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We present an approximation scheme for gravitational forces near arbitrarily shaped small bodies. The

approximation uses polynomial interpolation with an adaptive spatial data structure near the asteroid and spherical

harmonics far from it. These data structures allow us to drive the approximation errors of the model to within user-

defined thresholds, while significantly reducing the run time of trajectory integrations about small bodies. This

alleviates the computational burden of Monte Carlo simulation for small-body proximity operation and mission

design. We conclude with performance tests and models for the asteroid 1998 ML 14.

I. Introduction

I NRECENT years our solar system’s small bodies (e.g., asteroids
and comets) have received increased attention [1–3]. Whereas

early asteroid missions represented gravitation with spherical
harmonics [3], the goals of current and future small-body missions
focus on close-proximity operations in which this representation is
no longer valid [4]. To address this problem we may turn to the
approach introduced by Werner [5] and Werner and Scheeres [4];
however, this method performs a summation over every face and
edge of a polyhedral model representing the surface of the body.
Such calculation is tractable over a few evaluations, but becomes
computationally expensive for numerical integration. For example,
consider the large sets of trajectories necessary for Monte Carlo
simulations: each simulation contains hundreds of trajectories, each
of which consists of thousands of elementary time steps, each of
which relies on multiple force evaluations. This computational
bottleneck in design and analysis of small-body missions has led
researchers to investigate ways to reduce the cost of force calculation
[6,7].

In this research, we propose to alleviate this burden by
precomputing the gravitational forces throughout the domain,
reducing future queries to a sublinear look up and constant time
interpolation operation. This results in 2 orders of magnitude speed
improvement when compared with current methods. Indeed, given
the availability of cheap, fast memory storage, trading memory
against online computation seems advantageous.

The idea of locally representing gravitational fields using
interpolation has already been investigated by Junkins [8] andEngels
and Junkins [9] in the context of inertial navigation around Earth.
These methods, however, rely on the nearly spherical shape of the

Earth, and do not transfer directly to the case of arbitrarily shaped
bodies. To address this,we use an adaptive local representation that is
applicable to general cases and is well suited for fast trajectory
integration.

Before presenting these results, we review two computational
models relevant to the formulation of our method: the polyhedral
method of Werner and Scheeres [4] and the interpolation method of
Engels and Junkins [9]. In Sec. III, we analyze the difficulties of
interpolating gravitational forces near small bodies, and Sec. IV
presents a solution to these difficulties. Secs. V and VI give a dis-
cussion of the performance and limitations of the proposed approach.

II. Previous Work

This section briefly reviews key features of two gravitational force
representations that are relevant to this research: the polyhedral
method developed by Werner [5] and Werner and Scheeres [4] and
the interpolation method proposed by Junkins [8] and Engels and
Junkins [9].

A. Polyhedral Methods

Polyhedral methods are widely used in mission analysis and
planning when one needs to estimate the dynamical environment
near the surface of a small body. These methods calculate
gravitational force by performing an exact integration over a constant
density approximation to the body, which is represented by a
polyhedron [4]. Although the assumption of constant density is
certainly a limitation, it is not required by the method that we shall
develop; thus, it can be assumed in the remainder of the paper. This
allows us to define the true gravitational force as that computed via
the polyhedral method.

The gist of thismethod is to transform the volume integral defining
gravitational force (or potential) into more tractable quantities. The
volume integral for force is

F �x� � �G�0
Z
asteroid

x � y

kx � yk3 dy

whereG is the universal gravitational constant, and �0 is the constant
density of the asteroid. Specifically, through application of Green’s
theorem, the above three-dimensional volume integral is trans-
formed into a two-dimensional surface integral. By approximating
the surface with a polyhedron, the integral can be further reduced to a
summation over faces and edges, where each term requires
calculating a transcendental function.

The time complexity per force evaluation of this algorithm is
O�E� F�, where E and F are the number of edges and faces,
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respectively. As a result, simulations with this method, especially
with a large model, can be very costly. Efforts to reduce this burden
have been researched by Cangahuala [6], who investigated three
techniques to reduce computational cost of the polyhedral method:
1) shape coarsening, 2) calculation caching, and 3) Taylor
approximations. Cangahuala found that all three methods have a
significant impact on the running time of a simulation. Specifically,
in ideal circumstances, a calculation could be sped up 100 fold
without compromising the model’s accuracy; more general orbits
still benefited from a 10 times speedup [6].

B. Interpolation-Based Method

Interpolation-based methods, as developed in Junkins [8] and
Engels and Junkins [9], compute gravitational forces by differen-
tiating a polynomial fit of the geopotential in a (small) region of
space.With their approach, accurate gravitymodels around spherical
bodies can be represented with relatively low-degree polynomials,
and force evaluations are reduced to efficient polynomial evalua-
tions. Hence, in effect they trade computational complexity against
memory availability. Though such methods are usually applied to
onboard navigation, where computing resources are limited, we use
the same philosophy to address the bottlenecks mentioned in the
introduction.

Given the nearly ellipsoidal shape of the Earth, [8,9] divide space
with a regular grid in ellipsoidal coordinates. Orthogonal
polynomials are used as an interpolation basis for the interpolation
of the geopotential. In that setting, each component Fj�x� of the
gravitational force, F�x� � �rU�x�, is approximated as a linear
combination of the derivative of the polynomial interpolation basis,
pi�x�, that is,

Fj�x� �
Xn
i�1

ai
@

@xj
pi�x�

where the coefficients ai depend on the interpolation nodes within an
interpolation domain.

