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ABSTRACT 
The localization of the free modes of vibration of disordered 

multi-span beams is investigated, both theoretically and experi- 
mentally. It is shown that small deviations of the span lengths 
from an ideal value may have drastic effects on the dynamics of 
the system, by inhibiting the propagation of vibrations in the 
structure. Emphasis is placed on the development of a pertur- 
bation method that allows one to obtain the localized modes of 
vibration of the disordered system without a global eigenvalue 
analysis of the entire system. Such a perturbation analysis is 
cost effective and accurate. More importantly, it provides phys- 
ical insight into the localization phenomenon, and allows one 
to formulate a criterion that predicts the occurence of localized 
modes. Also, an experiment is described, which has been carried 
out to verify the existence of localized modes for disordered two- 
span beams. Theoretical and experimental results are compared 
in detail and excellent agreement is found, thus confirming the 
existence of localized modes. 

INTRODUCTION 
The presence of irregularities in nominally periodic structures 

may inhibit the propagation of vibration within the structure. 
Depending on the magnitude of disorder and on the strength of 
internal coupling for the system, the irregularities localize the 
vibration modes and confine the vibrational energy to a region 
close to the source. This phenomenon is referred to as normal 
mode localization. The localization phenomenon was first pre- 
dicted by Anderson in 1958 in the field of solid state physics. In 
a famous study1, Anderson showed that the electron eigenstates 
in a disordered solid may become localized. This implies that 
metallic conduction may be very limited. Similarly, for struc- 
tural elastic systems with localized modes of vibration, there is 
no long range propagation of vibration. 

To date, both the analysis of the localization phenomenon 
and its potential applications have not received much attention 
in the field of structural dynamics. To the authors' knowledge, 
one of the few significant contributions was made by H ~ d g e s ' . ~ ,  
who demonstrated the similarities between the propagation of 
vibration in an elastic system and the conduction of electrons 
in a solid, thus suggesting that localization can occur for some 
disordered elastic systems. Hodges also discussed several appli- 
cations of the localization phenomenon in an acoustical context. 
Moreover, in a recent paper3, Hodges and Woodhouse describe an 
experiment carried out to demonstrate localization, and find sat- 
isfactory agreement with the theoretical predictions. The system 
used in the experiment is a stretched string with masses attached 
to it, disorder being introduced in the structure by considering 
irregular spacing of the masses. Recent studies by Valero and 
Bendik~en' .~ demonstrate the existence of localized free modes 
of vibration for shrouded blades of jet engine rotors and suggest 
that localization may have a stabilizing effect on the system. Fi- 
nally, a few research mention the high sensitivity of 
nearly periodic, weakly coupled systems to irregularities 

Recently, a theoretical investigation of the mode localization 
phenomenon was conducted by the first and third authorsE." 
through the study of the free vibration modes of a few simple 
systems. The study determined that there are two categories of 
nearly periodic structural systems susceptible to localization: 

Systems consisting of coupled, similar but slightly disor- 
dered subsystems. Typical examples include chains of cou- 
pled pendula and jet engine rotors, for which the physical 
properties vary slightly from pendulum to pendulum and 
from blade to blade, respectively. It was shown that lo- 
calization occurs when the coupling between subsystems is 
small and that localization becomes more pronounced as the 
coupling decreases. 

Structures with irregularly spaced constraints. Examples 
include a vibrating string with irregularly spaced masses 
attached and a beam or plate constrained at irregular inter- 
vals. 

It is important to point out that when localization occurs, 
small irregularities result in drastic changes in the dynamics of 
the system. For this reason, neglecting these irregularities may 
lead to completely erroneous results. Thus it is particularly im- 
portant to establish criteria capable of predicting the occurence of 
localization. For mistuned bladed disks, such localized vibrations 
may be damaging because the stresses remain localized, leading 
to blade fatigue. On the other hand, for other applications, such 
as large space structures, it may be desirable to use localization 
as a means of confining vibrations to a region close to the source 
of disturbance. Note that this application of localization leads to 
passive control of vibrations by irregularities. 

In this paper, the localization of the free modes of vibration 
of multi-span beams is investigated, both theoretically and ex- 
perimentally. Beams constrained at supposedly regular intervals 
are frequently encountered in structural analysis. Among numer- 
ous applications, aircraft fuselages and wings can be modeled by 
periodic beams. Other examples are building frames and bridges. 
These "periodic" structures are usually investigated by assuming 
ideal regularity , even though small deviations of the span lengths 
from an ideal value may have important effects on the free and 
forced response of the system. 

The free modes of vibration of beams simply supported at, 
regular intervals have been studied extensively in the research 
l i terat~re"l- '~.  Particularly, one of the first and most impor- 
tant contributions was made by Miles in a well known paper1". 
Lin and Yang'qnvestigated the effect of random deviations of 
the span lengths on the free modes of a beam simply supported 
at  slightly irregular intervals. Nevertheless, their work was not 
concerned with the study of localization. 

Miles"' showed that the natural frequencies of periodic multi- 
span beams are clustered in an infinite number of groups, or 
bands, with n frequencies in each band, where n is the number of 

spans. If, in addition to a zero deflection, torsional springs exert 
restoring moments at  the n -  1 intermediate constraint locations, 
then the width of the frequency bands diminishes as the spring 
constant increases. In the limit as the spring constant c goes to 
infinity, the beam becomes clamped at  the constraint locations, 
and the width of the frequency band goes to zero. 
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The inverse of the torsional spring constant may be viewed as 
a coupling parameter between spans. As l / c  - 0, the different 
spans of the beam are "decoupled" because no moment can be 
transmitted from one span to another. For c = 0, the beam 
is simply supported at  the constraint locations, and the spans 
are strongly "coupled". since no restoring moment is exerted. 
Hence, depending on the value of the spring constant, c, the n- 
span beam can be regarded as a strongly or weakly coupled set 
of n, infinite number of degrees of freedom (DOF) oscillators. 
Moreover, the multi-span beam is an ordered system if all the 
spans have the same length. It can be rendered disordered by 
considering slightly irregular constraint locations. 

