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Optimal Control Problems with Maximum Functional
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Iowa State University, Ames, Iowa 50011

and
Nguyen X. Vinht
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This paper considers the optimal control problem with a performance index that includes a maximum
functional. Necessary conditions are derived that are more general than those of previous work, some of which
is shown to be reducible and, therefore, included in the results found here. An illustrative example demonstrates
that necessary conditions are satisfied by a unique solution of the problem. The problem of threat avoidance for
aircraft is formulated as the optimal control problem considered here. Numerical results for a subsonic glider
are presented.

I. Introduction

I N this paper, we consider the following optimal control
1. problem:

mmt maxF(x(t))+<l>(x(tf)9tf)\ (V(j0<t<tf ^ y

x(t)=f(x(t),u(t))

u(t)€U, V f € ( ? 0

S(x(tf))=0

(2)

(3)

(4)

(5)

where, in the performance index of Eq. (1), F(x) and </>(*, 0
are two scalar functions with continuous partial derivatives,
x £XCR" is the state, Xis the state space, u(t) is an m-di-
mensional piecewise continuous control function, UcR m is a
control set, and S(x(tf)) = {Si(x(tf)),S2(x(tf)),... , s r ( x ( t f ) ) } T

represents a smooth terminal manifold of dimension n-r,
r<n. The final time tf is implicitly defined by Eq. (5), or
prescribed, and f(x,u):RnxRm-*Rn is assumed to be C1.
Here, without loss of generality, we only consider the autono-
mous system, because a nonautonomous system can always be
transformed into an autonomous system by an additional vari-
able xn+i = t. Similarly, we do not include an integral in the
cost function because it can also be easily transformed into a
function of the final state x(t/), and, therefore, included in </>.

The maximum functional term maxF(jc(0) in Eq. (1), as
named by Bellman,1 makes the problem a nonclassical optimal
control problem. If F(x) = 0 in the cost function, the problem
reduces to a problem of Mayer, for which well-developed
theory exists; if </> = 0, the problem is called the Chebyshev
minimax optimal control problem.

Optimal control problems of this type arise in various areas
of science and engineering. Many efforts have been devoted to
the solutions of this problem and the minimax problem.1"46 In
Ref. 1, a geometrical approach to the problem is given. A
transform technique is introduced in Ref. 2 to solve an auxil-
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iary problem, the solution of which can be arbitrarily close to
the original problem. Although these techniques are enlighten-
ing, they are hardly applicable to problems with even only
moderate complexity. Reference 3 gives an existence theorem
to the problem. Reference 4 presents a set of abstract necessary
conditions that are general but rather difficult to apply.
Reference 5 investigates the problem when the order is higher
than one, and a set of practical necessary conditions is ob-
tained. In recent years, emerging problems of this type in the
aerospace trajectory optimization have prompted renewed in-
terest in seeking their solutions. Solving a transformed optimal
control problem, Refs. 6-9 contain accurate numerical solu-
tions to minimax optimal control problems arising from
aeroassisted orbital transfer. References 10-12 apply the tech-
nique successfully in the treatment of strategies for flight in a
wind shear (both takeoff and abort landing). Reference 13
treats the problem with scalar control, and discusses the nu-
merical procedure.

Compared with the successful numerical solutions to this
type of problem, a study of the necessary conditions that are
practical and applicable to a broader class of problems appears
to lag behind. Yet the necessary conditions can not only
provide guidance for numerical computation, but can also
help in understanding the problem better and can sometimes
reveal important features of the problem before the numerical
solution is obtained.14 The objective of this paper is twofold:
First, we use a transform technique to obtain necessary condi-
tions for the problem, and comparison of these necessary con-
ditions with some previous results is conducted. Next, to
demonstrate the application, we formulate the aircraft threat
avoidance problem within the frame of this type of problem.
Numerical results are presented for the optimal trajectories of
an aeroglider.

II. Necessary Conditions
Suppose that x*(t), u*(t) (tQ<t<tf) is an optimal solution

pair to the problem in this section and the next, where x*(t) is
absolutely continuous and u*(t) is piecewise continuous. Also
suppose that F(x) is at least Cq, where <?>!, as defined in
Definition 1 in this section. We need the following definitions
in order to present the necessary conditions.

