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-- NOTES --

SWITCHING CONDITIONS AND A SYNTHESIS TECHNIQUE
FOR THE SINGULAR SATURN GUIDANCE PROBLEM!

W. F. Powers® and J. P, McDanell**
The University of Michigan, Ann Arbor

Abstract

A singular optimel guidance problem which
was motivated by difficulties encountered in the
Yaturn ¥ SA-502 flight has been studied. 1t f8
showr that if the guidance equations are based upon
% singular version of the flat-earth problem, then
the control must be discontinuous at a junction of
gingulay end nonsingular subarcs for elmost all
cases. A good suboptimal guidance scheme based
upon a nonsingular approximation of the singular
problem is presented, The resultant suboptimal
control is continuous, which is more desirable than
a discontinuous centrel, and causes only a noise-
tevel difference in payload.

[, Introduction

In the sccond flight of the Saturn V vehicle
SA-502), two engines shut down early in the S-1II
stage, The measurements received by the on-
board guidance scheme, the Iterative Guidance
Mode GGM)®, indicated that only one engine waa
out, This resulted in a steep planar steering pro-
gram in the 5-1V stage which caused the time rate
of change of the steering angie to reach its limiting
value for a large portion of the S-1VB flight. Since
the 1GM is based on unconstrained variational theo
ry the resultant trajectory did not reach the de-
sired terminal orbit.

In the flight mentioned above a large distur-
bance caused the guidance law to determine a
steering angle rate of change which was too large,
Thus, it would be desirable to design the guidance
logic in such a way that the time rate of change of
the steering angle is a bounded control variable,
say u with u| £ K, such that the steering angle is
p state variable since it cannot change rapidly (be-
cause of physical and reliability constraints). How-
ever, the resultant optimal contrel problem is a
singular problem, and the variational and computa-
tional theory for such problems is far from satis-
factory.

As is well-known, the variational and numer-
ical theery for totally nonsingular optimal control
problems is well developed, and recently McDanell
and Powers ), Speyer and Jacobson P!, and Gon'*
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developed new necessary ¢nditions and sufficient
conditlons for totally singular problems. Thua, the
main problems to be resolved are: (i) The deter-
mination of necessary and sufficient conditions for
optimal trajectories which posaess both singular
and nonsingular subarcs {which is the case in the
Saturn guidance problem); and (2) The development
of a compuational scheme for the generation of op-
timal trajectories which possess both singular and
ponsingular subarcs. Partial vesults in this direc-
tion have been obtained by Jacobson, Gershwin, and
Lele®® and Pagurek and Woodside ®),

In the following analysis, recently developed
necessary conditions for composite optimal trajec=
tories {i.e., trajectories which contain hoth singu-
lar and nonsingular subarcs) are used to character-
ize the local switching behavior of the singular
Saturn guidance problem, Since the resultant behavior
ig not physically desirable, the problem is trans-
formed into a good suboptimal nonsingular repre-
gentation of the problem which could be incorpo-
rated easily into a recently propoesed guidance
scheme for Saturn class vehicles - |

U, Singular Optimal Controel Theory

In this section, properties from singular op-
timal contrel theory which we shall apply later will
be sumnmarized,

Consider the problem of minimizing

by
J = Gitg.xp) +5‘Lft,x)dt 2.1}
teo
subject to the Tollowing conditions
x = fit,x,u) 3 {Oft,x) + £ 0.xpu 2.2)
xity) = xg z.3)
$ftpx) = "} 2.4
Jul = K. 2.5

FThe state x is n-dimensional, u is a scalar control
variable, and ¢ is a p-dimensional vector function
which defines the terminal surface, pan+ 1.