Although the virtues of the interpolation approach (efficient force
evaluation and ease of local gravity model update) are attractive for
small body missions, it is not clear that a uniform grid is practical for
reaching the accuracy required for precise orbit determination
around such bodies. For example, in Sec. III, we give a rough
calculation showing that between 6 and 74 petabytes of storage
would be required for a uniform grid, depending on the order of
interpolation. A nonuniform grid, on the other hand, raises doubts
about the existence of an interpolant for arbitrary data [10].

III. Polynomial Force Interpolation Near
Irregular Bodies

Before developing a complete solution, we describe how
gravitational force can be interpolated locally. Following this
description are numerical experiments exploring the errors of our
local interpolation.

A. Interpolation Scheme

Given our initial goals of accelerating force evaluations for
numerical integration applications, we opted to directly interpolate
the force rather than the potential. Although this makes our force not
globally exact (i.e., not the gradient of a potential), this choice proved
adequate for the purpose of this research.

Several shapes for interpolation domains, henceforth referred to as
cells, have been considered; a cubic regionwas finally selected for its
simplicity and sufficiency. Belowwe give amore detailed account of
the interpolation used.

To interpolate gravitational force, we choose Gauss–Lobatto–
Legendre (GLL) interpolation points with the barycentric form of
Lagrange polynomials. GLL points have a low Lebesgue constant,
which translates to being close to the best uniform approximation of
the interpolated function [11]; and the barycentric form of Lagrange

polynomials are known for their superior numerical conditioning and
computational efficiency [12].

Constructing GLL points in a cubic domain is achieved by
Cartesian product of the one-dimensional case. The one-dimensional
GLL points of order n are the n� 1 zeros of

‘�x� :� �x � 1��x� 1�P0n�x� (1)

where Pn�x� is the Legendre polynomial of degree n. The
multidimensional case is then built by computing these zeros for each
axis separately and forming their Cartesian product, as illustrated in
Fig. 1. We shall refer to this collection of points as N and use jNj to
denote the number of points in N, which is �n� 1�3.

Lagrange polynomials satisfy

pNxi�xj� � �ij for xi;xj 2 N (2)

and can be computed as the products of the univariate Lagrange
polynomials centered at the coordinates of xi. In three dimensions,
this yields

pNxi�x� �
‘�x�

‘0�xi��x � xi�
‘�y�

‘0�yi��y � yi�
‘�z�

‘0�zi��z � zi�
(3)

which is of degree 3n. Here ‘�x�, ‘�y�, and ‘�z� are as defined in
Eq. (1), and each factor in the product above is the barycentric form
of the univariate Lagrange polynomial [12]. The factors
corresponding to each dimension are of the same degree n. For this
reason, we will call the interpolation scheme based on such
polynomials “order n interpolation” and refer to interpolating
polynomials as “order n polynomials.” Note that the quantities
‘0�xi�, ‘0�yi�, and ‘0�zi� only depend on the locations of the
interpolation points. Thus, these can be precomputed and stored in a
table, which costs O�jNj2� [each ‘0 costs O�jNj�, and we must
compute one for each xi 2 N]. The evaluation of the interpolation
polynomial, however, is an O�jNj� operation: all pNxi share the term
‘�x�‘�y�‘�z�, so this can be computed once per evaluation at cost
O�jNj�. Finally, each pNxi also uses 1=��x � xi��y � yi��z� zi�� for a
total across all pNxi of an additionalO�jNj�. Thus, interpolation using
barycentric form of Lagrange polynomial basis requires O�jNj2�
setup but only O�jNj� work per evaluation.

Now we can construct a polynomial approximation of function f
as a linear combination of the function’s value at the interpolation
nodes times the Lagrange polynomial centered at that point:

f�x� �
X
xj2N

f�xj�pNxj�x� (4)

In our case, the function f corresponds to a component of the
gravitational force around an asteroid. The forces per unit mass are
computed via the polyhedral method, but can be obtained from other
sources as well, such as measured gravimetric data or by numerically
solving Poisson’s equation at the interpolation points.

The interpolation error of the above scheme can be quantified via
Ciarlet’s formula [10], which in our case depends on an integral of
derivatives of the components of the force. This suggests that the
error will increase as we approach the asteroid (because force
depends inversely on the second power of distance) and decrease as
the interpolation domain becomes smaller.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Fig. 1 Left: one-dimensional Gauss–Lobatto–Legendre nodes.

Right: two-dimensionalCartesian product of the one-dimensional nodes.
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B. Numerical Experiments

Now we study interpolation errors using numerical experiments.
To find the error in a cell, we took random samples of the
approximate force Fa and exact force Fe (computed via the
polyhedral method); we computed the relative error as
kFa � Fek=kFek. The maximum such error was taken as the error
bound of a cell. Note that this measure is dimensionless. In the
following, we explore the change in interpolation error as parameters
of our local model are varied: distance from the asteroid, effect of
surface irregularities, size of the cell, and order of the polynomial
interpolation. Cangahuala [6] suggests that the relative error in
acceleration that is acceptable formission design is 10�5; thus, for the
remainder of the paper, wewill target 10�5 error or less. All testswere
done with three-dimensional bodies and cells. For simplicity, many
of the figures depict a two dimensional slice. The banding that is
visible in the subsequent error graphs is due to the location of the
interpolation points and the shape of the asteroid. In each of these
plots, the logarithm (base 10) of the error is shown.