Hence for large values of the spring constant and irregular 
spacing between supports, a multi-span beam can be regarded 
as a disordered chain of weakly coupled subsystems, where each 
subsystem is a span. From the theory of the mode localization 
phenomenon developed in References 8 and 9, the free modes 
of vibration of such a system are susceptible to becoming lo- 
calized. Also, as mentioned above, the natural frequencies oi 
multi-span beams are in bands of small width if the spring con- 
stant is large. Moreover, disorder in the length of the different 
spans introduces a spread in the individual natural frequencies 
of the spans. A general criterion was proposed in Reference 9, 
stating that localization may occur if the width of the frequency 
band of the ordered system is of the order of, or smaller than 
the spread in individual natural frequencies of the disordered 
component systems. Clearly, these conditions can be met by dis- 
ordered multi-span beams, provided the spring constant c is large 
enough. Hence, by analogy with the systems studied in Refer- 
ence 9, it is expected that the free modes of vibration of nearly 
periodic multi-span beams may become localized. 

In the first part of the paper, the free modes of transverse vi- 
bration of a disordered two-span beam are investigated theoreti- 
cally. It is shown that,  under certain conditions, the modes are lo- 
calized. The degree of localization is dependent upon two param- 
eters: the deviation of the constraint location from the middle 
of the beam, and the value of the stiffness constant of the spring 
which exerts a restoring moment at  the constraint location. The 
iree vibration modes are determined by using a Rayleigh-Ritz 
formulation with the constraints conditions enforced by means 
of Lagrange m~l t ip l i e r s '~ .  The method is described in Section 
1.1. In Section 1.2, classical and modified perturbation meth- 
ods are developed for the analysis of nonlocalized and localized 
modes, respectively. These perturbation methods provide phys- 
ical insight into the mechanisms of the mode localization phe- 
nomenon. In Section 1.3, numerical results are presented and dis- 
cussed. In particular, the theory of the localization phenomenon 
developed in Reference 9 is applied successfully to the two-span 
beam. These results can be readily extended to an n-span beam. 

The second part of the paper presents an experiment which 
has been carried out to verify the existence of localized modes for 
disordered two-span beams. The experimental set-up is described 
and justified in detail in Section 11.1. Section 11.2 presents the 
corresponding experimental results, along with a detailed com- 
parison with theoretical results derived in the first part of the 
paper. Excellent agreement between theory and experiment is 
observed. 

PART I : THEORY 

1.1. Free Vibration of a Disordered TweSpan Beam 

Consider the uniform t,wo-span beam of length 1 shown in 
Fig. 1. E, I, and m are respectively its Young's modulus, area 
moment of inertia, and mass per unit length. The beam is simply 
supported a t  z = 0 and z = 1, and is constrained to have zero 
deflection a t  z = z,. Moreover, a torsional spring of stiffness 
constant c exerts a restoring moment a t  z = 2,. If 21 = 112, the 
beam is said to be tuned, or ordered; otherwise, it is mistuned, 
or disordered. 

The equations of free bending motion are derived from Hamil- 
ton's principle, and a Rayleigh-Ritz procedure with the con- 

Figure 1. Geometry of disordered twespan beam. 

straint conditions enforced by means of Lagrange multipliers is 
chosen'? The transverse deflection is expanded on the free modes 
of a single-span beam of length 1 pinned at both ends. Note that 
these component modes are comparison functions for the two- 
span beam, since the boundary conditions remain unchanged. 
The transverse deflection w(z, t )  of the two-span beam is ex- 
panded as 

NM 

4 2 ,  t )  = C a, ( t )  4, (4 (1) 
,=l 

where the ax's are the generalized coordinates, NM is the num- 
ber of modes used in the Rayleigh-Ritz analysis, and Q,(z) = -- 
\ / 3 s i n ( y )  are the normalized natural modes of the single-span 

beam, whose corresponding natural frequencies are given by 

The strain energy of the two-span beam is 

where ' denotes a derivative with respect to z. Its kinetic energy 
is: 

where'denotes a derivative with respect to time. In addition, the 
beam is constrained at  z = z,, and t,he two constraint equations 
are given by: 

Thus the Lagrangian of the system is 

where 81 and p2 are the two Lagrange multipliers corresponding 
to the constraints (5-6). 

Applying Hamilton's principle, the equations of free motion 
are found to be: 

There are N M  + 3 equations for N M  + 3 unknowns a,, PI ,  P2 and 
w'(z1). Assuming simple harmonic motion of natural frequency, 
n, one has: 

t a, = a, 8"' i = 1 , ..., N M  (11) 

p,k=pk8L'1 k =  1,2 (12) 
For n # w, ,  Eq. (8) may be written as: 



Substituting the above expression of a, into Eqs. (9-10) yields, 
for R f w , :  

The latter equations constitutean eigenvalue problem in R. Non- 
zero solutions are obtained for P I  and P2 if and only if the deter- 
minant of the system (14-15) is equal to  zero, yielding: 

where G,  and fi are dimensionless frequencies defined by 

F = c21/EI is the dimensionless spring constant, and Z1 = z l / l  = 
- 

4 - A1 is the dimensionless location of the intermediate support, 
where r l =  All1 is the dimensionless deviation from the middle 
of the beam. 

Recall that Eq. ( 1 6 )  presupposes fi # G,. It is an eigenvalue 
equation whose solutions are the free vibration_natural frequen- 
cies 2 of the two-span beam. For each value of R solution of Eq. 
( 1 6 ) ,  the corresponding ratio PI/@? is obtained from either Eq. 
( 1 4 )  or Eq. ( 1 5 ) ,  and the generalized coordinates amplitudes a, 
are given by Eq. ( 1 3 ) ,  from which the expression of the spatial 
mode shape is readily obtained: 

where Z = 211. 

TUNED BEAM - 
In this case A1 = 0 ( or Zl = 112). First consider a beam 

simply supported at its middle. 