Along an optimal trajectory the following
necessary conditions hold:
hor oM L) 2.6)

T,,.n~T T
g - fottrxf) +v “’xr“f"‘(] 2,7}
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HE,, X000 ), ulp)
* 0, tyxd + ”T"’tf“t"r’ =0 2.8)
Ht,x,x,u) = ﬁi'"x Hit,x,x,v) 2.9

where A {t) and v are Lagrange multipliers and
Hit,ed,w) s Litx) + 2\ ftxw.  (2.10)

This, of course, iz the familiar Pontryagin maxf-
mum principle in 8 minimum formi?, 1,e., the

Hamiltonian is minimized with respect to the con-
trol if the performance index is to be mindmized,

In general, the optimal trajectory for this
problem consists of some combination of singular
arcs and nonsingular {bang-bang) arcs. A singular
ar¢ is one along which

H, t.x.x) =0 2.11)

on a nonzero time interval. A nonsingular arc is
one along which Hy {t,x,x) f 0 except possibly at a
countable number of points {t;,t;,...} & [‘u,‘t]. On
a nensingular arc {2.9) impliea u = -sgn Hy, which
indicates the bang-bang character of nonsingular
arcs.

‘The defining feature of a singular arc is that
Eq. (2.9) of the minimum principle is satisfied
irivially, and, thus, it cannot be used to distin-
guish between maxima and minima. In 1964,
Kelley“"} developed a new necessary condition for
singular arcs which zllows one to distinguish be-
tween maxima and minima.

Kelley Condition
{Generatized Legendre-Clebsch Condition}

Let x{t) be a weak, relative minimum for Eq.
(2.13, Then,

qa a‘?

-1) E[T{Hu] z0, (2.12)
dt

where 2q is the lowest order time derivative of Hy,

in which u appears explicitly, (ote:ifq =0, then

the arc is nonsingular; if ¢ # 0, then q is called

the order of the singular arg,})

The Kelley condition is a pointwise or local
necesgary condition, Recently, a new arcwise
necessary condition {a generalization of the clagai-
cal Jacobi condition) was developed for totally
singular prab!cms(z"" . A strengthened form of
this condition (along with the strengthened Kelley
condition and Eqs, {2.6)-(2,10) leads to a suffi-
cient condition for a totally singular arc. However,
a useful sufficient condition for compesite singular
problems is stilt lacking,

-

In Reference 11, Kelley, Kopp, and Moyer
used Taylor series expansions in the neighborhood
of a singular-nonsingutar junction along with the
maximum principle to obtain necessary conditions

2z

at the junction. Recently these results have been
generalized 1) ag follows:

THEOREM 1; Let x(t) be an optimal ttajectory

which containg both singuwlar and nonsingular sub-
arcs, and let the singular subarcs be of q'~h order,
ie.,
au

LT S = A,x,x) + Bit,x,\u . 2.13)

e at™
Suppose the optimal control is piecewise analytic in
a neighborhood of a junction {this is not always the
case as is shown in Reference 11), and B(t,x, A} ¢
a% the junction, If wlf) zd%yfat? (r 2 0, where
4% = u) is the Towest order derivative of u which is
discontinuous at the junction, then q + r must be an
odd integer.

The main ¢onsequence of this theorem is that
if a T'aylor series exparsion is valid in the neigh-
borhood of a junction and the control is discontinu-
ous at the junction, then the singular subare must
be of odd order. The singular Saturn guidance
problem contains odd erder [q = 1) singular subarcs,
Note that the theorem dees not imply that the opti-
mal coatrol must jump if q is edd. Also, there
exist well known cases of gq-even problems with dis-
continuous controls but the controls are not piece-
wise analytic (e.g., an infinite number of switches
between u = +K on the nonsingular side of the junc-
tion in a finite time interval),

With the analyticity assumption removed, the
following result can be obtained:

THEOREM 2: Let x{t) be an optimal trajectory
which contains both singular and nonsingutar sub-
arcs, where the singular subarcs are of qth order,
Then,

65} Ly # 0 on the nonsingular side of the
junction implies the control must be dis-
continuous;

fiiy H A} = ¢ on the nonsingular side of the
suhction and B £ 0 (where HEV = 4 + Bu)
at the junction imply the control must be
continuous.

Theorem 2 has ihe desirable quality of deter-
mining if the control "jumps" or is continuous at a
junctfon without an anaiyticity assumption. How-
ever, the conditions are more difficult to verify
than those of Theorem 1 if analyticity is a valid
agssumption. In some cases the thecrems can be
uged together to indicate what cne cannot assume,
e. g, llu“’l # 0 on the nonsingular side of the junc~
tion and g even imply that u is discontinuous by
Theorem 2, but by Theorem 1, u must he continu-
ous if it is piecewise analytic, Thus, one may con-
clude that if a junction cccurs it is a nonanalylic
junction.

