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Abstract

A method for adaptive refinement ofa Cartesian mesh and
corresponding time-step adaptation, for the solution of the
unsteady Euler equations, is presented. In this work, a lin-
ear reconstruction of distributions inside cells, and Roe’s
approximate Riemann solver for interface fluxes, are used.
The wave strengths and wave speeds needed for the flux
calculation are reused in various ways. In particular, in
order to prevent moving discontinuities from running out
of fine cells during one global time-step, wave speeds and
wave directions are used to predict the region traversed by
the waves; these are then flagged for refinement. More-
over, the curvature of one-dimensional wave-strength dis-
tributions is introduced as the key quantity in refinement
and recoarsening criteria. The numerical results presented
show that this method can obtain the same accuracy on
the adaptive grid as on a uniform grid with cells as fine
as the finest cells of the adaptive grid, at large savings of
computing time.

1 Introduction

When solving aerodynamic problems with computational
methods we run into the problem of grid generation. Two
major questions are:
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1. How to create any grid in the presence of complex
body shapes;

2. How to get sufficient resolution in places where the
action is.

The adaptive Cartesian approach of De Zeeuw and Po:s-
ell [1] answers these questions by allowing irregular cells,
cut off by the body from Cartesian cells, and by embed-
ding refined cells wherever needed to resclve geometric
and/or flow details. The code developed in [1] is for two-
dimensional steady flow.

The present work extends the approach of De Zeeuw
and Powell to unsteady flow. A code for unsteady flow
has been developed that responds to adaptive spatial re-
finement by time-step adaptation, i.e., by using many
small time steps in refined regions in order to match a
single large time step used in coarse cells. In this way,
explicit time-marching can be used throughout the com-
putational domain and temporal accuracy is preserved.
unlike in implicit methods, where only stability is main-
tained. The present code achieves second-order accuracy
in time, which is a non-trivial extension.

2 Time Discretization

It is generally agreed upon that second-order accuracy in
space and time is a minimum requirement for an Eulc:
(or Navier-Stokes) code to be useful in efficiently solv-
ing problems of transient flow. Some codes for transient
(PPM) and for steady flows (e.g., CFL3D [2]) use spatial



differencing techniques that would lead to third-order spa-
tial accuracy if there were only one space dimension. Full
third-order accuracy in multi-dimensionai space is rarely
achieved (see, however, Barth [3]), and #ime-marching has
never gone beyond second-order accuracy.

In the present work we have chosen ior explicit multi-
stage marching in time. This technique is routineiy used
for steady-state calculations and therefore has hardiv beep
analyzed regarding temporal accuracy. - he elore in-
clude a discussion on the use of the T~
in searching for time-marching schamies in
sense optimal. This technique is applied
three-stage convection schemes, of at most thi
curacy. Furthermore, we investigated caricis A:ff
formulas with regard to their accuracy near an interface
between regions of coarse and fine cells '4].

2.1 A Design Criterion for Time-Accurate
Multi-Stage schemes

When selecting a multi-stage scheme for time marching it
is best to start from a family of schemes with tiie same
order of accuracy, and then select the mocst desirable one
according to some design criterion. For instance. if second-
order time accuracy is to be achieved, at least two stages
are needed, and preferably three, for some freedom of
choice. The design criterion must take into account u-hat
class of problems the scheme will be applied to, in par-
ticular, whether the solutions sought will be smooth or
discontinuous.

There is a very useful tool based on the Fourier trans-
form, which
the initial-value distribution. This method is described
by Wesseling [3]; it measures the total Lz-error a linear
convection scheme makes in convecting a spatial distribu-
tion with a specific frequency content. Through Parseval’s
theorem, the numerical error integrated over the space do-
main is transformed to an integral over the frequency do-
main. In many cases this integral can be obtained analyt-
ically, allowing analytical minimization. When optimizing
ascheme for application to problems of discontinuous flow,
the initial-value distribution for which the integral error
is minimized, is chosen to be a step function. This means
that the errors in frequency space are weighted with the
inverse of the frequency. A scheme thus optinuzed will
produce minimal spurious oscillations near a discontinu-
ity.

