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Abstract

‘This paper presents an analytical study of the
longitudinal dynamic stability of a non-rolling, 1ift-
ing vehicle that is gliding at hypersonic speeds.
The analygis applies to shuttle vehicles that are
designed for cperating up to the rim of a planetary
atmosphere, A general non-dimensional time
transformation is introduced to derive a unified
second order linear differential ¢quation for the
angle-of-attack, valid for all types of reentry of a
seneral type of vehicle, The stability of motion is
discuased for twe fundamental regimes of flight
that are based on widely different assumptions.
For nearly ballistic ¢ntry along a straight line tra-
Juctory, the equation reduces to a confiuent hyper-
geometric equation, the solution of which can be
expressed in terms of the Whittaker's function.
Using a theorern in the theory of stability of differ-
ential equation, criteria for damped oscillations
are derived, The critical case of smail static sta-
bility derivative Cm,,' which may cause instability
in pitch. i3 discuSsed in detail, and the critical
altituck: below which the vehicle ig unstable is given
in explicit form, For gliding entry at $mall flight
path angle, the unified equation reduced to a
Hdamped Mathieu's equation with periodic forcing
term, Using the method of Krylov-Bogoliubov, an
approximate solution is constructed. It is shown
that the aerodynamic criteria for stability are the
same as for the cage of ballistic entry. In addi-
tion, for cach vehicle configuration, and specified
planetary atmosphere, there exists an altitude
range where the angle-of-attack frequency is
nearly equal to the orbital frequency, ¢ausing in-
stability in pitch. This resonance instability is due
1o the ellipticity of the orbit. Criteria for eccen-
tricity instability are derived.

Notation

a = ¢onstant coelficient, Eq. (31},
amplitude, Eq. (68)

ABC = principal moments of inertia

b,c = coefficients, Eqs. {17),(18). Also
Eg. {39)

b,cy,¢7,6 = numerical coefficients, Eq. (60)

o,C; = constants of integration

Cp = drag coefficient

Cy, = 1ift coefficient
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Cm = pitching moment coefficient
CDQ 'CLQ. N .
me,Cm‘:‘r,cm‘:l = gtability derivatives
e = base cone diameter, Fig.2
£E) = goefficients of the unified equa-~
tion, Eqs. (12}, (13)
g = acgeleration due to gravity
ky = radius of gyration in pitch
k. k =i=1,...,4 numepical coeffi-
1 cients, Eqs. (25}, (28), (31)
L = characteristic length
m = mass of vehicte
M = constant bound, Eq. 42}
n = angle-of-attack frequency for
shallow entry, Section IV
-] = angular velocity in pitch relative
to the earth
r * radial distance from center of
carth
- i
8 = , Epeed ratic
™ Eol's
s = reference area
t = time
ug = speed along the referance circu-
tar orbit
u = variable, proportional to the
angle-of-attack, Eq. (27}
v = speed alang the trajectory
w = variable, proportional o the
angle-of-attack, Eq. (66}
w = Whittaker function, Eqs, (35}, (36)
Xy Sz = variables, Eq, 710)
¥ = altitude
¥, = critical altitude, Eqs. (46) and {19)
Y = Py, non dimensional altitude
z = variable, Eq. {27)
ag = jnitial zngle-of-attack
" = angle-of-attack
@ =& - ap, variation of the angle- of-
attack
B = congtant altitude scale
Bi = density gradients, Eq. {54)

¥ * fiight path angle.

5,6, * non dimensional masa of the at-
mosphere, Eqs. (8}, (61)

- = amall perturbation, orbit ec-
centricity

* damping coefficient, Eq. &

L] = angle of pitch, Eq. (6). Phase
angle, Eq. (68). Half nose cone
angle, Fig. 2

1Y * constant coefficient, Eq. {38).
Characteristic root, Eq. {72)

v = ratio of moments of inertia,
Eq. {8}

£ = univergal time variable, Eq. (9)

P * air mass density

T, T * inverse non dimengional pitching
moment of inértia, Eqs. (8}, {6})

T = pon dimensional time, Eq. (52)

= central range angle, Fig. 1
Test function, Eq. (40}

w = orbit frequency, Eq. (52)
subacript : Subscript 8 denotes sea level

condition. Subscript 0 denotes
condition along the reference
flight path.

