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Abstract

Two dimensional unsteady transonic channel
flow with a shock wave is considered for the slow-
ly varying time regime. Pressure oscillations,
introduced downstream of the shock wave, cause
the shock wave to oscillate; the case considered
ig that where the shock is forced upstream of the
throat, disappears, and then reappears as the
downstream pressuve {irst increases and then de-
creases. The subsequent shock wave motion con-
sists of oscillations either about the throat or
abouf the original steady flow shock position, de-
pending upon parametric relationships developed
in the analysis. These two cases and the dividing
case are illustrated with example calculations.

Introduction

Recent papers on unsteady transonic channel
flows, where the unsteadiness arises as a result
of pressure oscillations introduced downstream of
a shock wave, either have dealt with relatively
small amplitude shock oscillations *#, or have in-
cluded only very brief discussions of possible
large amplitude oscillations.?® Thus, if the chan-
nel half width at the throat is L. (overbars denote
dimensional guantities), a is the critical sound
speed, and €is a small parameter which measures
the typical difference between the fluid velocity and
the sound speed, the case where the impressed
pressure oscillations have amplitude O(e?) with a
period Of(c), and the amplitude of the shock-wave
oscillation is Of¢}, is covered in reference 1;
solutions are presented for a symmetric channel.
In reference 2, where a relatively highly curved
asymmetric channel is considered, the impressed
pressure oscillations have amplitude Ofe?) and now
a period of O(c?), so the amplitude of the shock
oscillations is O(1l). However, only a relatively
small amplitude is actually considered, the empha-
sis being on the asymmetry of the flow. Finally,
in reference 3, several combinations of the im-
pressed pressure amplitude and period are dis-
cussed, and it is pointed out by means of a simple
example that it is possible to analyze the case
where the shock wave moves upstream to the
throat, disappears, and then later reappears. In
each of the above named references, a '"slowly
varying'' time regime is considered, where if the
characteristic time associated with the imposed
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flow disturbance is O{Tch), then Tc = 1L/a

h

The present paper is eoncerned with the case
where the pressure osecillition has amplitude Ofe?)
and period O(e?),-again in the slowly varying time
regime, so that, as will be seen, the shock-wave
oscillation amplitude is O(l}). In particular, we
consider those cases where, as a result of the
pressure oscillations introduced downstream, the
shock wave moves upstrearm of the throat, disap-
pears, and then reappears as the downstream
pressure decreases. Then, depending upon the
flow parameters, it will be shown that the subse-
quent shock motion will follow one of several dif-
ferent paths, ranging from an oscillation in which
the shock disappears and reappears on a periodic
basis to a periodic oscillation during which the
shock never again reaches the throat. The possi-
ble applications to unsteady flow problems in inlets
and flows between blades in turbomachinery indi-
cate that the solutions to be presented for simple
boundary shapes will be quite helpful toward under-
standing flows in more complex geometries,

Derivation of Fquation for Shock-Wave Position

The problem considered is that of a symme-
tric two-dimensional channel with an arbitrary
wall shape, in which there is a transonic flow with
a shock wave. Coordinates x and y, with corre-
sponding velocity components u and v, are aligned
parallel and perpendicular toe the channel axis,
respectively. The flow upstream of the wave is
steady; pressure oscillations are impressed upon
the flow downstream of the shock, atx = X, say,
causing the shock wave to oscillate. The gas is
assumed to follow the perfect gas law and to have
constant specific heats. The flow upstream of the
shock wave is isentropic, and because the flow is
transonic, the shock is weak enough that a veloci-
ty potential may be used to the order desired.

The coordinates x and y are made dimensionless_
with respect to L, the time T wjth respect to L/a¥
and velocities with respect to a ; hence, the di-
mensionless velocity potential is referred to the
producti-é*. The pressure P, density p, and tem-
perature T, are made dimensionless with respect
to their critical values, and the enthalpy is re-
ferred to a*?.

The wall shapes considered are written as
follows, for symmetric channels:

¥, = *(1+ i) (1)

where f{x} is the arbitrary wall shape function,
such that f(0) = £'(0) = 0. Thus, x is measured
from the channel throat. The radius of curvature
of the channel at the throat is O(c~2), from eqn,
(1}, and as will be seen later, u-~1 = Q(¢); for
transonic flow € << 1.



