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ABSTRACT smaller and more tractable subproblems, each associ-

Coordination plays a key role in solving decomposed@t€d with a, possibly different, discipline. Generally
optimal system design problems. Several coordinatiorsP€2king, a discipline does not need to be a “true” dis-
strategies have been proposed in the multidisciplinanySiPlin€, but can be any subsystem or component of the
optimization (MDO) literature. They are usually pre- décomposed system. The terms discipline and MDO
sented as a sequence of statements: the parallel n&€ used here in this broader context. An additional
ture of the multidisciplinary subproblems is often ej- @dvantage of partitioning may be the ability of solv-
ther not addressed or only briefly mentioned. How- iNg the subproblems concurrently.  The difficulty in
ever, a more formal description of the concurrencySuch distributed optimal design problems lies in the
in the coordination is essential, in particular for large COUPling between the individual disciplines (compo-
and non-hierarchic coordination architectures. ThisN€Nts). System constraints may depend on design vari-
paper proposes to use concepts from communicatin@‘ples present in more than one discipline, and disci-
sequential processes (CSP) developed in concurreno@}j!'”?3 constraints may depend on responses from other
theory. CSP allows the description of the MDO co- |SC|p_I|nes. The solution of the subproblems has to b_e
ordination as a number of parallel processes that Opg:oor(_jlnated Fo ensure convergence to a s_olutlon that is
erate independently and communicate with each othefonsistent with respect to the system design problem.
synchronously over pre-defined channels. For this pur- Finding the best coordination strategy for a given
pose, we introduce elements of the langugga CSP-  decomposed system is an open research topic. Coor-
based language that contains data types such as real§ination strategies have been proposed based on some
arrays, lists and tuples. The accompanying softwaresimplified structure in the coupling of the subsystems.
tool set that enables the execution ofgaspecifica-  Two types of coordination methods can be identified:
tion has been extended with a Python interface so thamethods that originate from rigorous mathematical
function calls to external software can be carried out.formulations, and methods that originate from MDO
Through this interfacey has been coupled with Mat- approaches in the engineering sciences which are often
lab to run coordination specifications of distributed op- more heuristic. Mathematical decomposition methods
timal system design problems on single or on multiple generally start from one large set of analytical con-
parallel computers. An optimal design example is usedstraint equations, and exploit the structure in this set
to illustrate this. It can be concluded that the use of aof equations to obtain a system partitioning that can
CSP-based language suchyg®r coordinating the so-  be well and efficiently coordinated. Engineering-based

lution of MDO problems is quite promising. MDO methods typically start from discipline analysis
models that cannot be represented by analytical equa-
1 INTRODUCTION tions in the system optimization problem. The anal-

During the last two decades several multidisciplinaryYSIS Models are assumed to be "black-boxes”. This
optimization (MDO) approaches have been developed“eans that the partltlc_ml_ng structure in engineering-
to deal with design optimization problems that involve °2S€d MDO methods is imposed by aspect-driven or
more than one engineering discipline. Typical applica- €°MPonent-driven decomposition.

tions are large-scale and complex engineering systems The coordination strategy has to be defined such that
such as aerospace and automotive vehicles. Decomit works best for the given system partition. In this re-
position methods have been developed for partition-gard, having a compact and unambiguous language to
ing large optimal design problems into collections of specify and formulate the distributed optimal design
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problem and a straightforward way to solve it, e.g., on 2 MDO COORDINATION
a cluster of parallel computers, would be quite helpful. 2.1 Optimization problem formulation

A suitable programming language for distributed opti- 1,¢ general MDO problem can be stated as follows:
mization problems is necessary for this purpose. Therjng the discipline design variables= [xq, ... ,Xn]
mathematical programming languages that are availy,cpy that system objectivé is minimized subject
able (e.g. AMPL [1]), are typically geared towards the system and disciplinary design constraims=
purpose of formulating_numerical optimization prob- [do, 01, ... ,gm], interdisciplinary design variable cou-
lems. In computer science, several languages havgjing constraintsk, interdisciplinary response vari-
evolved to describe the coordination between con-gpe coupling constraints and analysis equatiors=
current (computational) processes. These coordina au,...,am), wheremis the number of disciplines.

tion languages can be classified into data-driven and A et of design variables is identified for each dis-
control-driven languages [2]. A data-driven language cipjine i. Some of the discipline design variables may
coordinates data through a shared dataspace, while go shared in several disciplines, which is represented
control-driven or process-oriented language treats proy,y interdisciplinary design variable coupling equations
cesses as “black-boxes” that are coordinated througly’ Discipline constraints; only depend on discipline
exchange of state values or through bro_adcast of CONgesign variables; and discipline responses System
trol messages. In MDO, a process-oriented coordi-constraintg, depend on the design variables and anal-
nation language is needed to deal with the characterygis responses of the disciplines. The same holds for
istic “black-box” behavior of most engineering-based system objective .

MDO approaches. The interdisciplinary response variables coupling is

. . . represented by equations These equations relate
Communicating Sequential Processes (CSP) is oupled inputc; of disciplinei to response output;

commonly used theoretical foundation of process- discipline j, j 1. The discipline responses=

?”elntfd ctciordtmatl?n Iangduallgest[h& 4]. CsP '? Satr'[ ,-..,Im] are computed from analysis equatioas
C'gu a@é 3.;?0 I[\rlweesq; r'r\1/|c|>3 Ce) mgro 'zezo?ﬁ:trrsntabllje We assume in this paper that the analysis equations are
q lthI : Ipll : N » P 'IVIbI 0 d IUI th th not explicit; they are treated as “black-boxes” or ex-

ala language elements are avarable 1o deal with the, routines, implying that; of disciplinei is com-
simulation-based numerical optimization setting. This ; : .