According to Parseval's equality, the truncation error
u"t(z) —ultl, satisfies the following equation:
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actually takes intc account the spe-iraom of

here 3 denotes frequency, » the Courant number, arid 4
the amplification factor of the scheme. Comparison ¢f
the scheme's amplification factor with the exact amplifi-
cation factor, in order to get an idea about the accuracy
of the scheme, is commonplace; Equation 1,though, sug-
gests that the error in the amplification factor should be
weighted with the spectrum of the initial values. Defiic
the weighted norm [|g(3, v) — gexact(8, v)l] by

Hg(ﬁ’ V) - gexact(ﬂr V)|l2 =

o0

[

where the weight function g equals to the square of the
modulus of the Fourier transform of the distribution at
time ™. For a step function the weight function will be
p(B) = 315 For the family of convection schemes stud-
ied in [5], based on a five-point stencil at the initial time
level, the selection procedure based on minimizing this
norm Yields an apwind-biased scheme, confirming the rep-

utation of such schemes to represent moving or steady
discontinuities with reduced oscillations.

p(ﬁ)ig(ﬂ,l/) _gexact(ﬁa u)*Zd,B, (2)

2.1.1 An example

Consider the first-order upwind-differencing operato:,
with Fourier transform

z=—wr(l—-e-"").

All three-stage schemes with second-order temporal accu-
racy can be represented by the amplification factor

2
v

g(B,v)=g(z)=1+2+ "7 +azd,

where « is a free parameter to be determined by the min-

imization process, and
y . a—id
gexact(3>)/) = € ' g

The error norm is

= 6a?® ta(—3° 3! -3 + 3031 - |

+o = () - v, (3)
Plots of this integral against v for two values of «, corn-
puied with the above formulaor by numerical integration,
are shown in Figure 1.

It is seen in Figure 1 that v = 1is a turning point
for three-stage schemes; beyond this point the truncation
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Figure 1: L,-error committed after one time-srep when
convecting a step-function. The scheme used includes
first-order upwind differencing and third-order three-stage
time-marching. The error is given in the form of an inte-
gral I over all frequencies, which depends on the Courant
number ». This simple case served to verify that the nu-
merically evaluated integral (dashed line) was close to its
exact value (solid line). For « =0 (dotted line; two-stage
scheme) the error increases monotonically.

error is increasing rapidly. This suggests that, in prac-
tical applications, one should use » < 1. Note that the
above analysis is for a scheme with only first-order spatial
accuracy. The analytical evaluation of the integral | for
third-order upwind-biased differencing (parameter value
x = g; see [6]) is much more tedious, but numerical in-
tegration gives a reliable result. Plots of the integral for
various values of « are shown in Figure 2.

To facilitate the comparison of schemes, we may elim-
inate the dependence of the integral on v by integrating
over the stable range of . That is, we minimize

Vmax o<

— [ [ 1 Pla8 ) = gesac (8.5
Ymax Jo —co

(4)
Plots of 7,,e and vpay VErsus ¢y are shown in Figure 3. The
minimum error occurs for cy = 0.072, but this is mainly so
because, for this value of a, v, ., iS Not much greater than
1. With increasing ¢ the stability region grows rapidly,
causing a rise in I,ye Up to o = 0.15. For larger values
of « the error decreases, which again is mostly due to
Vmax decreasing toward 1. Looking back at Figure 2 we
conclude that the third-order scheme (a = 1) is preferable
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Figure 2. Ls-error as a function of Courant number, for
three different three-stage schemes and third-order spatia!l
differencing. The error is plotted only for the stable range
of these scheme. The value o = 0.072(dashed line) yicid
the lowest average error; o = % (solid line) yields third-
order time accuracy; ¢y = % (dotted line).

to the optimal scheme: its error is hardly greater than
the error of the optimal scheme, it offers a much larger
stability range, and therefore increased robustness, and it
is formally third-order accurate.

