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Abstract

The forced response of a mistuned bladed disk can
be significantly amplified compared to that of a tuned
bladed disk. Various reduced-order models have been
studied to predict the response of mistuned bladed disks.
Most of these models have been tested only for simple
mistuning cases that may not be realistic for actual sys-
tems. In this paper, a new approach to generate a general
reduced-order model for a mistuned system is presented.
From this general formulation, a compact reduced-order
model for small blade mistuning is also derived in which
mistuning is projected to tuned-system normal modes
using modal participation factors of cantilevered-blade
component modes. The presented mistuning projection
method can estimate the effects of complicated mistun-
ing easily from measurable modal mistuning values of
mistuned blades.

1. Introduction

A bladed disk consists of a set of disk-blade sectors
that are assumed to be identical. In practice, however,
there are always small variations in the structural prop-
erties of individual blades resulting from manufactur-
ing tolerances, material deviations, and operational wear.
These variations are referred to as mistuning. Due to
mistuning, the vibratory response of a real bladed disk
may be significantly different from that of a nominal
(tuned) bladed disk. There has been a significant amount
of research on understanding and predicting the dynamic
behavior of mistuned bladed disks. Many of these studies
have employed lumped parameter models.1–9 Although
a lumped parameter model can provide a basic under-
standing of the influence of mistuning, it cannot be used
to predict quantitatively the dynamic response of an ac-
tual bladed disk.
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Therefore, finite element models of bladed disks have
been employed to yield reduced-order models by us-
ing component mode synthesis,10–17 a receptance tech-
nique,18 classical modal analysis with mistuning projec-
tion,19 or the exact relationship between the responses
of tuned and mistuned systems.20 The major differ-
ences among these reduced-order model techniques are
the substructuring approach and the mistuning imple-
mentation.

In general, the reduced-order models are obtained by
substructuring a bladed disk into disk and blade com-
ponents, except for two recent approaches.19, 20 These
two approaches use tuned-system normal modes with-
out substructuring to obtain a reduced-order model or
compute the forced response of a mistuned system. One
advantage of avoiding substructuring is that there is no
additional error introduced for the responses of a tuned
system. Yang and Griffin’s approach19 is especially no-
table. Since the number of tuned-system normal modes
required is on the order of the number of blades, the size
of the model is smaller than those of any other models.
Petrov et al.20 also developed a unique method to com-
pute the forced response of mistuned systems using the
frequency response function matrix, which is obtained
from tuned-system normal modes, instead of building a
mistuned reduced-order model. But, in order to include
aerodynamic coupling effects, tuned responses should be
obtained by solving aerodynamic equations and struc-
tural dynamic equations at the same time, which is very
costly.

The implementation of mistuning is also a very im-
portant item when a reduced-order model is evaluated,
because a reduced-order model should be able to simu-
late actual mistuned systems. Castanier et al.13 included
mistuning in a component-based reduced-order model by
varying blade modal stiffnesses that appear explicitly in a
synthesized stiffness matrix. Bladh et al.14 extended this
method by introducing the projection of mistuning to the
normal modes of a tuned cantilevered blade that is fixed
at the disk-blade interface. This mistuning projection
method has great potential for general implementation in
reduced-order models. Since only modal stiffness varia-
tions are directly employed in a reduced-order model, the
implementation of mistuning is quite efficient. In addi-
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tion, because different variation patterns can be used ac-
cording to the mistuned frequencies of individual modes,
a mistuned system can be modeled realistically. Yang
and Griffin19 also used a method based on a similar mis-
tuning projection. However, since mistuning in physical
coordinates is directly projected to tuned system modes,
the mistuned mass and stiffness matrices in physical co-
ordinates (which are not measurable) are required to be
estimated. Therefore, only the case in which mistuned
stiffness matrices are proportional to the nominal matrix
was presented. Petrov et al.20 used the FRF matrix to
compute the forced response of mistuned systems with-
out knowing the natural frequencies and mode shapes
of mistuned systems. Still, this new method requires
tuned-system normal modes to build a FRF matrix, tuned
forced responses, and mistuning in physical coordinates.
So, again, mistuned mass and stiffness matrices in physi-
cal coordinates need to be estimated. Therefore, in terms
of the practical implementation of mistuning, it is clear
that the mistuning projection method of Bladh et al.14 is
useful, except that it is assumed that the mode shapes of
mistuned and tuned blades are same and that only stiff-
ness mistuning is present.

In this paper, a general reduced-order model for a mis-
tuned system is formulated. A mistuned system is rep-
resented by the full tuned system plus virtual mistuning
components, and a hybrid interface method is employed
in order to combine them. The mistuning components
are composed of only mass and stiffness deviations from
the tuned case. All the degrees of freedom in the mistun-
ing components are considered to be interface degrees of
freedom. Since no assumption is made about mistuning
during the formulation, the resulting general formulation
is applicable to any mistuning case, regardless of whether
mistuning is small or large.

Most previous research on mistuned systems has been
based on an assumption that mistuning is small, which
is not necessarily the case. If there is large mistun-
ing, such as fractures at the tip of a blade, or a signifi-
cant geometric variation, it is necessary to include many
more tuned-system modes or tuned component (disk and
blade) modes in the reduced-order models. This is due to
the fact that the mass or stiffness matrices can be changed
significantly, and the mode shapes of a mistuned blade
can be completely different from those of a tuned blade.
Because of this difficulty, large mistuning has not been
previously captured by a reduced-order model (ROM).
In this work, the general formulation allows the genera-
tion of an accurate ROM with a reasonable size by em-
ploying attachment modes of a tuned system. Using the
general ROM for a mistuned system, a largely mistuned
system can be modeled and studied. Furthermore, inten-
tional mistuning, which may be not small in local areas,
can be efficiently studied.

From the resulting general formulations, a reduced-
order model for small mistuning is also derived. This
new ROM has the same tuned mode basis, and thus the
same small number of degrees of freedom (DOF), as that
of Yang and Griffin’s method.19 Blade mistuning is im-
plemented by a mistuning projection approach that was
originally developed by Bladh et al.14 and has been re-
fined for generalized blade mistuning cases in this paper.
By using the mistuned mode shapes and natural frequen-
cies of only a few cantilevered-blade modes, any type
of structural mistuning can be accurately modeled in an
ROM. This new approach to small-mistuned bladed disks
is referred to as a component mode mistuning (CMM)
method. In the preceding studies,14–16 a bladed disk was
substructured into disk and blade components in order to
project mistuning to the normal modes of a cantilevered
blade. Here, by using modal participation factors of the
cantilevered blade normal modes to describe the blade
motion in the tuned-system normal modes, the CMM
method successfully projects mistuning to cantilevered-
blade normal modes without requiring a component-
based representation for the full system. Furthermore,
by investigating these modal participation factors, just a
few dominant cantilevered-blade normal modes can be
used for the mistuning projection.

A major advantage of this method is that, even when
there is mistuning in only part of the blade such that the
individual modal mistuning patterns are different from
each other, the influence of mistuning may still be esti-
mated accurately. That is, any arbitrary pattern of mis-
tuning in the physical mass and stiffness matrices can
be efficiently and accurately implemented in a compact
reduced-order model using modal mistuning values for
a few cantilevered-blade modes. This feature is espe-
cially useful for the case in which two groups of blade-
dominated modes of the tuned system are closely spaced.

The CMM method is also convenient in implement-
ing aerodynamic coupling effects. Aerodynamic coeffi-
cients are typically calculated by unsteady aerodynamic
codes based on a set of cantilevered-blade normal modes
in a cyclic assembly, using a complex cyclic coordinate
transformation.21 Therefore, the modal participation ma-
trix of cantilevered-blade modes, which is used for mis-
tuning projection, can be readily utilized to transform the
calculated aerodynamic coefficients from complex cyclic
coordinates to tuned-system modal coordinates.

One of the primary contributions of this paper is that
a general reduced-order model for a mistuned system is
formulated in a systematic manner, regardless of whether
mistuning is small or large. Therefore, the effects of
various large structural variations can be studied using
an ROM. Another contribution is that, for small mis-
tuning, a compact modeling framework for a bladed
disk influenced by aerodynamic coupling and general-
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ized small blade mistuning is presented. In particular,
by introducing modal participation factors in the descrip-
tion of the blade motion in tuned-system normal modes,
aerodynamic coupling and mistuning are easily imple-
mented. Furthermore, it is found that a few dominant
cantilevered-blade normal modes can be identified to
represent the blade motion of the full system, and the
corresponding modal mistuning values are sufficient to
represent the influence of real mistuning.

This paper is organized as follows. The general formu-
lation of a reduced-order model for a mistuned system is
presented in Section 2. From this general formulation,
a CMM representation for small blade mistuning cases
is derived in Section 3. In Section 4, the general formu-
lation is validated by comparing the results of the finite
element model (FEM) and the ROM for an industrial tur-
bomachinery rotor with a rogue blade which means large
mistuning. In section 5, the CMM approach is applied
to the test case industrial rotor and validated by compar-
ing CMM results with FEM results. The test cases cover
non-proportional mistuning as well as proportional mis-
tuning, and a shrouded rotor is also tested. The conclu-
sions are summarized in Section 6.

