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0.  ABSTRACT 

An investigation of the effects of small mistuning on the aeroe- 
lastic modes of bladed-disk assemblies with aerodynamic coupling 
between blades is presented. The cornerstone of the approach is 
the use and development of perturbation methods that exhibit the 
crucial role of the interblade coupling and yield general findings re- 
garding mistuning effects. It is shown that blade assemblies with 
weak aerodynamic interblade coupling are highly sensitive to  small 
blade mistuning, and that their dynamics is qualitatively altered in 
the following ways: the regular pattern that characterizes the root 
locus of the tuned aeroelastic eigenvalues in the complex plane is 
totally lost; the aeroelastic mode shapes become severely localized 
to  only a few blades of the assembly and lose their constant in- 
terblade phase angle feature; curve veering phenomena take place 
when the eigenvalues are plotted versus a mistuning parameter. 

1. INTRODUCTION 

Perfect periodicity, or cyclic symmetry, is a convenient, frequent 
assumption when analyzing the dynamics of bladed disk assem- 
blies. A primary reason for taking advantage of cyclic symmetry 
is that the blade response and excitation can always be expressed 
in terms of constant interblade phase angle modes that uncouple 
the equations of motion, thereby reducing the size of the problem 
to  that of one blade. This simplification yields drastic reductions 
in computational cost. Such ideal regularity, however, holds true 
only if all the blades are identical and uniformly spaced and if the 
disk is symmetric. Unfortunately, periodicity is always disrupted 
by differences in the blade structural properties and modes of vi- 
bration, which result from manufacturing and material tolerances. 
Cyclic symmetry of the unsteady aerodynamic loading may also be 
destroyed by a slightly unequal spacing of the blades. This phe- 
nomenon, known as mistuning, not only increases tremendously 
the size and cost of the analysis of blade assemblies such as en- 
gines and fans, but may also alter qualitatively their dynamics. 

Numerous studies have been conducted in an attempt t o  un- 
derstand the effects of mistuning on the dynamics of blade assem- 
blies. Many of these works are reviewed in the survey paper by 
Srinivasan.' These studies have led to  some common conclusions. 
For example, it has been suggested that while mistuning has of- 
ten a beneficial (stabilizing) effect in a flutter s i t u a t i ~ n , ~ - ~  it may 
have an undesirable effect on the forced response through a possi- 
bly very large increase in the maximum amplitude experienced by 
some  blade^.^ It has also been shown that blade mistuning results 
in the appearance of new peaks in the frequency r e ~ p o n s e . ~  Besides 
these general findings, though, there are quantitatively and even 
qualitatively different results among these studies. For instance, 
the increase in maximum amplitude due to  mistuning, the blade 
with the largest amplitude, and the effect of mistuning standard 
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deviation on the rotor's largest amplitude were all found different 
by various researchers. 

We believe these discrepancies originate from the widely differ- 
ent models and parameter values used in the various studies. This 
was suggested and substantiated in a series of papers by Bendik- 
sen and coworkers (for example, see references 5 and 8) and Pierre 
and coworkers (for example, see references 9 and 10). These studies 
showed that the sensitivity to  mistuning can vary by several orders 
of magnitude depending on the strength of the interblade coupling, 
the excitation frequency, and the number of blades. Specifically, in 
the weak interblade coupling case, small random mistuning dras- 
tically alters both the free and forced responses by localizing the 
vibration to  a small geometric region of the structure (or to  a few 
blades) and by increasing severely the aniplitudes of some blades- 
a phenomenon referred t o  as mode localization. 

These investigations led to  a fundamental understanding of 
mistuning effects. However, except for the pioneering work by 
Bendiksens that evidenced the high sensitivity of closely-spaced 
aeroelastic modes to  mistuning (although not localization), the lo- 
calization studies cited above were conducted for simple structural 
models that did not include any aerodynamic effc,cts. 

In this paper, motion-dependent unsteady aerodynamic loads 
are included in the formulation, leading to  a free vibration aeroe- 
lastic eigenvalue problem that governs the stability of the blade 
assembly. Our primary objective is to  reach general conclusions 
regarding the effects of small structural mistuning on the aeroelas- 
tic mode shapes, eigenvalues, and stability of typical high-solidity 
blade assemblies, such as those in turbomachinery. The corner- 
stone of our approach is the development and use of perturbation 
schemes that enable us t o  predict mistuning effects and that yield 
important physical insights into the dynamics of mistuned assem- 
blies. 

To achieve structural mistuning without altering the aerody- 
namic terms, we consider small, random mistuning of the blade 
frequencies. Moreover, to  highlight the role of aerodynamic cou- 
pling on the sensitivity to  mistuning, we consider an assembly 
with no structural coupling between blades. This enables us to  
demonstrate the key roles of aerodynamic coupling and damping. 
We show in the paper that aerodynamic coupling has an effect 
qualitatively similar to  that of structural interblade couplingg (al- 
though it has a vastly different quantitative effect). In particular, 
we find that assemblies with weak aerodynamic interblade cou- 
pling (e.g. high-solidity assemblies, for which aerodynamic forces 
are small compared to  structural forces) are highly sensitive to  
mistuning, and that their dynamics is qualitatively altered: for 
example, aeroelastic modes become localized and the locus of the 
eigenvalues loses its structure when small mistuning is introduced. 

The paper is organized as follows. Section 2 presents the struc- 

tural and aerodynamic models and the formulation of the aeroe- 
lastic eigenvalue problem. The properties of circulant matrices, 
which characterize structures with cyclic symmetry, are reviewed 
in Section 3. In Section 4 we discuss the nature of two parameters 
that are key to  our study: the aerodynamic coupling and the struc- 



tural mistuning. Perturbation schemes that predict and provide 
insight into mistuning effects are developed in Section 5. Section 
6 presents the results of a parametric study of a blade assembly 
and their interpretation. Finally, Section 7 concludes the paper. 

a A is the N m  x N m  complex aerodynamic matrix. 
a X is the complex eigenvalue. 

The matrices A ,  K, and M consist of N 2  blocks, each of size 
m x m. Since there is no structural coupling between blades, K 
is a block-diagonal matrix, where each block is the stiffness matrix 
of an individual blade (for a nonrotating assembly these blocks 
themselves are diagonal). The absence of structural coupling also 
means that M is block-diagonal. For a one-component mode per 
blade model M is diagonal, with the modal masses of the indi- 
vidual blades as diagonal elements. If we normalize the modes 
consistently such that all modal masses are equal, the mass ma- 
trix becomes proportional to the identity matrix, even if the blades 
are not identical. 

The primary original contributions of the paper lie (1) in the 
evidence of new phenomena (e.g. localization of aeroelastic modes, 
loss of structure of the root locus) occurring in mistuned aeroelastic 
systems and (2), in the generality of the mistuning trends and 
phenomena uncovered by our perturbation approach: we expect 
our results to be qualitatively valid for typical blade assemblies, 
such as those in turbomachinery. 

2. E Q U A T I O N S  O F  A E R O E L A S T I C  M O T I O N  
The aerodynamic matrix A is fully populated. The off-diagonal 

blocks provide aerodynamic coupling between the blades, while the 
off-diagonal elements for each block account for the coupling be- 
tween the (nonrotating) blade modes. The matrix A depends on 
the assumed frequency, w,, and the flow parameters. 

The structural and aerodynamic models we use in our study are 
those introduced by Kaza and Kielb." In this section we briefly 
describe these models. The reader is referred to  reference 11 for a 
full description. 

The structure we examine consists of N blades equally spaced 
on a disk. Each blade is modeled as a straight, slender, twisted, 
nonuniform elastic beam with a symmetric cross-section. The elas- 
tic, inertia, and tension axes are taken to be noncoincident, and 
the effect of warping is considered. Nonlinear strains are used to 
derive consistently the linear equations of (bending-torsion) mo- 
tion of a blade. The equations of motion of a rotating blade are 
discretized by a standard assumed-mode procedure. The compar- 
ison functions in the expansion of the blade deflection are chosen 
to  be the mode shapes of the associated nonrotating blade. Thus, 
each blade is effectively modeled by an m-degree of freedom sys- 
tem, where m is the number of nonrotating blade modes. In this 
paper, we report results using only one component mode per blade 
(i.e. m = I ) ,  namely the first torsion mode of a nonrotating blade. 