L _Intruduction
‘The purpose of this paper iz to discuss the
longitudinal dynamic stability of a non-rolling, lift-
ing vehicle that is gliding at hypersonic gpeeds,
The analysis applies to shuttle vehicles that are de-
signed for operating up to the +im of & planetary
atmosphere,

In earlier studies, it is customary to formu-
late assumptions for a specific flight regime be-
fore deriving the dynamic stabi 'Pr equation. Both
Friedrich and Dore (" z2nd Allen® developed their
dynamic longitudinal stability equation by consider-
ing the zero-thrust flight path trajectory equalions
which neglect the gravity force, compared to the
aerodynamic foree, This means that the anzlysis
can anly be applied to a pertion of ballistic entry
along which high deceleration rate is being devel-
oped, Laitone then discussed the range of validity
of the assumptions %! by deriving the classical sec-
ond-order linear ordinary differential equation
predicting the osciliatians in anpic-of-attack by
two entirely different approaches. The first meth-
od foliows the usual procedure of small perturba-
ticns in the {light trajectory equations, while the
second method utitizes Euler's dynamic equations,
for axes that are rig:dlir lixed in the moving body.
it was stown by Allen® that, for a large drag,
blunt vehicle, raving z high rate of deceleration at
hypuersonic speeds, the cquation reduces to a Bes-
s¢l's equation of order zero, The solution can
then be ~btained and criteria for stability derived,
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Stability for flight path that is nearly parallel
to the e ‘s surface has beea studied numcz-icﬁly
by Etkin!! and analytically by Laitone and Choul™.
Recently, it was shown by Vinh and Dobrzelecki®) -
that, if the eccentricity of the flight trajectory is
taken into consideration, then the resulting dynami-
cal equation is a damped Mathieu's equation with :
pericdic forcing lerms.

The operstional concept of o shuttle vehicle
allows more flexibility in flight regimes than the
two cases mentioned above, Therefre, there is a
need to get a unified dynamic stability equation that
ig valid for all types of reentry and for a general
type of aerospace vehicle, The difficulty in getting
such an e€Quation seems to be from the fact that,
when it comes to integrating the reduced equation
for a specified type of entry trajectory, one has to
make & time trabsformation to reptace the real time
by aa appropriate variable. Thus, for straight Line
ballistic entry, Allen has used the altitute as inde-
pendent variable to reduce the equation 10a Bessel's
type equation, while for ghallaw glide encry, Vinh
and Dobrzclecki elected to use the mean anomaly 1
along the average Night path as a mere appropriate
variable. it will be shown in this paper that, by
using & wpiverssl time transformation that replaces
the real time Ly a non-dimensianal variable which
represents the number of reference lengths trav-
elled a2long the trajectory of the center of mass, as
suggested by Laitone in Reference 3, we get a uni-
fied linear differential equation of the second ordey
which describes the variations of the angle-of- attack
for all pussible reentries, Yor straight line reen-
try, the new variable is equivalent to the altitude
variable and the equation reduces to s confluent
hypergeometric differential equation which, upon
simplicifaction for a certain type of pure ballistic
missile, becomes the zame Bessel's equation of
order zero which was considered by Allen. The ex-
act solution for the more general case can be ex-
pressed in terms of the confluent hypergeometric
function. Using a theorem in stability of differential
equation, formulated by Laitene©}, an upper bound
for the angle-of-attack oscillations is obtained, and
criteria for stability are derived, For shallow en-
try, the independent variable used is propertionai
te the mean anomaly along the average flight path
and the unified equation becomes a damped Math-
ieuw's equation with periodic forcing terma, The
equation i3 integrated by the method of Krylov-
Bogoliubov, It is shown that the aerodynamic cri-
teria for stability are the same as for the case of
straight line eniry, In addition, there is always
present a spiral instability due to aerodynamie drag,
Furthermore, for each vehicle configuration and
specified planetary atmosphere, there oxists an
altitude range where the angle-of-attack frequency
is nearly equal to the orbital frequency, causing ine-
stability in pitch. 1t is shown that the range of in-
stabitity gels larger when the orbit eccentricity in-
creases. Criteria for eccentricity instability are
then derived,




1. Unified Dynamic Equation

The motion of a nonsrolling, lifting vehicle
in a resisting medium and subject to the gravity
force of a sphericat planet is governed by the sya-
tem of equations, for an axis systera that rotates
zbout the vehicle senter of mass (as indicated in
Fig. 1} so that the x-avig ig always tangent {o the
instantaneous flight path *

2
- féﬁl- gsiny m
vg-tl Psimv -( -—)cosy @
L PSLC v (A C)ainzo . B
%‘: = q+ %cos)« {4}
E.dtt 2 V giny 5)
8 =yta )

The first two equations are, reapectively, the drag
and ift equations along the tangent and nbrmat to
the flight path. The first term on the right-hand
side of the pitching moment equation, Eq, 3, ex-
presses the restoring aerodynamic torque, while
the second term corresponds to the gravity torque
The last three equations are kinematic relations,
The mass density, p, of the atmosphere, and the
acceleration of the gravity, g, are altitude depend-
ent.

