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Conventional holonomic or nonholonomic constraints are defined as geometric constraints in this paper. If
the total energy of a dynamic system can be computed from the initial energy plus the time integral of the energy
input rate due to external or internal forces, then the total energy can be artificially treated as a constraint. The
violation of the total energy constraint due to numerical errors during simulation can be used as information to
control these errors. When geometric constraint control is combined with energy constraint control, numerical
simulation of a constrained dynamic system becomes more accurate. An energy constraint control based on the
gradient feedback of the energy constraint violation leads to a new method to control both geometric and energy
constraint violations, so-called constraint violation stabilization using gradient feedback. A new convenient and
effective method to implement energy constraint control in numerical simulation is developed based on the
geometric interpretation of the relation between constraints in the phase space. Several combinations of energy
constraint control with either Baumgarte's constraint violation stabilization method or the new constraint
violation stabilization using gradient feedback are also addressed. Finally, a new method for implementing
constraint controls is developed by using the Euler method for integrating constraint control terms, even when
higher-order integration methods are used for all other integrations.

Introduction

T HE dynamics of multibody systems, as they arise in ro-
botics, biomechanics, space vehicle dynamics, and other

applications, are becoming increasingly important. Tradition-
ally, the task of formulating the equations of motion has been
of dominant concern in the literature.1'3 The Lagrange multi-
plier method4 for solving constrained dynamic systems has
certain advantages over other methods because the selection of
generalized coordinates and the analysis of constraint forces
are relatively straightforward, even though the evaluation of
the constraint forces can involve much computation if the
system is complex. In the analysis of constrained holonomic
systems,4'5 the Lagrange multiplier method yields a system of
second-order ordinary differential equations of motion and
algebraic constraint equations. For nonholonomic systems
with linear constraints in the velocities, the Lagrange multi-
plier method yields second-order ordinary differential equa-
tions of motion and first-order ordinary differential constraint
equations. The Lagrange equations of motion, with the ac-
companying constraint equations for holonomic or nonholo-
nomic systems, cannot, in general, be solved analytically.

Theoretical analyses6'9 for general Lagrange equations with
algebraic constraint equations show that constraint equations
should be differentiated twice, in general, for the system to be
solved numerically without iteration. The differentiation of
constraint equations was suggested10 prior to these analyses
and was shown to result in unstable numerical solutions. The
original constraint equations are rapidly violated, since the
differentiated constraint equations are unstable and numerical
errors during computation continuously disturb the system.11

This problem was seemingly resolved by a modified form of
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second-order differential constraint equations. But this solu-
tion, the constraint violation stabilization method (CVSM),12

did not work well for relatively complicated systems and had
some ambiguity in determining optimal feedback gains. A
later suggestion involved employing modified constraint equa-
tions using the time integral of the constraint violations.13

Also, adaptive control and optimal control have been intro-
duced14 to eliminate the ambiguity in feedback gains. A differ-
ent approach15 to CVSM was also developed by using a penalty
form of the constraint equations.

Conventional holonomic or nonholonomic constraints are
defined as geometric constraints in this paper. The aforemen-
tioned works concentrate on geometric constraints. However,
if the total energy of a dynamic system can be computed from
the initial energy plus the time integral of the energy input rate
due to external or internal forces, then the total energy can be
artificially treated as a constraint. The violation of the total
energy constraint due to numerical errors can be used as infor-
mation to control these errors. It is a necessary condition for
accurate simulation that both geometric and energy con-
straints be satisfied. When geometric constraint control is
combined with energy constraint control, numerical simula-
tion of a constrained dynamic system becomes more accurate.

