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Nonlinear Inverse Perturbation Method in Dynamic Analysis

Ki-Ook Kim,* William J. Anderson,t and Robert E. SandstromJ
The University of Michigan, Ann Arbor, Michigan

An analytical method is presented for the automated redesign of the modal characteristics of undamped
mechanical systems. The method is based on a perturbation of the eigensystem, and all nonlinear terms are
carried so that large changes can be considered. The user requests frequency and mode shape changes. The
structural changes are expressed through design parameters a,- representing conventional thicknesses, moments
of inertia, etc. A penalty function method is used in which the original objective function is a minimum weight
condition and the penalty term is a properly normalized set of residual nodal force errors. Solutions converge
well for typical example problems using five cycles of the conjugate gradient method. The method is superior to
linear methods, which have shown error when significant mode shape changes are required. It is believed to be
computationally superior to series solutions, such as Taylor's series, when only one or two frequencies and mode
shapes are of interest. In addition, the method is not subject to a limited radius of convergence in the design
variables as is encountered in series solutions.
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Nomenclature
= coefficient matrices in Eq. (20)
= modified objective function in penalty
function method

= original objective function
= thickness of cantilever beam
= assembled stiffness, original and perturbed
= generalized stiffness, original and per-
turbed

= element coefficient matrices in Eq. (20)
= changes in stiffness in system and elements
= assembled mass, original and perturbed
= generalized mass, original and perturbed
= element coefficient matrices in Eq. (20)
= changes in mass, in system and elements
= number of elements to be perturbed
= number of modes used in N dimensional
system, (<Af)

= dimension of dynamic system
= penalty term
= residual error in force equilibrium
= vector of variables in minimization
problem

= starting point and kih iteration point
= design variables of element e in stiffness
and mass changes

= Ahe/he fractional thickness change in
element e

- dimensionless frequency design variable,
AX/X

= normalization matrix, NxN
- gradient operator
= diagonal matrix of eigenvalues, original
and perturbed

= eigenvalue perturbation
= penalty parameter
= modal matrix, original and perturbed
= specified and unspecified mode shape
changes
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Superscripts
[ ]T = transpose of a matrix
[ ] ~ 1 = inverse of a matrix

Introduction

MODAL analysis of complex structures is often per-
formed with general-purpose finite element codes.

When the results show that natural frequencies and mode
shapes need to be changed, it is usually not clear how to
modify the original design to achieve the desired goals. In one
such code, MSC/NASTRAN, one can extract stiffnesses,
masses, frequencies, and mode shapes through the use of the
direct matrix abstraction program (DMAP). The information
from a baseline structure can then be used in a perturbation
procedure to allow redesign.

The procedure discussed here was motivated by the linear
perturbation work by Stetson et al.M'Examination of the
linear method has led the authors to include all nonlinear
terms in the perturbation equations. It was discovered that
one second-order term is as large as first-order terms when
typical redesign problems are solved. Neglect of second-order
terms can lead to unacceptable error, particularly in mode
shape redesign.

Nonlinear mathematical programming is used to solve the
perturbation problem. The system is usually un-
der deter mined, i.e., there is more than one physical redesign
that will meet the dynamic goals. To achieve a unique
redesign, one requires either minimum weight or the least
structural change from the original design.

The procedure to be developed is straightforward. It in-
volves only a single finite element analysis of a baseline
structure. Subsequent mathematical programming involves a
smaller number of variables. It is believed that this approach
offers computational advantages over competing methods for
redesign cases that involve only several frequencies and
modes.

The method developed here is similar in spirit to the work
of Pierson,5 in which optimal control ideas are used in
minimum weight design with frequency constraints. The
present work differs from Pierson's in the use of a per-
turbation procedure and application to the finite element
method. The perturbation scheme in turn leads to new
possibilities in mode shape redesign and to differences in the
penalty function. For a general discussion of structural
synthesis and optimization, the reader is referred to excellent
reviews by Schmit6 and Vanderplaats.7

Finally, the method can also be used in model correlation
and structural system parameter identification studies. In
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either case, if the frequencies and mode shapes to be matched
are given, the method is attractive because of its simplicity
and the reduced number of unknown variables.

