
Copyright ©1997, American Institute of Aeronautics and Astronautics, Inc.

AIAA Meeting Papers on Disc, January 1997
A9715279, F49620-94-1-0399, W-7405-Eng-82, AIAA Paper 97-0198

An octree solution to conservation laws over arbitrary regions (OSCAR)

Eric F. Charlton
Michigan Univ., Ann Arbor

Kenneth G. Powell
Michigan Univ., Ann Arbor

AIAA, Aerospace Sciences Meeting & Exhibit, 35th, Reno, NV, Jan. 6-9, 1997

An octree-based method is presented for the automatic grid generation and CFD solution of flows around complicated
geometries. This method decouples the input surface and resultant volume grid so that the user need only be concerned with
the actual input geometry and flow conditions. To encourage its use as a design tool, a complete parametric aircraft
specification has been added to rapidly generated well-formed input geometries and model realistic aircraft shapes; support is
included for embedded boundary conditions to handle jet engines and propellers. Object-oriented programming is used for
the implementation, and coarse-grain parallel computing code has also been used to reduce the time required for the
computation. (Author)

Page 1

An Octree Solution to Conservation-laws over Arbitrary Regions
(OSCAR)*
AIAA 97-0198

Eric. P. Charltont Kenneth G. Powell*

JanuaryG, 199T

Abstract

An octree-based method is presented for the au-
tomatic grid generation and computational fluid
dynamics solution of flows around complicated
geometries. This method decouples the input
surface and resultant volume grid so that the
user need only he concerned with the actual
input geometry and flow conditions. To en-
courage its use as a design tool, a complete
parametric aircraft specification has been added
to rapidly generate well-formed input geome-
tries and model realistic aircraft shapes; support
is i nc luded for embedded boundary conditions
to handle jet engines and propellers. Object-
oriented programming is used for the implemen-
tation, and coarse-grain parallel computing code
has also been used to reduce the time required
for the computation.

1 Introduction

Computational fluid dynamics (CFD) has pro-
gressed very rapidly through the years, but the
key difficulty of building a suitable grid for com-
putation remains a significant cause of the delay
between forming a flow problem to be solved and
actually understanding the resultant flow field.

"Copy right© 199T by Eric F. Charlton. Published by
the American Institute of Aeronautics and Astronautics,
Inc. wi th permission.

^Graduate Student Research Assistant,
A I A A Student Member, charlton@moich.edu,
ht tp: //wow-personal.umich. edu/^charlton

'Associate Professor, Senior AIAA Member,
ich.edu

Structured grids arc built with a repeating ge-
ometric and topological structure. Structured
grids are usually formed from quadrilaterals (2D)
or bricks (3D), as this is perhaps the sim-
plest repeating topology to compute on; they
are often simpler to deal with, specifically in
terms of setup, computation, and visualization.
This rigid topology may favor the computation,
also, leading to simple and accurate computa-
tion of spatial derivatives and often cancellation
of higher-order error terms. However, this rigid
topology usually requires an inordinate amount
of expert-type assistance in laying out a struc-
tured grid around any complicated geometry,
such as an airplane.

Unstructured grids are best characterized by
no such repeating geometry and topology that
can be controlled only very locally. Unstructured
grids are typically formed from simplices (trian-
gles (2D) or tetrahedra (3D)), and the fact they
have no repeating topology can make it very dif-
ficult to create and compute the necessary cell-
to-cell connectivity for CFD. Also, the random
orientation and volume inefficiency can lead to a
very large number of cells being necessary to fill
the computational domain.

Tree-based grids, including the octree, fall
somewhere in between. There is a repeating ge-
ometric structure, but there is no rigid topology.
This produces a combination with some of the
best (and some of the worst) properties of both
structured and unstructured grids.

The oscar project has several goals. The first
is to automatically generate a computational vol-
ume grid for an arbitrarily complicated geome-

1

try to fac i l i ta te the solution of complex Mows.
In t h e process. we study the necessary computa-
tional algorithms for the computational geom-
etry, numer i ca l flow solution, data structures,
and parallel computing. The second goal is to
create a tool t h a t can be used for the study of
complicated aerodynamics problems for use in an
educat ioual-design environment.