. o utilize CSP s f dinati puted as function o%; andc;.
T miot e oo sosi 22524 o e aboe defions, he DO praie
. ' n be formul mathematicall :
adopt the CSP-based languagp, 6], which includes can be formulated mathematically as

data types required for numerical optimization, such as minf (X1, ..., Xm,F1,...,m)

reals and arrays. Thelanguage was developed origi- X

nally to model and simulate discrete-event and hybrid s.t. go(X1,--- ,Xm,f1,.-.,fm) <0
manufacturing systems (which combine discrete-event gi(xi,ri) <0 i=1,...,

and continuous-time behavior) [7]. It is designed pri- K(X1,... ,Xm) = O 1)
marily for modeling purposes: it is easy to understand,

and has only few language constructs. The discrete- I(C1,....CmM,... ,Fm) =0

event part ofy is used in this work. The software ri=ai(x,¢) i=1,....m

has been extended with a Python interface [8, 9, 10] Xi € Xi i=1,...,m,

that allows individual processes to carry out function
calls to external software packages. This functionalitywhereX; denote the discipline set constraints [12].
enables to usg for MDO problems, and is used here
to couplex with Matlab [11]. 2.2 Classification of MDO architectures
In literature various coordination strategies for

The paper is organized as follows. An overview of engineering-based MDO problems can be found. Clas-
MDO coordination architectures is given and placedsifications of these strategies are presented in the re-
in a CSP-perspective. Several bagidanguage ele- view papers of Crameet al. [13], Balling and
ments are introduced to specify the parallel processegobieszczanski-Sobieski [14], and Alexandrov and
and their interactions in the context of distributed op- | ewis [15]. The key element of these classifications
timal system design. A simple analytical design op- is the way feasibility of the different sets of equations
timization example is presented for illustration pur- in problem (1) is maintained.
poses. Based on the same example, we also demon- Crameret al. [13] distinguish between multidisci-
strate how surrogate modeling may be included forpjinary feasible and individual discipline feasible de-
simulation-based MDO problems. Finally, the main composition. Multidisciplinary feasible decomposi-
findings are reviewed and discussed. tion requires that the interdisciplinary response vari-
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Figure 1. Multidisciplinary feasible decomposition Figure 3: Multi-level hierarchical decomposition

straints will always be satisfied (closed design con-
straintsgi(i = 1,...,m) [15]). A popular hierarchical
architecture from this category is shown in Figure 3,
where variablext andr! represent targets for design
variables and responses provided by the system opti-
mizer, respectively, whiled andr{ represent the val-
ues that are returned by the discipline optimizers.

An appropriate coordination strategy has to be spec-
ified for a defined decomposition architecture. This
Figure 2: Individual discipline feasible decomposition strategy has to specifyowthe coordination of the dif-

ferent subsystems in the decomposition will be carried
able coupling equationkare always satisfied at each out. Coordination algorithms are usually presented
iteration of the optimization. This means that an eval-in the MDO literature as some step-wise procedure,
uation of a system designto obtain responsesau-  sometimes visualized by a flow diagram. However,
tomatically implies that the coupled input and output there is a discrepancy between the step-wise (sequen-
of the disciplinary black-box analyses, i = 1,... ,m, tial) description and the concurrency that is inherently
match. The response variable coupling equations ar@resent in the coordination of the decomposed sys-
called to appeanested[14] or closed[15] with re- tem. Concurrency that is not precisely specified may
spect to the system optimization problem. The black-cause serious confusion about how it should be ac-
box numerical analyses again appear nested with retually implemented, especially when the coordination
spect to the response variable linking. This is visual-architecture grows in size (more levels, disciplines,
ized in Figure 1 . In the individual discipline feasible components) or becomes more complex, e.g., non-
approach, the response variable coupling equations dbierarchical. Serious flaws such as deadlock may arise.
not appear nested and are included in the system opti-
mization problem instead. As a consequence, the sys2.3 A CSP view on coordination in MDO
tem will be interdisciplinary feasible (i.e. satisfy the seyeral theoretical foundations are available to de-
coupling constraints) only after convergence has beerscripe systems that exhibit concurrent behavior. A
achieved. The individual discipline feasible approaChshort Overview iS given in the introduction Of [16]
is depicted in Figure 2 . Communicating Sequential Processes (CSP) concepts

In addition, Balling and Sobieszczanski-Sobieski[17, 3, 4] are highly suited to specify coordination
[14] distinguish between single-level and multi-level in MDO; they describe the coordination as a number
decomposition architectures. Single-level refers to anof parallel processes that operate independently and
architecture where only the system optimization prob-communicate synchronously over predefined channels.
lem determines the design variable values. In theThe CSP view matches well with the engineering-
multi-level case disciplinary optimizers are introduced based MDO methods to partition optimal system de-
to determine the independent discipline design vari-sign problems into multiple smaller independent sub-
ables, and a system optimizer to determine the sharegroblems. Each subproblem can be seen as a “black-
design variables (coupling equatiohsare used for box” process, while the data exchange between the
this partitioning of the design variables). From the subproblems to arrive at a consistent coupling can be
system optimizer point of view the disciplinary con- seen as communications between the processes.
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Figures 1, 2, and 3 can be explained in terms of CSPFor readability of the specification, parallel behavior
Each circle represents a process that is responsible fas restricted to occur between processes and between
the closure of a specific set of constraints. Such a proprocesses and systems (following [19]). Systems may
cess may perform its operations in parallel to the othercontain several coupled processes that operate in paral-
processes unless it needs some input from another pradel. Individual processes are specified in an imperative
cess before it can proceed. Such a communication reway using a sequence of statements. Functions can be
lation is modeled as a channel between the two pro-defined to obtain compact and clear process specifi-
cesses, visualized by an arrow showing the direction ofcations. Interactions between processes (systems) are
the communication. For example, the individual fea- modeled as synchronous communication over chan-
sible decomposition is represented by four processesels [3]. Synchronous means that communication be-
in Figure 2: three analysis modedg, ap, az, and the  tween two processes takes place only when both are
system optimization process involving g, k, andl. willing to communicate and then the communication
The communications between these processes are thikes place instantly (no storage in the channel). The
the system optimization proce$gkl requires analysis concept of time and probability functions, which play a
processesy, ap, andag to run the simulation models key role in modeling manufacturing systems, are con-
for design vector$x;,c;) and return the corresponding tained inx. At present, these do not play a role in the
response values. coordinationof MDO formulations, and are therefore