1. Distance from an Asteroid

Our first experiment was designed to test the hypothesis that
gravity in cells closer to the asteroid would be more difficult to
approximate than in cells farther away. We set up an interpolation
cell with 400m sides and order 6 polynomials at progressively closer
locations. To keep our test simple, we used a cuboid with the
approximate dimensions of Castalia [13] as our asteroid. The cells
used were in two types of locations. One set was at varying distances
from a flat face of the asteroid at 0, 500, and 1000 m between the
closest part of the interpolation region and the surface of the asteroid.
A second set was placed similarly at 0, 707, and 1414m from an edge
of the asteroid. Figure 2 shows the test cases, andTable 1 summarizes
the results.

In both cases, we can see that bringing the cell closer to the asteroid
increases the error in approximation. For the edge-on case, we see a
dramatic difference, though this is probably due to the presence of the
edge, which is a high-curvature feature. To investigate the shape
effect further, we repeated this experiment with a point-mass
approximation instead of the polynomial interpolant while keeping
the test regions identical. The results of this experiment are also
summarized in Table 1. The point-mass approximation is very ill
suited to approximating our cuboid asteroid. Thus, the errors made
by the polynomial interpolant are not merely a result of
misrepresenting a 1=r2 term because if the 1=r2 term were

dominant, a point-mass approximation would suffice. From this, we
conclude that shape effects significantly impact the errors present at
this range.

2. High-Curvature Features

To further investigate the effects of high-curvature features, we
performed another test. In this experiment, we used the same
Castalia-like cube but added a tetrahedron to one face to act like a
small hill on the surface. We started with a tetrahedron with 200 m
edge lengths and scaled down from there. For each configuration, we
used a cell with 25m sides and order 6 interpolation, placed such that
the center of the closest face was aligned with the tip of the
tetrahedron. Figure 3 shows some test cases, and Table 2 summarizes
the results.

As we want errors beneath 10�5, it seems that even a slight bump
can give polynomial interpolation significant problems. Given that
the 1998 ML14 model has edge lengths as small as 9 m, this is
especially troubling. The solution, as we shall see, is to use smaller
cells that wrap around the feature instead of one large cell.

3. Varying the Size of a Cell

Given the poor performance of polynomial interpolation for cubes
at the 25 m scale, we wanted to know how small our cubes would
need to be to achieve the desired error. In this experiment, we studied
the effect of varying the size of a cell on the accuracy of our
interpolation. To test this, we placed a cell with order 6 interpolation
centered near a tip of a 1998 ML14 model. Starting with an edge
length of 250 m, we halved each dimension of the cube for every
subsequent experiment. Figure 4 shows some test cases, and Table 3
summarizes the results.

We can use these results to motivate the case for an irregular grid.
First, assume the domain of interest is a cube surrounding 1998
ML14 with edge length 2500 m; this is a fair assumption because
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Fig. 2 Context for computing error as a distance from body. The body

is the larger square and the smaller squares are test regions. Left figure is

the context for face approach in which the distances are 0, 500, and
1000 m. Right figure is context for edge approach in which distances are

0, 707, and 1414 m. These are labeled adjacent, medium, and far in

Table 1, which shows the errors.
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Fig. 3 Effect of small features on error. The shaded plots show the

logarithm of relative error of gravitational force along the face of the cell
touching the tetrahedron feature. The goal is to avoid errors larger than

10�5, so saturated white regions indicate a poor approximation. Top left

shows an image of our test body. In this image, the tetrahedronhad200m

edge lengths. Error plots shown are for tetrahedra with edge lengths of
175m (top right), 100m (bottom left), and 25m (bottom right). Each cell

used order 6 interpolation, and the true values were taken to be the ones

computed by the polyhedral method. See also Table 2.

Table 1 Effect of distance on error of approximation

Face approach max. error Edge approach max. error
Distance Interpolation Point mass Interpolation Point mass

Far 2:29 	 10�8 0.168 3:89 	 10�9 0.0819
Medium 2:95 	 10�7 0.400 7:76 	 10�8 0.192
Adjacent 9:77 	 10�7 1.85 5:37 	 10�3 0.634
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anywhere outside that range we can use low-order spherical
harmonics as a fast approximation. From these results, we conclude
that we will need resolution down to 12 cm to capture the fine details
near the surface. With a regular grid, this would require dividing the
domain into �2500=0:12�3 � 9 	 1012 cells. If each cell contains
order 6 interpolation, we need 73 	 3� 1029 double-precision
coefficients, or 8232 bytes per cell (the power of 3 comes from three
dimensions, and the factor of 3 from each component of force). The
total memory cost for such a model is about 74 petabytes. Even at
order 2, we would need around 6 petabytes to store a regular grid.

4. Varying the Polynomial Order

Our next experiment focused on varying the order of
approximation; specifically, we explored the interaction between
distance from the asteroid and order of approximation. Two cells
centered at (441, 231, 0 m) (near surface) and (750, 231, 0 m) (about
1.5 radii away) with 250-m edge length and polynomial interpolants
between orders 1 and 7 were tested. Figures 5 and 6 show some test
cases, and Table 4 summarizes our results.

Far away, there is a clear benefit to using high-order polynomials
for approximating the gravitation. Closer in, however, these results
show diminishing returns for higher-order polynomials. We
conclude that the appropriate strategy for polynomial approximation

uses few high-order cubes far away andmany low-order cubes closer
to the asteroid. This is somewhat counterintuitive, as onemay expect
high-order approximations to yield the most significant benefits
where the field changes most rapidly.

With all these results in mind, we conclude that an efficient
representation of gravitational force near a small body must be
adaptive in both size and interpolation order of each cell.

IV. Adaptive Spatial Partitioning

Our approach to modeling the gravitational force near an asteroid
separates the problem into two tasks: dividing the domain into cells
and approximating the force in a cell. Having already settled on a
solution for the latter, we now discuss the former.