2. General Reduced-Order Model

for a Mistuned System

A mistuned bladed disk is substructured into a tuned
bladed disk and virtual components of which mass and
stiffness matrices are defined by the difference between
the mistuned system and the tuned system, as shown in
Fig. 1. These virtual components are called mistuning
components. Since the response of a bladed disk is much
more sensitive to mistuning in blades than that in the
disk, only blade mistuning is considered in this study.
However, the proposed substructuring approach can be
applied to any mistuned system.

In order to combine a tuned system and mistuning
components, a hybrid interface method is employed. A

+

Tuned bladed disk Blade mistuning components
( � S, � S) ( ��� , ��� )

Fig. 1: Substructuring of a mistuned bladed disk

tuned system is treated as a free-interface component,
and mistuning components are treated as fixed-interface
components. For component mode synthesis (CMS) of
the tuned system, normal modes and attachment modes
are needed. Attachment modes are obtained by applying
a unit force to each interface node. For CMS of a mistun-
ing component, normal modes and constraint modes are
needed. The constraint modes are obtained by enforcing
a unit displacement at each interface node, successively.
Here, it should be noted that, since all the DOF in mis-
tuning components are interface DOF, they do not have
component normal modes. Therefore, constraint modes,
which become an identity matrix in this case, are enough
to describe the motion of mistuning components.

The equations for the free-interface component (a
tuned system) can be expressed using its normal modes
and attachment modes as follows:� S � � � 	

S 
 � S � S� S 
 � S
	

S � S 
 � S � S � (1a)


 S � � �
S

	
S 
 � S � S� S 
 � S

	
S � S� � (1b)

� S ��� � S�� S��� ��� 	 S� � S�	
S� � S��� ��� S�� S� ��� (2)

where � S and 
 S are reduced mass and stiffness matri-
ces of a tuned system obtained by using a truncated set
of normal modes (

	
S) and a complete set of attachment

modes ( � S), � S� and � S� are the corresponding modal
coordinates,  refers to interior DOF, and ! refers to
interface DOF (where mistuning exists).

For mistuning components, the mass and stiffness ma-
trices in modal coordinates are the same as those in phys-
ical coordinates. � � � �#" � � � � � � (3a)
 � � � " � � � � � � (3b)

� � � � � ��$� � �� � (4)

where
�

is an identity matrix representing constraint
modes, and � �� are the corresponding modal coordinates.

Now, the component assembly is achieved by satisfy-
ing displacement compatibility over the component in-
terface (i.e., � S� � � � ), which becomes from Eq. (2) and
(4): � S� � 	 S� � S�&% � S� � S�'� � ���� � �)( (5)

This constraint equation leads to the synthesized repre-
sentation of a mistuned system:� syn � � S % � 	 S� " ��� 	 S� 	

S� " ��� � S�� S� " �*� 	 S� � S� " ��� � S� � (6a)
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 syn � 
 S % � 	 S� " ��� 	 S� 	
S� " ��� � S�� S� " ��� 	 S� � S� " ��� � S� � (6b)

� syn � ��� S�� S� � ( (6c)

As formulated in Eq. (6), a mistuned system is de-
scribed with only the normal modes and attachment
modes of a tuned system. Since no assumption about
mistuning has been made in deriving this equation, this
general formulation is applicable for all kinds of mis-
tuned systems. The only restriction for this formulation
is that the number of DOF in a mistuned part must be the
same as that of the corresponding part of a tuned system.
The number of attachment modes required is the same as
the number of DOF of the mistuning components. Al-
though the number of attachment modes may be huge,
the attachment modes improve the convergence rate of
the natural frequencies and mode shapes of an ROM as
the number of tuned-system normal modes increases, as
discussed in section 4. Therefore, an accurate ROM with
a reasonable size can be achieved in a systematic manner
by using this general formulation.

3. Small Mistuning Model

A general reduced-order model for a mistuned system
has been developed in the previous section. In this sec-
tion, the general ROM is simplified by assuming that
mistuning is small comparing to nominal properties in
the modal domain, i.e.,

� � ������ � S��� �	� 

. Also, a new

method to implement mistuning in the simplified ROM
is presented.

For small mistuning, blade-alone natural frequency
deviations are usually used to represent mistuning in
the ROM. The new method presented in this paper for
the implementation of mistuning also employs mistuning
values in modal coordinates that can be obtained from
natural frequencies and mode shapes. The direct use of
modal mistuning values is efficient, especially in Monte
Carlo simulations for which a number of mistuning pat-
terns are required as inputs. Since the new method uses
mistuning in modal coordinates of component modes of
a tuned blade, it is called Component Mode Mistuning
(CMM) method in this paper.

3.1 Approximation by Small Mistuning
Recently, Yang and Griffin reported on modal interac-

tion22 and applied the results to the modeling of mistuned
bladed disks.19 The main idea for their method is that,
when a tuned bladed disk assembly has normal modes
closely spaced in a frequency range, a slightly mistuned
bladed disk also has normal modes closely spaced in
the same frequency range, and thus the mistuned nor-
mal modes can be captured by a subset of the tuned nor-

mal modes. This means that other tuned normal modes
outside of the frequency range of interest, or any static
modes, can be ignored in modeling a mistuned system
with small mistuning.

Now, if � S and the corresponding modal coordinates,� S� , in Eq. (6) are ignored, the synthesized representation
becomes � syn ��� � % 	 S� " � � 	 S��
 (7a)
 syn � � � S % 	 S� " � � 	 S� 
 (7b)� syn ��� � S��� � (7c)

where� � ��������������! #" $ $ $ " %'& � �(*) � � � ��������������! #" $ $ $ " %+& � �(,) �
and � S� are modal coordinates corresponding to normal
modes of the tuned system closely spaced in a frequency
range. �	�-�.�/��0�, 1" $ $ $ " %3254 6 denotes a block-diagonal matrix with

the argument being the 7 th block corresponding to the7 th blade, and 8 is the number of blades. Since, in most
cases, a bladed disk has high modal density in some fre-
quency ranges and the number of normal modes in each
of those frequency ranges are on the order of the number
of blades, Eq. (7) can represent a small-mistuned bladed
disk accurately with matrices of order 8 .

It can be observed in Eq. (7) that mass and stiffness de-
viation matrices in physical coordinates are projected to
the blade portion of tuned-system normal modes. Note
that, in this study, only blades are considered to have
mistuning. In order to obtain the reduced mass and stiff-
ness matrices, it is required to estimate � � and ��� so
that their dynamic characteristics can match those of the
actual blades in a certain frequency range. However,
the estimation becomes infeasible when � � and ��� are
not proportional to nominal values ,and thus each blade
mode family has a different mistuning pattern.

3.2 Component Mode Mistuning (CMM) Projection
Bladh et al.14 introduced a mistuning projection

method for an ROM. In this method, mistuned mass and
stiffness matrices in physical coordinates are projected
to the normal modes of a cantilevered tuned blade which
is fixed at its root. Using this method, non-proportional
mistuning could be implemented efficiently. However,
it was assumed that the mode shapes of tuned and mis-
tuned blades were the same. Since the ROM was gen-
erated by substructuring a rotor into a disk and blades,
the model size was larger than that of Yang and Griffin’s
model,19 which is on the order of the number of blades
in the bladed disk.

In this section, the blade portion of tuned-system nor-
mal modes in Eq. (7) is represented by the modal partic-
ipation factors of the component modes of a cantilevered
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tuned blade, and the mistuning projection method is em-
ployed without estimating �*� and �'� . And also, it will
be shown that the mistuning projection method does not
necessarily require the tuned and mistuned mode shapes
to be the same.

For this projection, first of all, the modal participation
factors need to be obtained for cantilevered-blade com-
ponent modes that represent the blade motion in tuned-
system modes. If only cantilevered-blade normal modes
are used to describe the blade motion, the displacements
at the boundaries (e.g., blade-disk boundary, shroud-to-
shroud boundary) cannot be described. Therefore, ad-
ditional modes to describe the boundary are required.
Here, the additional modes are defined as follows:� � CB� � �
where � CB corresponds to the interior DOF of a can-
tilevered blade, and

�
corresponds to the boundary DOF

which are fixed when cantilevered-blade normal modes
are obtained. And the number of these boundary modes
is the same as the number of the boundary DOF so that
all the boundary motion can be described. But, it is not
possible to measure the mistuning values corresponding
to these additional boundary modes. So, it is proposed
that boundary modes are determined to minimize their
contribution in projecting mistuning and can finally be
ignored. Since mistuning may be random, the nominal
mass and stiffness matrices of a blade ( � CB, � CB) are
used in minimizing the contribution of boundary modes.
Then, the mass and stiffness projections to the boundary
modes become����� � CB � � � � CB� � " � � CB

ii � CB
ib� CB

ib

" � CB
bb
� � � CB� � (8a)��� � � CB � � � � CB� � " � � CB

ii � CB
ib� CB

ib

" � CB
bb
� � � CB� � � (8b)

where the subscript i and b denote the interior DOF and
the boundary DOF respectively. Now, by taking the first
variation of

���
and
���

in � CB, the boundary modes to
minimize the mass and stiffness projections, � CB � � and� CB � � , can be obtained from the following equations:� CB

ii
� CB � � % � CB

ib
��	 (9a)� CB

ii
� CB � � % � CB

ib
��	 ( (9b)

Since the nominal mass and stiffness matrices are used
for the projections, the projections represent kinetic en-
ergy and stiffness energy of a tuned blade by the bound-
ary motion. Therefore, the obtained boundary modes are
the modes to minimize their contribution in kinetic en-
ergy and stiffness energy of a tuned blade. It can also

be observed from Eq. (9) that, if no mistuning exists in
boundary elements, only � CB

ii and � CB
ii will be used for

Eq. (8) and (9), and the boundary modes will be null ma-
trices and provide no contribution to the mistuning pro-
jection. Here, it should be noted that � CB � � is the set of
Craig-Bampton constraint modes of a cantilevered blade.