First, constrained dynamic systems are introduced, using
Lagrange multipliers, and then followed by the introduction
of Baumgarte's CVSM. Conventional methods for imple-
menting energy constraint control are then reviewed. An
energy constraint control based on the gradient feedback of
the energy constraint violation leads to a new method to
control both geometric and energy constraint violations, so-
called constraint violation stabilization using gradient feed-
back (CVSGF). A new convenient and effective method to
implement energy constraint control in numerical simulation is
developed based on the geometric interpretation of the relation
between constraints in the phase space. Several combinations
of energy constraint control with either Baumgarte's CVSM or
the new CVSGF are also addressed. Finally, a new method for
implementing constraint controls is developed by using the
Euler method for integrating constraint control terms, even
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when higher-order integration methods are used for all other
integrations.

Constrained Dynamic Systems
Constraints are either holonomic or nonholonomic. When

the Lagrange multiplier method is applied to a dynamic system
with holonomic constraints,4'5 the equations of motion are
described by

(1)

(2)

where the holonomic constraint functions $: Rn+l-~Rm
9 gen-

eralized coordinates q £Rn, m<n, and time t >0. In Eq. (1),
X € Rm is a Lagrange multiplier. The inertia matrix M 6 Rnxn

is positive definite, and G £Rn represents the remaining dy-
namic terms in the equation. Then the dynamic system with
holonomic constraints is described by a set of n differential
equations (1) and m algebraic equations (2).

If the Lagrange multiplier X can be computed or expressed
in terms ofq,q, and t, then the system of algebraic differential
equations can be solved numerically. A fundamental method
for computing X without using implicit algorithms is to differ-
entiate the constraint equation (2) twice with respect to time.
This results in the equation

(3a)

Then Eq. (7) changes to

or

« = 0 (3b)

Since the inverse of the positive definite mass matrix M exists,
we can solve for q in Eq. (1) to obtain

q - -M~l$q\ + M~1G =A(q,q,\,t) (4)

Equation (3b) can be rewritten as

where 7 = - ($qq}qq - 2$qt q-$tt> Replacement of q in Eq. (5)
by Eq. (4) leads to

— A' A/f ~~ Idfr-' \ = — ̂  A^~ Lr -\- *V (6)~x qj.r* Q (J I \v/

The mxm matrix ^M"1^ is nonsingular, since the n xn
matrix M is positive definite and the rank of $q is m where
m<n. Thus, $qM~l$q can be inverted to obtain

,0 (7)

(8)

Since the n second-order differential equations in q do not
involve the m Lagrange multipliers X in Eq. (8), the equations
of motion can be solved numerically. In this paper, Eq. (8) is
the differential equation that forms the basis for the numerical
simulations.

Baumgarte's Constraint Violation Stabilization Method
A control U($9$,t) can be added to the right side of Eq. (3a)

in order to force reduction of the geometric constraint viola-
tions. Thus, we let

Finally, Eq. (7) is substituted back into Eq. (4) to yield

(10)

and Eq. (8) to

q =A [q,q^[q,q,U(q,q,t\t},t} (11)

Equation (11) implies that the constrained dynamic system
defined by Eqs. (1) and (2) is replaced by the system de-
scribed by Eqs. (1) and (9) in order to effect geometric con-
straint control.

Since $ is a function of q and t, i.e., $(tf,0> the modified
constraint equation given by Eq. (9) has the form

Among many possible choices, Baumgarte suggested the con-
trol

Then Eq. (9) becomes

= 0 (13)

In this case, the dynamic behavior of the new system is defined
by Eqs. (1) and (13).

Energy Constraint Control Methods
There are at least two methods available in the literature for

implementing an energy constraint using the Lagrange equa-
tions of motion. The first method is described by Baumgarte.12

The idea is to use the dynamic constraint equations modified
from the original energy constraint equations in a manner
similar to the nonholonomic case in Baumgarte's CVSM. If ̂
is the energy constraint function, we let

(14)

or

where 77 is a feedback gain constant. In general,

V-(T+V)Q- Edr

where E is the energy input rate to the system. For a conserva-
tive system

where E is the total energy, expressed in terms of q and q. The
Lagrange equation of motion for holonomic systems11 can be
described by

If an energy constraint is added to the equation, then

(15)

where X and ^ are Lagrange multipliers. Since the inertia ma-
trix M is positive definite, Eq. (2) can be written as

(9) (16)
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Substituting Eq. (16) into Eq. (15), we obtain

= 0

or

We note that
zero. Then

-'(G -*JX) + *„<? + if* (17)

is invertible if ̂  is not identically

(18)

Substituting Eq. (18) back into Eq. (16) results in the equation
of motion without /^, which is

09)

Here 77 should be chosen so that the energy constraint is stabi-
lized.

