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SHUTTLE ASCENT TMJECTORY OPTIMIZATION R i T I I  FUNCTJON 
SPACE QUASI-NEWTON TECmIOUES "< 

E. R. Edge and W.F. Powers  
The University of Michigan 

Ann Arbor ,  Michigan 

Abstract  

A Space Shuttle a scen t  t ra jectory optimization 
problem f rom lift-off to orbi ta l  insertion is  
solvedwith a function space version of a Quasi-  
Newton pa rame te r  optimization method developed 
by Broyden. The problcm includes five p a r a m c t u  
and one bounded function controls,  t w o  s t a t e .  
variable constraints,  and four t e rmina l  conditions. 
The bounded controls a r e  t reated directly while 
the remaining constraints are adjoined to the 
performance index (maximum payload) with 
penalty functions. 
a four-phase variational problem (liftoff, pitch- 
ove r ,  gravity-turn,  l inear  tangent s teer ing)  and 
the appropriate  gradients a r e  developed by f i r s t  
variation theory.  
troduced to aid in  the interpretation of thc 
algorithm with mixed pa rame te r  and function 
controls .  Also, by proper partitioning of the 
computation sequence and s torage,  storage 
problems associated with this algorithm a r e  
virtually eliminated. 
the pressure-fed se r i e s -bu rn  hoosterlOQOC 
orb i t e r  vehicle and typical simulations a r e  p r e -  
sented. 
gence character is t ics ,  t h e  cffects of a man-in-  
the-loop in thc optimization process  (with a t ime-  
sha red  computer graphics t e rmina l )  a r e  p r e -  
sented. 

The problem is formulated a s  

A projection operator  is  in-  

The algorithm is  applied to 

In addition to a discussion of C O ~ V C P  - 
Lx 

1. INTRODUCTION 

A number of function space vers ions of 
successful pa rame te r  optimization methods have 
been proposed for  optimal control problcms in 
the past  few yea r s ,  especially the function space 
Davidon method.1-8 However, in F.efs. 1-8, only 
s imple optimal control problems were  solvcd, 
and even though the convergence propert ies  w e r e  
good, the s torage problems associated with the 
methods suggested that they might not be appli- 
cable to l a rge r - sca l e  problems.  Thus, onr of 
the m a j o r  goals of this research was t o  apply one 
of the methods,  t h e  function space Broyden 
method7, to a nontrivial aerospace t r a j ec to ry  
problem requiring considerable s torage and 
numerical  inlcgration. 
l a t e r ,  by p rope r  partitioning of thc computation 

*This  work was supported by the National Aero-  
nautics and Space Administration Johnson Space 
Center under Contract NAS 9-12872 and thc 
National Science Foundation under Grant GI<- 
30115. 

As will be discussed 

i- 

sequence and s torage,  the drawback of t h r  
algorithms due to s torage problems is virtually 
eliminated. 

The algorithm is applied to the payload 
maximization problnn for the p r r s su re - f ed  s e r i r s -  
burn shuttle booster/040C orbi ter  vehicle. 
Although this is  not thhr cu r ren t  shultlr  design, 
this  model was chosen for  two reasons: (1) NASA- 
JSC had considerable data and simulation resul ts  
f o r  this vehicle when the study was initiated, a.nd 
( 2 )  i t  was reported that a singular thrusting a r c  
might cxist  in the boost s tage of the optimal 
t ra jectoryg.  Since the function space quas i -  
Ncwton algori thms were  successful on a number 
of other problems with bounded controls and 
singular subarcs8,  the possibility of a s ingular  
suba rc  se rved  as an adrlitional t e s t  for  the 
algori thms.  

In Section 2, the vehicle, mission constraints,  
In Section 3 ,  and performance index a r e  defined. 

the function space Broyden algorithm and 
associated theory will  bo presented, while Section 
4 presents  the important computer implementation 
aspects  of the algori thm. Numerical  resul ts  a r e  
prescnted in Section 5 and conclusions in Section 
6 .  i t  should b e  noted a t  thc outset that this paper 
is mainly concerned with the study and improve- 
mcn t  of the function space qua.si-N.icwton methods,  
and not with a comparison to other a lgori thms.  

2 .  WFIICLE AND MISSION 

The vehicle and mis s ion  considered a r e  taken 
f rom Reference 10. The goal is to dctcrmine the 
control h i s to ry  f o r  the pressurc-fed series burn 
shuttle booster/040C orbi ter  launched f rom KSC 
which will yield maximum payload dcliverablc to 
a 50 x 100 nm orbit  inclined 28. 5 deg rees .  The 
vehicle is constrained to a non-lifting t ra jectory 
with a maximum dynamic p r e s s u r e  of 650 p s i  
and a maximum acceleralion of 3.  Og' s .  The 
t ra jectory is determined by two controls,  the 
mass flow ra te  &,which implies the thrust  mag-  
nitude,and a thrust  angle.  

Thc overal l  t ra jectory i s  subdivided into four  
"phascs" 
by the way in which the thrust  angle is determined 
and by the coordinate sys t em in which the 
equations of motion a r e  being integrated ( s e e  
Figure 1). 

Each of the phases is  character ized 



W PHASE 1 PIIASE: 2 PIIASE 3 PIIASE 4 

PITCH GRAVITY LINEAR 
OVER T U R N  TANGENT 

F igure  I .  Definition of t ra jec tory  phases.  

