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IN TWO DIMENSIONAL TRANSONIC CHANNEL FLOWS 
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The  University of Michigan 
Ann Arbor,  Michigan 48109 

Abst rac t  flow disturbance is O(T ), then ? >>L/a' 
ch  ch 

Two dimensional unsteady transonic channel 
The present  paper i s  concerned with the c a s e  

where  the p r e s s u r e  oscillbtion has amplitude Ore2) 
and period O(c2 );-again in the slowly varying t ime 
reg ime,  s o  that, as will be seen, the shock-wave 
oscillation amplitude i s  O(1). 
consider those c a s e s  where ,  as a r e su l t  of the 
p r e s s u r e  oscillations introduced downstream, the 
shock wave moves ups t ream of the throat, disap- 
pea r s ,  and then reappears  a s  the downstream 

flow with a shock wave is considered for the slow- 
l y  varying t ime regime. Pressure oscillations. 
introduced downstream of the shock wave, cause 
the shock wave to osc i l la te ;  the case considered 
i s  that where  the shock i s  forced ups t ream of the 
throat, d i sappears ,  and then reappears  a s  the 
downstream pressure f i r s t  increases and then d e -  
creases. The subsequent shock wave motion con- 
s i s t s  of oscillations e i ther  about the throat o r  

In par t icu lar ,  we 

original steady flow shock position, de-  
pending upon parametric relationships developed 

p r e s s u r e  dec reases .  Then, depending upon the 
flow pa rame te r s ,  i t  will be shown that the subse-  
quent shock motion will follow one of s e v e r a l  dif-  
fe ren t  paths, ranging f rom an oscillation in which 
the shock d isappears  and reappears  on a periodic 
bas i s  to a periodic oscillation during which the 
shock never  again reaches  the throat. 
ble applications to unsteady flow problems in inlets 
and flows between blades in turbomachinery indi- 
ca t e  that the solutions to be presented  f o r  s imple  
boundary shapes will be quite helpful toward under -  
standing flows in m o r e  complex geometr ies .  

in the analysis.  
case  are i l lustrated with example calculations. 

These  two cases  and the dividing 

Introduction 
The poss i -  

Recent papers  on unsteady transonic channel 
flows, where the unsteadiness a r i s e s  as a r e su l t  
of p r e s s u r e  oscillations introduced downstream of 
a shock wave, e i ther  have dealt  with relatively 
small amplitude shock oscil lations"*. o r  have in- 
cluded only ve ry  br ie f  discussions of possible 
l a rge  amplitude oscil lations.  '- Thus, if the chan- 
ne l  half width at the throa t  is L loverbars  denote 
dimensional quantities). a is the c r i t i ca l  sound 
speed, and E i s  a sma l l  pa rame te r  which measures 
the typical difference between the fluid velocity and 
the sound speed, the case where the impressed  
p r e s s u r e  oscillations have amplitude O ( E ' )  with a 
period O(4. and the amplitude of the shock-wave 
oscillation is O(E), is covered in re ference  1; 
solutions are presented for a symmet r i c  channel. 
In re ference  2, where  a relatively highly curved 
a symmet r i c  channel is considered, the impressed  
p r e s s u r e  oscillations have amplitude O ( E ' )  and now 
a period of O ( e z ) ,  s o  the amplitude of the shock 
oscil lations is O(1).  However, only a relatively 
s m a l l  amplitude is actually considered, the empha- 
sis being on the a symmet ry  of the flow. Finally, 

p re s sed  p r e s s u r e  amplitude and period are d i s -  
cussed ,  and i t  i s  pointed out by means  of a s imple  
example that i t  i s  possible to analyze the caae 
where the shock wave moves ups t ream to the 
throat, d i sappears ,  and then later r eappea r s .  In 
each of the above named references ,  a "slowly 
varv ina"  t ime reg ime is considered. where if the 

Derivation of Equation for Shock-Wave Position 

The problem considered i s  that of a s y m m e -  -* . 
t r i c  two-dimensional channel with an a r b i t r a r y  
wall  shape, in which there  i s  a transonic flow with 
a shock wave. Coordinates x and y, with corre- 
sponding velocity components u and v, are aligned 
para l le l  and perpendicular to the channel ax is ,  
respectively, 
s teady;  p r e s s u r e  oscil lations are impressed  upon 
the f low downstream of the shock, a t  x = X, say, 
causing the shock wave t3 oscil late.  
assumed to follow the per fec t  gas law and to have 
constant specific heats.  The  flow ups t r eam of the 
shock wave i s  isentropic,  and because the flow is 
transonic, the shock is weak enough that a veloci-  
ty potential m a y  be used to the o rde r  des i red .  
The coordinates Y and y are made  dimensionless 
with r e spec t  to i,, the t ime T with r e spec t  to L/a"; 
and velocities with r e spec t  to ; hence, the di-  
mens ionless  velocity potential i s  r e f e r r e d  to the 
product E;*. 
pera tu re  T. are made dimensionless with r e spec t  
to the i r  c r i t i ca l  values,  and the enthalpy i s  re- 
f e r r e d  to ;*'. 

The flow upstream ot the Wave is 

The g a s  i s  

in re ference  3, seve ra l  combinations of the im- - - 1  

The p r e s s u r e  P ,  density p ,  and t em-  

. -  - 
charac te r i s t ic  t ime associated with the imposed 
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The wall shapes considered are wri t ten  a s  
follows, for symmet r i c  channels:  

= L (1 + € Z f ( Y ) )  (1) YW 

where f(x) i s  the a r b i t r a r y  wall shape function, 
such  that f (0 )  = f ' ( 0 )  = 0. Thus, x i s  measu red  
f rom the channel throat.  The radius of cu rva tu re  
of the channel a t  the throa t  i s  O(E-') ,  from eqn. 
( I ) ,  and as will be seen l a t e r ,  u - 1  = O(c); for 
transonic flow E << 1. 