The second method for implementing energy constraint con-
trol is based on the steepest descent algorithm.16 The correc-
tion forces are applied to the equations of motion so that the
integration of q and q moves in the direction that most rapidly
reduces the violation of the energy constraint.17 To ensure that
the minimum17'18 of ̂  is zero, the negative gradient of ̂ 2 is fed
back into the equation of motion (8). That is,

dt
A, ^= A(q,v,t)-pv dv (20)

Here pq and pv are positive gain constants to be determined
and, ideally, ¥(0,v) = 0. Since d*2/dq = 2V(d*/dq) and d*2/
dv = 2ty(dV/dv)9 these control terms disappear when ¥ = 0. In
the analytic solution, ^ = 0 is satisfied. Thus, implementation
of the energy constraint control in Eq. (20) does not change the
exact solution of the original dynamic system equations. Both
q and v can be considered to represent the total time derivative
of q. However, d/dt is used to express the total time derivative
when constraint control terms are added. The method in
Eq. (20) of energy constraint control has been successfully
applied in the computation of space and re-entry trajectories.19

Note that Eq. (20) is different from Eq. (19), and that Eq. (20)
is simpler to implement.

Let us consider the relation between the foregoing two dif-
ferent energy constraint controls. The conventional Baum-
garte's form is, from Eq. (14),

(21)

From Eq. (20) the energy constraint control in the form of
gradient feedback is

dq
dt

dv
dt

dq

(22)

Taking the time derivative of ^, we obtain

dt dq dt dv dt (23)

Substitution of the expression in Eq. (22) for dq/dt into
Eq. (23) results in

, tx ^ T ^—— = Wchain -2^ pJ — — - ) ( —— ) +Pv( —— ) ( — — (24)dt I *\dq/\dq/ \dv/\dv/

where

Wchain = —— V + TvA (25)

The constraint control terms in Eq. (22) make d^/dt in
Eq. (23) different from Wchain in Eq. (25), which is obtained
from the chain rule of differential calculus. For small enough
integration step size h, Wchain can be assumed to be very small
compared with the other two terms on the right side of Eq. (24)
by choosing gains pq and pv of order h ~1. A more detailed
discussion of this assumption is given in the next section. Then
Eq. (24) becomes

dt

where

(26)

(27)

Note that Eqs. (21) and (26) have the same form. But Eq. (22),
which leads to Eq. (26), is much easier to implement than Eq.
(21), which results in Eq. (19).

Constraint Violation Stabilization
Using Gradient Feedback

The gradient concept behind the steepest descent algorithm
can also be applied to conventional geometric (holonomic)
constraints. The correction is applied to the equations of mo-
tion so that the integration of q and q moves in the direction
that results in the most rapid reduction of the geometric con-
straint violation.18 Since a holonomic constraint is not a func-
tion of <?, the gradient feedback control is applied only to the
dq/dt equation in the formulation of Eq. (8). That is,

dq
dt

dv
dt

fs/ dq

(28)

where each £ represents a gain to be determined. Again note
that q is replaced by the symbol v . Both v and q represent the
total time derivative of q, whereas dq/dt represents a total
time derivative to be integrated numerically. The use of 3>2

rather than <$/ in the gradient-based control results in $/ = 0
as the minimum error. In this case, the feedback control be-
comes smaller as $/ approaches zero, which is also desirable.
This also means that the control term disappears when $ = 0,
since d$2/dq = 2$(d$/dq). Note that $ = 0 is satisfied continu-
ously in the exact solution, which implies that the nature of the
exact solution of the original dynamic system is not altered by
the introduction of the constraint control in CVSGF.