The elimination of 8 and q results in the f¢l-
lowing cxact equation for the angle-of-atfack a.

sC, V dCc,  pSLC

R R
(A C)ainzfyé'")-i'(;- gainy cosy
- PSC geosy - ﬁCDC \'a {7
Let
6=%,V=A—.B‘:,v=-maiz {8)

and use the time transformation

e=—5wf:ch.—i W ta-u

dt L

d ¥ . WA " v )
Lo-¥n %o (L) G (e
The new independent variable, £, can be identified
as the number of reference lengths travelled along
the trajectory of the center of mass, For small
~rariations of the angle-of-attack, we may assume

*All symbols are defined in notation section,

CD = CD¢ + CDaa {6)
CL = CL' + CLaa

In hypersonic flight, the aercdynamic derivatives
in the linearization of Cp, and Cy, are approximately
independent of flight apeed and Mach numter. This
same agsumption also applles to Cyp, and experience
has shown that we must express it as

} L\, LY. .,
c, - Cmaa"‘Cm&(-‘-r-)a + cmq(v)“”’ a1}

Upon substitetion into Eq. {7}, and within the valid-
ity of the linearized theory, we have the linear dif-
ferential equation of the gecond order which governs
the angle of attack oscillations

o'+ fiEla’ + f6)e = (5} {2}
where
vi
1,06 = 6[CL - u'(Cm. *Cm 1] +7
-] a q

_ L, v '
a8} = -5C, + 3‘;, CDacosy - T,-cLa) ré'cy

z
b (ow CL +CLQCD }
q a [

+%(%)umzcy+u,) as

- s(B)fen - Doer-scs
(5-,)[ -L;)sty +&vsi.hlfv+n°]]

H
+ 5 CL‘Q(CDO + chq)

1 the trajectory of the center of muss is known, the
elements of the flight path, r, V, and y, and the
atmospheric mass ratio, 5 can be evaluated as
functions of the independent variable £ anhd the uni-
fied equation, Eq. 12, uniquely determines the
time history of the angle-of-attack oscillations for
each prescribed set of initial conditiond on « and o
This assumes the go-called limited problem, that
is the angle-of-attack oscillations have negligible
effect on the trajectory. A successful hnalytical
integration of Eq. (12} depends on the forms of the
functions r,cg), and in general the equation cannot
be integrated in closed form, Fortunately, the uae
of the time transformation defined by Eq. (%) allows
the reduction of the unificd equation, Eq. (12), to
well-known equations in mathematical physics, at
least for the iwo fundamental types of entry trajec-
tory discussed in thig paper. Furthermore, the
new time variable, £, which is monotonically in-
creasing for any flight trajectory, rendery the co-
efficients fj(£) well behaved and most often, with
the aid of the vast literature in the theery of sta-
bility of ordinary differential equations, stability
criteria can be derived without having to integrate

the equation. An illustrative exsmple will be @iven
in the next section.

I0._Stebility of Nearly Ballistic Entry

For nearly ballistic entry along a flight path
with gmall corvature, at high deceleration rate, the
most fundamental assumption is that in Eq. (1) we
neglect the contribution of the gravity force. Then

% . 6(%) g (14}

For this type of entry, the aercdynamic force ia
mainly drag force, and we can write

8 R ’
Cp NCp . € ™0 {15}
Then, from Eq. (14), with the definition {9)
LA
v~ ECD° (1)

Also, for nearly atraight line flight path, % <<},
and gL <<V?. Equation (12} reduces to the classi-
cal form

o + b(E)at +'c(§)u =0 n?
where
bE) =8C;, -C -eiC_ +C_ J]
e, oy "7 Cm, Mg as)
= - ¥,
e = -8leC_ +8C; @C_ +CD.)] +8'Cp
o« [ q [
The coefficients b and ¢ are solely functiona of the
atmoapheric mass ratio, which can be easily ex-
pressed in tertns of the independent variable §. In
this case of straight line ballistic entry, Eq. (17}is
equivalent to Allen's equation {b), and the variable
§ is equivalent to the altitude variable. To show

thig equivalence, let us canstder the case of an
isothermal atmosphere,

p= pse'ﬁy 19
where pg is the atmospheric mass density at sea
level, B the constart altitude scale, and y the alti-
tude of the vehicle., Let yg < 0 be the constant
flight path angle, By integrating