Unsteady flows may he characterized by pre-
scribing the relative order of the characteristic
time associated with the impressed disturbances,
Ty and the characteristic time associated with
the acoustic waves traveling through the channel,
T./a*. As mentioned previously, the slowly vary-
ing time r_e)gime is considered here, where )
T > L/a". Therefore, a parameter 1 is intro-
diced and a new stretched time coordinate is made
nondimenstonal with Tch as follows:

==

T = TCh/(L/a ) T=r1t {2a, b)
where 1 ® 1 and t = O(1). The relationship be-
tween 1 and ¢ depends upon the case considered,
Since u-1 = O(e), the time T}, required for a sig-
nal to travel upstream from the origin of the flow
disturbance to the shock wave is O(L/2a%e), and so
Tch/Tsh =Oleq). 1 =06 ), the case studied
in reference 1, then Ty = O(T.p) and there is a
lag between the impressed oscillations in pressure
and the pressure, temperature, etc., oscillations
in the channel flow downsiream of the shock. If
1 = O{¢ %), the case studied here and in reference
2, pressure signals from downstream of the
shock wave reach the shock "instantanecously”
compared with the period of the impressed chan-
ges in pressure; i.e., Tsh/Tch = Cle). As will

be seen, this leads to shock-wave oscillation am-
plitudes of order one. Thus, we choose
o= {ke®)! (3)

where k is an arbitrary constant of order unity.

The general method of solution follows that
used in references 1 and 2, The solutions for
a, v, P, p, and T are written in the form of
asymptotic expansions for x,y,t = O(l), Since the
flow upstream of the shock is steady and the im-
pressed pressure downstream of the wave has time
variations only in second order terms, then to
first order (i.e., O{¢)), the flow is steady and the
time dependence enters only in second order
terms. As shown previously*? and as illustrated
in figure 1, variations in pressure of order ¢® at
x = X are sufficient to cause local pressure varia-
tions of order € across the shock; as will be seen,
these variations are also sufficient to cause shock
wave displacements of order one. Hence, rela-
tively small impressed pressure variations can
cause large local pressure changes over a large
part of the channel; this, of course, is a very im-
portant element in the study of blade flutter in
transonic turbomachinery.

The only difference between the problem con-
sidered in reference 1 and that studied here is
that in reference 1, hereafter referred to as
case (1}, 1 = O{¢~!) whereas in the present case,

1 = Ote~?); the radius of curvature of the channel
at the throat, Ofe %), and the order of the im-
pressed oscillations in the pressure are the same.
Hence, in the general governing eguations, since

a/dT = Tl(a/at),

it is seen that in the present case the partial deriv-
atives with respect to time will be one order

higher than they were in case (1). Therefore, the
general outer solutions may be derived easily from
the outer solutions given in reference I, i.e.,
those solutions valid outside a thin region enclosing
the shock wave. Because the solutions in question
do not satisfy the shock wave jump conditions in
second order, it is necessary here also to consider
an inner region about the shock, in which the solu-
tions satisfy the jump conditions at the shock and
match with these outer solutions in the appropriate
limit as the outer regions are approached. Then
the inner and outer solutions can be joined to form
a composite solution uniformly valid to Oe?) every-
where in the channel. Because the thickness (in the
x direction) of the inner region is O{¢!’?) and in
case (1}, the amplitude of the shock wave motion is
Ofg), it is possible in case {1} to consider a station-
ary inner region. In the present case, the inner
region thickness is again O(e!'”?), but as will be
shown, the amplitude of the wave motion is O(1),
and a moving inner region must be accounted for.
However, because 1 = O(e "%}, it can be shown® that
the inner solutions are unchanged in form from
those given in reference 1. The essential differ-
ence is that whereas in case /1) the shock motion is
a perturbation about a steady state location and the
relative velocity ahead of the shock wave is con=-
stant to first order, in the present case the shock
wave may move throughout the channel, and the up-
stream fluid velocity relative to the shock depends
on the shock position and is thus a function of time.
Since to the order considered, no time derivatives
remain in the differential equations for the inner
region, the form of the solutions is the same in the
two cases, the time dependence arising through the
boundary conditions on the relative upstream velo-
city,

