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I.

LYING aircraft in close-coupled formation can improve the

overall aerodynamic efficiency of the flight by exploiting
the strong aerodynamic coupling between the aircraft.! However,
the formation-flying effects on the trailing aircraft are highly non-
linear and asymmetric, for example, the induced rolling and yawing
moments caused by the aerodynamic coupling are very large and
vary substantially in both magnitude and sign as the trailing aircraft
position changes in the vortex. Hence, an autopilot is required to
maintain the formation geometry.?

A number of recent studies have examined the problem of con-
troller design for close-coupled formation flight involving multiple
aircraft.!”> Most of these designs employ a two-loop architecture:
the outer loop and the inner loop. Several previous publications'-
have concentrated on the kinematics of formation-flying air vehicles
in which the individual vehicles are assumed to be equipped with
a Mach and a heading hold autopilot, each having first- or second-
order dynamics. These first- or second-order autopilot dynamics
then represent the individual aircraft. A linearized formation-flight
model, along with this vehicle model, is then used for designing the
formation-flight controller. However, using the complete six-degree-
of-freedom (DOF) nonlinear dynamic model for individual aircraft
leads to a different set of nonlinear equations for the formation-flight
kinematic model.*

The contribution of this Note is twofold. First, we present a
simulation-based methodology for designing a formation-flight con-
troller for two aircraft in close-coupled formation flight in standard
“diamond” configuration for a single flight condition. The method-
ology involves minimizing the rms of the excursion from the desired
path directly, using the adaptive-random-search (ARS) algorithm.*
Second, we show that using the nonlinear flight kinematic model
leads to a better formation-flight controller compared to using a
linearized flight kinematic model.
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This Note is organized as follows. Section II presents the forma-
tion flight model for two aircraft. In the next section, we discuss the
design of the formation-flight control system. Section IV presents
the simulation results using the nonlinear model. Finally, we con-
clude the paper in Sec. V.

II. Formation-Flight Modeling

The mathematical modeling of the formation flight consists of
1) modeling the individual dynamics of the aircraft along with the
aerodynamic coupling because of the close-coupled formation and
2) modeling the kinematics arising caused by the constraints of
flying in formation.

The basic aircraft, without the formation-flight effects, are mod-
eled using full six-DOF nonlinear rigid-body equations of motion
(EOM).> There are nine equations for each aircraft, six describ-
ing the individual aircraft dynamics, derived using Newton’s laws
of motion, and three describing the individual kinematics in terms
of Euler angles rates. In the present case, the EOM assume lin-
ear and constant aerodynamics corresponding to flight at 0.8 Mach,
45,000-ft altitude, of the reference vehicle presented in Ref. 6. The
aerodynamic coupling effects caused by the formation flight are
modeled as additive contributions to six nominal (freestream) aero-
dynamic force and moment coefficients.>

The primary effects of the aerodynamic coupling are on drag,
lift, the rolling moment, and the yawing moment experienced by
the chase vehicle as a result of the lead vehicle maneuvers. The
reverse aerodynamic coupling on the lead vehicle because of chase
vehicle maneuvers, however, is of much smaller magnitude. Spe-
cially, for the cases presented here these reverse coupling terms are
less than 5% in magnitude compared to the effect of lead vehicle
maneuvers on the chase unmanned aerial vehicle (UAV). Hence, we
model the lead UAV without any formation-flight effect to keep the
computational effort small.

The formation-flight data’ suggest that the formation-flight
effects are most significant when both aircraft are in the same hori-
zontal plane. Hence for the formation-flight kinematics we assume
that the aircraft centers of mass are constrained to move in the
x—y plane only, by freezing the z-axis equation of motion.
With this constraint, the formation kinematics can be described
by*

(eY)

X =yre¢ + Vicos(¥r — ¥e) — Ve cos ae cos Be

y = —xr¢ + Vpsin(¥p — ¥¢) — Ve sin Be (2)
where (x, y) are the coordinates of the lead aircraft center of mass
in the chase vehicle centric frame of reference; V', ¥, «, 8, and r are
the total velocity, heading angle, angle of attack, angle of sideslip,
and yaw rate, respectively, and subscripts L, C pertain to the lead
and the chase aircraft, respectively. The angle of attack and angle
of sideslip terms appear because of the complete three-dimensional
equations of motion for aircraft dynamics considered here.