Then the eigenvalue equation (16) reduces to: 

Nhf 
1 c>=o 

W ,  - 0 
t odd  

Since the summation is only on odd values of i, solving Eq. (19)  
provides only half of the natural frequencies n. It is well known"' 
that these frequencies are the natural frequencies of a hinged- 
clamped beam of length 112. The remaining half of the natural 
frequencies is given by fi = c,, for i even, as can be readily 
deduced from the original eigenvalue problem ( 8 - l o ) ,  the corre- 
sponding mode shape being such that the only nonzero general- 
ized coordinate is a,. Hence the natural frequencies of a tuned 
beam simply supported a t  its middle are 

( nk = cJk+l = [ ( k  + 1)lrl2 k odd (20)  

I - 2 k + 1  . 
R k  Y [--a]- k even 

As mentioned in the introduction, these natural frequencies have 
a pass-band character, and are placed in groups of two along the 
frequency axis. 

.c # 0 

Then l/? is defined, and Eq. (16)  reduces to: 

Each of Eqs. ( 2 2 )  and ( 2 3 )  provides half of the natural fre- 
quencies 2 .  Note that Eqs. (22)  and (19)  are identical, hence 
the n l ' s  for k even given by Eq. (21)  are natural frequencies of 
the tuned beam for any value of the constant F .  As 7 increases, 
the distance between the two natural frequencies of a same group 
diminishes: the first frequency of the group increases, while the 
second remains unchanged. This behavior is represented in Fig. 
2 for the first group of modes. Higher groups reveal a similar pat- 
tern. It is observed that ,  as goes to infinity, the first frequency 
tends to the second one. In the limit I / ?  = 0 ,  corresponding to 
a beam clamped in the middle, the two natural frequencies of 
each group are equal, leading to two-fold multiple eigenvalues. 
Hence, as ? increases, the width of the frequency bands decreases 
and goes to  zero as 7 goes to  infinity. As will be shown lat,er, 
this bandwidth is one of two key paramet,ers in det,ermining the 
occurence of localized modes. 

Figure 2 .  Natural frequencies of the first group of modes versus 
?, for a tuned two-span beam. Theoretical and experimental 
results. 

MISTUNED BEAM 
If, for a given value of ?, a mistuning r l  is introduced, the two 

frequencies of a groupmove apart: the width of the frequency 
band increases with A l .  This behavior is shown in Fig. 3, which 
represents the first and second natural frequencies (first group 
of modes) in terms of T i  for various values of 7. It should be 
noted that, for relatively large values of K l  such as .07, the band 
character of the natural frequencies is lost. 

CONVERGENCE 
The natural frequencies are calculated by solving the non- 

linear algebraic equation (16) ,  which involves summations over 



CLASSICAL PERTURBATION ANALYSIS 
Second Mode 

A F ~ r s l  Mode 

Figure 3. Natural frequencies of the first group of modes versus 
mistuning Al, for various values of F .  

the number of component modes NM. The  convergence of the 
Rayleigh-Ritz procedure with N M  has been checked byconsider- 
ing a mistuned beam clamped a t  51, hence defined by A1 # 0 and 
F --. m. In this case the first two modes consist o f t h e  first modes 
of the two hinged-clamped spans of lengths - A1 and $ + Al. 
Since the beam is mistuned, the first two natural frequencies are 
distinct. Note that  the exact mode shapes ought to  have exactly 
a zero deflection over one of the  spans, since the beam is clamped 
a t  2, and mistuned to avoid repeated eigenvalues. It was found 
that  a large number of component modes must be considered in 
order to achieve good convergence. Typically, the mode shapes 
were almost perfectly flat over one of the spans if NM 2 1000. In 
the subsequent calculations, 1000 component modes were used. 
Convergence was also checked for higher modes: until the  20-th 
mode a t  least, zero deflection in one of the spans was obtained if 
1000 or more component modes were used. 

This rather slow convergence can be explained by noticing 
that  the eigenvalue equation (16) contains summations over i 

of terms such as 1 / ( ~ : , ?  - 2') and z2/(w? - 2') .  Considering the 
expression (2) of G,, the series ( l / i 4 )  and ~ ~ ~ ~ ( l / i ? )  arp in- 
volved in the eigenvalue equation. It is well kwown tha t ,  although 
the  former series converges quickly, the latter is slowly conver- 
gent. thus requiring the use of a large number of terms hTM to  
approach its sum satisfactorily. I t  follows tha t  the Rayleigh-Ritz 
expansion adopted here converges slowly to the exact solution. 
However, since this is a linear calculation, the computer cost re- 
mains reasonably low. Moreover, if the number of component 
modes is large enough (2 1000), very accurate results are ob- 
t,ained, even for higher modes. 

1.2. Perturbation Analyses 

As shown in the previous srction, it is much easier to calcu- 
late the free modes of vibration of a tuned twespan  beam than of 
a mistuned one. For the modes of an ordered beam are obtained 
by solving two simple eigenvalue equations (22-23), whereas the  
modes of a disordered beam are calculated from the more com- 
plicated equation (16). This is characteristic of nearly periodic 
structures with small irregularities: when the structure is dis- 
ordered, its periodicity properties are lost, and investigating its 
modes of vibration requires a computational effort much greater 
than for the associated periodic system. Hence the  idea, for 
small irregularities, of performing a perturbation analysis. Since 
the unperturbed system is the periodic structure whose modes 
are easily obtained, this procedure allows one t o  avoid solving 
the eigenvalue problem for the mistuned system. 

Here. &e two-span beam is mistuned by the dimensionless 
deviation A1 of the support from its middle location. Small val- 
ues of Kl are considered. The perturbation analyses presented 
below are very similar to  the classical and modified perturbation 
methods developed in Reference 9 for a chain of coupled pendula. 

The  unperturbed system consists of the tuned beam. I t  is 
perturbed by moving the  constraint by a distance A1. A per- 
turbation analysis can be  readily defined from Eq. (16) by ex- 
panding the  terms sin(z?rZ,) and cos(in?,) in terms of rl t o  the 
first or second order, hence obtaini2g the  corresponding natural 
frequency perturbations 6 0  and 6 '0 .  This perturbation analysis 
is st.raightforward and will not be   resented in detail. Note tha t  
this approach presupposes that  the term l /c in Eq. (16) is not 
small, but  has a finite or large value. The modes of vibration of 
t h e  mistuned system are perturbations of (hence are very sim- 
ilar to)  the modes of the tuned system, and are certainly not 
localized. Thus  this case is not of great interest t o  the  present 
study. 