We believe that coordination in MDO would benefit left out of further consideration.
from the use of a specification language based on el- The main definitions for communicating sequential
ements of concurrent programming. Such a coordinafrocesses usirgcan be summarized as follows:
tion language has to be able to define precisely both the
contents of the separate MDO processes (typically re-
lated to numerical analysis or optimization), as well as
the communication behavior of the parallel processes
to solve the entire system problem. Preferably, the lan-
guage should allow formal analysis to prove that the
concurrency in the coordination is correctly specified e A channelrepresents a connection between two
and does not show failures such as deadlock. A CSP-  processes enabling interaction.
based language fits the engineering-based MDO meth-

e A processrepresents a sequentially behaving
componentin a larger concurrent system.

e A systemis a collection of concurrent processes
that cooperate by synchronous interaction.

ods. This is demonstrated using théanguage devel- e Interaction (communication) between two pro-
oped by the Systems Engineering group at Eindhoven ~ cesses means data exchange (through a point-to-
University of Technology. point channel).

3 COORDINATION SPECIFICATION USING X A compiler has bgen built to translagespecifications
into C++ code.y is a so-called strong type language,
Thex specification language has been developed origimplying that the type of a variable is known at com-
ina”y for mOdeling manufacturing SyStemS that exhibit p||e time of the C++ code. Comp”ation of the gener-
complex concurrent behavior. Itis a language designechted code yields an executable program that can be run
primarily for modeling pure discrete-event concurrent gn g computer. In the MDO context, this means that
systems or systems that combine discrete-event angne can run the coordination, provided thats able
continuous time behavior [7] We will show that the to carry out the necessary numerical ana|ysis and op-
discrete-event part of is well suited to formalize and  timjzation calculations. This is realized by means of a

enhance coordination specification in distributed op-python function interface as explained in Section 3.6.
timal system design. A brief informal description of

thex syntax (denotation of language elements) and se3 2 pata types

mantics (meaning of language elements) is presentegyn 5 ¢qordination formulations usually generate con-
in this section. A complete formal definition of the siderable amounts of (numerical) data that have to be
language can be found in [16]. passed around among the different subsystems. There-
) fore, a coordination language for MDO has to provide
3.1 Thex language and compiler language constructs to model this data flow compactly.
Thex language is highly expressive with only a small The x language satisfies this data modeling require-
number of orthogonal language elements. It is easyment; it has several built-in data types, both basic and
to understand and combines a well-defined concept ofjeneric. The basic data types are: bool (boolean), nat
concurrency with advanced data modeling constructs(natural), int (integer), real, string, and void. The void
The discrete-event part of the language is based otype is the empty data type used in the declaration of
CSP [17], and uses Dijkstra’s guarded commands [18]synchronization channels and ports. The generic data
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types are: array, tuple, list, and set. These four generic

data types are briefly explained below, whérede- Table 1: Syntax ok process statements.

notes a data type that is either basic or generic. Detail%p = skip (skip)
can be found in [5, 16]. Ix=e (assignment
T" is an array of fixed lengtm containing data ele- | E (eveny
ments of typel . An example of an array of type |S: S (sequential compositign
reaP is (2.1,4.8,—4.9). Arrays can be built from |[GC] (guarded command
any basic or generic data type provided that the | *[ GC] (repetitive guarded commapd
elements are of identical type. This means that | [SW] (selective waiting
an mx n matrix of reals can be represented by | «x[ SW] (repetitive selective waiting
(real)™. The index operatori (0<i<n-1) E:=ple (send
allows to access the elements in the array, e.g. | p?x (receivg
(2.1,4.8,—4.9).1 returns 48. | p!  (synchronization send
? nchronization recei
Tox Ty xTox ... x Ty denotes a tuple which is a I EN EZ?/reitioonlesastgync?t?retz)z(iazati()n
more general form of an array in the sense that
the elements of a tuple need not be of the sameGC::=e, — S SWi=e, E— S
type. A tuple is comparable to a record in Pascal. |IRiey— S |IRiey; E— S
For example, we may have a two-tuple contain- | GC|GC | SW]sw
ing arrays, like bodl x reaf. Similar to the array,
elements of a tuple may be either basic or genericR::=i: nat« |..u (range including, excludingu)
data types and can be accessed by the index. |IRR (range lis}.

T* is a list containing an ordered sequence of ele-

ments which must be of the same type An |ist of (formal) parameters of the form: type where
example of a list of type natis [1,2,3]. The typecan be a standard data tyfpea send porty: ! T)
length of the list is variable, that is, elements candata type, a receive porv{ ?T) data type, or a syn-
be added to or removed from the list. The empty chronization port {: ~ void) data type. The body of
list is []. In addition to the concatenation (addi- the process is specified between the bracketand
tion) and subtraction (removal) operators, a num-J. Local programming variabley are declared first,
ber of functions are available, e.g., for accessingfollowed by the (sequence of) stateme§sthat are
the value of the first element of a list or querying executed by the process.

the length of a list. Table 1 presents in BNF format [20] the syntax of

T+ denotes a set. The difference between a set and & S“F’S?t of proces_s stgter_nents that is relevant for
list is that the ordering of the elements is not rel- SPECifying the coordination in MDO. The statements
evant in a set. Similar to the list. all elements of a &€ explained informally below. Further details can be

set need to be of the same type (basic or generic)found in [5, 16].