Subdividing the domain into manageable cells is accomplished
with an adaptive octree data structure [14]. This data structure is
constructed by recursively splitting the domain into a hierarchy of
different-sized cuboids so that each contains a local model of
gravitational force. We initialized the process with a local model for
the highest-level cuboid. From here we estimate the error relative to
the polyhedral method; if the error is too large, the cuboid is divided,
and the process is repeated recursively on each of the pieces.
Otherwise the cuboid is retained and becomes a leaf cell in the octree.
The interpolation information is retained only for leaf cells, and it is
discarded for the rest. In building the octree data structure, we
conservatively choose a relative error threshold of 5 	 10�7. This is
almost 2 orders of magnitude less than the error in acceleration
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Fig. 4 Error as a function of cell size. The shaded plots show a cross

section of the logarithm of relative error of gravitational force. The goal

is to avoid errors larger than 10�5, so saturated white regions indicate a

poor approximation. Top left shows the context for the test. A silhouette
outline shows the boundary of asteroid 1998ML14; the squares are slices

of cells we tried. Errors are shown for cells with edge lengths 250 m (top

right), 62.5 m (bottom left), and 3.91 m (bottom right). The saturated

white regions in the first two error plots show that large errors are
present. The errors in the last plot are within tolerance. Each cell used

order 6 interpolation, and the true values were taken to be the ones

computed by the polyhedral method. See also Table 3.

Table 2 Effect of small features on error

Feature size, m Max. error Feature size, m Max. error

200 6:84 	 10�4 100 6:00 	 10�4

175 6:62 	 10�4 75 5:79 	 10�4

150 6:41 	 10�4 50 5:62 	 10�4

125 6:19 	 10�4 25 5:37 	 10�4

—— —— 0 3:98 	 10�13

Table 3 Effect of cell size on error

Size, m Max. error Size, m Max. error

250 5:75 	 10�2 3.91 9:03 	 10�4

125 2:85 	 10�2 1.95 4:63 	 10�4

62.5 1:46 	 10�2 0.977 2:28 	 10�4

31.3 7:24 	 10�3 0.488 1:14 	 10�4

15.6 3:63 	 10�3 0.244 5:66 	 10�5

7.81 1:86 	 10�3 0.122 2:82 	 10�5
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Fig. 5 Error as a function of order of interpolation in a distant cell. The

shaded plots show a cross section of the logarithm of relative error of

gravitational force. Top left shows the context for the test. The silhouette

outline shows the boundary of 1998 ML14; the square is a projection of
the cell. Error plots shown are for cells with interpolation orders 2 (top

right), 4 (bottom left), and 6 (bottom right). The true valueswere taken to

be the ones computed by the polyhedral method. See also Table 4.
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advised by Cangahuala [6]. We choose the more conservative
threshold during octree construction because error estimation during
that stage is based on random sampling as explained in Sec. III.B.

The use of such an adaptive structure, in combination with the
interpolation scheme we used, precludes continuity of the
interpolated force across cell boundaries. However, in our
experiments with trajectories, this was not an issue, as shown by
results of Sec. VI.

A. Octrees

We now provide practical details regarding the octree data
structure. Octrees are more easily illustrated by their 2-D analog;
hence, the following description is given for “quadtrees.”Quadtrees
are adaptive tree data structures for organizing localized data in a
rectangular domain. Two operations characterize the function of a
quadtree: Subdivide and Find. Subdivide is a constant time
operation that splits a rectangle into four quadrants by splitting each
dimension in half. A quadtree is built by beginning with a single
rectangle and subdividing recursively until the desired tree structure
is created [14]. Figure 7 shows a quadtree as a tree and as a collection
of rectangles.

Find recalls localized data associated with query points by
recursively traversing the tree. At each level, Find picks the child
quadrant containing our query; this is a constant time operation, as
each cell has at most four children. After every level is traversed, a
leaf is reached, and the data it contains is returned. As balanced trees
have at most logN levels, the run-time complexity of Find is
O�logN�, where N is the total number of cells [15]. Thus,
subdividing our model to improve accuracy incurs only a sublinear
run-time penalty. This compares favorably to the polyhedral method,
which requires a linear cost increase to improve accuracy.

To illustrate the practical benefit of a sublinear run time, consider
the following example. For the sake of argument, we shall examine
moving from polyhedral models with 1000 elements to 10,000, and
compare that to moving from 10,000 octree cells to 100,000.
Following this scenario, the polyhedral method would cost 10 times
more computationwhenmoving to the newmodel, whereas an octree
method only costs 1.2 times the former computation. Taking this out
another factor of 10, we find costs rising 100 times and 1.4 times,
respectively. In other words, methods with asymptotically better
performance have dramatically superior run times as problems scale
up to take advantage of newest computational power available.

Note that the computational complexities of polyhedral method
versus our method depend on different things (asteroid mesh
complexity versus number of cells, respectively). The same gain in
accuracy by the two methods may require different refinements.
Thus, comparing complexities as we do above is simplistic.
However, our experiments described in Sec. VI show that trajectory
integration using our method is much faster than the polyhedral
method while producing extremely accurate trajectories. This is
made more precise in Sec. VI.

Octrees follow the same design, but use eight cuboids in 3-D
instead of four rectangles in 2-D.

