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We study passive and nonlinear targeted energy transfers induced by resonant interactions between a single-

degree-of-freedom nonlinear energy sink (NES) and a 2-DOF in-flow rigid wing model.We show that it is feasible to

partially or even completely suppress aeroelastic instability by passively transferring vibration energy from thewing

to the NES in a one-way irreversible fashion. Moreover, this instability suppression is performed by partially or

completely eliminating its triggering mechanism. Numerical parametric studies identify three main mechanisms for

suppressing aeroelastic instability: recurring burstout and suppression, intermediate suppression, and complete

elimination.We investigate thesemechanisms both numerically by theHilbert–Huang transformand analytically by

a complexification-averaging technique. Each suppressionmechanism involves strong 1:1 resonance capture during
which the NES absorbs and dissipates a significant portion of energy fed from the flow to the wing. Failure of

suppression is associated with restoring the underlying triggering mechanism of instability, which is a series of

superharmonic resonance captures followed by escapes from resonance. Finally, using a numerical continuation

technique, we perform a bifurcation analysis to examine sensitive dependence on initial conditions and thus

robustness of instability suppression.

Nomenclature

b = semichord length, c=2, where c is a chord length
C = nondimensional coefficient for essentially

nonlinear coupling stiffness, b2ks=m!
2
�

CL;� = lift curve slope, @CL=@�j��0

c1, c2 = nonlinear heave and pitch stiffness factors
d; � = offset attachment of the NES to the wing,

measured from and positive ahead of the elastic
axis (e.a.); nondimensional offset, d=b

e; � = location of the aerodynamic center (a.c.) measured
from the e.a. (positive ahead of e.a.); its
nondimensional parameter, e=b

h, �, z = heave (positive downward), pitch (positive
clockwise), NES (positive downward) degrees of
freedom

Kh, K� = coefficients of linear heave and pitch stiffnesses
L,M = lift and aerodynamic moment acting at the a.c.,

respectively; the equivalent aerodynamic forces at
the e.a. are Lea � L andMea �M� eL� eL for
small angles

m, I� = mass of the airfoil and its mass moment of inertia
with respect to the e.a.

ms, ks, cs = mass, essentially nonlinear stiffness, and damping
in the NES

q = dynamic pressure, 1
2
�1U2, where �1 is the density

of the flow
r� = radius of gyration of the cross section of the wing,��������������������

I�=�mb2�
p

S = planform area of the wing
S�; x� = mass unbalance in the airfoil, mxcg; its

nondimensional parameter, S�=�mb�, xcg=b
t, � = physical and nondimensional times (�� !�t)
U = constant and uniform flow speed around the wing
xcg = location of the center of gravity (c.g.) measured

from the e.a. (positive aft of the e.a.)
y, v = nondimensional heave (y� h=b) and NES

(v� z=b) modes
�y, �� = steady-state amplitude ratio in the heave and pitch

modes
� = mass ratio between the NES and the wing, ms=m
� = reduced speed of the flow, U=b!�
� = nondimensional linear viscous damping in the

NES, cs=ms!�
� = density ratio, �1bS=2m
	y, 	� = nondimensional nonlinear heave and pitch stiffness

factors (	y � c1b
2�2, 	� � c2r

2
�)

� = frequency ratio, !h=!�, where !h �
�������������
Kh=m

p
and

!� �
�������������
K�=I�

p

Subscripts

ac = aerodynamic center
ea = elastic axis
cg = center of gravity

Superscripts

� = d=dt
0 = d=d�

I. Introduction

T HE triggeringmechanism of limit cycle oscillations (LCOs) of a
wing due to aeroelastic instability was studied recently [1]. It
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was numerically and analytically shown that a cascade of resonance
captures (a phenomenon where a dynamical system comes to satisfy
commensurable frequency relations over finite time durations,
triggering vigorous energy exchanges between its subsystems)
constitutes the LCO triggering mechanism: attraction to transient
resonance captures (TRCs∗∗), escapes from these captures, and
finally, entrapments into permanent resonance captures (PRCs††). It
was also concluded that an initial excitation by the flow of the heave
mode acts as the triggering mechanism for the eventual activation of
the pitch mode through nonlinear interactions involving the
aforementioned resonance captures and escapes; the eventual
excitation of the pitchmode signifies the appearance of anLCOof the
wing inflow. It was noted that this type of sustained LCO is similar to
vortex-induced resonant vibrations of a bluff body, where the fluid–
structure interaction, yielding LCOs of the body immersed in the
fluid flow, exhibits synchronization and lock-in between the vortex
and vibration frequencies [2].

In general, efforts have been made to control LCOs by means of
active control schemes [3,4] or autoparametric excitations [5,6]. Lee
et al. [7] studied LCO suppression in the van der Pol (VDP) oscillator
by means of passive and targeted energy transfers to either grounded
or ungrounded configurations of nonlinear energy sinks (NESs);
these were single-degree-of-freedom (SDOF) oscillators with
essentially nonlinear (nonlinearizable, or nonlinear but possessing
no linear term) stiffness and a linear viscous damper. When
resonance captures between the primary (VDP) oscillator and the
attachment occur, broadband vibration energy is transferred to the
attachment in a one-way irreversible fashion, hence the label NES.
Many fluid–structure interactions generating LCOs can be modeled
by theVDP oscillator (e.g., the aforementioned bluff body immersed
in flow). Therefore, Lee et al. demonstrated potential applicability of
targeted energy transfers to eliminate and stabilize oscillatory
instabilities of practical self-excited systems, such as aeroelastic
flutter of a wing.

In this work we study suppression of aeroelastic instabilities
(LCOs) in a 2-DOF rigidwingmodel with an attachedNES. First, we
perform computational parametric studies that clearly demonstrate
(at least) three fundamental mechanisms of LCO suppression by
means of targeted energy transfers. In Sec. III, we further investigate
the LCO suppression mechanisms numerically by performing time–
frequency analysis by means of wavelet and Hilbert–Huang
transforms (HHTs); and also analytically by using a two-frequency
complexification–averaging technique. By computing energy
dissipation by the NES against the energy input fed from a flow,
we explore the energetic transactions associated with each
mechanism in terms of instantaneous energy exchanges between
modes. Furthermore, it is shown that resonance captures occur
dominantly between same frequency components of each mode,
during which strong targeted energy transfers from the wing to the
NES occur. Section IV deals with robustness problems of LCO
suppression by means of steady-state bifurcation analysis, for which
numerical continuation is implemented. In this study we also
describe how the three suppression mechanisms are reflected in the
bifurcation picture of the dynamics. Finally, experimental
verification of these theoretical observations are presented in a
companion paper [8].

II. Preliminary Numerical Study

We consider the concept of attaching an SDOF ungrounded NES
to the 2-DOF rigid wing model [1] (Fig. 1), to study the efficacy of
suppressing aeroelastic instabilities of the wing by means of passive
targeted energy transfers to the attachment (NES). The main
motivation for considering this configuration lies in our previous
study of LCO triggering mechanisms in the wing with no NES
attached; indeed, as shown in Lee et al. [1], an initial excitation of the
heave mode of the wing acts as the triggering mechanism for the

development of LCOs with the wing oscillating predominantly in its
pitch mode. Moreover, both the initial excitation (trigger) of the
heave mode and the eventual development of the LCO are transient
phenomena, and they involve broadband energy exchanges between
the flow and the wing, as well as between the heave and pitch modes.
It follows that a successful strategy for aeroelastic instability
suppression should address directly the transient problem and not the
steady-state one (i.e., after the full LCO has developed).