Now, the blade motion in tuned-system modes is de-
scribed by cantilevered-blade normal modes and bound-
ary modes as follows:

	
S� � 
 �

������
 ������
� 	

CB � CB � �� � � ��� CB � �� � (�
CB� � ( �� 	

CB � CB � �� � � � � CB � �� � (�
CB� � ( � � (10)

where
	

S� � 
 is the 7 th blade portion of tuned-system

modes and
�

CB � �� � ( ,
�

CB� � ( ,
�

CB � �� � ( , and
�

CB� � ( are the modal
participation factors of cantilevered-blade normal modes
and boundary modes for the 7 th blade portion. There-
fore, all the blade portion can be expressed as follows:	

S� ��� � ����� CB � � � � CB � �� ����� CB � � � � CB � � � (11)

where�
CB � � � � 	 CB � CB � �� � � � CB � � � � 	 CB � CB � �� � �
�

CB � � ��������
...�

CB � �� � (�
CB� � (
...

������� �
CB � � � ������

...�
CB � �� � (�
CB� � (
...

������� �
and
�

denotes a Kronecker product. The modal partici-
pation factors can be easily calculated because a tuned
system is a structure with cyclic symmetry (see Ap-
pendix). Inserting Eq. (11) into Eq. (7), the reduced mass
and stiffness matrices become� syn� � % � CB � � ""! �#��� CB � � "%$ � � � �#��� CB � � � � CB � �� � % �	�����/��0�, 1" $ $ $ " % � � CB � �( " �

CB � � " � �( � CB � � � CB � �( 

� � % �	�����/��0�, 1" $ $ $ " %

� �
CB � �( " � � � �)� � ( � � � � � (� � � � � ( " � �� � � ( � � CB � �( �

(12a)
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 syn� � S % � CB � � " ! �#��� CB � � " $ � � � �#� � CB � � � � CB � �� � S % ������������! #" $ $ $ " % � � CB � �( " �
CB � � " � �( � CB � � � CB � � 


� � S % ������������! #" $ $ $ " %
� �

CB � �(
" � 
 � �)� � ( 
 � � � � (
 � � � � ( " 
 �� � � ( � � CB � � � �

(12b)

where � � �)� � ( � 	 CB

" � �ii � ( 	 CB� � � � � ( � 	 CB

"
& � �ii � ( � CB � � % � �ib � ( )� �� � � ( � � CB � � " & � �ii � ( � CB � � % � �ib � (,)% � �ib � ( " � CB � � % � �bb � (
 � �)� � ( � 	 CB

" � �ii � ( 	 CB
 � � � � ( � 	 CB

"
& � �ii � ( � CB � � % � �ib � (,)
 �� � � ( � � CB � � " & � �ii � ( � CB � � % � �ib � (,)% � �ib � ( " � CB � � % � �bb � ( (

Since ���( and ���( are not necessarily proportional

to the nominal matrices,
�

CB � � " � �( � CB � � and�
CB � � " ���( � CB � � are full matrices as shown in Eq. (12).
In most cases, only a few modal participation factors

(usually, just one in unshrouded rotor cases) are domi-
nant, because the blade motion in a tuned-system normal
mode tends to be well correlated to that of a cantilevered-
blade normal mode. (This will be discussed again in sec-
tion 5.) Therefore, a small number of mistuning values
( � � �)� � ( and 
 � �)� � ( ) and factors (

�
CB � �� � ( and

�
CB � �� � ( ) cor-

responding to those dominant modes are sufficient for
normal mode partitions. Hence, the size of the matrices
of mistuning projected to cantilevered-blade component
modes is the number of dominant normal modes plus the
number of all the boundary modes. When mistuning is
non-proportional, this reduced size of mistuning matri-
ces allows highly efficient Monte Carlo simulation with
random mistuning values.

Eq. (12) can be used for any mistuned bladed disk.
But, it is still required to know the mistuning values re-
lated to the boundary modes, which cannot be measured.
Now, suppose that the displacements at the blade struc-
tural boundaries in the tuned-system normal modes are
very small, so that kinetic energy and strain energy due to
the boundary displacements are negligible, or that there
is no mistuning in the boundary elements. Then, only
the dominant cantilevered-blade normal modes are suf-
ficient to project mistuning without losing accuracy. In
that case, the partitions related with boundary modes can
be ignored and the reduced mass and stiffness matrices

can be approximated as follows:� syn �� � % �������/����! #" $ $ $ " % � � CB � �� � ( " � � �)� � ( � CB � �� � ( 
 (13a)
 syn �� � S % �	�-�.�/����! 1" $ $ $ " % � � CB � �� � ( " 
 � �)� � ( � CB � �� � ( 
 ( (13b)

Note that � � �)� � ( and 
 � �)� � ( still have off-diagonal
terms. For simplicity, if only one cantilevered-blade nor-
mal mode is dominant in the description of the blade por-
tion of a tuned-system normal mode, only diagonal terms
of � � �)� � ( and 
 � �)� � ( have dominant effects in computing
the matrix operation. In that case, Eq. (13) becomes� syn �� � % �	�-�.�/����! 1" $ $ $ " % � � CB � �� � � ( " �����/���� �

��� � �)� � � ( � � CB � �� � � ( 

(14a)
 syn �� � S % �	�����/��0�, 1" $ $ $ " % � � CB � �� � � ( " ���������� �

�
	 � �)� � � ( � � CB � �� � � ( 
 �
(14b)

where � �� � �)� � ( �
� CB�
" � �ii � ( � CB�

	 �� � �)� � ( �
� CB�
" � �ii � ( � CB� � (15)

and � is a set of dominant cantilevered-blade normal
modes.

Now, the estimation of the modal mistuning values
( � � �)� � ( and 
 � �)� � ( ) is discussed. These mistuning val-
ues can be computed if the natural frequencies and mode
shapes of mistuned blades are known and the mode
shapes of a tuned and mistuned blades are similar, which
is usually the case when mistuning is small. For exam-
ple, the approximate expression for the diagonal terms of� � �)� � ( and 
 � �)� � ( to be used in Eq. (15) is shown below.

When the eigenvalue (
�

CB( ) and mode shapes (
	

CB( )
of the 7 th real (mistuned) blade are known, the following
two approximations can be written:� � 	 CB( " � � CB

ii
% � �ii � ( � 	 CB(� 	 CB( " � CB

ii

	
CB( % � ( " 	 CB

" � �ii � ( 	 CB � (� 	 CB( " � CB
ii

	
CB( % � ( " � � �)� � ( � ( (16a)�

CB( � 	 CB( " � � CB
ii
% � �ii � ( � 	 CB(� 	 CB( " � CB

ii

	
CB( % � ( " 	 CB

" � �ii � ( 	 CB � (� 	 CB( " � CB
ii

	
CB( % � ( " 
 � �)� � ( � ( �

(16b)

where � ( is a matrix consisting of the modal partici-
pation factors of tuned cantilevered-blade normal modes
for the 7 th mistuned cantilevered-blade normal mode.
From these equations, � � �)� � ( and 
 � �)� � ( can be computed
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as follows:� � �)� � ( �� � (�� " ! � � 	 CB( " � CB
ii

	
CB( $ � (�� (17a)
 � �)� � ( �� � ( � " ! � CB( � 	 CB( " � CB

ii

	
CB( $ � ( � �

(17b)

where � ( � is a generalized inverse of � ( .
If only the eigenvalues (or natural frequencies) of mis-

tuned blades are known, mistuning values in modal co-
ordinates ( � � �)� � ( and 
 � �)� � ( ) cannot be obtained without
an additional assumption that the mode shapes of tuned
and mistuned blades are the same, i.e.,

	
CB( � 	 CB and� ( � � . With this assumption, only the diagonal terms

exist in 
 � �)� � ( and no mistuning for mass is allowed. So,
the mistuning values become
 � �)� � ( � � CB( � � CB � (18)

where
�

CB is consisting of the eigenvalues of a tuned
cantilevered blade. This estimation of modal mistuning
values can be a good approximation because the mode
shapes of tuned and mistuned blades are almost the same
when mistuning is very small. Note that these eigenvalue
mistuning values are already employed in the study by
Bladh et al.14

So far, the synthesized mass and stiffness matrices of a
reduced-order model have been derived using the CMM
technique, as in Eq. (12), (13), and (14), and the method
to determine the modal mistuning values from the eigen-
values and mode shapes of mistuned blades has been dis-
cussed. In the next section, aerodynamic coupling matri-
ces are discussed.