Itis obvious from Egs. (1) and (2) that, as a result of the formation-
flight effects, the lead vehicle dynamics affect the formation kine-
matics through its velocity and heading angle directly, and through
the chase vehicles yaw rate, angle of attack, angle of sideslip, and
heading angle indirectly. Thus the formation-flight simulation re-
quires solving 20 ordinary differential equations for 20 states: nine
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each for the lead and chase vehicles and two corresponding to the
relative distances x and y.

Next, we present our simulation-based controller design
methodology.

ITII. Controller Design

The formation-flight controller resides in the chase aircraft
and has a two-loop structure. The inner loop is a standard
linear-quadratic-regulator controller that, apart from stabilizing the
airframe, also provides a Mach and heading hold autopilot. The
outer-loop controller is a proportional-plus-integral (PI) controller
that maintains the relative x and y positions of the chase aircraft
with respect to the lead vehicle by providing appropriate input to
the inner-loop autopilot while ensuring stability of the overall sys-
tem. There is an implicit assumption that these positions are known
perfectly. For a complete description of the controller design, inter-
ested readers are referred to Ref. 4.

The outer-loop controller is a linear PI control law that generates
the required velocity and heading commands as follows:

VC([)ZKXe,x(t)+KXif e, (1) dr
0

1/fc(l)=KY€y(l)+Ky[/ ey(r)dr 3)
0

where e, and e, are the differences between the commanded and
achieved x and y deviations of the chase vehicle from their nominal
values. The gain parameters Ky, Ky,, Ky, Ky, are selected to min-
imize the rms of the deviation of the relative position f (k) of the
chase vehicle from its nominal (unperturbed) path because of the
lead vehicle maneuvers, that is,

min f (IE) 4)
3

where the cost function

- 1 (7 n -
f(k)={7f0 [eﬁ(r,k)+e§(z,k)]dt}

k= (Kx, Ky, Kx,,Ky,), and T is the total simulation time. The
function f (k) is a highly nonlinear, nonquadratic function of its
argument k. In the literature,' similar formation-flight control prob-
lems have been solved by linearizing the formation-flight equations
(1) and (2); but if the difference of the trim heading angles of lead
and the chase vehicles is zero, then from Egs. (1) and (2) it is easy
to see that the linear model will not capture the effect of the heading
angle variation ¥, and the velocity variation of the lead V on the x
and y dynamics, respectively. However, solving Eq. (4) directly is
difficult because the function f (k) has many local minima, making
the solution through any gradient-based deterministic optimization
method highly dependent on the initial guess. Hence, we use the
ARS algorithm* to search for the optimum gain values in the search
domain.

The ARS algorithm has several user-specified parameters. To
systematically select these parameters and compute the maxi-
mum number of iterations m* required for using the ARS algo-
rithm, we first specify the search space Qk as* 0 < Kx <25b/s,
0<Kx, <10b/s* 0 < Ky <0.15b rad/ft, 0 < Ky, <0.085b rad/ft-s
to ensure that the aircraft remains stable with its dominant poles
having at least 0.5 damping ratio. We normalize the preceding four
parameters to lie between zero and one, so that the permissible pa-
rameter space (the Cartesian product of individual parameter spaces)
Sk 18 a unit hypercube. To estimate the relative size of the “accept-
able set,” we require that changing the parameter values by 1%
of their allowable ranges should not have significant effect on the
solution. Further, because the ARS algorithm of Ref. 4 requires a
hyperspherical search space, we define the algorithm search space
Qg as the smallest outer hypersphere enclosing Sx. Because of
this extra region, the relative size of the acceptable set is taken

1
2

as 107'° instead of 10~8. With this relative size of the acceptable
set, a good parameter set (assuming f =5) for the ARS algorithm
for a four-dimensional parameter search space is obtained as,*
N; =1000, N, =1000, N3 =2666, Ny =2666, N5 =2666, y =
0.0095, and m* =7694 to find an acceptable solution with prob-
ability of failure 6 =0.01. _

To construct the cost function f(k), we need to simulate repeat-
edly the complete closed-loop formation-flight system, that is, the
full system of nonlinear equations along with the inner-loop con-
troller and the outer-loop controller (3), for various values of the
feasible parameter k£ chosen as per the ARS algorithm. The simu-
lation is performed for the case where the formation is disturbed
from its trim position of X =0.8b and y =1.0b at Mach 0.8 and
altitude 45,000 ft in a straight and wing level flight, by the lead
vehicle maneuver of a 0.1 radian change in the reference signal of
its heading autopilot. The cost function is computed based on 5 s
of simulation. We run the algorithm with Z  Ni =9998 sam-
ples (instead of 7694). To boost the probablhty of success fur-
ther, we repeat the whole process of simulating three times. The
ARS algorithm calculates the gains that minimizes the cost func-
tion as Kx =23.7448b /s, Kx, =5.0951b/s%, Ky = 0.1495b rad/ft,
Ky, =0. 08495 rad/ft-s, with correspondlng minimum cost function
being 0.5215b.