2 Input Data

In general, a CFD problem consists of an equa-
t ion model, geometry, and suitable boundary
conditions (BC's). For o.scar, the input geom-
etry can be any number of closed, possibly inter-
secting, poly hod ra made from planar polygons.
To this list, o.scoc requires only a few param-
eters: m i n i m u m and maximum adaptation lev-
els: the extent of the domain; adaptation and
convergence criteria; run-time values for flow-
solver control; and report and checkpoint fre-
quency. This is one of the key advantages to
a nearly-automatic method; the required input
for a computat ional solution is little more than
i he physical problem!

While the ability to work wi th arbitrary con-
f igura t ions is significant and desirable, there are
a few drawbacks to this high level of automation.
First, there is very l i t t le feedback on the appro-
priateness of the geometric description or the re-
su l tan t grid. A flat plate can be "over-resolved"
with 10,000 triangles as easily as a smooth fuse-
lage can be described far too coarsely, perhaps
wi t l i more than one celi-per-facet on a curved
surface. While the problem with the latter is
easy to understand, the performance implica-
t ions of the former can be just as unwelcome.
Second, using the octree, the grid is isotropicaUy
refined: if the resultant solution has a region of
two-dimensional character (e.g. a long straight
wing), the resolution may be unnecessarily fine
in the spanwise direction, leaving fewer resources
available to solve for other significant features
a n d leading to unnecessary computational ex-
pense. Finally, most automatic grid generation
codes arc extremely intolerant of any trouble
in t l i c geometric description. A skilled ''grid-

Figure 1: Simple shapes are combined into
nearly complete aircraft (or building) configura-
tions

generation engineer" can often mask input prob-
lems while building the grid, but since there is
no user involved in the grid generation, if oacac
is given poorly defined input, the grid will come
out ill defined. This can result in either an un-
noticeable effect, a converged-to wrong answer,
or even an instability leading to a divergent flow
'"solution."

2.1 Airplanes

Complicated (airplane) shapes arc built by com-
bining simpler basis shapes in appropriate lo-
cations, sizes, and orientations. As shown iu
Figure 1, these shapes include fuselages, wings,
horizontal and vertical tails, pylons and struts,
wheels, and engines. Each of these shapes may
have boundary conditions embedded in the ge-
ometry itself. Also, all of the aircraft shapes
are built from analytically-defined biparameter
smooth surfaces, leaving open the possibility of
eventually casting them into a non-uniform ra-
tional b-spline (NURBS) basis and allowing the
shapes themselves to be manipulated with a
computer aided design (CAD) system before flow
analysis.

The analytic models used are described
more completely in [1]. For a more detailed
and realistic aircraft geometry model, consider
ACSYNT [2], which uses a NURBS basis and
features a comprehensive graphical user interface
(GUI).

2.2 Engine EC's

In addition to the standard EC's of an applied
freestrcam, hard wall, and symmetry plane, DC's

2

Exhaust BC (fan)

Inlet:
i BC applied(p)
4 BC's extrapolated

Exhaust:
4(5) BC's applied
(1) BC extrapolated

Inlet BC

Figure 3: A high-bypass turbofan engine with
Figure 2: Applied Engine Boundary Conditions engine BC's

may also be w i t h i n the flow itself, either as a cut
out set of "ghost cells" for a propeller or spe-
cial BC's embedded in the surface definition, as
for a jet engine. Since each facet of the input
geometry is allowed its own BC, it is simple to
specify a pressure condition on an engine inlet
and specify an acceptable state for an exhaust
condit ion. Based on the eigenvalues of the prob-
lem near the inlet and exhaust, conservation of
mass, momentum, and energy, and a few sim-
ple assumptions (including purely axial outf low),
three values must be chosen, e.g. inlet pressure
(Pin). th rus t (/•"), and fuel-mass flow rate (m/).
C u r r e n t l y , t h i s in tegra t ion code has not been im-
plemented, and oscar expects the exhaust state
to be specified completely.

One remaining concern is that of robustness.
Since the engine effect is achieved through the
boundary, it is expected that the normal stability
cr i te r ion should apply. This is usually the case,
however, it was necessary to cap the pressure
and density to prevent strong transients set up
by th i s procedure from producing non-physical
values and a divergent solution.

While the addition of the second exhaus t
cond i t ion will complicate the analysis and
conservation-based parameter coupling, one log-
ical extension of this method would be a high-
bypass turbofan engine. Figure 3 shows a pos-
sible configurat ion; only two more geometric pa-
rameters (fan exhaust location and fan shroud
scale) are necessary for the original engine geo-
m e t r i c model to evolve into this one.