3.3 Aerodynamic Coupling
Typically, aerodynamic coefficients are obtained us-

ing unsteady aerodynamic codes based on a set of
cantilevered-blade normal modes in a cyclic assem-
bly using a complex cyclic coordinate transformation.21

Therefore, using the modal participation factors that can
be computed in the same way as in the CMM method,
aerodynamic coefficients can be projected to the normal
modes of a tuned system.

Aerodynamic coefficients related to mass,
�� �

, ob-
tained by using cantilevered-blade normal modes in com-
plex cyclic coordinates are represented by the aerody-
namic coupling mass matrix in the physical coordinates,� �

, as follows:

�� � � ! ��� 	 CB

" $��	�
� � ��
 � � �	� � ��
 � ��� 	 CB �� ���

� � �

 ! ��� 	 CB

" $ � � � ��� 	 CB � ��� � �

 �
(19)

where

�
is the complex Fourier matrix. Hence, the

aerodynamic coupling mass matrix in the tuned-system

modal coordinates, � a, becomes� a � 	 S� " � � 	 S�� � CB� " ! ��� 	 CB

" $ � � � ��� 	 CB � � CB�� � CB� "���� � ��
 �� � ��� � � ��
 � CB� ( (20)

In the same way, the aerodynamic coupling stiffness ( 
 a)
and damping ( � a) matrices can be obtained.

Eventually, the equation of motion for a small-
mistuned system influenced by aerodynamic coupling
can be expressed as

& �����
� � syn % � a


 %�� � � a% � 
 %���� 
 
 syn % 
 a ) � S� � 	 S

"�� ( (21)

4. Large Mistuning Case Study

The industrial rotor illustrated in Fig. 1 is used in this
study. This rotor is the second stage of a four drum com-
pressor rotor used in an advanced gas turbine application.
The rotor features 29 blades. The design is referred to
as a blisk, since the blades and disk are machined from
a single piece of material. The rotor model is clamped
at the ribs located at the outer edge of the disk, which
is a rough approximation of boundary conditions due
to neighboring stages. The rotor model is constructed
with standard linear brick elements (eight-noded solids).
There are 126,846 DOF in the full model.

Fig. 2 displays the tuned natural frequencies versus
number of nodal diameters for the studied rotor. A fi-
nite element model of a sector of the rotor was used to
obtain the tuned natural frequencies and normal modes.
The nearly horizontal connecting lines correspond to
tuned-system normal modes dominated by blade motion,
while the slanted connecting lines correspond to tuned-
system normal modes dominated by disk motion. Hence,
the horizontal lines can be characterized by a cantilever
blade normal mode that dominates the blade motion.
For instance, the lowest blade-dominated mode family
is dominated by the first flexural bending mode (1F), and
the second lowest blade-dominated mode family is dom-
inated by the first torsional mode (1T). The characteriza-
tion of blade-dominated mode families are listed on the
right-hand side of horizontal lines in Fig. 2, where S de-
notes a stripe mode and R denotes elongation in radial
direction.

For this large mistuning case study, only one blade
is considered to have large mistuning and all the other
blades are tuned. The mistuning is introduced by chang-
ing the geometry of the blade, which is called a rogue
blade in this paper. It is assumed that the geometry is
known and mass density and Young’s modulus are con-
stant. Therefore, �*� and ��� , which are required to be
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Fig. 2: Natural frequencies versus number of nodal di-
ameters for the unshrouded tuned rotor FEM

known to build a reduced-order model for large mistun-
ing, can be obtained using the geometry. The finite ele-
ment model of the rogue blade is depicted in Fig. 3. To
build a reduced-order model of a rotor with large mistun-
ing, only the one-sector finite element model is sufficient.
The attachment modes corresponding to all the DOF of
the rogue blade are obtained using cyclic symmetry and
the one-sector model.

The size of the resulting reduced-order model is deter-
mined by the number of tuned-system normal modes in a
truncated set plus the number of attachment modes. For
this large mistuning case study, a reduced-order model
for the frequency range of 32–36 kHz is built and the re-
sults are compared with those of the finite element model
of a full mistuned bladed disk. The frequency range for
tuned-system normal modes to be employed should be
selected to include 32–36 kHz. The required attachment
modes are those corresponding to the nodes where � �
and ��� exist. For the test case, all the nodes in the
blade are chosen for the attachment modes. Therefore,
the model has 66 (tuned normal modes in 32–36 kHz)% 2496 (attachment modes) DOF. Although this size is
much greater than that of an ROM for the small mistun-
ing case, it is still a reduced model compared to the full
FEM with 126,846 DOF. Once a modal analysis is done
for the reduced-order model, 66 normal modes of the
mistuned system may be enough to compute the forced

Fig. 3: Rogue blade model
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Fig. 4: Convergence of average eigenfrequency error for
the largely mistuned rotor

responses for 32–36 kHz.
For the validation of the presented method, the conver-

gence of natural frequencies is tested by increasing the
number of tuned-system normal modes, and the forced
response calculated with the ROM is compared to the
FEM results. First, Fig. 4 shows the average natural
frequency error versus number of tuned-system normal
modes. The tested frequency ranges for the tuned-system
normal mode basis are 32–36, 26–43, and 22–45 kHz,
and the 66 estimated mistuned natural frequencies that
exist between 32 and 36 kHz are chosen for comparison
with the FEM results. As can be seen in Fig. 4, the es-
timated natural frequencies converge as the number of
tuned-system normal modes increases.

Next, forced responses are discussed. Since, from
Fig. 4, it is clear that 136 tuned normal modes in 26–43
kHz and attachment modes are sufficient to describe the
behavior of the mistuned system at 32–36 kHz, 136 tuned
normal modes and 2496 attachment modes are used to
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Fig. 5: Forced responses as obtained by the FEM and an
ROM(2,632 DOF) for two cases of engine order excita-
tion

build a reduced-order model. The 66 estimated natural
frequencies and mode shapes of the model are chosen
as the estimated mistuned modes in the range of 32–36
kHz, in order to compute forced responses. The applied
forces are unit loads normal to the blade surface on one
of the nodes at the tip of each blade, and engine order 1
and 5 excitations are considered. Euclidean displacement
norms for each blade are computed and the maximum
value is taken as the amplitude of the forced response at
every excitation frequency. The results are shown and
compared with FEM results in Fig. 5. As can be seen,
the results from the reduced-order model match very well
with the results from the FEM.

In Fig. 5, note that one resonant frequency appears
around 34.3 kHz in the responses of the mistuned system
but not in the responses of the tuned system. The other
two largest resonant frequencies are almost the same as
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Fig. 6: Mistuned modes: the 4th, 30th, 36th, 41st, and
66th modes of the 66 mistuned modes in the 32–36 kHz
range

those of the tuned system. In the case of engine order
1 excitation, the first main peak corresponds to the 30th
mode of the 66 mistuned modes in 32–36 kHz, the sec-
ond peak corresponds to the 36th mode, and the third
peak corresponds to the 66th mode. In the case of engine
order 5 excitation, the three largest peaks correspond to
the 4th, 36th mode, and 41st modes. The displacement of
a node at the tip of each blade in these modes is depicted
in Fig. 6. The lines for the 30th and 66th modes are
nearly sinusoidal waves of harmonic 1 along the blade
numbers, and the lines for the 4th and 41st modes are
nearly sinusoidal waves of harmonic 5. But, the 36th
mode is extremely localized to blade 1, which is the
rogue blade. One more thing to note is that the displace-
ment of blade 1 in the 30th, 66th, 4th, and 41st modes is
small relative to those of other blades. This is because the
natural frequencies and mode shapes of the cantilevered
rogue blade are significantly different from the others.

5. Small Mistuning Case Study

The CMM method can handle many different kinds of
small mistuning in blades. In this paper, for simplicity,
mistuning is introduced into the assembly by varying the
Young’s modulus of blades slightly. That is, only stiff-
ness is mistuned. Young’s modulus in a blade is deter-
mined as follows:

� ( � ��� � 
 %����( 
 �
where

� �
is nominal Young’s modulus,

� ( is the
Young’s modulus of the 7 th blade, and � �( is non-
dimensional mistuning parameter for the Young’s modu-
lus of the 7 th blade. If � �( is constant in a blade, which
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Blade-Alone ModelOne-Sector Model

Fig. 7: One-sector model and blade-alone model of an
industrial rotor

means proportional mistuning, the natural frequencies of
all the cantilevered-blade normal modes will deviate in
same percentage and the mode shapes will remain same.
Otherwise, the natural frequency deviation patterns will
be different for each mode type, and the associated mode
shapes will change.

To build a CMM-based reduced-order model of the ro-
tor, the following two tuned finite element models are
required, as depicted in Fig. 7:

1. A one-sector model from which the normal modes
of the tuned system are obtained via cyclic sym-
metry analysis. (Commercial FEA software pack-
ages, such as MSC/NASTRAN, have cyclic sym-
metry routines.) There are 4,374 DOF per sector in
the finite element model.

2. A blade-alone model from which the cantilevered-
blade normal modes and the static boundary modes
are obtained. This model has a total of 2,496 DOF,
and there are 96 DOF at the interface between the
blade and the disk.

