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ABSTRACT

A one-dimensional divergence of the monochromatic heat
flux for wall-affected attenuating thingas,

dqy
dy

= 4,;,{ [By, = Buufoo)] = 2[Eu=0) = Byyfo0)] Ez(r,,)} :

is developed from general considerations. Here Ey,, #,, ¢, and 1,
respectively denote the monochromatic values of the emissive
powér, ‘absorption cocfficient of gas, wall emissivity and optical
thickness; , By is the second exponential integral, y the

coordinate nermal to boundary. The model applies to semi-
infinite geometry.

For the spectral average of the heat flux divergence
(needed for radiation-affected thermal transport), new
definitions are introduced (including the wall and attenuation
effects) for the absorption coefficient of gas and the wall
emissivity. This heat flux is applied to thermal boundary layer
over a horizontal flat plate. An explicit expression for the local
Nusselt number involving both conduction and radiation is
shown to be

Nu, _ (=doidyl) 3 /o \( 5%
Nuf = (—dedy] ¥ ~ 4™ \Nuf 4N/

Nu¥ being the Nusselt number for pure conduction, (-dé/dy],)¥
the wall gradient of temperature for pure conduction, ¢, the
wall emissivity, P the ratio of emission to conduction, and =,
the local optical thickness.

The effect of radiation on the thermal part of entropy
production is demonstrated in terms of the forced convection
over a flat plate.

1. INTRODUCTION
The inherent complexity of radiation affected thermal

energy transport has forced researchers in the past to
development of models for the radiative heat flux valid either for

small or large values of the optical thickness. The prime concern
of these models has been the incorporation of boundary effects
into the well-known astrophysical models for thingas and thick
{Rosseland) gas.

In a study invelving the effect of radiation on boundary
layers in buoyancy driven flows, Arpaci’ developed a thick gas
model which includes boundaries. Although obtained in
connection with a particular problem, the model was expected to
be of general nature which in fact was later shown to be the case
by Arpaci and Larsen.? The same model was used by Lord and
Arpaci® in studying the radiation effect on forced convection
boundary layers. Another boundary affected thick gas model
was proposed by Viskanta* and Anderson and Viskanta® and the
mode]l was compared with Arpaci model by Viskanta and
Anderson.®

For the other end of optical thickness, and in connection
with both forced and natural convection boundary layers,
Cess”® developed models for attenuating thingas far from
boundaries and for nonattenuating thingas. Also, in another
forced convection boundary layer study, Tord and Arpaci®
developed an attenuating thingas model, In spite of these eiforts
, the development of a thingas model strictly from general
considerations, including especially spectral effects and the
definition of a wall affected absorption coefficient apparently
remained untreated. One of the prime motivations of the
present study is the development of this model. The other is to
study the entropy production in radiation-affected boundary
layers in terms of the model.

The study consists of 7 sections: following this
introduction, Section 2 develops the thingas medel, Section 3
applies the model to the forced convection boundary layer over a
horizontal flat plate. Section 4 considers two solution methods for
the problem, Section 5-develops the transport aspects of local
entropy production and applies them to the present problem,
Section 6 deals with the heat transfer from the wall and relates
the wall entropy production to the local Nusselt number, and
Section 7 concludes the study with some final remarks.

2. A THINGAS MODEL

The one-dimensional heat flux associated with
monochromatic radiation in semi-infinite domain is available in



the literature (see, for example, Cess,” Arpaci and Larsen® for
semi-infinite domain and References [9-13] for finite domain),
This flux for diffuse radiation with negligible scattering is

qI:‘(TP) =2 Bu E3(Tu) + 2'[ouEbVE2(Tu—7:u)dTL

- 2V[:OE|WE2(TL“ T,)d‘r',, . {1

where B, being the monochromatic surface radiosity, E,, the
monochromatic emissive power, E, and Eg the second and third
exponential integrals, respectively, r, the monochromatic optical
thickness, and 7, a dummy variable, The wall value of this
flux for 7,=0, noting E,{0)=1/2, is
akoy = B, — 27 B Ey(n)dr, . (2)
Also, by definition,
Ry =
q.(0) = B, ~ G, 3

where G, is the monochromatic radiation incident on the
wall. From Egs. (2) and (3),