3 Grid Generation Procedure

Dating back to the late 1970's, octrees have
been used for some time as a domain decompo-
sition method for computer graphics and solid
modeling[3, Section 12.6.3]. Early uses for
quadtrees (the 2D Cartesian tree) included finite
element analysis of structural problems in [4],
and quad-trees have also been applied to the
Euler equations [5], Navier-Stokes equations [6],
and time-accurate Euler equations wi th moving
bodies [7]. For 3D problems, octree research has
been performed by Melton et al. (e.g. [8]) and
Karman et al. (e.g. [9]).

Octrees are formed from a single cube-shaped
cell known as "root" that encompasses the en-
tire domain of the problem. This cell is then
recursively divided into eight geometrically sim-
ilar cells unti l some maximum refinement level
is reached. The "leaf" cells are then either
"Cartesian" or "Cut." Cartesian cells do not
intersect the body and retain their cube basis
shape. Cut cells intersect the body, and they are
formed as the geometric, subtraction of the in-
put geometry from the basis cube cell; cut cells
have "interfaces" between themselves and other
cells and "boundary faces" upon which bound-
ary conditions are applied. All of the geometric
fidelity of the i npu t body is preserved to allow
the grid to model the problem as closely as pos-
sible; while this does require the computation of
extra boundary fluxes, it is hoped that the abil-
ity to over-resolve the surface will improve the

3

accuracy of the solution. Also, a maximum re-
f inement level difference of one is enforced across
the face boundaries to minimize the loss of so-
lution accuracy due to a non-smooth grid. The
actual algori thm for computing these cut cells is
described in detail in [10].

O.*c«r is implemented in ANSI C + -|- [11] us-
ing a (pa r t i a l) object-oriented programming sys-
tem (OOPS) model. While the use of OOPS fa-
cilitates s imple code extension for the program-
mer, each cell is loaded with many pointers and
other data, resulting in some computational re-
source overhead—particularly in terms of mem-
ory and time. For an example of the ease of
extension, consider that hybrid-grid capability
and the parallel flow solver were both one-week
projects. However, the sub-cell geometry infor-
mation is stored internally as an independent
"object," which yields considerable flexibility in
adding new code but carries an undesirable mem-
ory expense—each cut cell is a polyhedron, with
some number of facets and an array of polygons;
each polygon carries an array of three-vectors,
each of which is built from three doubles. A
production code can benefit greatly from a sim-
pler bitwise encoding of the tree structure and a
reference-based geometry data structure.

3.1 Hybrid Grids

Eulcr solutions can be very valuable to the anal-
ysis of a complicated compressible flow prob-
lem, but the real goal of most (JFD simulations
is the solution of the Navier-Stokes equations.
The change from inviscid to viscous flow is not
jus t a change of equations, but it also (often) re-
quires a change in the method. Coiricr showed
in [R] that due primarily to the lack of grid-
smoothness, stock Cartesian tree-based grids are
simply not sufficient for an accurate solution
to the Navier-Stokes equations, which demand
grids to be smooth and fitted to the surface to
accurately compute the necessary second-order
derivatives of flow quantities.

While this seems disastrous, the use of a hy-
brid grid made from a surface-mapped prismatic
grid combined wi th a tree-based Cartesian grid
may be a vcrv useful solution to this dilemma.

Figure 4: Hybrid Grid

As a preliminary plot shows in Figure 4, near the
surface, a prismatic grid provides a suitable foun-
dation for the solution of the viscous problem.
Away from the surface where the grid smooth-
ness is less significant, an octree can be used to
quickly and efficiently fill the rest of the domain.

Karman's apfz^ou; (e-g- [9]) provides support
for prismatic grids created by marching normal
vectors out from the surface. The actual com-
bination of this near-surface grid with a Carte-
sian grid is very simple; internally, the Cartesian
grid "sees" a modified body, and the only real
difference is the inclusion of general-orientation
interfaces in the flow solver. (No search is even
necessary to build the connectivity between the
Cartesian and prismatic grids with the simple
programming trick of tagging the facets on the
boundary of the prismatic grid with something
that points back to the boundary cell.)