MODIFIED PERTURBATION ANALYSIS 

Here small values of 117 are considered. If, when the system 
is mistuned, only Fl is considered as a perturbation, then one can 
expect qualitatively erroneous results: all the small parameters 
(not only nl, but  also I/?) must be treated as perturbations. 
Since this case is very similar to  the one of mistuned, weakly 
coupled pendula encountered in Reference 9, one may anticipate 
drastic changes in the  modes when the system is mistuned. As a 
matter  of fact, it  is shown in the next paragraph that  the modes 
become localized. 

Considering 117 as a perturbation, the unperturbed system 
would be characterized by Kl= 0 and 1/E = 0, defining a beam 
clamped a t  its middle. The perturbations would consist of Kl 
and l l ? ,  leading t o  a mistuned, "almost" clamped beam (since 
1/T is small, of the order of, or smaller than Fl).  The natural fre- 
quencies of the unperturbed system are then repeated, with one 
two-fold multiple eigenvalue in each group. The corresponding 
mode shapes are defined by any linear combination of a left-span 
hinged-clamped mode and of a right-span clamped-hinged mode, 
since the eigenfunctions associated with each double natural fre- 
quency span a space of dimension two. In order to  perform a 
perturbation analysis, one must first determine the  unique set of 
two unperturbed mode shapes from which the modes of the per- 
turbed system are continuously obtained. It can be shown tha t  
this is equivalent t o  solving the eigenvalue problem for the modes 
of interest, hence rendering this perturbation procedure ineffec- 
tive. The conclusion is tha t  one must avoid multiple eigenvalues 
for the unperturbed system. 

This is achieved by introducing some mistuning in the  un- 
perturbed system. The-unperturbed state is then defined by 
I /?  = 0 and Zl = - Al. It consists of a mistuned two-span 
beam clamped a t  the  constraint location. Since the unperturbed 
beam is already mistuned, the only perturbation parameter is 
l/?. This perturbation method is referred t o  a s  Modified Per- 
turbation Method (MPhf),  and it is similar to  the one developed 
in Reference 9 for a disordered chain of weakly coupled pendula. 
Since the unperturbed beam is mistuned, its eigenvalues are sim- 
ple. Also, since it is clamped at  2 = Z1, its natural modes are the 
ones of hinged-clamped beams of respective lengths f - A1 and 

+ a. Note tha t  these unperturbed modes are decoupled, tha t  
[s, they have a zero deflection over one of the two spans, depend- 
ing on the mode number. Also, they are very easily determined 
analytically, without having to  use the  Rayleigh-Ritz procedure. 
When the system is perturbed by I/?, the modes cease to  be 
decoupled in the  left or right spans to  become collective, t h a t  is, 
they have nonzero deflection in both spans. However, since I /?  is 
small, they are perturbations of the decoupled modes, hence are 
characterized by a deflection which is much larger in one span 
than in the other one: the modes are localized. It is remarkable 
t h a t  one is able t o  predict whether the  modes are localized or  
not ,  just by considering perturbations of the eigenvalue equation 

(16). 
Let n,, be a natural frequency of the unperturbed system. 

Recall that ,  although fi,, can be obtained by solving Eq. (16) 
for I /?  = 0, it can be calculated analytically more easily, along 
with the corresponding mode shape. The system is perturbed by 



replacing the clamped condition by a spring of high stiffness 7,  
and the natural frequencies R of the perturbed system are such 
that: 

- 1 
n = sl,, +sE+ O(=) 

c- 
(24) 

where 0 is the Landau notation "of the order of", and 6 2  is a 
first order perturbation in l/?. This first order expansion is sub- 
stituted into Eq. (16), which is expanded to the first order. Since 
- 
R,, is solution of the unperturbed problem (such that I/? = O), 
the zeroth order term cancels out, and t,he first order perturba- 
tion FR can be easily shown to be: 

where 

The corresponding perturbed modeshape is readily calculated by 
substituting the perturbed value S1 into Eqs. (13-15,18). Note 
that a second order perturbation analysis can also be easily de- 
veloped. 

It is worth mentioning that the perturbation analysis de- 
scribed above provides analytical relationships only for the per- 
turbations of the natural frequencies, and not for the mode shape 
perturbations, although such relations could possibly be devel- 
oped. For the system of weakly coupled pendula studied in Ref- 
erence 9, closed form relations for the eigenvector perturbations 
were used to show that the degree of localization depends only 
on the coupling to disorder ratio of the system, and to deter- 
mine quantitatively the degree of localization for a given value 
of this ratio. Comparable information cannot be deduced from 
the perturbation theory presented here. Nevertheless, two im- 
portant characteristics of perturbation methods are retained by 
the present analysis: 

The method is cost effective. 
Localized modes are predicted for small values of I/? if the 

beam is mistuned: perturbation methods provide physical in- 
sight into the localization phenomenon. 

1.3. Results and Discussion 

1.3.1 Results 

The resolution of the eigenvalue equation (16) has been im- 
plemented on a digital con~puter. For given values of it1 and ?, 
this nonlinear equation is solved by a standard bisection tech- 
pique. The bisection process converges rapidly. Typically, 20 
to 35 iterations are necessary to obtain natural frequencies con- 
verged up to the 10-th decimal place. This kind of accuracy is 
required because very small variations in the natural frequencies 
may result in significant variations in the mode shapes, since a 
large number of component modes are considered. The accu- 
racy of the Rayleigh-Ritz procedure and of the bisection process 
was checked against well known results, and in all cases excellent - agreement was observed. Even though the number of component 
modes considered is very large, the CPU time necessary was not 
excessive, partly because the bisection process converges rapidly. 
Unless otherwise stated, the following results were obtained by 
solving directly Eq. (16), and not by a modified perturbation 
analysis. 