Each element can occur only once: the §&t7}
equals the sef7,6}. An empty set is{}. Op-
erators are available to add elements, to remove
elements from the set, or to test whether a given

skip means do nothing. It is used in selection state-
ments to express that nothing needs to be done
when a certain guard evaluates to true.

element is present in the set. x:=e denotes the assignment statement. The value
Numerical analysis and optimization output of disci- ~ that follows from the evaluation of expressien
plines will usually be generated in the form of arrays is assigned to variabbe This requires the types

or tuples of arrays. Lists and sets are suitable to tem-  Of xandeto be the same.

porarily store data that are needed in later iterations. S, Sy, denotes that statemefS, is executed af-

ter the execution of stateme8, has been com-
pleted, thatis, process statements are executed se-
quentially. In the sequel, a statement denoted by
Sp may also be the concatenation of multiple pro-
cess statements.

3.3 Processes

The basic building block of & model is a process.
The specification of a process has the following gen-
eral format:

N(Vp) = [VM . -
proc N(Vp) = [M [ ] E represents an event statement. This includes
The process is identified by its nanNeand parame- the send statemenp(e), the receive statement
tersVp, the latter represented by a comma-separated  (p?x), the synchronization send statemept)(
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the synchronization receive statemept?§, and of the process statements of the corresponding al-
the directionless synchronization statemeptty. ternative. If none of the guards evaluates to true
The send statement! e tries to send the evalu- an error occurs.

ation outcome of expressiomover the channel

connected to porp. This send statement suc- *[ SW] represents repetitive selective waiting and re-

ceeds if the other process connected to the same  peats the selective waiting statement until all

channel is willing to receive. Similarly, the re- guards evaluate to false. After the end of the rep-
ceive statemenp?x waits until data through port etition, the statement following the repetitive se-
p is received and assigns this data to variable lective waiting statement is executed.

The ports, variables, and expressions must have ) )
compatible types. Synchronizationis a communi- A range expressio can be used in the guarded
cation statement without transferring data, which command and selective waiting statement to enable

may or may not have direction. It is commonly cpmpact notatiqn. The range expre.ssion_all'ows to Qe—
used to exchange an acknowledgment. A Syn_flne iterator variables that are varied within certain

chronization statement succeeds when the pro!oWer and upper bounds.

cess connected to the same channel is also willing 1he key statements to specify the communigation
to synchronize. of a process with other concurrent processes in the

coordination are the send, receive, and synchronize
[ GC] stands for guarded command statement or sestatements, as well as the (repetitive) selective waiting
lection statement. This statement offers a choicestatement. The latter is the most powerful statement of
between several guarded alternatives. Each aly for the specification of the communication between
ternative is specified using the syntax— Sp,  concurrent processes. The communication of a pro-
whereegy, is the boolean expression denoting the cess with other processes can be specified without the
guard. The different alternatives are separatedneed to predefine some sequence of communication.
by the symbol]. Upon execution of the selec- Such a selective waiting construct is essential for the
tion statement the guards of all alternatives arespecification of more complex, e.g., non-hierarchical,
evaluated. If one of the guards evaluates to truecoordination schemes.
the corresponding process statem&ptis exe-
cuted. If more than one guard happens to be true3.4 Systems

then one of the true alternatives is chosen Non-p ,cesses can be grouped together in a system by
deterministically, i.e., nothing can be said about jeang of parallel composition. The processes in the

which choice will be made. If no guard evaluates gysiem are coupled through channels and executed
to true an error occurs. concurrently. Such a system can again act as a process

«[ GC] is the repetitive guarded command or repet- and can be combined with other processes to form a
itive selection statement that allows to carry out "eW System. / system has the following form:
the selection stateme@C repeatedly. The rep-
etition is continued until all guards evaluate to systN(Vs) = [Ve | S]-

false. When this happens, the repetition ends _ - .
and the statement following the repetitive guardedg‘.sy.ISter;n |tsh|dent|f|ed b)é 'tfs. p? V. a}nd parametens,
command is executed. imilar to the process definitiols is a comma sepa-

rated list of (formal) parameters of the form type

[ SW] denotes selective waiting. The selective wait- which is either a standard basic or generic data fiype
ing statement is an extended version of the seleca send port\{: ! T) data type, a receive porv{ ?T)
tion statement where the guard of an alternativedata type, or a synchronization post:(~ void) data
is replaced by the pair of a guard (boolean ex-type. The system body resides between bracKets
pressionjand an event statemeng,; E — S,.  and]|, and starts with a declaration list of local channel
When the selective waiting statement is executedyariablesv,, followed by system statemeSg. A chan-
all guards are evaluated once. For the guards thanel variablec of type T is declared using the syntax
have evaluated to true, the construct waits untilc: —T. Only values of typ€el can be communicated
at least one of the event statements can be carthrough this channel.
ried out. If the event statement of just one alter- The processes and systems are instantiated in the
native is possible, this statement is executed fol-system statements; with the appropriate chan-
lowed by the corresponding process statementsnels and parameters. Instantiations are written as
If event statements of multiple alternatives hap- N(ei, €, ..., e;), whereN is the name of an exist-
pen to be possible, one event statement is choseing process or system amgl (1 < i < n) is an expres-
non-deterministically followed by the execution sion resulting in a value of the appropriate data type.
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Processes and systems are instantiated in parallel uswitten in Python [8] to be treated like functions writ-
ing the parallel composition operat8t|| Ss. The local  ten in nativex. Python can be linked readily to other
channel variables are used to connect different processoftware. The Python interface is supported by xhe
instantiations to each other. A single channel connectzompiler that generates the executable to run the coor-
either one send port to one receive port or two direc-dination.
tionless synchronization ports to each other. The data With the concurrency formally specified, it would be
types of the ports and the channel must match. highly advantageous if the coordination could be im-
A closed system has to be instantiated at the topplemented on parallel computers. The difficulty is that
level. This closed system has ho communication ports uses interleaving semantics for its execution, which
parameters. Only some standard data typed parameterseans thabne statement irone process at a time is
may still remain in the parameter list. The environmentbeing executed (except for communication statements
between two processes that are always dealt with to-
xper =|[N(e, &, ..., &) ] gether). The scheduler of determines which state-
ment in which process will be executed next. This im-
instantiates the top level systeiwith parameter val-  pjies that function calls to external numerical routines

uese, o én. will be carried out one at a time even if they occur in
] parallel processes. To allow parallel execution, each
3.5 Functions external function call has to be split into a four step

