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SHUTTLE ASCENT TRAJECTORY OPTIMIZATION WITH FUNCTION
SPACE QUASI-NEWTON TECHNIQUES *

E. R. Edge and W.F. Powers
The University of Michigan
Ann Arbor, Michigan

Abstract

A Space Shuttle ascent trajectory optimirnation
problem from lift-off to orbital insertion is
solved with a function space version of a Quasi-
Newton parameter optimization method developed
by Broyden. The problem includes five parameter
and one bounded function controls, two state:

variable constraints, and four terminal conditions.

The bounded controls are treated directly while
the remaining constraints are adjoined to the

* performance index (maximum payload} with

penalty functions. The problem is formulated as
a four-phase variational problem (liftoff, pitch-
over, gravity-turn, linear tangent steering) and
the appropriate gradients are developed by first
variation theory. A projection operator is in-
troduced to aid in the interpretation of the
algorithm with mixed parameter and function
controls. Also, by proper partitioning of the
computation sequence and storage, storage
problems associated with this algorithm are
virtually eliminated. The algorithm is applied to
the pressure-fed series-burn beooster {040C
orbiter vehicle and typical simulations are pre-
sented. In addition to a discussion of conver -
gence characteristics, the cffects of a man-in-
the-loop in the optimization process {with a time-
shared computer graphies ferminal) are pre-
sented.

1, NTRODUCTION

A number of function space versions of
successful parameter optimization methods have
been proposed for optimal control problems in
the past few years, especially the function space
Davidon method.}-8 However, in Refs. 1-8, only
simple optimal control problems were solved,
and even though the convergence propertics were
good, the storage problems associated with the
methods suggested that they might not be appli-
cable to larger-scale problems. Thus, one of
the major poals of this research was to apply one
of the methods, the function space Broyden
method?, to a nontrivial aerospace trajectory
problem reguiring considerable storage and
numerical integration. As will be discussed
later, by proper partiticning of the computation

*This work was supported by the National Aero-
nautics and Space Administration Johnson Space
Center under Contract NAS 9-12872 and the
National Science Foundation under Grant GK-
30115,

sequence and storage, the drawback of the

algorithms due to storage problems is virtually
climinated.

The algorithm is applied to the payload
maximization problem for the pressure-fed series-
burn shuttle booster /040C orbiter vehicle.
Although this is not the carrent shuttle design,
this model was chosen for two reasons: (1) NASA-
JSC had considerable data and simulation results
for this vehicle when the study was initiated, and
{2} it was reported that a singular thrusting arc
might exist in the boost stage of the optimal
trajectory?. Since the function space quasi-
Newton algorithms were successful on 2 number
of other problems with bounded controls and
sinpgular subarcss, the possibility of a singular
subarc served as an additional test for the
algorithms,

In Section 2, the vehicle, mission constraints,
and performance index are defined. In Section 3,
the function space Broyden algorithm and
associated theory will be presented, while Section
4 presents the important computer implementation
aspects of the algorithm. Numerical results are
presented in Section 5 and conclusions in Section
6. It should be noted at the outset that this paper
is mainly concerned with the study and improve-
ment of the function space quasi-Newton methods,
and not with a comparison to other algorithms.,

2. VEHICLE AND MISSION

The vehicle and mission considered are taken
from Reference 10. The goal is to determine the
control history for the pressurc-fed series burn
shuttle booster/040C orbiter launched from KSC
which will yield maximum payload deliverable to
a50 x 100 nm orbit inclined 28. 5 degrees. The
vehicle is constrained to a non-lifting trajectory
with a maximum dynamic pressure of 650 psf
and a maximum acceleration of 3.0g's. The
trajectory is determined by two controls, the
mass flow rate m, which implies the thrust mag-
nitude and a thrust angle.

The overall trajectory is subdivided into four
"phases'" FEach of the phases is characterized
by the way in which the thrust angle is determined
and by the coordinate system in which the
equations of motion are being integrated (see
Figure 1).

————




FIRST STAGE SE.COND STAGE
COORDINATE SYSTEM SPHERICAL ROTATING POLAR
PHASE 1 PHASE: 2 PHASE 3 PHASE 4
VERTICAL PITCH GRAVITY LINEAR

RISE OVER TURN TANGENT
Figure 1. Defirition of trajectory phases.

