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Model-based decomposition is a powerful tool for breaking design problems into smaller subproblems,
establishing hierarchical structure, and analyzing the interrelations in engineering design problems. However, the
theoretical foundation for solving decomposed problems is not yet well established. We show that the formulation
of the coordination problem is critical in quickly identifying the correct active constraints, and that solving
subproblems independently may hinder the local convergence of algorithms tailored to hierarchical coordination.
Conversely, it is believed that hierarchical decomposition algorithms have excellent global convergence properties
and usually exhibit superior improvement in the first few iterations when compared to the undecomposed case.
Based on insights given in the paper, we outline a Sequentially Decomposed Programming (SDP) algorithm. SDP
has two phases: when far from the solution, the first phase is enacted and decomposition is used; when close to the
solution, the second phase is underway and decomposition is not used. The principles defining SDP are applied to
Sequential Quadratic Programming (SQP) to define an SDP-SQP implementation. A global convergence proof and
a simple example are given. (Author)
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Model-based decomposition is a powerful tool for breaking design problems into smaller subproblems, establish-
ing hierarchical structure, and analyzing the interrelations in engineering design problems. However, the theoretical
foundation for solving decomposed problems is not yet well established. We show that the formulation of the coordi-
nation problem is critical in quickly identifying the correct active constraints, and that solving subproblems indepen-
dently may hinder the local convergence of algorithms tailored to hierarchical coordination. Conversely, it is believed
that hierarchical decomposition algorithms have excellent global convergence properties and usually exhibit superior
improvement in the first few iterations when compared to the undecomposed case. Based on insights given in the
paper, we outline a Sequentially Decomposed Programming (SDP) algorithm. SDP has two phases: when far from
the solution, the first phase is enacted and decomposition is used; when close to the solution, the second phase is
underway and decomposition is not used. The principles defining SDP are applied to Sequential Quadratic Program-
ming (SQP) to define an SDP-SQP implementation. A global convergence proof and a simple example are given.

1 Introduction

1.1 Overview of Work and Related Research
Optimization methods have been applied with prac-

tical success to individual components of a system using
well developed models and simulations. Arguably, this
is because the physics, design goals, and other modeling
issues are such that computer automation is a relatively
straightforward task. At the component level, simula-
tions are developed by the same people, with the same
interests and therefore often have a consistency allowing
the simulations to work well together.

However, difficulties arise when design must be
performed at the system level, where a system is a col-
lection of connected components or processes. Different
computational models are coupled via common design
quantities, and the utility of the design must reflect how
the system performs as a whole.

If an optimal design problem is stated as a nonlinear
program (NLP)

mm

subject to

/(*)

ht(x) = 0

= 1. . .WI;meq (1)
i = l...meq

where n, mmeq meq , are "large" and /, g., h f , are
nonlinear and computationally expensive to evaluate,
then finding a solution x* is inherently difficult. Many
researchers are currently of the opinion that the inherent
structure of the problem must be exnloited in order to
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reliably solve large NLP, for example Conn et al.1 and
Papalambros.2

In order to exploit the structure of a design problem,
the concept of "structure" must first be defined. Several
such concepts exist, for example, Conn et al. (op cit.),
Lootsma,3 Dantzig and Wolfe,4 Azarm and Li • and
Sobiesky et al.7 all work with different concepts of
structure, each leading to a suitable optimization
method. It is therefore necessary to use the concept of
structure which most adequately describes the system.

This paper represents an ongoing investigation into
the use of a particular type of structure (presented in
Section 1.2) coupled with a particular class of algo-
rithms (presented in Section 1.3).

