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Abstract 
Singular arcs form possible sub-arcs in various flight 

path optimization problems whenever we assume a 
constant ejection velocity type propulsion system, the 
thrust magnitude being the singular control. However, 
the actual evaluation of the thrust magnitude on these 
arcs is very cumbersome, especially for problems with an 
atmospheric flight segment. We do this using a recent 
extension of the Lie Bracket solution of singular controls 
on partially singular arcs by the authors. The lift and 
the bank controls are assumed to  be interior while the 
thrust direction is assumed to  be along the velocity vec- 
tor. The Lie Bracket solution is shown to be much easier 
to  compute and to  preserve any symmetry properties in 
the problem. The solution is presented in vectorial form 
which allows for a compact and coordinate independent 
solution. An example canonical transformation illus- 
trates how the results can be transformed to  any set of 
state variables. Some interesting sub-cases such as flight 
in a vertical plane and flight in a circular orbit with no 
lift are studied. 

troductiop 

In atmospheric flight, there are five controls in gen- 
eral, two specifying the thrust direction, one thrust mag- 
nitude and the lift and the bank making up the aerody- 
namic controls. For a constant ejection velocjty type 
propulsion system the optimal thrust magnitude is ei- 
ther a maximum, zero or intermediate, the last one re- 
sulting in a singular extremal arc. In order to find the 
thrust magnitude on a singular arc, we must differen- 
tiate the switching function an even number of times 
(two in our case). The conventional method of finding 
these derivatives is to express the lift and the bank con- 
trols as functions of the state and the adjoint variables 
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(assuming that both the controls are interior) and then 
use the canonical equations for the latter. See Vinh and 
~ e d e ~ a l l i '  for such a solution. 

In this paper, we derive the solution using the Lie 
Brackets. In literature, Lie bracket solution for singular 
controls is given only for the case of totally singular arcs 
with one control variable213. This has been extended re- 
cently by the authors4 to include the case of partially 
singular arcs where both singular and non-singular con- 
trols are present. These results are summarized in the 
Appendix. Ross and Melton5 have given a solution for 
the optimal thrust magnitude only for the case of anon- 
lifting vehicle. Thus the singular arc is still total in their 
case. 

Here we give the complete solution of the optimal 
thrust magnitude on a singular arc for a thrusting and 
lifting spacecraft in atmmpheric flight where the thrust 
vector is assumed to be aligned with the velocity vec- 
tor. Due to our assumption on the thrust direction, we 
have only three controls. Clearly, the lift and the bank 
controls make our problem partially singular and the 
results of RRf.(4) are applicable in this case. It will be 
shown that the results of Ref. (5) are a special case of 
the results of this paper. 

An additional feature of this paper is the vectorial rep- 
resentation of the problem and the results to make them 
independent of the choice of the variables. As shown in 
R,ef.(l), using an appropriate canonical transformation, 
all the results can be expressed in terms of the desired 
set of variables. An example of such a canonical trans- 
formation is given in the Appendix. 

In the following, the optimal control problem is stated 
along with all the assumptions. The optimal lift and 
bank controls and the explicit solution for the thrust 
magnitude on a singular arc are given next. A brief 
discussion will conclude the paper. 

&& Throughout this paper, no distinction has been 
' 
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made between the symbol representing a vector and the 
corresponding column matrix. Both are represented by 
a symbol with a bar on top (or a hat for a unit vector). 
Thus, for example, r represents the radius vector as well 
as the column matrix representing the radius vector, de- 
pending on the context and r represents its magnitude. 

Equations of Motion 

The equations of motion of a spacecraft, considered 
as a point mass, flying in a stationary atmosphere are 
given by 6 ,  

where, r is the radius vector, ii the velocity, m the mass, 
T the thrust vector (0 5 T 5 T,,,), A the aerodynamic 
force and g is gravity. Dot represents differentiation with 
respect to time. 

A = - C ~ *  sin a 
CL 

where, CD* = 2CD, and E* = correspond to the 
CP 

maximum lift to drag ratio conditions. Substituting (4) 
in (I) ,  we get 

where 

e q / ~  
+ p ~ ~ o o - ~ * v 2 ( A , d ,  + A,;,) - gd, (6) 

mo 

We make the following assump$ions regarding the n& 
ture of the various forces. The thrust direction is aligned 
with the velocity vector, the gravitational field is central 
and inverse-square, atmospheric density is a function of 
radial distance only and the lift and the drag coefficients 
are related by a parabolic drag polar. ~ h b ,  we have 

T = Ti, 

j = -g(r)C,. 