The equations of motion for the first stage are
integrated in a sphcricél coordinate system which
rotates with the earth. This coordinate system
was chosen because of the ease of representing
initial conditions and aerodynamic forces.

Assuming the first stage engines are perfectly
expanded to vacuum pressure, the thrust
magnitude is

*

lTlf =Ispl 1, -
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The first stage burn is divided into three
phases. They are,

_ 1) Phasel - vertical rise for ten seconds,
T l ] r. ’

ii} Phase 2 - pitch over at a constant rate
from vertical and at a constant azimuth angle
for 10 seconds(sce Figure 2).

T it (=]

Figure 2, Thrust angles for first stage,

The plane defined by EO and :4) is the local
horizontal. The unit vector €, points in the
easterly direction for 0 # ¢ orf n. The vehicle
pitches over and at the same time the plane of
the orbit is determined by thrusting at a constant
azirnuth angle &, The initial thrust is in the
vertical direction, i.e., vy =% . The vehicle
pitches over with y = constafit, thus,

yzg' -y {t-10), te [10,20) (2.2)
It is noted that ¢ will not correspond to the final
inclination. However, the [inal inclination will
be very strongly influenced by § and, in fact, &
will be the primary control which affeets the
final orbital’inclination.

iil} Phase 3 - gravity turn,i.e., the thrust is
parallel to the velocity { T || V), This phase
terminates when all fuel is exhausted in the first
stage.

Aecrodynamic drag is approximately 2% of the
total force acting on the vehicle after staging and
drops off rapidly thereafter. Thus, zerodynamic
forces are neglected during second stage burn.
Assuming no out of plane thrust during second
stage this allows the equations of motion to be
integrated in a polar coordinate system. The
change of coordinate systems results in a new
set of state variables and a set of transformation
equations relating the state after staging to the
state before staging. By integrating the equations
in a polar coordinate systemn, the number of state
variables is reduced from six to four, and the
terminal boundary conditions and adjoint equations
are simplified.

The total second stage burn is:

iv) Phase 4 - during second stage burn the
thrust is orientated according to the linear
tangent steering law, i.e.,

tany =.at +b(a,b constants) (2.3)
where y is the angle between the thrust vector
and the local horizontal. The second stage
engines are perfectly expanded to vacuum pres-
sure, thus,

IT, |- 1

sp, 2] (2.4)

This phase terminates when all fuel is exhausted
in the second stage.

3. THE OPTIMIZATION PROBLEM
AND ALGORITHM

3.1 The Broyden Algorithm in Dyadic Form

A motivating way of viewing the quasi-Newton
methods is.gs a class of algorithms between the
first order ~ and second-order-" optimal
control gradient methods. The goal of a quasi-
Newton 2lgorithm is Lo build information about
the second-variation operator without computing
it explicitly, i.e., based upon gradient informa-
tion only., The Broyden algorithm will be dis-
cussed here, however the Davidon, conjugate



gradient, and gradient algorithms are casily in-
corporated into the same computer program,
which is the case of the computer program des- -
cribed in Ref. 16.

Consider the general problem:
t

Minimize: J(u) = $(x) + j‘t: Lit, %, u) dt (3.1)

Subject to: x = £ {t,x,u), x{t ) = x (x = k-vector)
. 0 o (3.2)

It.'!.1 l < Ki {i=1,...,m) {u= m-vector)
to’ tf specified
If terminal conditions are present, they are in-
clided in the $({x_.) - term by the method of penalty
functions. In all of the algorithms, the following

equations are required:

H =L+ A £ (%)

(3.3)
- g_‘H _ ‘.ai
k—-ax.l(tf)—axf (3.4)
. o
g (u) * Ba {3.5)
The function H is the Hamiltonian and g (u) = 81/

du is the function space gradient.

Each algorithm reguires the specification of
an initial control u (t). In addition, the Broyden
and Davidon alpgorithms require the specification

f a positive-definite, self-adjoint linear operator,
Et , the simplest choice being the identity opera-
tor, On each iterate a new control is generated
by the update formula,

u.1+1=u.1+u»idi (3.6)
where
. A
d, = search direction=—Higi (3.7)
i ;
and ¢, = scalar parameter defined by a one-

dimensional search technique which minimizes
J with respectto o,

A
The H operator is updated by

A M M

B eH+ |14 <Y'1’H'1Y1>Jsi><si 5 ><Hyy My,

i+ . Tes,ye
i+l i <si, Y1> <s.1, Yi> <sl, y’l <si, Yi>
(3. 8)

where

5T Na 3.9]
v, =elu )-8l {3.10)
<, v = ﬁctf u Ve dt (3.11)