1.2 Structure of NLP
The work presented here assumes structure to be

based on optimal model-based partitioning as concieved
by Wagner and Papalambros8 and refined by Michelena
and Papalambros.9 When applied to large scale NLP
(Eq. 1) functions are assigned vertices, and variables are
assigned hyperedges in a hypergraph. A hyperedge is an
entity that connects two or more vertices. Thus if two or
more functions are dependent on the same variable, the
corresponding vertices are connected with a hyperedge.
A hypergraph is said to be disjoint when at least one ver-
tex cannot be reached from at least one other vertex by
following a path of hyperedges. A hypergraph is opti-
mally partitioned when a predetermined number of



evenly sized, disjoint hypergraphs remain after the
removal of a minimal number of hyperlinks.

If a suitable partition for an NLP is found, the func-
tions and variables in Eq. 1 can be reordered and
grouped, Eq. 2.

mm

s. t.
o j= l'"p

gjij(Xo,Xj)<0 / = 1 J'
(2)

= 0
eq

The vector of variables x0 e 9t ° which are com-
mon to most functions, corresponds to the removed
hyperlinks, and is termed the vector of linking variables.
If the linking variables are held constant, then Eq. 2 can
be rewritten as the sum of p different independent sub-
problems, Eq. 3.

Sji(xO'xj^0 '; = 1-mj,ineq
&,, .(*0>*y) = 0 ij = l---mj,eq

(3)

As an example, consider a problem which first
appeared in Beightler and Phillips10 and was used as a
decomposition example in Wagner.11

nun
R, L, t,, f , ;

s. t.

0.662/^+1.7777? t

19.48 to

(4)

g3= 413000-R L<0
#4= 0.00417L-1.0<0

Figure 1 displays the NLP in Eq. 4 as a hypergraph.
The design quantities { R , L, th, t s ] are drawn as
amorphous shaded objects (the hyperlinks) which link
every function that depends on the particular design
variable. In other words, the hyperlink L connects the
vertices {/,, /3 , g3, and g4 } because {/ t, /3, g3,
and g4 } are all functions of L.

Partitioned Hypergraph

©

Unpartitioned Hypergraph Subproblem 1

FIGURE 1: Hypergraph representation of Eq. 4
before (shown on the left) and after (shown on the
right) partitioning

Decomposing the NLP is analogous to removing
hyperlinks and finding disjoint subgraphs; namely, there
is no path between certain sets of vertices. In Figure 1,
the hyperlinks corresponding to R and L have been
removed, so that no paths exist between the subgraphs
corresponding to Subproblem 1 and Subproblem 2.
Thus the two subsystems can be stated as two smaller
NLP's.

mm
ts>OA

s.t.

= 0.€>62RLt

(5)

O.Ol93R-ts<0

mm 9
..*•» * •'•""". <6)

s.t. g2 > 1= Q.l3lR-th<Q

1.3 Structure of Algorithms
The appeal of the structure defined in Section 1.2 is

that each subproblem is smaller (in dimension, etc.) and
therefore easier to solve - provided that the optimal
value of the linking variables *0* is known. In fact, this
structure naturally leads to a hierarchical approach to
solving the original NLP. Loosely speaking, a hierarchi-
cal approach is outlined by Model Algorithm 1.

Model Algorithm 1: Hierarchical
Coordination

1. (Subproblems) Holding the linking variables
constant at the value jeQ = jc0, for each sub-
problem j = l...p, find the minimizer of the
y'th subproblem, x^(x0) (the solution to
Eq. 3).

2. (Coordination) Find a value for *0
+ which

will improve the (overall) objective and/or
maintain feasibility.
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3. Repeat until some convergence criteria are met.

Hierarchical coordination algorithms are often por-
trayed as a top-down authority structure as in the dia-
gram in Figure 2. Many researchers have suggested
approaches that fit within the framework of Model
Algorithm 1 for engineering design problems (Sobiesky,
(op cit.) Thareja and Haftka,12 Vanderplaats et al.13).