4

% =V ainye

from the injtial time
t
¥:Yp . sinye Vertde = £ sinyg
L L
snd we have the linear relation between y and £

¥ = yo + LE siny, 20)

Congequently we have for the function &(€)
() = ase’ﬂ(}'o"‘f-'gﬂmYo) 21}

where

70-977

p.SL
L v 72)

Zm
is the value of & eveluated at cea level,

‘We define the nondimensionsl altitude Y,

Y = piya+ L§ sinya = By D)
‘Then, the equation for tne angle of attack becomea
%?;+2k,eYd“ (ke +iye )¢=0 (24)
where the constants are
&
kg = m [CLQ- Cp,- u(cm; cmq:]
[

8
K =~ m[ccma+ pI.oCL“!i-!ly.] (25)

Py
aCLu(’Cm + CD,
P L sin® yy

Equations {24) and {25) are identical to those given
by Allen (1957} whose 85 = - y4 >0, The golution of
Eq. (24) can be expressed in terms of lmown {func-~
tiona in mathematical physics. Allen( considered
a type of reentry missile such that the term

fey - %} )72Y iz small compared to fky + ky}e~
Equat:un {24) is then reduced to a Bessel's equation
of order zero, and explicit expression for the
angle-of-attack can be cbtained as

aty) = ek'e'py[c..r,(zm e.%v. )

_By
e’ )] @6

where C, and C; are constants of integration, and
the fupctions J, and Y, are the zero order Begael's
functions of the firat and second kind, respectively.
It is known that, for an equation of the type 24), a
change in the constanta k, can produce a profound
change in the character of the solutions. Hence, in
thig paper we shall integrate the full equation, Eq.
{24). The analysisg is then valid for a more general
type of vehicle, the sole condition being that initially
it can be trimmed to flight along a nearly straight
line trajectory. In Eq, {24y we use the transforma-
ticn

+ cgy,(z

.Y
o = olilkade T, @7
= zk,k,e'Y
where
2 UK -k
K = -1?'—‘ (28

Theg, the equation can be put into the familiar form
of a confluent hypergecmetric equation

d®u g YK =
z-dz—z+u—z)—z-—(x,~ u=0 29)



The appropriste solution of Eq, (29) that will dead
to a physically valid angle-of-attack variation for
£q. (24) is given by the confluent hypergeometric
functicn

ufz) * 3 Fy(a,1,z) = 1 +az

2 ]
" atu,llz . a(a+é)l.()a+21z — 60

[F1)
~vhere
.si_k_k=h"’_ki.=.l&*_kL_ a8n

Zkiky 2K R

a3 given by Slater (Ref, 8, p.2}. For large valuea
»f the constant "a", Slater {196¢, p.68) shows that
the asymptotic repregentation of Eq. (30} ia given

,Fx(ﬂ.l.ZJ‘e%Jo(am)[i+o(~f;€_)} &4

by

t'pon introducing the above into Eq. {27) we obtain
wn asymptotic solution of Eq. {24) as identical to
tq. {26} which was obtained by Allen {1957) under
siere restrictive assumptions, As shown by Eqa,
131} and {32} the asymptotic representation, given
vy Eq, {28), is valid for large values of k which
weeur whenever either k, or ky are much smaller
*han k;. For the golid nose cone considered by
Allen (1957), these values are given in Fig, 2, and
i is seen that k > 10* for 21° < 8 < 75°, primarily
swcause kp > 10* while -k; < 12 and -k < 3. Con-
~equently, Allen's approximate soluticn aa given by
q. {26} is very satisfactory for this type of a body
»t hypersonic speeds. However, for other types of
hodies for which k, as defined by Eqs. {25) and (31)
1: aot large, we must return to the exact solution
«f Eq. {¢4} which is now given by Eqs. (27) and (30}

asg

kge P .
aly) = age ¥l kee ,:-*,[ﬂ -k, 1, ZkikeE ﬂ-‘"] B3)

