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SURFACES FOR COMPUTER-AIDED AIRCRAFT DESIGNT

5. A,

Abstract

A simple but general way is described to
define free-form surfaces such as airplane
fuselages, wings, fillets, ducts, and other
shapes by means of man-machine graphical
interaction with a computer. In the past,
much attention has been directed toward
fitting mathematical functions to surfaces
already defined by a mesh of points. The
present discussion will center around the
philosophy that in the preliminary phasec of
shape description the computer's aid should
be enlisted at the very beginning, and that
in this way the results of preliminary sur-
face design become the first "master dimen-~
siens" of the airplane directly, without
the necessity of refairing or other subse-
quent trecatment. Furthermore, the computer
data structure for the description of shape
also serves as the skcleton upon which
other associated data can be hung, such as
velocity fields, pressures, temperatures,
forces, and other physical quantities that
arise in connection with analytical and de-
sign procedures,

Introduction

Free-form surfaces play a central role
in the design of airplanes, automobiles,
ships, and many machine parts, such as dif-
ferential housings, forgings, castings, and
telephone hand-sets.

Traditienally, mathematical representa-
tions of such surfaces have attempted to
fit mathematical equations to selected
points on already designed surfaces; that
is, surfaces that were designed originally
by some graphical process, This paper des-
cribes a technique for representing surface
points mathematically at the initial stage
of the design process. The advantages of
such a technique are sufficiently obvious
as to require no further elaboration at
this peint.

Surfaces
With a light-pen and CRT device, the de-

signer can delineate a few important curves
describing a shape he has in mind. The

+ This rescarch was supperted in part by Bell Telephone Laboratories,
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surface defined by these curves is exhib-
ited on the display console, where the de-
signer can observe immediately the results
of his actions. [If the characteristics of
the resulting surface are not satisfactory,
he can modify the original curves; or he
can add other curves in regions previously
implicit, thereby making his wishes ex-
plicit to the computer. When curves are
added or modified, the computer then al-
ters the previous surface so that the new
surface passes smoothly through the new
curves until the desired shape is achieved.
The mathematical description of this shape
is retained by the computer and can be
used to preoduce full-sized drawings, to
direct fabricating machinery (e.g., numer-
ically controlled milling machines), to
sink forming dies, produce foundry pat-
terns, or to carve out full-sized models,

Points are represented as matrices (or
vectors) such as [x y z] Any set of
three ordered numbers represents a point
in space.

For a curve, the coordinates of the
variable point that sweeps out the curve
can be represented by three functions of
a single independent variable, called a

parameter. Thus
x = x{u)
y = y()
z = z{u)

Such a2 representation has advantages over
explicit forms like

y = £(x)

Z

g{x} ,

since in the latter case the variable x
plays a somewhat different rcle from that
played by y and =z In some sense, this
is undesirable. It is particularly awkward
when, for example, the slepe dy/dx of a
curve becomes infinite. The parametric
form also has advantages over the implicit
form
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because it is very difficult to compute
points on the curve from these simultaneous
relationships. The parametric form of
curve description is virtually standard in
studies of curves and surfaces in differen-
tial geometry. A curve is the locus of a
point that moves in space with a single de-
gree of freedom. Similarly, a surface is
the locus of a point that moves in space
with two degrees of freedom.

When we represent a surface parametric-
ally, we write

x = x(s,t)
y = yl(s,t)
z = zfs,t)

These represent three functions of the two
independent variables, or parameters, s
and t We can write the vector equation

(x ¥y z] = [x(s,t) y(s,t) z(s,t)]

Now the three functions of the variables as
they appear on the right-hand side can be
represented by the single symbol (st}

This is a "bi-literal" symbol that stands
for the vector consisting of the three
functions. It is a convenient, compact
symbol that saves a great deal of notation,

We plan to restrict our attention teo
surface regions bounded by four arbitrary
space curves. I1f, additionally, for com-
putational simplicity, we restrict the
range of the variables s and t to lie
between 0 and 1 , or, in symbols

0 <s,t &1,

then we have & symbol to represent a gener-
al point on a surface (st) , or a boundary
curve where s has been set to its lower
limit zero (0%t) , and similarly for the
three other beoundaries:

01 st 11
ot 1t
00 50 10

Thus, all four boundaries represent
functions of two variables, but with one
of the variables held temporarily fixed.
If beth variables are held fixed, say for
example if s =1 and t = 0 , the bi-
literal symbol becomes (10) , and we are
then talking about one of the corners of
the patch.