Unsteady flows m a y  he charac te r ized  by p re -  
sc r ib ing  the relative o rde r  of the charac te r i s t ic  
- t ime  associated with the impressed  disturbances,  
Tch, and the charac te r i s t ic  t ime associated with 
- the acoustic waves traveling through the channel, 
L f i * .  As mentioned previously,  the slowly va ry -  
ing t ime re i m e  is considered he re ,  where 
Tch >>z/a . Therefore ,  a pa rame te r  T is intro- 
duced and a new s t re tched  t ime coordinate i s  made  
nondimensional with a s  follows: 

- -$ 

ch  

where  T >> 1 and t = O(1).  The relationship he- 
tween 7 and E depends upon the case considered. 
Since " - 1  = O(E), the t ime T,h requi red  fo r  a s ig-  
na l  to t rave l  ups t ream f rom the origin of the flow 
dis turbance  to the shock wave is O(</a*c), and so 
T,h/Tsh = O ( t  T). If T = O[E-'). the c a s e  studied 
in re ference  then Tsh  = O(Tch) and there  i s  a 
lag between the impressed  oscillations in p r e s s u r e  
and the p re s su re ,  t empera ture ,  e t c . ,  oscillations 
in the channel flow downstream of the shock. 
7 = O [ C - ~ ) ,  the case  studied h e r e  and in re ference  
2 ,  p r e s s u r e  signals f rom downstream of the 
shock wave r each  the shock "instantaneously" 
compared  with the period of the impressed  chan- 
ges  in pressure; i. e., Tsh/T,h = O ( E ) .  A s  will 
be seen, this leads to shock-wave oscillation a m -  
plitudes of o rde r  one. Thus, w e  choose 

- 
1, 

If 

- 

T = (k c 2 ) - '  ( 3 )  
where k is an a r b i t r a r y  constant of o rde r  unity. 

The genera l  method of solution follows that 
used in reference-5 1 and 2, The solutions fo r  
U. v. P, p ,  and T are written in the form of 
asymptotic expansions fo r  x, y. t = O(1). 
flow ups t ream of the shock i s  steady and the im-  
p re s sed  p r e s s u r e  downstream of the wave has t ime 
variations only in second o rde r  terms, then to 
f i r s t  o rde r  (i. e . ,  O(E)) ,  the flow i s  steady and the 
t ime dependence en ters  only in second o rde r  
t e rms .  As shown previously'" and a s  i l lustrated 
in figure 1, variations in pressure of o rde r  E' a t  
Y = X are sufficient to cause local p r e s s u r e  va r i a -  
tions of o rde r  E across the shock; as will be seen, 
these variations a r e  a l so  sufficient to cause shock 
wave displacements of o rde r  one. Hence,  r e l a -  
tively small impressed  p r e s s u r e  variations can 
cause large loca l  p r e s s u r e  changes over a l a r g e  
pa r t  of the channel; this, of co i~rse ,  i s  a very i m -  
portant e lement  in the study of blade f lu t te r  in 
transonic turhomachinery.  

Since the 

The only difference between the problem con- 
s idered  in r e fe rence  1 and that studied h e r e  i s  
that in re ference  1,  
case (1).  7 = O(E-')  whereas in the present  c a s e ,  
-I = O ( E - ' ) ;  the radius of curva ture  of the channel 
a t  the throat,  O(E-' ), and the o r d e r  of the im-  
p re s sed  oscillations in the p r e s s u r e  are the same. 
Hence, in the genera l  governing equations, since 

hereaf te r  r e f e r r e d  to as  

1 a / a T  = - ( a / a t ) ,  
T 

i t  i s  seen that in the present  c a s e  the par t ia l  der iv-  
atives with r e spec t  to t ime will be one o r d e r  

2 

higher than they w e r e  in c a s e  (1 ) .  Therefore ,  the 
genera l  outer solutions m a y  he derived eas i ly  f rom 
the outer solutions given in re ference  1, i .  e., 
those solutions, valid outside a thin region enclosing 

do not satisfy the shock wave jump conditions in 
second o rde r ,  i t  i s  necessa ry  he re  a l so  to cons ider  
an inner region about the shock, in which the solu- 
tions satisfy the jump conditions a t  the shock and 
match  with these outer solutions in the appropriate 
l imi t  a s  the outer regions a r e  approached. Then 
the inner and outer solutions can be joined to f o r m  
a composite solution uniformly valid to O(E')  every-  
where in the channel. Because the thickness [in the 
x direction) of the inner region i s  O(E"') and in 
case ( I ) ,  the amplitude of the shock wave motion is 
O( t ) ,  i t  i s  possible in case ( I )  to consider a station- 
a r y  inner region. In the present  case ,  the inner 
region thickness is again O(e"21, hut as will be 
shown, the amplitude of the wave motion is 0 ( 1 ) ,  
and a moving inner region mus t  be accounted fo r .  
However ,  hecause T = O [ E - ~ ) ,  it  can he shown4 that 
the inner solutions are  unchanged in form f rom 
those given in r e fe rence  1. The essent ia l  differ-  
ence is that whereas in c a s e  (1)  the shock motion is 
a perturbation ahout a steady s ta te  location and the 
relative velocity ahead of the shock wave i s  con- 
s tan t  to f i r s t  o r d e r ,  in the present  case the shock 
wave m a y  move throughout the channel, and the up- 
S t ream ffuid velocity relative to the shock depends 
on the shock position and i s  thus a function of time. 
Since to the o rde r  considered, no t ime derivatives 
remain  in the differential  equations fo r  the inner 
region, the form of the solutions is the same in the 
two c a s e s ,  the t ime dependence a r i s ing  through the 
boundary conditions on the relative ups t ream velo- 
city. 

the shock wave. Because  the solutions in question v 

L 

In view of the above r e m a r k s ,  i t  i s  Seen that 
the general fo rm of the composite solution holds 
e i ther  fo r  case  (1)'  o r  the p re sen t  c a s e ;  these s o h -  
tions a r e  repeated he re ,  f rom reference  1, fo r  
convenience. 