‘'his exact solution provides an oscillatory varia-
tion for the angle-of-attack only if

j2k -NT73R | < {2,k Picjan + VITARE| (a4

as shown by Stater (1960, p.118). However this
selation, and the question of stability of the oscilla-
tion, are hetier analyzed by putting the confluent
hypergeometric equation, Eq, (29), into the form
of the Whittaker's equation, Whittaker's transfor-
mation is

NN

P 05

The final equation is the Whittaker's equation

W 1.k 1 _
Gtz m)vee @)

" zain, in thig form, we can see the tmportange of
. constant coefficient k. By a proper selection
sor the sign of ky, defined by Eq. (28}, we can
always make both the constant k, and the argument
2, pusitive in the differential equation., It now ap-
;wars that the damping constant k; and the

parameter k apre the two important parameters for
the stability of the eatry vehicle, Allen’s asgump-
tion fails when the moment stability derivative Cm
is approaching zerc. In this cage the constant k
can be small, Egplicitly, we have, by taking Cm&
w0

2¢C 2

[CDB + CL *oC

m
m "t pl..sin: ]
a
k= .El;._l&f ~ a 1 5

Afky -
ks "[cn. +C, +oC_ J
@ q
or
W =fa+np an
with the congtant A defined as
2aC

. AT

X =
(cD°+cL roC_ )pl..alny.,
o k3

38)

In our sign convention, Yo < 0. and for the validity
of the high deceleration assumplion yy~ -45°. For
a reference length of the order of 5 feet, and taking
e=1, F' =22,000#, the coefficlent 2¢/BL sinye
id of the order of -1,25 X 16*, For all preactical
cases, the atatic stability derivative Cpy, is nega-
tive, the constant k is large, and Besgsel solution
for o is valid, Since it is unlikely that Cpp, be-al-
lowed to have positive value, the minimum value of
Cp,, for a certain position of the center of masy
would be zero and the limiting value of k is 1/2.
For small value of k, Whittaker solution can be un-
stable at a certain altitude and it is interesting to
investigate the case of instability of flight due to the
position of the center of mass, that is the case
where Allen's assumption is no longer valid. This
can be done by using Whittakerts equation, Eq. (36),
and a theorerm in the boundedness of solutions of
erdinary linear differantial equations due to Lai-
tone®),” Following Laitone, we consider the linear
differential equation

WY + b(z}W’ + cfz}W = 0 39
Then it is shown that if
= - 2 - I =
#lz) = @ -tie-de@z e >0 @n
and a3 long as #(z) varies monatonically, that is it
is either never decreasing or never increasing,

even though varying, the magnitude of W is bounded
by

|Wizil 5 Mexp{-4 \biz)dz) (41}
where
T T
M= Lfzp)Weizy) +QW {2g) ~TW [z)b (zlFF @)
min

Now, applying criteria {10) and (41) to Eq. {36}, we
have
TS U E )
|22 B {43)
Since both k and =z are positive, the monotonicity of
the variations of @(z) is assured. For positiveness
of ®(z), we must have

z? - 4kz-1<0 - {44)
o
<2k +NIRT T 1 o3 4k {45)
That is
e lathe
Yo> g lor =g 45}

This inequality gives the timit for the altitude, un-
der which the boundedness of the Whittaker's solu-
tion is not assured, As has been mentioned, the
eriterion appliea to the case where Cp, is negli-
gibly small, In general, k; + k; < 4k? and condi-
tion [46) holds st all altitudes, and Laitone's cri-
teria lead to the bound

~By.
latn] = Mty ™) 47}

Since e'i oy ig decreasing, when k; < 0, the angle-
of-attack oacillation is certainly stable, Then, we
can gay that, when Cpy,  is not nearly zero, as
long as «

[c. ~c_ -afc +C_ J)>0 {48)
La Dy m, mq
the angle-of-attack is bounded, and a damped
atable oscillation will occur during rapid descent
along a strajght line through an iscthermal earth
atmosphere,

When k; is positive, a{y) can still be bounded
by a decreasing function if the exponential in (47} is
decreasing. ‘The funciion passes through a mini-
mum when

"z' -Ke 24 ]
This gives the critical altitude for stability
1
Fo Elﬂgakl 49}

The oscillation i3 stable shove this altitude, and

unsteble below, The critical ltitude obtained by
Alent! is

1
L B
Thus, our criteris gives a larger margin, evenfor
the general case, for the critical altitude than the

one cbtained with Allen's simplified analysis,

logdk; (50)

