
AIAA-2002-5410

COORDINATION SPECIFICATION FOR DISTRIBUTED OPTIMAL
SYSTEM DESIGN USING THE χ LANGUAGE

L.F.P. Etman, A.T. Hofkamp, and J.E. Rooda
Eindhoven University of Technology, Eindhoven, The Netherlands

and
M. Kokkolaras and P.Y. Papalambros

University of Michigan, Ann Arbor, Michigan

ABSTRACT

Coordination plays a key role in solving decomposed
optimal system design problems. Several coordination
strategies have been proposed in the multidisciplinary
optimization (MDO) literature. They are usually pre-
sented as a sequence of statements: the parallel na-
ture of the multidisciplinary subproblems is often ei-
ther not addressed or only briefly mentioned. How-
ever, a more formal description of the concurrency
in the coordination is essential, in particular for large
and non-hierarchic coordination architectures. This
paper proposes to use concepts from communicating
sequential processes (CSP) developed in concurrency
theory. CSP allows the description of the MDO co-
ordination as a number of parallel processes that op-
erate independently and communicate with each other
synchronously over pre-defined channels. For this pur-
pose, we introduce elements of the languageχ, a CSP-
based language that contains data types such as reals,
arrays, lists and tuples. The accompanying software
tool set that enables the execution of aχ specifica-
tion has been extended with a Python interface so that
function calls to external software can be carried out.
Through this interface,χ has been coupled with Mat-
lab to run coordination specifications of distributed op-
timal system design problems on single or on multiple
parallel computers. An optimal design example is used
to illustrate this. It can be concluded that the use of a
CSP-based language such asχ for coordinating the so-
lution of MDO problems is quite promising.

1 INTRODUCTION

During the last two decades several multidisciplinary
optimization (MDO) approaches have been developed
to deal with design optimization problems that involve
more than one engineering discipline. Typical applica-
tions are large-scale and complex engineering systems
such as aerospace and automotive vehicles. Decom-
position methods have been developed for partition-
ing large optimal design problems into collections of

smaller and more tractable subproblems, each associ-
ated with a, possibly different, discipline. Generally
speaking, a discipline does not need to be a “true” dis-
cipline, but can be any subsystem or component of the
decomposed system. The terms discipline and MDO
are used here in this broader context. An additional
advantage of partitioning may be the ability of solv-
ing the subproblems concurrently. The difficulty in
such distributed optimal design problems lies in the
coupling between the individual disciplines (compo-
nents). System constraints may depend on design vari-
ables present in more than one discipline, and disci-
pline constraints may depend on responses from other
disciplines. The solution of the subproblems has to be
coordinated to ensure convergence to a solution that is
consistent with respect to the system design problem.

Finding the best coordination strategy for a given
decomposed system is an open research topic. Coor-
dination strategies have been proposed based on some
simplified structure in the coupling of the subsystems.
Two types of coordination methods can be identified:
methods that originate from rigorous mathematical
formulations, and methods that originate from MDO
approaches in the engineering sciences which are often
more heuristic. Mathematical decomposition methods
generally start from one large set of analytical con-
straint equations, and exploit the structure in this set
of equations to obtain a system partitioning that can
be well and efficiently coordinated. Engineering-based
MDO methods typically start from discipline analysis
models that cannot be represented by analytical equa-
tions in the system optimization problem. The anal-
ysis models are assumed to be “black-boxes”. This
means that the partitioning structure in engineering-
based MDO methods is imposed by aspect-driven or
component-driven decomposition.

The coordination strategy has to be defined such that
it works best for the given system partition. In this re-
gard, having a compact and unambiguous language to
specify and formulate the distributed optimal design

1
American Institute of Aeronautics and Astronautics

9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
4-6 September 2002, Atlanta, Georgia

AIAA 2002-5410

Copyright © 2002 by the author(s). Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

problem and a straightforward way to solve it, e.g., on
a cluster of parallel computers, would be quite helpful.
A suitable programming language for distributed opti-
mization problems is necessary for this purpose. The
mathematical programming languages that are avail-
able (e.g. AMPL [1]), are typically geared towards the
purpose of formulating numerical optimization prob-
lems. In computer science, several languages have
evolved to describe the coordination between con-
current (computational) processes. These coordina-
tion languages can be classified into data-driven and
control-driven languages [2]. A data-driven language
coordinates data through a shared dataspace, while a
control-driven or process-oriented language treats pro-
cesses as “black-boxes” that are coordinated through
exchange of state values or through broadcast of con-
trol messages. In MDO, a process-oriented coordi-
nation language is needed to deal with the character-
istic “black-box” behavior of most engineering-based
MDO approaches.

Communicating Sequential Processes (CSP) is a
commonly used theoretical foundation of process-
oriented coordination languages [3, 4]. CSP is par-
ticularly attractive for modeling the concurrent but
coupled disciplines in MDO, provided that suitable
data language elements are available to deal with the
simulation-based numerical optimization setting. This
paper aims to utilize CSP concepts for coordination
specification in distributed optimal system design. We
adopt the CSP-based languageχ [5, 6], which includes
data types required for numerical optimization, such as
reals and arrays. Theχ language was developed origi-
nally to model and simulate discrete-event and hybrid
manufacturing systems (which combine discrete-event
and continuous-time behavior) [7]. It is designed pri-
marily for modeling purposes: it is easy to understand,
and has only few language constructs. The discrete-
event part ofχ is used in this work. Theχ software
has been extended with a Python interface [8, 9, 10]
that allows individual processes to carry out function
calls to external software packages. This functionality
enables to useχ for MDO problems, and is used here
to coupleχ with Matlab [11].

The paper is organized as follows. An overview of
MDO coordination architectures is given and placed
in a CSP-perspective. Several basicχ language ele-
ments are introduced to specify the parallel processes
and their interactions in the context of distributed op-
timal system design. A simple analytical design op-
timization example is presented for illustration pur-
poses. Based on the same example, we also demon-
strate how surrogate modeling may be included for
simulation-based MDO problems. Finally, the main
findings are reviewed and discussed.

2 MDO COORDINATION

2.1 Optimization problem formulation
The general MDO problem can be stated as follows:
Find the discipline design variablesx = [x1; : : : ;xm]
such that system objectivef is minimized subject
to system and disciplinary design constraintsg =
[g0;g1; : : : ;gm], interdisciplinary design variable cou-
pling constraintsk, interdisciplinary response vari-
able coupling constraintsl, and analysis equationsa =
[a1; : : : ;am], wherem is the number of disciplines.

A set of design variablesxi is identified for each dis-
cipline i. Some of the discipline design variables may
be shared in several disciplines, which is represented
by interdisciplinary design variable coupling equations
k. Discipline constraintsgi only depend on discipline
design variablesxi and discipline responsesri. System
constraintsg0 depend on the design variables and anal-
ysis responses of the disciplines. The same holds for
system objectivef .