G, = 2f By Egrdr, . {4y

Again, by definition,

B, = B (—0) + p,G, (5)
where E,(—0), ¢, and p, denoting the monochromatic values
of wall emissive power, wall emissivity and reflectivity,
respectively. Elimination of G, between Eqgs. {4) and (5) gives

B, = 6E,(—0) + 2p, f;° By Ey(r)dr, , (6)

and in terms of Eq. (6), Eq. (1) becomes

qhr,) = 2 ¢, By (~0Eyr) + 4 p, By(r) B, Eolridr,

+ Z/Ory EhiEZ(Tu— T‘.,)dT:, - 2’[;”EbyE2(T.y_Ty)dr‘y . (M

Here the first term on the right is the wall emission being
attenuated up to the generic point 7, in the gas, the second is
the integrated effect of monochromatic gas emission incident on
the wall, being reflected from wall and attenuated up to 7, the
third is the integrated effect of the monochromatic emission of
gas aver (0, 7,), and finally the fourth is the integrated effect of
the monochromatic emission of gas over (r,, o).

Some arrangement of the above equation yields

altr) = 4 {Bylr) S, Ey(dr,
-1- ” EvaZ (th 1",,)(11",, - Evaz{le_ Tv)tl'r',,
* 2 ° T

+ 2 [Bol=0) -2/ By, Balrar)) Es(rv)} . (®)

On boundaries, Eqg. (8) reduces to

O = ¢, [Bp(—0) 2/ By By(r)dn] . ©
Also, useful for thingas studies is the divergence of Eq. (8)

day
dr

v

= 4{1@:1," = Eg(n) [T By Ey(ridr,— % fEbyEl(l'rrfL!)de

- % [Ebu(— 0)— 2[R, Ey(r,)dr, Eg(-r,)}} (10)

where E; being the first exponential integral. Note that both
Egs. (8) and (10) are general, and apply for any optical
thickness. To simplify these for thingas, assume the variation
of E;, over a semi-infinite domain from By (—0} to Ey (o0} to
have negligible effect on the integrals involved with Eqgs. (8) and
(10). Thus

1

[ By Balridr, = = By (elByr)ff” = + 5

Ehy(oo)

fu“ By (jr— 7l )dmy = [2 = Extn)] By, f00)
Then, Eq. {10} readily gives

do?
dy

= 4n,{ [Eb, - Eh”(oo)] - fgﬂ[Eb,(—O) - Eby(oo)]Ez(Ty)}.m)

where y is the coordinate normal to wall,

Since the boundary heat flux is controlled by the gas
behavior near boundaries, its simplification for thingas requires
a treatment different than the one employed for the divergence
of heat flux given by Eq. (10), Let the integral involved with
Eq. (9) be split inte two, one over the interval [0, 7,,] and the
other over the interval [r,,, o), 7, denoting the thickness of the
conduction boundary layer. Ovwver this boundary layer, Ep,
satisfies apparently the wall emissive power, E, (—0), and

dE, (. )d7; = 0, Eylr,,) =~ Byfo0) | (12)
and, in view of boundary thermal energy balance,
d2Ey (~0Mdr,2 # 0 (13)
which, for the limit of weak radiation,
2B, (~0)dr,2 — 0 . {14)

A polynomial approximation satisfying Eqs. (12) and (14) is

By Bu(0) 17} 3 —T”—) : (15)
Ebv(-—O) - Eboo 2 TulA 2 Tyﬁ’
or, satisfying Eqgs. (12) and (13) is
By, — Ep (-0 r, 12 T,
e = | — ] — 2 [—} 16
Ehv(_o) - Ehoo TVA) U7y ( )

In terms of these profiles, the wall heat flux is found to be



Q) = ¢, (B ~0) — By foc)] (1 = fr,) amn
with,
23 = B = 3/4 ,
upper limit corresponding to the diminishing effect of

radiation. Clearly, Eq. (17) shows the separate enclosure and
thingas effects.