In view of the above remarks, it is seen that
the general form of the composite solution holds
either for case (1)! or the present case; these solu-

tions are repeated here, from reference 1, f{for
convenlience.,

w=l+eu +efu; +... (4a)
v=ec?ve +... {4b)
P=1-€Yu, -€*yu, +.., (4c)
p =1 -cu -e? (ua+(—Y;—1)u;")+... {4d)
T=1-ely=1ju, = €2(Y=1){u; +1213-)+... (4e)

where Y =C /C is the ratio of specific heats, and
where v

u = ﬁzg;-ﬁ ftx) + C_ (52)
2
u, :f"§—+hx+§’** {5b)
X
3%
Ve :f'Y"'fY (5¢)
4f$’[(Y+I)C }1/2 o n
* u 27 (=1) cos [ )
71‘3 o n} s nwry
+ exp fenme /[(¥FLIC_11/2) (5d)



(5e}

In equation (5a), C, is an arbitrary constant deter-
mined by the value of the velocity at the throat;
i.e., if the flow is supersonic or subsonic there,

C >0, while if the flow is one which accelerates
from subsonic to supersonic speed and is therefore
sonic at the throat, Cw = 0. Also, in equations (5),
f' = d £/dx, etc., and f' is the value of £' at x_ ,
the zero order approximation to the shock-wave
location, X s which is expanded as follows:

() + ... {6)

X =X
S 1

t) + ¢
S O() xs

For case (1}, %50 = constant, and in both cases,
the y dependence of x; occurs in higher order
terms. In equations (5b) and (5c), the function
§’*(x*, y} is the contribution to the composite poten-
tial function from the inner solution. Upstream of
the shock wave C* = 0, and downstream E‘* is given
by equation (5d}. Finally, C,, is the value of u, at
x , evaluated upstream of the shock {upper sign
in%quation (5a)). In case (1), C_ = constant, while
in the present case, it is a function of time since.,
as will be seen, x o xso(tJ.

Before equations (5 ) can be evaluated, itis
necessary to find h, . The equation for hy is found
from the next higher order solution in v, i.e., vi,
which satisfies the boundary condition that the flow
remain tangent to the channel walls. For case (1)
the differential equation for h is!

2k, n
(y+1) 7t
where the subscripts t and x represent partial dif-
ferentiation. In reference.l, a general numerical
procedure for solution for h, was given, which per-
mitted u, =u,(,t}. In reference 3, it was shown
that if u; = u, {x), the condition finally considered
in reference 1 and considered here, then for case
{1){r; =(k; &} =) the solution for h, can be written as
follows:

tuh = -y (s (2¥-3)uf /6 + Aft) {7)

1 C 1

h = -g[f"+(2y-3)uf]+l.l—f+ETGtt-t£) (8a)
X

ty =t,(x) = fx (2ky /(y+1)u, (€))dE {8b)

In equation (8a), C,; is an arbitrary constant of in-
tegration set by boundary conditions and G(t) is pro-
portional to the oscillation in pressure impressed
downstream of the shock wave, at x = X. That is,
from equationsg (4c),(5a) and (5b), it is seen that,

as mentioned previously, the pressure varies with
time in second order, and that at x = X, G(t) is the
time varying part of hx and thus of the pressure.

For the present case, where 1 = Ofe %), ht is
dropped from equation (7) and the solution is sim-
ply equation (82) with t, = 0. That is, there is no
lag between the impressed oscillations in pressure
and velocity and the corresponding oscillations any-
where in that part of the flowfield affected by the
impressed oscillations (between the shock position,
x , and X}. Signals travel upstream instantaneous-
lgEr;, compared to the peried of the oscillation.

Finally, it is possible to calculate the shock
position as a function of time. TFirst, we consider
the shock wave velocity, ug =d x_/dT + O(e);

(V. = O(e"’% ) is negligible)!, Relative to the shack
wave, the first order shock jump condition is, for

transonic flow, (uy~u1g)y = = (uy-wyg) where u;g
is the first order absolute shock-wave velocity
{i,e., u_=€euq +€?uzg +...) and where the sub-

scripts u and d refer to conditions immediately up-~
stream and downstream of the shock respectively.
Now, uy, and u,4 are given by equation (5a) with
the upper and lower sign respectively, sou 4 =

- uy,s and from the shock relations, therefore,

ug = 0. Since the shock jump conditions are not
satisfied by u,, itis clear that u_ # 0 and so
u_ = O(e?). Therefore z
dxs d
= =—= = 2= + ¢ +...) = 2
Ys TAT ke dt (xso cxst ) =0} (9)
and so x  =x c'(t); this means that the lowest or-

der termiin x “varies with time so that the ampli-
tude of the shock motion is O(1). For the shock
motion in case (1), 1 = O{¢™')and u_ = O(e?), so
that g = constant, x (t), and the shock
wave undergoes only small  displacements from
its equilibrium position®.