The equations of motion fo r  the f i r s t  stage a r e  
integrated in a sphcrical  coordinate system which 
rotates with the car th .  This coordinate system 
was  chosen hecsusc of the ease  of representing 
initial conditions and aerodynamic forces .  

Assuming the f i y s t  s tage cngines a r e  perfectly 
expanded to vacuum pres su re ,  the  th rus t  
magnitude is 

The f i r s t  stage bum I S  divided into three 
phases.  Thcy a ~ e ,  

- i ) -  Phase  1 - vertical r i se  fo r  ten seconds,  
T I I  = .  

i i )  Phase 2 - pitch over a t  a constant rate 
f rom vcrtical  and a t , a  constant azimuth angle + 
for 10 seconds(sc:e Figure 2 ) .  - - 

Figure 2.  Thrus t  angles fo r  Lirst stage 

- 
The planc defincd by e and is the local 0 - %. horizontal .  Thc unit vector e points in the 

eas t e r ly  direction fo r  0 # 0 s $  r. The vehicle 
pitches over and a t  the same  t ime thc plane of 
the orbit  is  dctcrmined by thrusting a t  a constant 
aaimuth anglc (,. 
vert ical  dircction, i .  e . ,  y =;. 
pitches ovc r  with < = constant, thus, 

The initial t h r u s t  is in the 
The vehicle 

(2 .2 )  
n 

y = z - .j ( t-IO), t € [ 10.2 0 1 
It i s  noted that $8 w i l l  not correspond to the final 
inclination. lIowcver, the Linal inclination will 
he very stroncly influenced by 4, and, in fact ,  + 
will he thc pr imary control which affects the 
final orbitnl'iiiclination. 

L., 

i i i )  Phase 3 - gravityLurn,& e . ,  thc thrus t  is  
parallel  to the velocity ( 'I I I V ), 
t e rmina tes  when all fue l  is exhausted in the f i rs t  
s tage .  

This phase 

Aerodynamic d r a g  is approximately 2 %  of the 
total force acting on the vehicle a f t e r  staging and 
drops  off rapidly thereaf te r .  Thus,  aerodynamic 
fo rces  are  neglccted during second stage burn. 
Assuming no out of planc thrus t  during second 
stage this allows the equations of motion to b e  
integrated in a polar coordinate system. The 
change of coordinate sys t ems  resu l t s  in a n+w 
s e t  of state variables and a se t  of transformation 
equations relating the stale a f t e r  staging to the 
s ta te  before staging. 
in a polar coordinate system, the niimbcr o f s t a t e  
variables is reduced f rom six t o  fou r ,  and thr 
te rmina l  boundary conditions and adjoint equations 
are simplified. 

By integrating thc cquations 

The total  second stage burn is: 

i v )  Phase 4 - during secoild stage burn the 
t h rus t  is orientated according to the l incnr 
tangent s teer ing  law, i . e . ,  

tan y = . a  t t b ( a , b  constants) (2 .3 )  

where y is thc  angle hetween the th rus t  vector 
and the loca l  horizontal. 
engines are perfectly expanded to vacuum p r e s -  

The second stage 

su re ,  thus, 

This phase te rmina tes  when all fuel i s  exhausted 
in the second stage.  

'3. THE OPTIMIZATION PROBLEM 
AND ALGORITIiM 

3.1 The Broyden Algorithm in Dyadic Form 

A motivating way of viewing the quasi-Newton 
methods isl$s a class of algori thms hetween thc 
f i r s t  o r d e r  and s e ~ o n d - o r d e r ' ~ - ~ ~  optimal 
control gradient methods.  The goal of a quas i -  
Newton algorithm is Lo bui ld  information about 
the second-variation opcra tor  without computing 
it explicitly, i . e . ,  based upon gradient informa- 
tion only. 
cussed he re ,  however the Davidon, conjugate 

The Droyden algorithm will be d i s -  

2 



gradient,  and gradient algorithms a re  casily in- 
corporated into the sdme computer program, 
which is the case  of thr computer program d e s -  

v cribed in Ref .  16. 

Consider the general  problem: 

f t 
Minimize: J ( u )  = +(x ) t L ( t , x , u )  dt (3 .1)  

to 

Subject to: x = f ( t , x , u ) ,  x(t ) = Y (x = k-vector)  
( 3 . 2 )  

0 0  

i 
lu 1 5 ~ ~  (i=l ,  . . . ,  m )  ( u = m - v e c t o r )  

t , t  specified o f  i 
If te rmina l  conditions a re  present ,  they are in- 
chded in the +(x  ) - term by the method of penally 
functions. In a l fo f  the algori thms,  the following 
equations a r e  required: 

T 
H = L t X f ( t , x , u )  (3. 3) 

The function H is the EIamiltonian and g (u )  = aH/ 
au is the function space gradient.  

v Each algorithm requires  the specification of 
an initial control u (t). In addition, the Broyden 
and Davidon algori?hms require the specification 

f a positive-definite, self-adjoint l inear  operator, & the s implest  choice being the identity opera- 
0’ to r .  011 each i terate  a new control is generated 

by the update formula,  

u. = u .  t 0.d .  (3 .6 )  I t 1  1 1 1 

where 
A 

d, = s e a r c h  direction=-H.g. ( 3 . 7 )  
I I ,  

and 0.  = sca l a r  parameter  defined by a one- 
dimenlsional s e a r c h  technique which minimizes 
J with respect to  e ,  

