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SURPACES F O R  COMPUTER-AIDED AIRCRAF'I' DESIGN'I 

S. A. C o o n s *  and 8 .  ilcrzog** 

Abstract 

A simple but gcnzral way is described to 
define frec-form surfaces such as airplane 
fuselages, wings, fillcts, ducts, and other 
shapes by means of man-machine graphical 
interaction with a computer. In the past, 
much attention has been directed toward 
fitting mathematical functions to surfaces 
already defined by a mesh o f  points. The 
present discussion will ccnter around the 
philosophy that in the preliminary phase of 
shape description the computer's aid should 
bc enlisted at the very beginning, and that 
in this way the results of preliminary sur- 
face design became the first "master dimen- 
sions" of the airplane directly, without 
the necessity of refairing or other subse- 
quent trcatment. Furthermore, the computer 
data structure for the description of shapc 
also s e r v e s  as the skclcton upon which 
other associated data can be hung, such as 
velocity fields, pressures, temperatures, 
forces, and other physical quantities that 
arise in connection with analytical and de- 
sign procedures. 

Introduction 

Free-form surfaces play a central role 
in the design o f  airplanes, automobiles, 
ships, and many machine parts, such as dif- 
ferential housings, forgings, castings, and 
telephone hand-sets. 

'Traditionally, mathematical representa- 
tions of such surfaccs have attempted to 
fit mathematical equations to selected 
points on already designed surfaces; that 
is, surfaccs that werc designed originally 
by some graphical p r o c e s s .  This paper des- 
cribes a technique for representing surface 
points mathematically at thc initial stage 
of the design proccss. The advantages o f  
such a tcchnique are sufficiently obvious 
a s  to require no furthcr elahoration at 
this point. 

Surfaces 

, With a light-pen and CRT device, the de- 
signer can delineate a few important curves 
describing a shape he has in mind, The 

surface defined by these c u r v e s  is exhib- 
ited on the display console, where the de- 
signer can observe immediately the results 
of his actions. If the characteristics of 
the resulting surface are not satisfactory, 
he can modify the original curves: or he 
can add other curves in regions previously 
implicit, thereby making his wishes e x -  
plicit to the computer. When curvcs are 
addod o r  modified, the computer then al- 
ters the previous surface so that the n e w  
surface passes smoothly through the new 
curves until the desired shape is achieved. 
The mathematical description of this shape 
is retained by the computer and can be 
used to produce full-sized drawings, to 
direct fabricating machinery (e.g., numer- 
ically controlled milling machines), to 
sink forming dies, produce foundry pat- 
terns, o r  to carve out full-sized models. 

Points are reprcscnted a s  matrices (01 
vectors) such as [x y z ]  . Any set of 
three ordered numbers reprcsents a point 
in space. 

For a c u r v e ,  the coordinates of the 
variable point that sweeps out the curve 
can be represented by three functions of 
a single independent variable, called a 
parameter. Thus 

x = X ( " )  

Y = Y(U) 

z = Z(U) , 

Such a representation has advantages o v e r  
explicit forms like 

Y = f(x) 

since in the latter case the variable x 
plays a somewhat different r o l e  from that 
played by y and z . In some sense, this 
is undesirable. It is particularly awkward 
when, for example, the slope dyldx of a 
curve becomes infinite. The parametric 
form also has advantages over the implicit 
form 
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f(X, Y, 2 )  = 0 

S(X, Y. 2 )  = 0 1 

because it is very difficult to c o m p u t e  
points on the curve from tliesc simultaneous 
relationships. The parametric form o f  
curve description is virtually standard in 
studies o f  curves and surfaces in differen- 
tial geometry. A curve i s  the locus o f  a 
point that moves in space with a single de- 
gree o f  freedom. Similarly, a surface is 
the locus o f  a point that moves in space 
with two degrees o f  freedom. 