It is possible to show how Eq. (28), which is the method of
CVSFG, is related to Baumgarte's conventional CVSM, which
is based on

$ + a* + 0$ - 0 (29)

First we take the time derivative of <$>/(#, 0 to obtain

dt dq dt dt (30)V ;
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Substitution of the expression in Eq. (28) for dq/dt into Eq.
(30) results in

where d$//d<? £Rlxn and

dq dt

(31)

(32)

The control term in the first equation in Eq. (28) makes d$//d£
in Eq. (30) different from ($/)Chain in Eq. (32), which results
from the chain rule of differential calculus. Assume that we
use a numerical integration algorithm of order TV. Then $k will
be of order hN, where h is the integration step size. The errors
in v, dfy/dq, and dfy/dt are also of order hN. If v *, (dfy/dq)*,
and (d$t/dt)* are the exact values of v, d<i>//d#, and d$//df,
respectively, and their fractional numerical errors are repre-
sented by e, d g , and 6,, then it follows that

(33)

(34)

Then

—

(35)

— - (1+6,) (36)

Note that (a$//d^)*v* + (3*//aO*==^* = 0» even though v*,
(d$i/dq)*9 and (d$//aO* are each of order h°. Then Eq. (36)
becomes

(37)

which is of order hN. Next, we consider the last term (d$//
dq)JL^j^j(d^i/dq)T of Eq. (31). The gain constant £ can be
chosen to be of order l/h since the numerical stability depends
on the value of \$h, and the eigenvalue X$ is proportional to
Jj for this first-order system. We recall that (d$//d#) is of order
/z° and <£/ is of order hN. Therefore, the second term on the
right side of Eq. (31) is of order hN~l. In this case, (4>/)chain
in Eq. (31) can be neglected for small enough h, and Eq. (31)
becomes

(38)

Fig. 1 Two-dimensional geometric interpretation of CVSMs com-
bined with energy constraint control in phase space.

Equation (38) then becomes

where

and f represents an m x m diagonal matrix.

(39)

(40)

New Method of Implementing
Energy Constraint Control

In the q, q phase space, the surfaces of constant energy and
for conventional holonomic or nonholonomic constraints are
not, in general, perpendicular to each other. The surfaces are
given by

1,q) = 0 : energy constraint

\i(q,q,t) = 0, i = 1 , 2 , . . . ,m : geometric constraints

In general,

ax/
(41)

where <?, <7 €/?", ^ :R2n-~R, and x/ :R2n+l-+R. One case
where the energy and geometric constraint surfaces are orthog-
onal is illustrated in the following example. Let

*(</) = 0

and

Then

dq

0

Thus,

= 0 (42)

The solution to the equations of motion of a given system
can be interpreted as a point moving in the state-variable phase
space. The necessary condition for the exact simulation of the
given equations of motion is that the point moves along the
common intersection of all the constraint surfaces in the phase
space. Numerical errors in the simulation represent distur-
bances that continuously perturb the point from this common
intersection. The constraint violation control is designed to
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minimize the effect of these disturbances and keep the point
close to the constraint-surface intersection.

If violations of both geometric and energy constraints are
relatively small, then the point is always close to the constraint
surface intersection. If a two-dimensional view is taken in the
neighborhood of the intersection, then the lines indicating the
constraints can be viewed as nearly linear, as in Fig. 1. The
intersection in the phase space is the origin O in this two-
dimensional view, and the phase point is denoted as P in the
figure. The point P is continually disturbed by the numerical
integration errors during the simulation. The disturbance can
be considered to be composed of two orthogonal components
(dCl,dC2) in the plane. When CVSM is applied to control the
geometric constraint violation, CVSM forces the point P to
move toward the x/ =0 axis. Thus, the control of CVSM gen-
erally has two components (/Cl,/C2), where/Cl is always di-
rected toward the x/ =0 axis. Note that the directions of dCl,
dC2, and/C2 may be reversed in the figure, and that the relative
angle 0 between two axes can be a function of the state vari-
ables and time, i.e., 6 = 6(q,q,t).

