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ENGINEERTNG ESTIMATES FOR SUPERSONIC FLUTTER
OF CURVED SHELL SEGMENTST

William J. Anderacn* and Kuo-Heiung Hsu**
The University of Michigan
Ann Arbor, Michigan

Abstract

Theoretical flutter boundaries are given for
eylindrical shell segments. The problem was moti-
vated by portions of the Saturn V bocoster. Don-
nell's cylinder equations are used in conjunction
with CGalerkin's methed. The aerodynamic expres-
sion is simplified by using a static theocry. This
theory, however, includes a parameter which typi-
fies the spatial pressure distribution. As the
parameter is varled, the pressure distribution
changes from that given by Ackeret thecery to that
typical of & sgteady, slender body theory., These
extremes are felt to provide physical bounds for
the types of flow over an isolated shell segment.
The result is an upper and lower estimate for the
fiutter boundery, yielding a thickness reguirement
as a function of panel curvature snd length-to-
width ratlio. The segments are less sensitive %o
the spatial presgsure distributicon than expected.
This may account for the relatlve success of
Ackeret theory in predicting cylinder flutter to
dete.

Nomenclature
D EhZ/[12(1-v2))
F Alry stress function
H Thickness parameter,

[ -1]1/2E/[(1-v2)q] l/5h/L
Panel Thilckness

bt Length of panel

i Mach number

X Axial wavé number

i Number of modes

W, ,Nn Stress resultants, see equations (5)
and (6)

1{x,9,t) Aerodynamic load

o) Integer, alsc dynamlc pressure

I Radius

t Time

J Flow velocity

W Width of panel

Hepp Effective width of panel, W/n

W Panel displacement in radial direction

X Spatial coordinate, flow direction

A Curveture parameter, (L/R}(L/h) J1-v2

ﬁqm Kronecker Delta

o Angular coordinate

95 Included angle of shell segment

)3 Eigenvalue

) Fluld density

pg Penel density
¥ Spatisl phase shift
w  Frequency, rad/sec

I. Introduction

This thecretical study concerns the aero-
elastic instability of a cylindrical shell segment
The problem was motiveted by the need for design
criteria for portions of the external structure of
the Saturn V booster. The panel is & rectangular

plate bent to a cylindrical shape and is freely
supported on all four sides {Figure ).
purrounded by rigld structure (Figure 2).

It is
Super-

Figure 1, 8hell segment.

Figure 2.
in a cylinder.

Blastic shell segment imbedded
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sonic flow is directed parallel to the generators
of the cylindricel shell segment. Primery inter-
egt 1s in low aspect ratioc panels.

There is sericus need for theoreticel crite-
rla for panel flutter and dilvergence of such ghell
segments. In the absence of such date, designers
must either ignore the possibility of panel flut-
fer on the structure, or asccept its occurrence
stoically with the hope that the missile will sur-
vive.

The structursal aside of the problem has been
studied in a conventional way, with the use of
Donnell's cylinder equations. Galerkin's method
is used to find linear stability boundaries.

First attempts at the problem involved the
use of potential flow aerodynamic theory. TFor
such a panel, these relationg are so diffieult to
handle that the ecalculation of "coupled mode'
flutter boundarieg is not practical at the pregent
time. Furthermore, the more exact serodynamic
theories (which account for finite width and
length as well as frequency dependence) would yield
regults which are not useful to the degigner. Too
many parsmeters enter.

On the other hend, Ackeret (linearized two-
dimensional supersonic) theory has proven useful
in predicting the conly cylinder flutiter experi-
mente to date Sstearman, Lock, and Fung, and Clson
and Fung). 152} This is of some interest because
for the wevelengths involved in the wind tunnel
tests, 1t is known thet Ackeret theory results in
pregsure expressions which are in serious error
concerning the spatial distribution of preassure.

In the present study, therefore, a static
asercdynamic theory is used which 1s based on
Ackeret theory. The merodyneamic pressures are
taken to be of magnitude equal to that given by
Ackeret theory but with an arbitrary parameter al-
lowing & varying spatlal pressure distribution.