" . 1 + E U ' t t 2 u d  t... (4a) 

v = E L v 2  + . . .  f4b) 

(4c)  

p = 1 - E U ,  - 2 (u2 + (y+& + . . . (4d) 

P = 1 - E Y U ,  - t Z y u r  + . . .  

where  Y = C /C is the ratio of specific heats,  and 
where P V  



(5e ) 

In equation (5a). Cw is an a r b i t r a r y  constant de t e r -  
mined by the value of the velocity at  the throat;  
i. e . ,  if the flow is supersonic or  subsonic there ,  
C 
f rom subsonic to supersonic speed and i s  therefore  
sonic at  the throat, Cw 2 0. Also, in equations (5), 
f '  = d f/dx, e t c . ,  and f b  i s  the value of f '  a t  x 

SO' the zero o rde r  approximation to the shock-wave 
location, x which is expanded as follows: 

s so  1 

For  c a s e  (1). xs0 = constant, and in both cases ,  
the y dependence of xs occurs in higher o r d e r  
t e r m s .  In equations (5b) and ( S c ) ,  the function 
C*(x*, y) 
t ial  function f rom the inner solution. Upstream of 
the shock wave r* r 0, and downstream I" i s  given 
by equation (5d). Finally, Cu i s  the value of u I  a t  
x 
in equation (sa)). In c a s e  (1). C = constant, while 
in the p re sen t  case, i t  is a function of t ime s i n c e ,  
as will be seen, x = x (t). 

c 
> 0, while if the flow is one which acce lera tes  

W 

s' 
x = x  ( t ) + E X S  ( t ) +  ... (6) 

is the contribution to the composite poten- 

evaluated ups t ream of the shock (upper sign 
s 0' 

u 

so  so  

Before equations (5 ) can  be evaluated, i t  i s  
necessa ry  to find h,. The equation for h, i s  found 
f rom the next higher order solution in v, i .  e . ,  v j r  
which sa t i s f ies  the boundary condition that the flow 
remain tangent to the channel walls.  For  c a s e  (1) 
the differential equation for h is '  

s h t + u l h x  = - u, ( f"+(2V-3)~: ) /6  + A ( t )  

where  the subscr ip ts  t and x r ep resen t  par t ia l  d i f -  
ferentiation. In re ference  1, a genera l  numer ica l  
procedure for solution fo r  hx was given, which pe r -  
mitted u I  = u, (x, t). In re ference  3, i t  was shown 
that if u I  = u ,  (x), the condition finally considered 
in re ference  1 and considered he re .  then for c a s e  
( l ) ( ~ , = ( k , ~ ) ~ )  the solution fo r  h, can be writ ten a s  
follows: 

(7) 

W 

(8a) 
1 

u *  UI 
+ - G ( t - t p )  

h x = - ~ [ f " + ( 2 Y - 3 ) u ~ ] + ~  1 

In equation @a),  C z  is an a r b i t r a r y  constant of in- 
tegration s e t  by boundary conditions and G(t)  i s  p ro-  
portional to the oscillation in p r e s s u r e  impressed  
downstream of the shock wave, at x = X. That i s ,  
f rom equations (4c),(5a) and (5b), i t  is seen  that, 
a s  mentioned previously, the p r e s s u r e  var ies  with 
t ime in second order ,  and that a t  x = X, G(t)  i s  the 
t ime varying pa r t  of h and thus of the p re s su re .  

X 

For  the present  case, where  T = O(E-'), ht is 
dropped f r o m  equation ( 7 )  and the solution is s i m -  
ply equation (8a) with tp = 0. That is, there is no 
lag between the impressed  oscil lations in p r e s s u r e  
and velocity and the corresponding oscillations any- 
where in that pa r t  of the flawfield affected by the 

x , and X) .  Signals t rave l  ups t r eam instantaneous- 
ly8, compared to the period of the oscillation. 

d ' impressed  oscillations (between the shock position, 

3 

Finally, i t  i s  possible to calculate the shock 
position a s  a function of t ime. F i r s t ,  we consider 
the shock wave velocity, us = d x / dT  + O ( 9 ) ;  
(Vs = O(E"~ ) is negligible)'. Refative to the shock 
wave, the f i r s t  o r d e r  shock jump condition i s ,  for 
transonic flow, ( ~ 1 - u ~ ~ ) ~  = - ( u , - u I ~ ) ~ .  whe re  u I s  
is the f i r s t  o rde r  absolute shock-wave velocity 
(i. e . ,  u = E uIs + E ' U ~ ~  + . . . ) and where  the sub-  
sc r ip t s  u and d r e fe r  to conditions immediately up- 
s t r e a m  and downstream of the shock respectively.  
Now, u , ~  and u l d  are given by equation (5a) with 
the upper and lower sign respectively,  so u l d  = 
- u,,,, and f r o m  the shock relations,  therefore ,  
uIs = 0. 
satisfied by u2, i t  is c l e a r  that u 
u = O(E'). The re fo re  

u s - d T  = ~ E ~ $ ( X ~ ~ + E X  SI + . . . ) = O ~ E ' )  ( 9 )  

and s o  x = x ( t ) ;  this means  that the lowest o r -  
d e r  tern?% x '$aries with t ime so  that the ampl i -  
tude of the shzck motion is Oi l ) .  
motion in case, (1).  T = O ( F - ' )  and u 
that x = constant, x = x ( t ) ,  an$ the shock 
wave undergoes only sma l l  
i t s  equilibrium position'.  