=X

The governing equation for x 0(t), the first
approximation to the instantaneous shock position,
is derived by applying the mass conservation prin-
ciple to a control volume containing {moving with)
the shock wave. The change in entropy across the
wave (Ofe¥)), is employed in writing the density down-
stream of the wave. Although variations in p and
u up to third order must therefore be considered,
the final result involves only second order terms,
a result vreported previously!**®. Details of the
calculations are given in reference 4, the result-
ing equation for u_ =k dxso/dt is,

dx £

4k 50 o
= h +h + —

{y+1) dt xd xu 3

-C? (10}
u
This equation has exactly the same form as that
given for case (1) (reference 1l,) the only differ-
ence being that for case (1) d x /dt is calculated;
in the present case C_ = C (t}  whereas in case
(1) C = constant, For the specific problem con-
sideréld here, where the flow upstream of the
shock is steady and pressure oscillations are im-
pressed upon the flow downstreamn of the shock at
x = X, say, h__is given by equation (8a) evaluated
atx =x_, with G = O, For a flow which is senic
at the t}?roat (e.g., an accelerating flow), the case
considered here, €,y = 0 also. Again, subscripts
u and d denote conditions immediately upstream
and downstream of the shock wave, respectively.
Equation (8a), evaluated at x_, is used for h
(with t! = 0 since for the present calculation
r = O(€72)); the value chosen for C,q gives the
steady state location for the shock wave, when
G{t) = 0. Thus, if the above mentioned relations
for h and h . are substituted into equation (10),
one finds tha.th

1 2y
=-E:1[cad+3—cfl+c(t)} {11}



Hence, at the steady state shock location, where
dx O/dt =Gty =0, Cag=-2Y Ca[x 0)/3 where
x 1s now a constant. Thus, settmg Cad gives
x__J}s» which from equation (5a) means that the
steagy state value of X, can be calculated for a
given wall shape. If we denote by C _ the value of
C at this steady state location, thedt equation {11}
cdh be written as follows

4k "so 1 2Y

(y+1) dt “C |3
a

(i -ci- G[t[l (12)
This equation thus gives the unsteady shock loca-
tion measured {rom the steady flow location, for a
given arbitrary impressed pressure oscillation
represented by Git).

Before analyzing the shock motion, itis of in-
terest to note that it is possible to write a general-
ized solution, valid for either case (1}, with ¢, =
O(e ™), or for the present case, with 7 = O(G'z)l.
Thus, if one replaces equation (8b) with the follow-
ing generalized relation,

X

1 2 _d
T Te fX 1) G, (€)

(13)

and equation (11) with the following equations

[cad +-Z—;—(C3 + Glt-t ](14&1)

+
1 4 s 1
T el (yrl) dt c,

+
X=X + xs(t) (14b)
then the general solution is given hy equations (4),
(5), (8a), (13) and (14}, In equations (14), X, is the
steady state location of the shock, and t, = t.! (x ).

= o
It is seen that for 1 = Q(e '), then from eqiatxon

{13, t2 = O(l), and from equation (14a), X, = Of¢),
i.e., x =% For 1 = Of{e™?), then 1, = Olg
and is neghgxble, ard xt = 0(1), s0 x+ +ox = x

The generalized solutions are partlcularly usehil
in making numerical calculations; it is easy to
separate cases (1) and the present case asymptoti~
cally, but it is not casy to choose one case over the
other in a given physical situation, i.e., with given
numerical values of € and 1.

Large Amplitude Shock Wave Motion

Asindicated previously, when ¢ = O(¢®) the
shock wave motion resulting from pressure oscilla-
tions impressed downstream of the shock wave has
an amplitude of order unity. As a result, there
are conditions under which the shock will move up-
stream through the nozzle, disappear upstream,
and then reappear as the downstream plenum pres-
sure drops to the point where a shock wave in the
channel is necessary to satisfy this instantaneous
pressure requirement. The conditions for this oc-
currence and the subsequent shock wave motion
depend in a complex manner upon the amplitude of
the foreing function, G, the steady state conditions
about which the oscillations occur, represented by
C:4q, the wall shape f(x}, and the numerical value
of the time constant, represented by k.