The H operator  is updated by 
A 

A h  

(3 .8)  

where 
6 .  = ui+l-ui ( 3 . 9 )  

Y = dui,.l) - g ( U i )  (3.10) 

a , v >  = stf uTv dt (3.11) 
to 

such that,  

The pr imary  difficulty in implementing the 
quasi-Newton type algori thms on optimal control 
problcms l ies  in reprcsenling the infinite-dim- 
ensional integral  kerncl h-opera tor ,  a function of 
two var iab les .  One way to oxercome this d i f f i -  
culty i s  to observe that only H.g.(not H. i t se l f )  is  
needed to computc d . ,  
Broyden algori thm, ’where g is the gradient of a 
functional, and u, s ,  and y a r e  t ime functions, we 
proceed a s  follows: 

Thus t; hnplem‘ent the 

h 
i )  Specify H (any positive definite se l f -  

0 adjoint operator  ). 
A 

i i )  Express H. in Eq. ( 3 . 8 )  a s  a sum back to 
H . Operate o n i h e  resultant expression f o r  A. 
with g. to obtain the following s e a r c h  direction? 

A 

0 

1 

A i-1 

J =o 

Equation (3.13) requires the computation of 
inner products of the functions f l .y . , s i ,  and yi, 
and bperating with ho. The functions ( s o , .  . . . , 
s .  ) a r e  available from past  i tcrat ions.  To com- 
p b d  the functions fLy. ,  we need only replace -6. 
by y. in R q .  (3 .13) , i . e . ,  8. operating on y. insteid 
of - i . .  

1 1  

Then, for the case‘i-1: 

n 

n .. 
Thus l~ i - ly i - l  can be computed in a way requiring 
only inner product?$ and opcration with fi = I .  
a s  was the case  for -13.g.. Note that Z i  1- 4 time 
functions must  be s tored a f te r  the i- i teration in 
order  to compute the i t 1 i te ra te ,  i . e . ,  

0. 

1 %  

( S o ,  . . . I  S i )  i t 1 functions 
h A 

(Hay,. . . . , H .  Y .  ) i functions 
1-1 1-1 

i 

! 

and u >cv i s  an integral  kernel dyadic operator  

3 



becomes Figure 3 shows the flow of the function space 
Broyden algorithm on a general  i terate .  

---+ u,, ( t )  -;$ xn ( t )  

, Computehn(t) ,  

I----- Store y (t) = gn(tj - gn-l ( t )  n-1 ! 
I h I----- 
! 

Calculate & Store H y n-1 n-1 

r---..- Calculate dn 

1-D search* (I - 
u =u t a  

n t 1  n n dn .- 
c n 

I 
I.___. - Store s ( t )  = u -u I n n+l n j A 
c----- Total storage g , u s 

n n t l '  o'Yn-l,HoYo 
I I 

s n 

Figure 3. Flow of the Broyden Algorithm 

3.2 Function and Pa rame te r  Controls 

Some optimization problems a r e  most  natu- 

?7 rally formulated using a combination of functio 
and pa rame te r  controls f rom the product space 

optimization 1s such a problem. 

m n 
[ t , t  ] x R , and the shuttle ascent L 2 .  , 0 . f  

Consider the class  of optimal controlprob- 
l ems  whose control space is 

m - 
u- (.; (t), . . . ,u (t); c l , .  . . , cn)c L2 [ t , t ] x Rn 

(3.15) 
1 m o f  

m 
where ( ul(t), _ _  u ( t )  ) f  L2 [ to, tf l  m 

(cl .  - - - ' C n )  € Rn 

Upon expansion of the performance index (3.1) 
about a candidate control and appropriate defini- 
tions @f d '  i n t  functions (Eq. 3 , 4 ) ,  the change in 
cost  is: ii , G 

t 
( 3 . 1 7 )  6 J = htf K u dt + dc T L f H c  dt 

0 0 

The quasi-Newton methods require  inner products 
involving the gradient of the cost  with respect  to 
the control.  The choice o f  the inner product mus t  
be consistent with existing convergence c r i t e r i a  
fo r  the methods.1 This consistency may he 
obtained with the projection operator  approach 
which follows. 

n 
Notc that finite elements in R defined on 

[ to, tf] a r e  a l s o  elements of LZn [ to,  tf] 
the control (3.15) may be t reated a s  an element of 
L P [ t 
Tgen, &e admissiblc control space is  a subspace 

Thus 

t f ]  ( p  = m + n) with a special  s t ruc tu re .  

s of Lzp[ t0,tf1 I 

m 
2 o f  I 

- 
s =(u I ui(i = I , .  . . , m ) t  L t , t 1 ; u.(i=m -+I ,..., p) 

(3.18) 

In optimal control the l inear-quadrat ic  problem 

finite constant t ime functions .) 