S 

Since the shock jump conditions are not 
f 0 and s o  

s 2  

dx 

For  the shock 
= O ( t z ) ,  so 

displacements f rom SO s, SI 

The governing equation f o r  x (t) ,  the f i r s t  
SO 

approximation to the instantaneous shock position, 
i s  derived by applying the mass conservation prin- 
ciple to a control volume containing (moving with) 
the shock wave. The chance in e n t r o w  a c r o s s  the - .. 
wave (O(9 )), is employed in writ ing the density down- 
s t r e a m  of the wave. Although variations in p and 
u up to third o r d e r  mus t  therefore  be cons idered ,  
the final r e su l t  involves only second o r d e r  t e r m s ,  
a r e su l t  repor ted  p r e ~ i o u s l y " " ' ~ .  
calculations a r e  given in re ference  4, the r e su l t -  
ing equation for u = k dx /dt i s ,  

Details o f  the 

5 2  s o  

This equation has  exactly the same  f o r m  as that 
given for case  ( 1 )  ( re ference  1,) the only d i f f e r -  
ence being that fo r  caSe (1) d xs,/dt  i s  calculated; 
in the present  case C = C ( t )  whereas  in c a s e  
(1) C = constant. F%r th; specific problem con- 
s idered  he re ,  where the flow ups t r eam of the 
shock i s  steady and p res su re  oscil lations are im-  
p re s sed  upon the flow downstream of the shock a t  
x = X, say, h is given by equation (8a) evaluated 
a t  x = x For a flow which is sonic 
a t  the throat ( e .  g., an acce lera t ing  flow), the case 
considered he re ,  C,, = 0 also.  4gain. subscr ip ts  
u and d denote conditions immediately ups t ream 
and downstream of the shock wave, respectively.  

xd Equation (8a), evaluated a t  x 
(with t 
T = O(&') ) ;  the value chosen fo r  CZd gives the 
steady s ta te  location fo r  the shock wave, when 
Gltl = 0. Thus. i f  the above mentioned relations 

U 

w% G = 0. 
s 0 3  

i s  used f o r  h 
s 0' = 0 s ince  for the present  calculation 

. .  
f o r  h and h are  substituted into equation (10). 
one f%ds t h a r d  



Hence, a t  the s teady s t a t e  shock location, where 
dx /d t  = G(t )  = 0, CZd = - 2 Y  C3(x  ) / 3 ,  where 

s 0. u . s o  
LS now a constant. Thus. sett ing Cad gives 

value of x can  be calculated fo r  a 
which f r o m  equation (5a) means that the 

given wall  shape. If wsec)denote by C the value of 
C a t  this s teady s t a t e  location, the:%quation (11) 
can be writ ten as follows: u 

This equation thus gives thc unsteady shock loca-  
tion m e a s u r e d  f r o m  the s teady flow location, for  a 
given a r b i t r a r y  impressed  p r e s s u r e  oscillation 
represented by G( t ) .  

Before analyzing the shock motion, i t  i s  of in- 
t e r e s t  to note that i t  is possible to wr i t e  a general-  
ized solution, valid for  e i the r  c a s e  ( I ) ,  with T 
O(E-'), or  fo r  the p re sen t  ca se ,  with 7 = O ( E - ' ~ .  
Thus, if one replaces  equation (8b) with the follow- 
ing general ized relation, 

- 

and equation (11) with the following equations 

then the general  solution i s  given by equations (4), 
(5). (Sa), (13)  and (14). In equations (14). x is  the 
s teady s t a t e  location of the shock, and t 2 t (x ). 

4 0  P 0 It i s  seen that for T = O ( E - ' ) ,  then f r o m  equation 
(13) .  t = 0(1) ,  and f r o m  equation (14a). x = O f c ) ,  
i . e . ,  ' xf = E X  . For T = O(E-'). then T," = O ( c )  
and i s  negligihlz! ard X +  = Oil ) ,  s o  x: + xo = x 
The generalized soluti&s a r e  par t icular ly  use?A' 
in making numer ica l  calculations: i t  i s  ea sy  to 
separate  c a s e s  ( 1 )  and the present  c a s e  asymptoti-  
cally, but i t  i s  not ea sy  to choose one c a s e  over the 
othcr in a given physical situation, i .  e . ,  with given 
numerical  values of F and -I. 

+ 

Large Amplitude Shock Wave Motion 

As indicated previously, when -i = O ( e 2 )  the 
shock wave motion result ing f r o m  p r e s s u r e  osci l la-  
tions impressed  downstream of the shock wave has  
an amplitude of o r d e r  unity. A s  a resu l t ,  there  
are conditions under which the shock will m o v e  up- 
s t r e a m  through the nozzle, disappear  upstream. 
and then r eappea r  a s  Bhe downstream plenum p r e s -  
sure drops to the point where a shock wave in the 
channel is  n e c e s s a r y  to sa t i s fy  this instantaneous 
p r e s s u r e  requirement .  
c u r r e n c e  and the subsequent shock wave motion 
depend in a complex manner upon the amplitude of 
the forcing function, G, the s teady s t a t e  conditions 
about which the oscil lations occur ,  represented by 
C L ~ .  the wall  shape f(x),  and the numer ica l  value 
of the t ime constant,  represented by k. 