From the one-sector model, the tuned natural frequen-
cies as well as the tuned mode shapes were obtained. As
can be seen in Fig. 2, numerous eigenfrequency veering
regions exist. Earlier studies11, 23 have shown that maxi-
mum amplitudes of mistuned forced responses are likely
to occur in veering regions. Therefore, the ability to cap-
ture mistuned modes and natural frequencies correspond-
ing to veering regions is one of the most important factors
for assessing the performance of a modeling method. In
order to validate reduced models obtained by the CMM

method, the natural frequencies, mode shapes and forced
responses by the CMM method are compared with those
by a full finite element model. Two eigenfrequency veer-
ing regions are investigated: one is located at three nodal
diameters, around 28 kHz (region1); the other is located
at five nodal diameters, around 34 kHz (region 2). These
veering regions are labeled in Fig. 2.

For the studied rotor, the displacements at the blade
roots are very small compared to those at the blade in-
terior parts, such that the contribution to strain energy
by boundary modes defined at the blade-disk boundary
can be neglected. So, normal mode mistuning projec-
tion is sufficient for a mistuned reduced-order model. In
this section, the CMM technique is validated and the ef-
fect of proportional and non-proportional mistuning on
the free and forced responses of reduced-order models is
investigated using this rotor model. In addition, with the
rotor modified to have shrouds, structural coupling and
boundary mode mistuning are discussed.

5.1 Proportional Mistuning
For the validation of the CMM technique, a mistuned

Young’s modulus value is introduced for each individual
blade. Therefore, the percentage deviations of the nat-
ural frequencies of the cantilevered blade are the same
for all modes, and the mode shapes of the tuned and
mistuned blades are the same. In this case, there are
no off-diagonal terms in 
 � �)� � ( , and only the eigen-
values of the cantilevered blades are mistuned. So,
Eq.(14) is appropriate for implementing mistuning and
 � �)� � ( can be computed using Eq. (18). Now, a non-
dimensional eigenvalue mistuning parameter, ���� � ( , is in-
troduced, which is defined as

� �� � ( � � � � ( � � � � �
� � � �

where � � � ( is the � th natural frequency of the 7 th blade
and � � is the � th natural frequency of a tuned blade.
When proportional stiffness mistuning is introduced, ���� � (
is the same for any mode � , and the eigenvalue mistun-
ing pattern will follow the pattern of the deviations of
Young’s modulus along the blades. That is, there is only
one eigenvalue mistuning pattern.

A specific mistuning pattern for eigenvalues is used to
obtain the FEM and CMM results. Table 1 shows the
eigenvalue mistuning parameters and the corresponding
blades.

The modeling method reported in this study starts
from selecting a set of tuned-system normal modes to
capture mistuned-system normal modes, and selecting a
set of cantilevered-blade normal modes to describe the
blade motion in the tuned-system normal modes. Since
the modal density is high in the investigated regions in
Fig. 2, a narrow frequency band can be chosen for a
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Blade � �( Blade � �(
1 0.05704 16 0.04934
2 0.01207 17 0.04479
3 0.04670 18 0.03030
4 -0.01502 19 0.00242
5 0.05969 20 0.01734
6 -0.03324 21 0.02919
7 -0.00078 22 -0.00328
8 -0.01688 23 0.00086
9 0.00242 24 -0.03654

10 -0.02747 25 -0.03631
11 -0.03631 26 -0.01665
12 -0.03570 27 0.00783
13 -0.03631 28 -0.01169
14 -0.03631 29 -0.01332
15 0.00242

Table 1: Eigenvalue mistuning pattern for the case study
rotor with proportional mistuning

tuned-system normal mode basis. For example, 26–29
kHz can be chosen for veering region 1. The selection of
cantilevered-blade normal modes depends on the tuned-
system normal modes chosen for a basis. Next, modal
participation factors need to be calculated using a suffi-
cient number of cantilevered-blade normal modes. And
then, by inspecting those factors, dominant cantilevered-
blade normal modes can be determined.

When modal participation factors for stiffness mis-
tuning are inspected, it should be noted that 
 � �)� � ( is
pre-multiplied and post-multiplied by the corresponding
modal participation factors in the mistuning projection.
Therefore, even if a modal participation factor is large,
it may be ignored if the corresponding natural frequency
of a tuned cantilevered blade is small. Figure 8 shows
the average modal participation factors multiplied by
the corresponding cantilevered-blade natural frequencies
versus cantilevered-blade normal modes when the lowest
30 cantilevered-blade normal modes are used to describe
the blade motion in the tuned modes in the ranges 26–29
kHz, 32–36 kHz, 14–45 kHz, and 0–50 kHz.

It should be noted that the number of cantilevered-
blade normal modes and the corresponding mistuning
patterns do not affect the size of a reduced-order model,
but they can affect the accuracy. Nevertheless, a small
number of mistuning values are desirable. From Fig. 8,
dominant cantilevered-blade normal modes required for
accurate mistuning representation can be determined.
For instance, only the 7th cantilevered-blade normal
mode is dominant for the range of 26–29 kHz, because
the weighted average modal participation factor of the
7th mode is much greater than the others. For the same
reason, the 8th and 9th modes are dominant for the fre-
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Fig. 8: Weighted average cantilevered-blade modal par-
ticipation factor for the blade motion in the tuned-system
normal modes in different frequency ranges

quency band of 32–36 kHz. This means that the eigen-
value mistuning patterns of the 7th normal mode or the
8th and 9th normal modes of cantilevered blades are
enough to predict the behavior of the mistuned system
at the veering region 1 or 2. It is also observed from
Fig. 8 that the number of dominant cantilevered-blade
normal modes increases as the frequency band for a
tuned-system normal mode basis become wide.

Once tuned-system normal modes for a basis and
dominant cantilevered-blade normal modes for mistun-
ing projection are chosen, a reduced-order model by the
CMM technique can be built with the mistuning values
shown in Table 1. Now, the results from the reduced-
order model are compared with those from the FEM.
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Fig. 9: Convergence of average eigenfrequency error

The convergences of mistuned natural frequencies and
MAC (mode assurance criteria) ratios are presented in
Fig. 9 and Fig. 10 for two frequency bands: 26–29 kHz
for the investigated region 1 and 32–36 kHz for the in-
vestigated region 2. Figure 9 shows the average error
of the mistuned-system natural frequencies estimated by
the CMM models, relative to the natural frequencies by
the FEM, versus number of retained cantilevered-blade
normal modes, starting from the lowest mode. Figure 10
shows the average MAC ratio between the estimated mis-
tuned modes and the FEM mistuned modes versus num-
ber of retained cantilevered-blade normal modes. Since
most tuned-system normal modes in the range of 26–29
kHz are dominated by the 7th cantilevered-blade nor-
mal mode (3F), the frequency error and MAC ratio sig-
nificantly improve when the 7th cantilevered-blade nor-
mal mode is employed in the CMM model. Similarly,
the frequency error and MAC ratio for the range of 32–
36 kHz show great improvement when the 8th and 9th
cantilevered-blade normal modes are employed. These
convergence trends could be predicted from Fig. 8 (a)
and (b).

For the study of forced responses, engine order exci-
tation is considered in the two veering regions indicated
in Fig. 2. For veering region 1, engine order 3 excita-
tion is applied in the frequency range of 26–29 kHz, and
for veering region 2, engine order 5 and 24 excitations
are applied in the frequency range of 32–36 kHz. In
both cases, the applied forces are unit loads which are
the same as those for the large mistuning case study in
section 4. The structural damping coefficient is taken to
be 0.006, and the effect of aerodynamic coupling is ne-
glected for simplicity.

The resulting tuned and mistuned forced responses of
veering region 1 are shown in Fig. 11 and 12. For the re-
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Fig. 10: Convergence of average MAC ratio

sult depicted in Fig. 11, 34 tuned-system normal modes
(26–29 kHz) are used to capture mistuned-system nor-
mal modes. Figure 12 provides the result when 106
tuned-system modes (22–34 kHz) are selected. In the
case of 34 tuned-system normal modes, only the 7th
cantilevered-blade normal mode is employed to project
mistuning to the tuned-system normal modes. In the case
of 106 tuned-system normal modes, the 6th, 7th, and 8th
cantilevered-blade normal modes are used because the
frequency range for the tuned-system mode basis is 22–
34 kHz. Note that the maximum amplitude of the mis-
tuned forced responses is 2.24 times larger than that of
the tuned forced responses. In Fig. 11, one can see slight
differences between the FEM results and CMM results
for both the tuned and mistuned responses, although the
average natural frequency error is 0.0075 % and the aver-
age MAC ratio is 99.8958 % for this reduced model. This
difference can be explained. All the mistuned-system
natural frequencies and mode shapes estimated by the
CMM model are in the range of 26–29 kHz. Hence,
the effect of modes out of this frequency range is not
included, and there exists a difference between CMM
results and FEM results even for tuned responses. As
can be seen in Fig. 12, when a wider frequency band is
chosen, the discrepancy between FEM results and CMM
results decreases. But, considering only peak amplitudes
at resonant frequencies, the 34-DOF CMM model results
match FEM results with negligible errors.