When we represent a surface pararnetric- 
ally, we write 

x = X ( S , t )  

Y = y(s,t) 

2 = z ( s , t )  . 

'These represent three functions o f  the two 
independent variables, or parameters, 5 
and t . We can write the vector equation 

[ x  Y z l  = [X(S,t) y(s,t) .(s,t)l . 
S o w  the three functions o f  the variables a5 
they appear on the right-hand side c a n  be 
represented by the single symbol (st) , 
'This is a "hi-literal" symbol that stands 
for the v e c t o r  consisting of the three 
functions. It is a convenient, compact 
symbol that s a v e s  a great deal of notation. 

We plan to restrict our attention to 
surface regions bounded by four arbitrary 
s p a c e  curves. If, additionally, far com- 
putational simplicity, we restrict t h e  
range of the variables s and t t o  lic 
between 0 and 1 , o r ,  in symbols 

0 < S,t < 1 , 

then we have a symbol to represent a gener- 
a l  point on a surface (st) , o r  a boundary 
curve where s h a s  been set to its lower 
limit zero (Ot) , and similarly for the 
three other boundaries: 

Ot I 
00 SO 10 

Thus, all four boundaries represent 
functions o f  t w o  variables, but with o n e  
o f  the variables held temporarily fined. 
If both variables are held fixed, s a y  for 
example if s = 1 and t = 0 , the bi- 
literal symbol becomes (10) , and we are 
then talking about one o f  the corners o f  
the patch. 

Later we shall introduce s o m e  addition 
a1 notational conventions, but f o r  the 
timc being these will serve to enable u s  
to write some equations. 

L/ We shall use two functions, Fo and 
, which have the property .that F 1  

F o ( 0 )  = 1 Fl(l) = 1 

and 
Fo(l) = 0 F1(0) := 0 . 

The actual form of these functions i s  c n -  
tirely arbitrary, s o  long as these e n d -  
conditions a r e  fulfilled. Their f o r m  h a s  
n o  effect o n  the validity of the surface 
equation. We will refer to these func- 
tions as "blending functions." 

With this notation, the surface equa 
tion c a n  be written in matrix farm: 

The entries in the 3 x 3 matrix con- 
sist o f  the four arbitrarily c h o s e n  bound 
ary c u r v e s ,  s o  , s i  , Ot , a n d  It , t"- 
gethcr with the c o r n e r  points 00 , 01 , 
10 , and 11 . 

I t  should be remembered that S O  is 
really a shorthand expression for the t h r e e  
v e c t o r  components of the c u r v e ;  it rep- 
resents thc vector 

50 = [ X ( S O )  y(s0) Z ( S 0 ) l  , L, 

where each coordinate component represents 
a suitably c h o s e n  function o f  the single 
paramcter s ; the t parame1:er in this 
c a s e  is held fixcd a n d  equal 1.0 0 . Sim- 
ilar r c m a r k s  apply to the other t h r e e  
boundary curves. 

If, in addition to the previously stated 
requircmcnts o n  the F functi.ons, we a l s o  
state that f o r  

FA(0) = 0 

FA(1) = 0 

F;(O) = 0 
and 

F i ( 1 )  = 0 , 
then the surface has the p e c u l i a r  property 
of having tangent vectors across boundaries 
that depend only u p o n  the tangent vectors 
at c o r n c ~ s .  F o r  example, u s i n g  the nota- 
tion 
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we c a n  write, aftcr differentiating the 
equation and setting t = 0 , 

sOt=[l F o ( s )  F1(s)l 0 

I 

+ [ I  Fo(S) F1(sI1 S O  

when we introduce the conditions of the 
F functions, the previous equation becomes 

sot = OOt F O ( s )  + lot Fi(s) . 

This shows that the tangent vector a c m s  
5 0  in the t direction depends only upon 
OOt and lot , the tangent vectors at the 
ends of the S O  curve, in the t direc- 
tion: it does not deuend uuon curve shaoe. 