The conditions f o r  this oc- 

The equation which governs the shock motion 
i s  equation (11) or equation (12). where,  s ince 
xs = xso t O(e) ,  then to the o r d e r  considered h e r e ,  
xs and xso are interchangeable.  

disturbances r each  the shock wave instantaneously 
in a f i r s t  approximation. the shock wave does not 
respond instantaneously. 
finite, and indeed there  i s  a lag between the i m -  
p re s sed  disturbance G(t)  and the result ing shock 
velocity dxSo/dt. In equation (12).  for  example, 
i t  i s  seen that  the te rm (Cia - C i )  always has  a 
sign such that i t s  e f fec t  is  to cause the shock to 
move toward the equilibrium or  s teady s t a t e  posi- 
tion. On the other hand, G(t) i s  a forcing function 
which changes sign periodically. 
shock motion which lags  G(t). 

It is c l ea r  f r o m  equations (11) or (12) that 

It i s  interest ing 
to note that although signals f rom the impressed  v 

The shock velocity is  

The resul t  i s  a 

s ingular i t ies  occur  a s  the shock wave approaches 
the throat  and C -- 0. The behavior of integral  
curves which cross the x = 0 axis can he found 
f o r  a sihusoidal G(t) ,  for  example,  by writ ing equa- 
tion (11) for Y (and thus C ) s m a l l  compared 10 
unity and fo r  p t o i  << 1, wh%re k, is the value o f t  
a t  which the bracket  on the right hand s ide of equa- 
tion (11) goes to zero a t  the throat  x = 0. Thus, 
i f ,  f o r  example, 

then 

U 

SO 

S O  

G = G s i n  bt 115) 

sin bt = - Crd/Go (16) 

and equation (11) becomes, for  x << 1 and 
I t - t  ' << 1, s o  

01 L 

c o s  b to = 2 j1 - (C2d/Go)'  l17b) 

where,  again, C, = uIu(xs0)  is  the value of u, at 
x = xs ( t ) ,  upstream of the shack, and where 
C: << Tt-t,/. A typical wall shape and the cor re-  
sponding solution to equation fl i 'a) are, in the 
neighborhood of the throat,  

f (x )  = a x z  (18a) 

Thus, if cos b t  > 0, the point (0, t ) i s  a cen te r  
and the integra? curves (e l l ipses)  in the neighbor- 
hood of this cen te r  cross  x = 0 with an infinite 
slope. 
g r a l  curves in the neighborhood of ( 6 ,  t 1 are hyper-  
bolae, the point being a saddle  point, 2nd the two 
integral  cu rves  pas s  through the point (0. t ) with 
slopes 

0 

On the other  hand, ??cos bto < 0 ,  the inte- 

An understanding of the possible shock motions 
may  be gained by analyzing the integral  cu rves  L 
which pass  through the saddle points. 
possible configurations for  these curves a r e  

The three 
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sketched in figure 2. In these sketches,  the a r r o w s  
indicate the direction the solutions must  follow a s  
t ime increases .  In figure 2a, conditions a r e  such 
that the integral  curves  entering the saddle point 
originate f r o m  a par t icular  xgo = xo a t  t=O. Those 
leaving the saddle begin to r i se ,  then r eve r se  their  
directions and cross the t ime axis with ver t ical  
slope a t  some point between the cen te r  (indicated 
by a )  and the next saddle point (indicated by x). 
Other integral  curves  a r e  sketched also, a s  dotted 
l ines.  As indicated in the sketch, the paths t r aced  
by the integral  curves  a r e  repetitive. In figure 2 c ,  
the opposite situation ex is t s ;  the integral  curves  
entering the saddle point begin on the abscissa ,  
between a saddle and a center,  with an infinite slope 
and then change direction and en te r  the next saddle 
point. 
turn to the axis xso=O. but asymptotically approach 
a’s ingle  periodic curve (for a given Czd). 
curves  which originate with an xs0  grea te r  than any 
xgo on this periodic curve will  approach the period- 
i c  curve asymptotically f r o m  above. This periodic 
curve i s  nea r ly  symmetr ic  about xo, the steady 
s ta te  value of xSO. In the dividing case,  shown in 
f igure Zb, the curves entering and leaving the sad- 
dle points a r e  the s a m e  curve.  

L-- 

Those curves leaving the saddle never  re- 

Those 

The integral  curve map  obtained in any given 
c a s e  depends upon Cad. k, 
shape, f(x).  Although general  solutions f rom which 
a general  c r i te r ion  f o r  the dividing condition (figure 
2h) could be derived a r e  not available, an approxi- 
mate  resu l t  can be found for  G a s  given in  equation 
(15) and f(x)  a s  in equation (18a). Then, equation 

G(t), and the wall  

v (11) becomes 

and the slopes of the integral  curves  a t  the saddle 
points are given by equation (19). with to and Go 
re lated a s  in equation (16). Now, if it i s  assumed 
that the integral  curve which passes  through the 
saddle point a t  bt = bto and a l so  through the next 
saddle point a t  b t = b t o + 2 r  (e.g.. eee figure 2b). i s  
approximately symmet r i c  about bt = bto + r, then 
the maximum value of xgo is ,  f r o m  equation (20a), 