Inverse Perturbation
The TV dimensional eigenvalue problem is written in

compact form as

[k] [01 = [m] [0] [X] (1)

All matrices are NxNin size. Premultiplying Eq. (1) by [</>]r

yields an energy balance,

where

If this baseline system is perturbed, one obtains

(2)

(3)

(4)

(5a)

To show the nonlinear character of the perturbed equation
of motion, it is rewritten as

([k] = ([m] [AX])

(5b)

where terms up to third order are present. This is not a
uniform expansion of dependent variables in terms of small
parameters, but is an implicit relation between the in-
dependent and dependent perturbed quantities. The per-
turbation terms are therefore not well ordered. To show the
relative sizes of the terms and the errors in dropping higher
terms, a small physical problem is documented in the Ap-
pendix. It is concluded that the [A£][A<£] term is numerically
large and should not be neglected in typical design problems.
All of the terms in Eq. (5b) are included in subsequent work
done here.

Another approach to the perturbation problem would have
been to uncouple Eqs. (5) by premultiplying by [0 ' ] T to yield

Stetson et al.M used a linearized version of Eq. (6) in their
perturbation method. An advantage of that method is the
uncoupling of the frequency and mode shape changes. For
large sets of equations, it is necessary to use a truncated set of
modes in the method. In this case, Eq. (6) suffers from a mild
drawback in that the truncated energy equations are only a
necessary and not a sufficient condition for solution.8 Also,
the linear perturbation does not guarantee symmetry or even
the diagonality of the matrices in Eq. (6). For frequency
goals, the linear energy formulation gives good accuracy9;
however, it is often not accurate for significant mode shape
redesign. •,

The current work puts emphasis on mode shape changes
rather than frequency changes. For convenience, consider a
single mode,

Specification of the desired goals {0 ') f, X/ can be done in
several ways. In practice, all degrees of freedom in {0 ') ,
cannot be arbitrarily specified. Geometric boundary con-
ditions and normalization of {0 ') , must be observed; the
remaining values are free. The perturbed mode shape is ex-
pressed as

where (A0) / and {A0}, are the specified and the unspecified
degrees of freedom, respectively.

The structural change can be decomposed into L element
changes,

[Am] system

e=l

= i (9)

Furthermore, each element change can be expressed as a
fractional change from the original system (or a sum of terms
as needed to separate bending, stretching, torsion, etc.), as

[A/77J = [me]a

(10)

(ID

«*'.- (8)

These relations may be linear or nonlinear.
Substituting Eqs. (8-11) into Eq. (7), one obtains a residual

force error

[R] = [£ ' ]{</> '} / — [m']{(t>r },X/=0 (12)

where [R] is a function of the design variables, unspecified
degrees of freedom, and frequency change. Equation (12)
may be underdetermined, uniquely posed, or overdetermined.
The present paper considers only the underdetermined
equation.

Solution by Mathematical Programming
In the case of an underdetermined problem, mathematical

programming techniques10'12 can be used to achieve minimum
weight or minimum change of the structure with Eq. (12) as
the equality constraint. The penalty function method gives the
modified objective function,

(13)

where / is the original objective function, ju, the penalty
parameter, and P the penalty term containing the equilibrium
error [Eq. (12)]. The penalty term is temporarily chosen as

(14)

where Xis the vector of variables {a.), {A<£},-, and AX,.
In practice, normalization procedures allow better

numerical behavior. Indeed, sample problems have shown
that structural elements such as beams are dominated by
bending moment errors at the expense of shearing forces.
Appropriate scaling is required. A general normalization is
written12

(15)

(16)

However, [F] is expensive to calculate at each step, and can be
approximated by

(17)

where X0 is the initial point of the iteration. A simpler way of
normalization is to use the new mode shape { < / > ' } / . In this
case, [F] is diagonal,

r,v=0? (is)

The best choice for the Ath iteration would be
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With this normalization, the penalty function acts to
minimize the energy error in each degree of freedom.

The magnitude of the penalty parameter /* dictates relative
emphasis on accurate equilibrium vs accurate weight
minimization (or least change). Numerical examples are
needed to study both this and the normalization procedure.