Later we shall introduce some addition-
al notational conventions, but for the
time¢ being these will serve to enable us
to write some equations.

We shall use two functions, Fo and
Fl , which have the property that
FO(O) =1 Fl(l) =1
and
Fo(l) = 0 Fl(O) = 0

The actual form of these functions is cn-
tirely arbitrary, so long as these end-
conditions are fulfilled. Their form has
no effect on the validity of the surface
equation. We will refer to these func-
tions as "blending functions."

With this notation, the surface equa-
tion can be written in matrix form:

(st)=[1 Fo(s) Fl(s)} s0 sl 1
0t =00 -01 | ¥ (%)
t -10 -1y Lej (e

The entries in the 3 x 3 matrix con-
sist of the four arbitrarily chosen bound-
ary curves, sO , st , 0t , and 1t , to-
gether with the cerner points 00 , 01 ,
10 , and 11

It should be remembered that s0 is
really a shorthand expression for the three
vector components of the curve; it rep-
resents the vector

s0 = [x(s0) y(s0) z(s0)] ,

where each coordinate component represents
a suitably chosen functionm of the single
paramcter s ; the t parameter in this
case 1is held fixed and equal te 0 Sim-
ilar remarks apply to the other three
boundary curves.

If, in addition to the previously stated
requirements on the F functions, we also
state that for

S
FL(0) = 0
F;(l] = 0
Fi(O] =0
and
Fi(l) =0,

then the surface has the peculiar property
of having tangent vectors across boundaries
that depend only upon the tangent vectors
at corners. For example, using the nota-
tion

3(st)

t 3t t=0 *



we can write, after differentiating the

equation and setting t = 0 ,

= ~ ™~
s6,=(1 F_(s) F (s)][0 0 0 1 W
60, 0 G || F, (0
Lo, 0 o JLF, (0)
+[1 F_(s) Fy(s)][0 s0 sV o W
90 -00 -01 F;(O)

1

Lo -10 -11jlE (o)

When we introduce the conditions of the
F  functions, the previocus equation becomes

sOt = OOt Fo(s) + 10t Fi(s)

This shows that the tangent vector acoss
s0 in the t direction depends only upon
00y and 10_ , the tangent vectors at the
ends of the "s0 c¢urve, in the t direc-
tion; it does not depend upon curve shape,
ner upen the shape of the other boundaries,
except at 00 and 10

Hence, two patches will have continuous
slope across a shared boundary. Furthermore,
if the second derivatives of the F func-
tions are zero for

s = 1,

then two adjacent patches will be curvature
continuous across a boundary, provided
their boundary curves are curvature-con-
tinuous. We can escalate the order of con-
tinuity between two patches simply by add-
ing conditions on the F functions,

An analogous equation can be constructed
for the modification of this primary sur-
face, in case its intrinsic boundary slope
does net match that of some adjacent sur-
face. Such mismatch can occur only in casec
the adjacent surface cannot be described by
the primary surface equation. In theory
at least, many surfaces indeed do not lend
themselves to such description. Consequent-
ly if one of the surface patches is to ad-
join such a surfacce and be slope-continuocus
with it, the boundary slope of the surface
patch must be modified,

The equation for such modification is

(st)=[1 G (s) G, (s)][0 50, s1, 1
Ot5 -oost -Olst Go(t
1t -10 . -11_ 6 @

It obviously bears a strong resemblance
to the form of the primitive surface equa-
tion. The G functions have the proper-
ties

GO(O) = Go{l) = GI(O) = Gl(l) =0

and

0

G (0)

Gi{l) =1

1 Gé(l)

0

G, (0)

With these properties, the surface des-
cribed has null vectors for all boundaries,
but has tangent vectors across boundaries
as shown in the matrix: i.e., s0_ , slt s
Oty , and 1ty Since these catn be ar¥-
bitrary vector functions of s and t ,
any two surfaces can be joined together so
as to maintain slope continuity across
their common boundaries. '