(LQP) plays a role s imi l a r  to the unconstrained 
quadratic function minimization problem in para-  
m e t e r  optimization with respect  to the devclop- 
men t  of properties fo r  quasi-Newton algori thms.  
The following convergence theorem applies to the 
LOP,  where g is  the gradient of thc performance 
index with respect t o  the control. 1 

Property:  Le t  M be a l inear  subspace of a 
Hilbert  space D. 
an operator  which is l i nea r ,  self -  
adjoint,and idempotent (projcctian 
operator) .  If of the quasi-  
Newton algorithms is  chosen to bc 
P and C E M, then Ti. € M for  a l l  i ,  
and 

Let P :D-  M be 

0 

0 

that is, the projection of the 
gradient onto M tends to zero  (the 
condition for  convergence) 

A projection operator  P : L' [ t , t 1 - s 
2 

which allows fo r  a consistent meth% for handling 
combinations of function and constant type con- 
t ro l s  is  given in the following property,  which is 
proved in Appendiz B. - 

- 
where A c Lp [ t t ] 2 o ' f  

and Af( t )  c L2 m [ to,  ti] , Ac(t) 6 L i  P-m 

m 
[ to, tr] . Define P :L2  [ to,  t f ]  --Z S by 

Since c .  E constant, then 6 c i dc  and Eq. 3.16 

4 



A T  = t -t . (3.20) f o  

Then, P is a projection operator  

The above property implies how the f i r s t  
variation (3.17) should be utilized in the quasi-  
Newton algori thms.  F i r s t ,  considering (u ( t ) ,  . . 
.; u 

Lzmtn[ t t ] , the gradient is 

1 (t), cl,. . . , c  ) a s  an element of 

g = [ Hu : €Ic] 

m n 

( 3 . 2 1 )  
0’ f 

- A 
and an admissible  choicc f o r  Ho, say Ho2 is the 
projection operator  (3 .20) .  which implies that 
the initial s e a r c h  direction is 

However, note that this is equivalent to assuming 

v 

(3 .23)  

with (u ( t ) ,  . . . ,u (t) ,  c I ” ” ’  c n ) f  LZm[ tO.tf1 x. 

Hogo=Igo= [ HU (0). , 1 -t Jf  Hc(o)dt] =z0g(3. 24) 

1 m 
A 

Rn, and H 
A t 

= I since 
0 

to  
f o  

Fur thermore ,  thr  choice of definition for  the 
gradient (3 .23)  h a s  the same convergence 
propert ies  a s  the choice (3.21) since 

I I Z0Zk I I f 0 
A 

implies ,  with H = I ,  
0 

(3 .25)  
- -  A 

IIIrogkII = llskll = I I I ~ o g k I I  - 0 .  

For  convenience, Eq. (3 .23 )  will be utilized as 
the gradient expression. 

3. 3 The F i r s t  Variation 

For  convenience let u denoto thc total control 
vcctor  (5,. . . , ~ ~ , I i i > l ) ,  
may  be syrnbolii.ed by 

The equations of motion 

where t and t are  the staging and final t imes ,  
respectsvely. At 1 the s ta tes  a r e  related by the f 
t ransformation q u a t i o n ,  s .  

The t e rmina l  boundary conditions are handled 
by the method of quadratic penalty functions, and 
the state  var iable  inequality constraints are 
handled by integral  quadratic penalty functions. 
The performance index i s ,  

2 2 
J(U) = - m t P  ( Z ( t . )  -2 ) tP (Z ( t  )-% tp3(<(\)- 0 , 1 1 1  If 2 2 f  2f 

?if 3f 

2 (q-650) U (q-650) dt 

t P s j b  (ac t -3 .  00)  2 U (acc-3.  00)  dt (3 .28)  

to 
t 2 

t P J ~  (acc-3 .00)  u (acc-3 .00)  dt  
t; 

t P7 ( C o s  rn(tS) - cos*  ) 2 . 
f 

Then, the following multistage optimal control 
problcm is defined: 

Min. J(u)  z 0 ( x  , x S , z f )  t J  
10- 20-  

0 l o t  
L I ( t , x , u )  dt t I  

0 

tf 

t i  

t- 

2 o t  
L Z ( t , x , u )  d t q  L 3 ( t , x , u )  d t q  L4( t ,? ,u)  dt 

( 3 . 2 9 )  

Subject to: 4 -: f ( t , x , u )  [t 

and 

< t < t ) 
0 -  S 

* =  ?( t ,Z,U) (t < t ’t ) ( 3 .  30) f 

With 

the adjoint rquations and associated boundary 
conditions are ( s e e  Ref.  12  o r  16): 

H ( t - )  = f?(t:) A 6  (t;) 
s 



I - 
I 

f ree '  I x -x free ; T(t+) = g(x(t-) 
I 1 5  S s 

x6 f r e e  I 
I 
I 
I I 

I I 1 1 s t  stage 
I 1 deple tcdde-  I, Equations I f inrs  t I I I 

I 8 I 
I I 

I 

Then,thr change in cost due to 6u and dm is: 
0 

2 0 -  t -  
s 6,  dt t HUT6"dt t  H 6.dt 

t10 L o , .  