The equation which governs the shock motion
is equation {11) or equation (12}, where, since
Xg = Xgo T Ofe), then to the order considered here,
x, and xg, are interchangeable, It is interesting
to note that although signals from the impressed
disturbances reach the shock wave instantaneously
in a first approximation, the shock wave does not
respond instantaneously. The shock velocity is
finite, and indeed there is 2 lag between the im-
pressed disturbance G(t) and the resulting shock
velocity dx,,/dt. In equation {12), for example,
it is seen that the term {C} - C}) always has a
sign such that its effect is to cause the shock to
move toward the equilibrium or steady state posi=
tion. On the other hand, G{t) is a forcing function
which changes sigh periodically. The result is a
shock motion which lags Gft),

It is clear from equations (11) or (12) that
singularitiecs occur as the shock wave approaches
the throat and C_ - 0. The behavior of integral
curves which créss the x = 0 axis can be found
for a sinusoidal G(t), for example, by writing equa-
tion (11} for x _ (and thus C ) small compared to
unity and for to-tof <« 1, where tp is the value of t
at which the bracket on the right hand side of equa-

tion {11) goes to zero at the throat X o = 0. Thus,
if, for example,
G = G_ sin bt (15)
o
then
sin bt0 E ng/GO (16)
and equation (11) becomes, for x << 1 and
lt-t | =<1, 80
O
dx t~t
50 {y+1) [}
at ST (b Go cos b to) cu (17a)
= + -
cos b t0 + *1 c zd/Go)z {17b)

where, again, C, = uyp(xgp) is the value of u; at
X = Xgqolt), upstream of the shock, and where

C‘a <« t—tof. A typical wall shape and the corre-
sponding solution to equation {17a) are, in the
neighborhood of the throat,

fix) = ax* {18a)
PO ' | e - 42
xSO = - —2’g‘7§k— U; GO(COS b to)(t-to) (18b)

Thus, if cos bt > 0, the point {0, t_} is a center
and the integral curves (ellipses) in the neighbor-
hood of this center cross x__ = 0 with an infinite
slope. On the other hand, cos bty <0, the inte~
gral curves in the nexghborhood of (0, £y ) are hyper-
bolae, the point being a saddle point, #nd the two
integral curves pass through the point (0,1t ) with
slopes

172
{HE%]— —7% fcos bt l} (19)

An understanding of the possible shock motions
may be gained by analyzing the integral curves
which pass through the saddle points. The three
possible configurations for these curves are



sketched in figure 2, In these sketches, the arrows
indicate the direction the solutions must follow as
time increases. In figure 22, conditions are such
that the integral curves entering the saddle point
originate from a particular x5, = x, at t=0. Those
leaving the saddle begin to rise, then reverse their
directions and cross the time axis with vertical
slope at some point between the center (indicated
by ) and the next saddle point (indicated by x}.
Other integral curves are sketched also, as dotted
lines. As indicated in the sketch, the paths traced
by the integral curves are repetitive. In figure 2c¢,
the opposite situation exists; the integral curves
entering the saddle point begin on the abscissa,
between a saddle and a center, with an infinite slope
and then change direction and enter the next saddle
point. Those curves leaving the saddle never re-
turn to the axis x5,=0, but asymptotically approach
a'single periodic curve (for a given Cyg). Those
curves which originate with an xg, greater than any
Xgo on this periodic curve will appreoach the period-
ic curve asymptotically from above. This periodic
curve is nearly symmetric about x,, the steady
state value of xg5o. In the dividing case, shown in
figure 2b, the curves entering and leaving the sad-
dle points are the same curve,

The integral curve map obtained in any given
case depends upon C,3, k, G(t), and the wall
shape, f(x). Although general solutions from which
a general criterion for the dividing condition {(figure
2b) could be derived are not available, an approxi-
mate result can be found for G as given in equation
(15) and f(x) as in equation (18a). Then, equation
{11) becomes

K dx o]
*s0 dts =-Caq-Tx’ -G sinbt (20a)
2572 & AR 2y 2a 32
K= w7z =55 (20, ¢)

and the slopes of the integral curves at the saddle
points are given by equation (19), with t; and G
related as in equation {16). Now, if it is assumed
that the integral curve which passes through the
saddle point at bt =bt_ and also through the next
saddle point at bt =bt, + 27 (e.g., see figure 2b), is
approximately symmetric about bt =bt, + #, then
the maximum value of Xgo is, from equation (20a),

