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Abstract 

The paper considers the optimization of earth-based multi- 
stage rocket interceptors with very short flight times and long 
ranges. The objective is the minimization of the launch mass as 
a function of interceptor design variables such as: stage size, 
engine bum times and the angle-of-attack program. Because of 
the demanding target conditions the payload reaches hyperbolic 
speeds and the centrifugal force greatly exceeds the gravity 
force. The minimization of launch mass shows that the needed 
down-force on the payload is best provided by negative aero- 
dynamic lift. The description and numerical computation of 
such aeroassisted optimal trajectories is the principal goal of the 
paper. Topics treated include: a model for the multistage 
interceptor, the formulation of the optimization problem, the 
derivation of a universal curve which is an accurate model for 
midcourse segments of the optimal trajectories, effective 
schemes for parameterizing the angle-of-attack program and 
procedures for efficient numerical optimization. Results of 
solution studies are reported. For flight times of six minutes 
and a range of about 3000 miles, a five-stage interceptor 
requires a mass ratio of several thousand. The dependence of 
the mass ratio on key design and target parameters is described. 

A dimensionless thrust in g's = T/(mgo) 
CD, CL lift and drag coefficients 

1 
dimensionless drag force = p v2SCd(%go) 
gravity acceleration at ro 
altitude = r - ro 
scale height of exponential atmosphere = 7.16 km 
dimensionless altitude = h/ro 
specific impulse 
dimensionless specific impulse = isp/(rdgo)ln 

1 dimensionless lift force = 2 ~ V ~ S C I ~ ( ~ ~ ~ )  
vehicle mass 
reference mass 
dimensionless mass = m/m, 
number of stages 
distance of vehicle from center of earth 
reference distance 
dimensionless distance = r/ro 
cross sectional reference area 
real time 
engine thrust 
vehicle speed 
dimensionless speed = ~ / ( g ~ r ~ ) ~ ~  
dimensionless time for universal curve 
angle of attack 
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Y flight path angle with respect to local horizontal 
rl dimensionless force coefficient = p$oS/% 
8 polar angle of vehicle trajectory 
h fineness ratio = stage lengthlstage base diameter 
CI dimensionless inverse scale height = r&s 
p(r) atmospheric density 
po reference density = p(ro) 
P(H) dimensionless density = p(roH+ro)/po 
ai mass-ratio parameter for ith stage 
T dimensionless time = tl(rdgo)ln 

I. Introduction 

The utilization of satellite-based missles for intercepting 
ICBM's during their ascent constitutes one of the major efforts 
in the U.S. Strategic Defense Initiative program. Here, an 
alternative approach is considered: the use of high performance, 
multi-stage, earth-based interceptors. The very short flight 
times and long ranges require hyperbolic speeds and a high 
ratio of take-off mass to payload mass. A natural objective is 
the minimization of the mass ratio with respect to interceptor 
design variables such as: stage size, engine burn times, 
coasting times between stages and the angle-of-attack program. 
Since the hyperbolic speeds produce centrifugal forces far in 
excess of the gravity forces, a net down force on the interceptor 
is required during its mid-course trajectory. Appreciable 
reductions in the mass ratio can be acheived if the down-force 
is generated by negative aerodynamic lift. The optimization and 
description of such aeroassisted trajectories is the principal goal 
of this paper. We now summarize the main topics and results. 

The paper begins with the details of the model for the 
multistage interceptor. A number of assumptions are made to 
keep the complexity of the model within reasonable bounds. 
After formulating the minimum launch-mass problem, three 
examples of optimal trajectories are given. They correspond to 
different assumptions on the trajectory of the final payload: 
extra-atmospheric flight, atmospheric flight with zero aero- 
dynamic lift, aeroassisted flight. With respect to launch mass 
aeroassisted flight offers a clear advantage. Optimal aero- 
assisted trajectories share a common feature. The initial portion 
of the payload trajectory follows closely a special speed-altitude 
relationship which is called the universal curve. Formulas are 
derived for the motion along the universal curve. They are 
useful in understanding the details of the mid-course aero- 
assisted trajectory and in the numerical solution of the minimum 
launch-mass problem. 

Numerical solution of the optimization problem requires a 
finite-dimensional parameterization of the angle-of-attack 
program. To avoid poor conditioning of the resulting finite- 
dimensional optimization problem, it is essential to do the 
parameterization indirectly through a direct parameterization of 
the flight path angle. Various aspects of this procedure are 
discussed. Finally, some details of the numerical optimization 
procedure are given. 