Now, introducing a boundary-affected Planck mean
absorption coefficient,

/ﬂ “x, { [, - Eby(éo)] —fz-” [Eu(-0)- Elw(oo)] Ey(r) }du
= ,(18)

[(Eb“Eboo) - ‘c“;" (Bpw — Epo) Ez(f)]

kp

together with a thingas-affected wall emissivity,

[, [Bnt=0) ~ Byfo0)] Eytrav
o (Byw ~ Eyo) Fole) '

20 (19)

the divergence of monochromatic thingas flux of Eq. (11) is
reduced to  spectrally-weighted thingas model as

d R
?‘*}f- =4y [(Eb — Bpeo) — % (Fyw — Epe) Ez(f)] . (20)

where the first difference between emissive powers shows the
gas effect and the second difference denotes the attenuating wall
effect.

Introducing the emissivity

[7e [But=0) = Buso] 1 = g0
o= Byl = )

Cw = ] szon(zl)

the monochromatic thingas flux given by Eq. (17} is reduced to a
spectrally-weighted thingas flux as

a0 = ¢, By — By} (1~ Brp) - (22)
The different definitions for the wall emissivity given by
Eqgs. {19) and (21) should be noted.

The development from strictly general considerations of a
monochromatic and wall-affected heat flux divergence for thingas
given by Eq. (11) and the definitions of an absorption coefficient
and a wall emissivity which include attenuating thingas and
boundary effects and given by Eqgs. (18) and (19) appears so far
to remain untreated. In connection with radiation-affected
boundary layer studies, Cess”® considers the special case of
Eq. {20} for E,(7) ~ 1 within boundary layers and for By ~ By,
outside boundary layers, and Lord and Arpaci® in connection
with a forced convection boundary layer study develop a model
similar to Eq. (20).

Foregoing general considerations are applied to a
boundary layer problem in the following section.

3. RADIATION AFFECTED FORCED CONVECTION

Censider the effect of radiation on the forced convection
boundary layer over a horizontal flat plate, In a low speed flow,
provided the difference between the temperature of the free
stream and that of the wall is not toe great (so that the density
is sensibly constant) the momentum equation is decoupled from
the thermal energy and may be solved separately. Furthermore,
for heat transfer studies, rather than utilizing the velocity
profiles, a good approximation of these profiles near boundaries
is needed. This approach, in the absence of radiation, is well-
known and has been studied extensively. The outstanding
works are Fage and Falkner,!* Lighthil,’® Spalding’® and
Liepmann'? (summarized in the monograph by Curle!®). Also,
the extension of the approach to the limiting cases of Pr<1 and
Pra»1 are discussed in Arpaci and Larsen.!® Since the case of
Pr<1 is for opaque fluids and has no application to radiation-
affected problems, and the case of Pr»l is known to
approximate for all fluids with Pr = I, here only the latter case
is considered.

Replacing the longitudinal velocity by its tangent on the
wall and using this velocity in the conservation of mass to
determine the transversal velocity, and including the radiation
effect in terms of Eq. {20), the thermal energy balance gives

Y8 1,4 {r)er] _ #T &t
7 [Y (;) & V& (7;) E] =k @
subject to
a5 -
?'?yx' = 4 &p (Eb = Epd — o (Epw = Ebe) Eo(D} (20)

where 7, denotes the wall shear stress, u the dynamic viscosity,
p the density, c, the specific heat. The boundary conditions to
be satisfied are

T0, ) =T, ., Tx,00=7T, , Tx,e0) =T, , (24
The next section deals with two solutions of the foregoing
formulation,

4. TWO SOLUTIONS
Case I: Complete Solution for Pr » 1
This case deals with the domain
0=y = A

and includes the effect of conduction as well as viscosity. A
formulation in terms of a similarity variable including both
conduction and radiation is not feasible because of intrinsic lack
of similarity between conduction and radiation. However, the
effect of thingas radiation on conduction is small. This fact
suggests the use of the similarity variable for conduction by
which the radiation effect can be treated locally similar.