The difficulty turns out to be the actual com-
putation of these normal vectors, which is a sig-
nificant problem to those in the field of prismatic
grid generation in general. While in smooth con-
vex regions, the vertex-normals can be simple av-
erages of the vertex's facet-normals, this usually
leads to '"crossed normals" near non-convex cor-
ners. While this has been problematic to CFD
for some time, a t rue prismatic grid must extend
to the edge of the computational domain, while
a hybrid grid's prismatic grid needs only to reach
the edge of the boundary layer. One drawback
would be that the decoupling of the input sur-
face and the volume grid is lost, as a user must
now supply a smooth surface definition that is

adequate for a Xavier-Stokes solution.

3.2 Parallel Grid Generation

With a recursive procedure and an available ge-
ometric boundary, one would expect that paral-
lelization could provide a significant performance
improvement. While faster production-level al-
gorithms remove the need for performance im-
provement in the grid generation stage, oacnr
certainly benefits from a coarse-grain paralleliza-
tion using mult iple processors to speed it along.
Given the convenient recursive definition (and
code) and the lack of available knowledge about
the required work at startup, physical domain
decomposition is not weil suited, and p-threads
are the favored method. Out, since a threaded
system was not available for development, the
grid generation is divided manually onto a hand-
ful of processors (usually four) and allowed to
proceed from there with a little use of the "mes-
sage passing interface" (MPI, [12]) for initial de-
composition information.

There is a noticeable increase in performance
through parallelization, but by relying on a
coarse-grain user-driven domain decomposition,
this increase is rarely linear. Also, some of
the intermediate data handling must be done
with the serial code, because it is not clear how
to cast par t icular algorithms on a parallel sys-
tem. In particular, grid smoothing and prun-
ing, flow-solver domain decomposition, and post-
processing must be done as intermediate serial
steps. While these are actually interactive and
do not require too much time, the job is removed
from the parallel environment and interactive ex-
pert assistance is still required (both effects arc
undesirable, because parallel computers are of-
ten run in batch, and it is best to not leave the
queue) .

4 Flow Solution

An explicit second-order finite-volume unstruc-
tured flow solver is used for the flow field com-
putation. Reconstruction of spatial derivatives
is accomplished with a least-squares formula-
tion, and a modified min-mod limiter is used

to encourage monotonicity. Fluxes are com-
puted with Roe's flux difference splitting. While
the primary goal is to converge to a steady-
state, a time-accurate flow solver is also pro-
vided, and it includes cell-merging to prevent
the very small cells from forcing unusably small
time-steps. Comparison to an exact solution
for a cylindrical flow has been used to establish
second-order accuracy.

4.1 Grid Adaptation

(1)

The grids can be adaptively refined based on
the measures described in Equation 1, which use
the local values of the curl and divergence of ve-
locity (u) and the strength of the numeric en-
tropy wave [13]. Cells are flagged for refinement
if:

Or (2)

This seems very automatic, but adaptation
rarely is this simple. Often, scalars arc neces-
sary to encourage adaptation around one feature
instead of another. Also, '"no-adaptation boxes"
are supported and almost always required in the
exhaust wake of an applied engine jet. In gen-
eral, it appears that this criterion will adapt to
flow features in a certain order: applied "man-
made" features (jets and inlets), bluff-body ef-
fects, shock waves, stagnation points and lines,
wingtip vortices, and finally softer features such
as wing pressure peaks. If detailed resolution of
a particular one of these is required, it is usually
necessary to reduce the adaptation resources al-
lotted to the others by scaling the adaptation
criterion to favor the preferred mode. (This is
a common problem; as mentioned by Allmaras
in [14], support for no-adaptation regions is also
found in Boeing's

5

4.2 Parallel Flow Solution

A n M P I u n s t r u c t u r e d fast flow-solver for the Ru-
in' equations (m«j[Trf) lias also been built.
_ / (f is a much less sophisticated code than
and it relics on many of oscor's object libraries
to s i m p l i f y and speed development. M«/^ee has
been used to accelerate flow solutions using The
Univers i ty of Michigan's IBM SP/2.

.l/K/ff-r expects the same input as a true
uns t ruc tu red-gr id flow-solver; eacli processor
needs a description of the cells, interfaces, and
boundary faces in its domain, as well as a set
ol files tha t describe the interfaces between pro-
cessors. While this is a lot of data, oam?' can
quickly wri te out the setup files after doing a
simple domain decomposition.