However, Vanderplaats and Yoshida14 have shown
that dx I(x0)/dx0 need not be a continuous function,
which can create difficulties in formulating a coordina-
tion problem. The discontinuities in dx^(XQ)/dxQ
occur because of a change in the active set of con-
straints, and Vanderplaats et al. (op cit.) reformulated the
coordination problem to include all variables and con-
straints in a sequential linear programming approach in
order to overcome this difficulty. One conclusion of
Vanderplaats et al. was that decomposition will probably
not lead to advances in computational efficiency.

iteration counter, then xk + l depends on the values of
/(**), *,.(**), i=\..,m- *,.(**), i = l...meq
and their respective gradients. It is important to remem-
ber that coordination methods for hierarchical strategies
deal only with the direct consequences of changing the
linking variables *0. In other words, if xf is the solu-
tion to the j\h subproblem, it is necessary to estimate
how the subproblems will behave, or how x $ , f • , g • • ,
hjt, will change with respect to x0. For infinitesimal
changes in the linking variable, the rate of change of
x/ ' // > Sji ancl hji are known as sensitivities. Sensi-
tivities can be discontinuous when the active set of con-
straints changes (see Vanderplaats op cit.), but the
following two subsections present other possible prob-
lems with hierarchically decomposed methods. The first
argument focuses on the effectiveness of hierarchical
algorithms with respect to global convergence issues,
and the second argument focuses on local convergence
issues.

feedback as a function
of linking variables

I ]
Subproblem

local
variables

1

Master
Problem

linking variables

linking v iriables

| |
Subproblem

local
variables

• '

Subproblem
local

variables

1
t

FIGURE 2: The top down authoritative structure of
a hierarchical coordination strategy.

The work here stems from optimal model-based
partitioning and has some similarities to the algorithms
of Vanderplaats, et al. (op cit.), but is specifically tai-
lored to address convergence and efficiency issues.

In Section 2, two additional theoretical concerns
with coordination of hierarchical decomposition prob-
lems are presented. In Section 3, Sequentially Decom-
posed Programming (SDP) is outlined as a generic
method that will overcome the trouble with discontinui-
ties and the problems presented in Section 2. In
Section 3.1 SDP is applied to Sequential Quadratic Pro-
gramming to define SDP-SQP. In Section 4, a proof of
global convergence is given. Section 5 gives an example
of the performance of SDP, and Section 6 discusses
open issues and the current state of ongoing work.

2 Difficulties with Decomposition: Hierarchical
Coordination Strategies

Within the work presented here, the focus is on
computational methods. If superscript k represents the

2.1 Difficulties in Determining the Correct Active
Constraints
Consider the linearly constrained nonlinear pro-

gram in Eq. 7.

mm
Xn-2 X,

-12jcj+0.1e +0.2e

s.t. g2= -3*0/4 + *!- 1 < 0
g3= -XQ + 4xi + 2.5 < 0

Eq. 7 is hierarchically decomposed into a master
problem (Eq. 8) and a single subproblem (Eq. 9).

- 16*0 (8)

1= - 2*!*0 + 4*i - 12*i + 0-^e

s. t. _ -3*,
1,2- ——

1,3= ~XC

° + * , - l < 0 >P (9)

4x + 2'5 -

At the point x = [ 0 1 1 (tne linking variable
XQ = 0) we would like to know how / j changes as the
linking variable *0 is changed. The constraint g j 2 is
active at x , so by substitution
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dx

81.2 = u

*„= 0

11.5jt0-21

Xl.J = 0
,= 0

-0.15e
0.75*,,

= -20.86

Thus at x it is possible to decrease the value of
/ j by increasing the value of XQ . A hierarchical coordi-
nation scheme using sensitivities would be similar in
form to Model Algorithm 2, shown below.

Model Algorithm 2: Coordination
with Sensitivities

k k1. For *0 find the minimizer x*j for each sub-
problem j = l . . .«D .