If the constraint surfaces of the geometric and energy con-
straints are not orthogonal to each other in the phase space,
which, in general, will be the case, then the relative position of
P with respect to the energy constraint surface is changed by
applying geometric constraint control. There exists no guaran-
tee that P moves toward the intersection O of the two con-
straint surfaces. In many cases, P moves farther from the
origin O when applying geometric constraint control alone.
This phenomenon can be noted later in the test simulations.
When strong geometric constraint control is applied to ensure
very small geometric constraint errors, the resulting drift in the
total energy can in many cases become very large. This, in
turn, causes large errors in the state variables as functions of
time. These arguments explain why a combination of geomet-
ric and energy constraint controls is essential for accurate sim-
ulation, i.e., to keep the point P close to the exact solution
point O in Fig. 1.

The conventional methods described in the previous section
for implementing energy constraint control require the point
to move toward the ̂  = 0 axis. The control can be considered
to be composed of two orthogonal components ( f e i , f e 2 ) , one
perpendicular and one parallel to the x/ = 0 axis. CVSM forces
the point P to move toward the x/ = 0 axis, while the energy
control makes the point P move toward the ̂  = 0 axis. Note
again that the relative angle 6 is a function of state variables
and time, which makes the direction of the sum of (/e,,/e2)
difficult to predict. If CVSMs are combined with conventional
energy methods, the two different controls are geometrically
coupled. That is, the control to make P move toward the origin
O may not be simple.

A solution to this difficulty for the case of holonomic sys-
tems is to make the control of the energy constraint parallel to
the geometric constriant. That is, in effect we have

0

a*
dq

by setting pq =0. With Pq =0, Eq. (20) becomes

dq

(43)

dt

dv
dt

= v

dv (44)

Note that the geometric interpretation is not changed by re-
placing ^ with V2. Replacement of ̂  by ̂ 2 makes the effect

of the feedback control on the point P proportionally less as
the point moves closer to the origin. That is,

a*2

dv

and the energy correction term in Eq. (44) varies linearly with
^. By using Eq. (44) rather than Eq. (20), the control on the
energy constraint becomes parallel to the geometric constraint,
i.e.,/ei = 0 and pq =0. Then

(45)

and, from Eqs. (43) and (45),

= 0, (46)

Application of the control on the geometric constraint forces
the point to move toward the geometric constraint. However,
it also changes the relative position of the point with respect to
the energy constraint, since the two different surfaces are not
perpendicular to each other. Because the control on the energy
constraint is parallel to the geometric constraints, the energy
control does not change the relative position of the point P
with respect to the x/ = 0 axis. Thus, the/^ component has
been removed by setting pq=0. Appropriate choice of the
gains in Eq. (44) will force the point P to move toward the
origin O despite the presence of truncation errors.

The difficulty associated with the proper choice of these
gains is dependent on how the constraints are coupled in phase
space. The variable Yci(q,q,t), defined as

(47)

can be used as a measure of the degree of coupling when an
energy constraint control and geometric constraint controls
are combined. The large the magnitude of Yci, the more sub-
stantial the coupling.

The aforementioned energy constraint controls can be uti-
lized for more accurate simulation in the case where the exact
total energy of a dynamic system at each time frame during
integration is known, even though the given system is noncon-
servative. However, it is not easy to derive and compute the
total energy in complex dynamic systems.