A = D + L  (2) 
1 

D = --p(r)SCDv6 
2 

where, D is the drag, L  is the lift, p is the density of the 
atmosphere, S is the effective surface area of the vehicle, 
CD and CL are the drag and the lift coefficients respec- 
tively and C,, 6 ,  and 2, are the unit vectors along the 
radius, the velocity and the lift directions respectively. 

We assume that the spacecraft has a plane of symme- 
try and using the bank angle, which is the angle between 
the orbital plane and the spacecraft symmetry plane, we 
can write, 

i r  = cos ad, + sin ad, (3) 
where 6, and i, are two orthogonal unit vectors specify- 
ing the lift vector direction and each in turn is orthoge 
nal to C, and a is the bank angle. 

To simplify computations we introduce the following 
transformation of the variables. 

The Optimal Control Problem 

It is desired to find the controls A,, A, and T, from a 
compact control set, that maximize a given function of 
the states at the final time while satisfying certain initial 
and final conditions. Thus we have a Mayer type prob- 
lem. Introducing the adjoint vector jj = (fi f i  pqIT, 
we form the Hamiltonian 

Adioint Eauations 

The adjoint equations are given by 

Integrals of Motion 

The following integrals of motion exist6 due to the 
problem being autonomous and due to the assumed 



spherical symmetry. 

Lift and Bank Controls 
Assuming that A,  and A,  are interior optimizers, the 

Pontryagin's maximum principle gives the following first 
and second order necessary conditions. 

Optimal Thrust Magnitude 
Let us define the switching function 

The optimal thrust magnitude is T = T,,, if O > 0, 
T = 0 if @ < 0 and T has an intermediate value if @ = 0. 
If the final case is true for a finite interval of time, we 
have a singular arc and the switching function must be 
differentiated with respect to time in order to obtain 
T explicitly. We expkss these derivatives in terms of 
Lie Brackets by the method described in the Appendix. 
All the required tensors and Jacobian matrices are also 
derived in the Appendix. The results are as follows. 

where, 

where, 

Various vector quantities in the above equations are 
given below. 

e9lC v  F, = P r ~ ~ D O - - ( i T r )  [-X.V + E*ve^.] 
mo r  

2 E* -(pscDo)2 (e) (1 + AC2 + Ag2)-v3e^8 
mo 2  

2 

+ ( ~ S C D ~ ) ~  ($) A 8 ~ * v 3 ( A C i c  + hi.) 

e  ( v  - (T;) @ )  
+ P S C D O X ~ A ~  ;r + - (20) 

~ Q / C  ( c T i )  (pT&)  -.I 
- p s C ~ ~ - g E *  1 2 7 -  

mo r  

where p, is the partial derivative of p  with respect to r. 

r;Zr = -- 2  4 p s C ~ O  eqlc( l  + 
+ A . ~ )  (; + + 5) 6 2  mo 

eq/c 
- ~ S C D ~ - E * ~  ( 2  + I )  (Ace^, + A.6,) 

mo c c i 
(cT i )  

1 +xi - 2g- 
v2 t v4r (21) / 



and finally, 

where, 

g2 ((aT r)) -- + 3g2 + ( ( ~ ~ r ) ) ~  - - 
v3 v5r2 vr ~ 3 ~ 2  (-! + gr ) 

Special Case 1 : * 

Flight in the Vertical Plane 

The vertical plane is the plane containing r and G and 
by definition of the bank angle and the unit vectors 2, 
and C,, the former unit vector is in the vertical plane 
while the latter is orthogonal to  it. Thus, in the ex- 
pressions for B, c, F,, M,, W, Y and 2 above, we set 
A, z 0 and drop all the terms containing 6,. Similarly 
we drop the vectors F, and M, since they correspond to 
the time derivative of A,. This gives us the expression 
for the thrust magnitude on a singular arc for flight in 
the vertical plane. 