Next, if equation (ZOa) i s  integrated f i r s t  over  one 
period ( e .  g, bt  = bto to bt = bto + 2n) and then over a 
half period, then since xso = 0 a t  bto and bto + 2n 
and xgo = (xso)m a t  bt =bto + a, one finds the fol- 
lowing relations 

where, in equation ( 2 2 ~ ) .  advantage 
ken of the fact  that the integral  of xio over  half a 
per iod is half the integral  ove r  a full  period be- 
cause of the symmet ry  of xS0. Substituting for  
cos bto using equation (16). one finds f r o m  equa- 
tion (22c) the following relation f o r  Go. for  the 
special  ca se  (figure 2b): 

has been ta- 

(G,’ - cgd)l‘2 = h K(xso)A/4 (23) 

where K is given in equation (20b). Although this  
equation is nseftil in sett ing a f i r s t  approximation 
for  Go, a more accurate  resu l t  m a y  be found by 
taking into account the fac t  that  the integral  curve 
in question is not in  fact  symmetr ic ,  but i s  sl ight-  
ly  asymmetr ic .  In this calculation, i t  i s  necessa -  
r y  to employ an approximate fo rm for  x,,(t); a 
cubic equation of the following f o r m  suffices:  

x 80 = C 1 ~ ( 1 - 9  + c2:(l-P) (24) - 
Now, a t  xso = ( x ~ ~ ) ~ ,  where dx 
f i n e d a s ?  , where 

/dt  = 0, t is de- 
SO - m 

t m  - - ’ + a  2 (25) 

Also, i t  i s  assumed that b i s  numerical ly  s m a l l  
enough that t e r m s  involving b 2  may be ignored. 
Then, f r o m  equation (2Oa) evaluated a t  xso = (xs0),. 
equation (22a) with equation (24) used in the evalua- 
tion of the integral ,  equation (2Oa) integrated ove r  
one half period (r = O  to t = 1/2)  with equation (24) 
used in  integrating the t e rm,  ( x ~ ~ ) ~  evaluated 
using equation (Z4),and equation (25). one can de-  
rive the following relations for  ( x ~ ~ ) ~ .  b ,  and 
finally, Go. 

(26a, b )  
b K(x,,); 

4 
- 6a(O. 207r(Xs0)& - CZd) (GO2 - c td)l’l = 

( 2 6 ~ )  
where,  again, K and r a r e  defined in  equations 
(ZOb, c). 

Example calculations of the integral  cu rves  
through the saddle points, with the sinusoidal f o r c -  
ing function given in equation (15) and with pa ra -  
bolic walls a s  in equation (ISa), a r e  shown in  fig- 
u r e  3; the f i r s t  approximation to the special  value 
of Go f o r  c a s e  (b), calculated using equation (26c), 
m u s t  be modified using t r i a l  and  e r r o r .  
culations were c a r r i e d  out by numerical ly  integra-  
ting equation (20a), using equation (19) to find an 
init ial  condition n e a r  xso =O. In the calculatioq, 
b = 2 ,  k = l ,  a = ( Y + l ) / 2  = 1.2, x = 1.5, C = 
( 2 f ( ~ ) / ( y t . l ) ) ~ ” .  and CZd = -2Y8:,/3, where x i s  
the steady State value of xsb. 
t e r s  a, b. and C .  re fer  to the corresponding ca8es 
shown in figure 2. 
through one saddle point a r e  shown: the repeti t ive 
nature  of the curves a t  each saddle point i s  not 
shown, f o r  clari ty.  It should be noted that the 
value to in figure 3, referr ing to the location of a 
saddle point, is different  for  each case.  
t e rs ,  which a l so  occur  a t  different values of t f o r  

The cal-  

U 

In figure 3, theqet-  

In each case,  only the curves 

The cen-  
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each  case, are noted in figure 3. With the para -  
m e t r i c  values given above, it was found that fo r  the 
spec ia l  case,  shown in figure 2b, the spec ia l  value 
f o r  Go was. f r o m  equation (23), (Go)* = 4 . 3 3  and 
f r o m  equation ( 2 6 ~ ) .  (Go),p = 4.77.  ?he value 
which gives accura te  results (figure 3) is 

(GO)Sp = 4.968 (27) 

Thus, equation (26c) is helpful in giving a relative- 
l y  accura te  (4% error) first guess  f o r  (Go),p; in 
another c a s e ,  with a l l  other pa rame te r s  the same, 
but with xo = 0 . 7 5 ,  i t  was found that equation (26c) 
gave an es t imate  with an error of 6%. The curves 
labeled a and c in f igure  3 were calculated using 
Go = 5 . 5  > and Go = 4 < respectively. 
In each  of these cases ,  curves  en ter ing  and leaving 
the saddle point a t  t-to = O  a r e  shown, the behavior 
i n  each  case  following that sketched in the c o r r e s -  
ponding pa r t  of f igure 2. The solutions shown in 
figure 3 are for ve ry  s imple  (parabolic) wall  shapes.  
The re  appea r s  to he no s imple  way of predicting 
(Cp)sp fo r  more complicated wall shapes;in genera l ,  
it 2s necessa ry  t o  integrate numer ica l ly  along an  
in tegra l  curve  leaving a saddle point to see which 
c a s e  occur s  f o r  the given p a r a m e t e r s .  Examples 
a r e  shown l a t e r .  