If the value of ju, is large, the penalty term will dominate the
search pattern and the algorithm tends to go toward the
equilibrium state rather than the minimum value of the
original objective function. If /* is small, much emphasis is put
on the minimization of the original objective function and one
may not obtain accurate equilibrium (physical) results. In
sample problems, the initial values of /* are chosen so that the
total penalty (/xP) may be 100-1000 times greater than the
values of the original objective function. As in the sequential
unconstrained minimization technique, /* is increased at each
cycle by a factor of 10.

For minimum weight, which is considered in this paper, the
objective function is

f(ae)= (19)

Anyxdesired inequality constraints are eliminated by changing
variables through a sine transformation. For instance, in the
case of large change, ae must be algebraically greater than
-1.0 so that the element does not vanish. The partial con-
jugate gradient method of Fletcher-Reeves in the IBM
Scientific Subroutine Package13 is used for the unconstrained
minimization. This method allows an initial guess at the
solution or defaults to the baseline structure (ae = 0, e= 1, L\

Numerical Examples
Flexural vibration of a uniform, cantilever beam (Fig. 1) is

used to illustrate the method. To simplify the problem, the
beam cross section is rectangular, the motion will be planar,
and shear deformation and axial displacement will not be
included. After eliminating the 2 degrees of freedom at the
wall, one has 10 elastic degrees of freedom. The set of in-
cluded modes, found by the inverse power method in
MSC/NASTRAN, is arbitrarily limited to five; hence,, the
examples include truncation effects.

The desired design changes will be confined to the third
mode, although multiple mode changes (or constraints) can be
accommodated in Eq. (13) by including equilibrium terms
relevant to each such mode. In the following examples, both
frequency and a modal deflection are specified for the third
mode. The remaining modes are allowed to "drift" without
constraint. In a practical problem, one might also constrain
several other frequencies and mode shapes that are important.

100mm
1000mm

E = 2.0684 x105mPa v = 0.3 /> = 7.8334xiO"9Msec2/mm4

ujj =2.109125x107rad2/sec2 $33 = 0.6048298 $11,3=1.0

Fig. 1 Baseline cantilever beam in flexural vibration, third mode.

A common goal of each redesign will be to change mode 3
so that transverse displacement at node 2 is 0.5174698 instead
of the baseline value (Fig. 1) of 0.6048298. The mode will be
normalized so that tip displacement is <j)ll>3 always unity.
Different frequency changes AX5 will be given in each case.

The design variables are the thicknesses of the five beam
elements. The width remains constant. The stiffness matrix,
mass matrix, .frequencies, and mode shapes are extracted
from an MSC/NASTRAN run of the baseline structure
through DMAP ALTER and OUTPUT4. The matrix
manipulations were done with DMAP statements; however,
for the mathematical programming, a FORTRAN program
was used as a postprocessor.

One can substitute the specified values into the residual
force equation (12) and rearrange to obtain the general form,

= £

(20)

where ax = AX/X and the coefficient matrices are obtained
from the baseline structure and the specified values in the

Table 2 Case 1: Frequencies of perturbed beam (subcase 3)

Mode

coxl0~ 2

«' x 10~2

.A«/o,,%

1

2.6079
3.0009

15.07

2

16.351
16.943
3.62

3 .

45.925
45.925
0.00

4

90.725
88.630

-2.31

5

150.58
147.21
-2.24

Table 1 Case 1: Third modal frequency constrained

Type of normalization

Approximate starting
point

Perturbation
a 7 =A/z 7 / / z 7
u2
&3
a4
as

Lot,.

<l>33
w|xlO- 7

Baseline
—

—

0
. 0

0
0
0
0

0.6048298
2.109125

1

None

Yes

0.1379
- 0.0506
-0.0737
-0.1008
-0.0314
-0.1186

0.5656018
1.982179

2

<£'
Eq.(18)

No

0.0952
-0.0116
-0.0114
-0.0339
-0.1068
-0.0559

0.5174651
2.109110

3

</>'
Eq.(18)

Yes

0.1915
-0.0289
-0.0901
-0.0634
-0.0827
-0.0735

0.5174702
2.109126

4
ro

Eq.(17)

Yes

0.1675
-0.0151
-0.0623
-0.0620
-0.0841
-0.0560

0.5174689
2.109122

Goal
—
—

—

—
—
—
—

• —
(Minimum)
0.5174698
2.109125
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perturbed eigenvector. The penalty function and the gradients
are obtained from this equation. In the gradient evaluation,
much effort is saved because calculations from the function
evaluation are reused. (The coefficient matrices are not
defined here because of their complexity.)