The interdisciplinary response variables coupling is
represented by equationsl. These equations relate
coupled inputci of discipline i to response outputr j

of discipline j, j 6= i. The discipline responsesr =
[r1; : : : ;rm] are computed from analysis equationsa.
We assume in this paper that the analysis equations are
not explicit; they are treated as “black-boxes” or ex-
ternal routines, implying thatri of disciplinei is com-
puted as function ofxi andci.

Based on the above definitions, the MDO problem
can be formulated mathematically as:

min
x

f (x1; : : : ;xm;r1; : : : ;rm)

s.t. g0(x1; : : : ;xm;r1; : : : ;rm)� 0

gi(xi;ri)� 0 i = 1; : : : ;m

k(x1; : : : ;xm) = 0

l(c1; : : : ;cm;r1; : : : ;rm) = 0

ri = ai(xi;ci) i = 1; : : : ;m

xi 2 Xi i = 1; : : : ;m;

(1)

whereXi denote the discipline set constraints [12].

2.2 Classification of MDO architectures
In literature various coordination strategies for
engineering-based MDO problems can be found. Clas-
sifications of these strategies are presented in the re-
view papers of Crameret al. [13], Balling and
Sobieszczanski-Sobieski [14], and Alexandrov and
Lewis [15]. The key element of these classifications
is the way feasibility of the different sets of equations
in problem (1) is maintained.

Crameret al. [13] distinguish between multidisci-
plinary feasible and individual discipline feasible de-
composition. Multidisciplinary feasible decomposi-
tion requires that the interdisciplinary response vari-

2
American Institute of Aeronautics and Astronautics

r3

r1
r2

a1 a2 a3

x2

x1

x3

r1
r2
r3

c2
3c

c1
x1

x2 x3

f g k

l

Figure 1: Multidisciplinary feasible decomposition

r3
x1

c1
r1

x2
c2

r2 x3

3c

a1 a2 a3

f g k l

Figure 2: Individual discipline feasible decomposition

able coupling equationsl are always satisfied at each
iteration of the optimization. This means that an eval-
uation of a system designx to obtain responsesr au-
tomatically implies that the coupled input and output
of the disciplinary black-box analysesai, i = 1; : : : ;m,
match. The response variable coupling equations are
called to appearnested[14] or closed [15] with re-
spect to the system optimization problem. The black-
box numerical analyses again appear nested with re-
spect to the response variable linking. This is visual-
ized in Figure 1 . In the individual discipline feasible
approach, the response variable coupling equations do
not appear nested and are included in the system opti-
mization problem instead. As a consequence, the sys-
tem will be interdisciplinary feasible (i.e. satisfy the
coupling constraints) only after convergence has been
achieved. The individual discipline feasible approach
is depicted in Figure 2 .

In addition, Balling and Sobieszczanski-Sobieski
[14] distinguish between single-level and multi-level
decomposition architectures. Single-level refers to an
architecture where only the system optimization prob-
lem determines the design variable values. In the
multi-level case disciplinary optimizers are introduced
to determine the independent discipline design vari-
ables, and a system optimizer to determine the shared
design variables (coupling equationsl are used for
this partitioning of the design variables). From the
system optimizer point of view the disciplinary con-

x1

g2 g3

a1 a2 a3

x1 x2 x3r1

x1

r1 x3

3c

r3
r3

x3

c1 c2 3c r3r2

c1

r1
t

t
t

t

g1

f g k l0
t

t

x2
c2

r2

2

r2
r

r

r

xr

r

r

Figure 3: Multi-level hierarchical decomposition

straints will always be satisfied (closed design con-
straintsgi(i = 1; : : : ;m) [15]). A popular hierarchical
architecture from this category is shown in Figure 3,
where variablesxt

i andrt
i represent targets for design

variables and responses provided by the system opti-
mizer, respectively, whilexr

i andrr
i represent the val-

ues that are returned by the discipline optimizers.
An appropriate coordination strategy has to be spec-

ified for a defined decomposition architecture. This
strategy has to specifyhowthe coordination of the dif-
ferent subsystems in the decomposition will be carried
out. Coordination algorithms are usually presented
in the MDO literature as some step-wise procedure,
sometimes visualized by a flow diagram. However,
there is a discrepancy between the step-wise (sequen-
tial) description and the concurrency that is inherently
present in the coordination of the decomposed sys-
tem. Concurrency that is not precisely specified may
cause serious confusion about how it should be ac-
tually implemented, especially when the coordination
architecture grows in size (more levels, disciplines,
components) or becomes more complex, e.g., non-
hierarchical. Serious flaws such as deadlock may arise.

2.3 A CSP view on coordination in MDO

Several theoretical foundations are available to de-
scribe systems that exhibit concurrent behavior. A
short overview is given in the introduction of [16].
Communicating Sequential Processes (CSP) concepts
[17, 3, 4] are highly suited to specify coordination
in MDO; they describe the coordination as a number
of parallel processes that operate independently and
communicate synchronously over predefined channels.
The CSP view matches well with the engineering-
based MDO methods to partition optimal system de-
sign problems into multiple smaller independent sub-
problems. Each subproblem can be seen as a “black-
box” process, while the data exchange between the
subproblems to arrive at a consistent coupling can be
seen as communications between the processes.

3
American Institute of Aeronautics and Astronautics

Figures 1, 2, and 3 can be explained in terms of CSP.
Each circle represents a process that is responsible for
the closure of a specific set of constraints. Such a pro-
cess may perform its operations in parallel to the other
processes unless it needs some input from another pro-
cess before it can proceed. Such a communication re-
lation is modeled as a channel between the two pro-
cesses, visualized by an arrow showing the direction of
the communication. For example, the individual fea-
sible decomposition is represented by four processes
in Figure 2: three analysis modelsa1, a2, a3, and the
system optimization process involvingf , g, k, and l.
The communications between these processes are that
the system optimization processf gkl requires analysis
processesa1, a2, anda3 to run the simulation models
for design vectors(xi;ci) and return the corresponding
response valuesri.

We believe that coordination in MDO would benefit
from the use of a specification language based on el-
ements of concurrent programming. Such a coordina-
tion language has to be able to define precisely both the
contents of the separate MDO processes (typically re-
lated to numerical analysis or optimization), as well as
the communication behavior of the parallel processes
to solve the entire system problem. Preferably, the lan-
guage should allow formal analysis to prove that the
concurrency in the coordination is correctly specified
and does not show failures such as deadlock. A CSP-
based language fits the engineering-based MDO meth-
ods. This is demonstrated using theχ language devel-
oped by the Systems Engineering group at Eindhoven
University of Technology.

3 COORDINATION SPECIFICATION USING χ
Theχ specification language has been developed orig-
inally for modeling manufacturing systems that exhibit
complex concurrent behavior. It is a language designed
primarily for modeling pure discrete-event concurrent
systems or systems that combine discrete-event and
continuous time behavior [7]. We will show that the
discrete-event part ofχ is well suited to formalize and
enhance coordination specification in distributed op-
timal system design. A brief informal description of
theχ syntax (denotation of language elements) and se-
mantics (meaning of language elements) is presented
in this section. A complete formal definition of the
language can be found in [16].