Next, we evaluate the closed-loop performance of the controller
designed through simulation.

IV. Results

The closed-loop performance of the formation-flight controller
of the preceding section is evaluated using the complete six-DOF
nonlinear simulation model, including the formation-flight effects,
as presented in Sec. II. All of the simulations of this section start in
trim condition, where the lead and the chase aircraft are trimmed in
a straight and wing level flight condition at Mach 0.8 and altitude
45,000 ft in a diamond formation with their relative separation being
¥=0.8b and j = 1.0b (Ref. 4), where b is the semiwing span.

To evaluate the formation-hold performance of the closed-loop
system, we maneuver the lead aircraft by commanding a 1-ft/s
change in the reference signal to its Mach autopilot. Figure 1 presents
the complete response of the chase vehicle. The response shows that
the chase vehicle is stable. Further, the last two plots of Fig. 1 show
that the formation flight controller works very well and is able to
restore the relative distances (x and y) to their starting values within
20s.

Despite the fact that only heading change maneuvers of the lead
aircraft were used to compute the outer-loop of the formation flight
controller gains k, the closed-loop performance is good even for
disturbances created through another maneuver, and the controller
restores the starting relative distance quite quickly.
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Fig. 1 Chase vehicle response to 1-ft/s velocity command to the lead
vehicle.
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Fig. 2 Path deviation for controllers generated using various models

and algorithms, all applied to the nonlinear plant model.

As mentioned in Sec. III, we need to include the nonlinear
formation-flying kinematic model for the outer-loop controller de-
sign. If we use a linear model representation of this kinemat-
ics and use the resulting gain set (f =1.5350b, Kx =24.998b/s,
Ky, =9.995b/s%, Ky = 0.0476b rad/ft, Ky, = 0.0372b rad/ft-s) for
simulation with the nonlinear model, the formation-hold character-
istic of the controller is poor (Fig. 2). This is not surprising as the
linear formation-flight model is not an accurate approximation of
the nonlinear model, even for small input, when trim heading angles
are not set to zero.

To compare the effectiveness of the ARS algorithm against
a gradient-based deterministic algorithm, we solve the same
optimization problem (4) by using the sequential-quadratic-
programming (SQP) method implemented in the MATLAB®
Optimization Toolbox. The SQP programming yields an in-
ferior result (f =0.5421b, Kx = 4.516b/s, Ky, =6.6517b/s,
Ky =0.15b rad/ft, Ky, =0.085b rad/ft-s) when compared to the
ARS algorithm in a similar situation, that is, using the same ma-
neuver by commanding a 0.1-radian change in the reference signal
of the lead UAV’s heading autopilot (Fig. 2). This is, of course, be-
cause any gradient-based deterministic algorithm has a tendency to

converge to a local minimum depending upon the initial guess and
is typical in our experience.*

Figure 2 summarizes the preceding two results where the path
deviation, that is, [e2(t, k) +e§(t, k)]1'/2, for all three of the just-
mentioned cases is plotted. It is obvious that using the complete
nonlinear model for the controller design together with a random
search algorithm such as the ARS yields the best result.

V. Conclusion

In this Note, we presented a simulation-based methodology for
the design of control laws for aircraft flying in close-coupled for-
mation. We considered a complete six-DOF nonlinear simulation
model, with formation-flying effects given as functions of relative
position of the chase vehicle with respect to the lead. The objective
of the formation-flight control law design was to minimize the rms
of the deviation of the relative position of the chase vehicle from
its nominal path due to lead vehicle maneuvers. We used the Monte
Carlo version of the adaptive-random-search algorithm to find the
optimum gains. The randomized search outperformed a determin-
istic optimization algorithm. We also noted that the controller de-
signed based on the complete nonlinear model outperformed that
based on the linearized model.
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