Finally, another useful prcpeny(n) is:

Property §: If Aft,x,\) = 0 at a junction and

|Ju| 5K # 0, then the optimal control is discontinu-
oua at @ singular-nongingular (or nonsingular-
singutar) junction.

1L, Simple Singular Guidance Exampte

In this section we shall present a simple ex-
emple to demonstrate some of the featureg of a
gingular optimal guidsnce problems. Consider the
problem of moving a boat from (0,0) to (xf.¥g) f
(xg,0) in minimum time, The boat has a constant
speed, V, and steering angle, o (see Figure ).

If o cowld change discontinuously, then

tan o = oyt 3.1}
f
13 the best steering program,
Suppose that we take into account the facts

that efty) s probably not equal to tan™ ygfxg and &
is finite, say |&) £ K< ». For this example, let

afts) = 0. B.2)

Since & is finite, « is continuous and, thus, not a
natural conirol variable. Therefore, let & = u be
the coantrol, We now have the following variational
problermn, assuming ty = 0: minimize

1=t
subject to:
k=Veosa , x(0}=0, xft)=x,
¥=Vssinag , yo=o0, y(tf)=yffo (3.3)
a=u . af0) =0, JujsK

‘The Hamiltonian 1is:

H=xVeosa+ i Vaina + ,u, (3.4}
and | .

Ay =-H =0, %= -Hy =0 3.5)

Ay = -H_ =2V sina - AV cosa (3.6)

H =)y 3.7

If the optimal trajectory contains a singular aub-
arc, then

H =k %0 (3.8

on saome nonzero time interval. Consider the
Kelley condition,

l‘iu=)1, =%,V sine - L,V cose 3.9

iiu = (\V cosa + X,V sinaju & Bua (3.10)
3

-4H, =-Bz0 = Bs0 3.1

Since u appears explicitly in Hy,, the problem ig a
g = 1 opder singular problem. By Property 1 of
the previous section, A = ¢ in {3.19) implies that u

must be discontinuous at a junction of singular and
nongingular arca. On a nonsingular subarc the op- -
timal control is u = +K, and on a singular gubarc
the optimal control isu =0 if B # 0 {as tmplied by
(3.10} since H, =0 on a singular arc}.

Because of the simplicity of this problem, the
optimal control may be determined by inspection.
At tp, the steerlng angle {9 a(ty) = 0. I o could
change to sny other value instantaneously, then the
optimal trajectory would be a straight line conneg-
ting (xp.¥q) and (xf, ¥}, and the initial steering angle
would be e(iy) = tan"! trpfep), toe., the velocity
vector would swing to the dashed arrow at the ori-
gin in Figure I, Since the best steering angle at
any state is the angle hetween the x-axis and the
line connecting the state with (xg. g, the optimal
control u £ & ia the control which will cause & 1o
approach the "best" value of a4 as fast as possible,
Thus, on the subare [ty.t;), & = + K is the optimal
control, which is nensingular. Att =1, afty) =
o+ K- 0] = tsn"(yf - ¥l (xp - %)), i.e., the true
steering angle at {x;,¥; ) and the “"best" sicering
angle for {x; ,5,) coincide, This means that the ve-
hicle may now be steercd by o = tan™! g~ yalixg ~
x;)) = constant for the remainder of the trajectory,
and, thus, u = & = 9, which is a singular control,
Note that the switch point is mainly dependent upon
afty), K. and the terminal conditions. For example,
if yp = 0, then the optimal control is totally singu-
lar; if K is very small, then the optimal trajectory
will possess a longer nonsingulsr arc than the
same problem with s larger value of X; if K is very
large, then the nonsingular arc should be relatively
short, &, g.. K— « implies that the nensingular arc
disappears completely. The main consequence of
these statements is that the jeining of a singulay
subarc to a nonsingular subarc is a function of
"nonlocal" information. This complicates consgid-
erably the procedure for synthesizing optimal
singular guidance laws on-board a vehicle.