L]

and u »><v is an integral kernel dyadic operator

such that,

i

t
(us<v)w .f; £ uft) v{s) Tw(s) ds

o

1

t
u (t) ftf v{s) Vs (s} ds (3.12)
(o]

The primary difficulty in implementing the
quasi-Newton type algorithms on optimal control
problems lies in representing the infinite-dim-

ensional integral kernel flnoperator, a function of .

two variables., One way to oyercome this diffi-
culty is to observe that only H, g.(not H. itself) is
needed to compute d.. Thus to ilmplemlent the
Broyden algorithm, ‘where g is the gradient of a
functional, and u, s, and y are time functions, we
proceed as follows:

A
i) Specify H (any positive definite self-
adjoint operator ).
A
ii) Express H, in Eq. (3.8} as a sum back to
Ho' Operate on ‘the resultant expression for ;
with g te obtain the following search direction:

A
A i-1 <y, Hy>y<s.,g>
diz—HOgi_ (1+<3J iJ ):E;L 1> 85 °
J=0 i’ ph
A
<Hy. ,g> <8, 8.7 A
B e SO i ¥ H.y, (3.13)
<sj,yj> Bo<sny> 3

Equation (3.13) requires the gomputation of
inner products of the functions H.y.,s,, and v_,
and operating with fy . The functions 1(s A 1 ,

s. .} are available from past iterations.” To com-
ptﬁcc the functions H.y., we need only replace -g,
by v, in Egq. (3.13),i'<., B operating on y.instead
of _éi. Then, for the case 1-1: t

A

A A i-2 <yj,H.y.>\ <sj,yi_1> . -
Ipii--lyi—lzl-loyi—lJr ! t y.> ]<s y.>

3=0 3" i
A
<ijj.yi_l> <55 Y5> A
<.y STy Y (3.14)

i i3
A

Thus Hi ¥y can be computed in a way requiring

only inner  products and operation with o L.
as was the case for -H. g, Note that 2i + 4 time
functions must be storédlafter the i-iteration in
order to compute the i + 1 iterate, i.e.,

(So""'si) i +1 functions
A A

(HOYO. 'Hi—-lyi-l) i functions
gi'ui+1’yi-1 3 functions

L —— i 1 e S




Figure 3 shows the flow of the function space
Broyden algorithm on a general iterate,

(1) = % () I—\
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Figure 3. Flow of the Broyden Algorithm

3.2 Function and Parameter Controls

Some optimization problems are most natu-
rally formulated using a combination of functio
and parameter controls from the product space

L™ [t ,tf] x R, and the shuttle ascent
[

optimization is such a problem.

Consider the class of optimal contrel prob-
lems whose control space is

- m
u= (ul(t), - ,um(t); Cpoeeen cn)e L2 [ £ tf] x R"
(3.15)
. m
where (ul(t), e U (t) e L, [to,tf]
n
{ S cn) € R

Upon expansion of the performance index (3.1)

about a candidate control and appropriate defini-

tions of ad_lzint' functions (Eq. 3.4), the change in
.12,

cost is:

¢ ¢
GJ:LfHuTGudt+j;chT5cdt (3.16)
o] Le]

Since ¢, = constant, then & ¢ = dc and Eq, 3.16

becomes

t
T T ot
§ u dt + de _f;HCdt

o

b
s 7= [ H (3.17)
o

The quasi-Newton methods require inner products
involving the gradient of the cost with respect to
the contral, The choice of the inner product must
be consistent with existing convergence criteria
for the methods,! This consistency may be
obtained with the projection operator approach
which follows,

Note that finite elements in R defined on
{ t ot ] are also elements of 1,7 [ to,tf] Thus
the contreol (3.15) may be treated as an element of
LP[t ,tf] {(p = m + n} with a special structure,
-Then, Phe'admissible control space is a subspace
S of sz[ to,t] ,

- - m -
s ={u | w i =1,...,m)e Lz[ to,tf] s (i=m +1,..., p)

finite constant time functions.} (3.18)

In optimal control the linear-quadratic problem
{(LQP) plays a role similar to the unconstrained
quadratic function minimization problem in para-
meter optimization with respect to the develop-
ment of properties for quasi-Newton algorithms.
The following convergence theorem applies to the
LOP, where g is the gradient of the performance
index with respect to the control.