3.1 Theχ language and compiler

Theχ language is highly expressive with only a small
number of orthogonal language elements. It is easy
to understand and combines a well-defined concept of
concurrency with advanced data modeling constructs.
The discrete-event part of the language is based on
CSP [17], and uses Dijkstra’s guarded commands [18].

For readability of the specification, parallel behavior
is restricted to occur between processes and between
processes and systems (following [19]). Systems may
contain several coupled processes that operate in paral-
lel. Individual processes are specified in an imperative
way using a sequence of statements. Functions can be
defined to obtain compact and clear process specifi-
cations. Interactions between processes (systems) are
modeled as synchronous communication over chan-
nels [3]. Synchronous means that communication be-
tween two processes takes place only when both are
willing to communicate and then the communication
takes place instantly (no storage in the channel). The
concept of time and probability functions, which play a
key role in modeling manufacturing systems, are con-
tained inχ. At present, these do not play a role in the
coordinationof MDO formulations, and are therefore
left out of further consideration.

The main definitions for communicating sequential
processes usingχ can be summarized as follows:

� A process represents a sequentially behaving
component in a larger concurrent system.

� A systemis a collection of concurrent processes
that cooperate by synchronous interaction.

� A channelrepresents a connection between two
processes enabling interaction.

� Interaction (communication) between two pro-
cesses means data exchange (through a point-to-
point channel).

A compiler has been built to translateχ specifications
into C++ code.χ is a so-called strong type language,
implying that the type of a variable is known at com-
pile time of the C++ code. Compilation of the gener-
ated code yields an executable program that can be run
on a computer. In the MDO context, this means that
one can run the coordination, provided thatχ is able
to carry out the necessary numerical analysis and op-
timization calculations. This is realized by means of a
Python function interface as explained in Section 3.6.

3.2 Data types

MDO coordination formulations usually generate con-
siderable amounts of (numerical) data that have to be
passed around among the different subsystems. There-
fore, a coordination language for MDO has to provide
language constructs to model this data flow compactly.
The χ language satisfies this data modeling require-
ment; it has several built-in data types, both basic and
generic. The basic data types are: bool (boolean), nat
(natural), int (integer), real, string, and void. The void
type is the empty data type used in the declaration of
synchronization channels and ports. The generic data

4
American Institute of Aeronautics and Astronautics

types are: array, tuple, list, and set. These four generic
data types are briefly explained below, whereT de-
notes a data type that is either basic or generic. Details
can be found in [5, 16].

Tn is an array of fixed lengthn containing data ele-
ments of typeT. An example of an array of type
real3 is h2:1;4:8;�4:9i. Arrays can be built from
any basic or generic data type provided that the
elements are of identical type. This means that
an m� n matrix of reals can be represented by
(realn)m. The index operator:i (0� i � n� 1)
allows to access the elements in the array, e.g.
h2:1;4:8;�4:9i.1 returns 4:8.

T0�T1�T2� : : :�Tm denotes a tuple which is a
more general form of an array in the sense that
the elements of a tuple need not be of the same
type. A tuple is comparable to a record in Pascal.
For example, we may have a two-tuple contain-
ing arrays, like bool2� real3. Similar to the array,
elements of a tuple may be either basic or generic
data types and can be accessed by the index.

T� is a list containing an ordered sequence of ele-
ments which must be of the same typeT. An
example of a list of type nat� is [1;2;3]. The
length of the list is variable, that is, elements can
be added to or removed from the list. The empty
list is []. In addition to the concatenation (addi-
tion) and subtraction (removal) operators, a num-
ber of functions are available, e.g., for accessing
the value of the first element of a list or querying
the length of a list.

T+ denotes a set. The difference between a set and a
list is that the ordering of the elements is not rel-
evant in a set. Similar to the list, all elements of a
set need to be of the same type (basic or generic).
Each element can occur only once: the setf6;7g
equals the setf7;6g. An empty set isfg. Op-
erators are available to add elements, to remove
elements from the set, or to test whether a given
element is present in the set.

Numerical analysis and optimization output of disci-
plines will usually be generated in the form of arrays
or tuples of arrays. Lists and sets are suitable to tem-
porarily store data that are needed in later iterations.

3.3 Processes

The basic building block of aχ model is a process.
The specification of a process has the following gen-
eral format:

proc N(Vp) = j[Vl j Sp]j :
The process is identified by its nameN and parame-
tersVp, the latter represented by a comma-separated

Table 1: Syntax ofχ process statements.

Sp ::= skip (skip)
j x := e (assignment)
j E (event)
j Sp ; Sp (sequential composition)
j [GC] (guarded command)
j �[GC] (repetitive guarded command)
j [SW] (selective waiting)
j �[SW] (repetitive selective waiting)

E ::= p! e (send)
j p?x (receive)
j p! (synchronization send)
j p? (synchronization receive)
j p� (directionless synchronization);

GC ::= eb �! Sp

j R: eb �! Sp

j GC[]GC

SW::= eb ; E �! Sp

j R: eb ; E �! Sp

j SW[]SW

R ::= i : nat l ::u (range includingl ;excludingu)
j R;R (range list):

list of (formal) parameters of the formv: type, where
typecan be a standard data typeT, a send port (v: ! T)
data type, a receive port (v: ?T) data type, or a syn-
chronization port (v: � void) data type. The body of
the process is specified between the bracketsj[and
]j. Local programming variablesVl are declared first,
followed by the (sequence of) statementsSp that are
executed by the process.

Table 1 presents in BNF format [20] the syntax of
a subset ofχ process statements that is relevant for
specifying the coordination in MDO. The statements
are explained informally below. Further details can be
found in [5, 16].

skip means do nothing. It is used in selection state-
ments to express that nothing needs to be done
when a certain guard evaluates to true.

x := e denotes the assignment statement. The value
that follows from the evaluation of expressione
is assigned to variablex. This requires the types
of x ande to be the same.

Sp1 ; Sp2 denotes that statementSp2 is executed af-
ter the execution of statementSp1 has been com-
pleted, that is, process statements are executed se-
quentially. In the sequel, a statement denoted by
Sp may also be the concatenation of multiple pro-
cess statements.

E represents an event statement. This includes
the send statement (p! e), the receive statement
(p?x), the synchronization send statement (p!),

5
American Institute of Aeronautics and Astronautics

the synchronization receive statement (p?), and
the directionless synchronization statement (p�).
The send statementp! e tries to send the evalu-
ation outcome of expressione over the channel
connected to portp. This send statement suc-
ceeds if the other process connected to the same
channel is willing to receive. Similarly, the re-
ceive statementp?x waits until data through port
p is received and assigns this data to variablex.
The ports, variables, and expressions must have
compatible types. Synchronization is a communi-
cation statement without transferring data, which
may or may not have direction. It is commonly
used to exchange an acknowledgment. A syn-
chronization statement succeeds when the pro-
cess connected to the same channel is also willing
to synchronize.