In surmmary, when C is not nearly zero,
inequality {48) gives the stability criteria. When
condition (48) is viclated, the critical altitude,
sbove which the reentry is stable is given by (49).
When Cr,, is nearly zero, copdition [49) has to be
replaced by the more restricted condition (46},
The same type of snalysis applits 19 the case
where Cy,, / 0, Inthis case a small forcing term
is present due to the perturbed lifting force,

Also, it should be menticned that, as has
been pointed out by Allen, for high drag shapes,
the velocity quickly approaches the so-called ter-
minal velocity for which the drag and the weight
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are equal, the reentry angle is getting steeper at
lowar altitude, and below a certain altitude the as-
sumptions of high deceleration rate, straight line
reentry are no longer valid. The transonic-to-
low=-hypersonic flight is in itself a different flight
regime and deserves a separate study.

1V Stability of Shallow Gliding Entry

For gliding entry with a flight path that is
nearly parallel to the earth's surface, it bas been
shown by Lejtone apd Chou®, and Vih and Dobr-
zelecki®’ that the trajectory is a descending spiral
which, for a few revolitions required for a stability
analysis, can be approximated by a nearly circular
orbit with equation -

Tofl - «%)

T T +ccosr (51}
where 1 i the radius of the reference circular or-
bit, « a small quantity which denotes here the ec-
centricity of the orbit and v the true anomaly which
defines the position Of the vehicle along the orbit.
In general, + is a transcendental function of the
tmeasn anomaly which, inturn, is proportional tothe
time. For nearly circular orbit, T is equal to the
mean anomaly and we have 8}

=B, o s (1-82)2-pyst) gt
o 1 52
8% xe
Zel'o
where subseript zero denotes the condition along the
reference circular orbit. The quantity w ig the non-
dimensional orbit frequency, and the ratio s of the
velocity along the reference circular orbit to the
circular velocity without drag, at the distance rg,
can be evaluated {rom
poSC, 1y

1-a%= —Eé‘i—s‘ 53)

‘The ccefficient g, denotes the first atmosgpheric
mass density gradient. In general

]
iy = p ek ¥ r-r -v 4
a2 cven(5) o512

o (gflf»f , pl--i(g-:glié,... 54

It is important, for an order of magnitude analysis,
to mention that the coefficients P are large. Py is
of the order of -10° as shown in Fig. 3. The co-
efficlents are calculated from an inverse polyno-
mial representation of the earth’s stmosphere as
given in the U. 5. Standard Atmosphere Supple-
ments, 1966. The values of §; are in excellent
agreement with the values calculsted from tabu-
lated data in the altitude range 100-600 thousand
feet.

To the order «, along the gliding trajectory,
we have



r=refl -«cosr) , V =uylltecosT)
siny = (‘:"gslnf , coamy =§’,n-z=cosr) {55)
g ° gell+2¢ecosv) , 6 = 5gfl- ¢B,coaT)

f the reference length L. in the definition (9) of our
independ>nt variable £ is taken as the radius r, of
the reference circula.r orbit, we have

ax—j'vmdt--frnamﬂ---: 56

After each revolution, the contribution of the peri-
odic terms in the preceding relation averages to
z¢ro, and to the accuracy of this analysis we can
cake
52
[ vl 571

Thus, for shallow entry, our varisbie is propor-
tionat to the mean snomaly floag the orbit. Using
the ¢lements of the orbit as given by Egq. {53), and
the new varisble v, as related to £ by Eq. (57), we
can now rewrite the unified equation, Eq. (12}, to
apply to the case of shallow entry. It is important
to mention the following facis:

The elements of the orbit, as given in Eq.
{55), ar= good approximmation above 300 thousand
feet. They will be used mainly to evaluate the
forcing terms, aamely the function § fr) in the uni-
fied cquation, Eq. §2). For the damping srid fre-
yquency, namely the functions f,fr) and f,(r}, it is
important to show the effect of the drag by using
the drag equation, Eq. 1, with the small gravity
component neglected. Then we have

ye . 1ldvde
¥ Tvar o & " %Cp, =8)