Boundary Curves

Traditienally, two kinds of curves have
been used in airplane lines design: cubic
polynomials and coniecs. Unfortunately,
each of these curve-forms by itself has
certain drawbacks, In the parametric form,
for ordinary cubics, the entire shape of a
curve segment is governed by end tangent
vectors. Sometimes these end tangent vec-
toers lead to unwanted hooks and bulges in
the curve segments. On the other hand,
conics, although more benignly behaved,
cannot by their very nature yield curves
with points of inflection. Yet such curves
very often exist in aircraft shapes, for
example, in wing fillets,

Because of these shortcomings, a new
curve type has been developed. It is
based upon raticonal polynomial functions.
It contains both conics and ordinary cubics
as special cases, and provides a great de-
gree of generality and flexibility.

We start be establishing the form of the
function. Let v be a vector, so that,
for example,

v = [xy 2z 1]
or

v =[xy 1]
or

v = [x 1}

The first of these can be thought of as
the vector {(or matrix) of coordinates on a
space curve; the second is the vector of
coordinates for a plane curve, and the last
is the vector of a single varying coordinate
of a curve. Since the last vector yields
the most general case, we shall begin with
it, and show how one might evaluate a set
of numbers in a matrix to define each of
the parametric coordinates of a curve.

The product of v and a variable scalar

w 1is
wy = [wx w]
Here, both wx and w are cubic functions
of a parameter u , and obviously
WX
W



This is the ratic of two cubic polynom-
ials, hence the term rational functiocn.

We can represent the two cubic polynom-
ials by the matric equation

WV = [u3 u2 u l] A

Since
wv = [ux W),

the matric A must consist of four rows
and two columns of constant coefficients.

We now proceed to show how these numbers
may be found so as to define a cocrdinate
of a curve, We shall be interested in the
end-point coordinates of the curve at

u =0
and

u =1

These coordinates are

v

o] [XO l]

and
v, = [x1 1]

respectively. A tangent vcctor anywhere on
the curve is clearly

v' = [x' 0] ,
where the prime mark means differentiation
with respect to the parameter u . The
tangent vectors at uwu =0 and u =1 are

therefore

<
i

x. 0}

and

=
n

T
1 =[x 0l
respectively.

Now, differentiating both sides of

wv = [u3 u2 v l] A,

we obtain

2

(wv)' f3u® 2u 1 0] A

Substitution of u = 0 and u =1
these two expressions yields

into

W v ¢ 6ol
[ 2 v
W,V 1111
H! | = A
[wovo) 0010
L]
[wlvl] 3 21¢
The 4 x 4 matrix on the right has an

inverse, and we may write

) -3 3 -2 -1 wlv1
0 0 1 0 w'v_ o+ ow v
o0 o 0
1 1
1 0 0 QJ LYV, * wlvl

The square matrix inverse is constant
and always the same and reappears in the
algebra so often that we shall henceforth
call it the matrix M

The matric equation can be factored and
rewritten in the form

W 0 0 0 v

Q (o]
o] W 0 0 v

A= M , 1 1
W 0 W 0 v

1
0 (o] o]
t

0 w1 0 w1 Vl

The right-hand matrix of v's represents
the desired end-conditions on the curve,
In our present case, it is of course a
4 x 2 matrix.

The middle matrix is 4 x 4 and con-
tains the four numbers f[w_ w, w' w.] .
Any arbitrary set of four Ruméerg i%serted
into this matrix will serve to define a
unique pair of cubic functions of the pamm-
eter u ,, from which x «can be found by
using, as we have said, the ratioc

x = MK
TowW
Rather than pick these four numbers ar-
bitrarily, we shall impose sufficient
further ?onditions on the curve to define
1 .
; ly.
[w0 WoowW, wl] uniquely
We begin by introducing desired second
derivative vectors at the end points.
These vectors are, clearly,

v, = [x0

0]
and

i 1t

v, = [xl 0]

Incidentally, for the vectors

1 '

v = [x y 0]
[x” ytl Ol ,

if the determinant of the matrix

"
v

i



vanishes, the curve will have a point of
inflection at v If the determinant is
positive, the centexr of curvature will lie
on the left as one proceeds along the curve
if the determinant is negative, the center
of curvature will lie on the rTight. If two
curve segments have equal v' and v at
a junction, they are continuous both in
slope and curvature at such a junction.