[GC] stands for guarded command statement or se-
lection statement. This statement offers a choice
between several guarded alternatives. Each al-
ternative is specified using the syntaxeb �! Sp,
whereeb is the boolean expression denoting the
guard. The different alternatives are separated
by the symbol[]. Upon execution of the selec-
tion statement the guards of all alternatives are
evaluated. If one of the guards evaluates to true
the corresponding process statementSp is exe-
cuted. If more than one guard happens to be true
then one of the true alternatives is chosen non-
deterministically, i.e., nothing can be said about
which choice will be made. If no guard evaluates
to true an error occurs.

�[GC] is the repetitive guarded command or repet-
itive selection statement that allows to carry out
the selection statementGC repeatedly. The rep-
etition is continued until all guards evaluate to
false. When this happens, the repetition ends
and the statement following the repetitive guarded
command is executed.

[SW] denotes selective waiting. The selective wait-
ing statement is an extended version of the selec-
tion statement where the guard of an alternative
is replaced by the pair of a guard (boolean ex-
pression)and an event statement:eb ; E �! Sp.
When the selective waiting statement is executed,
all guards are evaluated once. For the guards that
have evaluated to true, the construct waits until
at least one of the event statements can be car-
ried out. If the event statement of just one alter-
native is possible, this statement is executed fol-
lowed by the corresponding process statements.
If event statements of multiple alternatives hap-
pen to be possible, one event statement is chosen
non-deterministically followed by the execution

of the process statements of the corresponding al-
ternative. If none of the guards evaluates to true
an error occurs.

�[SW] represents repetitive selective waiting and re-
peats the selective waiting statement until all
guards evaluate to false. After the end of the rep-
etition, the statement following the repetitive se-
lective waiting statement is executed.

A range expressionR can be used in the guarded
command and selective waiting statement to enable
compact notation. The range expression allows to de-
fine iterator variables that are varied within certain
lower and upper bounds.

The key statements to specify the communication
of a process with other concurrent processes in the
coordination are the send, receive, and synchronize
statements, as well as the (repetitive) selective waiting
statement. The latter is the most powerful statement of
χ for the specification of the communication between
concurrent processes. The communication of a pro-
cess with other processes can be specified without the
need to predefine some sequence of communication.
Such a selective waiting construct is essential for the
specification of more complex, e.g., non-hierarchical,
coordination schemes.

3.4 Systems

Processes can be grouped together in a system by
means of parallel composition. The processes in the
system are coupled through channels and executed
concurrently. Such a system can again act as a process
and can be combined with other processes to form a
new system. Aχ system has the following form:

syst N(Vs) = j[Vc j Ss]j :

A system is identified by its nameN and parametersVs.
Similar to the process definition,Vs is a comma sepa-
rated list of (formal) parameters of the formv: type,
which is either a standard basic or generic data typeT,
a send port (v: ! T) data type, a receive port (v: ?T)
data type, or a synchronization port (v: � void) data
type. The system body resides between bracketsj[
and]j, and starts with a declaration list of local channel
variablesVc, followed by system statementSs. A chan-
nel variablec of type T is declared using the syntax
c: �T. Only values of typeT can be communicated
through this channel.

The processes and systems are instantiated in the
system statementsSs with the appropriate chan-
nels and parameters. Instantiations are written as
N(e1; e2; : : : ; en), whereN is the name of an exist-
ing process or system andei (1� i � n) is an expres-
sion resulting in a value of the appropriate data type.

6
American Institute of Aeronautics and Astronautics

Processes and systems are instantiated in parallel us-
ing the parallel composition operatorSs kSs. The local
channel variables are used to connect different process
instantiations to each other. A single channel connects
either one send port to one receive port or two direc-
tionless synchronization ports to each other. The data
types of the ports and the channel must match.

A closed system has to be instantiated at the top
level. This closed system has no communication ports
parameters. Only some standard data typed parameters
may still remain in the parameter list. The environment

xper = j[N(e1; e2; : : : ; en)]j
instantiates the top level systemN with parameter val-
uese1 to en.

3.5 Functions

Functions can be used to define calculations that can-
not be expressed in a single line or that appear at sev-
eral different places in the specification. The calcula-
tion is carried out each time the function is called by
name in a process statement. Aχ function is defined
as

func N(Vf)�! Tr = j[Vl j Sf]j;
and identified by its nameN and a list of formal in-
put parametersVf of type (v: T). The return type of
the function isTr. Both T andTr are basic or generic
data types as defined in Section 3.2. The body of the
function is defined after the equality sign. Local pro-
gramming variables (x: T) may be introduced inVl ,
followed by the sequence of statementsSf that defines
the function.

The statements that may be used in a function are the
guarded command statement, the repetitive guarded
command statement, sequential composition, assign-
ment, and the skip statement as defined earlier in Sec-
tion 3.3. One new statement is the return statement"e
that ends the execution of the function and returns the
value of expressione to the process statement or func-
tion statement that called the function. Multiple return
statements are allowed in one function. Theχ seman-
tics assumes that functions behave in a strictly math-
ematical sense. Communication statements are there-
fore not allowed in functions.

3.6 Application to MDO

An MDO coordination specified inχ is represented by
processes that communicate through channels. The nu-
merical computations carried out by the individual pro-
cesses are modeled as functions. Generally, these cal-
culations require routines external toχ, which means
that aχ function has to be able to call external soft-
ware. This has been realized by allowing functions

written in Python [8] to be treated like functions writ-
ten in nativeχ. Python can be linked readily to other
software. The Python interface is supported by theχ
compiler that generates the executable to run the coor-
dination.

With the concurrency formally specified, it would be
highly advantageous if the coordination could be im-
plemented on parallel computers. The difficulty is that
χ uses interleaving semantics for its execution, which
means thatonestatement inoneprocess at a time is
being executed (except for communication statements
between two processes that are always dealt with to-
gether). The scheduler ofχ determines which state-
ment in which process will be executed next. This im-
plies that function calls to external numerical routines
will be carried out one at a time even if they occur in
parallel processes. To allow parallel execution, each
external function call has to be split into a four step
procedure: start, notification of this start, clearance to
proceed , and retrieval of results. Processes get clear-
ance to proceed through a synchronization with a syn-
chronizer process when they have all started their jobs.
This is illustrated in Section 4.3. We are currently in-
vestigating whether this approach can be replaced by
a more elegant one. The generated series of jobs are
queued and distributed over the available parallel com-
puter resources.