Consider the 2-DOF rigid wing model integrated with an SDOF
NES in Fig. 1. Assuming small motions and using the principle of
virtual work [9], we derive the equations of motion of the wing-NES
assembly as

m �h� S� ��� Kh�h� c1h
3� � qSCL;���� _h=U�

� cs� _h � d _� � _z� � ks�h� d� � z�3 � 0

I� ��� S� �h� K���� c2�
3� � qeSCL;���� _h=U�

� dcs�d _�� _z � _h� � dks�d�� z � h�3 � 0

ms �z� cs�_z� d _� � _h� � ks�z� d� � h�3 � 0

(1)

or in nondimensional form,

y00 � x��
00 ��2y� 	yy

3 � �CL;���y0 ���� � ���y0 � ��0
� v0� � C�y � �� � v�3 � 0

r2��
00 � x�y

00 � r2��� 	��
3 � ��CL;���y0 ���� � ������0

� v0 � y0� � �C���� v � y�3 � 0

�v00 � ���v0 � ��0 � y0� � C�v� �� � y�3 � 0

(2)

Note that the NES (z or v) interacts not only with the heave mode
(h or y) but also with the pitch � through the offset d (or �) from the
elastic axis.We nowperform computational parametric studies of the
dynamics of (2) to identify parameter subsets where LCOs of the
wing can be suppressed or even completely eliminated. Initial
conditions close to the trivial equilibrium position are considered;
that is, we set all initial conditions equal to zero except for the initial
velocity y0�0� � 0:01. Regarding the wing parameters, we take these
identical to the ones used in the earlier study by Lee et al. [1]:

x� � 0:2; r� � 0:5; � � 0:4; �� 0:5

�� �10
��1; CL;� � 2
; 	y � 	� � 1

which gives a flutter speed �F � 0:87.
There are four control parameters for theNES: themass ratio of the

NES and thewing, �; the damping coefficient �; the coefficient of the
essentially nonlinear stiffness C; and the offset attachment �. In this
study, we confine the parameter variations to the ranges 0:01 � � �
0:1 (as small mass ratio as possible for reasons of practical
implementation), 0:1 � � � 1, 1 � C � 20, and �1 � � � 1.
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Fig. 1 Two-DOF rigid wing model coupled with an SDOF NES.

∗∗Resonance captures sustained for a certain period of time with
subsequent escapes of the dynamics from the resonance manifolds

††Resonance captures sustained permanently
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Our methodology for performing the computational parametric
study is as follows: using the aforementioned initial conditions and
parameter sets, we integrate the equations of motion (2) for
sufficiently long time to assure that transients die out. Then we
compute the rms amplitude of the resulting steady-state response.
Comparing the steady-state pitch (or heave) amplitudes in rms with
and without NES attached, we may infer partial or complete LCO
suppression. Partial suppression of the LCO can be defined as the
amplitude ratio (in the pitch mode) with and without NES attached,
which should be less than 1; complete LCO suppression is inferred
when this amplitude ratio tends to zero as the steady state of the
system is reached. More specifically, we introduce the following
definition for the amplitude ratio in the pitch mode:

�� � Steady-state pitch amplitude in rmswith theNES

Steady-state pitch amplitude in rmswithout theNES

	 100�%� (3)

and a similar expression for the heave mode (�y).
Figure 2 depicts steady-state amplitude ratio in the pitch mode

when the mass ratios are �� 0:01 and 0.02 for reduced speeds
�� 0:9 and 0.95, respectively. Here we only consider the reduction
in the pitchmode because the pitchmode is generally dominant at the
steady state, and the amplitude behavior of the NES is similar to that
of the pitch mode. From these numerical computations, we first

observe that LCO suppression is more probable when the NES is
attached far from the elastic axis of the wing. The possible reason for
this is that, for relatively large offsets, the NES interacts efficiently
with both heave and pitch modes. Moreover, it seems that attaching
the NES aft of the elastic axis (i.e., � < 0) provides more effective
suppression. This can be inferred heuristically by examining Eq. (2);
indeed, energy dissipation due to the damping term,
���y0 � ��0 � v0�, is maximized if the NES interacts with both
heave and pitch modes under the influence of 1:1 resonance capture,
and � is negative. Thiswill be revisited in the last section of this work.
We also note that, if we want to retain suppression for increased flow
speeds, we might need to consider higher mass ratios of the NES; for
example, most of the regionswhere instability is suppressed by about
40%with �� 0:01 for�� 0:9 (the area enclosed by thick curves in
Fig. 2a) disappear when the same mass ratio is used for �� 0:95
(Fig. 2c). Finally, we remark that this computational parametric
study provides simple comparison of steady-state amplitude
reductions (more precisely, average power reductions) under some
specific initial conditions. Amore detailed study should be related to
the steady-state bifurcation structure of the dynamics of this system.

From the computational parametric study, we deduce the
existence of three suppression mechanisms of LCOs, which are
depicted in Figs. 3–5; Fig. 6 presents the case where the NES fails to
suppress the aeroelastic instability. By studying the preliminary
numerical results, some general conclusions are drawn regarding the
dynamics of LCO suppression by the NES. It appears that the

Fig. 2 Steady-state amplitude ratio in the pitch mode,��: The areas enclosed by the thick curves indicate the parameter domain where the amplitude

ratio is less than 60%; the steady-state pitch amplitudes in rmswithout applying theNESare 0.11 rad for�� 0:9 and0.17 rad for�� 0:95, respectively;
initial conditions are all zero except y0�0� � 0:01.
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essential nonlinearity in the NES initially prevents the LCOs from
growing above a certain amplitude; at a later phase of the response,
conditions for resonance capture between the wing and the NES are
fulfilled and passive targeted energy transfers from the wing to the
NES take place leading to further LCO suppression.

We now provide a synoptic presentation of the three basic LCO
suppression mechanisms identified in the numerical simulations,
focusing only on their main dynamical features and leaving further
details to the next section.

A. First Suppression Mechanism (Fig. 3)

This mechanism is characterized by a recurrent series of
suppressed burstouts of the heave and pitch modes of the wing,
followed by eventual complete suppression of the aeroelastic
instabilities. In the initial phase of transient burstouts, a series of
developing instabilities of predominantly the heave mode is
effectively suppressed by proper transient “activation” of the NES,
which tunes itself‡‡ to the fast frequency of the developing aeroelastic
instability; as a result, the NES engages in 1:1 TRC with the heave
mode, passively absorbing broadband energy from the wing, thus
eliminating the burstout. In the latter phase of the dynamics, the
energy fed by the flow does not appear to directly excite the heave
and pitch modes of the wing, but, instead, seems to get transferred
directly to the NES until the wing is entirely at rest and complete
LCO suppression is achieved. At the initial stage of the recurrent
burstouts, at time instants when the pitching LCO is nearly
eliminated, most of the energy induced by the flow to the wing is
absorbed directly by the NES with only a small amount being
transferred to the heave mode, so that both the NES and the heave
mode reach their maximum amplitude modulations; this is followed
by suppression of the burstout, and this process is repeated until at a
later stage complete suppression of the aeroelastic instability is
reached. The beatinglike (quasi-periodic) modal interactions
observed during the recurrent burstouts turn out to be associated
with Neimark–Sacker (NS) bifurcations [11] of a periodic solution
and to be critical for determining domains of robust suppression.

B. Second Suppression Mechanism (Fig. 4)

This mechanism is characterized by intermediate or partial
suppression of LCOs. The initial action of the NES is the same as in
thefirst suppressionmechanism. Targeted energy transfer to theNES
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Fig. 3 The first suppression mechanism when �� 0:9, �� 90%,

�� 1%, �� 0:1, and C� 10. All zero initial conditions except y0�0� �
0:01 are used.
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Fig. 4 The second suppression mechanism when �� 0:9, �� 90%,
�� 1%, �� 0:2, and C� 20. All zero initial conditions except y0�0� �
0:01 are used.
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Fig. 5 The third suppression mechanism when �� 0:9, �� 90%,
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‡‡Because an NES possesses no preferential resonance frequency (i.e., due
to the essential nonlinearity), the NES can interact in resonance with any
mode of the primary system. By dissipating the transferred energy in its
viscous damper, it can exhibit an escape from one resonance condition to
another (theoretically, all the modes of the primary system), which is called
self-detuning function of the NES [10].
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then follows under conditions of 1:1TRC, followed by conditions of
1:1 PRC, where both heave and pitch modes attain constant (but
nonzero) steady-state amplitudes. We note that the heave mode
response can grow larger than that in the corresponding system with
no NES attached (exhibiting an LCO), at the expense of suppressing
the pitch mode. We also note that, in contrast to the first suppression
mechanism, the action of the NES is nonrecurring in this case, as it
acts at the early phase of the motion stabilizing the wing and
suppressing the LCO.

