simulation to provide the un- 
steady aerodynamic behavior of the inlet flow. 
Fortunately, during the past decade analytical, 
experimental and computational techniques have sig- 
nificantly improved and have been successfully 
applied to various aspects of inlet flows. Thus, 
three new complementary tools can be brought to 
bear upon the problem of unsteady inlet flows, i . e . ,  
shock-wave ““start, buzz and restart. 

Analytical solutions describing forced ascilla- 
tions of shock waves within channels have been ob- 
tained for both one- and two-dimensional channel 
flows. In the one-dimensional modell, flow phenom- 
ena are assumed to be averaged over planes txans- 
verse to the flow axis and the terminal shock wave 
responds in a quasi-steady fashion to low frequency, 
forced oscillations at the exit. Forced oscilla- 
tions of shock waves in two-dimensional channels 
have been described using asymptotic solutions. 
These solutions have described small-amplitude - 
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shock wave moti n in symmetric channels’ and asym- 
metric channels and large-amplitude shock-wave mo- 
tion in sym etric channels with forced osci lations 
at the exit‘ and with moving channel walls.4 These 
studies provide insight into the influence which 
forced oscillations of varying amplitude and fre- 
quency can have upon shock-wave motion in channels. 
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Early experimental studies6” concentrated on 
identifying the impact of inlet mass flow upon the 
shock-wave motion. Later experimental efforts*” 
correlated the shock-wave motion with forced pres- 
sure oscillations simulating engine surge. Recently, 
detailed experimental studiesl0,ll providing the 
influence a €  bath time-mean flow and coherent, low- 
frequency natural and forced oscillations upon 
shock-wave motion have been reported. 

The numerical simulation of unsteady flows with- 
in inlets is an emerging capability Since it requires 
the s o l u t i o n  of the time-dependent, Reynolds- 
averaged, compressible Navier-Stokes equ t’ n 

the motion of shock waves in a transonic diffuser 
under natural and forced oscillations have generally 
been in good agreement with experiment, especially 
for flows containing weak shock isaves. In these 
numerical simulations, the behavior of the flow and 
imposed boundary conditions were such that a steady 
or periodic motion of the shock wave resulted. 
Detailed flow information can be obtained from these 
numerical simultions and, when validated from the 
experimental and analytical studies, will lead to a 
better understanding of unsteady inlet flows. 

the general problem. Numerical studies lb,i5,94f,3 

w 

The present study extends the numerical techni- 
ques and analysis used in the calculation of unsteady 
transonic diffuser flows as described in Ref. 14 to 
the problem of a two-dimensional inlet with euper- 
sonic free stream Mach number 1.84 ,  which was in- 
vestigated experimentally by Sajben et al.lo,ll 
difficulties involved in the supersonic inlet flow- 
field generally lie in (1) reamp and lip geometries 
which determine the initial shock Systems and initial 
flow conditions; (2) the interaction between the 
boundary layer and the terminal shack; (3) the ad- 
verse pressure gradient set up by the divergence of 
the inlet in the subsonic diffuser behind the 
terminal shock; and ( 4 )  the amplification of a 
disturbance by the inevitably existing separated 
region and the self-sustained unsteady flow. Each 
of these itself is a difficult and unique subject 
and may be investigated separately. They are, how- 
ever, coupled in a complicated way in the entire 
inlet system. 

The 

A fluctuating flow was predicted for the super- 
critical operating condition chosen in the present ’* 
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study. Hence, a detailed spectral analysis of the 
computed data was made and various parameters of 
practical interest were obtained. 

conservation Equations 

The equations solved are those obtained by mass- 
4 weighted averaging and are written in conservation- 

law form and in general curvilinear coordinates, 
as follows: 

t 
+ +  a QU + aipu.si = o (la) 

(lb) a O:U + ai(puu+u) . si = o 
atpcu + ai(pEu + u . ~  + ) . s .  = o (IC) 

+ 
* +  + 

t 
* + +  + + 

+ +  
2 pku + a .  (pku + q ' z. = Hk (Id) 

a t O O ~ U  + ai(o& + $0) . si = (le) 

t k 
+ 

The equations (1) are a tually equivalent to the 
finite-volume approach" where the conservation 
laws are maintained in a control volume by account- 
ing for fluxes through the control surfaces. In 
fact, the present differential-volume formulation 
is identical to that obtained by a general coordin- 
ate transformation.16 It however has the advantage 
of providing easy interpretation of the conservation 
laws using the control-volume concept, as well as 
allowing finite-differencing of the equations as in 

are partial derivative operators in time and space, 
respectively. 

coordinates related to Cartesian variables through a 
given transformation. The geometrical variables in 
Eqs. (1) are u, the volume element or transformation 
Jacobian, and 

vectors, shown in the sketch. 