Many optimal trajectories have been computed. Some of 
the results are summarized in Section VII. They show the 
effect on launch mass of such parameters as the time of flight, 
the intercept altitude, the number of stages and the specific 



impulse of the engines. For 5 and 6 stage interceptors mass 
ratios on the order of several thousand are necessary. Short 
flight times and low intercept altitudes increase appreciably the 
launch mass. 

11. Model for the Multistaee Interceptor 

To  obtain the equations of motion it is assumed that all 
stages of the interceptor are modelled as a point mass moving in 
a plane which contains the center of a spherical, non-rotating 
earth with an inverse-square gravitational field. Choosing state 
variables r, 0, v, y and m and writing the resulting e q u a t i o d l )  
in dimensionless form then gives: 

d V - A c o s y - D  s iny  d ~ -  - A  - - - -  
d~ M R2 ' d~ I S P '  

These eqtiations are well scaled when ro = earth radius and 
mo G nominal mass of vehicle. Note V = 1 corresponds to 
the circular orbital speed at ro and z = 2x corresponds to the 
period of a circular orbit at r,. 

The dimensionless lift and drag forces are given in terms of 
H and V by 

For the results reported later in this paper an exponential 
variation of density with altitude has been used. This approx- 
imation simplifies the computations and produces almost the 
same optimal trajectories as more complex atmospheric models. 
For the exponential variation, 

Lift and drag coefficients are modelled by the formulas(2): 

1 CL = sin 2a cos -a + 5 (TC)-~  h sin a Isin al. 2 (4) 

In addition to choosing an angle-of-attack program, a(z),  
in (I), it is necessary to specify the thrust program and describe 
parametrically the physical characteristics of the stages. Our 
model of the thrust program is simple, and is consistent with 
the requirements of solid-fuel engines. For the i th stage it 
consists of an initial coasting period, q C ,  where A = 0, and a 
single thrusting period, T , ~ ,  where A = constant > 0. The first 
stage has no coasting period (rlC = 0) and there are N powered 
stages. The final payload stage is unpowered but may generate 
a controlled aerodynamic lift. Its coasting time from burnout of 
the Nth stage to target interception is denoted by ~ N + ~ C .  

The sta e masses are modelled as follows. For the i th 
stage, let My.  MiF and MiS denote, respectively, the masses of 
the payload, fuel and structure (together with the engine and 
other jettisoned components) . Then 

MOP = launch mass of entire vehicle, 

MNP = mass of final payload. ( 5 )  

Let 

Here, 0 < oi < 1, is a stage mass-ratio parameter. Once 01, . . ., 
o~ and MNP are specified, the individual stage-payload masses 
MOP, . . ., MN.1P are known. To avoid the need for additional 
stage-size parameters, a final simplifying assumption is made: 

Then from (4) it follows that 

While (7) neglects many details of the structural design, it is 
representative of attainable structural efficiencies. Once the fuel 
masses are determined, the thrust levels Ai can be computed. 
They are proportional to MiF/riB. 

The masses of the stages also affect, through their reference 
areas, the aerodynamic forces. Let Si, di and h i  be, 
respectively, the base area, base diameter and fineness ratio of 
the i th stage including its payload. Assume that the mass 
density of each sta e prior to the ignition of stage burning is the 
same. Then, mi.lB= (const.)di3 hi, Since Si is proportional to 
di2 this gives 

We have chosen CS to make (9) conform closely with the 
corresponding relation for the Minuteman I vehicle. In our 
computations hi = 10 for i = 1, . . ., N. Since the final pay- 
load is subject to aerodynamic forces during its coast to the 
target, its reference area, S N + ~ ,  and fineness ratio, hN+i,  are 
needed. This explains i = N+l in (9). In our computations we 
have chosen hN+i = 5. 

111. The Optimization Problem 

In this section we outline the general features of the optimal 
interception problem and show by some examples the character 
of the optimal trajectories. The specified interception data are: 
the flight time of the interceptor = tf, the target range an le 81, 
the target altitude = hf and the payload mass = mN5. T h e  
optimization objective is to minimize the total launch mass Q ~ .  
The free variables are: the angle-of-attack program, the 
coasting and thrusting periods tic and tiB, and the mass-ratio 
parameters oi. 