Combination of Geometric Constraint Control
and Energy Constraint Control

Baumgarte's CVSM in Eq. (11) with U = - a$ - /33> leads to
a set of equations of the form

dt

dv
—at (48)
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On the other hand, when CVSGF in Eq. (28) is used for geo-
metric constraint control, the equations are

dt

dv
dt

(49)

where £ is a gain to be determined. Note again that q is re-
placed by v and that AB = A if a. = j8 = 0. Both v and q represent
the total time derivative of q. In this paper, d/dt is used to
express the time derivative to be integrated numerically in the
state equations. Equation (48) is quite different in form from
Eq. (49), even though both equations share the same philoso-
phy, i.e., that feedback control is applied to stabilize geometric
constraint violations. These equations can be combined with
the energy constraint controls. If Eq. (20) is combined with
Eq. (49), then

dq
dt aoq

A< ^— = A(q,v,t)-pv ——
dt dv

For the case where pq =0 as in Eq. (44),

ft dq

(50)

A/ ^— =A(q,v,t)-pv—-
dt dv

Combination of Eqs. (20) and (48) results in

dq a*2

~

(51)

dv
-

a*2
—— (52)

Finally, if Eq. (44) is combined with Eq. (48), then

dv
— = AB(q,v,t,a,P) - pv ——dt ov

(53)

The geometric interpretation of these four equations is similar
to the interpretation in the previous section. Note that the
vector associated with d$j/dq in Eq. (51) is orthogonal to the
$/ = 0 surface since it has the direction of the gradient. On the
other hand, the vector associated with d^2/dv in Eq. (51) is
orthogonal to each previous vector in the sense of satisfying
Eq. (46) with $/ = x / - Thus, the choice of Eq. (51) for con-
straint feedback control decouples the geometric and energy
constraint controls. This means that the gains £ and pv in
Eq. (51) can be chosen separately based on Eqs. (27) and (40)
with pq =0. This represents a distinct advantage of CVSGF
over Baumgarte's CVSM when combined with energy con-
straint control, since now the coupling as measured by Yci in
Eq. (47) does not exist.

Constraint Control Using Euler Integration
When a multipass integration algorithm such as Runge-

Kutta fourth-order (RK-4) is used in the simulation of a dy-
namic system with Baumgarte's modified constraint equa-
tions, it is not clear whether the constraint controls should be
applied in every pass or not. In most test simulations, using the
controls in every pass resulted in divergence of the constraint

violations. In a multipass integration algorithm, it is therefore
vital to determine which pass or passes to use for the ap-
plication of the constraint control. This problem is automat-
ically solved when we utilize the single-pass Euler method
for integrating the constraint control terms, as explained in
this section.

Consider a differential equation x=f(x,t) and assume that
a constraint control u(x,t) is incorporated into the state equa-
tion. Then the modified equation can be written as

x=f[x9u(x,t),t] (54)

The right side of the equation can be split into two terms in the
following way:

x=?[x9u(x,t),t]=f(x9t) + U(u,x,t) (55)

Here U(u,x,t) is the term containing the constraint control.
For the conventional integration algorithms such as Euler,
Adams-Bashforth second-order (AB-2), and third-order (AB-
3), the numerical integration of Eq. (55) uses the following
difference equations:

xk+l=xk hfk (56)

where

fk =
(37* -7*- 1)

12

for Euler

for AB-2

for AB-3

In integrating x numerically to obtain x, an alternative method
is to use one integration method to integrate the term/(;t,0
and a second method, the Euler method, to integrate the con-
straint control termi/(w,x,0- The reasoning behind this alter-
native method_is that accurate integration of the constraint
control term U(u,x,t) is relatively unimportant, since this
term is only applying a correction to drive the constraint viola-
tion toward zero. For this purpose, simple Euler integration,
which has a favorable stability region in the \h plane, is just as
effective as a higher-order integration algorithm. When the
forward Euler method for constraint control integration is
combined with Euler, AB-2, or AB-3 integration, the differ-
ence equations become

xk+l=xk + hfk

xk+l =xk+l + hU[u(xk,tk)9xk,tk]

(57)

(58)

where

/*=/*

12

for Euler

for AB-2

for AB-3

Note that xk+\ in Eq. (57) represents the integrated result
before the constraint control is applied, whereas xk+i in
Eq. (58) is the integrated result after application of the con-
straint control.