B. Spherical Harmonics Far Away

The octree structure described herein must exist in a bounded
cuboid region; this precludes it from producing approximations to
acceleration everywhere outside the body. To provide such
approximations, we employ spherical harmonics. We place a sphere
centered at the origin and just large enough to enclose the body. Then
coefficients to spherical harmonics that fit the gravitational potential
are computed. In theory, one could take sufficient coefficients and
produce an accurate field for all space outside the sphere; in practice,
computing to such a degree of accuracy is too costly. Instead we
satisfy ourselves with accurate results outside the octree domain.
This is easier to achieve as the higher order components of spherical
harmonics fall off quickly as distance from the body increases.

V. Example Octree Construction and Performance

To investigate the errors in our approximate gravity field, we
constructed an octree model in a region around asteroid 1998 ML14
and numerically analyzed the interpolation error. The experiments
were done using a triangle mesh surface model of the asteroid 1998
ML14 with 8162 vertices, 24,480 edges, and 16,320 triangles [16].§

Table 4 Effect of interpolation order on error

Order of interpolation Distant case max. error Close case max. error

1 7:94 	 10�2 3:48 	 10�1

2 5:37 	 10�3 1:40 	 10�1

3 8:91 	 10�4 1:13 	 10�1

4 1:20 	 10�4 7:59 	 10�2

5 2:34 	 10�5 7:16 	 10�2

6 3:23 	 10�6 5:75 	 10�2

7 6:03 	 10�7 5:37 	 10�2

-200 0 200 400 600 800
-600

-400

-200

0

200

400

600

350 400 450 500 550

150

200

250

300

350

-3 -2 -1 0

350 400 450 500 550

150

200

250

300

350

-3 -2 -1 0

350 400 450 500 550

150

200

250

300

350

-3 -2 -1 0

Fig. 6 Error as a function of order of interpolation in a cell close to the

asteroid. The shaded plots show a cross section of the logarithm of

relative error of gravitational force. Top left shows the context for the
test. The silhouette outline shows the boundary of 1998ML14, the square

is a projection of the cell. Error plots shown are for cells with

interpolation orders 2 (top right), 4 (bottom left) and 6 (bottom right). As

we can see all errors reported are outside the acceptable range. The true
valueswere taken to be the ones computed by the polyhedralmethod. See

also Table 4.
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Fig. 7 Left: a quadtree viewed geometrically. Right: a quadtree viewed

as a tree. Labels show the mapping between geometric and tree views.

The point represents a query; the tree view shows the query being
resolved. Cells 3 to 9 are leaf cells.

§Data available online at http://www.psi.edu/pds/resource/rshape.html,
EAR-A-5-DDR-RADARSHAPE-MODELS-V2.0 [retrieved 10 June 2007].
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A. Octree Model Construction and Error Analysis

The domain of the octree began at ��1250 m;�1250 m;
�1250 m� and extended 2500m in each direction,where the origin is
the center of mass of the asteroid model. (As a point of reference, the
radius of 1998ML14 is�500 m.) The octree was limited in depth to
10 levels; this implies a smallest cell size of 4.88 m. The first three
levels of cells used order 6 polynomials, the last two levels order 2,
and the rest used order 4. Each cell was tested with 10,000 sample
points, and subdivision continued until the maximum of these errors
was beneath 5 	 10�7. The error was measured as described in
Sec. III.B. This model was created in 1150 CPU hours on a parallel
computer using the Message Passing Interface (MPI) [17] (64
processors for approximately 18 h) and occupies 653 MB of
memory. To cover the region outside the octree, spherical harmonics
of degree and order 12 were employed.

Part of an octree structure for 1998 ML14 is shown in Fig. 8, and
Fig. 9 shows cross sections of the error in the x–yplane. Thefirst error
plot starts at (400 m, �250 m) and extends 500 m; subsequent plots
magnify the region near (400 m, 100 m) by 2 and 4 times. As we can
see, errors are very well behaved for the majority of the plotted
regions. In fact, only when we get very close (within a fewmeters) to
the surface are we in danger of violating our goal of 10�5. This is due
to the bound on the octree depth imposed on this particular
experiment and can be improved by building a tree with smaller cells
close to surface. Note that even though the error bound is violated at
the surface, the results from our experiments on ejecta trajectories in
Sec. VI.E show that this is not a problem in practice.

B. Single Evaluation Speed Tests

In this experiment, wemeasured the comparative performances of
the competing models by measuring the time required for a single
force evaluation. Table 5 summarizes the relative speeds (1.0 being
polyhedral method) of several methods. We can see that the
polynomial interpolation scheme compares favorably with other
methods. Compared toCangahuala [6], we have similar performance but better understanding of the errors. Specifically, whereas

Cangahuala [6] only reports errors for orbits at 3 radii from the body,
our error estimates go all the way to the body.

VI. Performance Analysis Using Trajectory
Integrations

Whereas themeasurement of a single force evaluation described in
previous section gives some idea of the order of speedup obtained
with the octree method, this factor is actually a function of space. For
example, cells closer to the asteroid are usually deeper in the octree,
and so they receive lower-order interpolants. To get a notion for
actual speed improvements, we have to integrate trajectories. This
was done for four different classes of trajectory: close retrograde
orbits, midrange orbits, random trajectories, and ejecta.

A. Experiment Design

In each of the experiments below, we generate several trajectories
with different force models and parameters.
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Fig. 9 Error of an octreemodel for asteroid 1998ML14.Theplots show

the logarithm of relative error in gravitational force. Top plot shows the
error along the x–yplane at z� 0 m cutting acrossmany cells. Lower left

and right show a zoom of 2 and 4 times. The error in most of the cells is

less than 10�5 as desired. The only exceptions are in the cells very close to

the asteroid. These are cells of size about 5m. Cells used a variable order
interpolation depending on their size; orders ranged from2 to 6. The true

values of force were taken to be the ones computed by the polyhedral

method.