Since ne i the r o.srr;y nor KiMjfJee requires any
special decomposition, it is relatively easy to
break a large problem into several smaller par-
allel problems, ei ther by using a decomposition
based on the octree itself or a decomposition
based on "computational nodes." The computa-
t i o n a l node decomposition assumes some number
of compu ta t iona l centers and assigns the proces-
sors to the cell based on which center is near-
est t he cell's centroid. Then, simple ccntroid-
hased rules can be used interactively to move
groups ol cells Irom one processor to another be-
fore commi t t ing to the parallel run. Admittedly,
this would be difficult to completely automate,
but it is simple for someone knowledgeable about
the general flow characteristics to choose these
computational-centers; while expert assistance is
required, it is very little, and the process is in-
teractive on an engineering workstation.

5 Example Results

Plots from a few example runs arc included here
(t h e color plots arc included at the end). While
the emphasis is on computational aerodynamics
analysis for aerospace engineering, it. is impor-
t a n l lo note that this method could be extended
lo aerodynamic problems in other fields.

Figure 5: A swept, tapered wing with flap cutout

5.1 Reconnaissance Aircraft

The "U2-RG" case is based on Warren
Baton's experimental photo-reconnaissance air-
craft, which is based on the Lockheed [/-2?C. This
is a complicated geometry, particularly with the
deployed landing gear and engine inlet and ex-
haust (wi th appropriate boundary conditions).
The (half-) grid has adaptively refined to 270.000
cells (98,000 cells are cut, with 2T8.000 polygons
defining the surface), and both the serial and
parallel codes were used for the flow solution,
using four processors on the SP/2.

Figure 6 shows pressure contours on thp sur-
face geometry with the grid through the sym-
metry plane and part of the grids through the
engine inlet and the main landing gear rod. The
configuration is comparable to a "go-around" sit-
uation (flaps up, gear down, high thrust, low
angle-of-attack, and a moderate upstream speed,
M ,̂ = 0.3). Note the high-pressure buildup on
the front of the landing gear and nose and the
smooth pressure contours on the wing; the tail
has very l i t t le change in pressure due to the very
th in airfoil section. The adaptive refinement visi-
ble near the engine jet resulted from the failure to
extend the "no-adaptation box" far enough aft .
The jagged contours near the leading edge of the
outboard wing are most likely the result of grid
refinement boundaries; these contours should be-
come smoother wi th more adaptation. This case
will be rerun with a wing with flap cutout (as in
Figure 5) and a deployed flap in a more realistic,
approach configuration.

5.2 Supercritical Business Jet

A surface plot for the "Biz.Jet" case is shown
in Figure 7. While th is model is dimensionally
based on the Cessna Citation A', the Cessna is
a vastly superior aerodynamic design. The up-
stream Mach number is M^, — 0.86—definitely
supercr i t ical hut well shy of the Cessna's M^, =
0.92 cruise; note the strong shock along the trail-
ing edge of the wing and around the lower sur-
face of the engine nacelle. Engine BC's were ap-
plied to the inlet and exhaust (the inlet effects
are visible in the pressure contours on the wing).
Several grid adaptations were applied, but note
that the shock did not dominate the adaptation
process. A/nmj- was around 1.6 (under the engine
nacelle), suggesting that a full-potential solution
may not be sufficient for this case. Note that this
case had both an over-resolved geometry (some-
where a cell has 200 facets, most likely the tip
of one of the tail surfaces) and an under-resolved
geometry (in a few places on curved sections of
the fuselage, facets wi th multiple cells are vis-
ible). The Anal (half-) grid had 370,000 cells,
wi th nearly 1-10,000 cut cells and 460,000 poly-
gons on the surface, and the flow solution was
computed on the SP/2 with eight nodes.

5.3 Building Interactions

The final case included is the computation of
the flow around a simplified model of Disney's
EPCOT Center. This is another very compli-
cated geometry, particularly with the inclusion of
the monorail track running through the model—
the monorail track is arched and the support
columns arc tapered.

The freestream condition was kept fast (A^ =
O . J 8) to prevent the loss of accuracy associated
wi th running Euler solvers at low speeds; this
is about equal to a tropical storm (not includ-
ing Hying debris), which is a possible worst-case
design condition for a real Florida theme park.
The final goal would be to simulate wind effects
with a lower Mach number.

One possibly significant extension would be to
see il natural heat-sinks upwind of the prevail-
ing w ind direction could be used to produce a

"free" cooling of the park itself; this would not
only make the park patrons more comfortable,
it could possibly save the company money on
air-conditioning, which of course actually heats
the surroundings. There are available breezes—
appropriate ducting might be able to take advan-
tage of them. Computational consideration of
this would require preconditioning to accurately
solve the flow at the much lower Moo and the
addition of heat-transfer to the flow solver and
boundary procedures, both of which should be
possible.