Once the free variables are given it is clear how the 
corresponding multistage trajectory is generated. Let r, = 
earth's radius. Then the multistage nondimensional equations 
of motion can be written. For the first stage: R(0) = 1, 0(0) = 
0, y(0) = 90", V(0) = 0, M(0) = MOP. Since the free 
variables determine A(r) = A1 (through MIF and q B )  and MOP, 
the equations of motion can be integrated for 0 5 r I r lB.  At r 
= r l B  staging occurs and the equations of motion use data 
appro riate to the second sta e Specifically, (1) is integrated 
for r l  5 r 5 r lB + T~~ + r$ with R, 8 ,  y and V continuous 
across staging and with A(z) determined by A2, qC and ~2~ in 
the obvious way. The initial mass of the second stage is M(rlB) 
= M1P. The remaining stages are handled in the same way until 
z = zr = z lB + zzC + q B +  ... + qqB + T N + ~ ~ .  Actually, this 
equation is used to determine T ~ + ~ C .  

Of course, there are constraints on the free parameters: 



The lower bounds, TiB,  provide a means for limiting the 
maximum thrust or acceleration of each stage; they may, for 
instance, depend on other parameters such as MiF. In addition 
to these direct parameter constraints, there are the implicit 
constraints corresponding to target interception: O(q) = Of, 
r ( q )  = ry. In Section VI we indicate how the constraints are 
implemented in the process of numerically minimizing MOP 
with respect to the free variables. 

Another concern in the computations is the representation of 
the angle-of-attack program. Since a(z), 0 5 7  < ~ f ,  belongs 
to an infinite dimensional space, it must be given a finite- 
dimensional parametric approximation. The details of the 
parameterization are important and are discussed in Section V. 

Operational considerations and the desire to simplify 
computations may add further constraints to the interception 
problem. We have, for example, considered three distinct 
optimization problems. They differ only in the assumptions 
placed on the motion of the unpowered final stage; the models 
for the powered ascent stages remain the same. In the first 
problem, the final payload is constrained to move essentially 
outside the atmosphere. Thus, the trajectory for the payload is 
computed easily as a Keplerian transfer from the burnout of 
stage N to target interception. The constraint is imposed by 
requiring the minimum altitude of the Keplerian trajectory to 
exceed a specified altitude. In the second problem, the payload 
is allowed to move through the atmosphere, but it generates no 
aerodynamic lift: a(z) = 0, zf - zNC 5 z < zf. This avoids any 
increase in drag and heating which may result from lift. In the 
third problem there is no constraint on the payload so that an 
aeroassisted coasting trajectory is possible. 

Figure 1 and Table 1 show typical results for the three 
problems. The intercept conditions are: tf = 360 sec., Of = 45" 
(approximately 3100 mi.), hy = 400 km. (approximately 250 
mi.), payload mass = mNP = 10 kg., i ~ p  = 300 sec. and N = 
5. In general, the optimal coasting periods for the powered 
stages turn out to be zero. The only exception is the fifth stage 
of the Keplerian case. 

The launch mass is least for the aeroassisted case. There is 
a simple physical explanation. The short flight time demands 
hyperbolic speed (V > 42) while simultaneously the trajectory 
must be kept close to the earth in order to intercept the target. 
To  resolve these conflicting demands, a net down force on the 
vehicle is needed. This force is supplied, without expensive 
engine thrusting, by negative aerodynamic lift as the payload 
begins its coast toward the target. 

For the zero-lift, atmospheric case negative aerodynamic lift 
is also exploited, but because of the no-lift constraint on the 
payload it occurs together with engine thrust in the fifth stage. 
This accounts for the long burn-time of this stage; it allows 
more time for the negative aerodynamic lift to act. 

In the Keplerian case, the altitude of the payload i s  
constrainted to exceed 100 km. This leads to a very large 
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Figure 1 Optimal trajectories for minimum launch mass: A 
Keplerian, B-aeroassisted, C-zero-lift atmospheric, D- 
burnout of fifth stage, E-burnout of fourth stage, F-end of 
coast for fifth stage. Payload = IOkg.; range angle = 45"; 
target altitude = 400 km.; flight time = 360 sec.. 

launch mass because it essentially eliminates effective utilization 
of negative aerodynamic lift. The Keplerian solution does have 
a potential operational advantage. Since the trajectory is 
essentially outside the atmosphere, communication with the 
payload is not blocked by atmospheric ionization. 