Table 5 Relative speeds of available methods for single-force
evaluation

Model Speed factor Comments

Polyhedral 1.0 ——

Order 6 polynomial 0.0104 ——

Order 4 polynomial 0.0038 Estimated from
order 6

Order 2 polynomial 0.0008 Estimated from
order 6

Degree and order 12 spherical
harmonics

0.0145 ——

Coarse shape, Taylor series 0.091 See [6]
Coarse shape, Taylor series,
histories

0.01 See [6]

Fig. 8 An octree model for part of space around asteroid 1998 ML14.

The cube in the top figure shows the region for which this octree was

constructed. The cubes in the bottom two rows are visualized as
translucent to reveal the hidden structure. In the sequence shown in

bottom two rows, larger cubes are incrementally removed to reveal the

finer structure of the octree.

1046 COLOMBI, HIRANI, AND VILLAC



Cubetree trajectories are generated using the force model
described herein. Integration is done with the embedded Runge–
Kutta Prince–Dormand (order 8, 9) method using relative error
tolerance 10�13 and absolute error tolerance 10�6. Going beneath
10�6 can cause problems with our method, as the discontinuities in
the force will cause the adaptive time-stepping routine to overrefine
the step size.

A reference trajectory refers to a simulation done with the
polyhedral method as described by Werner and Scheeres [4].
Integration is done with the same method as above; however, the
absolute error threshold is set to 10�10. These trajectories are used as
a baseline to measure the accuracy of cubetree trajectories.

Finally, trajectories generated with the augmented polyhedral
model use a mix of polyhedral and spherical harmonics: spherical
harmonics are used wherever they would be used in a cubetree tra-
jectory. Furthermore, augmented polyhedral trajectories use the same
tolerancesascubetree trajectories.Theaugmentedpolyhedralmethod
is used to measure timing performance of the cubetree model.

The trajectory integrations were done in rotating coordinates. The
period of rotation for 1998ML14was assumed to be 14.93 h, and the
moment of inertia tensor was computed from the triangle mesh
surface of the asteroid. This was used to compute the principal axis.
The local coordinate system for the asteroid was used as the rotating
coordinate system; the z axis turned out to be close to but not exactly
the same as the principal axis. The computed normalized principal
axis, in the coordinate system of the asteroid mesh, was (0.0636,
0.0008, 0.9356). Thus, the x–y plane was close to but not the same as
the equatorial plane.

For the semimajor axis calculation in SecVI.F, themass valuewas
calculated from an assumed density of 2:5 	 103 kg=m3 and
computed volume of approximately 511; 320; 552 m3.

B. Close Retrograde Orbits

For our first experiment, we chose a known family of stable orbits.
Initial conditions were chosen randomly within a band of retrograde
orbits close to the asteroid. Specifically, we placed initial conditions
near the equatorial plane with randomly chosen radii between 600
and 1000 m from the center of the asteroid. Velocities were always
chosen to place the orbiter in a retrograde orbit. Initial speeds were
chosen between 0.45 and 0.75 of escape speed. [The escape speed is

evaluated in inertial space from v�
��������������
2U�x�

p
, where U is the

gravitational potential (at the selected location,x) computed from the
polyhedral method.] The only force simulated was gravitation in
rotating coordinates. Simulations ran for 30 days of ballistic motion
with each model (cubetree, augmented polyhedral, and reference),
and impacting trajectories were thrown out. Impacting trajectories
are addressed in Sec. VI.E. The position and velocity of the orbiter
was recorded every 5 minutes of simulated time.

This experiment was repeated for 1111 trajectories. For each
trajectory, we measured the maximum difference in position and
velocity between the cubetree trajectory and reference trajectory.
Figure 10 is a histogram of the errors in position and velocity.
Clearly, the vast majority of trajectories fall within 2 m of the
reference trajectory; in fact, only four trajectories were outside a 2 m
range. The maximum position error was 3.56 m and the minimum
was 9.76 mm. On average, integrations with the cubetree method
were 112 times faster than the augmented polyhedral method.

C. Midrange Orbits

Another region of interest in our model is the jump between octree
and spherical harmonics. To investigate this domain, we performed a
similar experiment. Initial conditions were placed between 1250 and
1500 m from the center; velocities were randomly picked between
0.67 and 0.8 of the escape speed with both prograde and retrograde
orbits. Inclination of the orbits was limited by choosing initial
positions near the equatorial plane and initial velocities with a small
component outside the equatorial plane. Otherwise, this experiment
was identical to the previous one.

We repeated the simulation for 1487 trajectories. Figure 11 is a
histogram of the errors in position and velocity. Again, the majority
of trajectories differ by less than 2 m; only 15 have position error
greater than 2 m. The minimum error in position is 3.2 mm, median
12.22 cm, and maximum 10.24 m. These three orbits are shown in
Fig. 12. Note that the maximum error is significantly larger than in
our previous experiment. We expect these worst-case trajectories to
have inherently sensitive dynamics, a hypothesis we shall revisit and
show evidence for in Sec. VI.F. On average, integrations using our
cubetree method were 90 times faster than using the augmented
polyhedral method. Recall that both methods used spherical
harmonics outside a certain range.