Let M be a linear subspace of a
Hilbert space D. Let P:D-- M be
an operator which is linear, self-
adjoint, and idempotent (projection
operator). If of the quasi-
Newton algorith?ns is chosen to be
Pandu e M, then u, ¢ M for alli,
and ° !

Property:

A 2
lim & g || =0,
o “k
koo
that is, the projection of the
gradient onto M tends to zero (the
condition for convergence).

{3.19)

A projection operator P : Lg [t,t] ~S
which allows for a consistent niethod %or handling
combinations of function and constant type con-
trols is given in the following property, which is

proved in Appendix B.

— A ) -
Property: Let A=|-.-2---lwhere A« 1P [t.,t]
- 2" o f
A (t)
¢
m p-m

and Af(t) el [ to,tf] » At e L

2 2

. m
[ to’ tf] . Define P.Lz [ to,tf]-;- S by



AT =t (3.20)

-t .
f o

Then, P is a projection operator,
The above property implies how the first

variation (3.17) should be utilized in the quasi-
Newton algorithms. First, considering {u(t}), ..

. 1
. 1'\;{2(12), Cpreves cn) as an clement of
o : .
L2 [ to,tf] . the gradient is
g= H I-Ic] {3.21)

A —-—
and an admissible choice for HO, say Ho’ is the
projection operator (3.20), which implies that
the initial search direction is

~ L (o) 1 t (o}
H g = [H s T—— fH di] {(3.22)
oo u tf-fo fto c

However, note that this is equivalent to assuming

1 t

g={1 :—~—— pf H dt}:j {3.23)
l: ERTN ft ¢
o
ith ¢ u (t ¢ )¢ L m[ t,t,]
Wi (ul(ls s ey m( )s Cls--v’ n) 2 o’ f X,
Rn, and H =1 since
A ° t
e = fo) 1 f (o) e

Hogo—lgo—[Hu ‘tf_to ft H_ dt) —H0g0{3.24)

Furthermore, the choice of definition for the
gradient {3.23) has the same convergence
properties as the choice {3.21) since

1&E 1~ o
A
implies, with H0= I,
A ~
- = = - —_ . 5
M g = 1lg = T1H g~ o (3.25)

For convenience, Eq. (3,23} will be utilized as
the gradient expression.

3.3 The First Variation

For convenicnce let u denote the total control
vector (C, ... ,CS,!m[). The cquations of motion
may be symbolized by

xo

=£(tsx:u) té‘\-O’ts)

(3.26)

Wl

I
-~
s
ke

s

t e[t utf]

where t and t_are the staging and final times,
respectively. “At t_the states are related by the
transformation equation,

¥t = ge(t)) (3.27)

The terminal boundary conditions are handled
by the method of quadratic penalty functions, and
the state variable inequality constraints are
handled by integral quadratic penalty functions.
The performance index is,

e 22
) = -m Py (% (8) Xy 4P, () (8} 5, ) L (4)-
o~ .’2 :
*3f
" P4fts- (q 6501 U (q-650) at
e .

-
+ P[5 (act-3. 00)% U {acc-3, 00) dt (3.28)
to

{
+ Pfo (acc-3.00)° U (acc-3. 00) dt
tt
s

2
+P, (Cos ®(t ) - Cos®)".

Then, the following multistage optimal control
problem is defined:

10- 20-
Min, J(uw) =& (x ,x_, %)+ [ L(tx,u)at+f
. o s'Tf 1
0 10+
s Y
L (t, %, u} dt+f L,(t, %, u) dt+f * L (¢, %, u) d¢
2 3 4
_ 20+ t+
(3.29)
Subject to: x = f (£, x, ) (b, t<t)
and ¥ -T(t,% w) (£, <t <ty (3. 30)
With
H:L+kT£ on[to,ts)
e T (3.3}
H=L+x f on[ts,tf],
the adjoint equations and associated boundary
conditions are (see Ref. 12 or 16):
. aH
A= e on [t ,10). (10,20), (20,t)
< 9Ft -
A= s on[ts,tf]
N (t) = ¢xif i=1,2,3 (3. 32)

?I’(t )} =0 ==> equation forf)r {t)
f T 4§
- Q8 ot

Mts) T oox it: (ts) ¥ lt)xs

H(t:) = ﬁ(t;) => 8, ().