IV. The Mid-course Universal Curve 

The aeroassisted trajectory in Figure 1 has an obvious mid- 
course segment on which the final payload coasts for an 
extended period of time until it begins its rise to the target. On 
the segment there is a negative aerodynamic lift and the path is 
nearly horizontal. Such segments have been observed on all 
optimal aeroassisted trajectories where performance require- 
ments are high, i.e., tf is small, Of is large and hf  is  small. 
Moreover, they can be modelled accurately by a single 
universal curve which relates altitude and speed. This unique 
relationship is obtained by balancing the difference between 
centrifugal and gravity forces with negative aerodynamic lift 
and minimizing the drag losses by choosing the angle of attack 

Table 1 Numerical data for optimal trajectories in Figure 1. 

Burnout conditions of 5th stage Burnout conditions of 4th stage 

Type of Launch Coasting Coasting 
Solution Mass (kg.) h (km.) V 0 (deg.) y (deg.) t (sec.) time (sec.) h (km.) V 0 (deg.) y (deg.) t (sec.) 

Aeroassisted 18,990 63.7 2.1 1 3.7 0 52.6 0 58.3 1.68 2.2 3.2 40.6 

Zero-Lift 23,070 66.5 1.96 24.0 0.005 201.9 0 57.0 1.89 2.5 3.5 42.5 Atmospheric 

Keplerian 50,720 127.8 2.10 19.5 -4.7 182.0 90.6 64.6 1.82 5.8 -1.6 75.2 



which maximizes the lift-to-drag ratio. As will be seen, the 
time-dependent motion of the payload on the universal curve 
also has a universal character. 

Our development begins with some notation and 
simplifying parametric assumptions. Let - CL* and CD* be the 
lift and drag coefficients which maximize - C~/CD.  They are 
obtained from (4) and depend only on the fineness ratio, h = 

of the payload. Recall that the reference area of the 
ayload, S N + ~ ,  is given by (9) and is therefore determined by RNIl and the mass of the payload, mNP. A dimensionless 

coefficient C c q / 2  plays an important role in the 2quations 
which we will consider. It is given by 

Since cL* and S N + ~  are fixed by h ~ + i  and mNP, CL*q/2 
depends only on mo and r,. For the purpose of this section it is 
convenient to make the following choices for m, and ro: 

3 This gives M(z) = 1 in (1) and = 7 
The required balance of forces on the nearly horizontal tra- 

jectory is achieved by setting the normal*acceleration, Vdyldz, 
and y equal to zero in (1) and CL = - CL in (4). The result is 
the expression for the universal curve: 

The reason for choosing ro by (12) is now clear: (13) contains 
only one parameter (p) and at the reference altitude (H=O) the 
dimensionless speed has a nice nominal value (V=2). Now let 
P(H) be given by (3). Noting that p 103, it is easy to show 
that 1.3 5 V 5 4 implies IHI < 0.6 x 10-3. Since the expected 
variation of H is so small, (13) is closely approximated by 

Even for a non-exponential atmosphere this expression is an 
excellent representation of (13) because the exponential approx- 
imation of P(H) only needs to be accurate for IpHI 1 0.6, or 
Ihl < 0.6 hs. For the payload described in the previous section, 
ro corresponds to an altitude of 64.0 km. above the earth's 
surface. 

Along the universal curve there are drag losses and V must 
decrease. This in burn causes H, 0, y and a to depend on 
z. To obtain these dependencies we begin by substituting (14) 
into (1) with A = 0: 

dv dH dR - = G'(H) - = G'(H) - = G'(H) G(H) sin y 
d'c dz dz 

Here, GI@) is the derivative of GCH) so 

From this exp~ssion it is not difficult to verify that V = G(H) 2 
1.3 implies G (H) G(H) > 0.58 p. Since p s lo3, R z 1 and y 
is small, the identity on the right side of (15) is closely approx- 
imated by 

D = - G'(H) G(H) sin y. (17) 

By (2) and (4), D defines a and thus CL. Since the line 
CL = (-CL*/CD*)CD is the tangent to the lift-drag polar at CD*, 
it is a good approximation for it in the neighborhood of CD*. 
This approximation with D determined by (16) and (17) gives 

CL* 
L = - w p  e-pH [G(H)]4 sin y. 