. I  

n o r  upon the shape of the other boundaries, 
except at 00 and 10 . 

Hence, two patches will have continuous 
slope across a shared boundary. Furthermore, 
if the second derivatives of the F func-. 
tions are zero for 

s = o  

s = 1 ,  

then two adjacent patches w i l l  he c u r v a t u r ~  
continuous across a boundary, provided 
their boundary curves are curvature-con- 
tinuous. We c a n  escalate the order of con- 
tinuity between two patches simply by add- 
ing conditions on the F functions. 

4 

An analogous equation can b e  constructed 
for the modification o f  this primary s u r -  
face, in case its intrinsic boundary slope 
does not match that of some adjacent sur- 
face. Such mismatch can occur only in c a s c  
the adjacent s u r f a c e  cannot be described by 
the primary surface equation. In theory 
at least, many surfaces indeed do y& lend 
themselves to such description. Consequea- 
ly if one of the surface patches is to ad- 
join such a surfacc and be slope-continuous 
with it, the boundary slope of the surface 
patch must be modified. 

'The equation for such modification is 

(stj=[l C o ( S j  G l ( S ) l  0 

It obviously hears a strong resemblance 
to thc form of the primitive surface equa- 
tion. The G functions have the p r o p e r -  
ties 

G (0) = G ( I )  = G1(0) = G1(l) = 0 
0 0 

and 

G ' ( 0 )  = 1 

G'(1) = 1 

G i ( 1 )  = 0 

G ; ( O )  = 0 

0 

1 
With these properties, the surface des- 

cribed has null vectors for all boundaries, 
hut has tangent vectors across boundaries 
a s  shown in the matrix: i.e., sot , slt , 
OtS , and lis . Since these can be ar- 
bitrary vector functions of s and t , 
any two surfaces can be joined together s o  
a s  to maintain slope continuity across 
their common boundaries. ' 

Boundary Curves 

'Traditionally, two kinds of curves have 
been used in airplane lines design: cubic 
polynomials and conics. Unfortunately, 
each of these curve-forms by itself has 
certain drawbacks. In the parametric form, 
for ordinary cubics, the entire shape of a 
curve segment is governed by end tangent 
v e c t o r s .  Sometimes these end tangent vec- 
tors lead to unwanted hooks and bulges in 
the curve segments. On the other hand, 
conics, although more benignly behaved, 
cannot by their very nature yield curves 
with paints of inflection. Yet such curves 
very often exist in aircraft shapes, f o r  
example, in wing fillets. 

Because o f  these shortcomings, a new 
curve type has been developed. It is 
based upon rational polynomial functions. 
It contains both conics and ordinary cubics 
a s  special cases, and provides a great de- 
gree o f  generality and flexibility. 

We start be establishing the form of the 
function. Let v be a vector, s o  that, 
for example, 

v = [x y 2 11 

v = [x y 11 

" i  [x 11 . 

o r  

o r  

The first of thcse can be thought of a s  
the vector (or matrix) of coordinates on a 
space curve; the second is the vector of 
coordinates for a plane curve, and the last 
is the vector of a single varying c o o r d i ~ W  
o f  a curve. Since the last vector yields 
the most general case, we shall begin with 
it, and show how one might evaluate a set 
of numbers in a matrix to define each of 
the parametric coordinates of a curve. 

The product of v and a variable scalar 
w is 

W" = [ w x  w] 

Here, both wx and w are cubic functions 
of a parameter u , and obviously 

wx 
W 

X I - .  



This is the rat,ia of two cubic polynom- 
ials, hence the term rational function. 

We can represent the two cubic polynom- 

[u3 u 2  u 11 A . 

ials by the matric equation 

w v  = 

Since 
W" = [wx w] , 

the matric A must consist of four rows 
and two columns of constant coefficicnts. 