4 GEOMETRIC PROGRAMMING PROBLEM

4.1 Optimization problem formulation

Consider test problem 104 of [21]:

Findx = x1; : : : ;x8

Min f = f1 + f2 + f3 + f4

f1 = 0:4x0:67
1 x�0:67

7

f2 = 0:4x0:67
2 x�0:67

8

f3 = 10�x1

f4 = x2

s.t. g1 = 0:1x1 +0:0588x5x7�1:0� 0

g2 = 0:1x1 +0:1x2 +0:0588x6x8�1:0� 0

g3 = 4x3x�1
5 +2x�0:71

3 x�1
5 +0:0588x�1:3

3 x7

�1:0� 0

g4 = 4x4x�1
6 +2x�0:71

4 x�1
6 +0:0588x�1:3

4 x8

�1:0� 0

gi+4 = 0:1�xi � 0 i = 1; : : : ;8

gi+12 = xi�10:0� 0 i = 1; : : : ;8

(2)

Wagner [22] partitioned this single optimization prob-
lem into two subproblems SPa and SPb with one link-
ing variabley = x1 using a hyper-graph based parti-
tioning technique. He used Wismer and Chattergy’s
relaxation strategy for the coordination of the two sub-

7
American Institute of Aeronautics and Astronautics

problems. The first subproblem of Wagner’s partition-
ing is

ProblemSPa
Receivey

Find xa = [x2;x4;x6;x8]

Min fa = f2 + f4

f2 = 0:4x0:67
2 x�0:67

8

f4 = x2

s.t. g2 = 0:1y+0:1x2+0:0588x6x8�1:0� 0

g4 = 4x4x�1
6 +2x�0:71

4 x�1
6 +0:0588x�1:3

4 x8

�1:0� 0

gi+4 = 0:1�xi � 0 i = 2;4;6;8

gi+12 = xi�10:0� 0 i = 2;4;6;8

Return x�a ;µ2

(3)

Solution of subproblem SPa yields, for a given (fixed)
linking valuey, the optimum design variable valuesx�a
and the Lagrange multiplier values of the (active) con-
straints atx�a. The coordination scheme requires the
subproblem optimum valuesx�a and Lagrange multi-
plier valueµ2 of constraintg2 to be returned. The sec-
ond subproblem is

ProblemSPb
Receivey;λ
Find xb = [x1;x3;x5;x7]

Min fb = f1 + f3 +λ(x1�y)

f1 = 0:4x0:67
1 x�0:67

7

f3 = 10�x1

S.t. g1 = 0:1x1 +0:0588x5x7�1:0� 0

g3 = 4x3x�1
5 +2x�0:71

3 x�1
5 +0:0588x�1:3

3 x7

�1:0� 0

gi+4 = 0:1�xi � 0 i = 1;3;5;7

gi+12 = xi�10:0� 0 i = 1;3;5;7

Return x�b
(4)

Parameterλ is related herein to the Lagrange multi-
plier µ2 of subproblem SPa, and its value is provided
by the coordination strategy. Subproblem optimumx�b
is returned to the coordination scheme.

Wagner uses the following coordination strategy to
solve this decomposed optimal design problem:

1. Initialize:

(a) k := 0

(b) x(k) :=[0:1; 0:1; 0:2; 0:2; 10:0; 10:0; 0:1; 0:1]

(c) yk := x(k)1

(d) λ(k) := 0:0

2. Solve SPa and SPb to obtainx�(k) andµ(k)2

3. Update master problem:

(a) k := k+1

(b) x(k) := x�(k�1)

(c) y(k) := x�1
(k�1)

(d) λ(k) := µ(k�1)
2

h
¶ g2
¶ y

i
x=x�(k�1)

4. Check convergence: ifkx(k)� x(k�1)k < ε, stop;
otherwise goto 2.

The coordination strategy feeds the subproblem opti-
mizations with updated values ofy andλ at each itera-

tion. Since
h

¶ g2
¶ y

i
x=x�(k�1)

is a constant (equal to 0.1), it

does not need to be provided by subproblem SPa. The
iterative coordination process stops if the norm of the
difference between the current design variable vector
and the vector of the previous iteration is smaller than
some prescribed valueε.

4.2 Coordination specification usingχ
Three processes are defined: processesSPa and SPb

are related to the subproblem optimizations; processC
defines the coordination strategy. They are coupled as
shown in Figure 4. ProcessC sends through channels

SPa SPbC
v

p q

w

Figure 4: Processes and channels in decomposed geo-
metric programming problem.

p andq updated values of design variables and link-
ing variables to subproblem processesSPa and SPb.
OnceSPa andSPb receive new values, both optimiza-
tion subproblems are solved, and the results are sent
back to processC through channelsv andw. The mas-
ter problem is then updated, and, if convergence has
not been achieved, new values are sent toSPa andSPb.

Theχ specification is explained next. Two variable
types are defined for shorthand notation in the follow-
ing specification:

typevecx= real4

; vecg= real10;

where real4 denotes a vector array of 4 reals. The types
vecx and vecg suffice since each subproblem has 4 de-
sign variables and 10 constraints.

Functions used in the process specifications are de-
fined next. Three functions can be identified:norm,
optspa, andoptspb. The functionnorm takes as input

8
American Institute of Aeronautics and Astronautics

four vectors of type vecx and computes thel2-norm of
the difference between initial and optimum design:

func norm(xo
a; xo

b; x�a; x�b : vecx)�! real=
j[i : nat; s: real
j i := 0; s := 0:0
; �[i < 4
�!s := s+(x�a:i�xo

a:i)
2 +(x�b:i�xo

b:i)
2

; i := i +1
]

; "ps
]j :

The local variablei is a counter in the repetitive
guarded command statement�[i < 4�! : : :]. The
statements on the right hand side of the arrow are re-
peated as long asi < 4. If i becomes 4, the repetition
statement is finished, and as final statement, the square
root of s is returned.

The functionsoptspaandoptspbhave to carry out
an optimization run for subproblems SPa and SPb, re-
spectively. Given initial designxo and linking variable
value c, optspasolves the optimization problem SPa

and returns optimal design variable and Lagrange mul-
tiplier values. The type of the result is vecx�vecg, i.e.,
a tuple of a vector array of length 4 and a vector array
of length 10. Functionoptspbis defined similarly:

func optspa(xo : vecx; c: real) �! vecx� vecg

func optspb(xo : vecx; c1; c2: real)�! vecx:

Both functions call the Matlab optimization toolbox
routine fmincon [11], which is an implementation of
the sequential quadratic programming optimization al-
gorithm, through the Python-Matlab interface [8].

ProcessSPa represents the optimization of subprob-
lem SPa, and is specified as

proc SPa(a: ?vecx� real; b: !vecx� real) =
j[xo

a; x�a : vecx; µa : vecg; y: real
j �[true
�!a?hxo

a; yi
; hx�a; µai := optspa(xo

a ; y)
; b! hx�a; µa:0i

]
]j :

ProcessSPa receives and sends information in the form
of a tuple vecx� real via portsa andb (formal port
names). It uses local variablesxo

a, x�a of type vecx,
µa of type vecg, andy of type real. Note thatµa:0 is
the first element of arrayµa which corresponds with
µ2 in Equation (3). The process specification ofSPa is
defined to repeat the following statements indefinitely:

� Wait until data is received via porta and assign
the received values toxo

a andy;

� Carry out the subproblem optimization by calling
optspausing xo

a as initial design andy as link-

ing parameter value, and return the optimal sub-
system design together with Lagrange multiplier
values assigned tox�a andµa, respectively;

� Try to send the optimal subsystem design and the
Lagrange multiplier value of constraintg2 (state-
ment is finished if sending action has succeeded).

