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ABSTRACT 

A one-dimensional divergence of the monochromatic heat 
flux for wall-affected attenuating thingas, 

is developed from general considerations. Here Ebl. K~ cy and r, 
respectively denote the monochromatic values of the emissive 
power, absorption coefficient of gas, wall emissivity and optical 
thickness; , E, is the second exponential integ-ral, y the 

-4' 

coordinate normal to boundary. 
infinite geometry. 

The model applies to semi- 

For the spectral average of the heat flux divergence 
(needed for radiation-affected thermal transport), new 
definitions are i n t d u c e d  (including the wall and attenuation 
effects) for the absorption coefficient of gas and the wall 
emissivity. This heat flux is applied to thermal baundary layer 
over a horizontal Rat plate. An explicit expression for the local 
Nusselt number involving both conduction and radiation is 
shown to be 

Nu: k i n g  the Nusselt number for pure conduction, 
the wall gradient of temperature for pure conduction, 4 the 
wall emissivity, P the ratio of emission to conduction, and 
the local optical thickness. 

The effect of radiation an the thermal part of entropy 
production is demonstrated in terms of the forced convection 
over a flat plate. 

1. INTRODUCTION 

Y The inherent complexity of radiation affected thermal 
energy transport has forced researchers in the past to 
development of models for the radiative heat flux valid either for 

small or large values of the optical thickness. The prime concern 
of these models has been the incorporation of boundary effects 
into the well-known astrophysical models for thingas and thick 
(Rosseland) gas. 

In a study involving the effect of radiation on houndary 
layen in buoyancy driven Rows, Arpaci' developed a thick gas 
model which includes boundaries. Although obtained in 
connection with a particular problem, the model was expected to 
be of general nature which in fact was later shown to be the case 
by Arpaci and Larsen.2 The same model was used by Lard and 
Arpaci3 in studying the radiation effect on forced convection 
boundary layers. Another boundary affected thick gas model 
was proposed by Viskanta4 and Anderson and Viskanta5 and the 
model was compared with Arpaci model by Viskanta and 
Anderson.6 

For the other end of optical thickness, and in connection 
with both forced and natural convection boundary layers, 
C e ~ s ~ . ~  developed models for attenuating thingas far from 
boundaries and for nanattenuating thingas. Also. in another 
forced convection houndary layer study, Lard and Arpnci3 
developed an attenuating thingas model. In spite of these efforts 
, the development of B Lhingas model strictly from general 
considerations, including especially spectral effects and the 
definition of a wall affected absorption coefficient apparently 
remained untreated. One of tho prime motivations of the 
present study is the development of this model. The other is to 
study the entropy production in radiation-affected boundary 
layers in terms of the model. 

The study consists of 7 sections: following this 
introduction, Section 2 develops the thingas model, Section 3 
applies the model to the forced convection boundary layer over a 
horizontal flat date.  Section 4 considers two solution methods for 
the problem. Section 5,develops the transport aspects of local 
entropy production and applies them to the present problem, 
Section 6 deals with the heat transfer from the wall and relates 
the wall entropy production to the local Nusselt number. and 
Section 7 concludes the study with some final remarks. 

2. A THINGAS MODEL 

The onedimensional beat flux associated with 
monochromatic radiation in semi-infinite domain is available in 
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the literature (see, for example. Cess: Arpaci and Larsen2 for 
semi-infinite domain and References [9-131 for finite domain). 
This flux for diffuse radiation with negligible scattering is 

&.J = 2 B, E3(rJ + 2~~Eb$z(rw-;v)d;v 

- 2/~Eb,,E2(;u-r,)d;w (I)  

where Bv being the monochromatic surface radiosity, Ebu the 
monochromatic emissive power, E, and E, the second and third 
exponential integrals. respectively, ru the monochromatic optical 
thickness. and ;v a dummy variable. The wall value of this 
nux for rU=O. noting E,(O)= 112, is 

qR(0l = B, - 21," EbuEz(;u)dGu . (2) 