C. Third Suppression Mechanism (Fig. 5)

In this mechanism energy transfers from the wing to the NES are
caused by nonlinear modal interactions during 1:1 resonance
captures (RCs). Both heave and pitch modes as well as the NES
exhibit exponentially decaying responses resulting in complete
elimination of LCOs. In general, higher NESmasses are required for
complete elimination of LCOs for increasing reduced speeds.

D. No Suppression (Fig. 6)

This happenswhen theNES does not act as an efficient absorber of
the energy input extracted from a fluid due to aeroelastic interaction.
In some cases, as shown in the Fig. 6, the steady-state amplitudes of
LCOs grow even larger than those of the corresponding system with
no NES attached. Depending on the parameter values, the steady
state may possess a superharmonic frequency relation between
modes. Similar to the behavior observed in the LCO triggering
mechanism in Lee et al. [1], in the case of no suppression there exists
a transition from 1:1 to 3:1 locking of frequency ratios between the
heave and pitch modes; this implies the occurrence of a 1:1 TRC
followed by a transition to a 3:1 steady-state PRC between the heave
and pitch modes. This observation suggests that, to suppress the
aeroelastic instabilities, the NES must interact with both heave and
pitch modes in such a way as to prevent direct energy transfer from
the flow to the wingmodes through subharmonic and superharmonic
resonance captures (similar conclusions were drawn in Lee et al. [7],
where LCO suppressions of a van der Pol oscillator were studied).

III. LCO Suppression Mechanisms

In this section, we investigate numerically and analytically the
three LCO suppression mechanisms discussed in the preceding
section. First, we will numerically postprocess the transient
responses of the wing-NES assembly to determine the dominant
harmonic components and the underlying nonlinear resonant
interactions that produce targeted energy transfers and result in
instability suppression in this system. The postprocessing techniques
that will be employed include wavelet transforms (WTs) and
empirical mode decompositions (EMDs) combined with Hilbert
transforms (also called Hilbert–Huang transforms, or HHTs). Based
on the numerical postprocessing results, we will analytically study
the wing-NES dynamics by performing fast/slow partition of the
transient dynamics using a multifrequency complexification–
averaging technique; the resulting reduced-order slow-flow model
will fully capture the wing-NES nonlinear interactions, and so can be
used to fully understand and model the instability suppression
mechanisms. This plan of study will provide a guideline for NES
design to achieve effective LCO elimination.

A. Numerical Study

We first explore the nonlinear dynamics and energetic interactions
governing each suppression mechanism in terms of instantaneous
energy exchanges between modes. Because the system is self-
excited, we compute the energetic exchanges related to each
suppression mechanism numerically. The instantaneous total energy
of the wing-NES assembly can be expressed as a sum of the
instantaneous kinetic and potential energies of thewing and theNES:

ETotal��� �
�
1

2
y0���2 � 1

2
r2��

0���2 � x�y
0����0���

� 1

2
�v0���2

�
Kinetic

�
�
1

2
�2y���2 � 1

2
r2�����2 �

1

4
	yy���4

� 1

4
	�����4

�
Potential 1

�
�
1

4
C
y��� � ����� � v����4

�
Potential 2

(4)

The energy dissipated by the viscous damper of the NES is given by

ENES
d ��� � ��

Z
�

0

fv0�s� � ��0�s� � y0�s�g2 ds (5)

The input energy is a sum of the initial energy provided by the initial
conditions and the nonconservative work done by the flow:

EInput��� � ETotal�0� �Wy
nc��� �W�

nc��� (6)

where

Wy
nc��� � �CL;��

Z
�

0

fy0�s� ����s�gy0�s� ds

W�
nc��� � ���CL;��

Z
�

0

fy0�s� ����s�g�0�s� ds

As a result, the instantaneous energy balance should hold:

ETotal��� � EInput��� � ENES
d ��� (7)

Figure 7 depicts the instantaneous energy exchanges between
modes (upper part), and the relation between energy input fed from a
flow and energy dissipation by the NES (lower part), for each
suppression mechanism. For comparison, the case where the LCO
survives the action of the NES (case of no suppression) is also
provided.Note that the depicted partition of the total energy into each
wing mode assumes that the contribution to the potential energy of
the essentially nonlinear coupling is assigned entirely to the NES
part.

The study of the instantaneous modal energy exchanges indicates
that the first suppression mechanism exhibits the most vivid energy
interactions, especially between the pitch mode and the NES
(Fig. 7a). The appearance of these modal interactions appears to be
quite similar to the targeted energy transfer (TET) mechanisms
studied in Kerschen et al. [10], and, in particular, TET initiated by
nonlinear beat phenomena (resonance captures will be discussed
later). In Sec. IV, we will explain this nonlinear beating behavior in
terms of a study of steady-state bifurcations, whereby the first
suppression mechanism is generated by the Neimark–Sacker
bifurcation of a stable LCO (which is analogous to aHopf bifurcation
of an equilibrium) that generates another harmonic that yields quasi-
periodic solutions in total. Hence, variation of the total energy shows
repeated burstouts followed by suppressions with the energy input,
EInput, from the flow to the wing continuously increasing, nearly at
the same rate with the energy dissipated by the NES, ENES

d . At the
time instant when a complete balance between EInput and ENES

d

occurs, the total energy balance becomes zero; however, small
disturbances from that totally balanced energetic state lead to
recurring excitations of aeroelastic instabilities and the alternating
series of suppressions and instability burstouts is continuously
repeated. Note that, although the aeroelastic instabilities cannot be
completely removed by this suppression mechanism, their
amplitudes are greatly reduced compared to those developed when
no NES is attached (Fig. 3).

The second suppression mechanism initially involves strong
modal interactions so that a balance between energy input and
dissipation is reached at the initial early stage of themotion (Fig. 7b).
This vigorous initial energy exchange behavior resembles the
fundamental TET mechanism (i.e., in-phase 1:1 resonance capture)
discussed by Kerschen et al. [10]. Again, in this case, small
disturbances can lead to reappearance of instabilities but with much
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smaller amplitudes (Fig. 4). The (increasing) rates of changes of
energy input and energy dissipation by the NES become identical
after a balance is reached (i.e., the averaged trends in the energy input
and the dissipation follow parallel but noncoinciding paths), and
their uniform difference makes possible the resulting reduced-
amplitude LCOs. In a later section we will see that this mechanism is
related to the generation of stable LCOs bifurcating from a stable
trivial equilibrium after a supercritical Hopf bifurcation; however,
the Hopf bifurcation point (i.e., the flutter speed), occurs above that
of the corresponding system with no NES attached. The robustness
of this suppression mechanism depends on the global bifurcation
structure of the steady-state dynamics. This intermediate suppression
will be destroyed under sufficiently large disturbances to yield LCOs
with amplitudes greater than those realized in the wing with no NES
attached. We will examine in detail this robustness of suppression in
Sec. IV, by relating it to the steady-state bifurcation structure of the
dynamics.

As for the third suppression mechanism (Fig. 7c), most of the total
energy apparently remains confined in the pitch mode so that the
wrong conclusion might be drawn that the NES does not work
efficiently in this case. However, comparing the energy input and
dissipation by the NES, we clearly observe thatENES

d increases in the
manner that energy balancing can occur only in the long run, thus
preventing reappearance of LCOs in the long term. In other words,

we can obtain complete elimination of LCOs in a robust way
(depending on the global bifurcation structure of the dynamics, as
will be discussed in Sec. IV).