The par t icular  choices for  d m s m (n+l )_  
rn in) ,  6 u ( t )  = u(n ' . l ) -u  (")(t), forotheno+ 1 
i terate,  are  govcrned by the choice of a lgori thm. 
0 

We now wish to interpret  Eq. ( 3 .  3 3 )  for use  
in the 13royden method. 
(3.17)' w e  rcwri te  the f i r s t  term of Eq. (3,  33) 
as 

Noting thc fo rm of Eq. 

d ni 0 Itf A/( t f - to)  dt, ( 3 .  34) 
t 
0 

where A is the coefficient of d m  
Then, the gradient corresponding to  E q .  (3 .23)  
is. 

in Eq. ( 3 .  33). 
0 

(3 .35)  

4. COMPUTER IMPLEMENTATION 

- 4.1 Computer Graphics Aspects 

Figure  4 is  the flow d iagram of thc shuttle 
ascent  t ra jectory optimixation program. The 
main itcration loop consists of the forward in- 
tegration, backward integration, calculation of 
s ea rch  direction, I - D  search ,  and convergence 
chcck. 
given set  of penalty roefficicnts until an 
"acccptable" degree of convergence is  ohtaincd. 
At this  point the human operator  interrupts  the 
executing program. 

Thhesc operations are repeated fo r  a 

Because the terminal  boundary conditions 
and state variable inequality constraints  a r e  

t f r ee  f 

x -% f r e e  
1 3  
u 

i *&Z4) = 0 

I Mass  of fue 
2nd s tage 
depleted 
defines t f 

INITIAL CONTROL 

CURVE FITAERODYNAMIC C0F.F. 

FORWARD N T E  GRATION 
I 

CALCULATE SEARCH DIREC TION 

I-D SEARCH I '  I 
I 

CONVERGENCE CHECK 

A 1 
LNCREASE PENALTY COEF. 

CRT GRAPHIC DISPLAY 

CALCOMP PLOTTER 

Figure  4. Flow cmf Computer P r o g r a m  

handled hy penalty methods i t  has  been found that 
a considerable savings in computer t ime can be 
achieved by real time human intcraction with the 
executing program.  Rcchll t h a t P . ( i = l , 2 ,  3 , 7 ) a r e  
the pcnalty coefficients associated with the t e rm-  
inal boundary conditions and P.( i=l ,  5 , 6 )  are the 
penalty coefficients associated:vith thp s ta te  
variable inequality constraints .  F o r  a given se t  
of pcnalty coefficient; a par t icular  unconstrained 
optimization problcm is  defined. The solution to 
thc  original constrained optimization prohl e m  is 
approximated by a sequence of solutions to the 
unconstrained prohlrm gemcrated by letting P. 
( i = l , .  . . . ,7 ) - *m,  
the solutions g e n e r a t e d b i l l  more closely sat isfy 
the requiremcnts  of Q 50 x 100 nm orbit  inclined 

AS P. ( i = l , ~ ,  3,7)  a r e  incre ised  

6 



0 
28.5 to the equator cntered a t  perigee.  Like. 
wise a s  P. ( i=4 ,5 ,6 )  a r e  increased the state 
variable itiequality constraints on dynamic 
p r e s s u r e  and acceleration a r e  more  s t r ic t ly  
enforced. 
h i s tory  which yields the maximum liftoff weight 
and sat isf ies  a l l  seven of the constraints .  As 
expected, in practice a s  one penalty coefficient 
is increased thc error associated with it will 
decrease  while the e r r o r s  associated with the 
other coefficients will increase.  Thus by improv- 
ing the t ra jectory in one respect it is possible to 
lose something somewhere r l s e .  
changes in thr different penalty cocfficicnts a l so  
var ies .  A s  the penalty coefficients become 
la 'rger the overal l  problem wi l l  become increas-  
ingly sensit ive to changcs in the control and 
numerical  instability will cventually resul t .  The 
way in which the penalty coefficicnts a r e  in - 
c r e a s e d  will strongly influence the overal l  con- 
vergence rate  of thc algori thms.  
drawback to the method of penalty functions is 
that the penalty coefficients m u s t  be increased 
in a problem dependent way. Even fo r  simple 
example problems which require little computer 
t ime for a t ra jectory integration and which have 
only one o r  two penalty coefficients,  the choice 
of these coefficients and the way in which they 
a r e  increased is cr i t ical  f o r  rapid convergence. 
Because of the complexity and relatively long 
computer t ime required fo r  a t ra jectory integra-  
tion of the shuttle ascent optimization problem, 
i t  i s  desirable  to have rapid feedback of the prog- 
r e s  of the algorithm. 

The ultimate goal i s  to find the contml '-J 

Sensitivity to 

The main 

W 

By using t ime shar ing computers and CRT 
display terminals  the problem of choosing 
penalty coefficient values can be v e r y  efficiently 
solved by human operator  interaction with the 
executing program. At the m d  of a specified 
number of i terations,  execution is terminated 
and control t ransfered to a CRT display te rmina l  
B&ause of time shar ing this interruption of the 
executing program is very  inexpensive. At the 
request of the human operator , important  inform- 
ation is then graphically displayed on the CRT. 
The information is cvaluated and ii decision on 
changes of the penalty coefficients is rcached. 
This information is communicated to the computor 
and rxecution proceeds.  By placing a human 
operator  in the program iteration cycle con- 
vergence t imes a r e  reduced, the computer is 
used more efficiently,  and the operator  quickly 
builds an intuitive fee l  f o r  the physical problem 
being solved. 