In the present code a two-stage second-order algorithm
is implemented, which, in combination with adaptation,
already leads to a complex sequence of steps. In principle,
the three-stage method can be programmed in the samec
manner; whether this is worth-while remains to be seen.
It may be argued that the local mesh refinement is a more
efficient way to increase resolution by the higher-order in-
terpolation in space and time.

2.2 Time Discretization and Mesh Re-
finement Combined

The spatial embedding technique of De Zeeuw and Pow-
ell employs the quad-tree data structure: one parent ceil
generates four child cells (Figure 4). The spatial dis-
cretization follows the reconstruction/evolution approach:
in each cell gradients of flow quantities are formed {by
evaluating a contour integral, see Figure 5); these are used
to evaluate states at the cell boundaries. Interface fluxes
are then computed from the two different states found on
opposite sides of the interface, using Roe's approximate
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Figure 3: Maximum stable Courant number (dashed line)
and average of Ls-error (I;) over the stable Courant-
number range (solid line), for three-stage schemes with
free parameter «. Spatial differencing is third-order (x =
%); the amplification factor of the time-marching scheme
is1tz4+122 +a2z3. Note that the average error increases
sharply with the stability range.

Riemann solver; for details see [1].

The time-adaptation procedure introduces halving of
the time step for every level of spatial refinement; in con-
sequence, for each level of refinement the number of times
a cell is updated doubles. Updating starts with the coars-
est cells and cascades down to the finest cells. In order
to simplify the spatial discretization and the update pro-
cedure, the spatial grid is constrained such as to always
have at least two cells of the same size adjacent to each
other in any direction (horizontal, vertical, diagonal).

The time-marching scheme is a simple two-stage proce-
dure, based on the midpoint integration rule:

Parent Cell
Cell Level |

Children Cells
Cell Level {+1

Figure 4: Parent/Children Relationship
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Figure 5: Normal And Special Paths

W@ =
u) = 404 %Res(u(o))
W? = u® 4 AtRes(uM)
u™t = ), (5)

According to Shu and Osher [7], this time-marching
scheme is not Total-Variation Diminishing (TVD); their
two-stage TV D scheme is based on trapezoidal integra-
tion. When updating a fine cell adjacent to a coarse cell
with the TVD scheme, the prediction step is problematic:
by matching the time level in the coarse cell, the fine cell
might go unstable. A compromise would be to use the
mid-point rule in this coarse ceii; this has not yet becn
tested.

Scheme (5) is used at any level of refinement; the time-
step used at cells of level |, refined I — 1times, is At/2'"1,
where At isthe global time-step used. Now suppose we are
about to update I-level cells by a time-step At;. Owing to
our restriction on the local variation in cell size, only two
other levels of refinement will play a role in the update:
{+land 1- 1.

2.2.1 Interaction at (I, | + 1) Boundary

At first, we consider the boundary between the cell of level
I and a possible neighbor at level i+1; here, as at any other
cell boundary, we must evaluate fluxes. In the two-stage
method we need to first carry out the predictor stage,
which achieves only first-order accuracy in time. The ini-
tial values, 4(?), are used to evaluate the gradients in all
cells, which, in turn, are used to reconstruct the “right”
and “left" face values. Subsequently, one can compute the
fluxes based on Roe's [8] approximate Riemann solver ou
all child-cell faces (level | + 1) of the fine-coarse boundary.
Conservation dictates we must sum these child-cell fluxes
to get the flux across the full parent-cell boundary (level
[). Now the predictor step at level { can be completed.



For the corrector-stage calculation, we need new fluxes
at the cell boundary; therefore, we need new input values
for the flux function, hence, new gradient values. In order
to make it possible to evaluate the gradients not only in
the I-level cells themselves but alsc in tiie abutted {{ = 1)-
level cells, some (I + 1)-levels near the houndary must
be updated by a step Aty (= 2At). Alier obtaining
the gradients in these cells we can, zgain, reccnst
right and left face values, and compute &
for the correction stage in the ceils at level [,
procedure is shownin Figure 6 — Figure 8. These
are not the final fluxes; in order to achieve conser:
time, the fluxes in the I-level cells adjacent to ihe {

N
4

boundary must undergo a correction after the {/+ [}

cells have been fully updated.