When we take second derivatives of both
sides of

32

wy = [u” u® u 1] A,
we ohbtain
(wv) = [6u 2 0 0] A
At u = 0 this is
[ad
(wovo) = [0 20 0] M wov
RS
W'V + W !
o ¢ o'o
1 t
WiVt WYy
But
(w v )” = wv_ o+ 2Zw'v o+ ow v s
a0 00 o0 o0
and solving for w v' ,
oo
1 1"t 11 1 '
v = _ _
wo o (wovo) WOVO 2w v
Now
"o _ . . v
(wovo) [-6 6 -4 -2] WOy
w}vl '
"
oV Wov?
'
Yivy T MYy

Furthermore, since in general

(wv)lf = [(wx)ll wl'] N

the quantity w' is the second component
of the vector of (wv)" and therefore is
associated with the last column of the
matrix

WV
(o]

1M1

W'V + W Vr
[¢ NN 4] [oJNe)
t ]
lel + WlVl

But the last components of v and v
are both one, and the last compoﬁents of

vé and vy are both zero.

1

Hence

=
n

[-6 6 -4 -2] W

w

w

1
v
o
1’
1

w

By combining results, we can now write:

"

' t
wovo—[—é 6 -4 -2] wo(vo—vo) -2 WOV

wl(vl*vo)
w'(v -V ) +W v’
oo o 0 o
L] 1
WV mvgdewg vy

- - - - " -
= 6w1(v1 vo) dw v 2w1(v1 vo)

1
oo
1 LI |
- 2wlvl - 2W0V0
Collecting
n t ]
WoVe = wo(-ﬂvg) + wl(e(vl-vo} 2v1)

] L v
+ wo(—ZVO) + wI[-Z(vl—vO)).

We now restore this last expression to
matrix form:

'V -
00 o 1 o

-2(v1—vo)

In our present case, the matrix on the
right consists of a column of numbers and a
column of zeros. Hence the column of zeros
can be discarded, and the result is a

4 x 1 matrix. On the left, wov; is a
scalar,

Similarly, we can find by analogous al-
gebraic procedures that

L ' ! _ )
WiV, = {wo Wy oW, wl] 6(vD vl) + 2v0
1
4v1
2(v0—v1)
-2v!

1 .

Then, writing a matric equation, we havg
so far, -

" f

wlvl]

1
W L W
[ o]

(w v o "1

0 O

wilfp Q] ,

where [P Q] represents a 4 x 2 matrix
consisting of the separate 4 x 1 matrices
for w_v. and wlv! , written side by side
as columns,

We now introduce another condition. Let
it be required that the curve pass through
the point



when

u 1/2

where this value of u 1is of course ar-

bitrary. This condition leads to
= M [w

Ve (1/8)[1 2 4 8] M WV
11

r 1

WV o+ WV

o o o'o

1 t

vt Yy

By algebraic manipulations similar to the
preceding, we can rearrange the equation

to read

_ ' ' '
Svc = [w0 wyowW, wl] 4vo v,
'
4v1 - vy

v

o

-V,

In this equation, v
x. and 1 The right~hand matrix is a
4 x 2 Call it the R matrix. Then we
can adjoin these matrices to obtain:

" ' '

[wov; WV 8vc]=[w0 WooW wl][P Q R]

171
Now [P Q R] represents a 4 x 4 matrix;
P and Q are each 4 x 1 matrices, but
R Es a 4 x 2” matrix, We next transfer
WOV, and w v, to the right-hand side,
oBtaining
_ . t ' _ "
[0 O SvC]—[ho wyow wl] [P @ R) v c 00
1
0 vy c 0
0 6 00
0 0 029
The right-hand matrix is now a 4 x 4

Provided its determinant does not vanish,
it has an inverse, and

1
[w w Yo wl]

o M1 = [008v]) s,

where S is the 4 x 4

matrix.

inverse of the

Now that the components of

have been evaluated,

ly defined,
(wv)/w

the curve is complete-
since the rational functicn
is completely defined.