All of the solutions use five cycles in the conjugate gradient
method. Convergence observations are hence limited to a
comparison of the accuracy of different normalizations and
starting points at the same number of steps taken.

Casel: Mode Changed, Frequency Fixed
Consider the standard mode change (defined above) in

conjunction with a constrained third natural frequency:

A0J3 = - 0.08736 (- 14.4%)

AA5/X5=0

The other mode shapes and frequencies are unconstrained.
Four redesigns (subcases) are presented. They differ in the

normalization procedure and in whether or not an ap-
proximate starting point in the variables ae and {A$}, is given
by the user. An approximate starting point can be determined
from the linear theory.9

The results (Table 1) show that the two types of nor-
malization given in Eqs. (17) and (18) yield more accurate
results than the unnormalized case. The use of an ap-
proximate starting point rather than the baseline structure
improves the solution search and leads to the minimum weight
design among the three normalized subcases.

The boxed outline in Table 1 represents the results of
reanalysis done with MSC/NASTRAN. In this analysis, the
perturbed thicknesses obtained through mathematical
programming were used.

The redesigned structure is shown in Fig. 2. Reanalysis of
this perturbed structure yields the third mode shape shown in
Fig. 3 and the frequencies in Table 2. There is some drift of
the unconstrained frequencies.

Case 2: Mode Changed, 30% Frequency Change
Consider both a frequency and a mode change:

A035=-0.08736 (-14.4%)

A\3/\3= 0.69000 ( + 30% in frequency)

The results (Table 3) indicate that excellent frequency and
mode shape accuracy is obtained with either of the nor-
malization procedures. The use of an approximate starting
point leads to a slight improvement in accuracy at the five-
cycle level of solution shown here.

The solution where no normalization is used provides the
best minimum weight solution, but at the expense of accuracy
in eigenvalue and eigenvector. In addition, the frequency
change obtained (as confirmed by reanalysis) is only 30% of
that desired, so it appears that a normalization procedure
must be utilized.

The redesigned structure is given in Fig. 4. Reanalysis of the
perturbed structure gives the mode shape in Fig. 5 and the
frequencies in Table 4. The unconstrained frequencies tend to

•t
Fig. 4 Case 2 (subcase 3): redesign for change in third-mode shape
and 30% increase in third frequency (thickness change is exaggerated
by a factor of two).

Fig. 2 Case 1 (subcase 3): redesign for change in third-mode shape
and fixed frequency (thickness change is exaggerated by a factor of
two).

Fig. 5 Case 2 (subcase 3): third-mode shape of perturbed beam.

Fig. 3 Case 1 (subcase 3): third-mode shape of perturbed beam.

Table 4 Case 2: Frequencies of perturbed beam (subcase 3)

Mode

cox 10-?
c o ' x l O ~ 2

Aw/co, %'

1
2.6079
3.6321

39.27

2

16.351
21.734
32.92

3

45.925
59.703
30.00

4

90.725
110.91
22.25

5

150.58
183.54
21.89

Table 3 . Case 2: Third modal frequency increased 30%

Type of normalization
Approximate starting

point

Perturbation
aJ=Ah1/hJ
a2
a3
a4 ,
<*5
EC*,-

$33
c o f x l 0 ~ 7

Baseline

—

—

0
0
0
0
0
0

0.6048298
2.109125

1

None

Yes

0.3433
0.1085
0.0358

-0.0270
-0.0271

0.4904
0.4825762
2.618730

2

<t>'

No

0.4032
0.1980
0.1503
0.3592
0.0995
1.2104
0.5173326
3.563850

3

</>'

Yes

0.4920
0.1638
0.1092
0.3304
0.1038
1.1991
0.5174707
3.564454

4

r0

Yes

Goal

— .

—

0.4904 —
0
0
0
0
1
0
3.