Veering region 2 is more complicated in terms of two
close blade-dominated mode families retained in the cor-
responding frequency range. A group of 66 tuned-system
modes (32–36 kHz) are used for the CMM modeling,
and the 8th (3T) and 9th (2S) cantilevered-blade normal
modes are used for the mistuning projection. Figures 13
and 14 depict the force responses when engine order 5
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Fig. 11: Forced response for engine order 3 excitation,
as obtained by the FEM and a 34-DOF CMM model
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Fig. 12: Forced response for engine order 3 excitation,
as obtained by the FEM and a 106-DOF CMM model

and 24 excitations are applied. These figures show ex-
cellent matches between CMM results and FEM results,
and that the effect of modes outside of 32–36 kHz is neg-
ligible. Note that, since the difference between engine
order 5 excitation and engine order 24 excitation is only
the sign of the phase angle of the force vector, the forced
responses for the tuned system in both cases are same.
But, for a mistuned system, the forced responses are dif-
ferent. The amplification factors of the maximum forced
response amplitude are 1.51 for engine order 5 excitation
and 1.34 for engine order 24 excitation.

5.2 Non-proportional Mistuning
In this section, non-proportional mistuning is consid-

ered. That is, mistuned blades have different eigenvalue
mistuning patterns for different cantilevered-blade nor-
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Fig. 13: Forced response for engine order 5 excitation,
as obtained by the FEM and a 66-DOF CMM model
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Fig. 14: Forced response for engine order 24 excitation,
as obtained by the FEM and a 66-DOF CMM model

mal modes. Therefore, the number of mistuning pat-
terns required is the number of cantilevered-blade normal
modes to be used for the mistuning projection. Although
the mode shapes of cantilevered blades change, eigen-
value mistuning values are sufficient to represent mistun-
ing if the changes in mode shapes are negligible. Hence,
Eq. (14) can be employed again, as in the proportional
mistuning case.

The non-proportionalmistuning is introduced by using
two different sets of Young’s moduli for the FEM of a
cantilevered blade. One ( � �( � � ) is for the lower left and
upper right parts of blades and the other ( � �( � � ) is for the
lower right and upper left parts of blades. The Young’s
modulus mistuning parameters are listed in Table 2, and
Fig. 15 shows the obtained eigenvalue mistuning patterns
for several cantilevered-blade normal modes.
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Blade � �( � � � �( � � Blade � �( � � � �( � �
1 0.04080 0.01030 16 0.01990 0.03120
2 -0.06110 -0.04990 17 -0.02490 -0.07530
3 0.01430 0.02780 18 0.06380 0.01350
4 -0.06230 -0.07580 19 0.03140 -0.00080
5 -0.01170 -0.00390 20 -0.01220 -0.00320
6 -0.02700 -0.03210 21 0.03390 -0.01210
7 0.05190 0.00450 22 -0.03220 -0.04590
8 -0.06720 -0.11630 23 -0.00830 0.00530
9 0.03710 0.01770 24 0.06010 0.08270

10 0.06520 0.01460 25 0.02540 0.04540
11 0.06790 0.05580 26 -0.03980 -0.08310
12 0.04000 0.05910 27 0.04700 0.04230
13 -0.00850 -0.05080 28 0.01780 0.01180
14 -0.00020 -0.04850 29 -0.05070 -0.06600
15 -0.03960 -0.02800

Table 2: Young’s modulus mistuning parameters for the
case study rotor
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Fig. 15: Mistuning patterns of eigenvalues of can-
tilevered blades corresponding to the 7th through 11th
normal mode

As can be seen in Fig. 15, the eigenvalue mistuning
patterns are slightly different from each other. Thus, in-
accurate results might be obtained by choosing one pat-
tern among them, because the dynamic characteristics of
a bladed disk are very sensitive to mistuning. Solution is
to utilize all the mistuning patterns that are available. If
there is only one blade-dominated mode family in the se-
lected frequency band for a tuned-system normal mode
basis, as in the case of the veering region 1, a single
mistuning pattern may be sufficient. However, if mul-
tiple blade-dominated mode families are close and they
are included in a reduced-order model, as in the case of
the veering region 2, every dominant cantilevered-blade
mode should have its own mistuning pattern.

The above comments are illustrated by investigating
the forced response results for excitations corresponding
to veering regions 1 and 2. For veering region 1, only a
single eigenvalue mistuning pattern corresponding to the
7th cantilevered-blade normal mode has a dominant ef-
fect on a reduced-order model as in the proportional mis-
tuning case. For the reduced-order model by the CMM
method, 106 tuned-system normal modes (22–34 kHz)
are employed for a basis. Figure 16 presents the forced
responses for veering region 1 when mistuning is pro-
jected in two different ways. One way is to apply the
7th eigenvalue mistuning pattern to the 1st through 15th
cantilevered-blade normal modes, which means that all
the modes employed are mistuned by a single mistun-
ing pattern. The other way is to apply the 6th through
8th eigenvalue mistuning patterns to the corresponding
modes, which means that the individual modes employed
are mistuned differently. It is observed that individ-
ual mode mistuning does not improve the results. This
shows again that the 7th cantilevered-blade normal mode
is dominant in the investigated frequency region, and, if
there is only one blade-dominated mode group in the fre-
quency range of interest, the response of a mistuned sys-
tem can be predicted from a single eigenvalue mistuning
pattern regardless of whether mistuning is proportional
or not. The results by the CMM model are not as good
as those for proportional mistuning in Fig. 12. This is
because the changes in mode shapes are neglected and
Eq. (14) is employed instead of Eq. (13). But, as shown
in Fig. 16, the CMM model can find resonant frequencies
and the peak values with small errors.

Figure 17 and 18 show the forced responses at 32–
36 kHz obtained by four different reduced-order mod-
els and by the FEM. As mentioned in the previous sec-
tion, there are two blade-dominated mode groups in that
range. In all four cases, 136 tuned-system normal modes
(26–43 kHz) are used as a basis for the reduced-order
model. But, mistuning projection is performed differ-
ently. For Fig. 17 (a), a single mistuning pattern of
the 8th cantilevered-blade normal mode is used, and
for Fig. 17 (b), a single mistuning pattern of the 9th
cantilevered-blade normal mode is used. In these sin-
gle mistuning pattern cases, mistuning is projected to
the lowest 15 cantilevered-blade normal modes. For
Fig. 18 (a), the two mistuning patterns of the 8th and
9th cantilevered-blade normal modes are used to project
the mistuning values to the corresponding cantilevered-
blade normal modes respectively. For Fig. 18 (b), the six
mistuning patterns of the 6th to 11th cantilevered-blade
normal modes are used for mistuning projection.

As these forced response results show clearly, the
reduced-order models with two eigenvalue mistuning
patterns and six eigenvalue mistuning patterns predict the
behavior of the mistuned system better than the other
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Fig. 16: Forced response for engine order 3 excita-
tion, as obtained by the FEM and 106-DOF CMM
models: (a) with a single eigenvalue mistuning pat-
tern of the 7th cantilevered-blade mode applied to the
1st through 15th cantilevered-blade normal modes, (b)
with three eigenvalue mistuning patterns of the 6th to
8th cantilevered-blade normal mode applied to the cor-
responding cantilevered-blade normal modes

two cases. In fact, using a single mistuning pattern
leads to poor results. This shows that, when multi-
ple blade-dominated mode groups are so close that they
interact in the response of a mistuned system, all the
eigenvalue mistuning patterns corresponding to the dom-
inant cantilevered-blade normal modes are required for
a reduced-order model. When the dynamic behavior of
a bladed disk with a few different eigenvalue mistuning
patterns is to be predicted by a reduced-order model, it
can be hard to estimate �'� in physical coordinates. Fur-
thermore, if the changes in individual mistuned mode
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Fig. 17: Forced response for engine order 5 excitation, as
obtained by the FEM and 136-DOF CMM models with
a single mistuning pattern of (a) the 8th and (b) the 9th
cantilevered-blade normal mode applied to the lowest 15
cantilevered-blade normal modes

shapes need to be considered, it is infeasible to estimate��� . Nevertheless, the CMM technique makes it easy to
project non-proportional mistuning to tuned-system nor-
mal modes.

Figure 19 shows forced responses for the same fre-
quency range as that in Fig. 18. The difference is that
the change in mode shapes are considered and Eq. (13)
is employed. The eigenvalues and mode shapes of the
1st to 15th cantilevered-blade normal modes are em-
ployed, and mistuning values corresponding to the 1st
through 15th cantilevered-blade normal modes are ob-
tained. Note that the eigenvalues and mode shapes are
obtained from the finite element models of the mistuned
blades in this study. For Fig. 19 (a), only the mistuning
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Fig. 18: Forced response for engine order 5 excitation,
as obtained by the FEM and 136-DOF CMM models
with eigenvalue mistuning patterns of: (a) the 8th and
9th cantilevered-blade normal modes applied to the cor-
responding cantilevered-blade normal modes, (b) the 6th
to 11th cantilevered-blade normal modes applied to the
corresponding cantilevered-blade normal modes

values corresponding to the 8th and the 9th cantilevered-
blade normal modes are used in the reduced-order model.
For Fig. 19 (b), the mistuning values corresponding to
the 6th and the 11th cantilevered-blade normal modes are
used. As can be seen, these results show better accuracy
than the results in Fig. 18 (c) and (d). This means that,
when the change in mode shapes are considered, the ac-
curacy can improves. Comparing Fig. 19 (a) and (b), the
results in Fig. 19 (b) are slightly better. But, Fig. 19 (a)
also shows excellent match between the results by the
ROM and by the FEM. This implies that the small num-
ber of mistuning values lead to accurate results if the
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Fig. 19: Forced response for engine order 5 excitation, as
obtained by the FEM and 136-DOF CMM models with
mistuning values obtained using eigenvalues and mode
shapes corresponding to: (a) the 8th and 9th cantilevered-
blade normal modes, and (b) the 6th to 11th cantilevered-
blade normal modes

mistuning values are accurate. Therefore, when perform-
ing Monte Carlo simulations using the CMM method, a
small number of random mistuning values are sufficient
for the description of mistuning.