D. Random Trajectories

Next, we explored more of the phase space. Positions were taken
between 600 and 1500 m from the center of the asteroid, and veloci-
ties were chosen from the plane passing through the initial position
and tangent to the sphere centered at the origin. Magnitude of the
velocity was clamped to within 0.45 and 0.75 of escape speed.
Simulation was performed identically to the previous two and was
repeated 911 times. The histograms in Fig. 13 summarize the results;
the last column in each histogram represents all differences greater
than or equal to the 20 m or mm=s. In this experiment, even more
cubetree trajectories diverge from the reference: 38 trajectories have
error greater than 2 m and of those, 8 have greater than 100 m error.
On average, the integration time of these trajectories was accelerated
by 111 times.
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Fig. 10 Histograms of errors in position and velocity for 1111 close retrograde cubetree trajectories integrated for 30 days and observed at 5 min

intervals.
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E. Ejecta Trajectory

The final experiment focused on ejecta and impacts. Initial
positions were chosen with a uniform random distribution on the
polyhedron’s surface; initial velocities were chosen from the
hemisphere above the surface and with magnitude uniformly
distributed between 0.1 and 0.9 of escape speed. Otherwise, the
experiment is the same as the previous one; 2440 trajectories were
generated this way. Because most ejecta trajectories are short lived,
the differences are small: only one trajectory had more than 0.5 m

difference in position (it had 4 m difference). As such, histograms
have been omitted. Ejecta trajectory were calculated 169 times faster
using the cubetree approximation. This improvement reflects the
lower-order interpolation used near the surface of the asteroid.

F. Dynamical Error Analysis

To better understand the errors found in the previous experiments,
the underlying dynamical properties of a few sample trajectories
have been considered. This analysis indicates that the large errors
obtained for particular trajectories are not an intrinsic limitation of
the approximation scheme used but rather of the sensitive nature of
the trajectories in chaotic regions. This result is achieved via
frequency analysis and Monte Carlo sensitivity analysis.

1. Frequency Analysis

Given that the physical system we are modeling is conservative
(Hamiltonian), Fourier analysis of trajectories is a powerful tool to
discriminate between regular and chaotic motion [18,19]. In
particular, regular (quasi-periodic) trajectories in Hamiltonian
systems, which correspond to stable trajectories and present only
linear sensitivity with respect to the initial conditions, exhibit a
discrete spectrum of frequencies corresponding to the natural
frequencies of the torus on which they lie. On the other hand, chaotic
trajectories, which present exponential divergence between neigh-
boring trajectories, present a continuous spectrum and appear as
noise on the power spectrum of some coordinates.

To test the hypothesis that trajectories presenting large
discrepancies between the numerical integration in the two models
are sensitive, we applied a fast Fourier transform (FFT) on sample
trajectories in the midrange test case of Sec. VI.C. We chose three
sample trajectories corresponding to the minimum, median, and
maximum error cases and applied the FFT on the semimajor axis, a,
for an integration time span of 30 days with a sampling period of
5 min. The results are shown in Fig. 14 and the actual position paths
corresponding to those trajectories are shown in Fig. 12. Figure 14
shows the power spectral density P of the trajectories for both the
cubetree approximation (continuous line) and reference method
(dots), as well as the normalized difference in power spectral
density, D:

D �f� �
jPcubetree�f� � Ppolyhedral�f�j

Ppolyhedral�f�

As can be observed, theminimumdifference trajectory (top plot of
Fig. 14) shows a “discrete” spectrum in which a few main frequency
peaks are apparent. Thus, this trajectory is likely to be a regular one.
On the other hand, as the discrepancy between the integration results
based on the two different models increases, the number of
frequencies in the power spectrum tends to increase. In the median
case, the main frequencies are still dominant but show a small
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Fig. 11 Histogram of errors in position and velocity for 1487 midrange cubetree trajectories integrated for 30 days and observed at 5 min intervals.

Fig. 12 Three midrange 30 day cubetree trajectories sampled at 5 min

intervals. Each plot corresponds to a different initial condition in the

experiment described in Sec. VI.C. The top, middle, and bottom have the

smallest (3.2 mm), median (12.22 cm), and maximum (10.24 m) errors,
respectively. Frequency analysis for these is shown in Fig. 14. The

asteroid model shown is a simplified version. The one used for actual

trajectory propagation in all experiments had 16,320 triangles.
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instability. For the largest error case, the noise is significant,
suggesting a chaotic trajectory. Similar results have been obtained
for the other action elements (eccentricity, inclination). This
indicates that, in the cases in which large errors between the
polyhedral and cubetree model have been obtained, the discrepancy
is likely to be a result of the intrinsic sensitive nature of the
trajectories rather than due to the approximation method.

2. Sensitivity Analysis

To better test the extent of the sensitive nature of the trajectories
corresponding to the largest errors in the midrange experiment, we
performed aMonteCarlo simulation over perturbations around initial
conditions. For seed initial conditions, we used the 15 worst-case
trajectories from the midrange experiment. Using only reference
trajectories, trajectories from each perturbation were compared with
the trajectory of the nominal initial condition by taking theHausdorff
distance (themaximumof theminimumdistancebetween twocurves;
the curves here are taken to be the path in position space of two
trajectories). Perturbations were chosen from a normal distribution
with the mean centered at the nominal initial condition and standard
deviations 1 mm and 1 �m=s for position and velocity. Each initial
conditionwas runwith10perturbations, and themaximumHausdorff
distance was recorded. Table 6 shows the results; trajectory 1was the
worst-case trajectory, trajectory 2 the second worst, etc.

As can be clearly observed from this Table, small perturbations in
the initial conditions lead to significant variations in the resulting
trajectories, which shows that the dynamics is highly sensitive to
initial conditions. These results quantify the previous observation
obtained via frequency analysis: because both models can be
considered small perturbations of each other, the discrepancies
between two integrated trajectories in chaotic regions may present
large variations independently of the approximation method used.
The cubetree method captures this high sensitivity as seen in the
frequency analysis, which shows its overall consistency.