Definition 1
Let l t i 9 t f ] C ( t o , t f ) 9 */<£*/, f / ' < f / + i , / = !,..., k, £>1,

all the intervals in (to,tf)9 such that VT €[* / ,* / ] ,
*(r)) = maxF(jt*(*)), t € [ t 0 , t f ] . If f, = */, F(x*(t)) is said

to have an isolated maximum at tt. If */<*/, F(x*(t)) is said
to have a flat maximum in (// , / /) .

be
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Remark
Note that we exclude the case when F(x*(t)) attains its

maximum at tf or tQ, because if F(x*(tf)) or {F(jc*(^0))j
= maxF(x*(t))9 the performance index can be expressed as
F(x(tf)) or (F(x(t0))}+(t>(x(tf)9tf). The problem simply re-
duces to a problem of Mayer.

Definition!
If F^(x*(t)9u*(t))9 the (?th order derivative of F(x*(t))

is the first derivative for all q>\ to satisfy the following
condition:

(6)

so that for all t in any of the finite intervals (*/,//),
defined in Definition 1, F(x) is said to be of order q.

Remark
If F(x*(t)) attains its maximum only at some isolated points

in (io.,tf), the order of F(x(t)) is immaterial, as we shall see.
Hence, we do not define the order of F(x) in this case.

Definition 3
l&F(x(t)) be of order one, (t, ?,*/)£: (t0,tf) be a finite inter-

val in which F(x*(t)) attains flat maximum, and Vr € (// ,f/),
«/(**(T))C C/be defined as the set of all u € C7, such that

F(X*(T),U) =0 (7)

(8)

Remark
Under the assumption that jc*(/) arid u*(t) exist andF(jc(/))

is of order one, o>/(jt*(r)) is not empty because w=w*(r),
r € ( / / , ? / ) satisfies Eqs. (7) and (8). In the case where the
control u is scalar, or F only contains one component of vector
control u, CO/(JC*(T)) is solved directly from Eq. (7), provided
that the resultant .a>/(je*(rj) is in UcR.

After this preparation, let us consider the following optimal
control problem equivalent to the problem of Eqs. (1-5):

(9)

(10)

(U)

(12)

(13)

(14)

(15)

(16)

x ( t ) = f ( x ( t ) 9 u ( t ) )

u(t)tU9 v r € . 0

F(x)-xn+l<0

X(to) = XQ

• xn+ i(*o) = free

S(x(tf))=0

where the introduced auxiliary variable xn+1 is actually a con-
stant. Apparently any optimal solution of Eqs. (1-5) will be
an optimal solution of Eqs. (9-15), with xn+i = maxF(x*(t))9
f0 </.<*/, and vice versa. Equations (9-15) represent a prob-
lem of Mayer with inequality state constraint for which ex-
tensive theoretical results are available. We shall primarily
utilize the work by Pdntryagin et al.17 to derive our necessary
conditions.

First, we consider the situation when F(x*(t)) only has iso-
lated maximum.

Necessary Condition I
Suppose F(x*(t)) attains its maximum only at some isolated

points f / € ( f o » f / ) » / = !,. . . ,&, k>\. Then there exists a

nonzero piecewise absolutely continuous vector function
( p T ( t ) 9 p n + i ( t ) ) ± ( p l ( t ) 9 . . . 9 p n ( t ) 9 p n + l ( t ) ) 9 called the ad-
joint state, such that, for the Hamiltonian defined by

H(x9p9U) = P
Tf(X9U) + pn+lfn+l =pTf(X,ll) (17)

the following must be satisfied for almost all t € (tQ9tf):

**=//„(**,/>,«*)

p= -Hx(x*9p,u*)

u$ U

(18)

(19)

(20)

(21)

where C is a constant. At i\, t2,...,tkt the following jump
conditions hold:

(22)

(23)

(24)M / > 0 , / = !,..., k

The transversality conditions at t0 and tf are

P(tf) =

(25)

(26)

(27)

(28)

(29)