Functions can be used to define calculations that canprocedure: start, notification of this start, clearance to
not be expressed in a single line or that appear at sevproceed , and retrieval of results. Processes get clear-
eral different places in the specification. The calcula-ance to proceed through a synchronization with a syn-
tion is carried out each time the function is called by chronizer process when they have all started their jobs.
name in a process statement.xAunction is defined  This is illustrated in Section 4.3. We are currently in-
as vestigating whether this approach can be replaced by
a more elegant one. The generated series of jobs are
funcN(Vi) — T = [V | S |, queued and distributed over the available parallel com-

. . ) ) ) puter resources.
and identified by its nam&l and a list of formal in-

put parameter¥s of type (v: T). The return type of
the function isT;. Both T andT, are basic or generic
data types as defined in Section 3.2. The body of th
function is defined after the equality sign. Local pro-
gramming variablesx: T) may be introduced inv,
followed by the sequence of statemeSBtsthat defines
the function. Min f = f1+f2+ fa+ fa
The statements that may be used in a function are the f = 0.4x‘13-67x;0-67
guarded command statement, the repetitive guarded £ — 0.4x0675-067
command statement, sequential composition, assign- 2 =02 "%

4 GEOMETRIC PROGRAMMING PROBLEM
e4.1 Optimization problem formulation
Consider test problem 104 of [21]:

Findx = x1,...,Xs

ment, and the skip statement as defined earlier in Sec- f3=10-x

tion 3.3. One new statement is the return statement fa=x

that ends the execution of the function and returns the g g, — 0.1x; + 0.0588x7 — 1.0 < 0 -
value of expressiorto the process statement or func- -

tion statement that called the function. Multiple return g2 = 0.1y +0.1x+0.05886x ~ 1.0 < 0
statements are allowed in one function. Theeman- 03 = 4xaxg L+ 230 g+ 0.0588G 3%

tics assumes that functions behave in a strictly math- ~10<0

ematical sense. Communication statements are there-

_ —1 -0.71,—-1 —1.3.
fore not allowed in functions. Qa4 = AXaxXg™ + 2%, X~ +0.0588, g

-1.0<0
3.6 Application to MDO 0is4a=01-%<0 i=1,...,8
An MDO coordination specified i is represented by g2 =X —100<0 i=1,...,8
processes that communicate through channels. The nu-
merical computations carried out by the individual pro- Wagner [22] partitioned this single optimization prob-
cesses are modeled as functions. Generally, these cdem into two subproblems SRand SB with one link-
culations require routines external o which means ing variabley = x; using a hyper-graph based parti-
that ax function has to be able to call external soft- tioning technique. He used Wismer and Chattergy’s
ware. This has been realized by allowing functionsrelaxation strategy for the coordination of the two sub-
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problems. The first subproblem of Wagner’s partition- (d) A\®:=0.0

ing is . ‘ ®
2. Solve SRand SR to obtainx*® andjs,
ProblemSR
Receivey 3. Update master problem:
Find  Xa = [X2,X4,Xs,Xg] (@) ki=k+1
Min  fa=fo+ 14 (b) x4 := x*(k-1)
fo = 0.4x5%7x5 ¢ (c) y 1= x; (kD)
fa=x (d) )\(k) — gkfl) [&}
s.t. g2 = 0.1y+ 0.1xx + 0.0588exg — 1.0< 0 Y Ix=xe k=)
s = dxaxg L+ 2330 x5 1 4 0.0588¢,13xg 4. Check convergence: fix® —x&=1)|| < &, stop;
-1.0<0 otherwise goto 2.
Oi+ta=01-x<0 1=246,8 The coordination strategy feeds the subproblem opti-
Oi+12 =% —100<0 i=2,4,6,8 mizations with updated values giandA at each itera-
Return x3, t tion. Since[iyz] ) is a constant (equal to 0.1), it

3) does not need to be provided by subproblem.Skhe
iterative coordination process stops if the norm of the
difference between the current design variable vector
and the vector of the previous iteration is smaller than
some prescribed value

Solution of subproblem SPyields, for a given (fixed)
linking valuey, the optimum design variable valug$
and the Lagrange multiplier values of the (active) con-
straints atx;. The coordination scheme requires the
subproblem optimum values;, and Lagrange multi-
plier valuep, of constraintg, to be returned. The sec-
ond subproblem is

4.2 Coordination specification using

Three processes are defined: process@sand SR,
are related to the subproblem optimizations; pro¢gss
ProblemSR defines the coordination strategy. They are coupled as

Receivey, \ shown in Figure 4. Proce$3sends through channels

Find  Xp = [X1,X3,X5,X7]

p q
Min  fo=fit fat Axe—Y) b@
0.67.,0.67 v w

f1 =0.4x77""%;

fs=10-x Figure 4: Processes and channels in decomposed geo-
St 91=0.1x+0.0588sx7 —1.0< 0 metric programming problem.

08 = 4xaxg 1 + 2% x5 1 4 0.0588¢ 13x; _ _ .

-10<0 p andq updated values of design variables and link-
- ing variables to subproblem processeg, and SR,.

Gi+a=01-x<0 i=1357 OnceSP, and SR, receive new values, both optimiza-

Oi+12 =% —10.0<0 i=135,7 tion subproblems are solved, and the results are sent
Return X; back to proces€ through channels andw. The mas-

@) ter problem is then updated, and, if convergence has
not been achieved, new values are serf@pandSRh,.

Parameten is related herein to the Lagrange multi-  The) specification is explained next. Two variable
plier g of subproblem SE and its value is provided types are defined for shorthand notation in the follow-
by the coordination strategy. Subproblem optimuin  ing specification:
is returned to the coordination scheme.