For a tuned system the blades are identical and thus all ma- 
trices in Eq. (1) are block-circulant. These block-circulant ma- 
trices have special properties that result in a mostly analytical 
description of the eigensolution of the tuned assembly (this is 
discussed in detail in Section 3 for the circulant matrices of the 
single-mode per blade model). The stiffness matrix of the tuned 
assembly consists of identical blocks on the diagonal. For exam- 
ple, for a one-component mode per blade representation, K is pro- 
portional to the identity matrix. For a mistuned assembly with 
arbitrarily different blades, the stiffness matrix consists of distinct 
blocks and is no longer block-circulant, but with the assumption of 
frequency mistuning, the mass and aerodynamic matrices remain 
block-circulant. 

The solution of the aeroelastic eigenvalue problem, Eq. (I),  
dictates the nature and stability of the assembly's motion in an We do not consider blade root flexibility and assume that the 

blades are clamped to the disk. Moreover, as in reference 11, we 
take the disk to  be rigid. This means that there is no structural 
coupling between blades in our assembly. Thus, the interblade 
coupling arises solely from aerodynamic effects. This allows us to 
highlight the effects of aerodynamic coupling, as those of structural 
coupling have been studied previously.g 

aeroelastic mode. For an eigensolution (A ,  u), the blade assembly's 
motion is given by uexp(iwt), where w is the complex frequency 
defined by X = w2 (and i2 = -1). Writing w = WR + iwI, where WR 

is the frequency of oscillations and w~ the damping in the aeroe- 
lastic mode considered, one can easily show that Re X = w i  - w; 
and Im X = ~WIWR, where Re and Im denote real and imaginary 
parts. This means that for small damping the real and imaginary 
parts of X can be associated with the natural frequency and the 
damping in a mode, respectively. Note that instability, or flutter, 

The unsteady, motion-dependent aerodynamic forces are cal- 
culated by applying two-dimensional, linear, unsteady, cascade 
aerodynamic theories in a strip fashion for both ~ubsonic '~ and 
supersonic13 regimes. This results in a (complex) matrix of gen- 

occurs when wr < 0 or, equivalently, when the imaginary part of 
the eigenvalue X is negative. The flutter boundary is defined by 
wr = 0, or ImX = 0. eralized aerodynamic forces. Unsteady, motion-independent aero- 

dynamic loads are not considered here, since we restrict our in- 
vestigation to the aeroelastic eigenvalue problem. Furthermore, to  
highlight the effect of aerodynamic damping, no structural energy 
dissipation is included in our model (although linear structural 
damping could be added easily). 

Most of the numerical parameters used for generating the re- 
sults reported in this paper are the same as those in the work of 
Kaza and Kielb." Only the differences are mentioned here, as fol- 
lows. In most calculations the number of blades is N = 56. The 
axial Mach number and the assumed vibration frequency used for 
aerodynamic computations are 0.641 and w, = 238.08 Hz, respec- 
tively. The rotational speed of the blade assembly is 3000 rpm. 
These parameters result in a tip Mach number of 1.103, and thus 
both subsonic and supersonic aerodynamic theories are used. Only 
one component blade mode, namely the first torsion mode, is con- 
sidered. This results in diaeonal mass and stiffness matrices for 

We apply component mode analysis to the N-blade assem- 
bly, where the motion of each blade is described by m component 
modes. This yields a set of m x N homogeneous, linear, ordinary 
differential equations in the modal amplitudes of the blades. We 
look for motions such that all the blade coordinates oscillate with 
the same frequency and/or decay or grow at  the same rate. This 
yields the aeroelastic eigenvalue problem: " 

the blade assembly. Furthermore, the mass matrix is proportional 
to the identity matrix, since in this study mistuning is introduced 
only in stiffness. For a tuned system the stiffness matrix is pro- 
portional to the identity matrix. where 

In the remainder of the paper we examine how the aeroelastic 
modes of the assembly obtained by solving Eq. (1) are affected 
by the introduction of small random blade mistuning. To achieve 
this we must first understand the dynamics of the perfectly tuned 
assembly. This is discussed in the next section. 

u = . ., ulm, ~ 2 1 , .  . . , uZm,. . . , uN1,. . . , UNmIT is the 
Nm-dimensional complex eigenvector of the blade modal am- 
plitudes, where T denotes a transpose; In the follow~ng we 
refer to  the elements of u as the physical coordinates. 
a M and K are N m  x N m  real inertia and stiffness matrices, 
respectively. 



3. C Y C L I C  S Y M M E T R Y  A N D  C I R C U L A N T  M A T R I -  
C E S  

A tuned bladed-disk assembly features perfect cyclic symmetry in 
the sense that all blades are identical and the first blade (i.e. the 
reference blade) is adjacent to  the Nth  blade (i.e. the last blade). 
In the tuned case all matrices in Eq. (1) are block-circulant and 
the aeroelastic eigensolution has remarkable features. For a single- 
component mode per blade model the matrices become simply cir- 
culant. In this section we discuss the properties of circulant ma- 
trices and those of the tuned aeroelastic modes. 

3.1 P r o p e r t i e s  of  S q u a r e  Circulant  Mat r i ces  

Circulant matrices arise in the study of systems with perfect cyclic 
symmetry. The book by Davies14 contains a nice account of the 
properties of circulant matrices. 

The general form of a square circulant matrix with complex 
elements is 

Lc2 cg . . .  c1 J 
(2) 

Every line in the matrix is a permutation of the first line, each line 
being generated by shifting the previous line one position to  the 
right, where all indices are modulo N .  We note that a circulant 
matrix has only N distinct elements. When several component 
modes are used to  model a blade, the elements c; become them- 
selves matrices and C is said to  be block-circulant. 

Important properties of circulant matrices are (1) the set of 
circulant matrices of order N is a subspace of the space of matrices, 
(2) the inverse (if it exists), transpose, and conjugate transpose of 
a circulant matrix are also circulant and (3), circulant matrices 
commute. 

Circulant matrices of order N possess N independent eigen- 
vectors. Furthermore, all circulant matrices share the same set of 
eigenvectors: 

(3) 
where the eigenvectors have been normalized such that Ile,11 = 1. 
An important property of the eigenvectors is that Ej = e ~ - j + ~ ,  
for j = 2, .  . . , N ;  thus, most eigenvectors occur in pairs of complex 
conjugate, although el is real and for N even e ~ / ~ + ~  is real. 

The eigenvalues of a circulant matrix can be written in closed- 
form as: 

A proof of the eigensolution of circulant matrices, Eqs. (3) and 
(4), is given in Appendix A. 

We can arrange the N eigenvectors of a circulant matrix in an 
N x N modal matrix whose columns are the eigenvectors: 

where we define w = e%. The modal matrix E is commonly 
referred to  as the Fourier matrix. It is a unitary matrix, i.e. 
E-' = E*, where a * denotes a conjugate transpose (see the proof 

in Appendix A). The modal matrix E diagonalizes any circulant 
matrix through the similarity (and unitary) transformation: 

where the eigenvalues of the diagonal matrix are given by Eq. (4). 

An interesting special case of the general results given above is 
that of a symmetric, real, circulant matrix. This would occur in a 
cyclic structural system without aerodynamic forces included. In 
this case C has only $ + 1 (resp. 9) distinct elements for N 
even (resp. odd). The eigenvalues of C are, from Eq. (4): 

., 
only for N even 

! 
qs 

2 ~ ( k  - 1) 
a , + 2 ~ a k c ~ s ( T ( j - l ) )  N o d d  

X j  = k=2 

N/2 2a(k - 1) 
a1 + (-l)i-'ag+l + 2 a k  cos(------ 

N 
( j  - 1)) Neven 

k=2 

(8) 
for j = l , . . . , N  . 