2. At jct~= | v*, . t .* vt *1, calculate

k

Depending on the type of minimization used, the next
point would probably be somewhere in the region
marked by a parallelepiped. However, because of the
definition of sensitivities, and the way sensitivities are

(10) incorporated into the coordination problem, the point (in
this case, the solution x* to the NLP) that identifies the
correct set of constraints does not lie along constraint
*1,2-

Put in more formal terms, suppose that the active
inequality constraints at the solution are indexed

3. Set the value of JCQ (and changing
Xj , j = l...p as predicted through the

use of sensitivities) within acceptable move
limits in order to decrease the value of the
objective function /= /o + ̂ /; and/or
maintain/attain feasibility.

4. Repeat until some convergence criteria are met.
Figure 3 displays the contours of the objective func-

tion and the lines along which the constraints are satis-
fied for the NLP in Eq. 7

The Linking Variable xo

FIGURE 3: The contour lines and constraints of the
NLP stated in Eq. 7.

^
Starting from x , the next point produced by

Model Algorithm 2 must be along the ray (outlined in
heavy black), which coincides with constraint gj 2.

i = \...m* meq • Given a point x (not the solution),

let % represent the set of points which satisfies all of
the equality constraints and all of the inequality con-
straints with indices i = l...m*ineq when linearized at

k kthe point x . Let X represent the set of points which
can be reached using a particular coordination strategy,

^
so that X is the feasible space of the coordination
problem. If coordination is formulated as a decision

kmaking process with dimension nQ , then X is an affine

subspace with dimension n0 that includes the current

point x .

In Figure 3, X n X = 0, so it is not possible to
correctly identify the active set of constraints without
extra iterations. Thus, if X ^ 0 then the coordination
problem should be formulated such that % n X # 0 .
(Note that this does not necessarily require the solution
to the coordination problem identify the active set of
constraints, only that the possibility should exist.)

It is possible to define sensitivities in terms of sec-
ond order derivatives, but the underlying problem illus-
trated here still stands: If coordination is formulated as a
decision making process with dimension «0, then there
are instances in which the coordination problem can not
correctly identify the active set of constraints without
extra iterations.

This is important because identifying the correct
active set of constraints is both a condition eventually
achieved by most algorithms and usually a sufficient
condition for whatever local convergence behavior is
appropriate (see, for example Schittkowski,15 Powell,16

Han17). In other words, in this simple example, coordi-
nating with any approximate problem that used all of the
variables and all of the constraints would have correctly
identified the active constraints, whereas the coordina-
tion problem based on sensitivities could not. There are
instances when using a larger-dimensional problem for
coordination is prohibitive, but one must consider the
number of iterations in a large NLP, especially if func-
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tion calls are relatively expensive relative to solving the
coordination problem. If function calls are expensive,
then using a coordination method that takes more com-
puting power to solve may be beneficial if fewer itera-
tions are needed.

2.2 Using Decomposition in the Neighborhood of the
Solution
In this section, it is assumed that the active con-

straint set has been correctly determined and that the
^

current iterate or is in the neighborhood of the solution
x*. By neighborhood, it is meant that if some tradi-
tional optimization algorithm were used, then the
observed local convergence rate would be in accord with
the theoretical analysis. When iterations are close to the
solution, the focus of analysis is on local convergence,

so the distance between the current iteration x and the

is ofI kp: -solution x* as measured by the norm
particular interest.

It is also assumed that whatever hierarchical algo-
rithm is used, the algorithm fits the outline of Model
Algorithm 1, so that given a starting^ point x the
sequence of points produced is {x , jet , x , x^ , x ,

Eq. 11 is an unconstrained quadratic objective func-
tion, which has been decomposed into a master problem
(Eq. 12) and a single subproblem (Eq. 13).

, 2 - „ , ?mm f= I,5x0 + 2x0x, + 1.5*]

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Linking Variable x „

FIGURE 4: Contour lines for the quadratic
objective function Eq. 11.