Let us outline the proof. Notice that, for the problem
(9-16), whenJF(jc*(T)) = maxF(jc*(0), tQ<t<tf, the inequal-
ity state constraint [Eq. (13)] becomes active at r, since xn+l
= maxF(**(0), ^o^ t < tf. The necessary conditions for a gen-
eral problem with inequality constraint g ( x ( t ) ) < 0 are given in
Ref. 17, with the assumption that for those t € (tQ,tf)9 such
that*(i*(0) = 0,

But in Ref. 16 it is shown that this condition is not needed
if g(x*(t)) = Q only at some isolated points, which in our case
corresponds to F(x*(ti)) = maxF(x*(t)) = xn+i, t0<t<tf,
only at some isolated t f . Therefore, by following Theorems 1
and 3 in Ref. 17 and Theorem 4 in Ref. 16, these necessary
conditions are in order.

In the transversality conditions (26-28), we shall concentrate
on the nondegenerate case only, namely, \l/o^0. Without loss
of generality, we take \l/0= - 1. From Eqs. (20) and (23),pw+1
is piecewise constant. From Eqs. (23), (25), and (27), with
\l/o = - 1 , we arrive at

Rearranging the jump conditions for p, we have

p(tD=P(tD + HiFx(x*(ti)) (30)
k

E - M / = 1 (31)
/= 1

p,*0, i = \,...,k (32)

Note that all equations related to pn+1 are only used to obtain



NOV.-DEC. 1991 OPTIMAL CONTROL PROBLEMS WITH MAXIMUM FUNCTIONAL 1217

Eq. (31) and thatpn+ 1 will not appear in the actual application
of the necessary conditions.

Next, we consider the cases where F(x*(t)) has flat maxi-
mum.

Necessary Condition II
Assumption 1: If F(x*(t)) has flat maximum in (/0, /»,

F(x(t)) is assumed to be of order one, and u*(t) is not on the
boundary of the control set U for all t in these finite intervals
where the flat maximum of F(x*(t)) occurs.

Suppose that F(x*(t)) attains its maximum k times in
(tQ,tf), & > 1, including flat maximum in some finite intervals
(tj ; , tj), j = 1 , , . . , / , l<k. Outside the intervals ((/ , (/), Neces-
sary Condition I applies. Inside the intervals ((/,(/), the fol-
lowing must hold under our stated assumption:

x*=Hp(x*9p,u*)

p = -Hx(x*,p,u*) + Vj(t)Fx(x*9u*)

i = -HXH + l(x*9p9u*) + vj(t)FXii^(x*9u*

H(x*,p,u*)= sup //(jc*,p,w*) =
*

(33)

(34)

(35)

(36)

where for t € (tj,tj), Vj(t) is a piecewise continuous function
satisfying

Note that coy(x*(0) is defined by Definition 3, mentioned ear-
lier. At tj, j = 1,...,/, the jump conditions hold:

p(tf )=p(t,~) + HjFx (x*(t,)) (38)

(39)

Again, the proof is straightforward: By following Theorems
22 and 24 in Ref. 17, which deal with general optimal control
problems with inequality state constraint g(jc)<0, we obtain
the previously defined necessary conditions readily, if we iden-
tify g(Xi,... 9Xn9Xn+i)='F(x)-X'n+i.

Note that, according to Ref. 17, Assumption 1 can be re-
moved with some modification in the results. We adopt it for
the simplicity of the presentation.

It should be noted that although Eq. (39) is identical to
Eq. (31), Eq. (32) is not necessarily true for the indices j
corresponding to a flat maximum.

Necessary Condition HI
When F(x(t)) is of order higher than one and has flat

maximum, if the control is scalar, a set of necessary conditions
may also be derived by using the technique in Ref. 18 of
treating a higher ordeY inequality state constraint. We list the
result here.