As expected, the eigenvalues of this real symmetric matrix are 
real. Furthermore, Eq. (8) tells us that X j  = XN-j+2.  This means 
that Xz = Xn~, X3 = etc., are double eigenvalues, each of 
which is associatcd with two complex conjugate eigenvectors, ej 
and e ~ - j + 2  = q.  The corresponding eigenspaces have dimension 
two, and in such an rigenspace any linear combination of e, and 
- 
e, is an eigenvector. Thus, we can obtain real eigenvectors for this 
symmetric matrix by simply taking the real and imaginary parts 
of e,. We also note that X I  is a single eigenvalue associated with 
the real eigenvector el = [I, 1, . . . , 1IT/fi and that,  for N even, 
A++,  is a single eigenvalue with the real eigenvector e ~ / ~ + ~  = 

[ I ,  - 1,1, . . . , - 1IT/fl. Thus, all eigenvalues are double except 
the first for any N and the (N/2 + 1)th for N even. 

3.2 Aeroelas t ic  Eigensolutions of  T u n e d  Assemblies 

The properties of circulant matrices determine the aeroelastic modes 
of tuned assemblies. Since M, K, and A in Eq. (1) are circulant, 
they share the same set of eigenvectors and thus the aeroelastic 
mode shapes of the tuned assembly are the ej, j = 1 , .  . . , N, given 
in Eq. (3). (This is true whether or not aerodynamic effects and/or 
structural coupling are included in the model.) This means that 
for a motion in the j t h  mode all blades in the assembly vibrate 
with equal amplitudes but with a constant phase difference between 
adjacent blades. We rewrite this mode shape as 

T 27r(j - 1) e'(N-')u~] u j  = ___ 
N 

(modulo2n) 

(9) 
where o j  is the interblade phase angle for the j t h  mode, which 
takes the same value for any two adjacent blades. Consequently, 
the normal modes of the tuned assembly are referred to  as constant 
interblade phase angle modes. There are N such modes, one for 
each interblade phase angle uj, j = 1, . . . , N.  

A motion in the j t h  mode is that of a wave traveling through 
the assembly with a phase change o j  at  each blade. We have 
shown in Section 3.1 that eN-j+z = ej, hence a motion in the 
( N  - j + 2)th mode is characterized by an interblade phase angle 
o ~ - j + 2  = -u, (modulo 2a),  corresponding to  a wave traveling in 
a direction opposite to  that of the j t h  mode, with the same phase 
change a t  each blade in absolute value. 



Hence we have the following description of the mode shapes: formation defined with the modal matrix E given in Eq. (5). We 
write 

0 The first mode shape, e l ,  corresponds to a zero interblade 
phase angle: all blades vibrate in phase with the same ampli- 
tude. 
0 For N even, the ($ + 1)th mode has an interblade phase 

where r )  = [ql,. . .,17N]T is the vector of modal coordinates, or "in- 
terblade phase angle" coordinates: qj represents the contribution 
of the mode with interblade phase angle a, to  the total motion 
of the assembly. The matrix E defines the transformation from 
interblade phase angle to  physical coordinates. 

angle equal t o  a: adjacent blades vibrate out of phase with 
equal amplitudes. 
0 Motions in the modes ej corresponding to  interblade phase 
angles uj €10, a [  are waves that travel backward through the 
assembly. 
0 Motions in the modes ej such that aj €]a ,2a[  are forward 
traveling waves related to  their backward traveling counter- 
parts by F N - ~ + ~  = e,. A pair of forward and backward 
traveling waves have the same number of (traveling) nodal 

First we apply this modal transformation to  diagonalize the 
aerodynamic matrix. We have 

diameters. 
because E is unitary. The diagonal matrix A is the matrix of 
eigenvalues of A ,  made of the modal aerodynamic coefficients: A j  
is the aerodynamic coefficient (e.g., a moment) for a cascade of 
blades oscillating in the j t h  interblade phase angle mode. These 
modal aerodynamic coefficients are distinct as th_ey depend on the 
interblade phase angle. In fact, it is typically A,  not A ,  that is 
calculated by unsteady aerodynamic codes. This requires only N 
independent calculations, one for each interblade phase angle. The 
generalized (modal) aerodynamic force for a motion of amplitude 
7)j  in the j t h  interblade phase angle mode is ;lj7j3, and the physical 
load on the blades is AjVjej. For a general motion the physical 
load is a linear combination of the individual modal loads, give? by 
QA = EAT. From QA = A u  we retrieve Eq. (11) as A = EAE*,  
where A contains the aerodynamic influence coefficients in the 
physical coordinates. 

The aerodynamic matrix A is complex and thus, from Eq. (4), 
its eigenvalues are complex. This means that if aerodynamic ef- 
fects are included in the model, the aeroelastic eigenvalues of the 
system (1) are complex (recall that M and K are real). In addi- 
tion, each pair of backward and forward traveling waves, ej and 
3, is associated with two distinct eigenvalues. We can explain 
this by noting that unsteady aerodynamic forces depend on the 
direction of rotation of the rotor. For example, assuming that the 
forward traveling direction coincides with that of the rotor rota- 
tion, the aerodynamic interaction forces between two blades are 
different for a forward wave motion and a backward wave motion. 
This asymmetry results in distinct eigenvalues for the aeroelastic 
system. 

If aerodynamic effects are not included in the model, then 
A = 0 and the eigenvalue problem (1) is real symmetric. Ac- 
cording to  Eq. (8), the eigenvalues are real and most eigenvalues Next, the transformation from interblade phase angle to  physi- 

cal coordinates, Eq. ( l l ) ,  can be applied to  the eigenvalue problem, 
Eq. ( I ) ,  yielding 

have multiplicity two, such that XI = except for the zero- 
interblade phase angle mode ( j  = 1) and, for N even, for the 
T-interblade phase angle mode ( j  = N / 2 +  1). The structural-only 
model has double eigenvalues because the direction of rotation of 
the assembly has no effect on its dynamics and thus backward and 
forward traveling waves cannot be distinguished. For each double where E 'ME = diag(Mj) and E'KE = diag(Ii,), where M, and 

Ki are the modal mass and stiffness for the j t h  interblade phase 
angle mode. This gives the eigenvalues of the tuned assembly as 

eigenvalue these two traveling waves combine into standing waves 
with fixed nodal diameters obtained, for example, by taking the real 
and imaginary parts of ej. This makes perfect sense because the 
(real symmetric) structural system must admit real normal mode 
solutions, or standing waves. These mode shapes are 

1 N [ Re e, = [ I ,  cos u j , .  . . , cos(N - l )a j ]  j = 1 , .  . . , ? + I  Equation (14) can also be obtained by looking for the values of X 
such that the circulant matrix (-XM+K- A )  has zero eigenvalues, 
by applying the general expression for the eigenvalues of a circulant 
matrix, Eq. (4). 

1 N 
l e = [ s i n j s i n ( N - u ,  j = 2 , . . . - -  ' 2 

(10) 
for N even; If N is odd j goes to  ( N  + 1)/2 for both real and 
imaginary parts. Note that Re ej and Im ej are mode shapes with 
( j  - 1)  fixed nodal diameters. 

4. N A T U R E  O F  A E R O D Y N A M I C  C O U P L I N G  A N D  
S T R U C T U R A L  M I S T U N I N G  

In general, the degeneracy that occurs in the cyclic structural 
system is removed by aerodynamic forces. It would also be re- 

4.1 A e r o d y n a m i c  M a t r i x  Character is t ics  

Previous studies of structural models of blade assemblies (for ex- 
ample, see reference 9) have shown that the key parameter that 
determines the sensitivity of their dynamics to  mistuning is the 
interblade coupling. In our model the coupling between blades 
is provided solely by the aerodynamic terms. Thus, it appears 
reasonable t o  explore further the properties of the aerodynamic 
matrix in order to  obtain useful insights into the effects of mistun- 
ing. 

moved by Coriolis forces if these were included in the formulation, 
since they depend on the direction of rotation. Similarly, any in- 
finitesimal amount of mistuning in one blade would also split the 
double eigenvalues of the structural system. The conclusion is that 
real physical rotors do not feature double eigenvalues. 