With the mathemat ica l  behavior of the in tegra l  
c u r v e s  through saddle points understood, i t  i s  pos- 
s ib le  to in t e rp re t  the physical behavior of the 
shock wave in each c a s e .  Refer r ing  to figure 2a, 
f o r  any initial condition which does not l ie on an 
in tegra l  c u r v e  entering a saddle point (two a r e  i l -  
lus t ra ted  by c i r c l e s  in f igure  2a),  the shock pas-  
s e s  through the throat and d isappears  ups t r eam.  
This is Seen by following the in tegra l  c u r v e  in 
question a s  t ime inc reases :  x goes to zero ,  for 
any init ial  condition, between a center  and a saddle 
point. A s  t ime inc reases ,  then, a saddle point oc- 
c u r ~  a t  x = 0, and an in tegra l  cu rve  r i s e s  f rom 
the saddle point in the direction of increasing t. 
This means  that the hack p r e s s u r e  has decreased  
to the point where a shock wave mus t  fo rm in the 
channel in o r d e r  to sa t i s fy  the instantaneous p r e s -  
sure requi rements .  
p r e s s u r e  a t  x = X, using equations ( 4 ~ ) .  (5b), and 
(Ea) with t = O ;  for f " ( X )  = 0, 

s o  

s o  

This is seen by writ ing the 

P 

+ . . .  ( 2 8 )  

where  u ,  ( X )  < 0. 
that the conditions fo r  the hack p r e s s u r e  to he that 
which gives the subsonic solution for 0 < x < X, 
with sonic p r e s s u r e  a t  the throa t  is 

F r o m  equation ( 2 8 ) .  i t  is seen 

CLd + G(t )  = 0 ( 2 9 )  

But this condition, for the c a s e  where  G( t )  (and 
hence the p r e s s u r e )  is decreas ing ,  Ps prec ise ly  
the condition fo r  the saddle point, as exemplified 
by equations ( 1 5 )  and (16) and the discussion fol-  
lowing these equations. 
p r e s s u r e  requi rement  mus t  be satisfied instanta- 
neously by a shock forming at the throat i s  a 

The fact  that this hack 

resu l t  of the fact  that there is no t ime lag in the 
solutions fo r  the velocity, p re s su re ,  e tc .  As a 
result ,  then, the proper  behavior for the shock, 
a f te r  i t  d i sappears ,  i s  to reappear  a t  the t ime as-  
sociated with the f i r s t  saddle point after i ts  disap- 
pearance.  It then follows the path given by the 
integral  cu rve  through the saddle point and s o  dis -  
appears  again, fo rms  again at  the throat a t  the 
following saddle,  e tc .  Thus, no ma t t e r  what the 
initial condition i s ,  the result ing shock motion is 
associated with the integral  curves  leaving the 
saddle points, a s  shown in figure 4 a .  For  the 
periods of t ime between the disappearance and r e -  
appearance of a shock wave, the flow is subsonic 
throughout the channel. If the initial condition 
should l ie on an in tegra l  curve  entering the saddle 
point, the shock moves to the throat and moves 
away again on the integral  curve  leaving the sad-  
dle point. Thereaf te r ,  i ts  motion is the same a s  
that shown in figure 4a. 

u 

Referr ing  now to the dividing c a s e  shown in 
f igure  Zb, i t  i s  seen that there  are seve ra l  differ-  
ent possibilities for the shock motion. depending 
on the initial condition, again indicated by c i r c l e s .  
If the initial condition l i e s  outside the in tegra l  
curves through the saddle points, the shock posi-  
tion m e r e l y  oscil lates with time, never going 
through the throat. 
beneath the in tegra l  curves  through the saddle 
points, the shock moves ups t ream,  pas ses  through 
the throat and d isappears ;  then for the same  r e a -  
sons mentioned in the previous case ,  it  f o rms  a t  
the throat a t  the t ime corresponding to the f i r s t  
saddle point a f te r  i ts  disappearance.  It then fol-  
lows the integral  curves  through the saddle points, 
s o  that thereaf te r ,  i t  j u s t  moves to the throat and 
neve r  pas ses  ups t r eam;  this motion is i l lustrated 
in figure 413. If the initial condition should l i e  on 
an  integral  c u r v e  through a saddle point, the shack 
position i s  completely described by in tegra l  cur- 
ves through the saddle pqints; the shock never 
moves ups t ream of the throat.  

If the initial conditions l i e s  

\ 

Finally, r e f e r r ing  to figure 2c, t he re  a r e  
again several possible initial conditions. 
initial condition l i e s  above the in tegra l  curve  en- 
tering the saddle point, the shock motion approa- 
ches a periodic fo rm,  never  reaching the throat.  
If i t  l i e s  on an in tegra l  curve  below the curve en- 
tering the saddle point, i t  moves ups t r eam through 
the throat and d isappears ,  forms a t  the throat a t  
the t ime corresponding to the f i r s t  saddle point 
after i ts  disappearance,  and then moves away 
f r o m  the throa t  and approaches a periodic motion, 
never approaching the throat again. 
i s  shown in f igure  4 c .  
dition should l ie on the integral  curve  entering the 
saddle, the shock wave moves to the throat,  
moves away immediately on the integral  curve 
leaving the saddle point, and approaches the same 
periodic motion mentioned above. 