In this menner, as the parameter is varied,
the presgure expression changes continuously from
a pressure distribution typicel of Ackeret theory
to one typical of a steady slender body aercdynamic
theory. Potential theory suggests that for seg-
ments of an oseillating cylinder, the true spatial
digtribtution should lie somewhere between these
twe extremes.

The inclusicon of such a "correction” to
Ackeret theory to allow for uncertainty in the
aercdynamic pressure would be useless if the dynamic
stability of the panel were sensitive to such a
cholce. The results show, however, that the varia-
ticn of the spatisl pressure distribution hes only
a moderate effect on the stability of the panel.
Upper and lower estimates of the stability boundary
can hence be given. The panel thickness require-
ments differ by less than %5% over a wide range of
paremeters.

One adventage of this epproach 1s that the
resulte can be pregented in en understandsble
{albeit somewhat oversimplified) manner. A thick-
ness parsmeter required to prevent flutter is plot-
ted versus a length-to-width ratio. A curvature
parameter enters in much the same way as in cylin-
der buckling work. It is felt that the design
parameters used here are somewhat universal and
will prove to be ugeful 1in the long run, even
after more precige theories are availasble. Cor-
rections to the degign curves cen be made &s more
experimental date are obtained.

The results do not include unsteady aerodynamic
effects and cannct predict the single degree-of-
freedom flutter typlcal of transonic flutter. Also,
the approach used here is legs accurate if used
for prespurized shell segments, where frequencles
are higher.

Previous work has been done on related pro-
blems. Dzyzadlo studled the elastic instability
of an infinitely long elastic segment of an infi-

/'

Figure 3. Cylinder studied by Dzymaedlo.

nitely leng cylinder.(j) The stability boundaries
were found for a traveling wave:

w(x,0,t) = wie) etx-Vy)
A get of integro-differentiel egquations of motion
resulted. These were solved with the aid of a
Fourler geries in the & variable. Much effort was
placed on a gitudy of the effect of structural
damping on the stability boundaries, For moderate
emounts of demping, unexpected changes in the
penel’s stability resuwlted. The numerical results
presented were not extensive. It was concluded
that for small demping ratios and for fixed shell
thickness and radius, the critical Mach number deeg

not vary greatly for included angles for the seg-
ment lylng between n/b and n.



Another study of interest was by Dowell and
Widnall. The case consldered was a finite
length elastic segment in an infinitely long rigid
cylindrical shell. In this case, the generalized
serodynamic forces were found for deflections of
the type

b
wix,0,t) = &' cog ne sin EEE .

”/””,/r"\) 44'15%II%i|i
Figure 4, (ylinder studied by Dowell.

Dowell made several comments about the stability

of the ghell segment merely by looking at the
character of the generalized forces. First of all,
in the low supersonic Mach number range, & single
degree~cf-freedom type of flutter is possible.
Secondly, for shell segments with long length-to-
width ratios, static divergence tekes place. Flut-
ter boundariegs for the "coupled-mode" type of flut-
ter were not presented,

Another important study was done by Randall,
who calculated pressure distributicons on station-
ary, three-dimensional "bumps” {such as canopies}
attached to cylinders. The work dealt only
with drag and the question of elaptic stability
of the canopy was not studied,

The present sclution parallels the approach
uged by McElmasn to some extent. MceElman
studled a curved orthotroplic panel segment by
ueing o two-mode enalysis with Ackeret theory. No
design curves of the type shown here were pregent-
ed in McElmen's work. Also, it is necessary to
use many more thean two modes when dealing with
low mspect ratio panels.

IT. Problem Statement

Ceongider & cylindrical shell segment es
ghown in Figure 1. Supersgonie flow passes over
the cuter surface of the segment, with flow direc-
tion perellel to the cylinder axia. The segment

is of wniform thickness and of isotropic, homoge-
ous elastic materisl. Conventional cylindrical
coordinates x, r, @ are used. The shell segment
is defined by

r = R

0 < x < ﬁ
~8p . -90
= 28 <=

Deflecticn of the surface of the segment will be
given by w{x,0,t) measured from the mean radius of
the shell. The edges of the shell will be 'freely-
supported” as defined below. The shell may be
internally pressurized. No gtructural demping will
be included.