Suppose F(x(t)) is of order q>\ and has flat maximum
over some finite intervals ((/,//), j = !,...,/, / < & , where
k > 1 again is the number of times F(x*) attains its maximum.
Outside ( t j 9 t j ) Necessary Condition I applies. Inside ( t J 9 t j ) ,
we have

The jump conditions are

E M; = 1
7=1

where

(40)

(41)

(42)

(43)

Although the transform Eq. (13) was suggested in Ref. 19
in 1965, it is surprising to find that for more than two decades
very little work has been done in this direction, despite the fact
that interest in seeking treatments for the problem with mini-
max functional has remained strong over the years and various
other approaches have been studied. In the next section, we
will demonstrate that a representative of previous work can be
simplified and actually is relevant to our results. Some remarks
are in order:

1) The unknown multiplier /*, in Eqs. (30), (38), and (41)
poses no extra difficulty when F(x*(t)) attains its maximum
only once (isolated or flat), which in many cases is true, be-
cause iii = 1 when k = 1.

2) The Hamiltonian H(x,p>,ii) is said to be regular if it
admits a unique maximizing'%* for given jc and p. If H is
regular, it can be shown that the optimal control u*(t) should
be continuous across the maximum point, despite the disconti-
nuities in the adjoint states, due to the jump conditions.

3) The type of maximum that F(x*(t)) has, i.e., isolated
or flat, and the number by Which the maximum is attained
must be determined before applying the necessary conditions.
In some cases, the judgment may be made on the type of
maximum based on the condition that the continuity of u * and
the jump conditions should not be contradictory if the Hamil-
tonian is regular. Unlike the ordinary optimal control problem
with inequality state constraint, where the inequality may or
may not become active, the jump conditions will be applied at
least once in the current problem.

4) These necessary conditions reduce to the necessary condi-
tions for the Chebyshev minimax problem given in Refs. 14-16
when 0 = 0.

III. Comparison with Previous Work
Previous work in the literature that is closest to ours is in

Ref. 5, in which a restricted version of the problem is investi-
gated. The problem is transformed into an optimal control
problem with intermediate point constraint within the frame
of the classical calculus of variations. The following assump-
tions are imposed.

Assumption 2
1) F(x*(t))9 to<tH*ftf9 has a unique isolated maximum at

*r€ (tp9tf)9 andF(jc*(/)) is unimodal.
2) The order of F(x*(t)) is greater than one. This assures

that F(jc*(^)) = 0 regardless of the continuity of u*(t) at t\.
3) u*(t)9 W € (tQ9tf)9 is an interior of the control set U.
With these assumptions, the problem is converted into the

following:

min/ = (pTx~H)dt
'o

x(t)=f(x(t),u(t))

F(x(ti)) = 0

*(^o) = *o

S(x(tf))=0

(44)

(45)

(46)

(47)

(48)

where H =p Tf(x,«). Equation (46) is treated as an intermedi-
ate point constraint. By adjoining the constraint (46) to /, the
multiplier rule is applied to take the first-order variation of
J and set 8J = 0. Finally, a set of necessary conditions is ob-
tained, which is basically the same as Eqs. (18), (19), and (21),
except that the jump condition is

and (aJ)T= £_ i)r is a multiplier vector. =p(tr)+Fx(x*(t1)) (49)
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where X in Eq. (49) is a constant multiplier. When the maxi-
mum of F(* *) is unique (k = 1), as required by Assumption 2
in this section, our jump conditions (30-32) give

Therefore, the difference is between Eqs. (49) and (50). How-
ever, in the Appendix we show that Eq. (49) should be reduced
to Eq. (50), as asserted by the following proposition.

Proposition 1
The multiplier X in jump condition (49) is always zero; thus,

Eq. (49) is identical to Eq. (50).
Reference 5 also considers a flat maximum case when F is

of order higher than one. The necessary conditions determined
are essentially the same as the previous Necessary Condition
III, when restricted to k = 1.

In summary, since our results do not require Assumption 2
in this section, more general cases can be treated, including
cases where multiple maxima occur and F(JC) is of order one.
Many physical problems do not meet Assumption 2. For in-
stance, the heating rate and deceleration of an atmospheric
transfer vehicle are of order one. The minimization of their
peak values can be conveniently handled using the results in
Sec. II.