Introducing

7 = ylglx)



(see, for example, Arpaci and Larsen'?), into Eq. (23) leads to
the equation satisfied g(x),

which readily gives

lo 13 (2 dx} 1

(,.w/#)lfz

glx) =

and

: (TWJ#)Uz y
?'l - .
[a JE (r e dx]lra

In terms of Eq. (25) and the approximation Ez'::exp(-\/gr),
Eqgs. {20} and (23) are reduced to

d2¢

1 ,dé
aZ*

2 = 4 _ Swo a2
37 d x P (@ 5 e T (26)

subject to &0)=1 and #Hoo)=0. Here, y=(sp/ag)"? is the

weighted nongrayness, ~g the Rosseland mean absorption
coefhicient and
T-T T - T}
. S/, Joe
Ty — To ™-1L M

4a/3 113
— 1/2 — lee— =
g=Gx", G= [0.332 Um(leu)lﬁ}

4 o (T — T Emission

P=x o -
3 k(T, — Tdem  Conduction over s’

20

sy = (nprg)!? being the mean absorption coefficient. As P — 0,
the effect of radiation diminishes and Eq. (26) reduces to the
case of pure conduction, as expected.

A scolution following asymptotic matching of an inner
solution based on conductive boundary layer and an outer
solution based on radiative boundary layer is somewhat involved
because of the transcendental nature of the latter. A local
similarity approach [integrating Eq. (26) for a fixed x] is
straightforward and is pursued here. Equation (26) was solved
first as a boundary-value problem by using the finite difference
code PASVAS developed by Lentini and Pereyra.?0-?1 Results
for pure conduction apree to five decimals with those obtained
from the well-known {integral) solution evaluated by using a 15-
point Gauss-Legendre quadrature.?? Equation (26) was solved
also as an initial-value problem?? depending on the wall gradient
of temperature obtained from PASVA3. The single step code
DVERK based on 2 fifth and sixth order Runge Kutta — Verner
approximation developed by Hull e «l?! was utilized. The
results obtained separately from PASVA3 and DVERK are
found to agree to five decimals. Figure 1 shows the variation of
8 against g, for pure conduction which can be obtained by letting
the right hand side of Eq. (26) equal to zero, and combination of
conduction and radiation as expressed by Eq. (26). The present

study utilizes atr properties at the film temperature and assumes
U, = 2m/s,

Case II: Purc Radiative Solution

For the asymptotic case corresponding to Pr — oo, the
viscous boundary layer § is much thicker than the conductive
boundary layer A. In the region bounded by these layers,

A=y <§,
the effect of conduction is negligible. Considering the
approximations for u and v employed in the preceding case, and

treating the derivatives of temperature in the manner that led
to Eq. (26), it can be shown that

(28)
or, in terms of Eq. (20}, to
1 Tw | dT €
5P Y (:) o 4 kp [E(Ehw_Ebm)Eg(T) — (Ey~Epl] - (29

Employing
rfe = 0.332 U, (U hx)2 |

and the Stefan-Boltzmann law,
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B, = «T¢,
Eq. (29) may be rearranged as

gt 94 o rp xM® »
o pe, U (Ul;/v)l;ﬁy [% (Tf"_Ti’)E2(T)_(T4"Tg°)] (30)
p Yoo

or, in terms of an effective temperature, say

1/4
Ty(r) = [% (T = TEED + T;J , (31)
and the dimensionless temperature
§ =TT, ,
as
M 24 sp o TE xH2 o
e W (- 84, (32)

Separation of variables, integration, and the use of 6" (x,0)=6L,
for the integration constant readily gives the transcendental
closed form solution

1+ Y f1-46° . . 16yB, 7%=
¥

where 7, and 7, being the optical thicknesses based on xy in
longitudinal and transversal directions, respectively, B, is the
Boltzmann number based en T,, and B is the Reynolds number
defiped as follows

B, = 4dTg‘ipCpUmTc ., R=Uglvmy .
The next section first develops an expression for local entropy
preduction in radiatively participating media and then applies

the result to the present forced convective boundary layer
problem.

5. LOCAL ENTROPY PRODUCTION

The inferpretation of the contemporary problems of
thermomechanics in terms of entropy production is lately
receiving increased attention. Because of its size no attempt will
be made here to survey the literature (see, for example,
Bejan®5%®  for applications involving heat transfer and
Arpaci®®®® and Arpaci and Selamet®-3! for applications
involving radiation and flames). The following brief review on
the local entropy production is for Jater convenience.