Substituting (14) and (18) into (1) yields the equations of 
motion on the universal curve. 

To simplify these equations it is assumed with very little 
errorthat s inysy ,  cosy= 1 and R =  1+Hz 1. Then 

Because M(z) = 1 and V(z) = G(H(z)) the order of the original 
system of equations, (I), has been reduced from five to three. 
However, the equations (19) are still complicated because they 
are coupled and nonlinear. Fortunately, the parameter p is 
large and this leads to a singularly perturbed system whose 
solution can be obtained analytically. 

The nature of the singularly perturbed problem is revealed 
more clearly by introducing the scaled variables: 

Then (19) becomes 

Standard singular perturbation theory can be applied to this 
system(3) and it shows that the term in the brackets goes to zero 
quickly and that the remaining, asymptotic, solution satisfies 

This is a fust-order system which can b~infegrated easily when 
expressed in terms of the variable y = [G(Hd]-l. 

The details of the integration and back substitution to the 
original problem variables are lengthy and are omitted. They 
produce the following formulas for the asymptotic motion 
along the universal curve: 

where 

This is the drag required for motion along the universal curve. 



and xo is determined by v(%) = V(zo) or, equivalently, by 

It is easy to confirm that the above formulas cause H and V 
to lie on the universal curve. Also, using (2), (14), (16), (17) 
and (24) it follows that 

Thus, within the accuracy of the approximation sin y E y , the 
motion on the universal curve actually does maximize the lift- 
to-drag ratio. 

The functions A, 6, 9 and 9 are plotted in Figure 2. The 
ranges of variables which are shown are adequate for any 
reasonable target conditions. For example, with CL*/CD* = 
2.5, the value corresponding to h = 5, a unit change in 8 
corresponds to a 72' change in 8. For the entire range which is 
shown 191 5 0.61. This implies lyl 1 0 . 6 1 ~ - 1  r 6 x 10-4 rad. = 
0.034'. The departure of y from zero is indeed small. 

Figure 2 Functions describing motion on the universal 
curve. 

V. The Parameterization of the Angle-of-attack Promam 

In the formulation of a finite dimensional parametric 
representation of the angle-of-attack program, several questions 
arise: the dimensionality of the formulation, its effect on the 
accuracy of the corresponding approximate optimum solution, 
its functional form, the incorporation of various constraints, 
and the conditioning of the resulting numerical optimization 
problem. These questions are discussed in this section. Our 
experience shows that relatively low dimensional parameter- 
ization~ are quite effective, provided they are implemented with 

care. The dimensionality is important because it has a strong 
effect on the computational time. Conditioning affects both the 
speed and reliability of the optimization process. Here, an 
indirect parameterization of a(z) has been crucial to the success 
of our computations. 

A direct parameterization of a(z) is the most obvious way 
to proceed. For example, a continuous piecewise linear 
function, which is parameterized by its values at its joints 
(points of slope discontinuity), is simple and has flexibility in 
that the joints may be place more closely in those intervals 
where a(z) is expected to vary most rapidly. Alternatively, 
polynomial representations for each of the stages may be used. 
The fatal shortcoming of such direct parameterizations is poor 
conditioning of the optimization problem. The terminal 
constraints are very sensitive with respect to small changes in 
a(z), especially when the changes occur early in the flight. 
This is not surprising in view of the open-ended integrations 
which occur in solving the equations of motion. 

To circumvent the poor conditioning, it is better to 
parameterize a(z) indirectly through a direct parameterization of 
y(z). In this approach, dyldz is computed from the param- 
eterized y(z) and substituted, together with R, y, V and M, 
into the third equation of (1). This equation then becomes 
through sin a and L an implicit equation in a. The indirect 
parameterization of a is obtained by solving the implicit 
equation. Note that this eliminates the need to integrate the 
differential equation in y ; of course, the remaining differential 
equations must be integrated as usual. When the indirect 
parameterization is used, the entire trajectory is under more 
direct control. Changes in y(z) near the beginning of the 
trajectory have very little effect on the terminal portions of the 
trajectory. Thus, the sensitivity of the terminal constraints to 
the parameterization is greatly reduced. Another advantage, 
perhaps less important, is evident at launch. Here, the differ- 
ential equation for dyldz has a singularity because V = 0. With 
the y parameterization the differential equation is not integrated 
and the normally troublesome singularity is avoided. 