Also, by definition, 

q30) = B, - G, (3) 

where G, is the monochromatic radiation incident on the 
wall. From Eqs. (2) and (3), 

G, = 21," Eb$P('u)d'u , (4) 

Again, by definition, 

B, = e.EbV(-O) + puG. (5 )  

where Ebu(-O), tu and pv denoting the monochromatic values 
of wall emissive power. wall emissivity and reflectivity, 
respectively. Elimination of G,between Eqs. (4) and (5) gives 

B,. = e$b,(-O) + ZP, .f,"Eb$~(;~)d)dr: , 

and in terms of Eq. (6). Eq. (1) becomes 

(6)  

q!(r$ = 2 c.. EbV(-O)E3(7J + 4 pU E3(rJJo%,$z(;v)d;v 

+ 2/ohEb,Ez(r.-;.)d;v - 2/FEb$2(;v-~Jd;v . (7) 

Here the first term on the right is the wall emission being 
attenuated up to the generic point 7,. in the gas, the second is 
the integrated effect of monochromatic gas emission incident on 
the wall, being reflected from wall and attenuated up to T~ the 
third is the integrated effect of the monochromatic emission of 
gas over (0, TJ, and finally the fourth is the integrated effect of 
the monochromatic emission of gas over (T, -1, 

Some arrangement of the above equation yields 

q!(rJ = 4 {E3(rJ fQ%$z(;U)d;, 

q!(O) = [EbJ-O) -2J,"Ebp~(;~)d;.] . (9) 

W Also, useful for thingas studies is the divergence of Eq. (8 )  

(10) 'I I - - e" [Eb"(-O)-2~,"E,$z(;,)dr, Ez(rvN 
2 

where E, Wing the first exponential integral. Note that both 
Eqs. (8) and (10) are general, and apply for any optical 
thickness. To simplify these for thingas, assume the variation 
of E,, over a semi-infinite domain from Ebu(-O) to Ebv(mj to 
have negligible effect on the integrals involved with Eqs. (8) and 
(10). Thus 

1 
.fam Eb$z(;u)d;v L. - Ebo(m)EdrJl? = + 5 Ebu(m) 

/,mEb,,E,(J~u-;J)d;p 2 [z - EZ:rJ] Ebu(m) 

Then, Eq. (10) readily gives 

where y is the coordinate normal to wall 

W 
Since the boundary heat flux is controlled by the gas 

behavior near boundaries, its simplification for thingas requires 
a treatment different than the one employed for the divergence 
of heat flux given by Eq. (10). Let the integral involved with 
Eq. (9) be split into two, one over the interval [ O .  rval and the 
other over the interval ITva. -1, r,, denoting the thickness of the 
conduction boundary layer. Over this boundary layer. Ebo 
satisfies apparently the wall emissive power, Ebv(-O), and 

dEb,(~,Jd~; E 0 , Ebv(rv~) Eb,(m) , (12) 

and, in view of boundary thermal energy balance, 

dzEbv(-O)/dr: Z 0 (13) 

which, for the limit of weak radiation, 

d2Eb,(-0)/dr: + 0 . (14) 

A polynomial approximation satisfying Eqs. (12) and (14) is 

or. satisfying Eqs. (12) and (13) is 

On boundaries, Eq. (8) reduces to In terms of these profiles, the wall heat flux is found to be 



with 
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upper limit corresponding to the diminishing effect of 
radiation. Clearly, Eq. (17) shows the separate enclosure and 
thingas effects. 