Figure 7d shows the energy exchanges for a case where the LCO
survives the action of the NES. Initially, there occur vigorous modal
energy exchanges, but they occur predominantly between the heave
and pitch modes, with only secondary involvement of the NES. This
means that the action of the NES is not as effective as in the previous
three suppression cases; as a result, the NES fails to prevent the
energy interactions between the heave and pitch modes. Moreover,
the energy dissipation by the NES is not sufficiently strong to make
balance with the energy input fed from the flow, which “feeds” the
modes of the wing, inducing aeroelastic instability. As a result, the
LCOs are not only retained in this case, but their amplitudes become
even larger than those realized in the wing with no NES attached
(Fig. 6). Note that at steady state the NES continuously dissipates
energy at a constant rate, which is nearly equal to the average rate of
increase of the energy input from the flow. This behavior is similar to
the second suppression mechanism except for the magnitude of the
uniform distance between the two averaged parallel paths.

We now examine the time–frequency behavior of the transient
responses by using the wavelet transform (WT). The WT involves a
windowing technique with variable-sized regions so that it performs
a multiresolution analysis, in contrast to the (fast) Fourier transform
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Fig. 7 Instantaneous energy exchanges between modes (upper), and comparison of input energy from flow and energy dissipation by the NES (lower).

Parameters used in a)–d), respectively, correspond to those in Figs. 3–6.
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(FFT), which assumes signal stationarity. Small time intervals are
considered for high-frequency components whereas the size of the
interval is increased for lower-frequency components, thereby
giving better time and frequency resolutions than the FFT. The
Matlab® codes used for the WT computations in this work were
developed at the Université de Liège (Liège, Belgium) by Dr. V.
Lenaerts in collaboration with Dr. P. Argoul from the Ecole
Nationale des Ponts et Chaussées (Paris, France). The Morlet

wavelet,  M��� � e��
2=2ej!0�, which is a Gaussian-windowed

complex sinusoid of frequency!0, is considered as a mother wavelet
in this study. The frequency !0 for the Morlet WT is a user-specified
parameter that allows one to tune the frequency and time resolutions
of the results.

Figure 8 presents the WT results applied to the responses in
Figs. 3–6 (the three instability suppression mechanisms and the case
of no suppression). The plots represent the amplitude of the WT as a
function of frequency (vertical axis) and time (horizontal axis).
Heavily shaded areas correspond to regions where the amplitude of
the WT is high, whereas lightly shaded regions correspond to low
amplitudes. Such plots enable one to deduce the temporal evolution
of the dominant frequency components of the signals analyzed.
Comparing the instantaneous frequency contents of the heave and
pitch modes, and the NES, provides an additional (direct) way to

verify the occurrence of resonance captures, or frequency locking in
the transient dynamics.

First, we focus on the cases where partial or complete instability
suppression occurs (Figs. 3–5). The results in Figs. 8a–8c indicate
that primarily there occur 1:1 resonance interactions (captures)
between the NES and the heave mode; in addition, there occur 1:1
resonance captures followed by transitions to subharmonic
resonance captures between the NES and the pitch mode. Moreover,
a common strong harmonic component in these results possesses a
frequency near the natural frequency of the pitch mode (i.e., !� 1).
Indirectly, these WTs suggest that in the study of all three
suppression mechanisms one may use a two-frequency averaging
method for analytically studying the previous suppression
mechanisms (because at most two dominant frequency components
appear in the transient responses governing the resonance
interactions between various modes); that is, in all cases considered,
the responses are dominated by two-frequency components with
frequencies !h ��� 0:5 and !� � 1. This important finding will
be implemented in the next section.

Focusing now on Figs. 6 and 8d, we make the additional remark
that, when the LCO survives the action of the NES, the interaction
between the heave and pitch modes completely resembles the
behavior of the LCO triggering mechanism studied in Lee et al. [1];
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Fig. 8 Wavelet transforms showing time–frequency behavior of each suppression mechanism. Parameters used in a)–d), respectively, correspond to
those in Figs. 3–6.
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that is, there occurs a transition from 1:1 to 3:1 resonance captures.
Moreover, in this case, the NES possesses a higher superharmonic
component, so that its interaction with the pitch mode also
undergoes a transition from 1:1 to 3:1 resonance captures. It follows
that in this case the resonance interactions between the various
modes of the wing-NES assembly are qualitatively different than
those taking place in the three cases where LCO suppression is
achieved.

Combining Figs. 7 and 8, we can construct the so-called
frequency–energy plot (FEP), which is one of the useful tools to
present dynamic transitions (i.e., 1:1, subharmonic, and super-
harmonic resonance captures, and escapes from resonances) between
branches of periodic motions of an appropriately defined underlying
Hamiltonian system (that is, a Hamiltonian system whose
perturbation leads to the system of equations under consideration).
The FEP for a single-DOF system coupledwith a small mass through
essentially nonlinear stiffness was computed to show that such a
simple system may possess very complicated dynamics [12]; it was
also implemented to examine basic mechanisms for the TETs [10].
The first application of the FEP to a self-excited system is found in
Lee et al. [7], in which LCO elimination of a van der Pol oscillator
using the NES was examined. It was shown that, when the LCO is
completely eliminated, dynamic flow on the FEP follows a transition
from a superharmonic to a 1:1 to a subharmonic resonance capture

(the transitions between these subsequent resonance captures are
characterized as “escapes from capture”). Elimination (and
intermediate suppression as well) of LCO tends to prevent the
dynamics from realizing transitions to superharmonic resonance
captures between the NES and the primary system (in the case of Lee
et al. [7], the VDP oscillator).

However, unlike the aforementioned studies [7,10,12], a
definition of the FEP, which describes an underlying Hamiltonian
structure of periodic solution, becomes difficult in the current
problem. This is mainly due to the aeroelastic terms that provide
nonconservative work to the system and change intrinsic natural
frequencies with respect to the flow speed (and thus the total energy
of the system). Hence, we propose another way of constructing the
FEP for aeroelastic systems, based on the steady-state bifurcation
structure that can be obtained numerically (e.g., using a numerical
continuation technique) or analytically (e.g., multiphase averaging
method or harmonic balance method). In this study, we implement a
numerical continuation method bymeans of the code,MatCont [13],
which will be used in Sec. IV.

Figure 9a depicts the bifurcation diagrams with respect to the
reduced velocity � when the parameters used in Fig. 3 are
considered. The stable LCOs born at �H become unstable at �NS,
yielding new periodic components that amount to overall quasi-
periodicmotions on two tori. The branch of quasi-periodicmotions is
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Fig. 9 Construction of a frequency–energy plot: a) bifurcation diagrams of the steady-state LCO amplitudes with respect to the reduced velocity,
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closely associated with the first LCO suppression mechanism
(detailed bifurcation characteristics will be introduced in Sec. IV). In
addition, the period of the LCOs is obtained when performing the
numerical continuation of limit cycles (shown in the upper row of
Fig. 9b). Hence, the (circular) frequency of the LCOs can be
computed as 2
 divided by the corresponding period (depicted in the
lower row of Fig. 9b). It is noted that this numerical method may not
provide information regarding the existence of multiple frequencies,
if any. On the other hand, we already practiced computing the total
energy of the system. Figure 9c depicts the mean value of the total
energy at each reduced speed (note that the instantaneous total
energy is oscillating around this mean value due to the nonlinear
modal interactions, i.e., RCs; cf. Figure 7). Finally, we combine the
frequencies in the lower row of Fig. 9b and the total energies in
Fig. 9c to obtain the FEP in Fig. 9d. In this case, the FEP is
parameterizedwith respect to the reduced speed�, and each point on
the curve in the FEP implies the LCO that the system (2) can possess
for a specific reduced speed with the corresponding total energy
(averaged) and dominant frequency.