Structural Details

The shell 1s thin and initislly circular,
Radial deflections are restricted to be small:

w{xEO,t! w1

h

The in-plane motlons of the shell u{x,6,t} and
v{x,0,t) are small compared to w(x,9,t) sc that
fnertial effects due to in-plane motion can be
neglected {Reissner's assumption). The included
angle 9, is restrieted to be less than =/2 so that
Donnell.'s shallow shell equations can be used.

18]

i PP
b p(x,0,8) = © (1)
vt - %QZC—EQW = 0 (2)

where D 1s the bending rigidity of the shell,

ﬁh and Ng are constants representing the components
of membrane stress due to internal pregsurization
and F(x,9,t) 1s the stress function defined so that

e 1 3%

Nx(x,Q,t) = RE R (3)
2

Ng{x,8,t) = —;—CS (&)

Nove that W, snd Fg ere the time dependent com-
ponents of nembrane stress due only to panel motlon.
The total membrane stresses are

Ne(x,0,8) = Wy + Wy(x,0,t) (5)

Ng(x,O,t)



Boundary conditions to be applied at x = 0, x = L
are

= _a__aeF“O (
M- K
cex )
Boundary cenditions at @ = t?; are
3 _ ¥R _
R~ I (8

The freely-supported boundary conditions have
been chosen primarily because they are sabisfied
{term by term) by the series

jo, J 5
wix,6,t) = e mél &, cos gf— sin Q%E
a
/OSXSL\
-9 o |
R o R (9}
2 o

These boundary conditions result in a plate which
is dynamically "weaker' than an elastically r=-
strained or =2 clamped plate. Experience has shown
that an elagtieally restrained or clamped panel
needs to be less thick fo prevent fluiter than the
freely supported panels studied here.

At this point, the structural problem has been
poged. We need to find the aercdynamic pressures
p(x,9,t) generated at the penel surfece.

Aerodynamic Detsils
A strong assumption on the aerodynamie pres-
sures will be made. The pressure on & panel de-

flection
$ ang  , mEx
w(x,8,t) = ¢ &% cog 3o~ sin _E—_ (10)
will be assumed to be
. . 5
ol m nxe ﬁ%ﬂx
p{x,8,5) = eeiwt‘———cos——cos—'—+t>
T Ju 1L % \&

(11)

In other words, the yressure will have a megnltude
equal to that given by Ackeret theory and a spatial
presgsure distribution that can vary as desired.

The above approximation wes made only after
much thought about the physicsl situation and the
theoretical solutions svallable., There are es-
sentlally three main features to be considered.
First of all, this theory 1s quasi-statlc—it
neglects the aerodynemlc forces out of phase time-
wise with the dlsplacement of the panel. Secondly,

the spatial pressure distribution has been chosen as
a simple trigonometrie function which cannct account
for the details of the panel geometry, e.g., the
"leading edge effect.” Thirdly, the amplitude of
the forces has been chosen to correspond to that
given by Ackeret theory {& short wave length theory)
rather than by a slender body type of theory. Thoso
points will be discussed In turn.

The neglect of the out-of-phase forces is reu-
sonable when one considers s system which flutters
in a "coupled rnode" type of motion (rather than «
single degrec-of-freedom) and if the freguency in-
volved 1s low. This 1s because multiple degrec-~of-
freedom instabllities are less sensitive to cut-of-
pPhase forces than single degree-of-freedom insta-
bilities, Also, when the flutter frequencies arc
low, the out-of-phase forces are small. Of coursc,
this would make the present analysis in error for
axisymmetric flutter of ecylinders, transonie §lut-
ter and Tlutter of highly pressurized panels.

The simplificaticn of the spatial pressure
distribution simply must be done in order to get
some results. In practice, the variocus gecmetries
which should be covered include panels which arc
bounded by channels extending into the free stream
and include panels forming hat sections., This
precludes any exact analysis. Theoretical studles
by Platzer, Beranek, and Saunders(7) do indicate
that for steady flow over an axisymmetric wavy
cylinder &t supersonic Mach numbers, the leading
edge effect is usually smell. Once one assumes &
sinusoidal pressure waveform, &s is done here, 1t
then follows that the phase angle ¥ must lie be-
tween 0° and 90°, on the basis of extensive numeri-
cal work on potential flow over wavy cylinders.(a)