ProcessSPb has a similar structure:

proc SPb(a: ?vecx� real� real; b: !vecx) =
j[xo

b; x�b : vecx; y; λ : real
j �[true
�!a?hxo

b; y; λi
; x�b := optspb(xo

b; y; λ)
; b! x�b

]
]j :

The difference betweenSPa andSPb lies in the format
of data that is received and sent and in the function call
of optspbthat represents the optimization of subprob-
lem SPb.

ProcessC represents the coordination strategy and
controls the iterative subproblem optimizations. Theχ
specification of processC is

procC(a: !vecx� real; b: !vecx� real� real
; c: ?vecx� real; d : ?vecx) =

j[xo
a; xa; xo

b; xb : vecx; y; λ; µ2 : real
; k: nat; end: bool
j xa := h0:1; 0:2; 10:0; 0:1i
; xb := h0:1; 0:2; 10:0; 0:1i
; y := xa:0; λ := 0:0; k := 0; end:= false
; �[:end
�!k := k+1; xo

a := xa ; xo
b := xb

; a! hxo
a; yi ; b! hxo

b; y; λi
; [true; c?hxa; µ2i �! d?xb

[] true; d?xb �! c?hxa; µ2i
]

; y := xa:0; λ := 0:1µ2

; end:= norm(xo
a ; xo

b; xa; xb)< 10�3

]
]j :

ProcessC sends data to processesSPa andSPb through
portsa andb, and receives data through portsc andd.
Once the local variables are declared, the first lines of
the specification represent the coordination initializa-
tion. A number of statements is then repeated until
endbecomes true (: denotes “not”). ProcessC sends
the required data toSPa andSPb to carry out their re-
spective subproblem optimizations, and waits for their
response. A selective waiting statement is used to ex-
press thatC does not know beforehand which of the
two processes will reply first,SPa or SPb. If C first
receives data via portc, then it waits until the data of
the other subproblem is received via portd, and pro-
ceeds with the next statement. If communication is

9
American Institute of Aeronautics and Astronautics

first established via portd, thenC waits for commu-
nication viac, and proceeds. Note that for this spe-
cific example the selective waiting statement can be re-
placed by simply a sequence of two receive statements:
c?hxa;µ2i ; d?xb. Even if the communication viad
would be possible beforec, the total execution time
is the same. Selective waiting and repetitive selec-
tive waiting are very powerful language constructs to
model communications between several parallel pro-
cesses of more complicated coordination schemes.

Finally, processesSPa, SPb, andC have to be cou-
pled at the system level, as shown in Figure 4. Pro-
cessSPa receives data of type vecx� real via chan-
nel p from C, and sends data of the same type back
via channelv. ProcessSPb receives data of type
vecx� real� real via channelq fromC, and sends data
of type vecx back again via channelw. Accordingly,
processC sends data of type vecx� real through chan-
nel p to SPa and data of type vecx� real� real through
channelq to SPb, and receives data of type vecx� real
via channelv from SPa and data of type vecx via chan-
nelw from SPb. This is specified as

syst S() =
j[p; v: �vecx� real; q: �vecx� real� real
; w: �vecx
j C(p; q; v; w) k SPb(q; w) k SPa(p; v)
]j :

Declarationp: �vecx� real means thatp is a channel
of type vecx� real. Theχ specification ends with

xper = j[S()]j;
denoting that a system execution can be carried out.
The optimumx�(k) = [x1; : : : ;x8] = [6.46 2.23 0.667
0.596 5.93 5.53 1.01 0.401] was obtained afterk= 26
system iterations by implementing theχ coordination
as described. This solution corresponds with the one
reported in [22].

4.3 Inclusion of RSM metamodels

Simulation-based MDO applications frequently re-
quire a lot of expensive computations. MDO method-
ologies that employ response surface approximations
have been proposed to address this challenging issue.
It should be emphasized that here we do not refer to
using metamodels for evaluating expensive functions,
but to representing response surfaces that approximate
the solutions of simulation-based MDO problems, as
in, e.g., [23, 24]. Theχ language can also be used
to specify the coordination of MDO problems solved
by means of response surface (RSM) approximations.
This is demonstrated by implementing such a method-
ology in the coordination of the geometric program-
ming example. We realize that the example in itself is
too simple to justify the use of response surfaces. It is
used to illustrate how RSM metamodel building can be

included in theχ specification of the coordination.
The following strategy is implemented to coordinate

the solution of the geometric programming problem by
means of response surface approximations:

1. Initialize:

(a) k := 0, p := 0:5, N := 6

(b) x(k) :=[0:1; 0:1; 0:2; 0:2; 10:0; 10:0; 0:1; 0:1]

(c) y(k) := 5:0, ylb := 0:0, yub := 7:0

(d) λ(k) := 0:5, λlb := 0:0, λub := 0:68

2. Define the search subregion of linking variables
y and λ, and plan for each variable a design of
experiments (DOE) ofN equally spaced points.
Set the subregion lower bounds toyl = (1� p)y(k)

and λl = (1� p)λ(k), and the upper bounds to
yu = (1+ p)y(k) and λu = (1+ p)λ(k), respec-
tively, while satisfyingylb � yl � yu � yub and
λlb � λl � λu � λub.

3. SolveSPa for the DOE ofy, andSPb for the DOE
of λ. The minimizer ofSPb is independent ofy,
so anyy value may be selected forSPb.

4. Build quadratic response surface approximations
for µ2 as function ofy andx1 as function ofλ.

5. Update the master problem:

(a) k := k+1

(b) Computey(k) andλ(k) by solving the non-
linear set of equations:

y = x1

λ = 0:1µ2

µ2 = a0 +a1y+a2y2

x1 = b0 +b1λ +b2λ2;

where ai and bi have been determined in
step 4.

(c) SolveSPa and SPb using the updatedy(k)

andλ(k) to obtainx(k).

6. Check convergence: ifkx(k)�x(k�1)k< ε, , then
stop; otherwise goto 2.

Applying this methodology on our example, the val-
ues of the linking variablesy and λ converged after
four iterations; the obtained results matched the ones
reported in Section 4.2 and [22]. We describe theχ
implementation of the approach in the next paragraphs.
Before we do that, we would like to note that the search
subregions need to be selected carefully. For exam-
ple, possible discontinuities in the solutions of the opti-
mization problems for some values of the linking vari-
ables may result to meaningless response surface ap-
proximations. This is whyλ is bounded above by the
value 0.68 in our example.