Now we examine the three suppression mechanisms on the FEP
(Fig. 10). To demonstrate the instantaneous frequencies of each

modal response, the Hilbert transform is used for the three
suppression mechanisms, and wavelet transforms, for the case when
the LCOs survive the action of the NES. In computing the
instantaneous frequencies, we applied the Savitzky–Golay
polynomial smoothing filter to remove high-frequency noisy signals
caused by numerical differentiation of the phase.

Nonlinear modal interactions between heave and pitch modes are
realized mainly through 1:1 resonance captures whether or not LCO
suppression results. The first suppression mechanism (Fig. 10a) is
characterized by repeated loops (corresponding to the recurrent
burstouts and suppressions) consisting of transitions from 1:1 to
subharmonic resonance captures (suppression stage), and then
reversals back to 1:1 TRCs (burstout stage). Reflecting the intrinsic
LCO solutions, we find the following interesting behavior in the first
suppression mechanism: once the dynamics exceeds the Neimark–
Sacker bifurcation point �NS � 0:89 (note that the flow speed
currently considered is�� 0:9), because the heave and pitchmodes
are in 1:1 TRC, the only choice for the dynamics is to follow the
unstable LCO branches (which might contain either periodic or
quasi-periodic motions). Hence, the dynamics can only be captured
into loops that lead to transitions into subharmonic resonances.
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Fig. 10 LCO suppression mechanisms in the frequency–energy domain: the bold curves (solid for stability, dashed for instability, and dash-dotted for

quasi-periodic instability) indicate intrinsicLCObranches obtained from the continuationmethod,which are analogous to theperiodic solution branches

of the underlyingHamiltonian system of coupled oscillators [12]. The thin solid curves (heavily shaded area) represent the transient responseswhenLCO
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These repetitions (bursting outs and consequent suppressions)
characterize the first suppression mechanism.

When intermediate suppression of LCOs occurs, the dynamicflow
on the FEP forms a single loop involving transitions from 1:1 to
subharmonic resonance captures and reversals back to 1:1PRCwhen
steady-state dynamics is reached (Fig. 10b). Complete LCO
elimination involves 1:1 resonance captures before the dynamics
escapes from resonance, at which point the NES has completely
exhausted the energy input from the flow (Fig. 10c). Finally, we can
observe the dynamic transition from 1:1 to superharmonic resonance
captures between the NES and the aeroelastic modes when the LCOs
survive the action of the NES (Fig. 10d). Comparing Figs. 10c and
10d corresponding to the same underlying structure of LCOs (i.e.,
same parameters were used), we conclude that whether the LCOs are
suppressed or not depends on the state of the dynamics of the system
when resonance capture occurs. That is, in Fig. 10c where complete
LCO suppression occurs, the dynamics is captured into the domain of
attraction of the stable LCO branch at a lower energy regime;
whereas, in Fig. 10d where no LCO suppression occurs, the
dynamics is entrapped in the domain of attraction of the stable LCO
branch formed at a higher energy regime, involving superharmonic
PRCs between theNES and the aeroelastic modes, and thus invoking
development of LCOs with large amplitudes.

In summary, we propose the representation of the transient
dynamics of the system on the FEP to explain why the 1:1 resonance
captures are represented by near straight lines in the vicinity of the
natural frequency of the pitch mode (!� 1). In particular, the first
suppression mechanism exhibits escapes near the NS bifurcation
point that causes the stable LCOs to possess quasi-periodic
instability, the second suppression mechanism reaches its steady
state at the energy value of the corresponding reduced velocity (i.e.,
�� 0:9<�NS � 0:905 in Fig. 10b), and the same parameter values
(i.e., the same underlying bifurcation structure of the intrinsic LCOs)
can yield different results (raising issues of robustness which will be
addressed in a later section), depending on the given energy value (i.
e., the reduced velocity) where the resonant interaction phenomena
between the flow and the wing modes occur. These conclusions
underline the importance of designing the initial entrapment of the
dynamics into the proper resonance manifolds to achieve efficient
and robust suppression.

To numerically prove that the basic underlying dynamic
mechanism of instability suppression is a series of resonance
captures, we use the empirical mode decomposition introduced in
Huang et al. [14]. Although the Morlet wavelet transform gives far
better understanding of the temporal evolution of the basic
harmonics of a time series compared to the FFT, theWT is essentially
an adjustable window Fourier spectral analysis [14] so it may suffer
leakage problems due to the finite length of the basic wavelet
function. In an alternative numerical postprocessing technique, the
EMD through a sifting process yields an empirical basis, a collection
of intrinsic mode functions (IMFs) which are complete, almost
orthogonal, local, and adaptive. These properties render the EMD
applicable to decomposition of nonlinear and nonstationary signals.
An IMF is a function that satisfies the following two conditions:
1) the numbers of extrema and of zero crossings must either be equal
or must differ at most by 1 in the entire data set considered, and 2) the
mean value of the two envelopes defined by the local maxima and
local minima must be zero at any time instant. Note that an IMF can
be both amplitude- and frequency-modulated; that is, the IMF can be
nonstationary. Once EMD is performed, the resulting IMFs are
suitable for Hilbert transform, which yields the instantaneous
amplitude and phase of each IMF at any given instant of time. By
differentiating the instantaneous phase one computes the temporal
evolution of the instantaneous frequency of each IMF which, when
comparedwith the overallWTof the time series, enables one to judge
the relative contribution of each IMF in the time series and, thus, its
relative importance in the decomposition of the signal. Note that an
IMF may have a significant contribution in certain time intervals of
the signal, and be less important in others. It follows that by
decomposing the time series of the NES and wing-mode responses,
one may be able to accurately pinpoint the specific IMFs of these
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signals responsible for TET through resonance captures, as well as
the specific frequencies where these resonance captures occur.
Hence, EMD coupled with the Hilbert transform can be a powerful
computational tool for studying complicated nonlinear resonance
interactions leading to complex dynamic phenomena (such as TET)
in coupled structures. In this study, we useMatlab® codes developed
by Rilling et al. [15] to perform the described EMD analysis. The
algorithm follows the steps described in the Appendix.

By computing the IMFs, we express the heave, pitch, and NES
responses as

y��� �
XN1

i�1

ci���; ���� �
XN2

i�1

ci���; v��� �
XN3

i�1

ci���

(8)

where the ith (complex) IMF ci��� can be expressed in polar form as
ci��� � ai���ej�i���, and the amplitude ai��� and phase �i��� can be
computed from the analytic signal, z��� � ci��� � jHT
ci����
according to

ai��� �
����������������������������������������
ci���2 � HT
ci����2

p
; �i��� � tan�1

HT
ci����
ci���

(9)

HT
ci���� is the Hilbert transform of ci��� computed by

HT 
ci���� �
1



PV

Z 1

�1

ci�s�
� � s ds (10)

where PV indicates the Cauchy principal value of the integral.
Therefore, the instantaneous frequency of the ith IMF can be
computed as

!i��� �
d�i���
d�

(11)

We apply the EMD to analyze theNES andwing-mode time series
associated with the first suppression mechanism to numerically
prove that this mechanism is governed by a series of resonance
captures and escapes (transitions) between them. In the next
subsection, these results will be compared and verified analytically.
All the other suppression mechanisms can be inferred from this
consideration so theywill not be considered herein. Figure 11 depicts
the IMFs of the heave, pitch, and NES modes for the responses
shown in Fig. 3. Noting that the number on the upper right part of
each plot represents the maximum amplitude of the corresponding
IMF, we conclude that the leading (first) IMFs are the dominant
oscillatory components of all three responses considered. Figure 12a
depicts the comparison of these three leading IMFs, with the
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corresponding time series, from which we observe reasonably good
match between them, except for the initial periodwhere the end effect
of the EMD appears, and for some lower-frequency intervals where
higher-order IMFsmay have enhanced contributions in the response.