We now proceed to show how these numbers 
may be found s o  a s  to define a coordinate 
of a c u r v e .  We shall be interested in the 
end-paint coordinates of the c u r v e  at 

u = o  
and 

u , =  1 .  

These coordinates are 

v = [ x o  11 

v 1  = [x l  11 

and 

respcctivcly. A tangent Y C C ~ O ~  anywhere o n  
the c u r v e  is c l c a r l y  

Y '  = [ x '  01 , 

where the prime mark means differentiation 
with rcspect to the parameter u . The 
tangent vectors at u = 0 and u = 1 are 
t h c rc f 0 re 

and 
v '  = [x; 01 

v; = [ x i  01 

0 

rcspectively 

N O W ,  differentiating both sides of 

W Y  = [ u 3  u 2  u 11 A , 

we obtain 

( w v j '  = [3u2 2" 1 01 A . 
Substitution of u = 0 and u = 1 into 
thcsc t w o  cxpressions yields 

The 4 x 4 matrix o n  thc right has an 
invcrse, and we may write 

0 

A =  '[ 0 

3 

~ 

0 

1 

1 

1 

1 

- 2  

1 

0 

Thc square matrix inverse is constant 
and always thc same and reappears i n  the 
a l g e b r a  s o  often that we shall henceforth 
c a l l  i t  the matrix M . 

The matric equation can be factored and 
rcwritten in thc form 

w o o  V 

A = M [:: 0 Y '  

1 I 0 w '  0 w " I  

v 

The right-hand matrix o f  v ' s  represents 
thc desired cnd-conditions on the C U T Y C .  
In o u r  prcscnt c a s e ,  it is of c o u r s e  a 
4 x 2 matrix, 

The middle matrix is 4 x 4 a n d  c o n -  

Any arbitrary set of four 8umkers inserted 
into this matrix will serve to define a 
unique pair of cubic functions of the p u m -  
eter u ., from which x can be found by 
using, as we have said, the ratio 

tains the four numbers [w w w' w;] . W 

W X  
W x = - .  

Rather than pick these four numbers a r -  
bitrarily, we shall impose sufficient 
further Fonditions on the curve to dcfinc 
[ w o  w1 w o  wij uniquely. 

We begin by introducing desired second 
dcrivative vcctors at thc e n d  points. 
These vectors are, clearly, 

v" = [ x i  01 
and 

Y "  = [ x ;  01 
1 

Incidentally, for the vectors 

Y '  = [ x '  y *  01 

"I!  = [ x "  yl' 01 , 

if t h c  determinant of the matrix 
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vanishes, the curve will have a point of 
inflcction at Y . I f  thc determinant is 
positive, the ccntcr o f  curvature will lie 
o n  thc left a5 one proceeds along the curvc; 
if the detcrminant is negative, thc ccnter 
of curvature will lie a n  the right. If two 
curve scgments have equal v' and Y "  at 
B junction, they are continuous both in 
s l o p c  and c u r ~ a t u r e  at such a junction. 

When wc take second derivativcs of both 
sides o f  

wv = [ u 3  uz u I ]  A , 

we obtain 

( w v ) "  = [6u 2 0 0 1  A 

A t  u = 0 this is 

(wove)" = [ O  2 0 01  M 

li " t 
0 0  0 0  0 0 '  

and solving for w v"  
0 0 '  

Y w,v; = (wove)" - WllV - 2W'Vl 
0 0  0 0  

N O W  

1 j ,  (wove)" = [ - 6  6 - 4  - 2 ] ~ 0 v 0  

( W V ) ' '  = [(wx)" w"] , 
the quantity w "  i s  the second component 
o f  the vector o f  ( w v ) "  and therefore is 
associated with the last column of the 
ina t I' i x 

- .. I I wove 

Hence 

By combining results, we c a n  now write: 

w v " = [ - 6  6 - 4  - 2 1  - 2  w t v t  
0 0  0 0  

= 6w ( v  - v  ) - 4 w  Y' - 2 w ' ( v  - Y  ) 1 1 0  0 0  1 1 0  
- 2wl"; - 2 W l " '  

