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Abstract 

A multi-parameter family of optimal Euler precondition- 
ers are explored. This uncovers the link between the var- 
ious matrices derived by Van Leer et al. and Turkel, and 
also presents an attempt to derive more effective matrices. 
The preconditioning technique, which is based on a differ- 
ence scheme rather than on partial differential equations, 
is extended from the Euler equations to the Navier-Stokes 
equations for any cell Reynolds numbers. Some numeri- 
cal results demonstrate that Navier-Stokes precondition- 
ing speeds up the calculations even for low cell Reynolds 
numbers. 

1 Introduction: what's new in 
preconditioning? 

This report describes the continuation of our research ef- 
fort in local preconditioning of the Euler equations af- 
ter the presentation at the AIAA 10th CFD Conference, 
June 1991, Honolulu ([I]; for more details see the Ph.D. 
thesis of W.-T. Lee [2]), and also includes our first re- 
sults on local preconditioning of the Navier-Stokes equa- 
tions. Another report [3] included the present collection 
of papers describes the use of local preconditioning in de- 
signing multi-stage marching schemes with effective high- 
frequency damping; such schemes are desired for multi- 
grid relaxation. 

Local preconditioning as a means of accelerating Eu- 
ler and Navier-Stokes calculations is a subject that en- 
joys only a modest interest in the CFD community. Re- 
cent publications include an article by Venkateswaran et 
al. [4] at Penn State, emphasizing propulsion applications 
with finite-rate chemistry and dissipation, and a review by 
Turkel [5], which is largely theoretical. Our own approach 
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has been extended by Godfrey and Walters at VPI&SU to 
the calculation of reacting flows, and has led to another 
Ph.D. thesis [6]. The main results were presented in a 
cooperative paper by Godfrey, Walters and Van Leer [7] 
at the AIAA's 29th Aerospace Sciences Meeting, January 
1993, &no. It includes the following important results: 

Local preconditioning also speeds up calculations 
with implicit Euler schemes. 

A second-order Euler calculation is accelerated more 
strongly by local preconditioning than a first-order 
calculation. This result was anticipated, as the 
higher-order scheme is closer to the PDE's for which 
the preconditioning matrix was designed. 

The Euler preconditioning can be extended in a 
straightforward way to a Navier-Stokes preconditioning 
valid for all cell-Reynolds numbers. The analysis and 
experiments regarding the Navier-Stokes equations were 
only for the case of one dimension. We continue the leap- 
frog mode of research by presenting more general Navier- 
Stokes results in the present paper. Cooperative research 
was also started with Turkel; here the focus is on the Euler 
equations for incompressible flow, for which the analysis is 
easier. One first result is that a meaningful one-parameter 
family of preconditioning matrices was found linking the 
matrix of Van Leer et al. to that of Turkel [8]. We shall 
elaborate this further below. 

Turning now to our main research efforts of the past 
two years, we may distinguish two themes: 

1. Exploring the multi-parameter family of optimal Eu- 
ler preconditioners. This includes uncovering the link 
between the matrices derived by Van Leer et al. and 
Turkel, and also a search for matrices more effective 
than either one. 

2. Extending the Euler preconditioning technique for 
use with the Navier-Stokes equations at any cell- 
Reynolds number. This includes handling cells with 
high aspect ratio. 
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These themes are worked out in the following sections. 

2 Exploring Euler precondition- 
ers 

2.1 Non-uniqueness of the Euler precon- 
ditioner 

In the case of the Euler equations, preconditioning at- 
tempts to take away the spread among the characteristic 
speeds. For the one-dimensional Euler equations, 

perfect preconditioning is possible, i.e. the characteristic 
condition number can be brought down to unity. This is 
achieved, for instance, by multiplying the residual with 
the matrix 

P = n l ~ l - ' ,  (2) 

where q is the flow speed. This yields the preconditioned 
system of equations 

its characteristic speeds are the eigenvalues 
of qlA(-'A(U) and all equal the flow speed in absolute 
value. This preconditioning is unique for supersonic flow; 
for subsonic flow there is substantial freedom in choosing 
a matrix achieving perfect preconditioning [2]. The search 
for such matrices is greatly simplified if state variables are 
used that symmetrize the equations; in three dimensions 
we prefer the set u with incremental form 

Here p and p represent density and pressure, u,  v and w 
are Cartesian velocity components, and a, is the speed 
of sound. Note that the last variable is proportional to 
entropy. An extra simplification results if we align the 
z-axis with the local flow direction; this makes u and w 
vanish (but not their time- or space-derivatives). 