Examples of motions in constant interblade phase modes are 
shown in Fig. 1 for an aeroelastic system. The waves travel along 
the assembly in the directions shown, except for the two standing- 
wave modes. 

An important characteristic of A is that its elements are typ- 
ically several orders of magnitude smaller than those of K and 
M. This is because unsteady aerodynamic forces are very small 
compared t o  elastic and inertia forces, a t  least for the high-solidity 
blade assemblies we are examining in this paper. It immediately 
follows that,  although aerodynamic forces add stiffness and damp- 
ing t o  the assembly, they do not change the natural frequencies 

3.3 Physical  a n d  In te rb lade  P h a s e  Angle  Coord ina tes  

All matrices in Eq. (1) admit the N, independent, interblade phase 
angle modes as eigenvectors. Thus, we can diagonalize the tuned 
aeroelastic eigenvalue problem by introducing the coordinate trans- 



of free oscillations much. The negative or positive aerodynamic 
damping that results is also small, although it may be sufficient to  
cause an instability. More important to our study, however, the 
fact that the elements of A are small means that the aerodynamic 
interblade coupling is weak for a typical assembly. Thus, accord- 
ing to earlier studies of mistuned structural systems and of mode 
localization, our model has the potential to  feature a dynamics 
that is highly sensitive to  small mistuning. The small magnitude 
of the elements of A also suggests that perturbation schemes can 
be developed that treat the aerodynamic term as a perturbation. 
This will be useful when we attempt to  characterize the localized 
modes. 

The aerodynamic matrix is made of influence coefficients: the 
element Aij is the generalized force on blade i caused by a unit 
generalized displacement of blade j. Clearly, the aerodynamic in- 
teractions between two blades decrease as the distance between 
these two blades increases, and we can expect the coupling be- 
tween adjacent blades to  be the most significant. This feature is 
illustrated in Fig. 2, which displays the magnitude of the elements 
of one column of the matrix A .  We note the clear dominance of 
the terms closest to  the diagonal and thus that of nearest-neighbor 
interblade coupling. The aerodynamic coupling with a next-to- 
neighboring blade is about one order of magnitude less than that 
with an adjacent blade. 

This near-diagonal dominance of the aerodynamic matrix is 
yet another similarity with structural coupling, which is typically 
also strongest between adjacent blades. It suggests that the aero- 
dynamic matrix in the physical coordinates can be reasonably ap- 
proximated by a tri-diagonal circulant or a penta-diagonal circu- 
lant matrix. (These matrices are not strictly tri- or penta-diagonal 
as they have elements near the upper-right and lower-left corners 
because of cyclicity.) Table 1 compares the least stable eigenvalue 
(the one with the smallest imaginary part) of the full matrix A 
with that of the tri- and penta-diagonal approximations. The com- 
parison suggests that accounting for adjacent and next-to-adjacent 
blade coupling is sufficient to  capture the assembly's dynamics ac- 
curately. (We have confirmed this conclusion by observing that 
the locus of the eigenvalues changes very little when we use the 
penta-diagonal approximation instead of the full matrix A.) Such 
approximations of the aerodynamic matrix will be useful when we 
seek t o  characterize the localized aeroelastic modes in Section 5. 

4.2 S t r u c t u r a l  Mis tun ing  

In this study we examine the effects of frequency mistuning only. 
We assume that the individual blade frequencies are random and 
uniformly distributed about the frequency of the nominal blade 
with a small standard deviation. We achieve this mistuning by 
altering the torsional stiffness of the blades. We only consider small 
random mistuning of standard deviation less than lo%, resulting 
from unavoidable manufacturing and material tolerances and wear. 

For a mistuned assembly the stiffness matrix K is no longer 
circulant, but with our assumption of frequency mistuning, the 
mass and aerodynamic matrices do remain circulant. We show in 
the next section that this small deviation of K from perfect cyclic- 
ity results in the drastic alteration of the aeroelastic eigensoution. 
This high sensitivity originates from the weak interblade coupling 
terms in A .  

5. A P E R T U R B A T I O N  ANALYSIS  OF M I S T U N E D  AS- 
S E M B L I E S  

The characteristics of the aerodynamic coupling suggest that the 
dynamics of our blade assembly has the potential to  be severely al- 
tered by cyclicity-breaking mistuning, e.g. through the occurence 
of mode localization. In this section we attempt to  predict and 
characterize the effects of mistuning on the aeroelastic eigensolu- 
tion by perturbation techniques. We first apply a standard, or 
classical perturbation method that predicts the high sensitivity to  

mistuning. Then we develop a perturbation scheme that is able 
to  handle large mistuning effects and thus to  characteritc the mis- 
tuned eigensolutions (e.g. the localized modes). 

5.1 Pred ic t ion  of  High  Sensitivity t o  Mis tun ing  

Even though classical perturbation methods fail to  describe the 
dynamics of a mistuned assembly when it is qualitatively different 
from that of the corresponding tuned system, they predict high 
sensitivity and provide useful insight into the onset of mode lo- 
calization. (We refer the reader not familiar with perturbation 
theory for the eigenvalue problem to  reference 15.) In the classical 
approach the unperturbed system is the tuned assembly and the 
perturbation is the frequency mistuning. The unperturbed eigen- 
value problem is 

where, for the single-component mode per blade model, M = M I  
and KO = 6 , I ,  where Ii, is the nominal generalized blade stiff- 
ness and M the generalized mass. From Eq. (14), the unperturbed 
eigenvalues are Xoj  = (KO - &)/M, and the unperturbed aeroe- 
lastic mode shapes are u, = ej ( j  = 1 , .  . ., N). Note that the 
eigenvalues are clustured in a narrow band because the modal aero- 
dynamic coefficients are small. Also, the imaginary parts of-the 
eigenvalues (representing the damping) are small because the Aj7s 
are small. 

For the mistuned system the stiffness matrix becomes 

K = K O  + 6K, 6K = diag  (6I<l,. . ., SIC;,. . . , 6 1 i ~ )  (16) 

where SKi is the deviation of the ith blade stiffness from the nom- 
inal value Ii,, such that SK;/I<, << 1. We assume the 6K;'s are 
independent and identical random variables of mean zero and stan- 
dard deviation a. In this paper we consider only one (arbitrary) 
pattern of random mistuning, such that 

i.e., the estimates of the mean and the standard deviation ob- 
tained from one realization of mistuning are close to  the mean and 
standard deviation of the mistuning random variable. With this 
notation the mistuning is order 6 ,  and with the assumption of zero 
mean the average stiffness of the mistuned assembly's blades is the 
nominal blade stiffness. 

The perturbed (mistuned) eigenvalue problem is given by Eq. (1) 
We consider a second-order perturbation expansion of the eigen- 
solution as 

where 6Xj and 6uj  (resp. b2Xj and J2uj)  are first-order (resp. second- 
order) terms in t. The general perturbation formulae are given in 
Appendix B. 

First-Order Eigenvalue Perturbation 

We can show, using Eq. (B5): 

where Tr denotes the trace of a matrix, the sum of its diagonal 
elements. We make two observations. First, 6Xj is real. This - 



means that there is no first-order effect of mistuning on the flut- 
ter boundary, because stability is only affected by the imaginary 
part of the eigenvalues. Second, the first-order perturbation 6X, is 
independent of j. Hence all the eigenvalues are shifted identically 
as a result of mistuning, by an amount equal to  the average of 
the deviations of the frequencies squared from the nominal value. 
For small mistuning this eigenvalue shift is always small. More- 
over, in this paper the mistuning pattern has a (nearly) zero mean 
and thus the first-order effect on the eigenvalues is (nearly) equal 
to  zero. We conclude that 6X, is at  most a term of order c that 
cannot reveal high sensitivity to  mistuning. 