If the 

This motion 
Finally, i f  the initial con- 

The numer ica l  examples shown s o  f a r  (e.  g . ,  
f igure 3 )  have been for simple wall geometr ies  

relationship between the pa rame te r s  for the spe -  
c ia l  dividing c a s e  shown in figure 2.  

fo r  which i t  i s  possible to der ive  an approximate L 

(Equation 
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26~1 .  F O ~  genera l  geometr ies ,  i t  is necessa ry  to 
integrate equation (1 1) numerically along the inte- 
g r a l  curves  leaving the singularity,  using equation 
(17a) to'find s ta r t ing  values nea r  xso = 0, to find 
which c a s e  holds. Examples of such calculations, 
f o r  m o r e  complicated wall shapes,  a r e  shown in 
f igures  5 and 6; in these calculations f fx)  is as 
follows : 

.\, 

f(x) = 18x2 /13  X < l  

= 2 7 ( ~ - 2 ) ~ / 1 3  +48(x -2 ) ' / 13  + 3  1 5 x 5 2  

= 3  x > 2 (30) 

F igure  5 shows calculations made  for Czd = 0, 
that i s ,  fo r  the c a s e  where the steady s ta te  solu- 
tion i s  that f o r  which the flow goes through sonic 
velocity a t  the throat but i s  subsonic thereafter,  
with no shock waves.  Clear ly ,  the unsteady mo- 
tion is that i l lustrated in figure 2a. In f igure  6. 
two examples are shown in which the only parame-  
t e r  varied is the steady s ta te  shock position, x . 
Refer r ing  to the in tegra l  curves through the f i r s t  
saddle points, i t  is seen that fo r  xo = 1. 5, the s i t -  
uation is that i l lustrated in f igure  2 c .  while f o r  
xo = 0. 75, i t  i s  that i l lustrated in figure 2 a .  Also 
shown in figure 6 are the solution curves  f r o m  the 
initial condition to the point where the shock pas -  
s e s  through the throat.  With these two curves  and 
those leaving the f i r s t  saddle point, one can find 
then the result ing shock wave motions cor respond-  
ing to figures 4a (x 

0 

= 0 .  75) and 4 s  (yo i 1. 5). 
0 

Conclusions 

v- The above examples i l lus t ra te  the remarkably  
varied shock wave motions governed by the s imple  
f i r s t  o rde r  nonlinear equation ( 1  1). 
they i l lus t ra te  the w e l l  known fac t  that in transonic 
channel f lows,  s m a l l  changes in downstream p r e s -  
s u r e s  can cause l a rge  loca l  changes in p r e s s u r e  
by changing the location of the shock; in these ex- 
amples ,  the p r e s s u r e  jump across the shock i s  
Oid, and the position is governed by changes in 
hack p r e s s u r e  O ( E z ) .  
l a rge  changes in shock position can r e su l t  f r o m  
sma l l  changes in back p r e s s u r e ;  i. e . ,  for 
AP = Oft'), Ax = O(1). The solutions presented 
allow relatively t imp le  calculations of shock posi- 
tions to he made  for transonic flows in symmet r i c  
channels with a r b i t r a r y  wall shapes and a r b i t r a r y  
oscil lations in back p r e s s u r e .  
a symmet r i c  channels,  still with radius.of curva- 
tu re  O(e" )  is not difficult, and it appears  that 
these resu l t s  m a y  have application to inlet buzz 
and to flutter problems in turbomachinery.  

Moreover,  

Finally, they show that 

b 

The extension to 
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Fig. 1. Pressure distribution in nozzle with acce l -  
e ra t ing  flow. ---shockless flow; -flow with a 
shock wave. 

C 

t 
Fig. 2 .  Sketch of possible configurations f o r  inte- 
g r a l  curves  through saddle points (solid l i nes ) ;  
o ther  in tegra l  cu rves  indicated by dashed l ines.  
.center;  x saddle point. (a) Integral  curves  leaving 
x r each  t ime ax i s  before next x. (b) Integral  cu rves  
leaving x reach  t ime ax is  a t  next x. ( c )  In tegra l  
curves  leaving x never  r e tu rn  to t ime ax is .  
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Fig.  3. Calculated in tegra l  curves  for  the s imple 
case represented by eqs. (15). (18a), ( 2 6 ) .  and (2Oa1, 
with b = 2 ,  k = 1, a = (Yt1)/2 = 1.2, xo = 1.5, and C,d 
= - ZY C i O l 3 ,  i l lust rat ing the three c a s e s  sketched 
in fig. 2;curves labeled a(---), b[-), and d- - -) 
r e fe r  to the corresponding cases  in fig. 2. 
the s teady s ta te  value of xSO. 
point. 

xo i s  
.center; x saddle 

1 

Fig.  5 .  Calculated in tegra l  curves  through the 
saddle point i l lustrat ing the case  sketched in fig. Za. 
fo r  Czd=O, G = 4 s i n Z t ,  y = 1 . 4 .  ~ = 1 0 0 ,  € = O . l ,  
C, = O .  and f[x) as given in e q s .  (30). Solutions 
found by numerical ly  integrating eq. (11). 

Fig. 4. Sketches of shock wave motion when the 
amplitude of the impressed  p res su re  oscillation i s  
la rge  enough to  dr ive the shock wave ups t r eam of 
the throat .  for  each  of the three cases shown in 
fig. 2 ;  c a ses  labeled a ,  b, and c re fer  to  the corre- 
sponding c a s e s  in fig. 2 .  
s ta te ,  condition for the shock position. 

xo is the ini t ia l ,  steady 
Fig. 6. Calculated in tegra l  curves  through the 
saddle points (solid l ines)  and f rom the ini t ia l  con- 
dition to the t ime axis  [dotted l ines)  for two values 
of xo and thus Czd. For curves marked a ,  corre- 
sponding to the case sketched in fig. 2a ,  xo= 1 .5 ;  
for curves  marked c ,  corresponding to the case  
sketched in fig. Zc, k o = 0 . 7 5 .  F o r  each  case ,  
G = 4 . 5 s i n 2 t , Y = l . 4 , ~ = 1 5 0 , ~ = 0 . 1 ,  C,=O, and 
f (x)  is a s  given in eqs. (30). 
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