1490
1587
3230
1049
2261
5174723
564451

—
—
—
—

• (Minimum)
0.5174698
3.564421
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Table 5 Case 3: Third modal frequency increased 200%

AIAA JOURNAL

Type of normalization
Approximate starting

point

Perturbation
otj =A/z ;//z7
a2

<*3
a4

«5
£a,

<t>33
co fx lO- 8

Baseline 1 2 3

— None </>' (/>'

— Yes No Yes.

0 Method failed Method failed 2.1600
0 1.5137
0 2.0598
0 2.2369
0 1.5099
0 9.4823

0.6048298 0.5174647
0.2109125 1.898297

4 Goal

?o .

Yes —

2.3362 —
1.7319 —
1.9264 —
2.0121 —
1.5963 —
9.6028 (Minimum)
0.5174595 0.5174698
1.898289 1.898213

Table 6 Case 3: Frequencies of perturbed beam (subcase 3)

Mode 1

Aco/co,

2.6079 16.351
7.7532 51.915

197.30 217.50

45.925
137.78
200.00

90.725 150.58
261.89 427.56
188.67 183.94

Fig. 6 Case 3 (subcase 3): redesign for change in third-mode shape
and 200% increase in third frequency.

Fig. 7 Case 3 (subcase 3): third-mode shape of perturbed beam.

drift along with the perturbed frequency, with little tendency
to cross.

Case 3: Mode Changed, 200% Frequency Change
Consider a change in the third mode and a very large

change in the third natural frequency:

A055=-0.08736 (-14.4%)

AA5/X5 = 8.00 ( + 200% in frequency)

Only the subcases involving normalization and an ap-
proximate starting point give reasonable results (Table 5). The
approximate starting point used in this paper included an
eigenvector expansion of the baseline modes and ae values
chosen arbitrarily at 2.0.

Both methods of normalization give excellent results for
mode and frequency redesign. The gradient version involving
F0 provides a minimum weight about 1% superior to the
version involving { < / > ' ) 5 [Eq. (18)] after five cycles in the
conjugate gradient method. The difference is likely not worth
the additional complexity of T0 in large problems.

The convergence of the method for values of ae larger than
1 is theoretically significant. Methods based on Taylor series
expansions will fail for such cases because the radius of
convergence in ae is unity.

The redesigned beam is shown in Fig. 6. Reanalysis of the
perturbed beam yields the mode shape in Fig. 7 and the
frequencies in Table 6. Again, the unconstrained frequencies
drift with the constrained frequency with little tendency to
cross.

Conclusions
A nonlinear perturbation method using a penalty function

approach and conjugate gradient solver has proved to work
quite well for dynamic modal redesign. Examples have in-
volved small, moderate, and large changes and solutions have
proved to be accurate when proper normalization of the error
terms is used. The method has been discussed for one mode
only, but the extension to more than one mode is obvious; the
normalized force unbalance for each mode must appear in the
penalty terms.

The method converges for large values of the design
parameters ae. One example shows convergence beyond the
radius of convergence for Taylor series methods; thus, the
present method is felt to be more powerful than the Taylor
series methods.

The method is efficient for redesign because it involves only
a single finite element analysis. Competing methods often
require updating of the baseline structure through finite
element reanaly sis.

The nonlinear perturbation method requires a nor-
malization of the error term (force unbalance). One method,
involving a gradient of the error with respect to the design
variables, is very accurate but intricate and expensive in
computer resources. Another method, involving the specific
mode shape, is practical and almost as accurate as the
gradient procedure. Normalization by such a mode is
recommended.

When large changes are desired, it is helpful to use an
approximate starting point for the design variables and the
unconstrained modal displacements. The linear theory9 or
physical intuition can provide the approximate structural
design variables. Linear theory9 or "curve fitting"
procedures such as the least square error method can provide
approximate unconstrained modal displacements. For modest
changes, up to 30%, the conjugate gradient solver can be
started with zero (baseline) values for the variables and proper
convergence occurs.

Rather than using a minimum weight criterion, one could
alternatively use minimum structural change (from the
baseline design). The objective function is then taken as

which can be implemented easily.
The penalty parameter /* is chosen to equally emphasize

minimum weight (or least change) and minimum error in
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nodal energy. For the present 10 degrees-of-freedom problem,
/x was initially taken as 10,000 and was increased by a factor
of 10 at each cycle of conjugate gradient solution. (The in-
creasing value is needed as the error term is driven to zero.)
For problems with more degrees of freedom, /x should be
scaled so that the product of /* and the error term P is of the
same order as the expected value of Eae (or Eaf).