Starting from x = [ -1.5 0 1 > we see that
x^ = [ _i 5 i ] is farther from the solution as mea-
sured by the norm ||x-x*||, despite the fact that
f(x ) > f ( x ^ ) . Figure 4 highlights the fact that solv-
ing the subproblems while keeping linking variables
constant may actually increase the distance from the
current iterate to the solution, even though the objective
function has decreased. In general, this non-intuitive
fact makes the construction of an algorithm which guar-
antees pr*-je*|| > \x + 1 -x*\ theoretically very diffi-
cult. Even worse, an acceptable convergence rate may
be impossible to prove. Regardless of the algorithm,
when close to the solution it would be more prudent to
devote computational power to reduce \\x - x*\\, as
opposed to /(AC) .

Both situations presented in Sections 2.1 and 2.2
are problems with solving a nonlinear program using

(11) only a specific subset of variables at a time.

mm

mm

/ =

2xOxl

(12)

(13)
Figure 4 is a picture of the contour lines of Eq. 11.

However, Figure 4 could be the contour lines of any
convex function as seen in the plane uniquely deter-
mined by the solution x* , the current iterate x and the
iterate after solving all of the subproblems x^ .

3 Sequentially Decomposed Programming
Two theoretical difficulties with traditional hierar-

chical decomposed methods were presented: Expressing
x -T(XQ) can make it difficult to identify the correct set
of active constraints and that in the neighborhood of the
solution, hierarchical decomposition methods may have
problematic convergence rates; furthermore, as dis-
cussed earlier 3x,1'(A:0)/3x0 is not always a continu-
ous function. Sequentially Decomposed Programming
(SDP) is a method designed to overcome these difficul-
ties using two distinct ideas.

First, in the coordination problem, sensitivities are
not used. Instead, coordination is performed using an
approximate problem (for instance a quadratic program)
which uses all of the constraints and all of the variables
in the original problem. This technique was originally
used by Vanderplaats, Yang and Kim (op cit.) so that
changes in constraint activity in the subproblems are
accounted for, and the feasible space of the model prob-
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lem is more likely to contain points which will correctly
identify the active constraint set.

Second, when near a solution, decomposition (i.e.,
solving subproblems separately) is not performed. A
specific test for determining when x is "near the solu-
tion", is discussed in Section 3.1. Sequentially Decom-
posed Programming is presented as Model Algorithm 3.

Model Algorithm 3: SDP

1. (Use of Decomposition to Solve Subproblems)
If not near the solution, hold the linking vari-
ables constant at XQ= JTQ and find a minimizer
xf

;- for each subproblem j= 1...p.
2. (Coordination) Using an approximate problem

of the nonlinear program which includes all of
the constraints and all of the variables in the
original problem, find a satisfactory next point.

3. Continue until some convergence criteria are
met.
If these two principles are followed by any optimi-

zation algorithm, we call this SDP. In Section 3.1 these
two principles are applied to Sequential Quadratic Pro-
gramming.

3.1 SDP using Sequentially Quadratic Programming
In order to apply SDP to SQP, a few notes concern-

ing notation, structure, and sparsity must be made. First,
the Lagrangian (Eq. 14) is expressed as a sum of terms
(Eq. 15).

(14)

H. =
"
V X J C L - 0 Vx

0 0
V^ X

2L 0 V.,

0 0

,*,v"
0 0

x
2Lj 0

0 0

^
H 0 H 0

0 0 0 0
Hjjo 0 Hja 0
[ 0 0 0 0_

(16)

The first subscripted index refers to the subproblem, and
the second and third subscript refer to derivatives with

^
respect to the corresponding set of design problems. B

is then the approximation of H, during the kth itera-

tion, to... is the approximation of... and

B*= is the approximation of H . SDP-SQP is
defined as Model Algorithm 4. Step 1.3 is the classic
update for the QP subproblems in SQP16, but it is
applied to the approximate Hessian as a whole, so that
elements corresponding to x0 are also approximated
according to the quasi-Newton condition. Using the
sparse structure outlined by Eq. 14 Model Algorithm 4
is an application of SDP to the classic SQP algorithm of
Wilson,19 Han (op cit.) and Powell. (op cit.)