1V. Saturn Guidance:
A Sinpular Flat-Earth Problem

In thig section, an analysis of the switching
procedure for a fiat-earth representation of circu-
Tar orbit insertion will be presented. This is di-
rectly applicable to the guidance of the Saturn V ve-
hicle since the IGM is based upon the flat-earth
approximation, It will be shown that ¢xcept for an
exceptional case, the optimal contrel is discontinu~-
ous at a junction of singular and nonsingular sub-
arcs, Thus, the optimal control doeg rot "ride"
onto or off of the control boundary,

The planar equations of motion and boundary
conditions for the singular fiat-earth problem are
{see Figure 2):

X=p X (te} = xo
¥=q yita) = Yo, ¥l = r
Pto} = o, ity < v, (4. 1)
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o
4=Zeina-g attd *g. qt) = ¢
&ru aftgd *ag, Jul =K
mft) = my + rpft - o)
where r, ® radiug of the circular orbit, v, ® circu-
lar welocity at v,. 1t 15 desired to transfer the ve-
hicle from the given initial conditions into the given
circular orbit in minimum time.
The Hamiltonian is
F F .
Hahptag+h, r—n-c05a+)..(;sma- By thsu, (4.2)
which implies, by Eqs, (2,6)-(2,9):
Aty 20 ) S o
haft) =g At = oy - cat
¥ ;
Ly = ;a, gina - hycos af, 1,(!1) =0

(4.3}

If an optimal singular subarc exists, {hen by the
Kelley condition:

1':u = -:1— 0y sine -\ cosa) (4.4}
"u = {Ea\,cOsa -hsing + %o., cosa+h sinaju
" (4.5)
= Al x,M) + Bit,x,\)u
implies
B#t,x,\) £ 0. (on singular arc) 4.6)

By Eq, 4.4), i.e., H =0 on a singular subarc,

tos I Y
tan & %‘ { 3 @7
20 @ 7 2B FAT
and by Eq, 4.6):
Bet,x,\) =+§~Jk’+l’ s0 “.8)

which implies that the minus gign should e choaen
in Eq, {4.7) for the minimum time problem, Upon
substitution of Eqs. (4.3) and (4.7) into Eq. (4.5):
H =- ﬁczc, {cf +:\.)—} ~— [c, +x,#u {on singular
arc only)
4.9

We shall now ¢ongider under what conditions a
saturation junction is pogsible, i.e., the control
rides on or off of the boundary {or, is continuous at
the junction).

If the contrel is continuous and well-behaved
at the junction, then Theorem 1 of Section 2 is ap-
plicable, i e., the control is piecewise analytic in
a neighborhood of the junction, Since q = 1 for this
piroblem, if the control is assumed to be continuous
at the junction, then by Theorem 1, r 2 2 {i e, , if
r# 0, then r # ) since g + r must be odd). Thus,
if u is continuous, then i1 = & is continuous, also.

By Eq. (4.7}, the expreasion {or & on the singular
arc may be determined.

1
- —z'!e‘ﬁ-)i-& {on singular are).
fes +29 .10}
Since & = +K on the nonsingular arc, it {ollows that
b =4 =90 fonnonsingulsr arc).  {4,11)

Therefore, the continulty of it at the junction re-
quires & = 0 at the junction, which implies:

e =0orc =0orky =0, “4,12)

ife¢; =0oreg =0, then the first term in Eq. (4,9)
ig zero, which implies « is discontinuous at the
junction by Property | of Section 2, Thus, c; # 0,
¢y # 0 if the junction is continuous, and Eq. (4.12)
$hen impliss:

k4 = 0, (at a continuous junction) 4.13)
or by Eq. {4,7):

a=0°, 180°, {at a coptinuous junction} (4,14)

f.e., ifa# 0", 180° at 4 junction, then the junction
must be discontinuous. Since the steering angles

a = 0%, 180° do not appear to possess special prop-
erties, further anslysis would probably eliminate
the possihility of a continuous junction at these
peints, also,