Now, introducing a boundary-affected Planek mean 
absorption coefficient, 

[(E,,-E~,) - (u (E~,-E,,) ~ ~ ( 7 )  

together with a thingas-affected wall emissivity, 

Consider the effect of radiation on the forced convection 
boundary layer over a horizontal flat plate. In a low speed flow, 
provided the difference between the temperature of the free 
stream and that of the wall is not toc great (so that the density 
is sensibly constant) the momentum equation is decoupled from 
the thermal energy and may be solved separately. Furthermore. 
for heat transfer studies, rather than utilizing the vcloeity 
profiles, a good approximation of these profiles near boundaries 
is needed. This approach, in the absence of radiation, is well- 
known and has been studied extensively. The outstanding 
works are Fage and Falkner,“ Lighthill,15 SpaldingIG and 
Liepmann’? (summarized in the monograph by Curie's). Also, 
the extension of the approach to the limiting eases of Pr<l and 
Pr>l are discussed in Arpaci and L ~ r s e n . ’ ~  Since the case of 
Pr<l is for opaque fluids and has no application to radiation- 
affected problems, and the case of P r ~ 1  is known to 
approximate for all fluids with Pr a 1, here only the latter case 
is considered. 

Replacing the longitudinal velocity by its tangent on the 
wall and using this velocity in the conservation of mass to 

(Ebw - E d 4  determine the transversal velocity, and including the radiation 
effect in terms of Eq. (20), the thermal energy balance gives 

cV [E,,(-O) - Ebv(m)] E2(%dv 
* r, * 0 (19) 4= 

~~ 

the divergence of monochromatic thingas flux of Eq. (11) is 
reduced to a spectrally-weighted thingas model as 

1 suhject to 
(u (Eb - Eb,) - 2 (Ebw - Ebm) E,(r) , (20) 

I (u $ = 4 SP (E, - Eb,) - y (Eb, - Eb,) E2(d , (20) 

where r, denotes the wall shear stress, p the dynamic viscosity. 
p the density, cp the specific heat. The boundary conditions to 

f4R 
where the first difference between emissive powers shows the 
gas effect and the second difference denotes the attenuating wall 
effect. 

w 

Introducing the emissivity 

, be satisfied are 1 [Ed-0)  - E d m ) ]  (1 - bm,,)dv 
, 7” = 0 ,(21) 

(Eb, - EbJl - b ~ )  T(0, y) = T, , T(x. 0)  = T, , T(x, m) = T, , (24) 

The next section deals with two solutions of the foregoing 

4 =  

the monoehromatic thingas flux given by Eq. (11) is reduced to a 
spectrally-weighted thingas flux as formulation. 

¶YO) = 4 (EbW - E d  (1 - PTwa) . (22) 
4. TWO SOLUTIONS 

The diffsrent definitions for the wall emissivity given by 
Eqs. (19) and (21) should be noted. Case I: Complete Solution for Pr B 1 

The development from strictly general considerations of a 
monoehromatic and wall-affected heat flux divergence for thingas 
given by Eq. (11) and the definitions of an absorption coefficient 

This case deals with the domain 

O b y 5 A  .~ 
and a wall emissivity which include attenuating thingas and 
boundarv (1s) m d  (19) al)np~~s sn far and dven hv and includes the effect of conduction as well as viscosity. A _ ~ ~ ~ ,  . ~~~ ~ ~ r _  ._._.. .- I ~ ~~ 

to remain conneetion with radiation-aflecM 
boundary layer ~ ~ ~ ~ 7 . 8  considers the special case of 
Eq. (20) for E,(d 2 1 within boundary layers and for E, 2 E,, 
outside boundary layers, and b r d  and A ~ ~ ~ ~ S  in 
with a forced convection boundary layer study develop a ,,,del 
similar to Eq. (20). 

formulation in terms of a similarity variable including both 
conduction and radiation is not feasible because of intrinsic lack 
of similarity between conduction and radiation. However, the 
effect of thingas radiation on conduction is small. This fact 
suggests the use of the similarity variable for conduction by 
which the radiation effect can be treated locally similar. 