High Mode Shape Sensitivity 

The first-order effect of mistuning on the aeroelastic mode shape 
is, from Eq. (B7): 

where we make use of Eq. (14) to  write that the distance between 
two eigenvalues of the tuned assembly is proportional to  the differ- 
ence of the corresponding modal aerodynamic coefficients. Equa- 
tion (20) tells us that the magnitude of 6u, is determined by the 
ratios ( e ; b ~ e j ) / ( &  - it,). If all eigenvalues are well separated, 
then 6u j  is effectively first order. However, if I& - Ajl is order 
c or smaller, then 6u j  is not order E any longer, but of the or- 
der of one or larger. The assumptions for the use of asymptotic 
expansions in perturbation theory are then violated, and the per- 
turbation analysis fails, thereby indicating that the mode shapes 
undergo dramatic changes. 

We have seen in Section 4 that the aerodynamic coupling-is 
typically weak and thus the denominators in Eq. (20), - A,, 
are first-order or smaller terms. (This is qualitatively similar to 
the structural case where the distance between eigenvalues is also 
small for small interblade coupling.) This means that for first- 
order mistuning the ratio of disorder to  interblade coupling, and 

thus 6u, (see Eq. (20)), is finite or large, and that the aeroelastic 
mode shapes are highly sensitive to  mistuning. We show in Sec- 
tion 5.3 that this failure of the perturbation analysis indicates the 
occurrence of mode localization. 

It is interesting t o  note that the quantity e;6Ke3 (k  # j )  is 
the coupling of the unperturbed eigenvectors through the mistun- 
ing matrix, and provides a good representation of disorder in the 
assembly. For example, if 6K were proportional t o  the identity 
matrix, there would be no disorder since e;Iej = 0. 

5.2 Eigenvalue Loci Veering P h e n o m e n a  

While the first-order mode shape perturbations provide insight 
into the sensitivity to  mistuning, interesting and useful behavior 
can also be observed by considering the second-order eigenvalue 
perturbations. From Eq. (B6): 

where 1.1 denotes the modulus of a complex number. The same 
mechanisms as those described above for the mode shapes lead to  
high sensitivity. Namely, h2Xj is not second order, but first order 
or larger, and perturbation theory fails, when the coupling of the 
eigenvectors through the mistuning, eE6Kej, is of the same order 
or larger than the aerodynamic coupling, measured by I& - Ail. 
Note that these large mistuning effects are predicted by the second- 
order eigenvalue perturbation but are completely overlooked by the 
first-order perturbation, Eq. (19). 

From Eq. (21) we conjecture that the sensitivity to  mistuning 
increases with the number of blades. This is caused by two mecha- 
nisms. - First, as N increases the number of interblade phase angles 
increases and the difference between two adjacent ones, 2x/N,  de- 
creases. In turn, we can reasonably expect the difference between 
the two corresponding modal aerodynamic coefficients to  decrease 
and thus the terms in the summation (21) to  increase. Second, as 
N increases the number of terms in Eq. (21) increases and thus 
the second-order eigenvalue perturbation increases. This is readily 
seen for the eigenvalues such that all terms in the summation are 
positive or negative (e.g. for the real part of the lowest and high- 
est frequency eigenvalues and for the imaginary part of the least 
and most stable eigenvalues). This larger effect of mistuning with 
increasing number of blades is illustrated in Section 6. 

Another remark is that b2X, is complex and thus both frequen- 
cies and damping values are affected by ~nistuning to  the second 
order, unlike to  the first order. Below we examine in detail the real 
and the imaginary parts of the mistuned eigenvalues. Recall that 
they correspond to  the frequency and damping in an aeroelastic 
mode, respectively. 

Veering Away of the Frequency Loci 

From Eq. (21), the real part of the second-order perturbation is: 

Consider the locus of the real part of the j t h  eigenvalue, Re Xj, 
versus the mistuning strength, where the latter is measured for ex- 
ample by the estimate of the standard deviation, 6 .  From Eq. (22), 
ReS2Xj is proportional t o  c2, the coefficient of proportionality being 
equal t o  one-half the curvature of the locus of Re X j  versus 6 .  We 
observe from Eq. (22) that this curvature is inversely proportional 
to  the interblade coupling and thus is large for weak aerodynamic 
coupling. 

Now consider the tuned eigenvalues with the smallest and largest 
real parts, corresponding to  the modes with the lowest and high- 
est natural frequencies, and denote them by XL and AH. From 
Eq. (14), these two eigenvalues are associated with the modal aero- 
dynamic coefficients with the largest and smallest real parts, re- 
spectively. (Note that the interblade phase angles corresponding 
to  the eigenvalues with extreme real parts depend upon the sys- 
tem studied and its parameters.) For the lowest frequency eigen- 
value all terms in the summation, Eq. (22), are negative, hence 
Re b2XL < 0 and the locus of the real part of the lowest frequency 
eigenvalue has a large negative curvature at the tuned state. Sim- 
ilarly, for the eigenvalue with the largest real part, all terms in 
the summation are positive. Thus, Re 6'XH > 0 and the highest 
frequency locus has a large positive curvature. This means that 
the loci of the extreme real parts, ReXL and ReXH, have large and 
opposite curvatures: the loci abruptly veer away from each other 
a t  the tuned state c = 0. This eigenvalue loci veering is illustrated 
in Fig. 3 for the system parameters of Section 2. It indicates the 
high sensitivity t o  mistuning and is the same phenomenon that 
was observed previously for the lowest and highest frequencies of 
a structural as~ernbly.~ 

The phenomenon of veering away of the loci suggests that 
second-order eigenvalue perturbations can be used effectively t o  
indicate high sensitivity. It also tells us that the modes with ex- 
treme frequencies are more sensitive to  mistuning than the other 
modes and thus will localize first, because the corresponding loci 
have larger curvatures. 



Veering Toward of the Damping Loci 

Now consider the effects of mistuning on the imaginary part of the 
eigenvalues. We have, from Eq. (21): 

A#, 

(23) 
Recall that Im X j  determines the damping in the j t h  mode, with 
flutter occurring if Im X j  5 0. The least stable mode of the tuned 
assembly corresponds t o  the eigenvalue with the smallest imag- 
inary part, Xu,  which in turn is associated with the interblade 
phase angle that yields the modal aerodynamic coefficient with 
the largest imaginary part (from Eq. (14)). Thus, all terms in the 
summation, Eq. (23), are positive for the least stable eigenvalue 
and Im 62Xu > 0. It follows that mistuning increases the imagi- 
nary part of the least stable eigenvalue (because 6X, = 0 for all j )  
and hence it has a stabilizing effect. This beneficial effect of mis- 
tuning on the least stable root holds for any mistuning pattern, 
provided the average blade frequency is not altered by mistuning, 
i.e. c;!.~ 6K; = 0. This finding agrees with that of Bendiksen.' 
We point out, however, that the stabilizing effect of mistuning does 
not necessarily hold for the other eigenvalues, because some of the 
terms (IrnAj - 1m &) in the summation (23) are negative. For ex- 
ample, the most stable root becomes less stable. It is conceivable, 
at  least mathematically, that for some nistuning pattern an eigen- 
value near the least stable one could become unstable (although 
we never encountered such a case numerically). Thus care should 
be exerted when exploiting the stabilizing effect of mistuning on 
flutter. 

Since aerodynamic forces are small, Im h2Xu, although nomi- 
nally a second-order term, is first order or larger, which means that 
mistuning has a first-order or larger effect on the flutter speed 
(again this agrees with the findings of reference 5). This makes 
the use of rnistuning as a means of passive flutter control attrac- 
tive. However, it should be pointed out that Eq. (23) is not a 
valid approximation of the least stable mistuned root in this high 
sensitivity case, because it is precisely the failure of the perturba- 
tion expansion that indicates the large mistuning effects. In order 
to  obtain a correct approximation of the mistuned eigenvalues we 
must use the modified perturbation scheme presented in Section 
5.3. 