Let �i, i� 1, 2, 3 [computed by Eq. (9)] be the phase variables of
the three aforementioned leading IMFs of the heave and pitch modes

and the NES, respectively. Then, �12 ≜ �1 � �2 denotes the
corresponding phase difference between the heave and pitch modes;

�13 ≜ �1 � �3, the phase difference between the heave mode and the

NES; and �23 ≜ �2 � �3, the phase difference between the pitch
mode and the NES.
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Figure 12b depicts the temporal evolutions of the instantaneous
phase differences �12, �13, �23. If the phase differences show
monotonically increasing or decreasing temporal behaviors, they are
considered to be timelike; otherwise, they are said to exhibit non-
time-like behavior. For example, a constant or oscillatory phase
difference with zero mean over a fixed value is considered to be non-
time-like. Clearly, if a phase variable is timelike, it can be considered
as a “fast angle” of the dynamics, and, as a result, it may be removed
from the dynamics (as nonessential) by simply averaging it out of the
problem (in other words, this phase difference will negligibly
influence the “slow-flow” dynamics of the system after averaging,
and, hence, its contribution is not considered to be important in the
time window where the dynamics is analyzed). On the other hand, if
the same phase difference is non-time-like, it may not be averaged
out of the dynamics (as it cannot be considered to be a fast angle), and
it is expected to influence the slow dynamics of the system in the
specific time interval of the analysis; in the latter case there occurs
resonance capture, and the dynamics is captured transiently into a
resonance manifold [16] defined by an integral relation between the
instantaneous frequencies of the corresponding IMFs. This
resonance capture phenomenon is crucial to understanding TET in
this system. This is because, as shown in earlier works [10,17],
resonance captures are the dynamicmechanisms for TETs in systems
of coupled oscillators. It follows that strong TETs are associatedwith
resonance captures between coupled modes. In Fig. 12, we note that
there exist three domains where non-time-like behavior of certain
phase differences occurs: 1) � � 
20; 60�, 2) � � 
110; 400�, and
3) � � 
490; 700�. In these time intervals 1:1 resonance captures
occur. These RCs appear as spirals in the phase portraits of Fig. 12c.
We note that, not only do RCs occur between the heave mode and
NES, and between the pitch mode and NES, but, in addition, they
also occur between the heave and pitch modes, as in the case of the
LCO triggering mechanism [1]. Figure 12d plots the instantaneous
frequency of each mode by Eq. (11), and we can clearly see that
frequency locking exists whenever RCs occur.

B. Analytical Study

In the preceding section, we found numerically that LCO
suppression in the wing under consideration is due to a series of 1:1
or subharmonic resonance captures between the pitch and heave
modes and the attached NES. In this section, we also analytically
prove this result. Based on the WT results of Fig. 8, we assume the
multifrequency decomposition for the heave, pitch, and NES
transient responses:

y��� � y1��� � y2���; ���� � �1��� � �2���
v��� � v1��� � v2���

(12)

where the components with subscripts 1, 2 correspond to slow
modulations of the fast frequency components, ej��, ej� ,
respectively.

In essence, the representations in Eq. (12) are slow–fast
multifrequency decompositions of the transient responses, with the
fast frequencies determined by the dominant harmonic components
identified in the WTs of Fig. 8 (in this case, two fast frequencies).
Specifically, the two fast frequencies are the two natural frequencies
of the heave and pitch modes in the uncoupled linearized system; we
designate these components as LF (lower frequency) and MF
(middle frequency) components, respectively, for notational
convenience and also for consistency with the notation used in Lee
et al. [1].

Introducing the new complex variables [18],

 1 � y01 � j�y1;  3 � y02 � jy2;  2 � �01 � j��1

 4 � �02 � j�2;  5 � v01 � j�v1;  6 � v02 � jv2

(13)

we express the original variable for the heave mode in the form

y� 1

2j�
� 1 �  


1� �
1

2j
� 3 �  


3�

y0 � 1

2
� 1 �  


1� �
1

2
� 3 �  


3�

y00 �  0
1 �  0

3 �
j�

2
� 1 �  


1� �
j

2
� 3 �  


3�

(14)

Similar expressions hold for the variables corresponding to the pitch
mode and the NES.

Substitute the preceding expressions into the equations of motion
(2), expressing the complex variables in polar form,
 1��� � ’1���ej��,  3��� � ’3���ej�;  2��� � ’2���ej�� ,  4����
’4���ej�;  5��� � ’5���ej�� ,  6��� � ’6���ej�, where ’i��� is the
slowly varying complex-valued amplitude modulation of the
respective fast-varying component ej�� or ej�. Applying two-
frequency averaging over the two fast components, ej�� and ej� , we
obtain a set of six complex-valued modulation equations governing
the slow-flow dynamics,

’0 � F�’� (15)

where ’ 2 C6, and the details of F are not included here (because
they are too lengthy to be reproduced in this paper).

Introducing the final polar-form expressions, ’i��� � ai���ejbi���,
where ai���, bi��� 2 R, i� 1; 2; . . . ; 6, we express the set of six
(complex-valued) slow-flowmodulation Eqs. (15) in terms of a set of
12 (real-valued) modulation equations governing the slow
evolutions of the amplitudes and phases:

a 0 � f�a; ��; �0 � g�a; �� (16)

where a 2 R6� and � 2 S6. The slowly varying amplitudes a1, a3
�a2; a4; a5; a6� are, respectively, LF and MF components of the
heave (pitch; NES) mode. The independent phase angle vector �
possesses the following components:

1) �12 � b1 � b2: phase difference between the LF heave and the
LF pitch modes

2) �34 � b3 � b4: phase difference between theMF heave and the
MF pitch modes

3) �15 � b1 � b5: phase difference between the LF heave mode
and the LF NES

4)�25 � b2 � b5: phase difference between the LFpitchmode and
the LF NES

5) �36 � b3 � b6: phase difference between the MF heave mode
and the MF NES

6) �46 � b4 � b6: phase difference between the MF pitch mode
and the MF NES
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Note that all independent phase interactions occur between same
frequency components (LF–LF or MF–MF).

Figure 13a examines the validity of the averaged system obtained
earlier. Except for very low-frequency variations in the NES
response, the slow-flow model, Eqs. (12–17), shows good overall
match with the original transient dynamics. The discrepancies may
be improved if we employ additional fast-frequency components in
(12). That is, recalling that the dominant instantaneous frequency in
Fig. 12d, is approximately !� 0:85, we conjecture that single-
frequency averaging at that fast frequency will be sufficient to
capture the important (slow-flow) dynamics of the system;
nonetheless, special care must be taken when applying single-
frequency averaging as this frequency varies with respect to the flow
speed. In fact, some efforts have been made recently to establish
sufficiently reasonable slow-flow models by using the HHT,
showing that multifrequency averaging is basically equivalent to the
HHT [19].

From the evolution of each amplitude component in Fig. 13b, we
verify that the MF components are the dominant ones; this result is
consistent with the WT results in Fig. 8. Similar resonance captures
and escapes are observed as in the numerical study by means of the
HHT (Figs. 13c and 13d). An interesting remark is that the resonance
captures between the heave and pitch modes occur ahead of those
between the heave mode and NES, or those between the pitch mode
and NES. This implies that in the first suppression mechanism there

occur nonlinear modal energy exchanges between the heave and
pitch modes (e.g., the triggering mechanism [1] is activated) before
TET to the NES (with the ensuing instability suppression) occurs;
this early occurrence of RCs between the heave and pitch modes
makes the repetition of suppressions and burstouts in the first
suppression mechanism possible. Moreover, it suggests that, for
better suppression of LCOs, the NES should interact with the
aeroelastic modes before energy transfers between themselves occur
(thus preventing the activation of the triggering mechanism for LCO
instability). The computations of phase interactions by HHTs in
Fig. 13e support this argument, which corresponds to the case of
complete elimination of instability (see Fig. 5). Note that the energy
transfer from the pitch mode to the NES in this case occurs before the
triggering of the pitch from the heave mode, leading to complete
elimination of the aeroelastic instability.