For the shuttle ascent  optimization problem 
i t  is helpful to graphically display dynamic 
p r e s s u r e ,  accelerat ion,  and ;,as functions of 
t ime along with terminal  m i s s  values .  The best  
convergence rate  was achievcd by f i r s t  increas-  
ing P . ( i= l ,  2 ,  3 . 7 )  yielding a t ra jectory which 
come's "close" to the desired terminal  boundary 
conditions. 

I 

Then P. ( i=4 ,  5 . 6 )  a r e  increased to 
1 

7 

enforce the state variablc inequality constraints  
whilc simultaneously increasing P.( i=1,2,  3 , 7 )  so  
that a l l  intermediate t ra jec tor ies  remain "close" 
to  the terminal  boundary conditions. 

1 

The ability to intcract  with thc cxecuting p r o -  
g ram can bc iiseful in other ways, E. g . ,  the 
interrelationship of adjoint, state variable,  search 
direction, and gradient time his tor ies  can be 
conveniently analyzcd using the CRT display. 
conclusion, the ability to communicate with the 
executing program is a valuable tool f o r  solving 
large -sca,le optimization problems,  

In 

4.2 Storage Problems With Quasi-Newton 
Algorithms 

It was shown in Section 3 that 2 i t 4 t ime 
functions must  be s torcd after tJie ith i t e ra te  in 
o r d e r  to computc the it1 search  direction. 
of these functions is s tored  as  a vector of numbers 
which correspond to the function values a t  N 
equally spaced points on [ t , t ] Thus (2 i 4- 4)x 
N floating point numbers mts t ibe ' s tored  a f t e r  the 
it'' i terate .  The computation per i terate  a l so  in- 
c r e a s e s  because of the increased number of 
inner product evaluations. Thus,  in the past ,  it 
has  been a pract ical  necessity to res ta r t  the 
algorithms to a pure gradient s tcp rvcry  qth 
i te ra te .  
to he a good choicc. 
l a rge  enough s o  that a "good" representation of 
the functions is obtained. F o r  the shuttle aptimi- 
zation problem thc t ime interval is approximately 
500 seconds and N was chosen to be 500.  Thus 
s torage must  bc allocated for ( Z q  t 4)  N 2 (2 x 8 
t 4)  500 = 10, 000 double precision floating point 
numbers .  Additional s torage must  be allocated 
fo r  other var iables  used in the program and for 
the object program 

Each 

It has  been found5 that 3 < q < 8 appears  
The valuc of N must  be 

During the initial testing of the program on 
thc University of Michigan I R M  3 6 0 / 6 7  virtual 
memory computer a l l  s torage was done in f a s t  
memory .  However, core  s torage was exceeded 
on the initial simulations on the JSC' s Univac 
1108 computer.  
10, 000 double precision floating point numbers 
needed for the quasi-Newton algorithms were 
placed on d rum s toragc .  
of core  s torage required allowing the program to 
fit on the 1108. 
gram on thc IBM computer a considerable savings 
was realized in rcduced vir tual  memory charges 
It was also found that no  significant increase in 
the amount of CPU t ime was incurred.  There  a r e  
two reasons f o r  this: 

To o v e r c o m e  this difficulty the 

This reduced theamowit 

Upon running the modificd p r o -  

i )  A very  smal l  percent of CPU time is spent 
calculating the search  direction. 
CPU time is spent integrating the equations of 
motion. (On rach  i terate  a forward integration 
and a backward integration a r e  required to de t e r -  
mine the gradient and a number uf cost rvalua-  

Most of the 



tions a lso requiring forward integrations are 
performed by the 1-D s e a r c h . )  

'V i i )  The updating equation fo r  H.y. and the 
equation for  d .  a r e  summations which requi re  
inner product; of thc s tored  functions in the Same 
sequence a s  they a r e  generated and s tored .  
example,  a s sume  H. y. and d.  are to be ca l -  
culated. H y thro:&h;-2 a r e  stored in a 
file sequenkaqly, and the read-write pointer is 
at 11 y 
The%p%ating rquations f o r  M. y. will read 
H o ~ o ,  H1yl. . .,. I H. 

* I  

F o r  

y i -21  

(thc file is rewound a f t e r  each i teration).  

y 

,-1Y. 

in o\&rt-lcalculatr H. 
onto the file and rewiA2. 

the equakion for  d .  has been using 
then write 

the Hy functions. 
a r e  s tored  need only be rewound once on a given 
i teration and n o  forward o r  back spacing is r e -  
qui red .  
s torage  medium, instead of fast core storagc,  
the increase  in computer t ime would be smal l .  
When d rum storage is used the increase  in com-  
puter t ime is insignificant. 
need to rese t  to a gradient step because of limited 
s torage .  However, one may still wish l o  rese t  
because of round-off e r r o r  buildup. 

The files in &hich Hy and s 

Evcn if tape were to be used a s  thc 

T h u s  there  is  no 

As mentioned previously the computation 
t ime  pe r  i t e ra te  increases  due to the increasing 
number of inner product rvaluations which mus t  
be made.  Houever, since the inncr product is 
a quadrature  

v 

where u and v a r e  s tored  pointwise, if it  is  
a s sumed  that the s tored  functions a r e  l inear  
between s torage  locations the evaluation of the 
inner product is easily rcduced to a summation. 
It was found that this method of cvaluating inncr 
products is considerably f a s t e r  then higher 
o r d e r  quadrature formulas  and that convergence 
ra tes  of the algorithms do not suffcr.  