Fig. 4 shows the lower two modes of a tuned beam ( z l =  0) 
such that ? = 1000. These modes constitute the first group of 
modes. One observes that the modes are collective, as opposed 
to localized: the magnitude of the deflection is the same in each 

YODE I 

Fkure 4. Lower two mode shapes for a tuned two-span beam 
(A1 = 0) for Z = 1000. 

span. Fig.-5 displays the lower two modes of a mistuned beam 
such that A1 = .01, for the same ? = 1000. One clearly sees that 
the peak deflection is much larger in one span that in the other 
one: the modes are localized. In this case, slight mistuning is 
sufficient to localize strongly the natural modes. The localized 
modes are perturbations of the "decoupled" modes corresponding 
to 112 = 0. Recall that the term "decoupled" refers to a mode 
of zero deflection over one of the two spans. Since the system 
is mistuned, these decoupled modes correspond to simple eigen- 
values. On the other hand, the modes of the tuned system such 
that l / ?  = 0 correspond to twofold multiple eigenvalues, and 
perturbed modes for small I /? do not vary continuously from 
individual decoupled modes, giving rise to collective modes. 

The results shown in Fig. 5 were obtained by both exact 
method and Modified Perturbation Method. The agreement is 
observed to be excellent, confirming the fact that the MPM is 
suitable for the analysis of localized modes. 

If the spring constant ? increases, the mode shapes become 
even more strongly localized. This is observed in Fig. 6, which 
displays the lower two modes for ? = 5000, and for the same mis- 
tuning parameter = .01. In the limit ? -+ co, the modes of the 
mistuned beam tend to become decoupled. On the other hand, 
for larger values of I/?, the modes are only partially localized, 
and to the limit 7 + 0, the modes of the (simply supported) 
mistuned beam are not localized. For a = .O1 and ? = 0, it 
was found that there is only a slight difference between the peak 
deflections in each span. Due to lack of space, these modes are 
not displayed in this paper. In this case, the mode shapes are no 
longer perturbations of decoupled modes, but are perturbations 
of the collective modes of the tuned beam, which are shown in 
Fig. 4. Hence the Classical Perturbation Method (defined for 
large values of 117) would be suit,able for this analysis. 



Figure 5. 
for F l  = 
turbation 

1 .  
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0. 

Lower two mode shapes for a mistuned twespan beam, 
01 and ? = 1000, by exact method and Modified Per- 
Method. 

MODE 1 

Figure 6. Lower two mode shapes for a mistuned twespan beam, 
for A1 = .O1 and ? = 5000. 

In order to investigate systematically the effect of the mis- 
tuning parameter A1 and of the spring constant ?, it is suitable 
to adopt a compact representation of the modes. The degree of 
localization of a mode can be characterized by the ratio A  of the 
peak deflection in one span to the peak deflection in the other 
span, such that the numerator of this ratio corresponds to the 
span with the smaller peak deflection: 

where A ,  and Al are the peak deflections in each span, such that 
A ,  5 A l .  Note that the ratio A takes values ranging between -1 
and +l. The smaller the absolute value of A ,  the more localized 
the corresponding mode. For decoupled modes, A = 0. For a 
tuned beam, A  = il, depending on the mode number. 

Fig. 7 displays values of IAl in the (? ,a) -plane ,  for the first 
group of modes. To fix ideas, localization is said to occur if the 
absolute value of the peak ratio A is less than 10% (or .I) .  One 
notes that for a given ?, A  decreases as x l  increases, hence the 
mode localization becomes more pronounced as the amount of 
mistuning is increased. In the limit i; + CQ, the modes are local- 
ized for an arbitrar* small, but non zero, mistuning. Also, for 
a given mistuning A1, lo&ization becomes more pronounced as 
? increases. The larger Al, the smaller the threshold value of i; 

necessary to give rise to localized modes. However, localization 
does not occur for Z < 110, even for relatively large values of 
mistuning A1 such as .07. In particular, the lower modes of a 
beam simply supported a t  the constraint location do not become 
localized. Even if the value .07 seems to be small, the reader 
should bear in mind that this study is conducted within the con- 
text of small perturbations, and that T l =  .07 corresponds to a 
14% deviation of the length of the individual spans, a fairly large 
value. 

LOCALIZED 

Figure 7. Values of iAi in the (?, l ) -p l ane ,  for the first group of 
modes. 

An approximate boundary of localization, corresponding to 
lA1 = lo%, is represented on Fig. 7 by a dotted line. From nu- 
merical results, one can show that, for various small values of I/? 
and r l  such that the product 7x1 is the same, the peak ratio A  
remains approximately constant. This can be seen in Fig. 7, as 
the localization boundary is similar to an hyperbola of eauation - & 

3 = constantlD. The product ? r l  is in fact a disorder to cou- 
pling ratio a/ C, and the degree of localization seems to depend 
only on the value of this ratio. This result is similar to the one 
obtained in Reference 9 for a chain of coupled pendula. Never- 
theless, in the latter case, this was shown analytically, whereas in 
the present study, one --reduced to investigate numerically the 
dependence of A  upon A1 and 7.  



1.3.2 Discussion 

There is a strong analogy between the two-span beam and 
the system of two coupled pendula studied in Reference 9. The 
two pendulum system consists of two coupled single DOF oscil- 
lators, each of them being characterized by an individual natural 
frequency which is obtained by letting the coupling between the 
pendula go to zero. The amount of coupling is governed by the 
value of the spring constant, k, and mistuning is achieved by vary- 

- ing the length of the pendula, that is. by changing slightly their 
individual natural frequency. Similarly, for the two-span beam, 
the coupling between spans is determined by the inverse I/? of 
the torsional spring constant. If l / Z  = 0 (clamped constraint), 
the spans are "decoupled", the same way the two pendula are 
decoupled for k = 0. The amount of "coupling" in the two-span 
beam increases with l /c,  its maximum value being reached for 
l / Z  + cu, corresponding to a simply supported constraint. Each 
of the individual spans possesses an infinity of natural frequen- 
cies, which are for hinged-clamped boundary conditions. Hence if 
the beam is constrained a t  its middle location, the two spans have 
identical individual natural frequencies: the system is ordered, 
or tuned. On the other hand, if the location of the constraint is 
slightly off the middle of the beam, the two spans have different 
natural frequencies, and the system is disordered, or rnistuned. 
It should also be noted that the two-span beam is a system of 
two coupled, infinite number of DOF oscillators, whereas the 
pendulum system is constituted of single DOF oscillators. How- 
ever, recall that the natural frequencies of a two-span beam are 
distributed by groups of two, and each of these groups can be 
regarded as corresponding to a two pendulum system. 