(x_ ) (- 2Cq/T)?

som (21)

Next, if equation {20a} is integrated first over one
period {e.g, bt=bt, to bt =bt, + 27) and then over a
half period, then since xgg = 0 at bt, and bt + 27
and %55 = {2gg )y, 2t Bt=bt, + 7, one finds the fol-
lowing relations

-1 ~ ~
0=Caq+ rjo 3 At t=bit-t )2w (22a, b)
K(XBO)I‘;'! G0
— = - 2-_;—- cos bto (22c)

where, in equation (22¢), advantage has been ta~
ken of the fact that the integral of x} over half a
period is half the integral over a full period be-
cause of the symmetry of x.,. Substituting for
cos bt uging equation (16), one finds from equa-
tion (22c¢) the following relation for Go’ for the
special case (figure 2b):

(G2 - C31'* = b K@ )E /4 (23)
where K is given in equation (20b), Although this
equation is usefil in setting a first approximation
for G, a more accurate result may be found by
taking into account the fact that the integral curve
in question is not in fact symmetric, but is slight-
ly asymmetric, In this calculation, it is necessa-
ry to employ an approximate form for xgq{t); a
cubic equation of the following form suffices:

x = C,t(1-8) + G, t(1-12) (24)
I\.Iow, atfso = (xso‘)m' whe r'e dxsa/dt =0, t is de~
finedas t , where

m

i
—+
26

t = (25)
Also, it is assumed that 6 is numerically small
enough that terms involving 6% may be ignored.
Then, from equation (20a) evaluated at Xgo = (xso)m,
equation {22a) with equation (24) used in the evalua-
tion of the integral, equation (20a) integrated over
one half period {t =0 to £ = 1/2) with equation (24)
used in integrating the x;o term, (xso)m evaluated
using equation {24),and equation (25), one can de-
rive the following relations for (x 6, and
finally, G :

so)m’
o

. 173 - 2z
(Xso)m = («35C24/16D )", & 3C;_d/81rbK(xSO)m

bKx_ )2 (262, b}
(G2~ C3gh? = 43 - §7(0.2078(x_ ) - Cq)
(26c)

where, again, K and I' are defined in equations
{20b,c)

Example calculations of the integral curves
through the saddle points, with the sinusoidal forc-
ing function given in equation (15) and with para-
bolic walls as in equation (18a), are shown in fig-
ure 3; the first approximation to the special value
of G for case (b), calculated using equation (26c),
must be modified using trial and error, The cal-
culations were carried out by numerically integra-
ting equation (20a), using equation (19) to find an
initial condition near xg 5 =0. In the calculation,
b=2, k=1, a=(Yy+1}/2 =1.2, x_=1,5, C =
(2£(x)/ (y*1))'*2, and Cpq = -2YC) /3, where x_ is
the steady state value of xg,. In figure 3, the let-
ters a, b, and ¢, refer to the corresponding cases
shown in figure 2, In each case, only the curves
through one saddle point are shown; the repetitive
nature of the curves at each saddle point is not
shown, for clarity. It should be noted that the
value t; in figure 3, referring to the location of a
saddle point, is different for each case. The cen-
ters, which also cccur at different values of t for



each case, are noted in figure 3. With the para-
metric values given above, it was found that for the
special case, shown in figure 2b, the special value
for G, was, from equation (23), (Gylgp = 4.33 and
from equation (26c), (Go)s =4, 77. he value
which gives accurate results {figure 3)is

(c;o)ﬁp = 4,968 (27)

Thus, equation (26¢) is helpful in giving a relative.
ly accurate (4% error) first guess for (Go)s ; in
another case, with all other parameters the same,
but with x = 0,75, it was found that equation (26c)
gave an estimate with an error of 6%. The curves
labeled a and c in figure 3 were calculated using

Gg =5.5> (Gglgp and G, =4 < (Go)sp, respectively.
In each of these cases, curves entering and leaving
the saddle point at t-t, =0 are shown, the behavior
in each case following that sketched in the corres-
ponding part of figure 2, The solutions shown in
figure 3 are for very simple (parabolic) wall shapes.
There appears to be no simple way of predicting
(Go)sp for more complicated wall shapes;in general,
it is necessary to integrate numerically along an
jntegral curve leaving a saddle point to see which
case occurs for the given parameters. Examples
are shown later,