VII. Discussion

We have presented an efficient method for representing gravita-
tional force of small, irregular bodies that is accurate enough for
planning missions near them. Our technique combines an adaptive
spatial data structure with polynomial interpolation to cover the
entire domain with an approximation of gravitational force. The
decomposition of the domain can be quite coarse in some regions,
and it also varies in order of interpolation. This flexible spatial
hierarchy enables us to refine ourmodel in regions that are difficult to
approximate (e.g., near high-curvature regions) and enables error
guarantees on the model. We believe this model is competitive with
its counterparts for Monte Carlo simulations of spacecraft trajec-
tories passing near small bodies. A summary and comparison of the
computational characteristics for each available method follows.

A. Cubetree (Our Method)

Memory: This method (our method described herein) has
moderate memory requirements: every octree leaf cell requires
�order� 1�3 	 3 coefficients. The octree used in our experiments
described in Secs. V and VI had 386,880 leaf cells and occupied
653 MB. Speed: Using interpolating polynomials permits a constant
time reconstruction of the force within a cell, and finding the correct
octree cell is an O�log�number of cell�� operation. In practice, this
gives about 100 times speedup over the polyhedral method. Error:
Errors can be controlled to within user tolerances. In our
experiments, we reached our 10�5 goal quite near the asteroid
(farther than 4 m from the surface) and surpassed it at points 2 and
3 radii away (from the center).

B. Spherical Harmonics

Memory: Spherical harmonics have a very smallmemory footprint
of only �order and degree� 1�2 coefficients to store the whole
model. Speed: Depending on the order and degree used, spherical
harmonics can be up to 100 times faster than the polyhedral method.
At best, spherical harmonics approaches the speed of ourmethod and
compares favorablywith othermethods.Error: Nomatterwhat order
is chosen, errors near nonconvex regions of the asteroid render this
method useless for missions close to a small irregular body [4]. This
puts spherical harmonics at a significant disadvantage to both the
polyhedral method and the method presented in this paper.

C. Mascons

Memory: Mascons use memory linear to the number of point
masses used. In practice, this number is in the thousands; thus,
mascons memory footprint is very small. Speed: Mascons are faster
than polyhedral methods; however, they are still subject to a linear
run-time complexity. In practice, their performance is irrelevant, as
they have nontrivial error. Error: Errors for this method have not
been theoretically bounded, and experiments show that large errors
do exist [4].

D. Polyhedral Method

Memory: The primary memory cost of this method is storing the
polyhedral model and its associated data. As most models have only
tens of thousands of elements, polyhedral methods only require a
small amount of memory. Speed: Calculation requires iterating over
every edge and face; furthermore, each edge and face calculation
includes a transcendental function. Hence, polyhedral methods are
slow to compute gravitational force; our technique is 2 orders of
magnitude faster.Error: As long as the polyhedralmodel and density
assumptions are not far from the truth, this method produces exact
results. Of course, any errors in this method would spoil models
using it as a base line (e.g., the examples considered in this paper).
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Fig. 13 Histogram of errors in position and velocity for 911 random cubetree trajectories integrated for 30 days and observed at 5 min intervals.
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E. Modified Polyhedral Method

Memory: In addition to the memory costs of the polyhedral
method, modified polyhedral methods [6] cache many prior
calculations; this, however, can only take a constant factor beyond
the nominal. Hence, modified polyhedral methods also have small
memory requirements. Speed: Depending on the orbit, speed varies
between 10 and 100 times faster. In ideal circumstances, this reaches
our performance, but in general, 100 times speedups are not
achieved. Error: Errors at 3-radii are close to or below 10�3; closer
trajectories may experience more or less error. Our method has an
advantage here because we can adaptively drive error down as
needed and thereby guarantee certain error bounds.

VIII. Open Questions

There are several directions in which this research can proceed.
First, alternative local representations should be considered. For
example, the Cartesian product construction of interpolation points,
as discussed in Sec. III.A, uses many more points than are required
for the accuracy provided [20]. Also, the chosen representation is not
globally exact, that is, it is not the gradient of a potential. This could
be solved by using Hermite interpolation or by other techniques, but
the ramifications of these choices must bemore carefully considered.

Another avenue of research explores subdivision schemes that
provide continuity across cell boundaries. The discontinuities across
cells do not seem to have a major impact on trajectory propagation.
However, it remains to be seen if this discontinuity affects
optimization of, say, low-thrust trajectories. In this case, regularly
subdivided tetrahedra or special variants of octrees may be able to
resolve discontinuities in the interpolated force across cell
boundaries.

Finally, different techniques for capturing the interpolated values
should be considered. This data could come from physical
experiments, or one might, for example, wish to use Poisson’s
equation as a starting point. One of the drawbacks of the polyhedral
method is that incorporating direct measurements of the force field
requires updating the physical description of the small body. On the
other hand, interpolatory techniques should be more apt at making
corrections because they are based on data to begin with. Aside from
the speed of polynomial approximations, this is potentially their
greatest strength.

IX. Conclusions

Polynomial interpolation paired with an adaptive spatial data
structure provides an efficient framework for gravitational force-field
approximation near small, irregular bodies. Even lacking continuity
and exactness, this technique produces sufficiently accurate results
for mission planning in the vast majority of the trajectories tested.
Themodestmemory requirements and vastly decreased computation
time enables our method to bring Monte Carlo simulation off of
cluster computers and onto workstations.
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