It has been shown in Reference 9 that the modes of the pen- 
dulum system are localized for small values of mistuning and 
coupling. Similarly_for the two-span beam, localization occurs 
for small values of A1 and l /c .  For the pendulum system, local- 
ized modes are perturbations of decoupled oscillations; for the 
two-span beam, they are perturbation of "decoupled" hinged- 
clamped modes. It has also been shown in Reference 9 that 
localization does not occur for strong coupling between pendula. 
Similarly, the free modes of a twc-span beam are not localized 
for finite or large values of I/?. In particular, localization does 
not occur for ? = 0 ,  even for relatively large values of a such as 
.07. 

Here, it is necessary to pause to remind the reader that the 
concept of localization is defined within the context of small per- 
turbations: under some conditions, small mistuning has a drastic 
effect on the free modes of vibration. In the case ? = 0, one ob- 
serves from Fig, 7 that the peak ratio A of the first group of 
modes is .4 for A1 = .07. This is a significant change in the mode 
shape from the tuned case. However, it cannot be called local- 
ization, because the value of mistuning for which it is obtained is 
not small: for it corresponds to a 14% change of the span length. 
Moreover, it is clearly seen in Fig. 7 that the effect of mistun- 
ing on the peakratio is not drastic for 2 = 0, but rather slowly 
increasing with Al. On the other hand, for larger values of 7, a 
rapid change of A in terms of A1 is observed: localization occurs. 
To conclude, the theory of the mode localization phenomenon 
is for small departure from ideal regularity. For larger values 
of mistuning, significant changes can also be observed. But al- 
though of interest and of potential importance to the designer, 
these cases are not relevant to the study of localization. 

It should be mentioned that the analogy between the two 
pendulum system and the two-span beam can be readily gener- 
alized to an n pendulum system and an n-span beam, for any - n ,  suggesting that localized vibrations also occur for multi-span 
beams. 

In order to understand thoroughly the physical mechanisms 
of localization for multi-span beams, the general criterion formu- 
lated in Reference 9 is now considered. This criterion states that 
a nearly periodic system is susceptible of having localized modes 
if the natural frequencies of the corresponding periodic system 
are distributed in groups, and if the widths of these pass bands 
are small relatively to the values of the frequencies belonging to 
the pass bands. Localization may occur for such systems if there 

are some discrepancies (mistuning) in the individual natural fre- 
quencies of the component subsystems constituting the almost 
periodic system, and if a characteristic spread in these individ- 
ual frequencies is small, and of the order of, or larger than the 
pass band width of the ordered system: 

P B W  5 O(SArF) (27) 

where P B  W stands for the Pass Band Width of the ordered sys- 
tem, and S N F  for the Spread in individual Natural Frequencies. 
Note that for a tuned, or periodic system, S N F  = 0. 

For the pendulum system, it has been shown in Reference 9 
that P B W  is proportional to the amount of coupling between 
pendula, and that S N F  is proportional to a characteristic per- 
turbation of pendulum length. Similar results can be shown for 
the two-span beam. Considering a tuned beam of spring constant 
?, its natural frequencies are placed along the frequency axis by 
groups of two, and thus have a pass band character. Denoting 
the pass band width of the j-th group of modes, which contains 
the (2 j  - 1)-th and 2j-th modes, by P B  W,, one can write: 

where the natural frequency of the 2j-th  ode is given by Eq. 
(21). The value of the natural frequency Rv-,(?) is dependent 
upon the value of 7. As ? increases, fi?,_, (F) becomes closer to 
- 
R,,, that is, P B U j  diminishes. In the limit 117 + 0, PBW, 
goes to zero. Hence small values of the "coupling" lit mean 
small pass band width of the ordered system. 

The other variable that needs to be defined is the Spread in 
Natural Frequencies (SNF).  -4s previously stated, the beam is 
decoupled if I /? = 0, its natural frequencies being the ones of 
the two individual hinged-clamped spans. The spread resulting 
from mistuning can be written as: 

For small mistuning, a first order approximation is obtained: 

Hence, for small rl, SNF,  is proportional to the amount of mis- 
tuning. 

It is convenient to nondimensionalize P B  U', (Z) and S NF, (a) 
by the natural frequency of the second mode of the j-th group. 
Rz, . Eqs. (28-29) become: 

The following discussion investigates the ability of the crite- 
rion (27) to predict localized modes. This paragraph is concerned 
with the first group of modes, corresponding to j = 1. Localiza- 
tion of higher modes is considered later. Fig. 8 displays the ab- 
solute value of the peak ratio, IAI, in the ( P B  W,,SNF ,)-plane, 
for the firstgroup of m e l t  is observed that localization oc- 
curs when S N F ,  and P B W ,  are both small. Moreover, with 
the definition of localization / A  < lo%, the modes are localized 

- - 
in the region approximately defined b y a W ,  < . 4 z F l ,  the 
localization boundary being given by P B  W, u .,42 SNF1 .  Note 
that this boundary is dependent upon the definition chosen for 
localization: stronger or weaker requirements for localization to 
occur would result in a quantitatively different, but qualitatively 
similar boundary. It should also be noted that, from numerical 
results, the degree of localization 1Al seems to be only depen- -- 
dent upon the ratio P B  W,/SNF, .  Since the localization region 



shown in Fig. 8 is consistent with the criterion (27), the latter 
has the ability to predict the occurence of localization for the 
first group of modes. 