The development of the entropy production in moving
media requires the consideration of the momentum balance as
well as the energy balance. For the Stokesean fluid, the
moementum balance in terms of the usual nomenclature is

br..

D‘Ui_ ap v
p-D—t——gx'i+;+Pf}- (34)

)

The entropy balance (the Second Law halanced by the local
entropy production) is

Ds g [q;

AP RN I 8 an 35

D O%; (T) 5 (35)
where s denotes the local entropy production. Also, the

conservation of total (thermomechanical}l energy (or the First
Law) including the heat flux expressed in terms of the entropy

R G R OR

(386)

D 1 8 i 8 8 -
p'D—t(U'i-é-ulz) :HE[(%)T} —-Ex-;(pui)*l»?&;(rﬂui)i-pﬂvi‘?u (37

Now, the fundamental difference,

Total energy — (Momentum)v; — (Entropy)T (38}

in terms of Eqgs, (34), (35), (37) and the conservation of mass,

Do, %

+p—L=0, {39)

—- (%)%T- + mysy + "t — T, (40}

where s; is the rate of deformation. For a reversible process, all

forms of dissipation vanish, and

Du Ds Dw

(ﬁE“Tﬁ"l‘p—ﬁE):ﬁ (41)

which is the Gibbs Thermodynamic relation. For an irreversible
process, Bq, (41) continues to hold provided the process can be
assumed in local equilibrium. Then, the local entropy production
is found 1o be

" . 1 qi aI‘ ”e
s -T[“‘(-T—-) (‘a—(i')-i“'r;jsij'{-u },

where the first term in brackets denotes the dissipation of
thermal energy into entropy (lost heat), the second term denotes
the dissipation of mechanical energy into heat {lost work), and
the third term denotes the dissipation of any (except
thermomechanical} energy into heat. When radiation is
appreciable, g; denotes the total flux involving the sum of the
conductive flux and the radiative flux,

(42)

g =qf +af. 43)

In the present study, neglecting contribution due to
viscous dissipation and noting that conductive and radiative heat
fluxes are considered only in transversal direction, Eq. (42) may
be rearranged as



= - (£). (44

8y

The conductive constitution, expressing T in terms of 8 from
Eq. (27)

(45)

where 7 and g are defined by Eqs. (25) and (27), respectively.
Inserting T, radiative heat flux approximated by its wall value
neglecting the second order correction term in Eq. (22), and
conductive heat fiux expressed by Eq. (45), into Eq. (44), the
volumetric local entropy production

_kdo

+ T, +T NTZ+TZ) (46
% dy €uo(T, + T X )i .(46)

Figure 2 shows the variation of nondimensionalized (with respect,
to wall value) entropy production s;'/s: against similarity
variable 7 for three wall temperatures; 400 K, 500 K, and 600
K where T, is 300 K. For T,=500 K, Fig. 3 depicts the
variation of s,, against 5, for pure conduction, conductive and
total (conductive +radiative) components in combined conduction
and radiation problems.

6. HEAT TRANSFER

Radiation problems are usually linearized before any
attempt for a solution. Thus the solution complexity due to
nonlinear radiation is eliminated at the expense of sacrificed
guantitative physics.

The linearization about a mean temperature Ty yields
@ 4 ¢ , P - 4P

where

40T Emission

P= o
FkTypgmp Conduction over sy

is the Planck number, and

T, = (Ewﬂ + Tﬁc)”"

p— (48)

is the mean temperature obtained from an energy balance on the
transparent limit of thingas. With this linearization, Eq. (26) is
reduced to

d2 1 ,d8 _ TS
e A L 4P xx (a - et 9)

subject to the boundary conditions of the nonlinear problem.

A thermal boundary layer study hased on approximate
velocity profiles is known to yield satisfactory results for heat
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transfer. Accordingly, the present study is well suited for

evaluation of a total Nusselt number including the effects of both
conduction and radiation.