A note of caution is due here. We cannot obtain the 
case of horizontal flight by simply setting terms corre- 
sponding to A, r 0 similar to the vertical flight case 
above. The main reason for the lack of symmetry is the 
expression for gravity. We have two types of symmetry 
in the problem. The equations of motion and the grav- 
ity term have a spherical symmetry about the radius 
vector where as the atmospheric force has a spherical 
symmetry about the velocity vector. As long as these 
two are uncoupled, as in the case of general three dimen- 
sional flight and flight in the vertical plane, we can use 
the symmetry properties. But to obtain the case of hori- 
zontal flight (at constant altitude), we cannot simply set 
A, 0 because then the lift force in the vertical direction 
is zero and any difference between the gravity and the 
centrifugal force causes the spacecraft to  change its alti- 
tude. Instead we must impose a constraint that the sum 
of the forces in the vertical direction is zero. This gives 
a relation between the lift and the bank controls and the 
general expression we derived for the thrust magnitude 
is no longer applicable for this constrained optimization 
problem. Only if we ignore gravity, as is sometimes done 
for flight at low altitude in dense atmosphere, can we set 
A, - 0 to obtain the horizontal flight case. 

Special Case 2 : 
bit with Zero Lift 

Historically, an interesting question regarding the sin- 
gular arc solution is that whether the cruise solution, ob- 
tained by setting the thrust equal to the drag, coincides 
with the singular one. Since it is very difficult to verify 
whether the & equation for the general three dimen- 
sional flight and for flight in a vertical plane yields the 
solution that the thrust is equal to the drag (though it 
seems highly unlikely on a quick inspection), we consider 
yet another simple case, namely, the flight of the space- 
craft in a circular orbit with zero lift. Here we compare 
the circular solution to the Singular arc solution and see 
if they coincide. First of all we set A, = A, = 0 in the 
equations of motion as well as all the derivatives of the 
switching function derived above. 

Solution Along a Circular Orbit 

On a circular orbit, the radius and the velocity are 
constant. Thus, 

(rTr) = r2 = constant 

(fiTv) = v2 = constant (27) 

Differentiating the first relation, we get the following 
relations among the states and controls: 



Equation (28), expressed in scalar form gives 

sin y E 0 
v 2 - r g  = o (29) 

the second one being the force balance equation along 
the radial direction. Upon differentiation, the second 
relation in (27) gives 

which says that the thrust is equal to the drag thus 
balancing the forces along the velocity. 

Solution Along a Singular Arc 

Now we suppose that the state variables on the cir- 
cular arc and the singular arc coincide at  some point. 
Without loss of generality, we take that as our initial 
point. Note that if the singular arc yields a solution for 
the thrust which is equal to the drag at  this point, the 
derivatives of r and 6 remain zero and we still remain 
on the circular orbit. Thus as long as the thrust magni- 
tude, which is now dependent on the adjoint variables, 
does not change, the singular arc and the circular arc 
remain coincident. Thus we get a condition on the ad- 
joint variables under which this happens. Note that the 
mass of the spacecraft continues to decrease since we are 
thrusting continuously. 

In the singular arc solution, we set 

(sTr) = 0 

r = constant 

v = constant 

and 

Note that the first equation in (32) is the Hamilt* 
nian integral due to the equations of motion being au- 
tonomous. 

After some algebraic manipulation, we can express 
($F) and ($6) as functions of (pr6) using (32) as given 
below. 

Substituting (35) and (36) in (33) and (34), we get 

and 

Substituting v2 = rg in the second term of (37), we 
can write the second derivative of the switching function 
as 

Clearly r = V g v 2  is a solution of the above equa- 
tion if and only if 

By differentiating the first condition and substituting 
from the state and the adjoint equations we get 

which is non zero on a circular orbit. Thus the first 

2 mo (33) condition does not yield a solution of thrust being equal 



to the drag. On the other hand, the second condition 
does yield this solution and the corresponding singular 
arc is optimal if 

The most striking feature of the Lie Bracket solution, 
is the systematic procedure that is involved in applying 
it. Thus one can even use a symbolic manipulator to 
evaluate all the necessary brackets. The contributions 
of the non-singular solutions can be easily identified in 
the resulting expressions. Thus one can easily obtain 
sub-cases where one or more of the non-singular solu- 
tions is not present, as we have done above to obtain 
the special cases of vertical and non-lifting flights. The 
term containing the singular solution (linearly) in the 
second order derivative (represented as 8 )  appears s e p  
arately from the remaining terms (A) .  Thus if one only 
wants to check the Generalized Legendre-Clebsch con- 
dition given by B > 0 for first order singular arcs, it 
is much easier to use the Lie Bracket solution than the 
conventional method where one needs to group all the 
terms involved by inspection. 

F, , Me and A?, are symmetric with respect to A, and 
A,. Thus we only need to derive one of each pair of 
vectors and by simply interchanging the subscripts c and 
s, we get the other vector. This is facilitated by the way 
we set up the equations of motion and it saves us a 
lot of computational effort. It can be shown that this 
symmetry is lost in the conventional derivation. The 
solution obtained here has been verified and validated 
by the conventional method7. 