The implicit equation for a presents possible difficulties. 
An inadmissible y(z) may be specified, i. e., one in which the 
implicit equation has no solution. This corresponds physically 
to requiring more transverse acceleration than is available. In 
most of our work inadmissibility has not been a problem, 
provided the line search in the optimization algorithm has a 
procedure for reducing step size when it produces an inad- 
missible $7). Occasionally, when a must be very large, as in 
the fifth stage of the Keplerian problem of Figure 1, it is better 
to parameterize a(z) directly, keeping the y parameterization 
for the other stages. The actual numerical solution of the 
implicit equation is straightforward. One approach is to use 
several Newton iterations. Alternatively, L may be approxi- 
mated by a quadratic function of sin a ;  then the implicit 
equation is quadratic in sin a and it may be solved by formula. 

Another issue is the smoothness of a(z) and other problem 
variables. If y(z) is continuous but has slope discontinuities, as 
in the case of a piecewise linear parameterization, the differ- 
entiation of y(z) causes a ( @  to be discontinuous. Even for 
smoother parameterizations the problem is not avoided. At the 
staging times the vehicle mass, thrust and aerodynamic 
parameters change discontinuously and this causes discontinui- 
ties in a(z). Continuity of a(z) can be imposed by introducing 
an appropriate jump in dyldz at the staging time. The value of 
dyldz just after staging, (dyldz)+, is evaluated by using its 
defining equation, (I), with R, y, V and a continuous across 
staging and the changes in M, A and aerodynamic parameters 
determined by the staging equations of Section 11. 

It is also possible to introduce other smoothness  
constraints. For example, consider the pitch angle, y~ = a + y. 
Although I+I does not appear in the point mass equations, it has 
practical implications because the moment applied to the 
vehicle is proportional to its second derivative. To avoid an 
impulsive moment it is necessary to require continuity of 
dy~ldz. This leads to the condition: (da/dz)+ - (da/dz)- = 



(dy/dz)+ - (dy/dz)-, where the superscripts give the values 
immediately before and after staging. In order for the 
derivatives with respect to a to exist, it is certainly necessary 
that a (z )  be continuous. Thus, as in the previous paragraph, 
both (dy/dz)+ and (dy/dz)- are known. The resulting con- 
dition on (da/dz)+ - (da/dz)- can be obtained by differeniating 
the dyldz equation once. This in turn defines the value of 
(d2y/d2z  )+. Thus, conditions on both (dy/dz)+ and 
(d2yld&)+ are obtained. 

Based on our numerical experience, a few remarks on the 
functional form of the y parameterization are in order. Because 
of the large changes in y encountered in the first stage it has 
been found necessary to use a parameterization with at least 
three free parameters. Since y(0) = 90°, a cubic in z satisfies 
this requirement and has been as effective as any other choice. 
For the remaining stages, one free parameter suffices. When 
there are no smoothness constraints, a linear function works 
well. Only one parameter is involved for each stage because 
y(z) must be continuous across staging. When continuity 
constraints are imposed, a more elaborate, one-parameter 
representation is needed. For instance, when d ~ l d z  is 
continuous, we have found it effective to use y(z) = a + bz + 
ce-oz + de-vr. The parameters c and d allow the matching of 
the constraints on (dyldz)+ and (d2y/d&)+. The values o and v 
are chosen so that the effect of the continuity conditions does 
not persist for too long a period of time. For a given functional 
form, the free parameters may be defined in different ways. It 
has been found that problem conditioning is usually better if 
values of y at specified interpolation points are used. For 
example, when there is one free parameter for a stage, the value 
of y at the termination time is a good choice. 

VI. Details of the Numerical ODtimization Procedure 

In this section the main details of the numerical optimization 
procedure are reviewed briefly. Our general approach involves 
the formulation of a finite dimensional optimization problem 
with equality constraints and the solution of this problem by 
augmented-Lagrangian, quasi-Newton techniques. 

The variables in the finite dimensional optimization problem 
include the stage mass-ratio parameter o i  , the stage bum time, 
T ~ B ,  and the stage coast time, T i e ,  for i = 1 ,...., N. The 
constraints, (lo),  on these parameters are implemented by 
means of nonlinear transformations such as 

and 

ziB = 0.5(TiB + TiB) + 0.5(ZiB - TiB) sin ui . 