10
American Institute of Aeronautics and Astronautics

The main change compared to the previousχ imple-
mentation of Section 4.2 is thatN parallel processes
SPa andN parallel processesSPb can be instantiated
to carry out the optimization calculations. The process
specifications ofSPa and SPb need not be changed.
Theχ specification of processC becomes

const N : nat= 6

procC(p: (!vecx� real)N ; q: (!vecx� real� real)N

; v: (?vecx� real)N ; w: (?vecx)N) =
j[xo

a; xa; xo
b; xb : vecx

; ylb; y; yub; λlb; λ; λub; µ2; p: real
; ydoe; µ2

doe; λdoe : realN ; xdoe
a ; xdoe

b : vecxN

; k: nat; end: bool
j xa := h0:1; 0:2; 10:0; 0:1i
; xb := h0:1; 0:2; 10:0; 0:1i
; ylb := 0:0; yub := 7:0; λlb := 0:0; λub := 0:68
; y := 5:0; λ := 0:5; p := 0:5; k := 0; end:= false
; �[:end
�!k := k+1; xo

a := xa ; xo
b := xb

; ydoe := doe(y; ylb; yub; p)
; λdoe := doe(λ; λlb; λub; p)
; ba := bval(true) ; bb := bval(true)
; �[i : nat 0::N : ba:i ; p:i ! hxo

a; ydoe:ii
�! ba:i := false

[] i : nat 0::N : bb:i ; q:i ! hxo
b; ydoe:i; λdoe:ii

�! bb:i := false
]

; ba := bval(true) ; bb := bval(true)
; �[i : nat 0::N : ba:i ; v:i ?hxdoe

a :i; µ2
doe:ii

�! ba:i := false
[] i : nat 0::N : bb:i ; w:i ?xdoe

b :i
�! bb:i := false

]
; hy; λi := update(ydoe; µ2

doe; λdoe; xdoe
b)

; p:0!hxo
a; yi ; q:0!hxo

b; y; λi
; v:0?hxa; µ2i ; w:0?xb

; end:= norm(xo
a ; xo

b; xa; xb)< 10�3

]
]j :

At first, processC generates the two designs of exper-
iments for linking variablesy andλ using aχ function
doe:

func doe(q; qlb; qub; p: real)�! realN =
j[ql; qu : real; d : realN ; i : nat
j ql := (1�p)q; qu := (1+p)q
; ql := min(ql; qlb) ; qu := max(qu; qub)
; i := 0
; �[i < N�! d:i := ql +(qu�ql) i

(N�1) ; i := i +1]
; "d
]j :

In the next step, processC sends the individual DOE
and initial points to each of the optimization processes
SPa andSPb. This is specified using a repetitive selec-

tive waiting statement with a range expression, which
can be explained as: for all portsp:i, if no job has
been sent, send the job and update the corresponding
boolean array. The boolean arraysba andbb adminis-
trate to which processes optimization jobs still have to
be sent. Initialization ofbaandbb to arrays full of true
values is done through the functionbval:

func bval(v: bool)�! boolN =
j[b: boolN ; i : nat
j i := 0; �[i < N�! b:i := v; i := i +1]
; "b
]j :

When all processesSPa andSPb have received their re-
spective jobs, the first repetitive selective waiting state-
ment is finished. A second repetitive selective waiting
statement follows to receive all optimization results.
The results are stored in the arraysxdoe

a , µdoe
2 andxdoe

b .
When all results have been received, the response sur-
faces are generated and the nonlinear set of equations
is solved by an external Matlab functionupdate. The
new iterates fory andλ are returned toχ. OneSPa and
oneSPb optimization run are carried out to obtain the
corresponding optimal system design updatex(k). Fi-
nally, a check is performed to determine whether con-
vergence has been achieved .

SystemS is changed accordingly; instead of one
send and one receive channel to a single processSPa,
now an array of channels (bundle) is needed to couple
C with all N instantiations ofSPa. The same holds for
the channels fromC to processesSPb. The new system
specification becomes

syst S() =
j[p; v: (�vecx� real)N ; q: (�vecx� real� real)N

; w: (�vecx)N

j C(p; q; v; w)
k i : nat 0::N : SPa(p:i; v:i)
k i : nat 0::N : SPb(q:i; w:i)
]j :
As explained in Section 3.6, the external function

calls optspaandoptspbhave to be split to be able to
actually run the optimization calculations in parallel
using the current version of theχ compiler. Each ex-
ternal function call is split into a startup function call,
a synchronization send and a synchronization receive
to a synchronizer process, and a call to a function that
will retrieve the results when the job is finished. The
synchronizer registers which processes have started
their external function calls. When all processes have
started their jobs, the synchronizer gives each process
clearance to call the retrieval function. The new coor-
dination architecture is visualized in Figure 5, where
processSy is the synchronizer process. ProcessSy
needs to know how many processesSPa and how many
processesSPb have received a request for an optimiza-

11
American Institute of Aeronautics and Astronautics

SPa SPbSPa SPb

p.i
q.i

w.i
v.i

C

... ...

Sy

Figure 5: RSM-based coordination of geometric pro-
gramming problem including synchronizer process for
parallel execution.

tion run. ProcessC has to send these numbers toSy.
The necessary modifications to theχ specification

are as follows. ProcessC needs an additional send port
through which the numbers of optimization jobs (SPa

andSPb, respectively) can be sent toSy. ProcessesSPa

andSPb need two additional ports: one synchroniza-
tion send port and one synchronization receive port.
The split of the function call has to be implemented
also. ProcessSPa becomes

proc SPa(a: ?vecx� real; b: !vecx� real
; as: !void; sa: ?void) =

j[xo
a; x�a : vecx; µa : vecg; y: real; h: nat

j �[true
�!a?hxo

a; yi ; h := start optspa(xo
a; y)

; as! ; sa?
; hx�a; µai := get optspa(h) ; b! hx�a; µa:0i

]
]j :

ProcessSPb has to be changed similarly. The synchro-
nizer processSyhas to be added:

proc Sy(cs: ?nat�nat
; as; bs: (?void)N ; sa; sb: (!void)N) =

j[ca; cb: nat; ba; bb: boolN

j ba := bval(true) ; bb := bval(true)
; �[true
�!cs?hca; cbi

; �[i : nat 0::N : ca> 0 andba:i ; as:i ?
�! ba:i := false; ca := ca�1

[] i : nat 0::N : cb> 0 andbb:i ; bs:i ?
�! bb:i := false; cb := cb�1

]
; �[i : nat 0::N : :ba:i ; sa:i ! �! ba:i := true

[] i : nat 0::N : :bb:i ; sb:i ! �! bb:i := true
]

]
]j :

ProcessSyfirst receives the number of processesSPa

and the number of processesSPb optimization jobs
have been sent to. The repetitive selective waiting
statement that follows implements the receive of the
start notifications of the external function calls by pro-
cessesSPa and SPb. The second repetitive selective
waiting sends the clearance to proceed back. Finally,
systemShas to be extended to includeSyand the ad-
ditional channels declarations.

5 CONCLUSIONS

In our opinion a concurrent programming language
for distributed optimal system design can improve
the implementation and testing of MDO coordination
strategies significantly. Such a language is especially
needed when the scale and complexity of coordination
architectures requires a more precise treatment of the
concurrency in the coordination. A language with a
clear foundation in concurrency theory would further-
more provide a means to do a formal analysis of a spec-
ified coordination strategy regarding the existence of
failures such as deadlock. A specification language for
engineering-based MDO approaches has to be able to
deal with the “black-box” nature of the disciplines and
subsystems, as well as the large amounts of numerical
data that may need to be passed around between them.
A language based on Communicating Sequential Pro-
cesses meets the first requirement. In addition, the lan-
guage has to include suitable language constructs for
data handling and data storage to meet the second re-
quirement.