2.2.2 Interaction at (I, I —=1j Boundary

To make it possible to update I-level cells, it is assumed

that we have already obtained, in the ceils at level I — 1,
first- and second-order-accurate solutions at At;_; and
first-order-accurate solutions at %Az,_l. This dictates the
order in which the cells of different levels are treated. Hav-
ing these solutions in the coarser cells one may, by interpo-
lation, get first- and second-order accurate values at any
time between t'* and {"+At;_1. In particular, by using lin-
ear interpolation one can get first-order-accurate solutions
after time-steps Aty (= $4A4) and A4 (= FAL);
these are needed to compute the gradients for corrector-
stage use in I-level calculations. By using quadratic inter-
polation, one can get second-order-accurate solutions at
" +%At,_1(’—_— At,),which can be used as the initial con-
ditions for predictor-stage use in the second application of
scheme 5 to /-level cells. These interpolation procedures
are illustrated in Figure 10.

2.2.3 Conservation in Time

In the above update procedure, the fluxes actually used
occur at the corrector stage rather than the predictor
stage. At an (/,/ — 1) boundary, however, the corrector-
stage fluxes at t" —f—%At, and t" +§At;, used in updating
the I-level cell, are not used in the provisional update of
the (I — 1)-level cell. Conservation requires that the same
fluxes be used in both cells; hence, from the detailed fluxes
used for the I-level cells we must construct parent fluxes
by averaging and apply these to the (I — 1)-level cell. This
amounts to a correction of the solution at ¢” +At;_1 in
the coarse cell. The procedure is illustrated in Figure 11.

2.2.4 Computational Priority of Different Levels

As mentioned above, before we can start to integrate in I-
level cells, we should already have first- and second-order-
accurate solutions at At¢;_;, and first-order-accurate solu-
tions at 2A¢;_;: that is, (I — 1)-level cells should already

have completed the predictor-corrector stage. The upd:i«
procedure then cascades from lower-level cells to higher-
level cells. Once the predictor-corrector scheme has becn
completed in (I + 1)-level cells, one returns to the l-level
cells for the conservation correction, and so on.

3 Time-Marching in Cut Cells

If the geometry is just slightly complex or its dimensions
are unfavorable, the square cells of an Cartesian giid mas
be cut by bodies. Instead of reducing the time step, wc
can combine the cut cell with an uncut neighbor to form
a larger cell and determine its evolution as part of tic
evolution of the full cell. The full update procedure fa:
cut cells is as follows:

1. compute the gradients in the cut cell just as in any
uncut cell;

2. compute the area average of the gradient,

n
Gavg = 22 4 (6)
Zi:l A

where n is the total number of merged cells and an
uncut:

3. compute the residuals in the cut cells just as in any
uncut cell;

4. compute the area average of the residual;

E?:l(ga—[%])i‘zli J

L.i:l Ai

3

ReSavg =

update the merged cells;

(]

6. update the average gradient in the merged cells;

7. use the average gradient to reconstruct separate :zcil
averages in the cut-cell and uncut-cell portion of th«
merged cell.

The Whole procedure is illustrated in Figure 12.

4 Automatic Grid Adaptation

An adaptive grid may be refined or recoarsened 2s dic-
tated by the amount of detail in the flow. The refine-
ment/recoarsening criterion used in this work is based on
the curvature of one-dimensional wave-strength distribu-
tions; the wave strengths are a by-product of evaluating
Roe's flux function. In two dimensions there are four fami-
lies of waves for each coordinate direction, leading to eiyght
different curvature values in each cell. If a particular cur-
vature in the cell is above a predetermined fraction of t}.c



maximum for its own family, the cell is flagged for re-
finement, if it drops below another, lower threshold, it is
flagged for recoarsening.