5.3 Structural Interblade Coupling
In this section, the modeling method presented in this

paper is tested using a shrouded rotor. For a test case, the
unshrouded rotor in Fig. 7 is modified to have shrouds
so that the obtained shrouded rotor has the same ge-
ometry, constraints, and meshing, except for the added
shrouds. One sector of the test case shrouded rotor and
the shrouded blade are depicted in Fig. 20. Since the
effect of shroud-to-shroud friction is not considered in
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Cyclic and full stick condition Cyclic condition
Full slip condition

Fig. 20: Sector and blade models for the shrouded rotor

this study, the shroud boundary conditions are modeled
as full stick or full slip.

In the same manner as in the previous unshrouded
case, two finite element models are required to construct
a CMM model: a complete one-sector model, and a
blade-alone model with shrouds. For a one-sector model,
cyclic constraints are applied to shroud-to-shroud inter-
faces as well as disk-to-disk interfaces. These cyclic con-
straints are easily implemented for the full-stick shroud
boundary condition. However, for the full-slip bound-
ary condition, it is impossible to apply the cyclic and slip
conditions simultaneously to shroud interfaces. In order
to solve this problem, the shroud boundary and cyclic
boundary are separated as illustrated in Fig. 20. This
configuration requires adding to the FEA output the de-
flections at the left-hand shroud piece of the right-hand
adjacent sector, and replacing the output portion of the
left-hand shroud piece of the original sector, because the
mode shapes to be obtained from the one-sector model
should be described by cantilevered-blade normal modes
obtained from the shrouded blade-alone model.

The tuned-system natural frequencies versus number
of nodal diameters are depicted in Fig. 21, as obtained
from a finite element analysis of the one-sector models.
Obviously, the steep lines to the left in Fig. 21 corre-
spond to disk-dominated modes, as in the case of un-
shrouded rotors. However, the lines to corresponding to
blade-dominated modes are not as horizontal as in the
case of unshrouded rotors. This is because the blades are
directly coupled by shrouds, and therefore, the dynamic
stiffness increases as the number of nodal diameters in-
creases. But, if the motion of a blade conforms to the
motion of the shrouds, the effect of this stiffening can
decrease. For example, the natural frequencies in the sec-
ond torsional mode family (2T) of the full-stick shroud
interface case in Fig. 21 decrease after nine nodal diam-
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Fig. 21: Natural frequencies versus the number of nodal
diameters for the shrouded tuned rotor FEM

eters. This stiffening effect makes it difficult to predict
mistuned-system normal modes of a shrouded rotor rela-
tive to an unshrouded rotor because the modal density of
a shrouded rotor is not as high. That is, since the modes
are not closely spaced, more tuned-system normal modes
are required to capture mistuned-system normal modes
than for the case of a unshrouded rotor.

However, there still exist the regions of high modal
density. Two regions are chosen to be studied; one is
located at six nodal diameters around 20 kHz for full-
slip shrouds (region 3), and the other is located at twelve
nodal diameters around 25.5 kHz for full-stick shrouds
(region 4). For these two regions, forced responses are
obtained by CMM models and FEMs, and they are com-
pared to validate CMM models.

For a blade-alone model, there are two kinds of struc-
tural boundaries. One is the disk-blade boundary and the
other is a shroud-to-shroud boundary. The displacements
at the disk-blade boundary are very small as in the case
of the unshrouded model. But, the displacements at the
shroud-to-shroud boundaries are not negligible. So, two
different cantilevered blade models are available. One
is a free-shroud model in which the disk-blade boundary
is set to be fixed and the shroud-to-shroud boundaries are
set to be free. The other is a fixed-shroud model in which
all the boundaries are fixed.

A free-shroud model may not describe well the mo-
tion around the shroud-to-shroud boundaries, and the
number of cantilevered-blade normal modes required to
project mistuning can be more than that for a fixed-
shroud model. But, since the displacements at the disk-
blade boundary are very small, the effect of the mis-
tuning corresponding to the boundary modes can be ig-
nored, and normal-mode mistuning projection can be
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Fig. 22: Weighted average cantilevered-blade modal
participation factors for the blade motion in the tuned-
system normal modes of the shrouded rotors with differ-
ent shroud-to-shroud boundaries and blade-alone models

used. Therefore, Eq. (13) and (14) can be used for a free-
shroud model, and individual mode mistuning is allowed.

A fixed-shroud model can describe better the blade
motion. However, the boundary modes should be in-
cluded for the mistuning projection in a CMM model,
and only Eq. (12) is available. Since it is not practi-
cal to obtain the boundary mode mistuning values by
measurements, actual non-proportional mistuning cannot
be correctly implemented into an ROM. Nevertheless, if
proportional mistuning is assumed, a fixed-shroud model
will give better results than those of a free-shroud model.
In order to compare these two kinds of blade-alone mod-
els with shrouds, proportional mistuning is introduced,
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Fig. 23: Convergence of average eigenfrequency error
for the shrouded rotor models with different shroud-to-
shroud boundary conditions, as obtained by using differ-
ent blade-alone models

and the mistuning pattern in Table 1 is used.
For the mistuned-system normal modes around 20

kHz of the shrouded rotor with slip-conditioned shrouds,
36 tuned-system normal modes (19–23 kHz) are cho-
sen for a basis. For the mistuned-system normal modes
around 25.5 kHz of the shrouded rotor with stick-
conditioned shrouds, 59 tuned-system normal modes
(23–29 kHz) are chosen. Then, the modal participation
factors of cantilevered-blade normal modes can be ob-
tained using a free-shroud cantilevered blade and a fixed-
shroud cantilevered blade. The average modal participa-
tion factors weighted by the corresponding natural fre-
quencies are displayed in Fig. 22. It can be seen that the
modal participation factors of the higher modes in the
free-shroud case (Fig. 22 (a) and (b)) are not as small
as in the fixed-shroud case (Fig. 22 (c) and (d)). This
is because more of the higher cantilevered-blade normal
modes are required to describe shroud boundary motion.
Yet, the lower modes are still more important.

The convergence of mistuned-system natural frequen-
cies are tested by increasing the number of cantilevered-
blade normal modes used in the description of tuned-
system normal modes. The results are shown in Fig. 23.
Both the free-shroud and the fixed-shroud models are
tested with full-slip and full-stick boundary conditions.
Only when the fixed-shroud model is employed, bound-
ary mode mistuning projection is included. The fixed-
shroud model shows a fast convergence rate, while the
convergence rate of the free-shroud model is slower after
several modes are included.

For forced responses, unit loads are applied at the
same locations as in the study of the previous unshrouded
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Fig. 24: Forced response for engine order 6 excitation,
for both tuned and mistuned rotors with slip-conditioned
shrouds, as obtained by the two different 36-DOF CMM
models and by the FEM
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Fig. 25: Forced response for engine order 12 excita-
tion, for both tuned and mistuned rotors with stick-
conditioned shrouds, as obtained by the two different 59-
DOF CMM models and by the FEM

rotor. Engine order 6 excitation is considered for the full-
slip shroud case, and engine order 12 excitation is con-
sidered for the full-stick shroud case. For both cases,
the lowest 15 cantilevered-blade normal modes are em-
ployed for normal mode mistuning projection. The re-
sulting forced responses are shown in Fig. 24 and 25.

Although the results for the shrouded rotor are less
accurate than those of the previous unshrouded rotor,
the errors in resonant frequencies and magnitudes of re-
sponses are acceptable, considering that the modal den-
sity is not as high as that of an unshrouded rotor. As

can be predicted from Fig. 23, the fixed-shroud model
leads to obviously better results than does the free-shroud
model. So, for the test-case shrouded rotor, restrain-
ing the shroud-to-shroud boundary and using boundary
mode mistuning projection is the most appropriate ap-
proach. But, if mistuning is non-proportional, a free-
shroud model should be considered.

6. Conclusions

A general reduced-order model (ROM) for a mis-
tuned system has been developed by dividing a mis-
tuned system into a tuned system and virtual mistun-
ing components, regardless of the amount of mistuning.
The model employs tuned-system normal modes and at-
tachment modes to represent mistuned-system normal
modes. From the general ROM, a compact ROM for a
bladed disk with small blade mistuning has been also
developed by the component mode mistuning (CMM)
method, in which a mistuning projection is performed us-
ing the modal participation factors of cantilevered-blade
component modes.