We propose to use theχ language, which meets
both the “black-box” and the data handling require-
ment. It is a highly expressive CSP-based language
that contains advanced data modeling constructs. Us-
ing χ, the MDO coordination is specified in a standard
fashion as a number of parallel processes that oper-
ate independently and communicate with each other
synchronously over pre-defined channels. The advan-
tage ofχ for application in MDO is that it has been
designed for modeling purposes: it is compact (few
language constructs), easy to understand, and offers a
clear concept to define parallelism. Furthermore,χ can
perform function calls to external software by means
of a Python interface. In the paper the syntax and se-
mantics of the main language elements that are needed
for the MDO application are informally explained.

A simple analytical example has been used to
demonstrate theχ implementation of a coordination
strategy for distributed optimal system design. In ad-
dition, this example has been extended to show that
χ can also be used for implementing the coordination
of simulation-based MDO using response surface ap-
proximations. In both cases the example demonstrates
how the concurrency in the coordination is specified.
In future work, we will demonstrate the capabilities of

12
American Institute of Aeronautics and Astronautics

χ for specifying coordination in larger and more com-
plicated MDO problems. At this point, we draw the
conclusion that the use of a concurrent programming
language such asχ to specify and implement MDO
coordination strategies is quite promising. It may also
provide new opportunities to scale up the size of MDO
implementations.

Current work focuses on specifying coordination
strategies for analytical target cascading using theχ
language [25]. Convergence properties of analytical
target cascading have been proven for a number of pos-
sible coordination strategies [26]. However, conver-
gence rate of these strategies has not been studied yet;
χ will provide a means to test and evaluate the perfor-
mance of the latter in different problems.

REFERENCES

[1] Fourer, R., Gay, D.M., and Kernighan, B.W.,
1993:AMPL: A Modeling Language for Math-
ematical Programming, Duxbury Press.

[2] Papadopoulos, G.A. and Arbab, F., 1998: “Co-
ordination Models and Languages”, CWI Soft-
ware Engineering report SEN-R9834, National
Research Institute for Mathematics and Com-
puter Science, Amsterdam, the Netherlands.

[3] Hoare, C.A.R., 1985:Communicating Sequen-
tial Processes, Prentice-Hall.

[4] Roscoe, A.W., 1997:The Theory and Practice
of Concurrency, Prentice-Hall.

[5] Kleijn, J.J.T., and Rooda. J.E., 2001: “χ Man-
ual”, Systems Engineering Group, Eindhoven
University of Technology, http://se.wtb.tue.nl.

[6] Rooda. J.E. 2000: “Modelling Industrial Sys-
tems”, lecture notes, Systems Engineering
Group, Eindhoven University of Technology,
http://se.wtb.tue.nl.

[7] Van Beek, D.A. and Rooda, J.E., 2000: “Lan-
guages and applications in hybrid modelling
and simulation: the positioning of Chi”,Con-
trol Engineering Practice8, 81–91.

[8] Python, http://www.python.org.

[9] Lutz, M. and Ascher, D., 1999: Learning
Python, O’Reilly.

[10] Hofkamp, A.T. 2001: “Python fromχ”, note,
Systems Engineering Group, Eindhoven Uni-
versity of Technology, http://se.wtb.tue.nl.

[11] Matlab 5.3, Matlab, The Mathworks,
http://www.mathworks.com.

[12] Papalambros, P.Y. and Wilde, D.J., 2000:Prin-
ciples of Optimal Design, Cambridge Univer-
sity Press, 2nd edition.

[13] Cramer, E.J., Dennis, J.E. Jr., Frank, P.D.,
Lewis, R.M., and Shubin, G.R., 1994: “Prob-
lem formulation for multidisciplinary optimiza-
tion”, SIAM Journal on Optimization4, 754–
776.

[14] Balling, R.J. and Sobieszczanski-Sobieski, J.,
1996: “Optimization of coupled systems: a crit-
ical overview of approaches”,AIAA Journal34,
6–17.

[15] Alexandrov, N.M. and Lewis, R. M., 1999:
“Comparative properties of collaborative opti-
mization and other approaches to MDO”,First
ASMO UK/ISSMO Conference on Engineering
Design Optimization, July 8-9, MCB press.

[16] Bos, V. and Kleijn, J.J.T., 2002:Formal spec-
ification and analysis of industrial systems,
Doctoral dissertation, Eindhoven University of
Technology, Eindhoven, The Netherlands.

[17] Hoare, C.A.R., 1978: “Communicating se-
quential processes”,Communications of the
ACM 21, 666–677.

[18] Dijkstra, E.W., 1975: “Guarded commands,
nondeterminacy, and formal derivation of pro-
grams”,Communications of the ACM18, 453–
457.

[19] Van de Mortel-Franczak, J.M., Rooda, J.E., and
Van den Nieuwelaar, N.J.M., 1995: “Specifi-
cation of a flexible manufacturing system us-
ing concurrent programming”,Concurrent En-
gineering: Research and Applications3, 187–
194.

[20] Backus, J. 1960: “The syntax and semantics of
the proposed international algebraic language
of the Zürich ACM-GAMM conference”,Pro-
ceedings ICIP, Unesco, 125–131.

[21] Hock, W. and Schittkowski, K., 1981:Test
Examples for Nonlinear Programming Codes,
Springer Verlag.

[22] Wagner, T.C., 1993:A General Decomposition
Methodology for Optimal System Design, Doc-
toral dissertation, The University of Michigan”,
Ann Arbor, Michigan.

[23] Kodiyalam, S. and Sobieszczanski-Sobieski, J.,
2000: “Bilevel integrated system synthesis with
response surfaces”,AIAA Journal38(8), 1479–
1485.

13
American Institute of Aeronautics and Astronautics

[24] Sobieski, I.P. and Kroo, I.M., 2000: “Collabo-
rative optimization using response surface esti-
mation”,AIAA Journal38(10), 1931–1938.

[25] Etman, L.F.P., Kokkolaras, M., Papalambros
P.Y., Hofkamp, A.T., and Rooda, J.E., 2002:
“Coordination specification of the analytical
target cascading process using theχ language”,
9th AIAA/ISSMO Symposium on Multidisci-
plinary Analysis and Optimization, Atlanta,
GA, work in progress paper no. AIAA-2002-
5637.

[26] Michelena, N., Park, H., and Papalambros, P.Y,
2002: “Convergence properties of analytical
target cascading”,9th AIAA/ISSMO Symposium
on Multidisciplinary Analysis and Optimiza-
tion, Atlanta, GA, paper no. AIAA-2002-5506.

14
American Institute of Aeronautics and Astronautics