IV. Robustness of LCO Suppression

In this section, we investigate the robustness (i.e., dependence on
the initial conditions and the change of flow speeds) of the preceding
aeroelastic instability suppression mechanisms, by means of steady-
state bifurcation analysis of the dynamics of system (2), using
numerical continuation of equilibria and periodic solutions. We also
explore the effect of offset distance � on LCO suppression (negative
offsets generally appear to give more robust and effective
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Fig. 15 The steady-state rms pitch amplitude ratio (%), ��, with respect to the initial condition set, f�y�0�; ��0�; y0�0�; �0�0��: y�0��
��0� � 0; y0�0� 2 �0; 0:1�; and �0�0� 2 �0; 0:01�g: �� 0:9 and a) �� 0:9, �� 0:01, �� 0:2, C� 30; b) �� 0:9, �� 0:02, �� 0:4, C� 10;
c) �� 0:95, �� 0:01, �� 0:2, C� 30; d)�� 0:95, �� 0:02, �� 0:4, C� 10.
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suppression results). From here on, by positive (negative)
attachment, we will mean that the NES is connected to the wing
ahead (aft) of the elastic axis; that is, closer to the nose (tail) of the
wing. The global bifurcation structure of the dynamics will
eventually reveal how the three suppression mechanisms discussed
earlier in this paper are related to bifurcations of steady-state
solutions. This study will provide hints for NES designs that result in
efficient and robust aeroelastic suppression.

The results depicted in Fig. 14 indicate that in some cases, stronger
disturbances may eliminate the aforementioned LCO suppressions
(that is, LCO suppression may be achieved at certain energy levels
but not at others). Indeed, as shown in Fig. 14, increasing the initial
velocity by a factor of 10 compared to the value used in Fig. 3
completely eliminates the first suppression mechanism and leads to
worse LCOs (e.g., possessing larger amplitudes than the ones
realized when no NES is used). Comparing Fig. 14 to Fig. 3, and
Fig. 6 to Fig. 5,we see that an issue of robustness of LCO suppression
is raised with respect to the effect on the dynamics of changes in
initial conditions or flow speed with the other system parameters
fixed. Indeed, in both Figs. 14 and 6 the LCOs sometimes reappear
with increased amplitudes.

In Fig. 15, the reduction in the steady-state rms pitch amplitude,
�� by Eq. (3), with respect to the initial condition set,
f
y�0�; ��0�; y0�0�; �0�0��: y�0� � ��0� � 0; y0�0� 2 
0; 0:1�; and
�0�0� 2 
0; 0:01�g is computed. Generally, it appears that the
reduction does not dependmuch on the initial pitching velocity. For a
fixedflow speed, increasing themass ratio and damping broadens the
domain of initial conditions where complete elimination or
significant reduction of the amplitudes of LCOs occurs. For fixed
mass ratio and damping, increasing the flow speed can eliminate or
significantly reduce the domain where suppression occurs. It will
turn out in the later part of this section that robustness of instability
suppression with respect to the initial conditions is highly dependent
on the global bifurcation structure.

Robustness of suppression with respect to change of the flow
speed also depends on the global dynamical features. Considering
the steady-state bifurcation structure, an acceleration of the wing (i.
e., increase of rate of changes in the flow speed) will instantlymake it
possible for the flutter speed to surpass the critical speed when no
NES is applied, but the dynamics makes a fast transition to the
corresponding steady-state motion. On the other hand, decreasing
the flow speed with high deceleration will cause the amplitudes of
LCOs to be retained after passing the critical speed until the
dynamics reaches its steady state, that is, its trivial equilibrium
position.

We use this dependence on the flow speed to investigate steady-
state bifurcation behavior by choosing the acceleration or
deceleration to be sufficiently small. Figure 16 depicts the
computation of peak-to-peak amplitudes when the flow speed
increases with the rate d�

d�
� 10�5. For a fixed mass ratio, damping,

and nonlinear coupling stiffness, the effects of positive and negative
offsets are compared in Figs. 16a and 16b. For a specific reduced
speed, a single data point implies a stable trivial equilibrium or a
stable LCO; multiple points imply multiperiodic, quasi-periodic, or
unstable LCOs. Basically, this methodology is analogous to a
frequency-sweeping method when performing modal testing of a
structure.

Increasing the flow speed delays the occurrence of the Hopf
bifurcation that generates the stable LCOs, when the NES is attached
either in positive or negative offsets. Further increasing the speed
causes a jump to an LCO of higher amplitude, which implies that
there exists a limit point cycle (LPC) bifurcation at the point where
the jump occurs; the LPC bifurcation is analogous to the saddle-node
bifurcation of equilibrium points. We note that the stable LCO
appears to possess quasi periodicity before the jump. Later, we will
verify that the quasi periodicity is generated through an NS
bifurcation of a periodic solution which is analogous to the Hopf
bifurcation of an equilibrium. With a positive NES attachment, the
LCOs possess larger amplitudes compared to the case when no NES
is attached; on the other hand, smaller LCO amplitudes are obtained
with negative attachments. For far higher reduced speeds, the stable

LCOs with larger amplitudes seem to change their periodicity or
stability. We will also check that this is true and caused by branch
point cycle (BPC) bifurcations. The BPC bifurcation of a periodic
solution is similar to a pitchfork or transcritical bifurcation of an
equilibrium point [11].

Decreasing the flow speed reveals the clear difference between
positive and negative attachments. In both cases there exist branches
of unstable periodic solutions connecting the upper and lower
branches; in addition, jumps to stable equilibria occur, implying that
there exist LPC bifurcations. Whereas the negative attachment
produces a jump close to the Hopf bifurcation point, the positive
attachment yields a jump at a flow speed even less than the flutter
speed for the systemwith noNES attached. In the latter case the NES
clearly leads to further instability, because small disturbances may
generate LCOs at flow speeds where only stable trivial equilibria
exist in the system with no NES attached.

We further investigate robustness of LCO suppression in terms of
the steady-state bifurcation structure, using a numerical continuation
method. For this purpose, theMatCont, Matlab® code developed by
Dhooge et al. [13], was used.

Steady-state bifurcation analysis with respect to ��; �� for
�� 0:9, C� 10 is presented in Fig. 17. Smaller (�� 0:01) and
larger (�� 0:02) mass ratios are considered; moreover, the contour
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plots extracted from Fig. 2 are incorporated into the bifurcation
diagram to help the visualization of the steady-state amplitudes. Note
that, although our primary interest is to consider offset distances � in
the interval between�1 and 1, in the computational study we extend
this interval. By doing that, we can obtain important information on
the loci of the Hopf bifurcation points in the ��; �� plane.

Figure 17a shows the bifurcation structure for a smaller mass ratio
and a fixed flow speed; the corresponding bifurcation diagram for
specific damping values is plotted in Fig. 18a. Note that, due to the
required computational complexity of the bifurcation study, the
stable LCO with larger amplitude (comparable to the LCO of the
system with no NES attached) is not displayed in the plot. The Hopf
bifurcation curves are located for the offsets at which absolute values
are greater than 1, which suggests that we cannot achieve complete
elimination within the interval of interest. Moreover, the presence of
stable LCOs of large amplitude implies that one cannot obtain robust
suppression of LCOs in this case. Clearly, the first and second
suppression mechanisms take place within � 2 
�1; 1�; however, a
disturbance can eliminate them to give birth to the aforementioned
stable LCO. Smaller damping tends to induce more complicated
dynamics (the lower plot of Fig. 18a), whereas larger damping
eliminates this added complexity.