In (27), E is a small positive number which implements the 
strict inequality on oi. The variables +i and Vi become 
unconstrained variables in the finite dimensional optimization 
problem. The parameter TiB is a scaling parameter which is an 
upper estimate for 'tiB that causes TiB I ziB I 7iB for -n/2 5 
u i  I n / 2 .  Such scaling techniques improve the numerical 
conditioning of the optimization problem when problem 
parameters have widely different ranges of values. The nonlin- 
earities introduced by the transformations d o  not appear to 
affect the speed or reliability of the numerical optimization 
process. The remaining variables in the finite dimensional 
optimization problem are the parameters needed for the 
representation of the angle-of-attack program, as described in 
the previous section. The cost to be minimized is M ~ P ,  
obtained from the o i  by (6). 

The equality constraints in the numerical optimization 
problem include the target conditions O(zf) = Of and R(zf) = 
Rf. Errors in meeting these conditions are evaluated by 
integrating the differential equations of motion, which are fully 
defined once the variables of the preceding paragraph are 
specified. In the case of the zero-lift, atmospheric problem, the 

trajectory of the final payload is determined by integrating the 
equations of motion from the time of last-stage burnout, zb, to 
zf  with a ( z )  = 0 and A= 0. Of course, the effects of 
aerodynamic drag must be taken into account. If coasting of 
the powered stages is not allowed and the guidelines of the 
preceding section are followed, there is a total of 3N +2 
variables: N each for (27) and (28), 3 for the parameterization 
of y in the first stage and 1 for the parameterization of y in each 
of the remaining stages. 

For the aeroassisted problem the universal curve is used. 
This eliminates the need to parameterize the angle-of-attack 
program and integrate the equations of motion during the mid- 
course coast. At the time of final-stage burnout, V(zb) is 
known. By setting zo = zb, formulas (23)-(25) define the 
motion along the universal curve. In general the conditions 
V(zb) = G(H(zb)) and y ( ~ )  = ya('Cb) are not satisfied by the 
ascent trajectory, so they must be imposed as additional 
equality constraints. The universal curve is followed until a 
time z = zd is reached. After this time a ( z )  is set to zero. 
Because there is no aerodynamic lift and V> 1, the trajectory 
then departs from the universal curve and rises toward the 
target. By evaluating this departure trajectory at z = 'rf, the 
errors in the target conditions are determined. Since y a ( ~ b )  is 
extremely small, there is little error if y(zb) = ya(zb) is replaced 
by y(zb) = 0. This reduces by one the number of variables 
used in the parameterization of y for the Nth stage and reduces 
the total number of equality constraints from four to three. If 
the assumptions of the preceding paragraph hold, the total 
number of variables is again 3N + 2. The elimination of one y 
parameter is balanced by the addition of the parameter zd. 

T o  implement the numerical minimization it is also 
necessary to evaluate the gradients of the constraint functions 
and the launch mass. Since the constraint functions are 
obtained by integrating complex nonlinear differential 
equations, it is extremely difficult to write equations for their 
partial derivatives. Thus, we have used first order finite 
difference formulas. This is numerically expensive because 
each evaluation of the gradient requires n + 1 integrations of the 
differential eauations. where n is the number of variables. 
Techniques fo; speeding the computations have been report by 
Howe et. a1.(4). Rounding and truncation errors in the compu- 
tation of the gradients canseriously degrade the of 
the minimization algorithm. In this regard the naturally good 
scaling of the dimensionless equations (1) is a distinct advan- 
tage. Balancing the rounding and truncation errors by a roper 8 choice of the finite difference increment is also important ). 

The minimization program used in our computations is a 
variant of the BFGS, quasi-Newton implementation due to 
Shanno and ~hua(6) .  As mentioned earlier, a precaution has 
been taken to reduce the likelihood that an inadmissible y(z) will 
be produced by the line search. T o  eliminate gradient 
evaluations in the line search, the derivative of the cost function 
in the search direction is computed directly by a finite difference 
formula. Also, a procedure has been added which greatly 
reduces the probability that the descent will terminate prema- 
turely due to accumulation of round-off errors in the quasi- 
Newton update. The equality constraints are treated by the 
augmented Lagrangian method. Both the penalty coefficients 
and the multipliers are updated automaticall by a scheme 
which is described by on page 134 of Fletcherd 

Generally, the performance of the overall optimization 
procedure has been very satisfactory. The number of gradient 
evaluations required to obtain a solution is between 300 and 
400. This is not unreasonable for the number of problem 
variables: 17 for N = 5 and 20 for N = 6. Errors in meeting 
the specified target conditions are very small: about 1 meter in 
altitude and about 0.05' in range angle. The computational 
time for a solution is typically between 60 and 90 minutes on an 
Apollo DN 4000. 
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Figure 3 Additional details of the optimal aeroassisted 
trajectory shown in Figure 1. 