0 0  

Collccting 

w v" = w ( - 4 " ' )  + w (6(vl-v ) - 2";) 
0 0  0 0 1 0 

+ ~'(-2v;j + w ' ( - 2 ( v  1 1 -",I). 
0 

We now r e s t o ~ e  this last expression to 
matrix form: 

I !  w " ' I  = l w o  w1 w o  w,] 
0 0  

I n  our present case, the matrix on the 
right consists o f  a column o f  numbers and a 
column of zeros. H e n c e  the column o f  zeros 
can be discarded, 
4 x 1 matrix. On the left, wove is a 
scalar. 

and the result i s  a 

Similarly, we can find by analogous al- 
gebraic procedures that 

wlvy  = [ w o  wl w: w;] 

Then, writing a matric equation, we havq 
s o  far, 

[w,vz wlvyl = I w o  wl w b  w;l[P 91 I 

where [ I '  Q] represents a 4 x 2 matrix 
consisting o f  the separate 4 x 1 matrices 
for w v" and wlvl , written side by side 
a s  columns. 0 0  

1 
But the last components of Y and Y 

a r e  bath O ~ C ,  and t h e  last cornpoflents of 
v: and v 1  are both zero. 

Wc now introduce another condition. Let 
it be required that the c u r v e  pass through 
the point 
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v c  = [ x c  11 > 

= i r z  , 

when 

where this v a l u e  o f  u is o f  c o u r s e  a r -  
bitrary. This condition lcads to 

" = (1/8)[1 2 4 81  &I Y " 

W "  + w v  
0 0  

By algebraic manipulations similar to the 
preceding, we can rearrange the equation 
to read 

" = [x y 11 

a plane c u r v e .  We shall next show that for 
a n  appropriate choice of the components o f  

the curve reduces to a conic 

IYe have the equation 

W" = [ w x  wy w ]  

= [ u 3  u 2  " 11 H . 

In this case, A is a 4 x 3 matrix. No\,. 
if the top row o f  this matrix i s  [0 0 01  , 
the equation reduces to 

W Y  = [ u 2  u I ]  A 

when the top row of A has been omitted. 
A is now a 3 x 3 matrix, a n d  it is pos- 
sible to show that this equation is a p a r a -  
metric form for the general conic, expressed 
a s  a quadratic rational function. 

Without going into details o f  deriva- 
tion, the conditions on the components of 

In this equation, v has two componeng I ,  
x c  and 1 , The rightshand matrix i s  a L., w1 w o  W 1 l  

[ w o  V l  w; .;I = [O 0 0 wo] 

4 x 2 . Call it the R matrix. Then we 
can adjoin these matrices to obtain: that make the top row of A vanish are em 

bedded in the matric equation: 
[ I S ,  0 0  Y "  hmlv;' 8 v c ] = [ w ,  w 1  w r  w;][P Q R ]  , 

Now [P Q R] represents a 4 x 4 matrix; 
P and Q are each 4 x 1 matrices, but 
R is a 4 x Z,, matrix. IVe next transfer 
w v "  and w l v l  to the right-hand side, 
optzining 

I O  0 8 v c ] = [ u o  w 1  w i  !i;] 
The s q u a r e  matrix o n  the right has an 

inverse in c a s e  the dctcrminant 

T h e  right-hand matrix is n o w  a 4 x 4 . 
Provided its determinant does not vanish, 
i t  has an inverse, and 

[ w ,  W l  w; .;I = [ O  0 8 V C ]  s , 

where S is the 4 x 4 inverse o f  the 
matrix . 

Now that the components of 

have b e e n  evaluated, the curve is complete 
ly defined, since the rational function 
( w v ) / w  is completely defined. 