Cartesian coordinates. H ~ E  a = aiat, ai = ala&, t 

The g, i = 1,2,3, are curvilinear 

bi, i = 1,2,3, the surface element 

These variables are related to the position vector 
r through the vector differential formulae: * 

The physical variables appearing in EqS. (1) 
are the density p, the total specific energy 

E =  e + u'u I2 ,  the specific internal energy e ,  the 
turbulent kinetic energy k, and a turbulent length 
scale-defining variable 0'. 

* *  

The total stress tensor is expressed as 

where 11 = U+u is a combined viscosity that includes 

the molecular viscosity u represented by Sutherland's 
law, and the turbulent eddy viscosity lJT, described 

by the quantities k and w2 obtained by solving the 
differential equations in Eqs. (1). Details of 
turbulence modeling using the k and 0' 
can be found in Ref. 17. The combined pressure p' 
is the sun of the thermodynamic static pressure and 
the dynamic pressure 213 pk due to turbulence fluctu- 
ations. 

turbulent fluxes are expressed in terms of combined 
diffusion coefficients 

V T 

variables 

Analogous to the stress tensor, the thermal and 

where ue,tlk, 
lent eddy viscosity. 

and U also include molecular and turbu- w 

The complete system expresse:l in Eqs. (1) gives 
the three-.dimensional, Reynolds-ai'eraged full 
Navier-Stokes equations. It is sjmplified by making 
the assumptions: (1) the flow is two-dimensional 
and (2) the streamwise derivatives in E q s .  ( 3 )  and 
( 4 )  are neglected, the so-called t.hin-layer approxi- 
mation. Further, a perfect gas wj.th constairt spe- 
cific heat:s is considered. 

Numerical Procedures and Boundary Conditions 

Following the tremendous S U C C ~ S S  and wide 
acceptance of the earlier purely explicit method,l* 
MacCormack developed a more efficient hybrid 
method19 j.n which he applied the idea of character- 
istics in the region where the integration time step 
was severely reduced. Furthermore, the set of split 
parabolic equations was solved implicitly. 
quently, a much greater time step (0(102) x explicit 
time step) can be taken and greater efficiency is 
achieved. While this method POSSESS~S Some advant- 
ages, it tias not been tested on as many flow problems 
as the previous method. It has, Iwruever, shown suc- 
cess  in computing steady and unsteady transonic 
diffuser flows.14,20,21 The differential equations 
are discretized on arbitrary volumes (areas in the 
two-dimensional case) in which the conservation 
equations (1) are satisfied by balancing the fluxes 
through the surfaces o f  the volume.. The solution 
vector, 

* 2 T  U = (1, u, E, k, 0 ) ou is then advanced 
from t to t+bt through a sequence of operator using 
the general idea of fractional-step schemes. 

IJ(t+i,t) = (Lv(At) Linv(At))n (Linv(At))& a(t) 

The 0perat:ors L and LE solve the invisid equa- 

tion in the 5- and 17- directions, corresponding to 
the streamwise and transverse directions, respective- 
ly. The operator Lv then solves the residual, thin- 

Conse- 

23 

inv (5) 
17 

11 
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layer equations in the q-direction. Many varieties 
of difference methods can be used for each of the 
above operators, taking advantages of either 
simplicity or efficiency, or both. MacCorrnack 
proposes that an explicit scheme18 be used for 
Linv 

the n-direction in a region with very fine mesh 
close to the solid surface. In LLnV the space- n 
averaged characteristic relations are used to pro- 
vide intermediate values for the pressure and the 
velocity component in the q-direction. Subsequent 
application of the explicit method is then made. 
Consequently, the allowable time step is greatly in- 
creased, on the order of 100 times in the case con- 
sidered. The Lv operator solves a parabolic system 

and an efficient implicit method is readily avail- 
able. Therefore, the time Step for the complete 
sequence from t to t+At is controlled by the stable 

time step of L~~~ in our case. 

Boundary Conditions 

19 

while more efficient operators are applied in 

n 

5 

The boundary conditions used in the numerical 
integration very often play a key role in determin- 
ing either success or failure. We chose to use the 
boundary conditions that are based upon the types 
of equation and flow conditions (physics) involved. 