Foregoing general considerations are applied to a Introducing 
boundary layer problem in the following section. 

v = YMX) 



(see. for example. Arpaei and Larsen'*). into Eq. (23) leads to 
the equation satisfied g(x), 

Case 11: pure &diative Solution 

For the asymptotic case corresponding to Pr - m, the 
viscous boundary layer 6 is much thicker than the conductive 
boundary layer A. 

tfj ds" dx + ;2;(1;.) = 
In the region bounded by these layers, 

which readily gives A < y < 6 ,  

[a (TJW)"~ dx] 1'3 the effect of conduction is negligible. Considering the 
approximations for u and v employed in the preceding case, and 
treatinc the derivatives of temperature in the manner that led 

g(x) = (7,"IPP 

and 

In terms of Eq. (25) and the approximation E2=-enp(-&), 
Eqs. (20) and (23) are reduced tc 

subject to 8(0)=1 and B(m)=O. Here, x=(~plrR)"2 is the 
weighted nongrayness, eR the Rosseland mean absorption 
eoefieient and 

113 4 d 3  

(27) 
4 c ( T i  - Tb) Emission 
3 k(T, - T,kM 

p = -  - 
Conduction over sM' 

~ ~ = ( r ; ~ x ~ ) " ~  being the mean absorption coefficient. As P - 0, 
the effect of radiation diminishes and Eq. (26) reduces to the 
case of pure conduction, 3s expected. 

A solution following asymptotic matching of an innw 
solution based on conductive boundary layer and an outer 
solution based on radiative boundary layer is somewhat involved 
bcceuse of the transcendental nature of the latter. A local 
similarity approach [integrating Eq. (26) for a fixed XI is 
straightforward and is pursued here. Equation (26) was solved 
first as a boundary-value problem by using the finite difference 
code PASVA3 developed by Lentini and Pereyra.20,z1 Results 
for pure conduction agree to five decimals with those obtained 
from the well-known (integral) solution evaluated by using a 15- 
point Gauss-Legendre quadrature.22 Equation (26) was solved 
also as an initial-value problemz3 depending on the wall gradient 
of temperature obtained from PASVA3. The single step code 
DVERK based on a fifth and sixth order Runge Kutta - Verner 
approximation developed by Hull et aLZ4 was utilized. The 
results obtained separately from PASVA3 and DVERK are 
found to agree to five decimals. Figure 1 shows the variation of 
8 against '1, for pure conduction which can be obtained by letting 
the right hand side of Eq. (26) equal to zero, and combination of 
conduction and radiation as expressed by Eq. (26). The present 
study utilizes air properties at the film temperature and assumes 
u,= 2mls. 

to Eq. (261, it can be shown that 

Thus, the thermal energy, Eq. (23), may be reduced to 

01, in terms of Eq. (20),  to 

Employing 

rJp = 0.332 U, (U,/vx)"* , 

and thc Stefan-Boltzmann law. 

1.0 

0.8 

u. 
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Conduction+ Radiation 
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E, = oT' 
The entropy balance (the Second Law balanced by the local 
entropy production) is 

( 3 6 )  Eq. (29) may be rearranged zs DS 
. I  

conservation of total (thennomechanical) energy (or the First 
Law) including the heat flux expressed in terms of the entropy 
RUX, 

1 cp u,(uju)Iv)"2 [% (Tt-Tk)Ez(r)-( T"Tk) (30) where s"' denotes the local entropy production. Also, the 
ar 24 D x p  x1I2 
- =  a 

or, in terms of an effective temperature, say 

and the dimensionless temperature is 

E' = T& , 

as 

as' 24 xP c T: xl" Now, the fundamental diflerence, 
- =  (1 - E . 4 ) .  (32) a P cv U,(U,IV)"2 Y 

Total energy - (Momentum)vi - (Entropy)T (38) 
Separation of variables, inteEration, and the use of E'(x,-)=@h. 
for the integration constant readily gives the transcendental 
closcd form solution 

in terms of Eqs. (34). (35), (37) and the conservation of mass. 

where T~ and T~ being the optical thicknesses based on q., in 
longitudinal and transversal directions, respectively. 8, is the 
Baltnnann number based on T,, and R is the Rcynolds number 
defined 85 follows 

v 

B, = 4 0 ~ : i p e p ~ , ~ ,  , R = u,hxM , 

The next section first develops an expression for local entropy 
production in radiatively participating media and then applies 
the result to the present forced convective boundary layer 
prohlclem. 