H indeed smooth junctions are possible when
« = 0°, 180°, then one can easily show that only
one smooth junction is posgible on the trajectory
singe kg is a linear function of time and, thus, can
go through zero only once. Also, if one considers
an inverse-square gravity field and it is assumed
that a continuous junction is possible, then neces-
sary conditions for such a junction can be derived
in the same way as Eq. (4.13) was derived for the
flat~earth preblem above,

V. Synthesis of Guidance Laws
for Sinpular Probleins

in the previous section it was shown that a
junction of singular and nonsingular subarcs in the
singular flat-earth problem requires a jumgp in the
control (except possibly for the zero-probability
cases whena = 0%, 180°). In Section 3 it was
shown that the time £+ ump is mainly a fusaction of
non-local information, utd, thus, a formidable syn-
thesis problem arises, In this section & suboptimnal
synthesis procedure te be used in conjunction with
the guidance acheme of References 7 and 8 is sug-
gested,

In Heferences 7 and 8, a guidance scheme
based upon the on-board solution of a nonsingular
two-point houndary-value problem is proposed,
Such a scheme is possible for Saturn class vehicles
since it has a relatively large on-board computer.
In this section a nonsingular approximation of the
sinpular Saturn guidance problem will be developed,
and the fat-earth approximation will be relaxed.
The resultant optimal time rate of change of the

steering angle (i.e,, the optimal coutrul) has the
desirable property of continuity, *

The planer equations of motion and boundary
condittona for the singular inverse-square prob-
lem in polar coordinates gre (see Figure 3):
k= v rito} =re, r{t) = r,

LD v Ir Bity) = 8y

. F

Vorvglro Wt tainy v i) - DA NECEN R
. B

¥ =-vrvd‘r+ m oY
¥-u vito) = vo.ful 3K

Vg fhof = "o.‘v clt) =y

mt) @ mp + fglt ~ te),
where
& =t£ (5.2}

is to be minimized,

In Reference %, the following method for
computing singular control problems is suggested:
adjoin c{ u?dt o the performence index, i.e., Eq.
5.2), a.mg solve the resultant nonsingular boundary-
value preoblem for successively smaller values of
. As e~ 0, it is argued that the solutions ap-
proach the optimal singular solution. Ancther
computational scheme is alse suggested in Refer-
ence 5 since numerical stability problems may re-
sult for small velues of «. However, the main
effect of the second scheme is to sharpen the con-
trol history while only a slight improvement in the
performance index is noted. Data from the Saturn
SA-502 nigrit will be wsed to show that merely

adding the ;[ uldt term to the performance index
results in a gmd suboptimal control for a relative-
1y large value of «.
Define
t
3, =t :gu‘dt. 5.3
ty
where ¢ i3 a given constant. The Hamiltonian is
H= \,vr‘n;vefrﬂu,{v;lr- Wt + (Fim)siny)

+hal-v v fr + (Fim)cos ) ES VIR TL (5. 4)

which defines a nonsingular optimization problem.
The minimum principle states that the Hamiltonian
must be minimized with respect to the control.
This implies the following ordinary minimization
problem: minimize

ho=hgu+ et (5.5}
subject to the inequality constraint

Jul £ K. 5. 6)

Eq. {5. 6) can be transformed into an equality con-
straint by introducing a slack variable, z, {.e.,

P :K-utzo 5.1}
is an equality conetraint which enforces the deasired

inequality constraint. By defining the augmented
function

hiu,2) = dgu+as? +ARY+u2 - K}, {5.8)
and forming
8h . B8h _
FTRT P 5.9

ahd then checking the second-order sufficient con-
dition for srdinary minimizetion problems, the fol-
lowing optimal control iz determined:

-K I Az 2K
o= f-Af20 if -2«K Sk 5 XK 5.10)
K A MK,

Note that the control is continuous at the junction
points by = + 2 gince b, must be continuous by the
Weierstrass-Erdmann corner conditions.