Next, we consider the loci of the imaginary parts of the eigen- 
values, ImXj, versus the mistuning strength 6 .  Expectedly, Imb2Xj 
is proportional to  the curvature of the j t h  locus at the tuned state. 
The least and most stable tuued roots, X u  and As, are those with 
the smallest and largest imaginary parts and correspond to  the 
modal aerodynamic coefficients with the largest and smallest imag- 
inary parts, respectively. From Eq. (23) we deduce readily that 
Im S2Xu > 0 and Im S2Xs < 0. Hence for weak interblade coupling 
the curvatures of the loci of Im X u  and Im As are large and oppo- 
site. However, contrary to  the real parts' loci, the locus of the root 
with the smallest imaginary part has positive curvature and vice 
versa. It follows that the loci of the two extreme imaginary parts 
veer toward each other with large curvature a t  the tuned state. 
This phenomenon is illustrated in Fig. 4, which displays the h a g -  
inary parts of the least and most stable roots versus mistuning for 
the parameters of Section 2. We believe the phenomenon of veer- 
ing toward of the damping loci is characteristic of highly sensitive 
aeroelastic systems and has never been examined before. 

5.3 Analysis of Mode Localization by Modified Perturba- 
tion Methods 

Once high sensitivity has been predicted by the perturbation ap- 
proach described above, the next step is to  analyze the charac- 
teristics of the aeroelastic modes of the mistuned system. To do 
so, perturbation methods have to  be modified to  handle the dra- 
matic changes resulting from small mistuning. Such an approach 

has been developed in reference 9 to  analyze localization in struc- 
turally coupled assemblies. 

The key idea behind the modified perturbation scheme is to 
recognize that high sensitivity is caused by the small interblade 
coupling and hence this small parameter ought to  be treated as a 
perturbation. However, if both mistuning and coupling are consid- 
ered perturbations, the unperturbed system consists of uncoupled 
identical blades and thus is N-fold degenerate. To remove this de- 
generacy, we include mistuning i n  the unperturbed state and treat 
the interblade coupling as the perturbation. With this modified 
perturbation scheme the unperturbed system is purely structural, 
consisting of uncoupled mistuned blades in a vaccum. It thus has 
distinct natural frequencies (unless two mistuned blades happen 
to  have the same frequency, but we shall not consider this unlikely 
case). The perturbation consists of the small unsteady aerody- 
namic forces. Each normal mode of the unperturbed system fea- 
tures uncoupled oscillations of a single mistuned blade, with all 
other blades remaining quiescent. When weak interblade coupling 
is introduced, the neighboring blades participate in the modal mo- 
tion, but do so with small amplitudes because the small coupling 
is not sufficient to  cause a resonance among the slightly different 
blades. Each mode of the mistuned assembly is a perturbation 
of the oscillations of a single blade, and thus is localized to  that 
blade or to  the small neighboring geometric region, depending on 
the magnitudes of coupling and mistuning. In the following we 
formalize this description of localization. 

Effect of Aerodynamic Coupling on  Eigenvalues 

With the modified perturbation scheme the unperturbed eigen- 
value problem is: 

where the superscript (m) denotes a modified perturbation quan- 
tity. Since all matrices in Eq. (24) are diagonal, the modified 
unperturbed eigensolutions are simply 

corresponding t o  purely localized oscillations of individual blades 
at their (rotating) mistuned frequencies. (Note that these eigen- 
values are sorted according to  blade number, not by increasing 
frequency.) 

The matrix -A is the rnodified perturbation that provides the 
aerodynamic interblade coupling. From Eq. (B5) one can show 
that the first-order modified eigenvalue perturbation is: 

Note that Eq. (26) implies that,  to  the first order, aerodynamic 
coupling, or cascade affects can be ignored. It is not, however, 
equivalent to  an isolated airfoil analysis, as interblade coupling 
eEects are reflected in the Ai,'s. 

Since the aerodynamic matrix in the physical coordinates, A, 
is circulant, it has identical diagonal elements and one can easily 
show that 

since the trace is an invariant under similarity transformation. 
Equations (26) and (27) mean that to  the first order the eigen- 
values are displaced by the average of the modal aerodynamic co- 
efficients, which provides both damping and additional stiffness t o  
each mode. A similar finding was obtained by Wei and Pierre: 
who showed that for weak structural coupling the eigenvalues are 



shifted approximately by an amount equal to  the coupling stiffness 
between the blades. This suggests that the average modal aerody- 
namic coefficient, T~A/IV, is a good measure of the aerodynamic 
interblade coupling. 

spatial decay of the blade amplitudes away from the large am- 
plitude blade, and for a strongly localized mode only the nearest 
neighboring blades participate in the motion. Third, in a localized 
mode the vibration amplitude of a blade is inversely proportional 
to  the difference between its stiffness and that of the large am- 
plitude blade. Hence two blades that are far apart but whose 
frequencies are sufficiently close may experience local resonances, 
even though the blades between those two vibrate with very small 
amplitudes. This means that depending on the mistuning pat- 
tern for the assembly a mode may be localized about more than 
one blade. Fourth, Eq. (31) shows that the degree of localization 
of a mode depends only upon the ratio of aerodynamic coupling 
to  structural mistuning. Thus localization increases as interblade 
coupling decreases or as mistuning increases. Finally, second-order 
mode shape perturbations could be calculated but may not reveal 
new qualitative features. 

To the first order in the aerodynamic effects, the eigenvalues 
of the mistuned assembly are: 

This approximation holds for small values of the ratio of aerody- 
namic coupling to  frequency mistuning, that is, for not-too-small 
mistuning. It is not valid in the range of very small mistuning val- 
ues where curve veering phenomena and high sensitivity occur. In 

this region the classical perturbation method described in Sections 
5.1 and 5.2 approximates the dynamics well. 

Now consider the loci of the real and imaginary parts of the 
eigenvalues versus mistuning strength, e .  To the first order we have 
ReX; .- (K,+61Ci -Re(TrA)/N)/M. This tells us that away from 
the veering region, the loci of the real parts tend to straight lines 
whose slopes are determined by the individual blade mistunings. 
This trend is indeed observed in Fig. 3 for not-too-_small mistuning. 
For the imaginary parts we have Im A, e -1m T r A I N M  and thus 
we expect the loci t o  approach a straight line with zero slope as 
mistuning increases. This is indeed observed in Fig. 4, although 
the imaginary parts of the eigenvalues tend t o  distinct values, while 
the first-order result, Eq. (28), predicts identical asymptotes. 

6. R E S U L T S  A N D  D I S C U S S I O N  

The aeroelastic eigenvalue problem is solved for a tuned assembly 
and for several mistuning strengths, with the system parameters 
given in Section 2. The mistuning values are obtained from a 
random number generator with a uniform probability distribution. 
We present typical results that demonstrate the extreme sensitivity 
of the blade assembly dynamics to  mistuning and that confirm the 
general trends predicted by our perturbation analyses. 

Loss of Eigenstructure 
We can improve our approximation by including second-order 

effects in the aerodynamic coupling. This yields: Figure 5 displays the root locus of the 56 aeroelastic eigenvalues 
in the complex plane for various mistuning values. The real part 
of the eigenvalues is plotted against the imaginary part. Note the 
regular pattern of the root locus of the perfectly tuned assembly 
in Fig. 5a, which is characteristic of the existence of constant in- 
terblade phase angle modes. Also note that all the eigenvalues 
have positive (although small) imaginary parts, which ensures sta- 
bility in all modes. Finally, observe that all eigenvalues have real 
parts clustered in a relatively narrow interval (all frequencies of 

These perturbation results are compared with numerical solutions 
in Section 6. 

Localized Aeroelastic Mode Shapes 

Using Eq. (B7), we obtain the first-order modified perturbations 
of the eigenvectors as 

oscillation are within 5% of the assumed frequency). This is char- 
acteristic of weakly coupled systems, which feature closely-spaced 
eigenvalues. Here the interblade coupling is aerodynamic and thus 
is weak, leading to  a narrow band of frequencies for the tuned 
system. 