With some l o s s  of generality and fleni- 
bility, we c a n  have 

I "1 I 
It is always possible in all o f  the forc 

going to set 

$9 = 1 .  
0 

This is b e c a u s e  a l l  equations a r e  homo 
geneous. It is never possiblc for 

i l  = o ,  
0 

s i n c e  this leads to certain degenerate ca5es. 

We remark in passing that when 

[ !Yo w 1 0 1  1%" W t ]  = [ I  1 0 01 , 
thc cquation reduces to the ordinary p a r a -  

L. 

U 
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mctric cubic, givcn by 

_ _  " 
0 

" I  

" 
o =  

1 " 
V I P  

"1 _...  

and w is constant and equal to o n e .  

H e n c e  the rational polynomial functions 
contain, a s  special c a s e s ,  all c o n i c s ,  
ordinary cubics, a n d  o f  c o u r s e  thercforc 
straight lincs a n d  circlcs. Their u s e  for 
boundary curves f o r  s u r f a c e  patches is ab- 
vious. 'They maintain tangent vector co i l -  
tinuity between adjacent p a t c h c s ;  indccd, 
if the P o  a n d  Fl functions a r e  c o w  
structed a s  rational functions, W E  c a n  
establish the F 1  function 

3 
F1(") = 

2 3u -3ui1 ' 

'This function has the end conditions - - 
0 0 1  

i l l  

1 0 0  

1 0 0  

0 0 0  

0 0 0  .. - 
Since 

Y" 1 A " ,  = 0 [ 1  0 01 
0 0 

v 1  = h v ;  = 0[1 0 01 , 

the c u r v e  h a s  a point o f  inflection at 
u = 0 and u = 1 . Hence its u s e  e n s u r e s  
~ u r v a t u r e  continuity across boundaries 
betwecn patches, provided, o f  c o u r s e ,  the 
boundary curves h a v e  similar curvaturc can- 
tinuity at patch c o r n e r s .  

'The c u r v e  is symmetric. Furthermore, we 
c a n  put 

F (u) = 1 - F1(u) 

and obtain dircctly the Fo ,function, 
anothcr cubic rational function, with sim- 
ilar properties to F1 ' 

Examp 1 e 

Wc shall work o u t  the cquation F o r  the 
l : l (u)  blending function with the customary 
stipulations that 

a n d  with the t w o  additional stipulations 
that 

F"(0) = F " ( 1 )  = 0 , 1 1 

This blending function will give both 
slope and curvature continuity across thc 
common boundary betivecn two contiguous 
patches. 'The c n d  conditions a r c ,  for 

v = [ r : o ( u )  I ]  

00 

00 

'Ihc matrix 

0 - 6  0 4 

6 0 4 4  

0 - 2  0 1 

0 - 1  -1.  

obtained by direct substitution in thc 
givcn form. i t s  inverse is 

N o w  S c t  Y = [1/2 11 f o r  symmetry. Thcq 
since u = ' 1 / 2  , 

1 ,  

two w i  wo W I 1  = [ O  0 8 v c 1 S  

= [ O  0 4 81 

= [ 8  8 - 2 4  2 4 1  

Now if w = 1 , instcad o f  8, thc c q u a t l o n  
becomes 

[wo w1 w; w'l = [1 1 - 3  31 
1 
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Wc have 

and substituting the v a l u e s  of 

[ w o  w 1  w; w'] 1 : 

A =  

Finally 

W" = [ w x  w ]  = L o 3  " 2  " 1 )  

2 [ w x  w] = ( " 3  3" -3u+l] 

Hence  

3 

3u - 3 u + l  

wx U 
x = - =  = F 1 ( " )  w 2 

a 5  required. The other F o  function is 
5 

F ( u )  = 1 - F ( u )  = 1 . 2 3u - 3 u t 1  1 

3 2  
. -u t3" -3u+1 

2 3" -3u+1 

This is s e e n  to be a rational cubic f u n c  
tion a l s o .  
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