5. LOCAL ENTROPY PRODUCTION 

The interpretation of the contcmporary problems of 
thermomechanics in terms of entropy production is lately 
receiving increased attention Because of its size no attempt will 
be made here to survey the literature (see, for example, 
Bejanzs~z6 for applications involving heat transfer and 
A r p a ~ i ~ ' . ~ ~  and Arpaci and Selamet29-31 for applications 
involving radiation and flames). The following brief review on 
the local entropy production is far later convenience. 

The development of the entropy production in moving 
media requires the consideration of the momentum balance as 
well as the energy balance. For the Stokesean fluid, the 
momentum balance in terms of the usual nomenclature is 

(34) 

(E Du - T~ Ds + %) Dv = - (?!)E + 7,s. .  + u'" - Ts"', (40) 
* a j  ' J ' J  

where sc is the rate of deformation. For a reversible process, all 
forms of dissipation vanish, and 

which is the Gibbs Thermodynamic relation. For an irreversible 
process, Q. (41) continues to hold provided the process can be 
assumed in local equilibrium. Then, the local entropy production 
is found to be 

where the fint term in brackets denotes the dissipation of 
thermal energy into entropy (lost heat), the second term denotes 
the dissipation of mechanical energy into heat (lost work), and 
the third tern denotes the dissipation of any (except 
thennomechanical) energy into heat. When radiation is 
appreciable, qi denotes the  total flux involving the sum of the 
conductive flux and the radiative flux, 

q = qf + 4F. I .  (43) 

In the present study, neglecting contribution due to 
viscous dissipation and noting that conductive and radiative heat 
fluxes are eonsidered only in transversal direction, Eq. (42) may 
be rearranged as 

5 



1.5 

The conductive constitution, expressing T in terms of B from 
Eq. (27) 

! *  
.e 
i c  y1 

where 7 and g are defined by Eqs. (25) and (271, respectively. 
Inserting T, radiative heat flux approximated by its wall value 
neglecting the second order correction term in Eq. (22). and 
conductive heat flux expressed by Eq. (45), into Eq. (441, the 
volumetric local entropy production 

6 
6 
g 
5 n 
3 

Figure 2 shows the variation of nondimensionalized (with respect 
to wall value) entropy production ;;/;: against similarity 
variable q for three wall temperatures; 400 K, 500 K, and 600 

variation of .,' against q, for pure conduction, conductive and 
total (conduetive+radiative) components in combined conduction 
and radiation problems. 

K where T, is 300 K. For Tw=500 K, Fig. 3 depicts the 0 

Similarity Variable. '1 

Figwe 2 

1200 - 6. HEAT TRANSFER 

T_=sOO K 
T, =500 K 

x=o.1 m 

Radiation problems are usually linearized before any 
attempt far B solution. Thus the solution complexity due to 
nonlinear radiation is eliminated at the expense of sacrificed 
quantitative physics. 

The linearization about a mean temperature TM yields 

€ ) - e ,  P - 4 P  

where (Pure Conduction) 
a Conductive Production 

Emission 
2 (Conduction + Radiation) 

p = -  4 d M  

Conductive Production 

(Conduction + Radiation) 
Total Production 

3 k T ~ ' i ~  Conduction over LM' 

is the Planck number, and 

+ P, IN ( % + I  ) 
is the mean temperature obtained from an energy balance on the 
transparent limit of thingas. With this linearization, Eq. (26) is 
reduced to 

0 2 4 
Similarity Variable. q 

) (49) 

Figure 3 
subjwt to the boundary conditions of the nonlinear problem. 