NOT LOCAL1 ZED 

-- 
Figure 8. Values of I A  in the ( P B W , ,  SNF,)-plane, for the first 
group of modes. 

Finally, it is of interest to investigate the localization of higher 
groups of modes. Consider the variation of PBW,  and SNF,  
given by Eqs. (31-32) in terms of the group number j .  It is clear - 
that  S.VF, remains constant when j increases. For a given 7 ,  - - 
P B  V',, decreases as j increases, and in the limit j -+ cm, P B  W ,  
goes to zero. For instance, for ? = 0, P B  W, can be written as: 

- 4j2 
PBW,(F=O) = 1 -  

1 
(4j  + 1)2/4 5 for large j (33) 

Thus for any given 7 (even small), and for a given -di, there exists - 
a group number j' such that PBW, is smaller than SNF,,  for 
any j > j'. If the criterion (27) were valid for higher groups of 
modes, t h ~ s  would mean that, for any 7 and Fl, no matter how 
small, there always exists a threshold value j' such that higher 
groups of modes are localized. However, the results obtained do 
not seem to confirm this hypothesis. 

Fig. 9 shows the variation of the peak ratio \ A (  in terms of 
the mode number, for various values of ? and rl. For ? = 1000 
and A1 = .01, localization occurs in the first group of modes. 
Higher modes are still localized, but no more strongly than the 
first two modes. As a matter of fact, the peak ratio remains 
almo&constant when the mode number increases. For ? = 110 
and A1 = ,019, the first group of modes is not localized, and 
the peak ratio decreases only slightly in the higher modes, from 
.33 for the first group to a plateau value of ,263 for the sixth 
group. Finally, for F = 0 and Fl = .03, the peak ratio decreases 
significantly from .64 for the first group to .42 for the fifth group. 
However, the modes do not become localized. Moreover, after 
the tenth mode, 1A1 increases to reach .93 in the eighth group 
of m o k a n d  goes back to .49 for the twentieth mode. In this 
case, P B  W ,  given by Eq. (31) decreases monotonically and one 
can show that localization ought to  occur in the eighth or ninth 
groups of modes. However, it does not. 

A few hypotheses can be formulated from the study of these 
few representative cases: 

(a) If the modes of the first group are not localized, it seems that 
localization will not occur for the modes of higher groups either. 

(b) If the first, two modes are localized, then higher modes are 
also localized, but no more strongly than in the first group. 

This suggests that higher modes do not significantly affect the 
occurence of localization. (b) is a reassuring result, since it stat,es 
that localization does not disappear in higher modes. (a) is, of 
course, disappointing. It seems paradoxical that even though the 
criterion (27) is satisfied for higher modes, localization does not 
occur. However, a tentative explanation is as follows. 

Mode Number 

Figure 9. Variation of lAl in terms of mode number. 

Localization occurs for weakly coupled, weakly disordered 
systems. If ? is small, the system is not weakly coupled in the 
first group of modes, neither is it in the higher modes. Hence, 
from a physical standpoint, if localization does not occur in the 
lower modes, it should not occur either in the higher ones. This 
shows that the criterion (27) cannot be used independently of the 
physical system to which it applies: the most important condi- 
tion for localization to occur is t o  have a weakly coupled system, 
that is to have l / ?  small. If this requirement is met, then the cri- 
terion (27) can be applied effectively to determine the minimum 
value of mistuning necessary to obt,ain localized modes. 

Finally, one ought to mention that, even though the higher 
modes do not become locaked for F = 0, mistuning may have a 
significant effect, since for A1 = .03 the peak ratio of the seventh 
mode is .40. 

PART I1 : EXPERIMENT 

11.1. Experimental Set-up 

An experiment has been carried out to verify the existence 
of localized modes for disordered two-span beams. The vibration 
t,ests were performed on a spring steel beam resting on three sup- 
ports. The beam was pinned at both ends. In addition, a third 
support with variable torsional stiffness was located near the mid- 
dle of the beam, but could be moved to various locations. The 
experimental set-up is shown in Figs. 10.a and 10.b. The geo- 
metric dimensions of the specimen beam were 53 cm (length) and 
.0635x1.015 em2 (cross-section). The variable torsional stiffness 
of the intermediate support was created by a pinned-clamped 
beam, the distance between the pinned point and the clamped 
one being varied to adjust the torsional stiffness. The torsional 
beam was parallel to the specimen beam (see Fig. 10). 

( shaker ( 

Figure 10.a. Experimental set-up: model 



Figure 10.b. Experimental set-up: photograph 

The pos~ibilit~y of dynamic interaction between the two beams 
had to be considered. The frequency range of the first and second 
modes of the specimen beam was 19-40 Hz. Fig. 11 shows the 
measured dynamic torsional stiffness curve of the torsional beam 
near the pinned point, when the specimen beam was removed. It 
was found that the torsional stiffness remained essentially con- 
stant in the frequency range of interest (19-40 Hz). Since the 
fundamental natural frequency of the torsional beam was 2-3 
times higher than the one of the specimen beam, the dynamic 
torsional stiffness did not vary significantly, and thus could be 
considered to be constant. 

Figure 11. Dynamic torsional stiffness versus frequency. 

The major equipment components for the vibration test were 
as follows: 

A sine generator provided a sweeping sinusoidal signal. 
A mini-shaker (B&K 4810) and a power amplifier (B&K 2706) 

were used to  excite the beam. In order to  reduce the effect of - the additional mass of the joint components between the shaker 
and the beam on the vibration characteristics of the specimen 
beam, the driving point was located near the pinned end of the 
torsional beam (see Fig. 10). Thus a pure excitation torque 
was applied to the specimen beam near its intermediate support, 
without inducing any appreciable added mass effect. Because of 
the small mass of the specimen beam, this effect could have been 
potentially very important. 

A force transducer (B&K 8200) and two rotary-variable-differential 
transformers (R30D) were used t o  measure the exciting force and 
transverse beam displacement, respectively. The displacement 

transducers had only a small added mass. 
The charge amphfier was a portable conditioning amplifier 

(B&K 2635) which provided high voltage output sensitivity of 
the force. Digital voltage meters were used to record all signals 
and to analyze natural frequencies and mode shapes. 