Another observation which save5 computer 
t ime  and ef for t  i s  the fact that the control ub ( t ) -  
Im(t) I is treated a s  a piecewise l inear  function of 

t ime.  This not only allows for  an analytical in- 
tegration fo r  m ( t ) ,  hut also fo r  the determina-  
tion of t and t before each integration since t 

s f s and t a r e  dcfincd implicitly by fuel depletion. 
This avoids the problems of checking for  fuel 
exhaustion at each integration point, and of 
t rea t ing  t a s  an  optimization pa rame te r  (which 
then requlrcs  cxtension o r  contraction of the 
control guess if  the m a s s  of propellent i s  not 
zero a t  the guessed t ) f '  

f 

f 

5 .  NUMERICAI, RESULTS - 
In  Table 2,payload, te rmina l  m i s s  values. 

and penalty weighting coefficients versus i t e ra te  

a r e  Showi. The iqitial control i s  C = payload = 
90, 000 lbm,  C = y = . 5028 o / s e c . ,  C = a = -. 3390 x 10-3,2C = b I 0. 3664, C = 4 = -19. 0120, 
and k ( t )  = 98%. %his control prodiced a t ra jec to-  
r y  with the following t e rmina l  errors: A r  = -5317 

0 f t . ,  Au = 357 f p s ,  A v  = 27. 3 fps ,  and A* E 2.24 , 

The staging t imo i s  118.7 sac and the final t imc i s  
503. 3 s e c .  
s t ra in ts  (S.VIC) are violatcd; Q reached a peak 
value of 792 psf a t  6 6 .  8 s e c .  while the maximum 
acceleration during f i r s t  stage was 3. 8 g' s and 
during second stagc 3 .9  g' 5 .  

1 

The state variable inequality con-  

On the f i r s t  s ix  i terations the penalty values 
cause  the t e rmina l  e r ro r s  and the SVICs to be 
enforced roughly equally. 
t ra jec tory  a f t c r  the s ix th  i terate indicated SOTTIC 

throttling to enforcc the accelcration constraints 
but l i t t le  throttling in the region of the dynamic 
p r e s s u r e  constraint  (F igu re  5 ) .  Thus P thc 
dynamic p res su re  penalty coefficient is  increascd .  
The final condition penalty coefficients, P 
and P 
errors do not become too  l a rge .  Af t e r  the tenth 
i te ra te  the SVICs a r e  approximately enforced; 
however the t e rmina l  errors are too l a rge .  
P5 and P 
and P3. h e  control history a f t e r  the thirtcenth 
i te ra te ,  Figure 5,  causes  the SVIC and te rmina l  
boundary conditions to be enforced. However, the 
payload i s  still incrcasing and A r  = -2 mi l e s .  On 
i t e r a t e s  fourteen through sixteen the SVIC penalty 
cocfficients arc  again increased ,  producing a 
sha rpe r  thrott le history.  Finally, on i te ra tes  
seventeen through twenty-three the t e rmina l  
errors a r e  forced to within acceptable to le rances .  
On the f i n d  t ra jec tory ,  the staging t ime  is 122. 02 
s e c . ,  and the final t i m e  is 5 0 2 . 7  S C C . ,  and *(t ) = 
28.8O. 
and acceleration h is tor ies .  

Evaluation of the 

4' 

1' .p79  are a l so  increased  so  that the termin31 3' 

Thus 

1' P2' a r e  reduced while i nc reas ing  P 

f Figure 6 shows the final dynamic p res su re  

6. CONCLUSIONS 

A space shuttle ascent  t ra jec tory  optimization 
problcm is  solved with the function space Broyden 
method. The t ra jec tory  consists of four distinct 
phases (lift-off, pitch-ove r ,  gravity-turn, l incar 
tangent s teer ing)  with one bounded function control 
(mass-flow ra te )  and five pa ramc te r  controls,  one 
of which i s  bounded. 
ployod for  two state variable inequality constraints 
(dynamic pressure and axial  acceleration) and the 
orb i ta l  insertion terminal boundary conditions 

Penalty functions a r c  em- 

A major  aspec t  of the study is thc application 
of a function space quasi-Newton method to a 
rca l i s t ic  aerospace t ra jec tory  optimization prob- 
lem.  
of such mcthods,  it is shown that the various 
inner product calculations can be sequenccd and 
s tored  in such a way that "slow" s torage  can 
efficiently handle the task.  In addition, a projcc- 
tion opera tor  is developed which allows for a con- 
s i s ten t  method for  t rea t ing  problems with both 
function and pa rame te r  controls,  wherc the 

To overcome the inherent storage problems 



TABLE 2.  NUMERICAL RESD1,TS 7 

8 102,946 

9 102,946 

10 102,946 

9: 11 101, 209 
~ - - - - - - - - - - - - - - - - - - . 

12 101, 209 

13 101, 312 

*I4  101, 278 

15 101,127 

16 101, 207 

'b 17 104,200 

18 104,806 

19 105, 322 

20 105,721 

*21 106,206 

22 106,606 

23  106,646 

_ _ _  - - - - - - .. _ - - - - - - - - 

. - - - -- - - - - . . - - . - - -_ - - . 
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definition of the various mixed inner  products is 
not s t ra ight  forward.  
tor is  a l so  appllcablc to other  function space 

Of course ,  the s a m e  opera-  

~ quasi-Newton methods ( E .  g . ,  Davidon, projected 
! - gradient) .  