The gliding flight regime Tequires an aerodynamic
configuration such that Cy,, # 0. We can select the
reference body axes such that this value of Cy, is
alsu the value of Cp, along the reference ciréular
flight path with ap = 0. The eccentricity of the or-
»it + and the mass ratip of the atmosphere b are
small, so that we neglect their second and higher
ordey, but since the density gradient g, is large,
it is necessary to retain some higher order lerms
having B, as ¢oefficient. With these considerations
we have the equation governing the angle-of-attack
for gliding entry

d“'+2; nz-ubcos-r a
@t &

= g+ e, 8inT + ¢ty cosT {59)
where .
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‘The regcaling of the inertia constant & {2 necesgary
to have the moment stability derivative Cm,, £x~
pregsed numerically, in the waual way, with body
length ss reference length. Hence, in this section,
we have the definitions

prB8¥e o omnl o L 1
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The governing equation is a linear, second order
differential equation with pericdic coefficients, and
periodic forcing terms. Its form is to be expected
by the almost periodic nature of the trajectory. For
an understanding of the different terms, let us con~
sider the case of circular orbit, ¢ = 0. Of courge,
this can happen only when the 2erodynamic forces
are vanishingly small. 'I‘hen. we have

d
ﬁ+zr,a-;+—=a-c. 62)

Neglecting the second order of the damping &, the
general solution for the angle of attack is

atr) = € [Cyeos Dr+ Cuinle) 5:Cp, 63)

The condition for stability is

[(:L - CDn-F[Cm_ +Cm N0 .
& a q

which iz the same aa condition {48) for balilstic en-
try. The angle-oi-attack has & damped oscillation
with frequency nfw and its value tends asymptoti-
cally to g,,,rn’)s.,cD' The constant forcing term ¢,
can be geen as the drag force which induces the

‘spiral decay of the orbit  Another instability with

dynamic nature wil! arise when we consider the
ellipticity of the orbit. For ¢« non vanishing, we
first integrate the homogeneous equation in Eq. (59}

z 2
%, + zgE +(—E, - ¢bcos-r)a =0 {65)

Using the Liouville transformation
aze ¥ we) {66

the equation iz transformed into a Mathieu's equa~
tion

(— - :bcosr)w =0 (67)

where a gmail constant of arder 5} bag been omitted
in the ceefficient of w. The Mathieu's equation pos-
8egses periodic solutions only when the constants
satisfy a certain relation. In general, the solution
is not pericdic and if the damping condition (64} is
satisfied, the solution for « in (65} is a damped
Mathieu's solution with negligible damping at high

altitude. In Eq. {67) for w, it can be seen that,
when ¢ = 0, the golution is a pure harmonic func-
tion. For smalt ¢, the solution ig oscillatory al-
though not periodic in general. For large « the
golution may become unstable., It is possible to
determine the zone of instability by the method of
Krytov-Bogoliubov™. Following Bogoliubay, for
the second approximation, we have

wir) r acosfr+e)+ ¢og [2¢ +8)

_taby

2{o+2n)
+ abw

+ TN T [:] (€8}

wheyre the amplitude a, and the phase angle 8, con-

sidered as functions of 7, must be determined by

the equations of second approximation
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To solve the system of equations {69) we introduce
new variables x, and x; according to the relations
Xy = acos@
! (70}
x; “asine
Then, it can be shown that the system reduces to
the linear system with coustant coefficients

dx Enfw@ntidv) /n
_.l = -
(SRR (2 )

e 1
dx, biwfen -
@ [dbiu@n- o) -
ar ‘[ BAR: - F) *( 1)]"

The characteristic equation of the system isg

2
D% Rn - wpEnt 3w} n £biu(n - w)
(%] 1+ 2{4nt - 2

64 (407 - of )2

Hence, the general selution of the system ig

=C;e)w N c‘e-\-\'
Bwidn® - o) AT AT
8o~ DR - B} F AR I TS T Cae ]
{3)
where C, and C; are constants of integration. The
amplitude a and the phase angle 0 in the solution
{68) for w are then given by

Xz =

(e
6 = tan™' %2
X

1t is clear from (73) that, if the roots of the char-
acteristic equation (72} are imaginary, the ampli-
tude a will be a bounded function of the time. The
condition for dynamic instability, that is the condi-
tion for : to be real is
dhlot dbie o bt P )
= <14 +
T A=A i o Y It - o) dEn - w)
{75)
This happens for near resonance, when the proper
angle-of-attack frequency of oscillation, n, is near
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the frequency w of the foreing periodic term.
Therefore, since n & w near resonance, conditien
{75) can be simplified to