Wagner uses the following coordination strategy to
solve this decomposed optimal design problem:

type vecx= reaf*
,  vecg=real?,

o where redl denotes a vector array of 4 reals. The types
1. Initialize: vecx and vecg suffice since each subproblem has 4 de-
(@) ki=0 sign variables and 10 constraints.
(b) x¥:=[0.1,0.1,0.2,0.2, 10.0, 10.0, 0.1, 0.1] ] Functions used in the_ process spgmﬂcgtyons are de-
ined next. Three functions can be identifiedorm,
(c) y<:= x(lk) optspa, anaptspb The functionnormtakes as input
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four vectors of type vecx and computes thenorm of ing parameter value, and return the optimal sub-
the difference between initial and optimum design: system design together with Lagrange multiplier

func norm(x3, X3, X, Xj: Vecx) real— values assigned ta; andp,, respectively;

[ i:nat s: real e Tryto send the optimal subsystem design and the
| i'=0;8:=00 Lagrange multiplier value of constraigp (state-
;x[i<4 _ _ _ _ ment is finished if sending action has succeeded).
— Si= S+ (Xgd — X20)2 + (X}.i — xQ.i)2
=i+l ProcessSR, has a similar structure:
_ ] proc SRy(a: ?vecxx realx real b: !'vecx) =
e [ x5, Xp: vecx y, A: real
I | [ true
The local variablei is a counter in the repetitive —a?(xp, Yy, \)
guarded command statemesjti <4 — ... ]. The ; Xp ‘= optsplgxp, y, A)
statements on the right hand side of the arrow are re- ; bIx

peated as long as< 4. If i becomes 4, the repetition ]
statement is finished, and as final statement, the square ] .
root of sis returned.

The functionsoptspaand optspbhave to carry out
an optimization run for subproblems $&nd SR, re-
spectively. Given initial desigr® and linking variable

o lem SR.
Val(l;e Ct optspett_sol\ﬁs the optl_mtljzlanor:j Eroblem 2P | Proces<C represents the coordination strategy and
and returns optimal design variabie and Lagrange mul- s the jterative subproblem optimizations. Hhe
tiplier values. The type of the result is vegwecg, i.e.,

specification of processS is
a tuple of a vector array of length 4 and a vector array P P

of length 10. Functiomptspbis defined similarly: procC(a: !vecxx real b: !vecxx realx real
,C: ?vecxxreal d: ?vecy =

[ X9, Xa, XB, Xb: VECX, Y, A, L' real
func optspl{x°®: vecx cl, c2: rea) — vecx , k: nat end: bool

. L | Xa:=(0.1,0.2,10.0,0.1)
Both functions call the Matlab optimization toolbox ., ._ (0.1,0.2,10.0, 0.1)

routinefmin(_:on[ll], WhiCh is an impleme_ntgtio_n of Y i=%a0; A :=0.0; k:=0; end:= false
the sequential quadratic programming optimization al-
gorithm, through the Python-Matlab interface [8].

Process$P, represents the optimization of subprob-
lem SR, and is specified as

The difference betwee8P, andSH, lies in the format
of data that is received and sent and in the function call
of optspbthat represents the optimization of subprob-

func optspdx°: vecx c: real) — vecx x vecg

; x[—end
—rKi=K+1; X3 '=Xa; Xp =Xp
;al(xq, y); b (xp, y, )
i [true; c?(Xa, H2) — d?Xp

proc SPy(a: ?vecxx real b: !vecxx real) = [[true; d?x; — C?(Xa, M2)
[ XS, x5 vecx a: vecg y: real ]
| «[ true ;Y =Xa.0; A =01
—a?(xq,y) ; end:= norm(xg, x2, Xa, Xp) < 1073
; (X3, Ha) = optspdXxg, Y) ]
b1 {x5, 1a.0) ].

] Proces€ sends data to processeR, andSR, through

J- portsa andb, and receives data through podsandd.
ProcessSP, receives and sends information in the form Once the local variables are declared, the first lines of
of a tuple vecxx real via portsa andb (formal port  the specification represent the coordination initializa-
names). It uses local variabled, x; of type vecx, tion. A number of statements is then repeated until
Ly of type vecg, and of type real. Note thati,.0 is  endbecomes true-{ denotes “not”). ProcesS sends
the first element of array, which corresponds with the required data t8P; and SR, to carry out their re-
e in Equation (3). The process specification3f, is  spective subproblem optimizations, and waits for their
defined to repeat the following statements indefinitely: response. A selective waiting statement is used to ex-
press thatC does not know beforehand which of the
two processes will reply firstSP; or SR,. If C first
receives data via pod, then it waits until the data of
e Carry out the subproblem optimization by calling the other subproblem is received via pdrtand pro-

optspausing x3 as initial design and as link-  ceeds with the next statement. If communication is

e Wait until data is received via pod and assign
the received values te andy;

9
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first established via pod, thenC waits for commu- included in thex specification of the coordination.
nication viac, and proceeds. Note that for this spe- The following strategy is implemented to coordinate
cific example the selective waiting statement can be rethe solution of the geometric programming problem by
placed by simply a sequence of two receive statementaneans of response surface approximations:
C?{Xa,l2); d?Xp. Even if the communication via

would be possible before, the total execution time 1. Initialize:
is the same. Selective waiting and repetitive selec- (@ ki=0,p:=05N:=6
tive waiting are very powerful language constructs to () x(:=[0.1,0.1,0.2,0.2,10.0,10.0,0.1,0.1]

model communications between several parallel pro- (K) - . .
cesses of more complicated coordination schemes. (© y(k) o 50.Yib o 0.0, Yo o 7.0
Finally, processeSP,, SR,, andC have to be cou- (d) A% :=0.5,A1p = 0.0, Aup = 0.68

pled at the system level, as shown in Figure 4. Pro- 2 pefine the search subregion of linking variables

cessSP, receives data of type vecxreal via chan- y and ), and plan for each variable a design of
nel p from C, and sends data of the same type back experiments (DOE) oN equally spaced points.
via channelv. ProcessSR, receives data of type Set the subregion lower boundsyio= (1— p)y®
vecxx realx real via channet) from C, and sends data and A = (1— p)A(K, and the upper bounds to
of type vecx back again via channel Accordingly, yu = (14 p)y® and Ay = (1+ p)A®, respec-
proces<C sends data of type vecxreal through chan- tively, while satisfyingyip < Vi < Yu < Yuw and
nel p to SP, and data of type vecx realx real through b <A < Au < A

channelgto SR, and receives data of type vegxeal

via channel from SR, and data of type vecx via chan- 3. SolveSR, for the DOE ofy, andSR, for the DOE

nelw from SR,. This is Specified as of A. The minimizer of SR, is independent Oy,
so anyy value may be selected f&R,.