‘The usuai Euler-Lagrange equations hald for
the multipliers. The only other new condition of
interest is the transversality condition for LIT(N
Since Yf‘t-) is unspecified, then

sﬁf) =0, {5.11}
which implies that -2«K < l,(t!) < 2¢K. or
u(tf) = -R,{t‘.)flt =9 {5.12)

This states that the control must have an interior
segment in 2 neighborhood of ty. However, in some
numerical studies for ¢ small thig termingl interior
arc wag very short, ¢.g., 0.1 seconds of & 160
second trajectory.

Since the guidsnce scheme of References 7
and 8 involves an iteration scheme which uses ini-
tial Lagrange multiplier estimates, s similar
scheme was used o converge the optimal trajec-
tories of this study. (Since a suificient condition
for composite singular preblems does not exist, we
can only use physical reasoning to argue that the
resultant gingular extremals are indeed optimal.)

In Figure 4, the "best" steering angle history
{rom the initisl position and velocity of the vahicle
(see Appendix A for the numerical values used in
this study) is shown. The initial position and ve-
locity represent a point on the SIVB stage trajec-
tory of the Saturn SA-502 flight. Note that the de-
sired steering angle at the given initial position and
welocity is y = -29.5°. Howewver, at that instant the
steering angle was approximstely 46. 6* away from
the desired angle, i.e., y(ta) = +17.1° Since the
steering rate on the Saturn is ¢onstrained to ap-
proximately one degree per second, one cannot as-
sume that the steering angle can change instama-

neously to the desired value.
[ o
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In Figure 5, the suspected optimal time rate
+f change of the steering angle is presented. The
<ptital control is nonsingular on the interval

5,55 4) and singular on the interval (354, 157.305).
“.ote that the control is discontinuous at the junc-
tion, which is expected since the flat-earth prob-
lem is an excellent approximation of the problem of
iy seetion  Note that the difference in the initial
calue of ¥ causes the constrained trajectory to be
approximately 6.5 seconds longer thaa the trajec-
tory of Figure 4, which results in a 3500 pound

el lods.

The optimal control for a nonsingular approx-
:mation of the given singuiar problem is presented
m Figure 5, also. The value « = 100,000 was
fuund to give good resulis with respect to optimality
=nd vase of convergence. Note that the suboptimal

antrol is continuous, and in some sense approxi-
nates the optimal singular control. The final time
of the suboptimal trajectory is 157. 392, which re-
rresceats a fuel penalty of only 46.5 pounds.

A puzzling trend was encountered when the
.-method was used for converging the suboptimal
srajectorics of this study It was found that lower
calues of the original performance index, i.e.,

f.q. f5.2), were obtained as « increased instead of
as ¢ deereased, which at first glance scems con-
rary to intuition. Of course this trend may be due
to the fact that an initial multiplier guessing scheme
~as used to converge the trajectories instead of a
function space method. However, the Pontryagin
:uinimurm principle was satisfied numerically in
«~ach case.

A possible explanation of the sbove trend is
- jmply that the augmented peylormance index of
£33, {5.3) does not converge to the minimum value
+f the original performance index (ty) for this par-
treular problem as ¢ — 0. The proof of convergence
0 the -algorithm in Reference 5 is for fixed ty,
wnd since ty is not fixed in this problem, conver-
wance cannot be agssumed. Indeed, further analysis
sevealed that the augmented performance index de-
. reased monotonically as ¢ decreased and appeared
w, be converging to a value considerably larger
thian the minimum value of the original performance
index. In other words, as ¢ decreased, J; de-
vreased, but t; increased, indicating that limJ; {s)
#3400 e

To lend support to our ¢ontention that the
« -algorithm may not converge to the optimal singu-
lar solution for a minimum {ime problem, consider
e following srgument. From Eq. (5. 3) the mini-
num value of J; for a particular value of ¢ can be
w ritten

Tadeh = tyle) + @t (5.13)

shere afe) > 0 is the average value of the optimal
.7ty over the interval jt,,t7] for the given value of
«, and for simplicity we have taken ty = 0. Differ-
catiating £q. {5. 13} by the chain rule,

dt
ar; _ f da
T Ay 614

where the terms containing ¢ are negligible for ¢«
sufficiently small. IL.et e, <e¢g << 1. The series
expansion for J; () to first order ia

3rta) = Tl + ke - )
de,
= Saleg) + {aieoiylend + 7)o - <o) (5.15}

I J2(q) < Jpirgd, then it is necessary that

dt
£
3 7 - elwitglal 5-16)

On the other hand, if tyfy) < tpie) it 13 necessary
that

dt 1
5 & 5.17)
Satisfaction of the inequality (5. 16) does not imply
satisfaction of (5.17). Therefore, it is to be ex-
pected that ty may increase while J, decreases as
« 0.