Because the redesign problem involves an inversion of the
dynamic relations, the relatively placid linear vibration
problem can become ill-posed (a unique inverse may not
exist). When many constraints are specified, one must be
careful not to choose conflicting or unreasonable physical
requirements. For example, it may be difficult to increase the
third frequency by 100% and decrease the first frequency by
30% in a structural system. Other overly ambitious redesigns
could cause intricate crossings of unconstrained frequencies.
When frequencies are close and unwanted mode shifting is
expected, the key frequencies and mode shapes should be
specified to prevent the crossing. In the example studied,
however, mode crossing was not a problem when only one
frequency was specified.

+15.0% +10.0% -5.0% -10.0%
Fig. Al Perturbed beam.

-2.0%

Table Al Third mode of perturbed beam

Translation Rotation

$3,1
$3,3
$3,5
$3,7
$3,9
$3,11

0 $3,2
0.5174685 4>'34
0.5756006 <j>3>6

-0.4415345 0|5
-0.4736828 <f>3 w

1.0000000 (t>3>12

(u3)2 = 2.118426 x 107 (rad/s)2

0
-0.003034136

0.002847634
0.004874386

-0.005105421
-0.008265179

One of the most difficult problems in the mathematical
programming technique is the number of the free variables,
i.e., the design variables and the unspecified degrees of
freedom. Optimal control theory shows that the possible size
for the general nonlinear problem is of the order 102 and for
the nonlinear structural problem, 103. However, the cost of
the solution should be considered. An exact optimum at much
higher cost may be less desirable than a near optimum.

A reduction scheme such as Guyan's reduction may be used
to reduce the size of the problem. MSC/NASTRAN provides
a dynamic condensation scheme, generalized dynamic
reduction.14'15 It is a good candidate for the reduction in size
of dynamic systems.

The current method is being extended to include generalized
dynamic reduction and to include plate elements. An in-
dustrial die casting with 1200 degrees of freedom will be
redesigned as a case study for improving the algorithm.
Because many optimization methods have not been adopted
by industry, it is hoped that implementation of this method in
MSC/NASTRAN will make it more generally accepted.

Appendix: First-Order Inverse Perturbation Method
Forward Perturbation

If one assumes that the structural changes are small, the
changes in frequencies and mode shapes can be expected to be
small. Hence the second- and higher-order terms in Eq. (5b)
could at first thought be neglected. The first-order equation of
the perturbed system is

*] W>][AX]
(Al)

Table A4 Results of inverse perturbation

Element a; a.? a? OL*

Exact %
Eq. (Al)
Eq. (A2)

+ 15.0
+ 22.4
+ 17.3

+ 10.0
+ 18.3
+ 10.9

-5.0
+ 2.9
-4.9

-10.0
-3.4
-9.0

-2.0
+ 7.6
-2.0

Table A2 First-order terms and truncation error

DOF

1
2
3
4
5
6
7
8
9

10

[A*]{0,}

4.76 XlO 7

7.87 XlO 8

-8.22 XlO 6

3.68 XlO 9

8. 52 XlO6

-1.32X109

3.98 xlO6

2.17X109

-2.60 xlO6

-6.21 XlO 7

' M(A03.)
-3.14X107

-2.88 XlO 8

1.74 XlO7

-4.07 XlO 9

3.03 XlO6

1.78 XlO 9

-1.27 XlO 7

-2.81 XlO9

-4.77 XlO 4

-4.36 XlO 7

[Am]l03)X5

1.05 xlO7

-6.98 xlO 7

4.58 xlO6

2.11 XlO 8

5.66 XlO6

-1.57 XlO 8

4.70 XlO 6

1.70 XlO 8

-8. 84 XlO 5

-2.11 XlO 7

[m][^3}\3

-1.09 xlO7

1.79 XlO 7

5. 85 XlO6

-3.30X108

4.17X106

3. 40 XlO 8

-1.04 XlO 7

-4.58 XlO7

-1.98 xlO6

-8.79 XlO7

[m]{<j>3}A\3

3.95 XlO 5

-4.95 XlO 6

3.29 xlO5

6.98 XlO 6

-2.84X105

6.41 xlO6

-2.17X105

-8.43 xlO6

1.95 xlO5

4.65 xlO6

Errora

1.44 XlO 7

5.53 XlO 8

-1.56 XlO6

-2.80 XlO 8

2.00 xlO6

2.69 xlO8

-2.80 xlO6

-7.52 XlO 8

2.45 XlO 4

-1.27 XlO6

aTruncation error of first-order perturbation equation.