A more recent work involving the necessary conditions is
Ref. 13, where the discussion is restricted to the case of scalar
control and the maximum of F(JC*) is attained only once. As
today's control systems become more advanced, the need for
extending the treatment to a multicontrol case is obvious. The
previously stated Necessary Conditions I and II are not re-
stricted to scalar control, but Necessary Condition III is lim-
ited to q>\. This inconvenience is inherited from the maxi-
mum principle.17

IV. Illustrative Example
Let us consider the problem

minf max a[
(0<t<tf

= x2

*i(0) = *2(0) = 2

xi(tf) = X2(tf) = 0

(51)

(52)

(53)

(54)

(55)

(56)

where 0<a<l places relative weightings on the two objec-
tives. As required by the necessary conditions in Sec. II, there
exist adjoint states pi(t) and p2(t) for the Hamiltonian

H = (57)

Let us assume that F has an isolated maximum. The adjoint
states satisfy Eq. (19), as

/ > i = -HXl = 0 (58)

P2= -HX2=Pl (59)
They are integrable

P2= -Ci t+C2 (60)

where the superscript (~) denotes the values before the jump
conditions are applied. The Hamiltonian is a constant
throughout (0,f/). Through Eq. (28), we have

H= 1= !-« (61)

Suppose that F achieves its maximum at ^ 6 (0,fy). The jump
conditions (30-32) require that

cf = cf + - Ci+ /i + cf = - cf f i + c2 + a (62)

where the superscript (+) denotes the values after the jump.
By the maximum condition (21), we assume that the control

takes the form

(63)

Using Eq. (63) to integrate the state equations (52) and (53)
with the boundary conditions (55) and (56), t2 and tf can be
determined. Then, t\ is solved. The values are

tf = 6 (64)

, + x2(l) = 4.5 (65)

The adjoint states are solved by using Eqs. (61-64) and the
condition p2(t2) = 0. Finally,

max F [x!(0,*2(0] =
<< L J

-(l + a)/2;
f € [ l , 6 ]

[0,1)
[1,6]

(66)

It is straightforward to verify that all the necessary conditions
are satisfied by these controls, states, and adjoint states.

Although solutions satisfying the necessary conditions are
not necessarily optimal, and no sufficient conditions for this
type of problem are readily available, in this particular exam-
ple we can easily argue that the control given by Eq. (63), with
^2 = 4, is indeed optimal for the cost function (51) for any
0 < a < 1. First, we recognize that it is the time optimal control;
tf = 6 is the minimum time needed to transfer the system from
the initial position (55) to the origin. Second, since F=x2 + u,
we see that F> 0 for an initial period of time for any admissible
u, because of the initial condition jc2(0) = 2 and the control
effort limit | u \ < 1. That is, Fis increasing from F(0) = 4. Also
notice that F= Jo u dt + u +2. By applying u = - 1 in that ini-
tial period, as Eq. (63) suggests, Fis kept at the smallest value.
Any other admissible u ̂  -1 will yield larger F, and it will
take longer before F can turn negative. Therefore, the maxi-
mum value of F given in Eq. (65) must be the smallest that
Fcan ever attain. In conclusion, u(t), defined by Eq. (63), is
optimal for each performance index tf and max(jci+jc2); it
must be optimal for the composite performance index (51).

It is well known that the time optimal control is unique for
a linear system.17 Hence, the previously stated arguments as-
sert that the optimal control obtained is also unique for the
cost [Eq. (51)] because any other controls, at best, can only
yield the same smallest maximum of F, but certainly will take
longer tf.

An interesting observation is that if we are to solve the
Pareto optimal control problem with two components of the
vector objective function being £/and max(xi + x2), these argu-
ments also establish that the Pareto optimal control set con-
tains a unique point, given by Eq. (63).