Using the above variables in our one-dimensional ex- 
ample, we find a one-parameter family of symmetric pre- 
conditioning matrices of the form 

equalizing the characteristic speeds. The matrix elements 
a,  b and d are nondimensional functions of the Mach num- 
ber M = q/a, . Note that local preconditioning should not 
affect the entropy equation, which is a pure convection 
equation showing the benchmark convection speed q. The 
above matrices indeed leave the entropy equation alone. 

One of these matrices is closely related to the sym- 
metric optimal matrices derived in [llsuited for two and 
three dimensions; this is the matrix for which a is mini- 
mal [2]. The one-dimensional form has never been tested 
in practice. 

If we allow asymmetry we can find a two-parameter 
family of optimal matrices of the form 

which allow generalization to higher dimensions. None of 
these has ever been implemented; what is known is that 
only D2 matters to the optimization. In other words, the 
transposed of any optimal preconditioner of the form (6) 
is also optimal. This is not just true for one-dimensional 
asymmetric preconditioners but holds for any number of 
dimensions. The proof is trivial; it follows after taking the 
transposed of the matrix whose eigenvalues are sought. 

The analysis becomes increasingly complicated in 
two and three dimensions, because of the increasing num- 
ber of degrees of freedom. There no longer is a unique ma- 
trix achieving the optimal condition for supersonic flow, 
but it can be shown that, for the 2-D symmetrized equa- 
tions, there is only one symmetric matrix of the form 

o o c o  

0 0 0 1  P = [ :  :I, 
achieving the optimal condition number for both super- 
sonic and subsonic flow. ' When investigating fuller sym- 
metric matrices, of the form 

it follows that 
e = O  

'For 2-D supersonic flow the optimal condition number is 1; for 
subsonic flow, local preconditioning can not achieve a lower condi- 
tion number than (1 - M2)-* . In 3D the optimal value for super- 
sonic flow also degrades to (1 - M 2 ) -  *. 



for a symmetric acoustic wave front about the flow direc- 
tion, leaving a one-parameter family to explore. It is not 
clear what the extra parameter f has to offer. Variations 
in f among the members of this family do not change 
the wave-propagation speeds implied by the equations, 
but the eigenvectors corresponding to these characteristic 
speeds are altered, i.e. the waves affect the flow quantities 
differently. The freedom to change the eigenvector struc- 
ture is useful when additional design criteria must be met; 
in the one instance we tried to make use of it, though, the 
symmetric matrices did not seem to offer enough freedom 
(see Section 2.2). 

When asymmetry is allowed, up to three more pa- 
rameters may be introduced: 

analysis shows that this adds only two degrees of freedom, 
yielding a three-parameter family of optimal precondition- 
ers of the form 10. One of these is the optimal member of 
the Turkel [9] family. 

It is clear that we have not even begun to chart the 
huge family of Euler preconditioners. One question is: is 
it really necessary to do so? Assuming the answer is affir- 
mative, the next question is: what is an effective guiding 
principle in cutting a path through the jungle of possibil- 
ities? 

A mixture of physical plausibility and mathematical 
simplicity has lead us to at  least one useful optimal matrix; 
Turkel got his inspiration from the method of artificial 
compressibility and derived a family of matrices includ- 
ing a different optimal matrix. He reports [5, 81, however, 
that this matrix in practice does not do as good a job 
of convergence acceleration as a suboptimal matrix of the 
same family. Furthermore, the transposed of the optimal 
matrix - which is optimal too - is even worse in practical 
performance. Our conjecture is that some precondition- 
ings lead to a less favorable eigenvector structure than 
other ones. A possible guiding principle therefore would 
be to look not just for minimum spread of characteristic 
speeds but also for minimum deviation from orthogonality 
among the associated eigenvectors. 

This search has just started and has already led to 
significant results. It appears in 2-D symmetric precon- 
ditioning that, for a given propagation direction, the two 
acoustic eigenvectors can be made mutually orthogonal, 
but not orthogonal to the shear eigenvector [8]. The en- 
tropy eigenvector is always orthogonal to all three. What 
this means in terms of convergence acceleration has not 
yet been determined in practice. 