% e




TABLE 1.

MISSION TIMETABLE

to = 0 sec 10 sec 20 sec
X)X fixed free free
xé free

}___._...,....__..__.._._......._.___._

7
|
1
i
!
!
[
3
|
1
|
|
|
|
!
|
|
!

I T ;
t- free | tt free |t free
s | 1 ] b3
) |
- I ¥ty = -y 1 %K
XXy free 1 x{ts) g(x(ts‘) R free
I
- ! { %y =
¢5(X6) =0 } T poEEg) =
0 l P4
Mass of Fuel ! Trans- t Mass of fuel
Ist stage | formation E 2nd stage
depletedde- | Equations i depleted
fines t ! ! defines t
] ! ; £
|

Then,the change in cost due to §u and dmo is:

§J= Sy (EHSX (e )] @
J—{(b xé +k6(t0)_h6(ts) + 4( 5}‘ 4( f}] mO
20- b
J’f Ty at+ f Ta b+ [ SH §dt
204
te
+fRT 5y dt (3. 33)
g+ ¥
(ni—l)_

The particular choices for d m_=m
m (n) § u(t) = (ni 1) n}(t), for the no+1
1terate, are governed by the choice of algorithm.

We now wish to interpret Eq. (3. 33} for use
in the Broyden method. Noting the form of Xq.
(3.17), we rewrite the first term of Eq. (3. 33)
as

te
dmof Alt~t ) at, (3.34)
t

<}
where A is the coefficient of dm  in Eq. (3. 33).
Then, the gradient correspondingoto Eq. {3.23)
is:
t t
1 f j 1 £ |
= Afit -t yat i —— ("H dt 'H
t-t, fto o temt ffo (S

Y4
(3. 35)

4. COMPUTER IMPLEMENTATION

4.1 Computer Graphics Aspects

Figure 4 is the flow diagram of the shuttle
ascent irajectory optimization program. The
main iteration loop consists of the forward in-
tegration, backward integration, calculation of
search direction, 1-D search, and convergence
check. These operations are repeated for a
given set of penalty coefficients until an
Yacceptable' degree of convergence is obtained,
At this point the human operator interrupts the
executing program,

Because the terminal boundary conditions
and state variable inequality constraints are

INITIATL CONTROL
INPUT ""[
CURVEFITAERODYNAMIC COEF.

FORWARD INTEGRATION

I

AN BACKWARD INTEGRATION

i

CALCULATE SEARCH DIRECTION

NO I

1-D SEARCH )
N

|

CONVERGENCE CHECK

ENCREASE PENALTY COEF.

CRT GRAPHIC DISPLAY

l

CALCOMP FPLOTTER

Figure 4. Tlow of Computer Program

handled by penalty methods it has been found that
a considerable savings in computer time can be
achieved by real time human intcraction with the
execuling program. Recall that P (i=1,2,3,7)are
the penalty coefficients associated with the term-
inal boundary conditions and P, (x 4,5,6) are the
penalty coefficients associated “with tho state
variable inequality constraints., For a given set
of penalty coefficients a particular unconstrained
optimization problem is defined. The solution to
the original constrained optimization problem is
approximated by a sequence of solutiens to the
unconstrained problem gencrated by letting P,
(i=1,....,7)~w. As P (i=1,2,3,7)are incrensed
the solutions generated 1wdl more closely satisfy
the requirements of a 50 x 100 nm orbit inclined

QT e
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28.5 to the equator entered at perigee, Like-
wise as P, (i=4,5,6) are increased the state
variable inequality constraints on dynamic
pressure and acceleration are more strictly
enforced. The ultimate goal is to find the control
history which yields the maximum liftoff weipght
and satisfies all seven of the constraints. As
expected, in practice as one penalty coefficient
is increased the error associated with it will
decrease while the errors associated with the
other coefficients will increase. Thus by improv-
ing the trajectory in one respect it is possible to
lose something somewhere clse. Sensitivity to
changes in the different penalty coefficients also
varies. As the penalty coefficients become
larger the overall problem will become increas-
ingly sensitive to changes in the control and
numerical instability will eventually result. The
way in which the penalty coefficients are in -
creased will strongly influence the overall con-
vergence rate of the algorithms. The main
drawback to the method of penalty functions is
that the penalty coefficients must be increased
in a problem dependent way. Even for simple
example problems which require little computer
time for a trajectory integration and which have
only one or two penalty coefficients, the choice
of these coefficients and the way in which they
are increased is critical for rapid convergence.
Because of the complexity and relatively long
computer time required for a trajectory integra-
tion of the shuttle ascent optimization problem,
it is desirable to have rapid feedback of the prog
ress of the algorithm.