syst ) =
[ p, vi —vecxxreal g: —vecxx realx real 4. Build quadratic response surface approximations
, W —vecx for Y2 as function ofy andx; as function ofA.

]||C(p, A Vi W) [| SRy(d, W) || SPa(p, V) 5. Update the master problem:

Declarationp: — vecxx real means thap is a channel (@) ki=k+1

of type vecxx real. They specification ends with (b) Computey® andA(® by solving the non-
linear set of equations:

xper = [[S() ],

denoting that a system execution can be carried out. y X1

The optimumx*® = [x1,... ,xg] = [6.46 2.23 0.667 A= 0L

0.596 5.93 5.53 1.01 0.401] was obtained aker 26 Ho = apg+ay+ay’

system iterations by implementing tiyecoordination —  bo+bih+boA2

as described. This solution corresponds with the one x 0+01A + 02,

reported in [22]. where g and b; have been determined in
step 4.

4.3 Inclusion of RSM metamodels (c) Solve SR, and SR, using the updateg¥)

Simulation-based MDO applications frequently re- andA (¥ to obtainx®).

quire a lot of expensive computations. MDO method-
ologies that employ response surface approximations
have been proposed to address this challenging issue.
It should be emphasized that here we do not refer taApplying this methodology on our example, the val-
using metamodels for evaluating expensive functionsues of the linking variabley and A converged after

but to representing response surfaces that approximat®eur iterations; the obtained results matched the ones
the solutions of simulation-based MDO problems, asreported in Section 4.2 and [22]. We describe fhe

in, e.g., [23, 24]. Thex language can also be used implementation of the approach in the next paragraphs.
to specify the coordination of MDO problems solved Before we do that, we would like to note that the search
by means of response surface (RSM) approximationssubregions need to be selected carefully. For exam-
This is demonstrated by implementing such a methodple, possible discontinuities in the solutions of the opti-
ology in the coordination of the geometric program- mization problems for some values of the linking vari-
ming example. We realize that the example in itself isables may result to meaningless response surface ap-
too simple to justify the use of response surfaces. It isproximations. This is why\ is bounded above by the
used toillustrate how RSM metamodel building can bevalue 0.68 in our example.

6. Check convergence: jix® —x*k=1|| < ¢, , then
stop; otherwise goto 2.
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The main change compared to the previgusple-
mentation of Section 4.2 is thd parallel processes
SP, andN parallel processeSR, can be instantiated

tive waiting statement with a range expression, which
can be explained as: for all porgi, if no job has
been sent, send the job and update the corresponding

to carry out the optimization calculations. The processboolean array. The boolean arrdygandbb adminis-

specifications ofSP; and SR, need not be changed.
Thex specification of process becomes

const N: nat=6

proc C(p: (!vecxx rea)N, q: (!vecxx realx rea)N
,V: (?vecxx rea)N, w: (?vecyN) =
[ X3, Xa, Xp, Xp: VeCX
» Yib, ¥s Yubs Aib, A, Aup, M, p: real
, ydoe, I.lzdoe, )\ doe. rea’\l} Xg0e7 Xgoe: vecy
, k: nat end: bool
| Xa:=(0.1,0.2,10.0,0.1)
' Xp = (0.1, 0.2, 10.0,0.1)
i Yip:=0.0; yyp :=7.0; Alb =0.0; Ay :=0.68
;¥y:=5.0;A:=0.5; p:=0.5; k:=0; end:=false
; *[ﬂend
—rki=k+1; X3 = Xa; X) = Xp
; Yo := dog(y, Yib, Yub, P)
; A% = dog(A, Aip, Aup, P)
; ba:= bval(true); bb:= bval(true)
;x[i: nat 0.N: bai; p.i!(x3, y%&.)
— ba.i :=false
Ji: nat« 0.N: bb.i; q.i!(x8, ydo.i, A% j)
— bhb.i :=false

; ba:= bval(true); bb:= bval(true)
; +[ i nat« 0.N: bai; v.i?(xd€.i, p9e i)
— bai :=false
[i: nat« 0.N: bh.i; wi?xe.]
— bh.i :=false
]
; <y7 )\> = updatodoe, u2doea )\doea Xgoe)
» P01(xg, ¥): a.0!(x5, ¥, A)
; V.O?(Xa, H2); WO ?Xp
; end:= norm(x3, x2, Xa, Xp) < 1073
]
I

At first, proces<C generates the two designs of exper-
iments for linking variabley andA using ax function
doe

func do€(q, qib, Qub, P: real) — real\ =

[ a, qu: real d: realV, i: nat

| a=(1-p)a; qu:=(1+p)q

L izomi“(% Qib); Qu i= Max(du, Gub)

D=

D x[i<N—di ::q|+(qu—q|)(N+l); i=i+1]
; 1d

I

In the next step, process sends the individual DOE

trate to which processes optimization jobs still have to
be sent. Initialization obaandbbto arrays full of true
values is done through the functidwval:

func bval(v: bool) — boolN =

[ b: bool, i: nat

| i=0;%[i<N-—bi=v;i=i+1]

; Tb

I
When all processeSP, andSR, have received their re-
spective jobs, the first repetitive selective waiting state-
ment is finished. A second repetitive selective waiting
statement follows to receive all optimization results.
The results are stored in the arrag§®, pde® andxgee,
When all results have been received, the response sur-
faces are generated and the nonlinear set of equations
is solved by an external Matlab functiarpdate The
new iterates foy andA are returned tx. OneSP, and
one SR, optimization run are carried out to obtain the
corresponding optimal system design updefg. Fi-
nally, a check is performed to determine whether con-
vergence has been achieved .