2.2 Effect of cell aspect-ratio 

CFD folklore has it that it's a good idea to run an Euler 
code on a Navier-Stokes grid, if a Navier-Stokes code is 
the ultimate goal. This will bring to light certain prob- 
lems of stability and convergence, to be dealt with before 
the viscous terms are added. We initially followed this 
rule in developing preconditioning matrices, but, with the 
benefit of hindsight, we can say it actually is misleading. 
In a Navier-Stokes grid the cells in the boundary layer are 
strongly elongated in order to accomodate the difference 
in scale between the convection along the layer and the 
diffusion across the layer. Imposing such a grid onto the 
Euler equations is artificial: it introduces a large condi- 
tion number - the cell aspect-ratio - without a matching 
physical process. It is not surprising we were not able to 
find an effective Euler preconditioner for such a grid; the 
problem completely disappears when the relevant viscous 
terms are added. 

Nevertheless, we wish to report our findings for pre- 
conditioning the Euler equations on a stretched grid. As- 
sume that the cells are stretched in the flow direction, i.e. 

AxlAy = & aspect ratio; (11) 

we now have to redefine the goal of preconditioning. The 
design criterion no longer calls for equalizing wave speeds, 
but for equalizing the cell-crossing times of the waves. 
This means, in particular, that acoustic waves traveling 
in the y-direction should travel only at the speed & - I q .  

The acoustic wave front, therefore, should nominally be 
an ellipse with its center at the origin, major axis in the 
z-direction, and axial ratio A; see Figure 1. From the 
analysis for & = 1 we know that this is not feasible; the 
best we can hope to achieve for subsonic flow is an ax- 
ial ratio & d m ,  because of the transonic singularity 

(see 111). 
It turns out even this is not possible; with precondi- 

tioning (7) "fat" ellipses can be obtained only if we relax 
the requirement that they be centered at the origin. There 
are two possible geometries: with the center at z > 0 and 
with the center at z < 0; see Figure 2. Each of these 
acoustic wave fronts has a condition number that deteri- 
orates more severely for & + 00 than before precondi- 
tioning, namely, as AT2; however, alternating between the 
forward-biased and backward-biased wave fronts might 
solve that problem. This, unfortunately, appears to be 
an illusion: when alternating between the wave fronts, 
the eigenvectors switch roles. This means that the state 
quantity transported forward in the first step is trans- 
ported backward in the second step, yielding only a small 
net change. 

The exchange of eigenvectors can be prevented by 
introducing asymmetry into the matrices, e.g. by al- 
ternating betweeen two matrices of the form (10) with 
D # 0, E = F = 0. In practice, however, this does not 
yield the expected speed-up; it is outperformed by a single 
symmetric preconditioning with the acoustic wave front 
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Figure 1: Ideal wave front fitting stretched cell. 
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Figure 2: Combination of forward- and backward-biased wave fronts. 
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Figure 3: Best possible symmetric wave front 



Table 1: Number of iterations required for reduction of density residual to for decay of a 0.1 % pressure 
perturbation in the center of a square domain. First-order upwind Euler residual with single-stage time marching. 
Unpc = unpreconditioned; OrPc = original preconditioning; Sym = symmetric preconditioning matrix; Asym = 
asymmetric preconditioning matrix; F = forward-biased wave-front; B = backward-biased wave-front; FB = forward- 
and backward-biased fronts alternating; no entry = very slow convergence. 

scaled down by a factor l/R; see Figure 3. Some nu- 
merical results regarding the convection of a small point 
disturbance out of a square domain are presented in Table 
1, illustrating the failure of the above approach. 

3 From PDE to difference scheme 

Our derivation of the optimal Euler preconditioner has 
been based solely on the differential form of the Euler 
equations. Nevertheless, the matrix is intended for use 
with discretized versions of these equations. We expect 
the effect of the preconditioner on low-frequency error 
components to be accurately predicted by the PDE-based 
analysis; high-frequency components, however, are very 
poorly described by the PDE's, and may behave unexpect- 
edly under preconditioning. This forces one to modify nu- 
merical flux functions when used in conjunction with the 
preconditioning matrix. In [I] it was explained that Roe's 
approximate Riemann solver, when used in an upwind- 
biased flux function, must be based on the preconditioned 
Euler equations, in order to avoid a severe stability re- 
striction. 