By using time sharing computers and CRT
display terminals the problem of choosing
penalty coefficient values can be very efficiently
solved by human operator interaction with the
executing program. At the end of a specified
number of iterations, execution is terminated

.and control transfered to a CRT display terminal

Because of time sharing this interruption of the
executing program is very inexpensive. At the
request of the human operator important inform-
ation is then graphically displayed on the CRT,
The information is evaluated and a decision on
changes of the penalty coefficients is reached.
This information is communicated tothe computer
and execution proceeds. By placing 2 human
operator in the program iteration cycle con-
vergence times are reduced, the computer is
used more efficiently, and the operator guickly
builds an intuitive feel for the physical problem
being solved.

For the shuttle ascent optimization problem
it is helpful to graphically display dynamic
pressure, acceleration, and ™M as functions of
time along with terminal miss values. The best
convergence rate was achicved by first increas-
ing Pi(i‘—‘l, 2,3,7) vielding a trajectory which
comes '"close' to the desired terminal boundary
conditions., Then Pi {t=4,5,6) are increased to

enforce the state variable inequality constraints
while simultaneously increasing P,(i=1,2, 3,7) so
that all intermediate trajectories remain 'close"
to the terminal boundary conditions.

The ability to interact with the oxecuting pro-
gram can be useful in other ways, e.g., the
interrelationship of adjoint, state variable, search
direction, and gradient time histories can be
conveniently analyzed using the CRT display. In
conclusion, the ability to communicate with the
executing program is a valuable tool for solving
large-scale optimization problems.

4.2 Storage Problems With Quasi-Newton
Algorithms

It was shown in Section 3 that 2 i + 4 time
functions must be stored after the itP iterate in
order to compute the i+l search direction, Each
of these functions is stored as a vector of numbers
which correspond te the function values at N
equally spaced points on [t ,t. ] . Thus {2 i + 4)x
N floating point numbers rmust be stored after the
itP {tcrate. The computation per iterate also in-
creases because of the increased number of
inner product evaluations. Thus, in the past, it
has been a practical necessity to restart the
algorithms to 2 pure gradient step every gth
iterate. It has been found> that 3 < q < 8 appears
to be a good choice. The value of N must be
large enough so that a "good' representation of
the functions is obtained. For the shuttle optimi-
zation problem the time interval is approximately
500 seconds and N was chosen to be 500, Thus
storage must be allocated for (2q + 4) N = {2 x 8
+ 4) 500 =10, 000 double precision floating point
numbers., Additional storage must be allocated
for other variables used in the program and for
the object program.

During the initial testing of the program on
the University of Michigan IBM 360/67 virtual
memory computer all storage was done in fast
memory. However, core storapge was exceeded
on the initial simulations on the JSC's Univac
1188 computer. To overcome this difficulty the
10, 000 double precision floating point numbers
needed for the quasi-Newton algorithms werve
placed on drum storage. This reduced the amount
of core storage required allowing the program to
fit on the 1108. Upon running the modified pro-
gram on the IBM computer a considerable savings
was realized in reduced virtual memory charges
It was also found that no sipnificant increase in
the amount of CPU time was incurred. There are
two reasons for this:

i} A very small percent of CPU time is spent
calculating the search direction. Most of the
CPU time is spent integrating the equations of
motion. {On each iterate a forward integration
and a backward integration are required to deter-
mine the gradient and a number of cost evalua-




tions also requiring forward integrations are
performed by the 1-D search.}

i1} The updating equation for H.Vi and the

equation for di are summations which require
inner products of the stored functions in the same
sequence as they are generated and stored. For
example, assume H, | vy. 1and d, are to be cal-
culated, H vy thro&é%-t}i" y. are stored in a
file sequen&a‘ily, and the fead Svrite pointer is
at H y (the file is rewound after each iteration),
The %p?:lat'mg cquations for Hi— ¥i_ will read
Hy ,Hvy,...,H. _v. in order, calculate H.
y.o ? thgll write ﬁ.-z yl,_2 onto the {ile and rewind.

oicurrently the elviua]ﬁon for d, has been using
the Hy functions. The files in Wwhich Hy and s
are stored need only be rewound once on a given
iteration and no forward or back spacing is re-~
quired. ¥Ewven if tape were to be used as the
storage medium, instead of fast core storage,
the increase in computer time would be small,
When drum storage is used the increase in com-
puter time is insignificant. Thus there is no
need to reset to a gradient step because of limited
storage. However, one may still wish to reset
because of round-coff error buildup.