The steady-state bifurcation structure for the larger mass ratio is
presented in Fig. 17b, which depicts global results; the
corresponding bifurcation diagrams for typical damping values are
provided in Fig. 18b. As in the case of smaller mass ratio, larger
damping values tend to eliminate complicated dynamic behaviors.
We explain the three LCO suppression mechanisms with the
bifurcation analysis for the positive offset attachment. Similar
arguments on the suppression mechanisms can be repeated for the
negative offsets. First of all, we note that the third suppression
mechanism (i.e., complete elimination of LCOs) can be achieved for
an offset distance larger than that corresponding to the Hopf
bifurcation point. In this case, the suppression is robust, because the
bifurcation diagram is global, and there are no other stable equilibria
or periodic solutions to “compete”with the stable trivial equilibrium
(for example, in the intervals denoted by I1 and I2 in the upper part of
Fig. 18b). At values below the Hopf bifurcation point (but not below
theNS bifurcation point for smaller damping values), we arrive at the
second suppression mechanism, which is also robust. Bymoving the
application point toward the e.a. below the NS bifurcation point, the
first suppression mechanism appears. Noting that the NS bifurcation
implies the generation of another periodic solution, one can draw the
conclusion that quasi-periodic behavior is the norm in the first

Fig. 17 Steady-state bifurcation behavior with respect to ��; ��:
�� 0:9, C� 10; a) �� 0:01 and b) �� 0:02. Solid lines indicate stable

trivial equilibrium or LCO; dotted lines, unstable trivial equilibrium;

dashed lines, unstable LCO; and dash-dotted lines, quasi-periodic LCO.
Symbols are used to represent the bifurcation type: square for Hopf,

triangle for LPC, circle for NS, and diamond for neutral-saddle (ns)

bifurcations.
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which is generated through an LPC bifurcation from the unstable LCO

branch extending away from the zero offset.
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suppression mechanism (interrupted, however, by instances of
periodic motions when the frequency of the new periodic solution is
in rational relation to the frequency of the preexisting periodic orbit).
Decreasing damping tends to increase the interval where the first
suppression mechanism is realized. For sufficiently large values of
damping, one cannot observe the occurrence of the first suppression
mechanism due to the strong dissipation by the damping forces.

Thefirst suppressionmechanism examined in Fig. 3 is recomputed
by considering a negative offset distance (Fig. 19). One evident result
is that more energy transfer to the NES occurs with � < 0; whereas
the energy transfer to the NES is relatively gradual in Fig. 3, that in
Fig. 19a appears to be vigorous. Moreover, a negative attachment
extracts more energy from the heave mode, and the duration of the
nonlinear resonant interactions between modes lasts longer than the
case of positive attachment (i.e., � � 
380; 500� vs � � 
400; 480� for
negative and positive attachments, respectively).

In Sec. II, we briefly raised the issue of maximizing the energy
dissipation by the NES, which is proportional to �y0 � ��0 � v0�2.
Examining the responses under condition of 1:1 resonance captures,
we can approximate each response roughly such that
y0��� � Y sin!�, �0��� � A sin!�, v���0 � V cos!�, where the
amplitudes Y,A,V are assumed positive and! is the frequency value
at which frequency locking (resonance capture) occurs. Then, we
compute

y0 � ��0 � v0 � �Y � �A� sin!� � V cos!�� X sin�!� � ��
(17)

where X2 � �Y � �A�2 � V2 and �� tan�1
V=�Y � �A��.
Clearly, to maximize �y0 � ��0 � v0�2, the value of X should be

maximum; negative value of � provides larger values for X,
compared to positive �. Although this may not be a mathematically
rigorous description, it helps to get a rough schematic understanding
of why negative offsets lead to better and more robust instability
suppression compared to positive ones.

Finally, we wish to relate the effects of offset distance to the
bifurcation analysis with respect to the reduced speed. Figures 20a
and 20b show the steady-state bifurcation behavior with respect to
offset distance and reduced velocity. Because the qualitative aspects
are similar to each other, we focus only on the case of positive
attachment. For zero offset distance, the bifurcation behavior is
equivalent to the case when no NES is applied. By increasing the
offset distance away from the e.a., the occurrence of the Hopf
bifurcation is delayed with respect to an increase of the flow speed;
moreover, the intervals where quasi-periodic responses occur (i.e.,
the first suppression mechanism) widen, as are the intervals between
the two LPC bifurcation points. In this case, the BPC bifurcation
point converges to the smaller LPC bifurcation point, and the Hopf
bifurcation curves are almost symmetric with respect to �� 0.
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Typical bifurcation diagrams shown in Fig. 21 reaffirm the
quantitative differences between the positive and negative
attachments, which were explained in Fig. 16. Positive attachments
generally lead to LCOs of larger amplitude compared to those of the
system with no NES attached, whereas negative attachments yield
smaller amplitude LCOs. In terms of the suppression mechanisms,
we observe the sequence from the third to the first mechanisms by
increasing the flow speed. Further increase of the flow speed above
the LPC1 bifurcation point will produce a sudden jump to LCOs of
larger amplitudes. A wing-NES system with a bifurcation structure
similar to that depicted in Fig. 21b is a configuration suitable for
practical applications.

V. Conclusions

We investigated the suppression of aeroelastic instabilities in a 2-
DOF wing system by means of passive, broadband, nonlinear
targeted energy transfers. The physical mechanism for inducing
these transfers was a lightweight, essentially nonlinear oscillator
attachment termed nonlinear energy sink. Through numerical
parametric studies we found that there exist three suppression
mechanisms for suppressing aeroelastic instabilities in this system.
We investigated thesemechanisms numerically and analytically, and
proved that the underlying dynamic mechanisms governing them
were series of resonance captures, for example, of transient

resonances either between the NES and the heave and/or pitch
modes, or between the wing modes themselves. We explored these
mechanisms in terms of steady-state bifurcation analysis, which
addressed the issue of the robustness of the suppression, that is, of
dependence on initial conditions and the parameters of the problem.
We found that NESs attached with negative offsets can provide
robust aeroelastic instability suppression within wide ranges of
systemparameters; on the contrary,NESswith positive offsets do not
provide robust suppression, as explained by the associated series of
bifurcations that occur for positive offsets. It follows that lightweight
NESs with negative offsets can form the basis of practical,
economical, robust and realistic designs for LCO suppression in the
wing under consideration. These theoretical observations are verified
experimentally in a companion paper [8].

Appendix: Algorithm for Empirical Mode
Decomposition

We summarize the algorithm of computing the intrinsic mode
functions of a signal x�t�, which is introduced in Rilling et al. [15].
For more technical details on the empirical mode decomposition,
refer to Huang et al. [14].

The main loop for extracting IMFs is as follows:
1) Identify all extrema of x�t�.
2) Perform interpolations between minima [maxima], ending up

with some envelope emin�t� [emax�t�].
3) Compute the average R�t� � 
emin�t� � emax�t��=2 (as a

residual).
4) Extract the detail c�t� � x�t� � R�t�.
5) Iterate on the residual R�t�.
In practice, the preceding procedure is refined by a sifting process,

and the inner loop that iterates 1–4 on the detail c�t� runs until the
averageR�t� can be considered as zeromean under some tolerance (i.
e., as a stopping criterion). Once it is achieved, the detail c�t� is
regarded as the effective IMF. By repetition, the original signal x�t�
then can be decomposed as

x�t� �
XN
k�1

ck�t� � RN�1�t�

Figure 22 depicts schematic extraction of IMFs from a signal
x�t� � sin 2
t� sin 6
t. Because there are no controls of the sifting
process, end effects appear. Following the notation used in Sec. III,
the IMFs are computed as c1�t� � sin 6
t (i.e., the high-frequency
component is extracted first), and c2�t� � x�t� � c1�t� � sin 2
t.
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