VII Some S~ecific Results 

Many optimal intercept problems have been solved using 
the methods and models of the preceding sections. In this 
section we summarize some of our results for the aeroassisted 
problem. The pitch angle is constrained to have a continuous 
derivative except at the entry and exit points of the universal 
curve, where a(z) is allowed to be discontinuous. A variety of 
problems have been solved where coasting of the stages is 
allowed. In these problems the optimal coasting times are 
either zero or so small that they have little effect on the optimal 
launch mass. For all the problems considered here the coasting 
times have been set to zero. The minimum bum time for each 
stage is 10 seconds and the payload mass is 10 kg. Except for 
the results in Figure 6, the specific impulse is fixed at 300 
seconds. 

Additional details of the optimal aeroassisted solution 
described in Section 111 are shown in Figure 3. The staging 
times are apparent. With the exception of the fifth stage, the 
optimal bum times are at their lower limits of 10 seconds. The 
resulting vehicle acceleration A/M is quite high, ranging from 
about 20 to 70 g's. If the minimum burn time is reduced below 
10 seconds, even higher accelerations are obtained. The 
universal curve is followed from about 53 seconds to 194 
seconds. The slight drop in V predicted by Figure 2 is evident. 
There is little loss in speed after the exit from the universal 
curve. The reason is obvious from Figure 1: the trajectory 
leaves the atmosphere quickly, so there is little aerodynamic 
drag. Plots (f) and (g) of Figure 3 show in greater detail the 
flight path angle and and the angle of attack during ascent. On 
close inspection the linear-exponential parameterization of y(z) 
is discemable in plot (f). If the smoothness constraint on the 
pitch angle is removed and a(z) is allowed to be discontinuous 
at the staging points, the overall character of the trajectory is 
essentially the same and the launch mass is changed by about 
0.5 %. Thus, the smoothness of the pitch angle does not seem 
to be a very stringent constraint. 
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Figure 5 Optimal launch mass in kg. as a function of flight 
time for aeroassisted trajectory. Payload = 10 kg.; range 
angle = 45"; target altitude = 200 km.; specific impulse = 300 
sec.. 

Figures 4 through 6 illustrate the effect of key parameters 
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Figure 4 Optimal launch mass in kg. as a function of flight 
time. Number of stages = 5; payload = 10 kg.; range angle 
= 45"; target altitude = 200 km.; specific impulse = 300 sec.. 

Figure 6 Optimal launch mass in kg. as a function of flight 
time for aeroassisted trajectory. Number of stages =5; 
payload = 10 kg.; range angle = 45"; target altitude = 200 
km.. 



on the optimal launch mass. Note that the target altitude is 200 
km., a more demanding intercept condition than the 400 km. of 
the preceding problem. Figure 4 shows the relative 
performance of optimal aeroassisted trajectories and optimal 
zero-lift, atmospheric trajectories. The advantage of the 
aeroassisted trajectories is greater for shorter intercept times. 
For both types of trajectories the launch mass grows very 
rapidly as the flight time approaches 320 seconds. Figure 5 
shows the difference between 5 and 6 stage aeroassisted 
interceptors. The 6 stage interceptor has a decided advantage 
for the shorter flight times. Figure 6 shows the affect of 
reducing the specific impulse. The 10 second reduction 
increases the launch mass by over 40 % for the shorter flight 
times. 

Additional solution results for the aeroassisted case suggest 
other trends. If all other parameters are fixed, the optimal 
launch mass varies littie if the range angle and intercept time 
vary in direct proportion. Increasing the axial drag coefficient, 
CA , by 0.02 increases the launch mass by about 10 %. 
increasing the mass density of the stages by 50 % decreases 
the launch mass by about 6 %. 
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