SystemS is changed accordingly; instead of one
send and one receive channel to a single pro&#s
now an array of channel$&ndlg is needed to couple
C with all N instantiations oSP,. The same holds for
the channels frorg to processeSR,. The new system
specification becomes

syst §() =

[p, v: (—vecxx rea)N, q: (—vecxx realx rea)N
, W: (—vecxN

| C(p, d, v, W)

[|i: nat< 0..N: SRy(p.i, V.i)

|i: nat« 0..N: SRy(q.i, w.i)

1.

As explained in Section 3.6, the external function
calls optspaand optspbhave to be split to be able to
actually run the optimization calculations in parallel
using the current version of the compiler. Each ex-
ternal function call is split into a startup function call,

a synchronization send and a synchronization receive
to a synchronizer process, and a call to a function that
will retrieve the results when the job is finished. The
synchronizer registers which processes have started
their external function calls. When all processes have
started their jobs, the synchronizer gives each process
clearance to call the retrieval function. The new coor-
dination architecture is visualized in Figure 5, where
processSy is the synchronizer process. Proce®s

and initial points to each of the optimization processesneeds to know how many proces$#3, and how many

SR, andSR,. This is specified using a repetitive selec-

11

processeSR, have received a request for an optimiza-
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and the number of process&f}, optimization jobs
have been sent to. The repetitive selective waiting
statement that follows implements the receive of the
start notifications of the external function calls by pro-
cessesSP, and SR,. The second repetitive selective
waiting sends the clearance to proceed back. Finally,
systemS has to be extended to inclu@yand the ad-
ditional channels declarations.

5 CONCLUSIONS

In our opinion a concurrent programming language
for distributed optimal system design can improve
) o ) the implementation and testing of MDO coordination
Figure 5: RSM-based coordination of geometric pro- gyrategies significantly. Such a language is especially
gramming problem including synchronizer process for heeded when the scale and complexity of coordination
parallel execution. architectures requires a more precise treatment of the
] concurrency in the coordination. A language with a
tion run. Procesg has to send these numbers3p clear foundation in concurrency theory would further-
The necessary modifications to thespecification  more provide a means to do a formal analysis of a spec-
are as follows. Processneeds an additional send port ified coordination strategy regarding the existence of
through which the numbers of optimization jobSH.  fajjures such as deadlock. A specification language for
andSR,, respectively) can be sent8y. ProcesseSR:  engineering-based MDO approaches has to be able to
and SR, need two additional ports: one synchroniza- gea| with the “black-box” nature of the disciplines and
tion send port and one synchronization receive Port.supsystems, as well as the large amounts of numerical
The split of the function call has to be implemented §at5 that may need to be passed around between them.

also. ProcesSk, becomes A language based on Communicating Sequential Pro-
proc SPy(a: ?vecxx real b: vecxx real cesses meets the first requirement. In addition, the lan-
,as: !void, sa: ?void) = guage has to include suitable language constructs for
[ XS, x5: vecx pa: vecg y: real h: nat data handling and data storage to meet the second re-
| *[ true quirement.
—a?(x3, y); h:= start optspdxy, y) We propose to use thg language, which meets

; asl; sa? both the “black-box” and the data handling require-

; (X3, Ha) = getoptspdgh); bl (X}, pa.0) ment. It is a highly expressive CSP-based language

] that contains advanced data modeling constructs. Us-
1. ing X, the MDO coordination is specified in a standard

ProcesSR, has to be changed similarly. The synchro- fashion as a number of parallel processes that oper-

nizer procesSyhas to be added: ate independently and communicate with each other
synchronously over pre-defined channels. The advan-
proc Sy(cs: ?natx nat tage ofx for application in MDO is that it has been
, as bs: (?void, sa sb: (!void)N) = designed for modeling purposes: it is compact (few
[ ca, cb: nat ba, bb: bool language constructs), easy to understand, and offers a
| ba:=bval(true); bb:= bval(true) clear concept to define parallelism. Furthermgrean
; %[ true perform function calls to external software by means
—cs?(ca, ch) of a Python interface. In the paper the syntax and se-
; x[ 12 nat< 0.N: ca> 0 andbai; asi? mantics of the main language elements that are needed
— bai =false;ca:=ca—1 for the MDO application are informally explained.

[i: nat< 0..N: cb> 0 andbb.i; bsi?

_ A simple analytical example has been used to
— bb.i :=false;cb:=cb—-1

demonstrate thg implementation of a coordination

] , . , . strategy for distributed optimal system design. In ad-

[i: nate0..N: —bai; sai! — bai = true yiion “this example has been extended to show that

Ji: nate0..N: —bbi; shi! — bbi =true .4, 4150 be used for implementing the coordination

] of simulation-based MDO using response surface ap-

] proximations. In both cases the example demonstrates

I how the concurrency in the coordination is specified.

ProcessSyfirst receives the number of processi?, In future work, we will demonstrate the capabilities of

*
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X for specifying coordination in larger and more com-
plicated MDO problems. At this point, we draw the
conclusion that the use of a concurrent programming
language such ag to specify and implement MDO
coordination strategies is quite promising. It may also
provide new opportunities to scale up the size of MDO
implementations.

Current work focuses on specifying coordination
strategies for analytical target cascading using xhe
language [25]. Convergence properties of analytical
target cascading have been proven for a number of pos-
sible coordination strategies [26]. However, conver-

[12]

[13]

[14]

gence rate of these strategies has not been studied yet;

X will provide a means to test and evaluate the perfor-
mance of the latter in different problems.
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