Further study of the effect of the preconditioner on 
discrete schemes has made clear that the precondition- 
ing derived in [I], while optimal for the PDE's, can ac- 
tually be improved when intended for upwind discretiza- 
t ion~.  Specifically, in subsonic flow it is possible to con- 
vect entropy and shear with the speed q ( R  + d m )  
rather than q R ,  without significantly endangering sta- 
bility. For supersonic flow, the speed-up factor is (A + 
J-)/M. Thus entropy and shear waves can propa- 
gate with higher speed than that imposed from 1-D CFL 

condition. This is illustrated in Figure 5, showing the 
Fourier footprint of the first-order upwind discretization of 
the Euler equations, without (Figure 4) and with (Figure 
5) the speed-up factor. In the latter case the footprint in- 
creases its extent only in the imaginary direction, and the 
whole footprint can still be easily contained in the stability 
region of a multi-stage marching algorithm. This is shown 
in Figure 6, taken from [3]. This modification is actually 
beneficial for the optimization of high-frequency damping 
by multi-stage schemes (which is desirable for multi-grid 
relaxation.) An additional advantage of this modification 
is that it allows the Euler preconditioning with speed-up 
factor to be extended to Navier-Stokes preconditioning 
in a straightforward way. The speed-up factor changes 
the modified artificial viscosity matrices ensuring that the 
limit of the Navier-Stokes preconditioner equals the Euler 
preconditioner as the cell Reynolds number approaches to 
infinity. 

4 Preconditioning the Navier- 
Stokes equations 

Once an effective Euler preconditioner has been found, it 
is a straightforward matter to find a Navier-Stokes pre- 
conditioner effective for any cell Reynolds number. To 
understand this, write the 2-D discretized Navier-Stokes 
equations as 

The first term on the right-hand side is the discrete Euler 
operator; the remaining terms are the viscous/conductive 
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Figure 4: Fourier footprint of first-order upwind Euler o p  
erator after preconditioning without entropy/shear speed- 
up factor; M = 0.1, & = 1. 
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Figure 5: As Figure 4, but with speed-up factor. 
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Figure 6: Fourier footprint of the first-order upwind Eu- 
ler spatial operator, and level lines of the amplification 
factor of the four-stage marching method with optimal 
high-frequency damping. 

terms, assumed to be approximated by central differenc- 
ing. These contribute only to the extent of the footprint 
along the negative real axis, which is inversely propor- 
tional to the cell Reynolds number. The idea put forth in 
[7] is to make the size of the footprint independent of the 
cell Reynolds number. The highest spatial frequencies in 
the x- and y-directions contribute - 2 ( & ~  + &E) to 
the Fourier transform of the right-hand side; it is easily 
understood that the proper scaling results by choosing 

Sequences of Fourier footprints without and with the 
effect of preconditioning are shown in Figures 7-14, for 
Mach numbers 0.1, 0.9 and 2.0 and the cell Reynolds 
number decreasing from 4.2 x lo6 to 4.2; for smaller val- 
ues the footprint tends to collapses onto the negative real 
axis, producing useless figures. These illustrate the ef- 
fectiveness of the Navier-Stokes preconditioning in scaling 
the eigenvalues of the discrete spatial operator. The em- 
bedded Euler operator is just based on first-order upwind 
differencing. For higher-order unpwind differencing, the 
same scaling technique for the highest frequency Fourier 
footprints yields a similar expression: 

The preconditioned Fourier footprint for higher-order 
schemes are shown in Figures 15 - 18. Some numerical 
evidence regarding the effect on the convergence speed of 
actual calculations with this operator is presented in Table 
2 and 3, comparable to Table 1. The decay of a small point 
disturbance by convection and diffusion is computed by 



the standard and preconditioned Navier-Stokes schemes 
for various cell Reynolds numbers, Mach numbers, and 
cell aspect ratios. The preconditioning is seen to speed 
up most calculations; for the lower Reynolds numbers, 
though, robustness is an issue, especially for the higher 
aspect-ratio. 

The non-uniqueness of Navier- Stokes preconditioner 
can be analyzed in the same way as for the Euler precon- 
ditioner. Thus, the non-uniqueness of the Navier-Stokes 
preconditioner follows from the following expression. 

where all the eignevalues of the T matrix are the 
same. 