The above analysis is valid for sufficiently
small ¢. It is still somewhat surprising that a good
suboptimal centrol would result from using ¢ =
100,000. In this regard, note that if ¢ is very
small in the performance index of Eq. (5.2), and
if a number of control histories give near-optimal
performance (with respect to the original perform-
ance index), which is a eommon occurrence in
singutar problems, then nothing is acting to keepu
interior in the neighborhood of the optimal singular
subarc. On the other hand, if ¢ is large, thente
minimize the second part of J;, u should be as near
to zero as possibie, 1.e., ¢ large helps to enforce
an interior u in the neighborhood of the singular arc.

To demonstrate this argument, another ex-
ample was considered. The only difference beiween
this example and the given Saturn SA-502 data is
that y, = -1.8° instead of yp = + 17.1°. Because of
the smaller difference between yo and vy, =-2%5°,
we have more confidence that the singular extremal
obtained for this problem is indeed optimal.

In Figure 6, three contrel histories are
shown. The singular control results in tf = 15166
seconds, the ¢ = 100,000 approximation results in
te = 151, 93 seconds, and the ¢ = 100 approximation
results in tgy = 157, 70 seconds. As « was decréeased
from ¢« = 100,000, the trajectories tended to become
mmore bang-bang. In fact, with ¢ = 1, the interior
segments are approximately only 6.1 seconds long
and, thus, sre essentially bang-bang. Therefore,
as « - 0, the «-approximate optimsl controls actu-
ally go away [rom the desired singular control.

It should be emphasized that the feasibility of
generating suboptimal controls with desirable prop+
erties has been demonstrated even though the con-
vergence of the ¢ -method as «— 0 for the free-final

-time problem is still an open question. In fact,
the use of relatively large values of ¢ is desirable
since this results in a problem which is numeri-
cally well-conditioned. Nonetheless, research on
convergence is being continued, and alternate ap-
proaches which ¢ircumvent the convergence ques=
tion are also being considered. One possible ap-
proach is to transform the minimum time problem
inte a fixed interval problem by treating vg as the
independent variable with vyitg) and vg ity specified,
since vg is monotonic with respect to time. 4

A singular optimal guidance problem which
was motivated by difficulties encountered in the
Saturn V SA-502 flight has been studied. It was
shown that if the guidance system uses a singular
version of the flat-earth problem, then the control
must be discontinuous at a junction of singular and
nonsingular subarcs for almost all cases. Since
the junctions of singular and nonsingular subarces
are determined by nonlecal infermation, the situa-
tion described above is undesirable.

A suboptimal guidance schere based upon a
nonsingular approximation of the singular problem
was suggested. Since it allows for rapid computa-
tion of a nonsingular two-point beundary-value
problem, the scheme could Le incorporated into the
guidance scheme of References 7 and 8.

In addition to the use of the «method in an
on-board iteration guidance scheme, since the
e-method leads to nonsingular representations of
singular problems, it may aisoe be useful for con-
structing suboptimal neighboring optimum guidance
schemes for singular problems

Appendix A

Data from the Satura SA-502 flight, 586,72 sedonds
into the mission (with approximately 160 seconds of
flight remaining}
= 6.2133939 X 10° meters
= 2,1301780 X 10% meters
-2,0242460 X 107 metersfsecond
6.4412899 X 10* metersfsecond
= 2,2790300 X 10° pounds
= 3,5280200 X 10° pounds
Isp = 4.2476900 X 10* seconds
¥ = +17.1 degrees
r, = 6.5633660 X 10° meters
v = 7.7930430 X 10° metersfsecond

oo oW X
w
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