Alternatively, backward Euler integration can be used in
place of the forward Euler integration represented by Eq. (58).
In this case, Eq. (58) is replaced by

Xk+i = Xk+\ (59)
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(X,Y)

Fig. 2 Unit mass rotating on a unit circle.

Here the constraint control uses the constraint violation based
on xk+i rather than xk.

Test Simulations
It will be shown experimentally why control of geometric

constraints only cannot yield accurate values of the state vari-
ables in the numerical simulation of constrained dynamic sys-
tems, even if the control may achieve successful suppression of
the geometric constraint violations. The energy constraint con-
trol will turn out to be necessary for accurate simulation even
when independent coordinates are chosen in the numerical
simulation. The new CVSGF will be also compared with con-
ventional methods and examined with the following example.
Example 1: A unit mass moves along a unit circle in the XY
plane (see Fig. 2). A gravity force Mg (M = 1) is applied in the
negative Y direction. This is just a simple pendulum problem,
with the position of the unit pendulum mass with respect to the
suspension point represented by the dependent rectangular co-
ordinates X and 7, rather than the usual independent polar
coordinate 6. The pendulum length equals unity in the exam-
ple. The equations of motion without constraint control are

__ \r -\/

dtX~VX

dt

_ y = _ x
dt

V2
x+V2

Y-gY
X2+Y2

X2+Y2

(60a)

(60b)

(60c)

(60d)

The gravity g is fixed at 1 in the test simulations. In terms of
rectangular coordinates X and Y, the holonomic constraint
equation is

(61)

The energy constraint is

*=T+V-(T0+Vo) =

The initial conditions are

X(Q)=\, 7(0) = 0,

T2) + gY - (r0+ = o
(62)

X(0) = 0, 7(0) = 2 (63)

With the initial conditions, the pendulum starts with sufficient
upward velocity to cause it to rotate continuously but with
periodically varying angular velocity.

Adams-Bashforth third (AB-3) integration method is used
with the integration step size h — 0.01 s in the test simulations.
The integration step size is small enough to choose the gain
constants in the new CVSGF based on the relations in Eqs. (27)
and (40). The startup problem of AB-3 is resolved by using
Runge-Kutta fourth-order (RK-4) integration to compute nec-
essary initial startup conditions. With this simple example, six
different cases are compared in geometric constraint violation
$, energy constraint violation ̂ , and time history of the errors
in the state variable X. The case where no constraint controls
are applied is shown in Figs. 3-5, as well as the case where
Baumgarte's geometric constraint control is applied. In Baum-
garte's CVSM, critical damping is used for the gains a. and j8,
i.e., |8 = o:2/4, and 0•= 40 is chosen to yield \\\h= 0.0632 for the
eigenvalue X of the modified constraint equation (29) and inte-
gration step size h =0.01. If gain constants larger than /3 = 40
are employed, smaller constraint violations can be obtained.
However, state-variable errors become much larger than those
in Fig. 5. The case where Baumgarte's geometric constraint
control is combined with the energy constraint control, i.e.,
Eq. (53), is also compared in the figures along with the new
CVSGF in the form of Eq. (51). Note that the Euler constraint
control in Eqs. (57) and (58) is combined with Eq. (51). In
these cases, the gain parameters p and f are determined in the
following way: Substituting the expressions for $ and Sfr in
Eqs. (61) and (62) into Eqs. (27) and (40), we obtain the follow-
ing formulas for the eigenvalues — ag and — ae in the first-or-
der equation obeyed approximately by the geometric and en-
ergy constraints:

h 7 2 ) ~ 2 f (64)

(65)ae= 2p(X2+ T2) - 4p(E0-gY)

Since $«0 and ^«0 in accurate simulations, such as those
represented in Figs. 3-5, we have assumed in writing Eqs. (64)
and (65) that

X2 + 72 -

[CVSGF; C=20,p=20/(4-2Y)]

(66)

<D [Baumgarte's CVSM, (3=40
O [Baumgarte's CVSM + energy control; (3=40, p=2Q

O/10 [no constraint control]

Fig. 3 Example 1 [AB-3, h =0.01]: geometric constraint violations.