The wave information is used once more for the predic-
tion of the area where cells need to be refined; for this pre-
diction the wave speeds, including their sign, enter. Wave
speeds and propagation directions are used to estimate
how far strong waves (identified by the wave strengths)
will propagate during the next global time step; the ceils
to be traversed by these waves are flagged for refii.2ment.
The prediction procedure, illustrated by Figures i3 - i3,
is as follows:

1. use the wave speed and the wave direction to ?;.e-
dict the number, (N, Ny), of fine cells (I-level) in

bR
2}

z- and y-directions for the highest level {{-icvel)
containing strong waves; (0,3} means that the waves
in this cell are not strong enough to implement the
fine-cell prediction technique.

ceils

use the number (N, Ny) to construct a triangle or a
line (degenerating from the triangle if either v, =0
or Ny, = 0) and then flag the cells covered by any part
of the triangle;

. refine all flagged cells and use the smoothing proce-
dure, (see [4]) to eliminate undesirable features in the
resulting mesh.

4_apply steps 2-3 recursively until I-level cells cover all
the triangles.

In this way we avoid the loss of resolution of important
flow features incurred when these run out of a refined re-
gicn. For convenience, we NAME€ the prediction method
“dynamic” and the method without prediction ‘static” jp

this paper. The dynamic refinement method has become
one of the nicest features of the present adaptive-mesh

code. It is very effective, as the next section will show, and
surprisingly, uses only 1% of the total computing time.

In spite of its complexity, the prediction method has a
flaw: it is based strictly on waves traveling in the grid
directions. Thus, a steady oblique shock wave in super-
sonic flow is not detected as such, but is described by
a combination of waves traveling in the grid directions at
appreciable speeds. The prediction algorithm flags a band
of cells for refinement, but during the next time step the
wave does not move, and the refined cells are recoarsened.
The resulting cycles of unnecessary refining and recoars-
ening may be avoided by the use of a multi-dimensional
wave model such as that of Rumsey et al. [9, 10]; for ef-
fictency this should also be used in the flux function. As
this flux function still lacks the robustness of the lux func-
tion based on grid-aligned waves, we have chosen another
method to detect steady waves: we check the value of the
residual in each cell. If wave strengths are high but the
residual is small, there must be cancellation of waves, and
no pre-refinement is done.

5 Numerical Results

The shock-tube problem is a popular test-case for algo-
rithms intended for solving unsteady flow problem. Fig-
ure 16 shows the solution of the one-dimensional shock-
tube problem with the two-dimensional code. No predic-
tion of wave motion was used in flagging cells for refine-
ment. For comparison, the solution on a uniform grid of
the finest cells is also shown; the accuracy of the sola-
tion on the adaptive grid is disappointing. The reason ;
readily discovered upon inspection of the grid: the impor-
tant flow features to be resolved, such as the right-running
shock, tend to move out of the refined grid in the coarse of
the full time-step. On the basis of this result it was con-
cluded that spatial refinement ought to be based on the
predicted motion of flow features that need to be resolved
Figure 17 shows the solution of the Riemann problem on
a grid adapted in anticipation of the motion of flow fea-
tures. The improvementin accuracy is dramatic: the so-
lution is essentially the same as for a uniformly fine grid.
Furthermore, the results indicate that according to our re-
finement criterion based on curvature, the solution inside
the expansion wave is partly regarded as smooth: it need
not be resolved by the highest-level cells.

The second test case is uniform supersonic flow led
through a channel with a forward-facing step. Figure 18-
20 show results at time= 0.5 and 4.0 for a uniform grid and
an adaptive grid; the uniform-grid cells are everywhere as
fine as the highest-level cells of the adaptive grid. There is
very little difference between the two solutions, but only
one-third CPU time is spent on grid-adaptive calculation.

The next figures show how, in the two-dimensional cai-
culation, the main shock moves out of the refined region
(Figure 21) unless wave-speed-based refinement is used
(Figure 22).

Nest, Figure 23 shows uniform- and adaptive-grid solu-
tions for an axi-symmetric flow problem also solved on an
adaptive grid by Quirk {11}, namely, that of a shock wave
leaving a barrel. Again, there is very little difference be-
tween the solutions, but the savings are huge. Figures 2
and 25 show that the fine-cell clusters agree well with the
flow features.