Let us only consider the minimax problem by setting a. = 1 in
Eq. (51), as

min max (Xi+x2) (67)

The system is subject to the same constraints defined by
Eqs. (51-56), with tf free. As pointed out by Remark 4 at
the end of Sec. II, the necessary conditions for the minimax
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problem are obtained if 0 is set to zero in the necessary con-
ditions derived in Sec. II, so that Eqs. (57-60) and Eq. (62)
remain valid, and Eq. (61) becomes

// = 0 (68)
Note that u(t) from Eq. (63), with t2 = 4, is also optimal for
the minimax problem, as we argued. But the adjoint states by
Eq. (66) are now

Pi(t) = -i;
'€[1,6] '

-2; re [<U)

In contrast to Eq. (66), p\ and/?2 are both zero after t\ - 1. The
maximum condition (21) no longer provides information to
determine the optimal control. A "singular" case appears.
The explanation for this is that there exist an infinite number
of optimal controls after t\. In fact, let 0</<2. Defining

t2 = 2 + At, 4 + 2A/
A/ f/ = f 3 + At

the following control is also optimal:

- t € l t 2 9 t 3 )

(70)

(71)

-2; ,6 [0,1)

The corresponding adjoint states are

-1; '€[0,1)
0; f €[!,*,]' P2

It is again easy to verify that all the necessary conditions for
the minimax problem are satisfied. The maximum of F is
attained at t\ = 1:

F(ti) = Xi(l) + x2(l) = 4.5 (73)

When A, =2, Eqs. (71) and (63) give the same control. Fig-
ure 1 presents the variations of F corresponding to At = 1 and
A, = 2. Figure 2 shows the trajectories in the phase plane. We
note that Eq. (71) by no means exhausts all possible combina-
tions of the optimal controls to the minimax problem. One
can construct many other optimal controls. All the optimal
controls, however, must be equal to - 1 in the interval (0,1).
To admit these many optimal controls in (!,(/] which must
satisfy the necessary conditions, in particular, the maxi-
mum condition [Eq. (21)], p2(t) can only be zero in (!,(/].
A vanishing/?2(0 leads topi(t) = 0 because of the adjoint state
equation (59).

The structure of the solution to the minimax problem is not
a total surprise, in view of the free terminal time. The only
difference between the necessary conditions for the problem
with composite cost (51) and the minimax problem in this
example is that //= 1 -ce^O [Eq. (61)] and H = 0 [Eq. (68)],
but that is enough for admitting vastly different solutions.

V. Problem of Threat Avoidance
The problem of determining the optimal threat avoidance

trajectory of an aircraft has been discussed in Ref. 20. The
objective is to find the trajectory minimizing a cost function
that consists of the exposure of the aircraft to threats and other
quantity, such as fuel consumption. In Ref. 20, the risk cost
associated with a threat is modeled by

where d is the distance from the threat and Cr is a cost factor.
If the threat environment is not time-dependent and only the

closeness to the threat constitutes the risk, another natural
alternative of characterizing the risk index may be the use of
some functions, such as exponential C\ exp[-C2d(t)], Q,
C2>0, provided that the risk is considered the same from any

5.0

3.0 -

x

1.0 -

-1.0

\ At=l
\
\
\
\

\
\

0.0 2.0 4.0 6.0 8.0

Fig. 1 Variation of F = x\ + x2.
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3.0

1.0 -

-1.0 -

•3.0
0.0 4.0

Fig. 2 Trajectory in the phase plane.

direction as long as the distance d is the same. Then concern
may be focused on the highest risk encountered, i.e., the risk
cost function can be formed as

dv
dr

co2

Jr = max Ci exp[-C2t/(Ol
tQ<t<tf L J

(74)

Or, more directly, the minimum distance along the trajectory
from the threat can be used as a measure of the highest risk

cty _ tana
dr v

(80)

(81)

Jr = min d\t) = max - d\t) (75)

The goal is to minimize an overall cost function:

min/ = min { max F(x(t)} + t(x(tf),tf) ] (76)(jQ<t<tf )

where F(x(t)) can be either the exponential function in
Eq. (74) or -d2(t), as in Eq. (75). Now the problem becomes
an optimal control problem with maximum functional. We
shall apply the necessary conditions stated in Sec. II to solve
the problem.