Figs. 5b-d depict the root locus of mistuned assemblies. As 
mistuning increases we observe that the regularity of the root lo- 
cus is gradually lost, and for small mistuning 6 2 1.9% the locus 
consists of a constellation of eigenvalues with little discernable pat- 
tern. We refer to  this phenomenon as loss of eigenstructure. It is 
yet another illustration of the extreme sensitivity of the eigensolu- 
tion to  mistuning. Although the mistuned eigenvalues are appar- 
ently randomly scattered, we observe two trends. - First, mistuning 
results in the widening of the range of the real parts of the eigen- 
values, i.e. the natural frequencies move apart when mistuning is 
introduced. This is consistent with the veering away of the lowest 
and highest frequencies shown in Fig. 3. Second, the imaginary 
parts of the eigenvalues (corresponding to  aerodynamic damping) 
come closer together as mistuning increases. In particular, the 
least stable eigenvalue becomes more stable. This narrowing of 
the root locus along the imaginary direction confirms the veering 
toward of the least and most stable eigenvalues' imaginary parts 
depicted in Fig. 4. 

Combining Eq. (30) with Eq. (25), we obtain the approximate 
mode shapes to  the first order in the aerodynamic coupling: 

. . .  A;-1,i 
1 

Ai+l,i 
u; N 

6Zil - 61i; ' ' bl<i-l - 6K; ' ' 6Ki+1 - 6Ki ' 
position i 

Several remarks are in order. First, the modified perturbation 
method is valid for small aerodynamic coupling t o  mistuning ra- 
tio. This means that all but the ith element of the ith mode shape 
in Eq. (31) are much smaller than one. Hence the ith aeroelastic 
mode shape is localized about the ith blade. The other blades par- 
ticipate in the modal motion, but with much smaller amplitudes. 
It is important to  note that localization occurs for mistuning that 
is not too small, that is, away from the veering region in the eigen- 
value plots, Figs. 3 and 4. Second, we observe in Eq. (31) that 
the vibration amplitude of a blade in a localized mode is directly 
proportional t o  the amount of aerodynamic coupling between that 
blade and the large amplitude blade. Since we have seen in Sec- 
tion 4 that the coupling between two blades decreases rapidly as 
the distance between them increases, it suggests that only those 
blades that are close t o  the large amplitude blade vibrate with an 
amplitude that is not negligible. In other words, there is a rapid 

Localization of Aeroelastic Modes 

Fig. 6 displays the eigenvector corresponding t o  the lowest fre- 
quency eigenvalue for various mistuning strengths. Both the am- 
plitude pattern and the interblade phase angle pattern of the mode 
shapes are depicted. As expected, the mode shape of the tuned 
system features identical amplitudes for all blades and a constant 
interblade phase angle. When mistuning increases the mode shape 
is altered fundamentally: the whole assembly ceases t o  participate 



in the motion and the vibration becomes confined t o  a few of the 
blades, the others vibrating with negligible amplitudes. This in- 
dicates the occurrence of the phenomenon of localization of the 
aeroelastic mode shapes. Note that the constant interblade phase 
angle of the tuned system is lost when localization occurs, and 
no pattern emerges for the phase angles of the mistuned system's 
mode. Also note that the transition from extended to  localized 
modes is very rapid in Fig. 6: substantial localization already oc- 
curs for the very small mistuning E = 0.19%, which is unavoidable 
in practice. Localization becomes severe as mistuning increases to  
c = 0.47%. Although a single mode is displayed in Fig. 6, our 
results show that all the mode shapes of the mistuned asseml)ly 
become localized. 

The discussion in Section 5.2 indicates that the modes with 
the lowest and highest frequency are most sensitive to  mistuniug 
and thus may be the first to  become localized. To confirm this 
conjecture, Fig. 7 displays the amplitude patterns of four aeroelas- 
tic mode shapes for a given mistuning strength: two modes at the 
extremes of the frequency cluster, the lowest and highest frequency 
modes, and two modes near the middle of the frequency cluster, 
the least and most stable modes. Indeed, observe that the modes 
with the extreme frequencies are substantially more localized than 
those near the middle of the frequency band. This confirms our 
interpretation of Eq. (22). Although we do not show it here, we 
also observed that the four modes in Fig. 7 become more local- 
ized as mistuning increases, and achieve nearly the same degree of 
localization. 

Another finding in Section 5.2 is that the sensitivity t o  mis- 
tuning increases with the number of blades. In order to  illustrate 
this, Fig. 8 displays the amplitude patterns of the highest frequency 
modes for mistuned assemblies made of 28 and 56 blades. We note 
that although the mistuning standard deviation is the same for 
both assemblies, the mode of the 56-blade assembly is much more 
strongly localized than that of the 28-blade assembly. This con- 
firms our finding that the degree of localization increases with the 
number of blades. It means that mistuning has a greater impact 
on the dynamics of rotors with many blades such as turbines. 

In Section 5 we showed by perturbation methods that both the 
sensitivity to  mistuning and the degree of localization increase as 
the interblade coupling decreases. In our model we can vary the 
unsteady aerodynamic coupling forces simply by adjusting the air 
density: a decrease in air density results in a decrease of all the 
elements of A by the same factor. Figure 9 displays mode shapes 
of assemblies with identical mistuning strength but different air 
densities. Observe that the modes become more strongly localized 
as the air density, and thus the interblade coupling, decreases. 

Comparison of Perturbation and Numerical Results 

Here we verify the validity of the perturbation results derived in 
Section 5 by comparing them with "exact" numerical results. Fig- 
ure 10 depicts the loci of the real parts of the lowest and high- 
est frequency eigenvalues versus mistuning. Both the first- and 
second-order classical perturbation results (Eqs. (19) and (22)) 
and the numerical solution of the aeroelastic eigenvalue problem 
(1) are shown. As discussed in Section 5.1, we observe that the 
first-order eigenvalue perturbation does not capture the system's 
high sensitivity. The second-order perturbation solution provides 
the parabola tangent to  the exact solution. It predicts the veering 
away of the loci and thus the high sensitivity t o  mistuning. How- 
ever, this approximation is valid for very small mistuning only; for 
c > 0.5% it grossly overpredicts the exact solution. 

Figure 11 displays the loci of the imaginary parts of the least 
and most stable eigenvalues, obtained by first- and second-order 
classical perturbations (Eqs. (19) and (23)) and by direct solution 
of Eq. (1). Again, only the second-order eigenvalue perturbation 
predicts the veering toward of the loci. Neither perturbation result 

approximates the exact solution adequately, except for very small 
mistuning ( E  < 0.5%). 

The exact eigenvalues are compared with the first- and second- 
order modified perturbation results in Figs. 12 and 13. For the loci 
of the real parts in Fig. 12, we note that the modified pertur- 
bation method approximates the exact solution remarkably well 
away from the veering region. This means that the treatment of 
the small aerodynamic coupling as a perturbation in Section 5.3 
is a valid methodology and that for small (but not too small) mis- 
tuning the modes have a localized character. As expected, the 
modified perturbation approximation deteriorates for very small 
mistuning, that is, in the veering region. In this region the classi- 
cal perturbation method must be used; see Figs. 10 and 11. The 
mistuning range where neither perturbation scheme gives accurate 
results defines the transition from constant interblade phase angle 
modes t o  localized modes. 

In Fig. 13, which is for the imaginary parts of the least and 
most stable eigenvalues, the modified perturbation results agree 
qualitatively with the exact solution. We think the approxima- 
tion is not accurate because we had difficulties making sure that 
the same eigenvalues were used in the perturbation and exact so- 
lutions. In other words, the perturbation results in Fig. 13 most 
likely correspond t o  eigenvalues other than the most and least sta- 
Me, and may approximate those eigenvalues well. 

7. CONCLUDING REMARKS 
The primary findings of our study are: 

Weak aerodynamic (or, for that matter, structural) coupling 
between blades results in high sensitivity t o  mistuning and 
qualitative alterations of the blade assembly's dynamics. 

The root locus of the aeroelastic eigenvalues (frequency ver- 
sus damping) loses the regular pattern that characterizes the 
tuned system to  become apparently randomly scattered for 
small mistuning. 

When plotted against mistuning strength, the real parts of the 
eigenvalues (the frequencies) veer away from each other with 
high curvature, while the imaginary parts of the eigenvalues 
(the damping values) veer toward each other abruptly. 