As mentioned previously the computation
time per iterate increases due to the increasing
number of inner product cvaluations which must
be made. However, since the inner product is
a quadrature

tf T
<u,v>=f u v dt

t
[}

(4.1)

where u and v are stored pointwise, if it is
assumed that the stored functions are linear
between storage locations the evaluation of the
inner product is casily reduced to a summation.
It was found that this method of evaluating inner
products is considerably faster then higher
order quadrature formulas and that convergence
rates of the algorithms do not suffer.

Another observation which saves computer
time and effort is the fact that the control uf)(t)E
[mit) | is treated as a piecewise linear function of
time, This not only allows for an analytical in-
tegration for m (t}), hut also for the determina-
tion of t and t, before each integration since t
and t. are defined implicitly by fuel depletion.
This ‘avoids the problems of checking for fuel
exhaustion at each integration point, and of
treating t, as an optimization parameter (which
then requires extension or contraction of the
control guess if the mass of propellent is not
zero at the guessed tf).

5. NUMERICAL RESULTS

In Table 2 payload, terminal miss values,
and penalty weighting coefficients versus iterate

are shown. The irfitial contreol is C, = paylead =
90,000 1bm, C_ =y =,5028 ©/s¢c., C, =za =
-.3390 x10-3,°C, = b = 0, 3664, C :$ = 219, 0120,
and m (t) = 8%, 4I‘his control procﬁxced a trajecto -
ry with the following terminal errors: Ar = -5317
ft., Aw = 357 fps, Av = 27.3 fps, and AD = 2.24°
The staging time is 118.7 sec and the final timeis
503, 3 sec. The state variable inequality con-
straints {(SVIC) are violated; Q reached a peak
value of 792 psf at 66.8 sec. while the maximum
acceleration during first stage was 3.8 g's and
during second stape 3.9 g's.

On the first six iterations the penalty values
cause the terminal errors and the SVICs to be
enforced roughly equally. Ewvaluation of the
trajectory after the sixth iterate indicated some
throttling to enforce the acceleration constraints
but little throttling in the region of the dynamic
pressure constraint (Figure 5). Thus P4, the
dynamic pressure penalty coefficient is increased.
The final condition penalty coefficients, P, P_,
and P_, are also increased so that the terminal
errors do not become too large, After the tenth
iterate the SVICs are approximately enforced;
however the terminal errors are too large. Thus
P5 and P, are reduced while increasing P,, P,
and P . éI'he control history after the thirteenth
iterate, Figure 5, causes the SVIC and terminal
boundary conditions to be enforced. However, the
payload is still increasing and Ar = -2 miles. On
iterates fourteen through sixteen the SVIC penalty
cocfficients are again increased, producing a
sharper throttle history. Finally, on iterates
seventeen through twenty-three the terminal
errors are forced to within acceptable tolerances.
On the final trajectory, the staging time is 122.02
sec., and the final time is 502.7 sec., and <1’(tf) =
28.8%, TFigure 6 shows the final dynamic pressure
and acceleration histories.

6. CONCLUSIONS

A space shuttle ascent trajectory optimization
problem is solved with the function space Broyden
method. The trajectory consists of four distinct
phases (lift-off, pitch-over, gravity-turn, linear
tangent steering) with one bounded function control
(mass-flow rate) and five parameter controls, one
of which is bounded. Penalty functions are em-
ployed for two state variable inequality constraints
{dynamic pressure and axial acceleration) and the
orbital insertion terminal boundary conditions.