Let us consider a nonthrusting subsonic aeroglider, flying
from point PI to point P2 in a horizontal plane of certain
altitude. A flat Earth is assumed. The initial and final speeds
of the vehicle are specified. Assuming that the vehicle has a
parabolic drag polar of the form

where all variables are dimensionless, with the definitions
given in Ref. 21; x and y are the position coordinates,
v is the speed and \l/ is the heading angle, the control is the bank
angle a, and £"* is the maximum lift-to-drag ratio. The con-
stant co depends on the vehicle characteristics and the altitude.
To maintain the horizontal flight, the equilibrium condition

L/W= 1/cosa (82)

must hold, where L is the lift and W is the weight. A con-
straint on the load factor n =L/W<nmax = 3 is imposed. As
a result of Eq. (82) and n ̂ nmax, an effective constraint on cr
is needed21 :

M ^ ow = minjcos-Kl/S), cos-{(uCLmax/v2C?)} (83)

where CLmax is the maximum lift coefficient and C* is the lift
coefficient corresponding to the maximum lift-to-drag ratio.
Suppose that the coordinate system is set up such that a threat,
e.g., a thunderstorm, is centered at the origin, and the flight is
to meet the following mission requirements:

D = Cpo (77) *0=-1.5,
we have the nondimensional equations of motion for the
vehicle21: = free,

v 0 = l (84)

v/ = vstaii (85)

dx
——dr = V

—dr = v

(78)

(79)

The final speed vstau is the stall speed. For computation, we
take

co = 0.23, CLmax/Cf =1.8, E* = 20

1 = 0.3575
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We define the risk cost as the highest probability of being hit
by lightning, which is directly proportional to the minimum
distance from the center of the thunderstorm. The objective is
to reduce the exposure to the threat and to prolong the flight
endurance. So the cost function

B = 2v [l + v (ci cos\l/ + c2 siniW] (93)

C = - >1 (o>2 + v4)/co2 (94)

we can solve for tana to obtain the control law

/= max -(x2+y2)-Tf\
lO<T*Tf

 J]
(86) tana = 2A (95)

is to be minimized. To apply the necessary conditions, we first
form the Hamiltonian If —(x2+y2) attains an isolated maximum only once at

TI € (0,r/), the jump conditions by Eqs. (30) and (31) are

H = pxv cos\l/ + pyv sin\I/ -pv

tana
+ /V—— = -1

1 +
v4 cos2a/ = Cf -

(87)

(96)

(97)

After writing down the adjoint system (19), it is easy to show
that three first integrals exist:

Py = C2

ciy -c2x

(88)

(89)

(90)

Note that p^ and pv are not involved in the jump conditions
and therefore are continuous at T\. Note, also, that substitut-
ing Eqs. (96) and (97) into Eq. (90) verifies thatp^ =pf. Since
F = - (x2+y2) is of second order by Definition 2 of Sec. II, if
Fhas a flat maximum in (ri,r2), Necessary Condition III ap-
plies. The control in (ri,r2) is given by setting F(x,y) = Q:

tana = x sm\l/ — y (98)

where c/ is constant. The optimality condition (21) gives the
control

u - tana =
if kl

tanamax sign(/fy), otherwise (91)

All the necessary conditions constitute an equivalence of a
nonlinear root-finding problem. In general, a homotopy
method may be used to solve for the solution.13 But in this
particular application, the nonlinear programming approach

Table 1 Summary of results
The second equation in (91) uses
by the second-order condition d2l
substituting Eqs. (88-91) into Eq

the tact that pv > 0, required Trajectory type Flight endurance rf c/min d2. + rf

^^dSJ^^' Threat avoidance 9.62 1.17 10.989. (87), and defining Minimax 9M 12 IQM

Maximum endurance 9.73 0.52 10.011

4.0 -, ———————————————————— — — — — —— ———

2.0 -

>

0.0 -

-2.0 -,

threat avoidance traj. maximum endurance traj.

j^\\
\\ . ^"" // minimaxtraj.^w^

-2.0 0.0 2.0 4.0

Fig. 3 Glider trajectories in the x-y plane.
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80.
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-40.
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Fig. 4 Histories of bank angle a (deg).

works reasonably well. A quasi-Newton algorithm22 is em-
ployed for this purpose.