Even though we gave the complete solution for the 
thrust magnitude, one should note that it contains both 
the state and the adjoint variables. Since we have seven 
adjoint variables but only six relations among them as 
given by Eqs. (9), (11) and (12), the problem is not 
completely integrable. 

The vectorial formulation used here is for the sake of 
brevity and generality. One can start with the equations 
of motion for a given set of variables and derive the 
expression directly. The solution given in the Appendix 
is quite general and is applicable whenever the equations 
of motion have the form specified there. 

Let the equations of motion be of the form 

where x,fo,fl E Rn, v E Rm and u E R'. Then the 
singular solution for u is given as follows. 

i = pT(fo,fl) = o (45) 

Where, the Lie bracket (f0,fl) is defined as 

and ($$ ) and ($$ ) are the (n x n) Jacobian matrices. 

where, 

where we define pT (fo, 2) as a (rn x 1) column vector 
such that 

Evaluation of the Various Lie Brackets 

By comparing (5) with (43), we note that 

Appendix 
and 

ded Lie Bracket Solution4 



The various Jacobians and Lie Brackets are evaluated 
as given below. 

where, 

and 

and 

8 1  
0 3  0 3  0 ~ 3  

- = [ o3 % 0: ] (56) ax Or3 Or3 

where O3 is the 3 x 3 null matrix, 4 is the 3 x 3 identity 
matrix, 0c3  is the 3 x 1 null matrix (column vector) and 
Or3 is the 1 x 3 null matrix (row vector). Thus we have 

Similarly, we have 

- (%) i, 
(66) 

where, 

where 

where, 
We can also write 

a a~ 8 8~ F, = [- ai; (-)I ax, 6+ [- a6 (-)I ax, B- (g) (E) ax, 

where 

where, 
and 

ax, 

We can now calculate the next set of Jacobians for 
the higher order Lie Brackets as follows. 

where, 

and 
where, 

Thus we can calculate the higher order Lie Brackets as: Exmessions for the Tensors 

Partial of i, 
82, 6vT --  - - - - a6 ~3 



Note that from (72), we get 

Partials of 6 ,  and d ,  We have to find and 
a@- 

since the unit vectors d c  and 6 ,  are dependent on v 
through the implicit relations vT6, = 0 and u T i ,  = 0. 
It  can be shown that7 

and 

- 
Partials of B 

a d ,  1 - = -- 
av v2  ve, 

aB Partials of 
F 

as Partials of 

eqlc WT 2 (as) = - ~ S C D ~ - A ~  (v13 + ?) (85)  ac ax,  mo 

Exam~le  Canonical Tran~formationl.~ 
a 8B e q / c  mT ( )  = -PSCDO-.\~ ( ~ 1 3  + ?) (82 )  For a point transformation between the variables 

mo (p, q )  and (P, Q) to be canonical, we have the condition 
e q / c  that 

+ p ~ ~ ~ o  - ~ " ( 2 6 , f i ~  - 2:) 
mo 



Here we give an example of a canonical transformation 
between the vector quantities + and C and the flight 
path variabks, r(radiu) ,  @(longitude), d(latitude), 
V(velocity), y(flight path angle) and $(heading angle). 
See the figurer bebw for the definition of the spherical 
unit vector triadr ($, 60, e ^ + )  and (i,, i,, i$). 

we can write, 

di' = dri,  + rdi, 

= dri, + r& x i, (92) 

= dri, + d8(k x r )  - d4(io x +) 

and 

dii = dVd, + Vdi, 

= dVi, + V ( &  + dfi) x i ,  (93) 

= dV2, + d ~ ( k  x ii) - dq5(io x 6) + d$(i, x C) 

-dy(i* x f i)  

where, . . 
c; i=et-&,  (94) 

are the angular velocities of the (e^,,ir,io) and the 
(2, , i, , 2*) coordinate sys tem respectively. 

Now using (89), (92) and (93) and simplifying, we get 

P, = 

+ 

+ 
and 

+ *(k. L*) - 
rcoe4 rc-4 rc-4 coey 

Pv '* i* fi  = -i,+pve^u+- v V cosy 

Similarly we can also write the inverse transformation 
88 
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Fig. 1. Radius Vector 

F . [6 x (A x 6)) 
97 = r v coe y 

where E is defined in (9). Fig. 2. Velocitv Vector 