For validating our treatment of cut cells, the case of
uniform supersonic flow through a channel with a forward-
facing step is reused. In order to compare the results with
the previous ones, only the cells along the vertical side of
the step are cut by the body; the cells on the top side of the
step is still aligned with the body. Two cases of extremely
different cut-cell area ratio: defined by the area ratio of
a cut cell to an uncut cell of the same level, are chosen:
Aratio = 0.5 and A,a:0 = 0.01. We reduced the time
step to obtain solutions in the first case without merging
of cut cells, for comparison of the solution with the cut-
cell-merging method. Figures 26 and 27 show the resuits
obtained with cell-merging and with a reduced time-step.
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Figure 11: Conservation in time in the boundary cells.
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The figures show little difference. Finally, using the cell-
merging method with regular time steps in the case of
very tiny cut cells {4,4:;, = 0.01) did not create any sta-
bility problem, as seen from the result in Figure 28. More
numerical resclts are presented in [4].

6 Conclusions

In this paper, we study two major approaches to efficiently
and accurately resolve the flow features in unsteady-flow
calculation:

1. creating some grid capable of resolving small details
of the flow;

2. implementing a high-order-accurate scheme in time
and space on the unstructured grid.

The first approach is to apply the technique of self-
adaptive mesh refinement to a Cartesian mesh, and use a
corresponding time-step adaptation. A process has been
developed whereby the computational grid automatically
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{3) step2 : Lise he number (Nx Ny) to construct a Fiangie, and then lag the coarss cells
covered by any part of he friangie.

X

Figure 13: An example of predicting cells of [-level by
wave speeds and wave directions

adapts to the flow features that require high resolution.
Furthermore, the strategy ¢' 'me-adaptation, i.e., using
many small time-steps on tk  .ice-level grid as comparsd
to one large step on the coarsest grid level, makes the
technique of the adaptive mesh refinement achieve a hig!
efficiency.

Regarding the second approach, a second-order-
accurate method based on upwindbiased differencing has
been applied in our calculations. For time marching, for
achieving second-order-accurate solutions in time, a two-
stage method is employed. The wave strengths and wave
speeds needed for the flux calculation are reused in vari-
ous ways. In particular, the curvature of one-dimensional
wave-strength distributions is introduced as the key quan-
tity in refinement and recoarsening criteria. Furthermore,
in order to prevent moving discontinuities from running
out of fine cells during one global time-step, wave speeds
and wave directions are used to predict the region tra-
versed by the waves; these are then flagged for refinemeut.
This dynamic refinement method is very efficient and is
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&
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covered by any part of the riangle,
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undisirable cels.

Figure 14: An example of predicting cells of /-level by
wave speeds and wave directions (continued).

one of the most attractive features of our approach

The combination of techniques can accurately resolve
flow features not only in regions of smooth flow for ex-
ample, inside an expansion fan, but also in a region full
of discontinuities. The numerical results show that our
method can achieve the same accuracy on the adaptive
grid as on a uniform grid with cells as fine as the finest
cells of the adaptive grid, at large savings of computing
time.

For full details the reader is referred to the first author’s
thesis [4].
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Figure 19: Adaptively-refined-grid solution; time=0.5

3 00
1T
] TIT,
H 1
a.; =+
T i RGN
T T [ e
=t H HEE
.—--—-" ——t
2.00 » 8! B
SRR | T3 TTT ITA
e
3
1.00
.
0.
0 00

Figure 20: Adaptively-refined-grid solution; time=4.0
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Figure 21: No refinement based on predicted wave motion

Yu-Liang Density Line Contours.
adaptive dynamic method (0.15,0.025) time=0.5
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Figure 22: Refinement based on predicted wave motion.
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Figure 23: Blast-wave problem: density distribution on Figure 24: Density distribution on the adaptive grid,
uniform (top) and adaptive (bottom) grid; time=0.3. time=0.50.
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Figure 25: Density distribution on the adaptive grid; Figure 27: Density distribution and grid; time=1.0;

time=0.570. reduced-time-step method.
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Figure 26: Density distribution and grid; time=1.0; cell- Figure 28: Density distiibution and grid obtained with
merging method. cell-merging method; time= 2.0 and A,,:, = 0.01.
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