With some loss of generality and flexi-
bility, we can have

has twoc component

v = [x y 1]

a plane curve. We shall next show that for
an appropriate choice of the components of

[wO WyoWg

the curve reduces to a conic.

We have the equation

wvy = [wx wy w]
= [u3 u2 u 1] A
In this case, A 1s a 4 x 3 matrix. Now
if the top row of this matrix is [0 0 0] ,

the equation reduces to

wv =[u2 u 1] A

when the top row of A has been omitted.

A is now a 3 x 3 matrix, and it is pos-
sible to show that this equation is a para-
metric form for the general conic, expressed
as a quadratic rational function,

Without going into details of deriva-
tion, the conditicns on the components of

t )
[uo WooWg hl]

that make the top row of A vanish are em-
bedded in the matric equation:

-1
t L
[w0 LN wl} = [00OQ wo]

The square matrix on the right has an
inverse in case the determinant

It is always possible in all of the fore-
going to sct

w_oo= 1
o
This is because all equations are homo-
genecus. It is never possible for

E

woo= D0
0
since this leads to certain degenerate cases,
We remark in passing that when

fw_ w., w w

o 1 "¢ 1] = [

10 0]

H

the equation reduces to the ordinary para-



metric cubic, given by

2

. 3
v = ju” u” ou 1] M v,

v

A
o]

1
]
1
Vi

and w is constant and equal to one.

Hence the rational polynomial functions
contain, as special cases, all conics,
ordinary cubics, and of course therefore
straight lines and circles. Their use for
boundary curves for surface patches is ob-
vious. They maintain tangent vector con-
tinuity between adjacent patches; indecd,
if the F and F functions arc con-
structed s rationdl functions, we can
establish the F1 function

u’
Fl[u} = g

3u”~3u+l

This function has the end conditions

— - F -
v c 01
(o]
vy 111
v' 100
O =
vi 100
v 000
o
il
v 000
Lt - ~
Since
v'' = av' = 0[1 0 0]
o] 0
T 1
v, = le = 0[1 0 0] ,

the curve has a point of inflection at

u =0 and u = 1 Hence its use ensures
curvature continuity across boundaries
between patches, provided, of course, the
boundary curves have similar curvature con-
tinuity at patch corners.

The curve is symmetric.
can put

Furthermore, we

Fo[u) = 1 - Fl(u)

and cbtain directly the F function,
another c¢ubic rational func¢tion, with sim-
ilar proeoperties to F1

Example

We shall work out the equation for the
Fy(u) blending function with the customary
stipulations that

oL L, ¥ (0) = F (0) = F, (1} = 0,

and with the two additional stipulations
that

FY(O) = Fi(1) = 0

This blending function will give both
slope and curvature continuity acress the
common boundary hetween two contiguous
patches. The end conditions are, for

v o= [F_(u) 1]

<

— - —]
véw 01
vl 11
v 00
O =
v; (M
v” 00
Q
_Vy_ LOO#
The matrix
[P o RrR] - v; O 0 0 0 -5 0 4
0 v¥ D0 6 0 4 4
o 0 0 0 0 -2 0 1
6 0 0 0 -2 0 -1 -1

obtained by direct substitution in the
given form. Its inverse is

Now set v _ = [1/2 1)} for symmetry. Then
since u ="1/2 |
{wo W, wé wi} = [0 O SVC]S
= [0 0 4 8] 0 -1 0 -4
1 ¢ -4 a
-2 2 6 6
2 0 -6 0
=[5 8 -24 24]
Now if w_ =1 , instead of 8, the cquation

becomes

(wy v, w wi] = [3 1 -3 3]



We have

[wo ¥
A = 2 -2 1 = |1 0
3 3 -2 -1 0 3
4] 0] 1 ¢ -3
1 0 0 0 H
Finally
wv = [wx w)] = [u3 u2 u 1)1 0
0 3
0o -3
0 1
[wx w] = [u3 3u2-3u+1]
Hence
R R s
3u"-3u+l

function is

3
u

3u2-3u+1

as required. The other F0

Fole) =1 - F(w =1 -

—u3+3u2—3u+1
3u2—3u+1

This is seen to be a rational cubic func-
tion also.
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