Finally, the magnitude of the aercdymamic
pressure expressicn was chogen to correspond to a
short wave length theory becsuse this represgents
an intermediate wvalue. For certain wave patterns
on & cylinder, a type of merodynamic "resonance”
{(reinforcement of pressures along Mach lines}
oceurs and pressures develop which are larger in '
magnitude than indicated by Ackeret theory.(8)

For long wave length ratios [very low aspect ratio
wave patterns) the pressures drop belew the values
given by Ackeret theory. There are reasons to
believe that neither extreme 1s reeched in the case
of & finite panel. Because of its finite width,
the panel does not have encugh repeated waves in
the transverse direction te allow the "rescnance"
to occur, and hence high pressure megnitudes are
not expected. On the other hand, existing so-
lutions for low aspect ratic flat plates indicate
that the ingtebllity invelves eigenfunctions with
short wave length content, and hence very long
wave length solutlons are not expected.

The sbove reasoning led to the cholce of the
serodynamic pressure expression in equation (11).
The peremeter ¥ is allowed fo vary to account for
the uncertainty in the pressure distribution. By



letting ¢ vary from 0° te 90°, one ig essentially
changling the pressure digiribution from that of a
two~dimensional supersonic theory to that of a
slender body theory.

§tebility Detatls

Galerkin's method is used to pose the problem
in matrix form. The deflections of the ghell
scgment are

wix,0,t) = el® 408 nxe Z By sin =X (12}

go m=1

Note that this expression allows n half waves in
the circumferential dirvection of the panel. If n
takes 8 value higher than 1, then the effective
length~to-width ratio of the panel incresses ac-
cordingly because there are stetlonary nodal lines
down the length of the panel,

The expression for pressure equaticn (11),
18 used in conjunction with egquations (1) and (2)
to yield the set of linear algebraic equations of
motion:

N 2 b N 12
L.2 2 12 Z
2 =
m§=:l & {[m ¥ (wgff] * R+ (E ? 25 m?
NoLe
oY L.z 24 mn
- ( - - S sin ¥ B
eff A am
+ ;é%E ﬂqm cos W] = 0
(¢ = 1,2,...n)
where !

L/ Vg pp f{_é;
pghuPLE
no= »
- ¢ m+q even
nqm

Thus, & set of linear algebraic equations are ob-
tained. The cccurrence of & negative elgenvalue
A signifies statlic divergence of the panel and
complex A glgnifies flutter.

be made as to how toc present the data.

ITI. Results

Stabllity boundaries have been calculated for
the aerodynamic loading dlscussed above. All re-
sults will be given for cases with zero membrane
stresses N and NG

The present study emphesizes the role played
by the spatial pressure distribution. Because it
is not clear how the value of Vv affects the sta-
bility boundaries, some preliminary qualitative
studies were carried out In Ref. 10. Let us con-
gider one of the results of this earlier work.

Firsgt of all, it should be remembered that
under the present theory, there is no difference
between the flutier of a shell segment and the
gbanding wave flutter of & complete cylinder. The
current theory allows no aerodynamic, elastic or
inertial coupling of adjacent panels. Hence, &
complete cylinder could flutter in a mode with ad-
Jacent panels oscillating independently.

The case recalled for illustration correspeonds
to the cylinder studied experimentally by Olson.(g}
The ratio of cylinder length to effective width
L/W,pe was 9.2 and the cylinder curvature
{L/R)(L/h)(l v2)1/2 was 6,950, When & cylinder of
this geometry 1s studied under the present theory,
the effect of a veriation in ¥ is found as is
ghown in Figure 5. The dynamlc pressure required
to cause flutter or dlvergence 1s plotted. It is
seen that for ¥ between 0° and 60°, only flutter
is predicted. Furthermore, the flutter boundary
doeg not vary greatly with ¢ in this range. For
¥ between 60° and 90°, one observes Tlutter at
moderate dynamic presgures and divergence al high
dynemic pressures,

250%10%
200 §
oQ
x; :
-4 [ &
Y 3
o 150 a
FLUTTER FLUTTER
[=3
=
F ool
tad
[
2
@ STABLE]
w STRE
£ sof
g
F3
Y
£ 1
5 Oso -‘4i5 0 a5 90 135 180 228 270
SPATIAL PHASE ANGLE ¢, DEGREES
Figure 5. Stability boundaries for a cylinder.
From Ref. 10.