The conditions imposed on the viscous operator L 
are the no-slip, adiabatic, and zero-turbulence Con- 
ditions at the wall. The inviscid operators however 
are imposed by the characteristic equations relating 
the velocity components and the pressure. Hence, at 
the solid wall where the normal velocity is zero, 
the pressure can be related to quantities at interi- 
or points as depicted in the sketch (a) below. 

V 

7l 

That is, 

inv As for the LE operator, the boundary condition 

becomes more complex and many formulations have been 
proposed, in particular, far subsonic flow bound- 
aries. The inviscid characteristic relations are 
again adopted. For supersonic inflow, the domain of 
dependence of a boundary point lies entirely up- 
stream of it; therefore, all variables are pre- 
scribed at the boundary. If the outflow is subsonic, 

the Linv operator possesses two families of charac- 5 

teristic curves (i.e., C+ and Co in the sketch (b) 
reaching from the interior of the domain considered 
and one characteristic curve (C-) from outside. In 
other wards, the domain of dependence associated with 
the C--characteristic is downstream of the inlet. ' 
Hence, one variable is allowed to be imposed at the 
boundary. For a low Mach number boundary, the fixed 
pressure condition is taken and the other variables 
are calculated from Co and C+. 

'ra4 

The computational grid Systems were chosen so 
that two grid points were inside the initial sub- 
layer (y' < 5). The mesh system contained eighty 
cells in the streamwise direction and fifty cells 
across the flow. Uniform fine meshes were clustered 
near the shock whose location was indicated by 
experiment. 

Results and Discussion 

The example considered is a two-dimensional inlei 
with supersonic free stream Mach number of 1.84, 
shown in Fig. 1, a case investigated experimentally 
by Sajben et al.1° 
the oblique shock just touches the cowl lip (x = 
3.03 cm). Since the ramp surface is flat up to 
x = 3.88 cm, a uniform superconic flow is generated 
behind the oblique shock with Mach number 1.32. 
Therefore, the computation domain is chosen to con- 
sist of only the flow internal to the ramp and lip, 
and the flow at the upstream boundary is fixed by 
the supersonic condition behind the ramp chock. By 
doing this w e  avoid rhe requirement of including the 
domain outside the cowl lip and gain Simplicity in 
computation. However, this causes a discrepancy 
between the computation and the experiment in which 
there is a weak bow shock near the lip and a small 
region of subsonic flow near and inside the lip. 
We shall point out this consequence on the computed 
results later. 

The ramp angle is chosen so that 

bw 

In the present paper w e  show the calculated 
results for a supercritical case in which the ratio 
of the static pressuze at the exit to the plenum 
pressure is equal to 0.724. For this case the 
experiment'' shows that the terminal shack stays in- 
side the inlet and oscillates mildly, displaying 
broadband spectral character. 

An instantaneous density contour is shown in 
Fig. 2 displaying detailed flow behavior; the lambda 
(X) shock pattern is seen clearly on both walls. 
While one-dimensional flow analysis predicts an 
expansion of a supersonic flow in a divergent section, 
the figure clearly shows expansion and compression 
regions on the top and bottom walls respectively. 
This becomes more evident in the static pressure 
plot. 

Figure 3 displays the time-mean pressure distri- 
bution of both computed and experimental results, 
showing clearly the effect of curvature and two- 
dimensionality. The flow over the convex top wall 
undergoes a monotonic expansion until the shock is 
encountered, and a monotonic compression follows. A 
flow separation induced by the shock may be inferred 
by the fact that a distinct change in the slope of 
the pressure distribution is seen in the experimental 
data. (Note this is not a sufficient condition for 
separated flow, as will be discussed below.) Indeed, 
a very thin and long bubble w a s  predicted, as shown 
in Fig. 4 .  The pressure along the line halfway W' 
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between the walls shows a typical inviscid behavior 
where the abrupt pressure increase through the 
shock is followed by a rapid expansion (the so- 
called Zierep singularity). 
the pre-shock expansion becomes very mild on the 
centerline but a compression clearly exists on the 
bottom wall due to the concavity. 

We also observe that 

.gd 

The peak of the compression hefore the shock is 
predicted hut there is a discrepancy from the ex- 
perimental value. We believe that this is caused 
by the simplification made in setting up the up- 
stream boundary condition, as described earlier, 
where the bow shock near the cowl  lip is neglected 
in the calculation and thus the level of compres- 
sion is reduced. It is also interesting to notice 
the effect of curvature concavity on the shock wave1 
boundary-layer interaction. Instead of having a 
monotonic increase of the pressure immediately 
behind the shock as in the case of a convex surface, 
actually a mild expansion is found. This is 
obviously unlike the usual shock wavelboundary- 
layer interaction associated with the transonic 
airfoil flow where the shock is on the upper convex 
surface. And the fact that there is a plateau 
resulting from the expansion should not he taken as 
a sufficient condition for indicating the existence 
of separated flow. This may explain the conflicting 
observations reported in Ref. 10. Indeed the oil 
flow survey did not show separation and the compu- 
tation predicted a negligible separation, as seen 
in Fig. 4 .  