The above expression still makes the size of Fourier 
footprints independent of the cell Reynolds number, thus 
satisfying the first design criterion for the preconditioner. 
The eigenvector structure, however, is changed. For the 4 
by 4 matrix, four eigenvalues are specified leaving 12 de- 
grees of freedom for the T matrix. These degrees of free- 
dom can be exploited to satisfy additional design criteria 
for more elaborate Navier-Stokes preconditioners. A con- 
sequence of the first design criterion is that the condition 
number increases abruptly as the cell Reynolds number 
decreases, and although the diffusion term dominates at 
low cell Reynolds number, this increase results in a deteri- 
oration of the low-frequency wave damping. Consequently 
a plausible design criterion for a more elaborate precon- 
ditioner is to cluster the low frequency Fourier footprints 
in a way that reduces the condition number. This design 
criterion can be formulated mathematically: the absolute 
imaginary part of the Fourier footprints for the lowest fre- 
quencies must have the same values. We will hereafter 
refer to this criterion as our second design criterion. 

For the 3 by 3 matrix of the 1-D Navier-Stokes equa- 
tions, the exact form of T satisfying both of the above 
design criteria can be derived. Since the exact form is 
too elaborate for efficient numerical implementation, a 
natural strategy is to relax the second design criterion. 
Rather than requiring exact equality of the values of ab- 
solute imaginary parts, only approximate equality will be 
sought. Since this relaxed criterion cannot be expressed as 
a mathematical condition, it must be tested by numerical 
experiment. We are now working on developing more ef- 
fective preconditioners, using these numerical experiments 
for guidance. 

5 Conclusions 

Our analysis shows that there are a large number of de- 
grees of freedom available in designing Euler precondi- 
tioners. The guiding principle for obtaining most opti- 
mal preconditioner is not just to obtain minimum spread 
of characteristic speeds but also to obtain minimun de- 

viation from the associated eigenvector orthogonality. A 
study of the cell aspect ratio effect reveals that obtain- 
ing an ideal wave front is restrictive even though many 
degrees of freedoms are utilized. Difference scheme-based 
analysis instead of the PDEbased one not only improves 
the Euler preconditioning but also enables Navier-Stokes 
preconditioning to be developed from the Euler precondi- 
tioning. The idea of making the size of Fourier footprint 
independent of the cell Reynolds number is analyzed and 
demonstrated in first and higher-order schemes for Navier- 
Stokes preconditioning. Future work will focus on the ro- 
bustness of solutions and on a search for more optimal 
Navier-Stokes preconditioners. 
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75 
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Table 2: Number of iterations required for reduction of density residual to (unless otherwise indicated in paren- 
theses), for decay of a 0.1 % pressure perturbation in the center of a square domain. Discrete Navier-Stokes operator 
with single-stage 1st order time marching. Unpc = unpreconditioned; PC = preconditioned; div = diverging calcula- 
tion. If the residual intially decreased, then diverged, the lowest residual level attained is indicated in parentheses. 

Table 3: Number of iterations required for reduction of density residual t o  (unless otherwise indicated in paren- 
theses), for decay of a 0.1 % pressure perturbation in the center of a square domain. Discrete Navier-Stokes operator 
with single-stage 3rd order scheme. Unpc = unpreconditioned; PC = preconditioned; div = diverging calculation. If 
the residual intially decreased, then diverged, the lowest residual level attained is indicated in parentheses. 
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Figure 7: Fourier Footprint of preconditioned Navier- 
Stokes spatial operator including first-order upwind Euler 
operator; M = 0.1, Rea, = 42. 

0.067 

Irn 

Figure 8: As Figure 7, but for Fka, = 4.2. 
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Figure 9: Fourier Footprint of preconditioned Navier- 
Stokes spatial operator including first-order upwind Euler 
operator; M = 0.9, ReA, = 4.2 x lo6 (essentially inviscid 
case). 
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Figure 10: As Figure 9, but for &A, = 42. 



Figure 11: As Figure 9, but for ReAx = 4.2. 

Figure 12: Fourier Footprint of preconditioned Navier- 
Stokes spatial operator including first-order upwind Euler 
operator; M = 2.0, Rea, = 4.2 x lo6 (essentially inviscid 
case). 

Figure 13: As Figure 12, but for ReAx = 42. 

Figure 14: As Figure 12, but for Rea, = 4.2 



Figure 15: Fourier Footprint of preconditioned Navier- Figure 17: Fourier Footprint of preconditioned Navier- 
Stokes spatial operator including second-order upwind Eu- Stokes spatial operator including third-order upwind Eu- 
ler operator; M = 0.1, ReAr = 4.2 x lo6 (essentially in- ler operator; M = 0.1, ReAx = 4.2 x lo6 (essentially in- 
viscid case). viscid case). 

Figure 16: As Figure 15, but for ReA, = 4.2 Figure 18: As Figure 17, but for ReAx = 4.2 