Table A3 Second- and higher-order terms and residual error

DOF

1
2
3
4
5
6
7
8
9

10

[A*]|A03)

-1.58X107

-5.61 XlO 8

1.16X106

2.83 XlO 8

-2.07 XlO 6

-2.91 XlO 8

3.46 XlO 6

7.68 XlO 8

2.80 XlO 3

2.56 XlO 6

[AmHA^JXj

-1.35 XlO 6

-5.50X106

-4.48 XlO 5

3.74 XlO6

-1.12X105

-2.25 XlO7

6.77 XlO 5

1.50 XlO 7

3.97 XlO4

1.76 XlO 6

[m][Acf>3}A\3

-4.82 XlO4

7.90 XlO 4

2.58 XlO 4

-1.45 XlO 6

1.84 xlO4

1.50 XlO 6

-4.59 XlO 4

-2.02 XlO 5

-8.75 XlO 3

-3. 88 X l O 5

[Am]{05}AA5

4.65 XlO 4

-3.08 XlO 5

2.02 XlO 4

9.30X105

2.50 XlO 4

-6.92 xlO5

2.07 XlO 4

7.49 XlO 5

-3.90X103

-9.31 XlO 4

[AmHA05)AX5

-5.97 XlO 3

-2.43 XlO 4

-1.97 XlO 3

1.65 XlO4

-4.92 XlO 2

-9.93 XlO 4

2.98 XlO 3

6.64 XlO 4

1.75 XlO2

7.76 X l O 3

Error3

-1.02 XlO2

-5.32X103

-8.90x10°
2.07 XlO3

2.27 XlO 2

3.61 XlO 3

8.90 XlO1

3. 22 XlO 3

1.44 XlO2

9.09 XlO 3

aResidual error of full nonlinear perturbation equation.
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where the terms for the baseline system, [&][</>] and
are eliminated.

A forward perturbation is done to test the accuracy of the
first-order equation. The baseline structure is a cantilever
Euler-Bernoulli beam perturbed in thickness by the amounts
shown in Fig. Al. The perturbed frequencies and mode shapes
are obtained using the inverse power method in
MSC/NASTRAN. Table Al shows the resulting third mode
of the perturbed beam. The perturbations in stiffness matrix,
mass matrix, mode shapes, and frequencies are extracted
through the use of DMAP.

When these "exact" perturbations for the third mode are
inserted into Eq. (Al), the truncation error is of the same
order as the terms in the equation, as shown in Table A2. To
complete the comparison, nonlinear terms from Eq. (5b) are
shown in Table A3 and point out the importance of the
[A£][A<jf>] terms in such a typical problem.

Inverse Perturbation
The inverse perturbation procedure is applied to test the

accuracy of the first-order equation by using the " exact"
values of [A</>], [AX] calculated from the forward per-
turbation. Again, only the third mode is considered.

Since [A0], [AX] are known, the first-order equation (Al)
becomes over determined. To obtain the values of the design
variables a,, the least square method was used. Results are
given in Table A4, showing substantial errors in the inverse
process.

In the above subsection, it was shown that one of the
second-order terms, [A£][A<£] is as large as the first-order
terms. If we include [A£][A</>], the perturbation equation
becomes

(A2)

This modified equation has been solved for a,, again with
"exact" [A</>] and [AX], and yields results in Table A4.

Both of the solutions presented in Table A4 contain the
linear approximation

rather than the exact cubic relation between thickness change
and moment of inertia. This accounts for an error of up to
5% in both solutions.

The linearized solution Eq. (Al) is not sufficiently accurate
for this sample problem. The modified equation (A2) has
error that could be acceptable for some cases.
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