Next we present some of the spectral information 
for the oscillatory nature of the flow. Figure 5 
shows the I(MS of the static pressure divided by 
plenum pressure on the top and bottom walls, at 
the center of the inlet. Ahead of the shock the 
flow is supersonic and remains steady. A peak 
resulting from the shock oscillations is clearly 
demonstrated and rapidly decays downstream. However 
it is interesting to note that while the top-wall 
boundary layer is separated and much thicker, the 
fluctuation is only about half of that in the bottom- 
wall boundary layer. This may be attributed to the 
dissipative nature of the separated boundary layer 
wherein the turbulent motion is more intense. That 
the peak on the center is about twice as high as in 
the boundary layers is also attributable to the 
absence of dissipation in the center region. Com- 
parison of the RMS pressure ratio with experimental 
data at two stream-wise locations is given in Fig. 
6 .  
of the prediction since only a 1% fluctuation is 
involved, and in the case considered, any error 
(either numerical or physical, due to turbulence 
modeling, e.g.) would easily be of the same order 
of magnitude. Indeed very good agreement is shown 
here. 

'd 

This presents a rather severe test of reliability 

Having determined the fluctuation amplitudes, 
we show the frequencies at which the variables 
oscillated. First the shock motion shows a distinct 
frequency at about 250 HZ (Fig. 7). The Static 
pre~sure on the top wall also shows the same 
distinct oscillation at four streamwise locations, 
X/H = 2.870, 3.112, 3.596, and 5.533 (H = throat 
height). However, higher frequency oscillations 
at about 1500 Hz developed further downstream of 
the inlet. This becomes more obvious for the 
bottom-wall static pressure, Fig. 8 ,  but in this 
case the low-frequency oscillation disappeared. 
Therefore we are led to believe that a transverse 

oscillation might exist in the present case. Next 
in Fig. 9 the total pressure exhibits more random 

behavior and the simple 180 degree phase relation- 
ship between velocity and pressure fluctuation for 
one-dimensional inviscid flow clearly does not hold 
here. HOWBVBI it must he noted that the experi- 
mental maasurements1° did not show a distinct oscil- 
lation frequency in the supercritical case consid- 
ered; rather it was a broadband oscillation. The 
reason for the discrepancy is not known. 

Finally the time-mean pressure and entropy 
contcurs are shown in Fig. 10, both displaying 
strong two-dimensionality and thtt strong shear lay- 
er resulting from the shock wavelboundary-layer 
region on the top wall. However the entropy contour 
indicates stronger nonuniformity of total pressure 
at the exit of the inlet while the static pressure 
approaches a nearly uniform distribution. The 
former is also a parameter indicative of the per- 
formance of the inlet. 

In  the preceding sections we described a numeri- 
cal procedure as well as boundary conditions used 
to solve the Reynolds-averaged, time-dependent 
Navier-Stokes equations which are closed by the use 
of the k- , two-equation model. The problem con- 
sidered was a two-dimensional supersonic flow in a 
divergent inlet. Spontaneous fluctuations were 
predicted in the calculation with distinct oscilla- 
tion frequencies. Detailed local flow features 
were calculated and some interesting phenomena 
discussed. It is clear that while a tremendous 
amount of computed information is available, more 
definite statments can not be made until equivalent 
amount of measurements exists for verification. 
However, with the limited data available, the com- 
putation generally yielded good a.greement with 
experiments. 
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Fig. 1. Inlet model (Ref. 10). 

Fig. 2. Uensity contour 



Fig. 3. Static pressure distribution: 
3 )  top wall b) center and c )  bottom wall. 

Fis,. 4 .  Skin friction coefficients on both walls. 

Fig. 5. RMS of static pressure fluctwt'ous 
(divided by plenum pressure): a) top wall, 

b) center, and c )  bottom wall. 
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Fig. 6. Comparison of calculated RYS of static 
?ressirre fluctuations with measurements (Ref.  10)  
at two streamrise locations (solid symbols are 

calculated values). 
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Fig. 10. Pressure and entropy contours. 
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