In the CMM method, the finite element models of a
tuned sector and a tuned cantilevered blade are required.
Cantilevered-blade normal modes and boundary modes
are employed to describe the blade motion of the tuned-
system normal modes that are obtained from the one-
sector model. Thereby, mistuning values in the modal
domain of the cantilevered-blade component modes are
projected onto the tuned-system normal modes. Since
the boundary modes in this paper are defined to minimize
the corresponding modal mistuning values, the bound-
ary modes can be neglected when the mistuning values
in the elements near the boundaries are much smaller
than those in the interior elements, or when the dis-
placements at the boundaries in the tuned-system normal
modes are much smaller than those at the interior part of
a blade. Therefore, in many cases, modal mistuning val-
ues corresponding to cantilevered-blade normal modes
are sufficient to predict the response of a mistuned sys-
tem. This means that the implementation of actual arbi-
trary mistuning in an ROM is efficiently achieved. The
modal mistuning values corresponding to cantilevered-
blade normal modes can be computed easily, relative to
the mistuning values in the physical domain from the nat-
ural frequencies and mode shapes of mistuned blades, as
demonstrated in section 3.2.

The modal participation factors of the cantilevered-
blade normal modes for the description of the blade
motion in the tuned-system normal modes are also
used for the implementation of aerodynamic coupling.
Aerodynamic effects are represented by aerodynamic
coefficients in complex cyclic modal coordinates of
cantilevered-blade normal modes. Thereby, the aero-
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dynamic coefficients can be projected onto the tuned-
system normal modes.

The general ROM was validated using an industrial
turbomachinery rotor with a rogue blade obtained by
changing the blade geometry. It was observed that the
estimated natural frequencies of the mistuned rotor con-
verge rapidly as the selected number of tuned-system
normal modes is increased. Also, the forced response
results from the ROM (2,632 DOF) and the full finite el-
ement model (126,846 DOF) show very good agreement.

The CMM method for small blade-mistuning was also
validated using the same industrial rotor for proportional
and non-proportional stiffness mistuning cases. By in-
specting the modal participation factors, it was found
that there are dominant cantilevered-blade modes that
are sufficient for mistuning representation by themselves.
For proportional mistuning, a single eigenvalue mistun-
ing pattern was sufficient for mistuning implementation.
For non-proportional mistuning, the mistuning values
corresponding to individual dominant cantilevered-blade
modes were required when two blade-dominated mode
groups were close. Selecting just one eigenvalue mistun-
ing pattern produced poor results.

Structural interblade coupling was investigated in the
view of the application of the CMM method, using a
shrouded rotor obtained by modifying the original in-
dustrial rotor in which proportional mistuning was in-
troduced. The CMM models obtained from two dif-
ferent blade-alone models (free-shroud and fixed-shroud
model) were compared. For the free-shroud model,
boundary-mode mistuning was neglected, as in un-
shrouded rotor cases. For the fixed-shroud model,
boundary-mode mistuning was included, and the effect
of mistuning was captured better. However, it should
be noted that, if mistuning is non-proportional, only the
free-shroud model can be used.

Acknowledgments

This work is supported by the GUIde Consortium on
blade durability at Carnegie Mellon University.

References

�

Wagner, J. T., “Coupling of Turbomachine Blade Vi-
brations Through the Rotor,” ASME Journal of Engi-
neering for Power, Vol. 89, No. 4, 1967, pp. 502–512.

� Dye, R. C. F. and Henry, T. A., “Vibration Ampli-
tudes of Compressor Blades Resulting From Scatter
in Blade Natural Frequencies,” ASME Journal of En-
gineering for Power, Vol. 91, No. 3, 1969, pp. 182–
188.

�

Ewins, D. J., “The Effects of Detuning Upon the
Forced Vibrations of Bladed Disks,” Journal of Sound
and Vibration, Vol. 9, No. 1, 1969, pp. 65–79.

�

Ewins, D. J., “A Study of Resonance Coincidence in
Bladed Discs,” Journal Mechanical Engineering Sci-
ence, Vol. 12, No. 5, 1970, pp. 305–312.

�

El-Bayoumy, L. E. and Srinivasan, A. V., “Influence
of Mistuning on Rotor-Blade Vibrations,” AIAA Jour-
nal, Vol. 13, No. 4, 1975, pp. 460–464.

�

Griffin, J. H. and Hoosac, T. M., “Model Develop-
ment and Statistical Investigation of Turbine Blade
Mistuning,” ASME Journal of Vibration, Acoustics,
Stress, and Reliability in Design, Vol. 106, 1984,
pp. 204–210.

�

Wei, S. T. and Pierre, C., “Localization Phenomena in
Mistuned Assemblies with Cyclic Symmetry, Part I:
Free Vibrations,” ASME Journal of Vibration, Acous-
tics, Stress, and Reliability in Design, Vol. 110, No. 4,
1988, pp. 429–438.

�

Wei, S. T. and Pierre, C., “Localization Phenomena
in Mistuned Assemblies with Cyclic Symmetry, Part
II: Forced Vibrations,” ASME Journal of Vibration,
Acoustics, Stress, and Reliability in Design, Vol. 110,
No. 4, 1988, pp. 439–449.

�

Lin, C.-C. and Mignolet, M. P., “An Adaptive Pertur-
bation Scheme for the Analysis of Mistuned Bladed
Disks,” ASME Journal of Engineering for Gas Tur-
bines and Power, Vol. 119, No. 1, 1997, pp. 153–160.

���

Irretier, H., “Spectral Analysis of Mistuned Bladed
Disk Assemblies by Component Mode Synthesis,” in
Vibrations of Bladed Disk Assemblies, Proceedings
of the ASME 9th Biennial Conference on Mechanical
Vibration and Noise, Dearborn, Michigan, 1983, pp.
115–125.

� �

Kruse, M. J. and Pierre, C., “Forced Response of
Mistuned Bladed Disks Using Reduced-Order Mod-
eling,” Proceedings of the 37th AIAA/ASME Struc-
tures, Structural Dynamics, and Materials Confer-
ence, Salt Lake City, Utah, 1996.

� � Kruse, M. J. and Pierre, C., “Dynamic Response of an
Industrial Turbomachinery Rotor,” Proceedings of the
32nd AIAA/ASME/SAE/ASEE Joint Propulsion Con-
ference and Exhibit, Lake Buena Vista, Florida, 1996.

�	�
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APPENDIX: Modal Participation Factors of

Cantilevered-Blade Normal Modes

Since a tuned bladed disk is a structure of cyclic sym-
metry, a full system mode can be represented by a mode
for one sector in cyclic coordinates and its harmonic
number. Therefore, once the modal participation factors
for the blade portion of a cyclic one-sector mode are ob-
tained, all the factors for the corresponding full system
mode in physical coordinates can be easily computed.

Tuned-system normal modes can be obtained from a
one-sector finite element model as	

S � � � � �

 ����������� �, 1" $ $ $ " � � �	 S� 
 � (22)

where
�

is a real Fourier matrix,
��	�����/�� �! #" $ $ $ " � 254 6 denotes a

pseudo-block-diagonal matrix, and
�	

S� is a real cyclic
normal mode set corresponding to harmonic � . In this
manner, the blade portion of tuned-system normal modes
in physical coordinates is expressed as follows:	

S� � � � � ��
 ��	�-�.�/�� �, 1" $ $ $�" � � �	 S� � � 
 (23)

Now,
�	

S� � � is described by cantilevered-blade compo-
nent modes.

�	
S� � � � � �	 S

i � � � ��	
S
b � � � � � �

������
 ������
� 	

CB � CB � �� � � � �� CB � �� � ��� CB � �� � �*�� 	
CB � CB � �� � � � �� CB � �� � ��� CB � �� � � � �

(24)
where

�	
S
i � � � � and

�	
S
b � � � � correspond to the interior DOF

and the boundary DOF of a cantilevered blade of which
the boundary is fixed, and

�� CB � �� � � ,
�� CB � �� � � ,

�� CB � �� � � , and�� CB � �� � � correspond to participation factors of cantilevered-
blade normal and boundary modes in the blade portion of
cyclic tuned-system normal modes of harmonic � . From
Eq. (24), it is obvious that

�� CB � �� � � � �� CB � �� � � � �	
S
b � � � � ( (25)

Before calculating the modal participation factors of
cantilevered-blade normal modes, it should be noted that
the normal modes and the boundary modes of a can-
tilevered blade are orthogonal with respect to nominal
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mass and stiffness matrices. For the proof, using Eq. (9),� 	 CB� � " � � CB
ii � CB

ib� CB
ib

" � CB
bb
� � � CB � �� �� � 	 CB� � " � � CB

ii
� CB � � % � CB

ib� CB
ib
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bb
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" � CB � � % � CB
bb
� � �

(26a)
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(26b)

Using these orthogonality conditions,
�� CB � �� � � and

�� CB � �� � �
can be obtained from Eq. (24) as follows:� 	����� � " � CB

�	
S� � �� � 	 CB� � " � CB � 	 CB � CB � �� � � � �� CB � �� � ��� CB � �� � � �� &

� � ) � �� CB � �� � ��� CB � �� � � � � �� CB � �� � �
(27a)
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Once
�� CB � �� � � and

�� CB � �� � � are obtained,
�

CB � �� � ( and
�

CB � �� � (
are expressed using the real Fourier matrix,

�
, and Kro-

necker product in the same manner as in Eq. (22) and
(23). That is,
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