\\f [Baumgarte's CVSM + energy control; (3=40, p=2Q

________ y [CVSGF; C=20, p=20/(4-2Y)]

o
-2 .0E-6

- 6 . 0 E - 6 -

- l . O E - 5

- 1 . 4 E - 5 -

- 1 . 8 E - 5

V V V V

\|//40 [no constraint control] ''•... ,,.,.,..

\j//80 [Baumgarte's CVSM, (3=40]

o 10 12 14 16 18 20
Time (sec)

Fig. 4 Example 1 [AB-3, h = 0.01]: energy constraint violations.
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4.0E-4

2.0E-4

-2 .0E-4

-4 .0E-4 -

X-X* [no constraint control]
X-X* [Baumgarte's CVSM + energy control; (3=40, p=2Q

X-X* [CVSGF; £=20, p=20/(4-2_Y)]

(X-X*X10 [Baumgarte's CVSM, fr=40]
0 2 4 6 10 12 14 16 18 20

Time (sec)

that geometric constraint control without energy constraint
control worsens the time domain errors in state variables. The
new constraint violation stabilization using gradient feedback
is very effective and easy to implement in controlling errors of
either geometric constraints or an energy constraint. This
method can be reinforced even by an Euler constraint control.
The relation between constraint controls and violations is also
geometrically understood in the phase space, which leads to
the most effective combination of both geometric and energy
constraint controls.

Fig. 5 Example 1 [AB-3, h =0.01]: errors in the state variable X.

and

(67)

Here ag and ae are the characteristic roots of the first-order
differential equations (26) and (39) that describe the approxi-
mate dynamic behavior of the constraints $ and ^. Also,
ag=ae=4Q is chosen in the figures and corresponds to
\h =0.0632, as in Baumgarte's geometric constraint control.

If an independent coordinate 6 is chosen as a state variable,
where 6 is a counterclockwise angular displacement of the unit
mass from the positive X axis, then the equation of motion is
simply

0 + cos 0 = 0 (68)

and the exact solution is given in Ref. 5.
The foregoing example is relatively simple, but complex

enough to demonstrate the nature of numerical difficulties in
simulating general dynamic systems. Since the exact solution is
available, the simulation accuracies of the various constraint
control methods can be vividly compared. More complex ex-
amples are simulated in Ref. 19.

Figure 3 shows that the geometric constraint controls, in
either Baumgarte's CVSM or the new CVSGF, make the geo-
metric constraint violations stable. Note that the case of no
constraint control is divided by 10 for comparison in the fig-
ure. That is, the actual constraint violation is 10 times larger
than the one in the figure. The logarithmic scale is not used
since the tendency of constraint violations in time is considered
to be more crucial than the amount of violations in under-
standing the nature of violations in most cases. Figure 4 com-
pares energy constraint violations ^. Note that some time
histories are divided by corresponding numbers for compari-
son in the figure. It shows that Baumgarte's geometric con-
straint control yields the largest energy constraint violation
without energy constraint control. Finally, in Fig. 5 the time
domain errors in X are compared. The reference solution for
X* is obtained by using RK-4 and h =0.00001 to integrate
Eq. (68). Figure 5 shows that Baumgarte's CVSM with energy
constraint control cannot be directly compared with the new
CVSGF since it is not clear how to choose optimal gain con-
stants in each method. However, with the new CVSGF, it is
easier to understand the nature of the constraint controls, as in
the previous geometric analysis in the phase space.

Conclusion
In numerical simulation of constrained dynamic systems,

only geometric constraint violation has been considered to
examine the accuracy of simulation, which led to several geo-
metric constraint control methods. However, this paper shows
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