A major aspect of the study is the application
of a function space guasi-Newton methed to a
realistic aerospace trajectory optimization prob-
lem. To overcome the inherent storage problems
of such methods, it is shown that the various
inner preduct calculations can be sequenced and
stored in such a way that "slow' storage can
efficiently handle the task, In addition, a projec-
tion operator is developed which allows for a con-
sistent method for treating problems with both
function and parameter controls, where the



TABLE 2. NUMERICAL RESULTS
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definition of the various mixed inner products is
not straight forward. Of course, the same opera-
tor is also applicable to other function space
quasi-Newton methods {e. g., Davidon, projected
gradient),

Because of the relatively large number of
penalty coefficients {seven} it was found that a
time-shared, interactive graphics capability en-
hanced considerably the rate of.convergence of
the problem. The advantages of such a capability
are: fewer iterates are "wasted', one learns
more about the problem by staying with it on the
terminal as opposed to frequent baich-job sub-
missions, and the problem is usually solved much
more quickly (e.g., on a time-shared computer,
twenty thirty-second runs per hour are feasible
whereas one ten minute run in the batch mode
usually involves a turn-around time of several
hours),

Finally, with respect to the use of the function
space quasi-Newton methods, one can see by
Figure 3 that the only additional programming
(compared to the standard gradient method) in-
volves the inner products in Egs. 3.13 and 3,14,
Whether or not one wishes to do this additional
work is, of course, problem dependent (it may be
2 necessity in problems where the gradient methad
has convergence problems, e.g., singular prob-
lems). However, just as the finite-dimensional
space quasi-Newton algorithms have become the
major parameter optimization methods in recent
years, because of deficiencies in the gradient
and Newton methods, a similar situation may
occur in optimal control problems with their
function-space analogs.
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APPENDIX A

Mission Data



In summary the mission constraints and con-
trols are,

i) Initial conditions -launch from KSC.

ii} Terminal conditions - 50 x 100 nm orbit
inclined 28.5 degrecs with insertion at perigee.

iii) Function Type Control - |m| mass flow
rate, a function of time.

iv) Parameter Type Controls
Cl -~ GLOW (Gross Liftoff Welght).

(3Z ~;[, pitch-over rate during phase 2.

C, - a (linear tangent parameter).

3

C‘4 - b (linear tangent parameter).

C_ -, out of plane thrust angle during
phase 2.

v) State variable inequality constraints -
Dynamic Pressure< 650 psf. Acceleration
- max
< 3.0¢g's
vi)Performance Index - maximize the gross
liftoff weight, GLOW.

The mass of the vehicle is broken down into
five parts,

i) m__= fuel first stage = 3.50680 x 106 1bm

if

ii) rnls = structure first stage=5_,70850 x1051bm

iii)mzf = fuel second stage =1.16415 x 106 1bm

5
iv} m, = structure second stage=2. 61300x10 Im

v]) mp = payload = to be maximized

The engines are characterized by,

I =270.7 sec. A . =700 #2

Spl eXifl
I = 456.5 sec,
sz

APPENDIX B

Projection Operator Proof

The operator defined by Eq. (3,20) is a pro-
jection operator if it is linear, self-adjoint, and

idempotent, These properties will now be proved.
i) Linearity: Ple A +¢ B ]= P[* A£-+ B }3_f
@A +3'B
c :
@ A B B _ i
= e SUNREEEE =aPA+pPB 7T
1 £ !
o Jile pore B I

* - - F O —
ii) Self-Adjoint; Define P by <4, PB>><P A, B>
= f=~T = f B
<A,PB>-ft A PBdt—ft[AfAc]P[__f__ldt
o o] Bci

e = ¢
=<PA B>=P =P,

iil) Idempotent (PZ = P):
11 tf
1
PlAda ] =[A 45 f*‘o A_dt]
=>p’-p

LIST OF SYMBOLS

Acc - axial acceleration
., - exit area of first stage cngines
exit . .
d, - search direction
i .
g. - gradient
H1 - Hamiltonian
. - linear operator in quasi-Newton algorithms
i cpn
I = - specific impulse
sp .
J7% performance index

Pa - atmospheric pressure
Pi. - seven penalty weighting coefficients
q - dyramic pressure 5 op
r - radius
Si - A,
i
T - thrust
t - staging time

t> - final time
u - control vector

0-< 0
LR
V - velocity

x. - first stage radius

- first stage 0

- first stage radial velocity

- first stage tangential velocity
- first stage normal velocity

- first stage mass

second stage radius

- second stage radial velocity
- second stage tangential velocity
- second stage mass

. &gi
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v - angle of thrust above local horizontal
@ - spherical coordinate

A - influence functions

p - atmospheric density

¢ - spherical coordinate

@ - inclination

4 - azimuth angle

b
-
v

LA

cy e
- -}'-"‘

L AR A ARty Pyn Al T ey sk e e prae s s oy