With the mathematical behavior of the integral
curves through saddle points understood, it is pos-
sible to interpret the physical behavior of the
shock wave in each case. Referring to figure 2a,
for any initial condition which does not lie on an
integral curve entering a saddle point (two are il-
lustrated by circles in figure 2a), the shock pas-
ses through the throat and disappears upstream.
This is seen by following the integral curve in
guestion as time increases: x__ goes to zero, for
any initial condition, between a center and a saddle
point.  As time increases, then, a saddle peint oc-
curs at x = 0, and an integral curve rises from
the saddle point in the direction of increasing t.
This means that the back pressure has decreased
to the point where a shock wave must form in the
channel in order to satisfy the instantaneous pres-
sure reguirements. This is seen by writing the
pressure at x = X, using equations (4c), (5b}, and
(8a) with t£=0; for f'{¥X) = 0,

B 2Y-3 a2 C.og+G(t)
Pb_l-evul(x)+e"'y ( Z )u, {x)-——id——ul(x)

+... (28)

where u,; (X) <0, From equation {28), it is seen
that the conditions for the back pressure to be that
which gives the subsonic solution for 0 <x <X,
with sonic pressure at the throat is

Caq *+Glt) =0 (29)

But this condition, for the case where G{t) (and
hence the pressure) is decreasing, ps precisely
the condition for the saddle point, as exemnplified
by equations (I5) and (16) and the discussion fol-
lowing these equations. The fact that this back
pressure requirement must be satisfied instanta-
neously by a shock forming at the throat is a

result of the fact that there is no time lag in the
solutions for the velocity, pressure, etc. As a
result, then, the proper behavior for the shock,
after it disappears, is to reappear at the time as-
sociated with the first saddle point after its disap~
pearance. It then follows the path given by the
integral curve through the saddle point and so dis-
appears again, forms again at the throat at the
following saddle, etc. Thus, no matter what the
initial condition is, the resulting shock motion is
associated with the integral curves leaving the
saddle points, as shown in figure 4a. For the
periods of time between the disappearance and re-
appearance of a shock wave, the flow is subsonic
throughout the channel. If the initial condition
should lie on an integral curve entering the saddle
point, the shock moves to the throat and moves
away again on the integral curve leaving the sad-
dle point, Thereafter, its motion is the same as
that shown in figure 4a.

Referring now to the dividing case shown in
figure Zb, it is seen that there are several differ-
ent possibilities for the shock motion, depending
on the initial condition, again indicated by circles.
If the initial condition lies ocutside the integral
curves through the saddle points, the shock posi-
tion merely oscillates with time, never going
through the throat. H the initial conditions lies
beneath the integral curves through the saddle
points, the shock moves upstream, passes through
the throat and disappears; then for the same rea-
sons mentioned in the previous case, it forms at
the throat at the time corresponding to the first
saddle point after its disappearance. It then fol-
lows the integral curves through the saddle peoints,
so that thereafter, it just moves to the throat and
never passes upstream; this motion is illustrated
in figure 4b. If the initial condition should lie on
an integral curve through a saddle point, the shock
position is completely described by integral cur-
ves through the saddle points; the shock never
moves upstream of the throat.

Finally, referring to figure 2c, there are
again several possible initial conditions. If the
initial condition lies above the integral curve en-
tering the saddle point, the shock motion approa-
ches a periodic form, never reaching the throat.
If it lies on an integral curve below the curve en-
tering the saddle point, it moves upstream through
the throat and disappears, forms at the throat at
the time corresponding to the first saddle point
after its disappearance, and then moves away
from the throat and approaches a periodic motion,
never approaching the threoat again. This motion
is shown in figure 4c. Finally, if the initial con-
dition should lie on the integral curve entering the
saddle, the shock wave moves to the throat,
moves away immediately on the integral curve
leaving the saddle point, and approaches the same
periodic motion mentioned above.