One final consideration about this case is the
similarity to a simulation of the wind flow over
the crowded deck of an aircraft carrier in its "re-
covery" configuration. Carrier landings are made
much more difficult by the unpredictable wakes
of other craft parked on the deck [15]. While a
turbulent viscous solution would be most desir-
able to truly understand the swirls and twists
of the wind crossing the path of landing air-
craft, valuable information could be obtained
from even an advection-based Euler solution.
Much like the EPCOT case, conventional grid
generation would be impractical for this config-
uration, but osmr should be capable of gridding
and solving without any substantial difficulty.

6 Conclusions

The use of an octree-based method for auto-
matic grid generation and flow solution is prac-
tical even for complicated geometries in an aca-
demic environment. Many different problems
of interest, including many different complete
aircraft configurations and multiple building in-
teractions, can be analyzed and studied. Also,
while this work can be done on engineering work-
stations, parallelization turns out to be a useful
option to reduce the final run time.

0«c«r can ultimately be divided into four
parts, each of which is a significant project
in itself: geometry definition, grid genera-
tion, flow solution, and visualization and anal-
ysis. For each of these areas—despite signifi-
cant progress—there remains much work to be
done. In addition to the previously mentioned

7

model geometry improvements, current interests
to note include:

• More complete integration of parallel algo-
rithms into the production code: currently,
parallel computing is used to accelerate both
the grid generation and Row solution phases,
which are the two most time-consuming.
However, there are still intermediate steps
that are serial and possibly could be par-
allelized. While no great speed advantage
remains, the possibility does exist of simply
leaving the whole job in a batch queue and
coming back the next day to analyze the re-
sults.

* Accelerated flow solver: preconditioning
should be particularly helpful with both
high-lift-configuration wings and also very-
low-speed flows, such has building-building
interactions. Reed in [16] has successfully
used a preconditioner on Cartesian grids,
aud work is underway to add this capability
to

One concern s t i l l is that the automatic pro-
duction of Cartesian volume grids is still very
sensitive to the- input geometry quality and the
robustness of the computational geometry algo-
r i thms. Robustness does not simply mean pro-
duc ing a "correct" answer, but often includes
producing an acceptable answer when the prob-
lem has been polluted with mistakes and numeric
noise.

7 Future Work

Beyond extensions to better solve current prob-
lems, there are even more interesting possibilities
t h r o u g h additions to o.scar's core components,
the grid generator and flow solver. By extending
each of these, even more difficult and significant
problems could be studied, including:

* Free-surface flow solver: with a time-
accurate free-surface flow-solver, «.scrrr's
problem domain could be extended to con-
sider natural water flow problems (rivers

and lakes). This could be of particular value
to flood prone areas, although ground-water
boundary conditions would also be needed
to accurately model the physical problem.
Here, the ability to deal with an arbitrary
geometry is significant, as one could use
sounding data, for example, to build the in-
put geometry; again, the complexity of the
input is irrelevant.

* Time accurate solutions: for some time, it
has appeared that the computational de-
mands of the grid generation were too large
to make the 3D extension to moving body
problems such as Bayyuk's 2D work [7] prac-
tical. Discussions with Aftosmis have since
convinced me otherwise—with some reser-
vations. For a sufficiently fast geometry en-
gine, the only serious computational bound-
ary is the fact that 3D problems are inher-
ently huge, so given the current computing
climate, good parallel algorithms (i.e. auto-
matic dynamic load balanced, etc...) would
be necessary for the entire process; while the
grid (re-)gencration may not require par-
allel supercomputers, in the time-accurate
moving-body case, the grid generation and
flow solution can no longer be separated.