In addition to the effect of added mass, there were two other 
important considerations in the design of the experiment. The 
first one was concerned with minimizing the effect of the addi- 
tional constraint due to jointing the R30D transformers with the 
specimen beam. In order to avoid additional stiffness constraint 
when large amplitude vibration occurs, the contact between the 
needle and the beam had to be sufficiently flexible. This require- 
ment was met by using a flexible needle with a pinned end. 

The second consideration concerned the design of the pinned 
end supports of the specimen beam. From a t,ransient decay 
test, the critical damping ratio of the beam was found to  be 
approximately ,001. Thus, large amplitudes occured near the 
resonance frequencies. If the horizontal displacement of the end 
supports were constrained, the measured frequency was found to  
be dependent upon the level of the excitation torque, which is 
characteristic of a nonlinear system. Thus, in the experimental 
set-up, two degrees of freedom, namely rotation and horizontal 
displacement, were allowed at  the pinned ends, in order to insure 
the linearity of the system. It was then found that the natural 
frequencies were independent of the excitation torque level, and 
that even when the response amplitude was very large, the system 
behaved in a linear fashion. 

11.2. Experimental results. Comparison with Theory. 

The displacement mobility concept (response displacement / 
excitation torque) was used to determine the natural frequencies. 
Fig. 12 shows a typical frequency response curve ofdisplacement 
mobility at  the measurement point Z = .24, for A1 = .05 and 
? = 143. The natural frequencies correspond to  the peaks of the 

Frequency [Hz1 

Figure 12. Displacement mobility versus frequency, for = .05 
and 7 = 143, measured at  z = .24. 

Fig. 2 (see Part I) shows the dependence of the lower two 
natural frequencies upon torsional stiffness for a tuned beam 
(A1 = O), for both experimental and theoretical results. The 
agreement between theory and experiment is observed to  be ex- 
cellent. Note that the torsional stiffness was determined from the 
static stiffness measurement. 

Fig. 13 displays the comparison between theoretical and ex- 
perimental natural frequencies versus mistuning Al, for a cou- 
pling 7 = 281.8. Again, the agreement is found to  be excellent. 
Lack of space precludes the authors from presenting results ob- 
tained for other values of the coupling Z. Nevertheless, in all cases 
studied, the maximum discrepancy between theoretical and ex- 
perimental results was always less than 2.5%. 
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Figure 13. Comparison of experimental and theoretical natural 
frequencies of the first group of modes, for 2 = 281.8. 

Very good agreement was also found between theoretical and 
experimental results in terms of mode shapes. This can be ob- 
served on Figs. 14.a and 14.b, which display the peak ratio A 

for the lower two modes in terms of mistuning rl, for values of 
the torsional spring constant 2 = 90.4 and 2 = 281.8, respec- 
tively. Peak ratios were also compared for other values of 2,  but 
these results are not presented here. The maximum difference 
between theoretical and experimental data was always less than 
15%. This error was mainly due to inaccuracies in the measure- 
ment of small response ampljtudes, which were encountered for 
strongly localized modes (A1 large). For at  very small ampli- 
tudes the ratio signal to noise of the transducers R30D becomes 
smaller. 

Finally, Figs. 15 and 16 show the motion in the first mode, 
for a t.orsional spring constant 2 = 281.8. Fig. 15 is for the tuned 
qs t em,  whereas Fig. 16 is for a slightly mistuned beam for which 
41 = 2%. Figures marked (a) are obtained from displacement 
measurement. Figures marked (b) are stroboscopic photographs 
of the motion in the first mode, when the stroboscopic frequency 
coincides with the fundamental frequency of the beam. It is 
observed that for these values of A1 and 2,  the first mode of the 
mistuned beam is strongly localized in the second span, whereas 
the one of the tuned beam is collective, that is the peak deflection 
is the same in both spans. 
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F i g u r e  14.a 

F i g u r e  15.b 
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Figure 15. First mode shape of tuned two-span beam, for a = 0 
and 2 = 281.8. (a): from measurements ; (b): stroboscopic 
photograph. 

F i g u r e  14.b 

Figure 14. Comparison of experimental and theoretical ~ e a k  ra- 
tio A for the first group of modes. (a): F = 90.4 ; (b): 7 = 281.8. 
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F i g u r e  16 . a  

F i g u r e  16.b 

Figure 16. First mode shape of mistuned two-span beam, for - 
A1 = .02 and 7 = 281.8. (a): from measurements ; (b): s t robe 
scopic photograph. 

CONCLUDING REMARKS 
The free modes of vibration of disordered two-span beams 

subject to a torsional spring at  the intermediate constraint loca- 
tion have been investigated, both theoretically and experimen- 
tally. Disorder is achieved by slightly moving the location of the 
constraint from the middle of the beam. The following conclu- 
sions can be drawn: 

For small mistuning and large values of the torsional spring 
constant, the free modes of vibration become localized in one of 
the two spans. 

A Modified Perturbation Method has been developed. It pre- 
dicts localized modes accurately and is cost effective. Moreover, 
it provides physical insight into the localization phenomenon. 

For the first group of modes, localization occurs if the relative 
pass band width of the tuned beam is of the order of, or smaller 
than the relative spread in the frequencies of the individual spans, 
and if these two quantities are both small. 

From preliminary results, it is suspected that if localization 
does not occur in the lower two modes, then it does not occur in 
the higher ones either. On the other hand, if the first two modes 
are localized, then the higher ones are also localized. 

An experiment has been carried out to verify the existence of 
localized modes for disordered two-span beams. Excellent agree- 
ment has been found with theoretical results, thus confirming the 
existence of localized modes. 

- An immediate generalization of the present study is to investi- 
gate the localization of vibrations for n-span beams, where n > 2. 
Future work is also in order concerning localized vibrations of 
two-dimensional structures and the behavior of disordered slruc- 
tures under forced excitation. 
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