The numerical examples shown so far {e.g.,
figure 3) have been for simple wall geometries
for which it is possible to derive an approximate
relationship between the parameters for the spe-
cial dividing case shown in figure 2. (Equation
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26c)., For general geometries, it is necessary to
integrate equation (11) numerically along the inte-
gral curves leaving the singularity, using equation
(17a) tofind starting values near x5 = 0, to find
which case holds. Examples of such calculations,
for more complicated wall shapes, are shown in
figures 5 and 6; in these calculations f(x} is as
follows :

f(x) = 18x%/13 x <1
= 27(x-2)*/13 + 48(x-2)*/13 +3 1 <x <2
=3 x>2  (30)

Figure 5 shows calculations made for Co4 = 0,
that is, for the case where the steady state solu-
tion is that for which the flow goes through sonic
velocity at the throat but is subsonic thereafter,
with no shock waves. Clearly, the unsteady mo-
tion is that illustrated in figure 2a. In figure 6,
two examples are shown in which the only parame-
ter varied is the steady state shock pesition, x _.
Referring to the integral curves through the first
saddle points, it is seen that for x = 1.5, the sit-
vation is that illustrated in figure 2¢, while for

x, = 0.75, it is that illustrated in figure 2a. Also
shown in figure 6 are the solution curves from the
initial condition to the point where the shock pas-
ses through the throat. With these two curves and
those leaving the first saddle point, one can find
then the resulting shock wave motions correspond-
ing to figures 4a (xo = 0,75) and 4c¢ (xo = 1,5),

Conclusions

The above examples illustrate the remarkably
varied shock wave meotions governed by the simple
first order nonlinear equation (11). Moreover,
they illustrate the well known fact that in transonic
channel flows, small changes in downstream pres-
sures can cause large local changes in pressure
by changing the location of the shock; in these ex-
amples, the pressure jump across the shock is
Cle}, and the position is governed by changes in
back pressure O(c?). Finally, they show that
large changes in shock position can result from
small changés in back pressure; i.e., for
AP = O(e?), Ax = 0O(l). The solutions presented
allow relatively simnple calculations of shock posi-
tions to be made for transonic flows in symmetric
channels with arbitrary wall shapes and arbitrary
oscillations in back pressure, The extension to
asymmetric channels, still with radius of curva-
ture O{€~?) is not difficult, and it appears that
these results may have application to inlet buzz
and to flutter problems in turbomachinery.
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FIGURES
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Fig. I. Pressure distribution in nozzle with accel-
erating flow. ~--shockless flow; «——flow with a
shock wave.

Fig, 2, Sketch of possible configurations for inte-
gral curves through saddle points (solid lines);
other integral curves indicated by dashed lines,
scenter; x saddle point. (a) Integral curves leaving
x reach time axis before next x, (b) Integral curves
leaving x reach time axis at next x, {c) Integral
curves leaving x never return to time axis,



aw
\
\
\\ 2 07/ 8 L
r ~
\\ ¢ \\\ // \\
N g \~
C‘?’\\ / \\ \\/
\
/ R ab e\
I e 1 NG Z L 1 I i
-2 =l ] ] 2 4 ] 6
t-ty

Fig. 3. Calculated integral curves for the simple

case represented by eqgs. (15), {18a), (26), and (20a),

withb=2,k=1,a=(y+1)/2=1.2, X = 1.5, and C,4
=-2Y C},,/3, illustrating the three cases sketched
in fig. 2;curves labeled a{---), b{——), and c(- — -)
refer to the corresponding cases in fig, 2.

Xg is
the steady state value of x .

scenter; x saddle

point,
X, @
>(E'»O
Xo b
t

Fig. 4. Sketches of shock wave motion when the
amplitude of the impressed pressure oscillation is
large enough to drive the shock wave upstream of
the throat, for each of the three cases shown in
fig, 2; cases labeled a, b, and ¢ refer to the corre-
sponding cases in fig. 2. xq is the initial, steady
state, condition for the shock position,

Fig. 5. Calculated integral curves through the
saddle point illustrating the case sketched in fig, 2a,
for Cp4=0, G=4sin2t, Y=1.4, 1=100, €=0.1,

Cw =0, and {{x) as given in eqs. (30). Solutions
found by numerically integrating eq. (11),
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Fig. 6. Calculated integral curves through the
saddle points (solid lines) and from the initial con-
dition to the time axis (dotted lines) for two values
of x5 and thus Cz4. For curves marked a, corre-
sponding to the case sketched in fig. 2a, x5=1,5;
for curves marked ¢, corresponding to the case
sketched in fig. 2¢, x4, =0.75. For each case,
G=4,5s5in2t, ¥=1.4, 1=150, €=0.1, C, =0, and
f(x) is as given in eqs, (30).