W 

transfer. Accordingly, the present study is well suited for 
evaluation of a total Nusselt number including the &e& of both 
conduction and radiation, 

A thermal bunday layer On 

veloeity profiles is known ta yield satiifactoly results for heat 
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The total heat flux on boundaries, In terms of Eq. (58). Q. (51b) results in 

(50) C R 4, = 4, + qw , 
' I  ' 

q? being available from a usual boundary approach and qz 
being already evaluated from strict radiative considerations 
bas& on the spectral average of the monochromatic heat flux 
[leading to Eq. (2211. However, since the temperature 

radiative heat flux given by Eq. (22) should have an  explicit 
effect of conduction, To demonstrate this effect, consider the and, to hrst order, the explicit effect of conduction on the 
spectral average of heat flux given by Eq. ( 9 ,  

which shows the -licit efffft 
heat BUX. However. far the thin- radiation 

conduction On the  radiative 

distribution is affected by both conduction and radiation, the TAP - 1 , r* 1 

radiation fin. is negligible. Thus 

(60) 
3 & = 41 [Ebw - 2J,"EbEz(ijdi] . (51a) q:! = L - ( % - E L , A ( ~ - ~ ~ ~ )  

which is the upper limit of the radiative 0ux obtained from strict 
radiative considerations. 

Split the interval into two domains: IO, ial and lis, ml. Then 
the integration of Eq (514  yields 

-ndEb 
0 dr' 

Now. for the total hea t  transfer, 
q$ - 2 5 / -E,(d)dT' . (51b) 

3 + 4 E b W  - Ebm ) (1 - 2 r.J , (61) Assume a third order polynomial in r for E,, 

Eb = a , + a l r + a z ? + a , P  (52) where, &r neglecting the effect of thingas radiation on the 
thermal boundary layer, 

First satisfy the apparent conditions, 
rA = LM A = fiM 6 1  Pr1I3 . (62) 

Eb(0) = E,, , Eb(7J x E,- and dEb(r,)idr 1 0  , (53) 

and, for the fourth, utilize the balance of the thermal energy, 
From approximate studies on viscous boundary layers, 

and 
(54) 

6 = 5.0 x i Rei" (63)  

T~ = 5.0 r, / Re:" Pr1I3 . (64) which in terms of Eq. (20) may be rearranged to givc 

= 4 hP (1 - 2) (Eb, - E,,-) . (55)  Also, from thermal boundary layer studies, 

Nu, = O.6Z9(-dB/dqlw) Re:" I'r1I3 , (65) 
Also, from thc (linearized) Stefan-Boltzmann law 

which, for the pure conduction case 

(56) 
(-d@/d4JK = 0.538 , 

Without this linearization, an explicit fourth condition does not 
appear to be available. However, this linearization may be 
shown to have negligible effect. 

gives 

Nu? = 0.339 Rein Prli3 . (66) 
The elimination of thermal e w a h m  bekeen Eqs. (55) 

and (661 gives In terms o f  Eq. (661, ES. (64) becomes 

In terms of Eq. (44), the local thermal entropy production 
on the wall is where 

v 



Introducing a wall local entropy production number, 

r5, = ,:“& (69) 

Eq. (68) may he rearranged as 

With the definition of local Nusselt number 

Eq. (70) may he finally expressed as 

7. FINAL REMARKS 

A boundary-affected and attenuating thingas model is 
developed. The radiation-affected forced convection over a flat 
plate is investigated in terms of this model. 

The distribution of entropy production within and outside 
the radiation-affected thermal houndary layer is evaluated The 
retained nonlinearity of tcmperature in the entropy production 
leads to an extremum in this production within the boundary 
layer rather than on the boundary. 
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