The constant interblade phase angle aeroelastic mode shapes 
of the tuned assembly are severely altered when mistuning 
is present. The mistuned modes are not extended as in the 
tuned case, but each mode is strongly localized to  a few blades 
of the assembly and no pattern can be discerned for the in- 
terblade phase angles. 

The sensitivity to  mistuning is governed by the interblade 
coupling strength. For our model, the interblade coupling 
is measured by the trace of the aerodynamic matrix divided 
by the number of blades, or by the average of the modal 
aerodynamic coefficients. Sensitivity is inversely proportional 
to  that measure. 
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APPENDIX A: PROOFS ON CIRCULANT MATRICES 

It can be shown that  a matrix C is circulant if and only if CII = 
I I C ,  where II is the N x N permutation matrix 

The powers of the permutation matrix are 112 = ci rc(0 ,0 ,1 ,0 , .  . . , 0 )  
113 = ci rc(0 ,0 ,0 ,1 ,0 , .  . . , O ) ,  etc., until IIn = 11° = I. A general 
circulant may thus be written as 

where p c  is a polynomial of degree N - 1. This notation is con- 
venient when it comes to  the diagonalization of a circulant. We 
introduce the matrix E such that 

which can be shown easily by calculating the sum of the roots of 
one. 

Next, we prove that the transformation E'CE diagonalizes any 
circulant C, which implies that the columns of E are the eigenvec- 
tors of all circulant matrices. We do this by first showing that E 
diagonalizes II by proving the relationship 

II = EOE* where R = d iag ( l ,  w, w2,.  . . , wN-') ( A 5 )  

where for convenience w = exp(%). Equation (A5) holds because 

l N  
if j=k-1 

= - C w(j-k+l)(~-l)  
r=1 

('46) 
0 otherwise 

which is precisely the form of the permutation matrix II. 

Using the previously established equation for a circulant C, we 
have 

Hence the eigenvalues and eigenvectors of a circulant matrix are 
given by Eqs. (3) and (4). 

APPENDIX B: EIGENSOLUTION PERTURBATIONS 

Consider the eigenvalue problem: 

where Po, &P, and Q are N x N complex matrices and (X,,u,) 
an  eigensolution. \Ye denote the eigensolution of the unperturbed 
eigenvalue value problem (for &P = 0 )  by (Aoj, uoi), j = 1, . . . , N. 
Furthermore, we introduce the transposed unperturbed eigenvalue 
problem as: 

Note that  Eq. (B2) is no f  the adjoint eigenvalue problem. One can 
easily show that  p,j = A,, and that the two sets of eigenvectors of 
the unperturbed problems are biorthogonal: 

Next, we expand the eigensolution of the perturbed problem to  
the second-order as 

First we note that  E is unitary., tha t  is, EE* = I. This is because 



The eigenvalue perturbations can be shown to  be: 

k #, 

The first-order eigenvector perturbation is: 

We do not give d2uj since we do not make use of it in the paper. 
Reference 15 describes the general approach to  prove Eqs. (B5-B7). 

For the aeroelastic eigenvalue problem, Eq. ( I ) ,  we have p,, = 
Xoj ,  uoj = ejr and vO, = ej. 

Matrix I Re X T J  I Im X T J  I 

Table 1: Real and imaginary parts of the least stable eigenvalue 
of a tuned assembly, obtained with the full aerodynamic matrix 
A and with the tridiagonal-circulant and pentadiagonal-circulant 
truncations of A. Observe the good approximation provided by 
the penta-diagonal matrix, which accounts only for nearest and 
next-to-nearest neighbor coupling between blades. 

Mode 1; ui = 0 
Standing wave 

Modes 3 and 55; 0 3  = -055 = $ 
Traveling waves 

Modes 2 and 56; u2 = -056 = 
Traveling waves 

Modes 27 and 31; u2;. = -ql = %x2E 56 

Traveling waves 

Modes 28 and 30; uls = -qO = '&&I Mode 29; u29 = rr 
Traveling waves 

56 Standing wave 

Figure 1 Typical constant interblade phase angle modes of a 
tuned assembly of 56 blades. The deflection pattern in the physical 
coordinates, u, is shown at a given instant of time. Note the stand- 
ing or traveling character of the mode shapes. Arrows indicate the 
opposite directions of travel of the waves. 

Row number, i 
Figure 2 Magnitude of the elements of the 42nd column of the 
aerodynamic matrix in the physical coordinates, A, for the pa- 
rameters in Section 2. Note the dominance of the near diagonal 
elements. 
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Mistuning, E (%) 

Figure 3 Loci of the real parts (frequency) of the eigenvalues 
corresponding to  the highest and lowest frequency modes, versus 
mistuning strength. Observe the abrupt veering away of the loci 
for small mistuning. 

Mistuning, E (%) 

Figure 4 Loci of the imaginary parts (damping) of the least and 
most stable eigenvalues versus mistuning strength. Observe the 
rapid veering toward of the loci as mistuning increases. 



(a) Tuned, E = 0 

(b) Mistuned: E = 0.95% 

( c )  Mistuned, E = 1.90% 
1 2 4  1 

I m  X 
(d) Mistuned, E = 4.76% 

Figure 5 Root locus of the 56 aeroelastic eigenvalues in the com- 
plex plane (frequency versus damping) for various values of blade 
mistuning. The regular root locus of the tuned assembly becomes 
scattered in a random-like fashion as mistuning increases. 
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Fig. 6a The patterns of amplitudes. 
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Fig. 6b The patterns of interblade phase angles. 

Figure 6 Aeroelastic mode shape associated with the lowest fre- 
quency eigenvalue, X L ,  for various mistuning strengths: (a) the 
patterns of amplitudes and (b) the patterns of interblade phase an- 
gles. The extended mode of the tuned system becomes severely lo- 
calized for small mistuning and loses its constant interblade phase 
angle. 
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(a) Lowest frequency mode; XL = XI 
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Blade number, i 

(b) Least stable mode; X u  = XZ6 
I T I 
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Blade number, i 

Ic) Most stable mode; As = X3.4 
I T I 

1 6 11 16 21 26 31 36 41 46 51 56 

Blade number, i 

(d) Highest frequency mode; AH = X56 

Figure 7 Amplitude patterns of aeroelastic mode shapes of an 
assembly with r = 0.95% mistuning. The lowest and highest fre- 
quency modes and the least and most stable modes are shown. 
Observe that the modes near the edges of the frequency cluster 
(modes 1 and 56) are more localized than those near the middle 
of the frequency band (modes 26 and 34). 
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(a) 56-blade assembly 
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1 10 19 28 

Blade number, i 
Figure 10 Loci of the real parts (frequency) of the lowest and high- 
est frequency eigenvalues versus mistuning, by "exact" numerical 
solution method (-), first-order classical perturbation method (- 
- -), and second-order classical perturbation method (- - -). (b) 28-blade assembly 

Figure 8 Amplitude pattern of the highest frequency mode (AH) 
for mistuned assemblies with 28 and 56 blades. The mistuning 
strength is 6 = 2.85%. Note the more severe localization for N = 
56. 
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(a) Nominal air density 
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Figure 11 Loci of the imaginary parts (damping) of the least and 
most stable eigenvalues versus mistuning, by "exact" numerical 
solution method (-), first-order classical perturbation method (- 
- -), and second-order classical perturbation method (- - -). 
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Blade number, i 

(b) Low air density 

Figure 9 Amplitude pattern of the highest frequency mode (AH) 
for mistuned assemblies (a) with a nominal air density and (b) 
with an air density one-quarter the nominal value. The mistuning 
strength is 6 = 4.76%. Observe the much stronger localization 
featured by the assembly with the lower air density. 
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Figure 12 Loci of the real parts (frequency) of thelowest and high- 
est frequency eigenvalues versus mistuning, by "exact" numerical 
solution method (-), first-order modified perturbation method (- 
- -), and second-order modified perturbation method (- - -). 
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Figure 13 Loci of the imaginary parts (damping) of the least and 
most stable eigenvalues versus mistuning, by "exact" numerical 
solution method (-), first-order modified perturbation method (- 
- -), and second-order modified perturbation method (- - -). 