In the resultg that follow, a decision had to
It was
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decided to solve for flutter boundarles taking

¥ = 0° and ¥ = 90° as the two cemes of greatest
interegt. This 1s somewhat an arbitrary cholce,
since the critical thickness requirement lies

near 30° in the exemple Just studied. The case

at ¥ = 90° 15 unusuael in the fact that nc flutter
is predicted for ¥ preclsely equal to 90°, (It
can be seen that the flutter matrix iz Hermitlan
and cannuet hawe complex eigenvelues for this case.)
The occurrence of flutter at nearby values of ¥

iz ominous and hence the "flutter boundary” at

¥ = 90° 1g teken &8s the point on the figure where
the two flutter bounderiles intersect (the limiting
velue as ¥ goes to 90°).

Stebility boundaries for shell segments are
glven in Figures 6-9. The results are presented
using an effective length-to-width ratio L/Wepp
the curvature parameter Z = (L/R}(L/h)(1-v2)Y/2,
and & thickness persmeter H = [/ME7] &/ *
(1-v )q]1?5h/L. The plots of H versis L/Wepr are
given ag @ generalization of the work of Kordes,
Tuovila, and Guy and the curvature parameter Z
corvesponds to a p%iimigsr uged in the study of
eylinder buckling. 4 There are two subtle

" points about these parameters. First, the ef-
fective lengbh-to-width ratic is not unigue for &
given panel. A panel with given geometric length
and width may flutter in a mode with n > 1.

Hence, a penel may have an effective length-to-
width ratio which is any multiple of its geometric
length~to-width retle. Second, both parsmeters H
and Z contein the thickness of the panel. Depend-
ing on the wey the design curves are uged, this
can ceuse & small inconvenience {reguiring a
gimple iteration to get & useful result when cone
wishes to solve for a required thickness). As
presented, the design curves are most stralight-
forwardly used when one knows the physical pro-
perties of a penel and wishes to check its stabi-~
1ity.

It was found that for L/W,pp large end for
gmell curvature, many modes were needed for con-
vergence. Gaspars and Redd studled carefully the
number of modes required for convergence on finite
3spec?95atio flat plates when Ackeret theory is
uged. They found that as many as 50 modes were
needed for flat plates with aspect ratios of 10
or more, When curvatufe is present, the results
de not seem to be asg fgensitive to convergence pro-
blems. It was felt that 30 modes were suf-
ficiently accurate for this study.

The golution for ¥ = 0° (Ackeret theory) is
given in Flgure 6. It is easily seen that curva-
ture helps to stiffen the penel and reduce the
thickness requlrement. An interesting effect is
obtained in the regions where H increases with
imereasing L/Verr {positive slope). This is the
case where & peanel of gilven physical length and
width will flutter in a mode with n > 1, giving a
higher eritical velue of L/weff. As an example,

a panel of length 10 Inches and width 2 inches has

a physical length-to-width ratioc of 5.
for this panel, then it might appear that & thick-
ness ratio of 0.034 would be sufficient to prevent
flutter.
of 5 as possible effective length-~to-width ratios.
Cne then sees that L/Werr = 20 yields = thickness
requirement of H = 0.055. This particular panel
flutters with n = L, i.e., it has three interior
nodal lines extending down its length.
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Z 30,009
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1
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EFFECTIVE LENGTH -TO-WIDTH RATIO, LWy

Figure 6. Stability boundaries.
aerodynamic theory. .