The total heat flux on boundaries,

4 = af + ai, (50)
¢ being available from a usual boundary approach znd &
being already evaluated from strict radiative considerations
based on the spectral average of the monochromatic heat flux
[leading to Eq. (22)]. However, since the temperature
distribution is affected by both conduction and radiation, the
radiative heat flux given by Eq, (22) should have an explicit
effect of conduction. To demonstrate this effect, consider the
spectral average of heat flux given by Eq. (8),

215 ByEyr)dr] .

a8 = o [Bpw - (51a)

Split the interval into two domains: [0, 7,] and [r4, o). Then
the integration of Eq (51a) yields

radBEy
gw - 2¢, | 3o Balrde" (51b)

Assume a third order polynomial in  for E,
E, = a,+a,r+az® +agr . (52)

First satisfy the apparent conditions,
By = By, . Ey(ry) =B, and dE(rp))dr >0 , (563)

and, for the fourth, utilize the halance of the thermal energy,

k g—i—’g W= %’g w (54}
which in terms of Eq. (20} may be rearranged to give
k% BRI TCOWES WY (55)
Also, from the (linearized) Stefan-Boltzmann law
A°Ey 5 42T
(56)

E}T"—“fio’TMd—yT

Without this linearization, an explicit fourth condition does not
appear to be available. However, this linearization may be
shown t0 have negligible effect.

The elimination of thermal curvature between Egs. (65}
and (66) gives

ar, |
e =

Now, Eq. (52) subject to Eqs. (53) and (67) yields

12xP(L ~ 5;'—) Epy =~ Epg) - (57

By By, _1[_ 1)z +m(Z) (=L ) (L)’
o 345P ) tRl o) =3P (58)
where

p°=12xp(1—%)&

In terms of Eq. (58), Eq. (51b) results in

a =

«lByy = Epoo) {1 - 7a [% ~ (1—52% A X p] } (59)
which shows the explicit effect of conduction on the radiative
heat lux. However, for the thingas radiation

< 1

AP ~ 1 , 7a

and, to first order, the explicit effect of conduction on the
radiation flux is negligible. Thus

4% = By ~ Eyo) (1 — i’-m) (60)

which is the upper limit of the radiative flux obtained from stijct
radiative considerations.

Now, for the total heat transfer,

ar
qu = — k3=

5 ot 9B~ B (-5, 6D

where, after neglecting the effect of thingas radiation on the
thermal boundary layer,

Ta S Ky A = ryy 8P (62}

From approximate studies on viscous boundary layers,

§ =~ 5.0x/Ref? , (63)
and
Ta = 5.0r1/Rel® Pri® (64)
Also, from thermal boundary layer studies,
Nu, = 0.629(—d#/dy],} Re}? Prif | {65}
which, for the pure conduction case
(—doidn], )¢ = 0538 ,
gives
Nu¥ = 0.339 Rel? Pr# (68)
In terms of Eq. (66), Eq. (64) becomes
Th X gr,/Nuff : 67
Thus
Nu,

—agid
{—d .V]w) + géwP(Tx

- _B
No¥ 7 (—daas| K NuxR) (1 4Nu§) '

In terms of Eq. (44), the local thermal entropy production
on the wall is

1
0= =+ ob) (?a?) !w. (68)



Introducing a wall local entropy production number,

m, = s, x%k (69)
Eq, (68) may be rearranged as
( T, \? qf (@Tidg),, |2
=1 === + =¥ kel LA
T= ’I‘w) (1 ok} 1T =T (70
With the defnition of Jocal Nusselt number
C K
ay _ aw _ 908,
N = = = e
u, E’E a]x( T = T (71)
Eq. (70) may be finally expressed as
T 2 R
M, = (1 - —"°) (1 + q‘“) NuZ . (12)
Ty qw

7. FINAL REMARKS

A boundary-affected and atfenuating thingas model is
developed. The radiation-affected forced convection over a flat
plate is investigated in terms of this model.

The distribution of entropy production within and outside
the radiation-affected thermal boundary layer is evaluated. The
retained nonlinearity of temperature in the entropy production
leads to an extremum in this production within the boundary
layer rather than on the boundary.
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