Because of the relatively la rge  number of 
penalty coefficients (seven)  it was found that a 
t ime-shared ,  interactive graphics capability en- 
hanced considerably the rate  ofxonvergence of 
the problem. 
a r e :  fewer  i te ra tes  a r e  "wasted", one l ea rns  
more about the problcm by staying with it on the 
t e rmina l  as opposed to frcquent babh-job sub- 
miss ions ,  and the problem is usually solved much 
more quickly ( e .  g . ,  on a t ime-shared computer ,  
twenty thirty-second runs per  hour  a r e  fcasihle 
whereas  one ten minute run in the batch mode 
usually involvcs a turn-around t ime of severa l  
hours ) .  

The advantages of such a capability 

Finally,  with respect to the u s e  of the function 
space quasi-Newton methods, one can see by 
Figure  3 that the only additional programming 
(compared to the standard gradient method) in- 
volves thc inner products in Eqs. 3.13 and 3.14. 
Whethcr o r  not one wishes to do this additional 
work i s ,  of course ,  problem dependent ( i t  may be 
a necessi ty  in problems where the gradient m e t h d  
has  convergence problems. e .  g. ,  singular prob-  
l ems) .  IIowever, just  as the finite-dimensional 
spacc quasi-Newton algorithms have become thr  
major  parameter  optimization methods in recent  
yca r s ,  because of deficiencies in the gradient 
and Newton methods, a s imi la r  situation may  
occur in optimal control problems with the i r  
function-space analogs. 
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APPENDM A 

Mission Data 
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In summary  the mission constraints and con- 
t ro l s  are, 

i )  Initial conditions -launch f rom KSC. 

i i )  Te rmina l  conditions - 50 x 100 nm orbi t  
- 

inclined 28.5 degrecs  with insertion at  perigee.  

i i i )  Funct ionl)p Control - (&;I( m a s s  flow 
ra t e ,  a function of t ime .  

iv )  P a r a m e t e r  Type Controls 

C1 - GLOW (Gross  Liftoff Weight). 

C 

C 

C 

C - 4 ,  out of plane thrust  angle during 

- y ,  pitch-over ra te  during phase 2 .  

- a ( l inear  tangent pa rame te r ) .  

- b ( l inear  tangent p a r a m e t e r )  

2 

3 

4 

phase 2. 

v) State variable inequal.ity constraints - 
Dynamic P r e s s u r e s  650 psf. Acccleration 

max < 3. 0 g ' s  - 
v i )Pe r fo rmance  Index - maximize the g ross  

liftoff weight, GLOW. 

The m a s s  of the vehicle is broken down into 
five parts ,  

6 i) m = fuel f i r s t  stage = 3.50680 x 10 lbm 

5 
i i ) m  

i i i )m  = fuel second stage =1.16415 x 10 lbm 

5 
i v )  m, = st ructure  second s t age=2 .61300~10  h 

v )  m = payload = to be maximized 

The rngines are character ized by, 

I = 270.7 sec. A . = 700 f t  

I = 456.5 sec.  

If 

1s 

Zf 

2 s  

P 

:: s t ruc tu re  first s t a g c = 5 . 7 0 8 5 0 ~ 1 0  Ibm 

6 

2 

1 ex, t p1 

sp2 
APPENDIX B 

Projection Operator Roof  

The operator defined by Eq. ( 3 . 2 0 )  i s  a pro-  
jection operator i f  i t  i s  l inear ,  self-adjoint, and 
idempotent. These properties will now be proved. 

;P - -  *- - 
ii) Self-Adjoint: Define P by<A, PB>=<P A, B >  <A, P B > = j t  t f - T  A P B d t = ~ t f [ A ~ c ] P ~ ~ ] d t  - 

0 0 

iii) Idempotent (Pz = P): 

3 P Z = P  

LIST O F  SYMBOLS 

Acc - axial  acceleration 
A . - exit area of f i r s t  stage rngines 
d. - search direction 
g! - gradient 
d - Hamiltonian 
fI. - l inear  operator in quasi-Newton algori thms 
I - specific impulse 
JsC performance index 

'atm P. - seven penalty weighting coefficients 
ql- dynamic p r c s s u r e  = -  p $ 
r - radius 
si - Au. 
T - thrLst 
t - staging time 
t - final t ime 
u - control vector  

exit  

1 

- atmospheric  p r e s s u r e  

1 
2 

S 
f 

V - velocity 
x - f i r s t  stage radius 
x1 - f i r s t  stage o 
x2 - f i r s t  stage radial  velocity 
x3 - f i r s t  stage tangential velocity 
x4 - f i r s t  stage normal  velocity 
x5 - first stage m a s s  
-6 x - second stage radius 

-1 x 
-2 x 
-3 x 

- second stage radial  velocity 
- second stage tangential velocity 
- second stage m a s s  

4 
yi - Agi 

y - angle of thrust  above local  horizontal  
0 . spherical  coordinate 
). - influence functions 
p - atmospheric  density 
+ - spherical  coordinate 
Q - inclination 
t$ - azimuth angle 
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