For comparison, the minimax problem with / = max(-c?2)
and the maximum endurance problem with / = - r/ are also
solved. The results are listed in Table 1. It was found that the
given condition d(t) has only an isolated maximum, occurring
at 7! = 0.64, for the threat avoidance problem. The optimal
threat avoidance solution indeed increases the minimum dis-
tance from the threat by a factor of more than two without
severe reduction in the flight time, as compared with the max-
imum endurance solution. The reason for the isolated maxi-
mum instead of flat maximum is that Eq. (98) tends to gener-
ate a larger bank angle than Eq. (95) does, hence it is not
favorable for a prolonged flight endurance. If the flight time
is not a concern, a flat maximum is likely to occur. This is
confirmed by the minimax solution. For the minimax prob-
lem, all the necessary conditions apply, except for H = Q, as
opposed to Eq. (87). In this case, d2-(x2-\-y2) has a flat
maximum t/min=1.2, with a flight time of r/ = 9.42. Notice
that among three trajectories the threat avoidance solution
provides the maximum value of d^n + r/. Figure 3 shows three
trajectories in the x-y plane. The corresponding bank angle
histories are in Fig. 4. For both the threat avoidance and
minimax solutions, the bank angle starts with the maximum
magnitude for a tight turn away from the threat. Also note
that the bank angle is continuous everywhere for both cases,
but has discontinuous slope, due to the jump conditions and
departure from the boundary arc.

VI. Conclusions
This paper considers the optimal control problem with a

performance index that includes a maximum functional. The
problem is transformed into a problem of Mayer, with in-
equality state constraint using a well-known technique. A set
of necessary conditions is derived. The results obtained be-
yond earlier work mainly result from the fact that less strin-
gent assumptions are placed on the problem and multiple

maxima are allowed to occur; therefore, a broader class of
problems can be treated. In addition, some previous work is
proved to be reducible and thus included in our results.

The application in aerospace trajectory optimization is
demonstrated by formulating the threat avoidance problem
within the context of the type of problems discussed in this
paper. The necessary conditions are followed to solve the
problem for a subsonic glider. Numerical results are presented.

Appendix: Proof of Proposition 1 in Section III
We need to show that X = 0 in Eq. (49). In the more detailed

work of the calculus of variations,23'24 it has been shown in
the imbedding lemmas that a nontangence condition for the
constraint (46) is required for a normality property. The nor-
mality in turn is required for the existence of a one-parameter
family of solution x(t,e) and u(t,e), satisfying state equation
(45) and the intermediate point constraint (46), and, more
importantly, for Eq. (49) to be valid. This nontangence condi-
tion in this case is that

(Al)

(A2)

where we distinguish the left and right limit values of functions
at t\ by (~) and (+) signs when necessary, because we do not
exclude the possibility of discontinuous u*(t) at t\. Since
F(x(t)) does not contain u explicitly, Eqs. (Al) and (A2) really
amount to

F(t?)*Q (A3)

F(ti) j^ 0 (A4)
Since F(x*(ti)j is the maximum of F(x*(t)), F ( t f ) and

F(ti ) must be nonpositive. According to Eqs. (A3) and (A4),
they should be strictly negative:

(A5)
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(A6)

From the Weierstrass condition,4 we know that for any u € U
and any f € (t09tj)9

H(x*(t)9p(t)9u*(t))*H(x*(t)9p(i)9u) (A7)

From the fact that H(x*(t)9p(t)9ti*(t)) is continuous
throughout (tQ,tf), we have

J?r(ff)/(**(*i),K*(ff)) = />r('r)/(**('i)»"*('i+)) (A8)

Replacing p(^+) by Eq. (49) in Eq. (A8) gives

+ F?(x*(tl))f(x*(tl)9u*(tl
+))

Notice that

(A9)

= 0 (A10)

(All)

Equation (A9) then leads to

- H(x*(tl)9p(tr)9u*(tf)) = X/W) (A12)

Let u =u*(tf) in Eq. (A12); Eq. (A7) indicates that

XF(^+)>0 (A13)

From Eqs. (A5) and (A 13), we have

X < 0 (A14)

Likewise, using Eq. (49) to replace p(t\) in Eq. (A8) yields

Hence, by Eq. (A7), we have

-XF(ff)s>0

Combining Eqs. (A6) and (A 16) gives

X > 0

Eqs. (A14) and (A17) imply

X = 0

(A15)

(A16)

(A17)

(A18)
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