2t n? s5dbF
-3 <G <+ e

Fig. 4 plots the zone of instability as function of the
gccentricity. It is clear that, for circular orbit,
resonance ig not observed, and the zonhe of insta-
bility gets larger when the orbit eccentricity in-
creases. 1t should be menticned that this analysis
applies to nearly circular orbit. When ¢ is large,
the trajectory extends over a large range of the
altitude, and higher order gradients of the mass
density of the atmosphere should be included. The
altitude where n = w, called the resonance altitude,
is obtained by solving

z
W =3l - G(F'C, +eCp) D)
a @
Resonance cccurs at high altitude, and we can ap-
proximately take wsi I, 8 ®1. This leads to the re-
lation, by neglecting the contribution of Cpy, and
using subscript s to denote condition at sea level

2ZKE (3kg - (W /5)
- .
ByfoTs = = R A

o

The left-hand gide of the formula above is solely
dependent on the planetary atmosphere. This very
asimple function, as varying with the altitude, for
the earth's atmosphere, is plotted in Fig. 5. The
plot can be used to compute graphically the reso-
nance altitude for any type of vehicle, as charac-
terized by the right-hand side of Eq. (78). The
criterion (74} shows that, near this resonance alti-
tude the angle-~of-attack oscillaticn is dymamically
unstsble. For any given vehicie, and orbit eccen~
tricity, the exact altitude range for instability can
be computed numerically by using equality signs in
76,

The complete solution for the angle-of-attack
is the sum of the general solution of the damped
Mathieu's equation, Eq. {65), and a particular so-
lution of the non-homogeneous equation, Eq. (59).
To construct the particular solution we can neglect
the small damping and consider the equation

2
n
-—+(;; -<bcosv)a = ¢ *eC8inT Fecycost (79)

Following Poincaré!®, we seek the follewing seriea
aclutions for the different forcing functions

a * et E‘pCJPCOSP"
pP-1
@ = E: cap sin pr (80}
@y = c»+EtPCapcosw
p=1

To the second order in ¢, we have the particular
solutiong
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The particular solution due to eccentricity oscilla-
tion iz then

"e=“1+“z+°! {82}
Again, by the form of the sclutions {81) we can see
that resonance o¢ccurs when we have nss w. The
amplitude of the force oscillations becomes in-
creasingly large, and linearized theery no longer
halda, Fortunately for practical serodynamic con-
figuration, resonance ¢¢curs at high altitude, and
during entry, the vehicle is quickly spiraling
through this critical altitude in less fime than for
the resonance to build ap.

V. Conclusion

In this paper, we have presented an analytical
study of the longitudinal dynamic stability of a
hypervelocity vehicle during its deacent through a
planetary atmosphere. A general non-dimensicnal
variable hag been introduced te replace the real
time. This new variable, defined as the number of
reference lengths travelled in time allows the deri-
vation of a unified equation of motion for the angle-
of-attack, valid for all types of reentry of a gener-
al type of reentry vehicle, Two flight regimes of
fundamental importance have been discussed.

In the first case, the steep reeatry along a
nearly straight line flight patk is analyzed. 1t is
shuwn that $he general solution can be obtained in
tertns of the confluent hypergeometric function,
Using 4 theorem in the theory of stability of differ-
eatial eguations, simple criteria for boundedness
of the oscillations have been obtained, In general,
for normal, nearly ballistic vehicle configuration,
the motion of the angle-of-attack is stable. When
the position of the center of mass of the vehicle iz
such that the static stability derivative Cma. is
amall, the vehicle motion becomes unstable below
a certain altitude., Explicit expression for this
critical altitude is derived.

In the secoad case, the descent is achieved
along a spiral flight path with small angle of incli-
nativn. The general equation is reduced to a
damped Mathieu's equation with periodic forcing
term, Using the method of Krylov- Bogoliubov,
approximate solution is congtructed, and criteria
‘or stability derived. It is shown that, first the
vehicle should be designed such that a certain
acrodynamic criterion be satisfied. It is the same
5 the stabidity criterion for ballistic entry. There
is aiways present a small spiral instability due to
the effect of drag, Also, there exists an altitude
rat,ne in which the motion is unstable if the vehicle
3 uncontrolled for a certain length of time. This
altitude range is a function of both the characteris-

tica of the vehicle and the atmogphere. This reso-
nance phenomenon is due to the commengurabitity
between the frequency of oBcillation of the vehicle
and the orbital frequency, Simple expression for
the altitude in which the two frequencies are equal
is derived.
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