8 Acknowledgments

Since Fall, 1996, support is provided by the
U.S. Air Force Office of Scientific Research un-
der contract DOD-G-F49620-94-1-0399. Sup-
port from Fall, 1992 through Summer, 1996
was provided by the U.S. Department of En-
ergy through its Computational Science Gradu-
ate Fellowship Program, under contract W-7405-
Rng-82. Computing resources have been pro-
vided by the William M. Keck Foundation Com-
putational Fluid Dynamics Laboratory and the
Center for Parallel Computing (CPC) at The
University of Michigan; thank you to Dr. Hal
Marshall and Mr. Andrew Caird at CPC for ad-
vice and assistance in using The UM's parallel
computers and especially for their last-minute
scheduling assistance. Thank you, also, to Cap-
tain Michael Aftosmis (U.S. Air Force) for many

valuable discussions and suggestions as this work
has progressed, and to Mr. Warren Eaton (Gas
Dynamics Laboratory, The UM) for providing
dimensions and design data for his modified //-^
design and for many valued discussions of air-
craft and aviation in general. This was prepared
with MTgX and plots were produced with Tcc-
j&V and A

[8] Melton, J. E., Enomoto. F. Y.. and Berger
M. J., "3D Automatic Cartesian Grid Gen
eration for Euler Flows", In .4A4/1

, 1993.

[9] Karman, .Jr., S. L., "Unstructured Carte-
sian/Prismatic Grid Generation for Com-
plex Geometries", In .?m/oce A

References

[1] Charlton. E. F., "Analytic Aircraft
Geometry Generation", unfinished,
charlton@umich.edu, 1995.

[2] Gloudemans, J. R.. Davis, P. C., and Gel-
hausen, P. A., ''A Rapid Geometry Mod-
eler for Conceptual Aircraft", In /47/L4 .

, 1995.

[10] Charlton, E. F., "Computation of Cut
Cells", , William M. Keck Foundation
Computational Fluid Dynamics Lab-
oratory, The University of Michigan,
charlton@umich.edu, UM-CFD-96-01,
1996.

AIAA. 1996.

[3] Foley. J. D., van Dam, A., Feiner, S. K.. and
Hughes. J. F., Compeer Gmjj/n'c ,̂ Fnncz-
p/es »«(/ Fmchce, Addison-Wesley Systems
Programming Series. Addison-Wesley, 2nd
edition, 1991.

[11] Stroustrup, B., TAe C'+-/-
.Lamyumyc. Addison-Wesley. 2nd
1993.

[12] Gropp, W., Lusk, E., and Skjellum, A..
mmf)iMi(y
ce. The

[-1] Baehmann. P. L., /lu(oma(e(/ Fz'mVe f/c-
;;;r;i/ .1/or/^/zVir/ rmr/ -S'zmu/r^z'oa, PhD thesis.
Rensselaer Polytechnic Institute, 1989.

[5] De Zeeuw, D. L., /
/4/i/orzV/im /or
5, PhD thesis,

The University of Michigan, 1993.

[Gj C'oirier, W. .]., /4a

, PhD thesis,
The University of Michigan, 1994.

[7] Dayyuk. S. A., Powell, K. G., and van
Leer, B., "A Simulation Technique for 2-D
Unsteady Inviscid Flows Around Arbitrar-
ily Moving and Deforming Bodies of Arbi-
trary Geometry", In /1 7/4/1 VV/ /1 (7o?M;.m/rj-
/zoaM/ /'Vuir/ AJji/MMnfzca FmcecrAn^. Ameri-
can Institute of Aeronautics and Astronau-
tics, 1993.

MIT Press, 1994.

[13] Paillere, H., Powell, K., and De Zeeuw,
D., "A Wave- Model-Based Refinement
Criterion for Adaptive-Grid Computation
of Compressible Flows", In .4A4v4 J0<6
Aerospace .Science.; MeeZzmy anr/ Ez/z:̂ !!.
AIAA, 1992.

[14] Thomas, J. L., Allmaras, S., Connell, S.,
R,oe, P., and Venkatakrishnan. V., "Panel
Discussion", In /CVl-SW/Aiz/ZC' tForA'.s/io/j on

, 1994.

[15] Lt. J.G. K. Quarderer. "An Aerospace En-
gineer's Adventure in the Navy", Aero?XO
Lecture, The University of Michigan, 1996.

[16] Reed, C. L., Z/otu .S'peed .Prec

PhD thesis, The University of
Texas at Arlington, 1995.

9

Figure 6: Reconnaissance Aircraft Grid

Figure 7: Supercritical business-jet con figuration, pressure contours

Figure 8: Flow around a. simple EPCOT Center model

10

Copyright ©1997, American Institute of Aeronautics and Astronautics, Inc.

Copyright ©1997, American Institute of Aeronautics and Astronautics, Inc.

Copyright ©1997, American Institute of Aeronautics and Astronautics, Inc.