Ackeret

Regults for y = 90° are given in Figure 7.
These results are similar to the ¥ = 0° case except
that the instabilities in the lower left corner smre
due to static divergence. Again, one must observe
the cases where H increases with L/Weff and one
must choose the multiple of the geometric length-
to-width ratio which gives the largest value of H.

ozo>~ \
" ——==Fluligr
- \ = = —Divergance
ala + N\
- o8 . .
-
AN
2 "~
. STABLE
T‘a \‘
z mzr .
T f\hi:o
12000 """-..,_
< — e T
B oosh - — s LN
2 T B
- 4 8000, T e T
E ”’—.—“"\/ -
5 Qo4 - s i
g i T40000
e
r / "
—
.ﬁ‘-‘_ )
00 — N - L L
) ) 10 s 20
CEFELTIVE LENGTH-TO-WIRTH RATIO, LW
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If 7 = 8000

One must consider, however, all multiples
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The most useful results, from a design stand-
point, are given in Figure 8. This figure com-
bines the regults for ¥ = 0° and ¥ = 90°. Note
that the difference between the two bounding
curves is not great, particularly in certain
intermediate reglons of L/W__ .. This mey be an
indication why Ackeret theory gives relatively
good results for the cylinder experiments dis-
cussed in Refs. 1 and 2 (see next figure). As
experiments are carried out, corrections can be
applied to deslgn flgures such as thls and some
confidence in their accuracy can be esteblished.

0.20- \-
£|- \ pum—— Y. R LTI
£ \\\ —— ¥ 30" (hutter)
wl® o6l . e W =90 {dlvargince )
32
e
« 042
x
g
-
2 008
@
W
b4
2 004
o+
EFFECTIVE LENGTH-TQ-WIOTH RATIO, by
Figure 8. Upper and lower bounds for thick-

nesg requirement., Freely supported ledges.

Other theories and experiments are shown in
Figure 9. Several of the pointg correspond to
work for full cylindiical shells. Structurally,
the major difference is that a complete, unstlf-
fened oylinder can flutter 1in modes with waves
travelling in the cirecumferential direction where-
ag the segment cannot. Of particular interest in
Figure 8 are the experimental points found for
full cylinderg by Stearmen, Lock, and Fung, and
by Olson and Fung.{1,2) It 1s now believed that
thege eylinders did flutter in elrcumferentially
travelling waves.(15 Theoretleal nonlinear
flutter boundaries found by Evensen and Olson give
a larger thickness requirement than the current
linear study. This may explain why the experi-
mental values occurred at glightly higher velues
of thickness ratic than predicted by the present
theory.

The experiments of Tuovila and Hess were
carried out for a ghell segment clamped zll
around. ‘1 The teats were done at Mach 1.3,
which unfortunately brings transonie effects inte
the comperison. In transonic fiow, the unsteady
aerodynamlc terms are of importance and these
terms are missing in the present theory.

.with the theory.

0.20- \
\ —— e ]
\ — W 2500 ({lubter}
_____ Y =50° (divergence)

OI6[-

ti-r2iq

Ir,
z
TRICKNESS RATKO,H = { M-1E } -

EFFECTIVE LENGTH-TG-WIDIH RATIO, vy o

Figure 9. Comparison with other
theories and experiments.

The theorles of Voss and Shulman both were
done for & complete aylinder with the use of
Ackeret theory.(l5:l These should {and do)
correspond-with the present calculations and serve
ag a check., Their results yield thickness ratios
H slightly higher than the present results. This
reflects the fact that fewer modes were used.

(For low curvatures and large length-to-width
ration, the thickness requirement converges from
above, )

There are nco unclassified experliments known
to the authorsg which furnish the proper comparison
Such tests would be usgeful.

IV. Coneluglons

A plmplified study of the aeroelastic inste-
bility of curved panels was carried out. The
asgumptlons made were based on theoretical solu~
tions for fiow over gtationary wavy walls., A
perameter was ineluded to account for the uncertai
tainty in the aerodynamic pressure distribution on
the panel, Upper and lower estimates for the flut-
ter boundarieg were presented. It was found pos-
sible to summarize most of the informatlion for
curved, unstressed panels in one design figure.
Comparisons with other theories and experiments
make the pregent anslysis look ressonsgble, al-
though detailed comparisons are Impossible because
of differences in the problems studied.

The design curves are relatively easy to use
and should be suitable for rough estimetes of flut-
ter boundaries. They should be partlicularly help-
ful for wind tunnel testing, where one is Interest-
ed 1in both upper end lower egtimates for the flut-
ter boundary. In using the design curves, one
should remember to check the stebility nobt only at
the given geometric length-to-wldth ratio, but also
at higher multiples of this ratio.
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