Model Algorithm 4: SDP-SQP
1. (Using Decomposition to Solve the Subprob-

lems) If during the past few outer iterations, the
set of active constraints predicted by Eq. 19 has
remained the same, then holding the linking

4
variables constant, X0- x0 , find a minimizer

t,
x^j for each subproblem j= 1 . . .p by repeat-
ing Step 1.1 through Step 1.4. Start with

k -K- »'/= and
J. ; If

>J '= »/

;= i
1.1 At xjj solve for a search direction d •

using the quadratic program.

Each of the j terms represented in Eq. 15 corre-
sponds to the j'th subproblem of the form in Eq. 3. The
Hessian of the Lagrangian H can also be represented as
a sum of sparse Hessians H. as shown in Eq. 16, each
corresponding to a subproblem.

mm
d* s SK";

s. t.

j+ ,
1.2 Set x, = X: +ad, where a is cho-

sen to sufficiently decrease some appropri-
ate merit function.

*.+1
1.3 Update B;

 J using Eq. 18.
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,

z=
(18)

e=
if 5rz<0.2/B,

1.4 If convergence criteria are satisfied, set

x^j - Xj ' and B^ = B • ', otherwise
repeat Step 1.1 through Step 1.3.

-i
C0 *fl ' • • **n \

and

k t
8^ = V Bf . , solve for a search direction d
using the quadratic program.

mm

s. t. (19)
< 0

3. Set x = x< + ad where a is chosen to
sufficiently decrease some appropriate merit
function.

k +14. For j= 1...p update B, using Eq. 18.
5. Repeat Steps 1 to 4 until convergence

Model Algorithm 4 incorporates both elements
required in the definition of an SDP algorithm. First, in
Step 2, coordination is performed using all variables and
all constraints. Second, in Step 1, there is a test to ensure
that the subproblems are not solved independently when
x is near the solution. The test used in Model
Algorithm 4 requires the active constraint set to remain
the same. It is worthwhile to note that other possibilities
exist (for example, that unit step-lengths are accepted, or
that successive coordination steps are progressively
shorter). It is expected that the test will be modified
according to the application, as in the case of uncon-
strained minimization. The only requirement of the test
is that as the algorithm converges, eventually the test
should always be true.

Additionally, Model Algorithm 4 assembles the
coordination problem using estimates obtained during
the solution process of the subproblems. (This is not a
requirement of SDP, but it is expected to help.) This is
accomplished by expressing the Lagrangian as a sum of
terms (as in Eq. 14) and updating a sparse approxima-
tion for each term. The idea stems from the work of
Griewank and Toint,18 who have shown that for the
unconstrained case, the update defined by Eq. 18 retains
the null space of B . For the case at hand, retaining the
null space essentially retains the sparsity pattern shown
in Eq. 16. To the authors' knowledge, this has not been
applied to the constrained case, but it is hoped that the
use of Eq. 18 will provide for better Hessian estimates
in fewer iterations.

4 A Proof of Global Convergence
Luenberger20 has proven that SQP or Modified

quasi-Newton methods converge via a descent sequence
to a point x* which satisfies the first order KKT condi-
tions. For simplicity, the proof assumes only inequality
constraints, but the extension to equality constraints is
straightforward. The proof consists of two theorems.
The first theorem establishes the limit of any convergent
subsequence of points generated by SQP is a solution,
provided that a suitable merit function exists. The sec-
ond theorem shows that the absolute value penalty func-
tion is a suitable merit function.

The new third theorem presented here establishes
that points generated during the course of the subprob-
lems also represent a descent sequence of the same
merit function, so that {x , *t , x , art , x , x^ ,
... } is a descent sequence, thus proving that SDP-SQP
converges to a point satisfying first order KKT optimal-
ity conditions through a descent sequence.

Theorem 1: Global Convergence Theorem (Luen-
berger)

Let A(x) be an algorithm on some soace % > ar)d
suppose that, given x , the sequence {x }k= I is gen-
erated satisfying x e A(x ) .

Let a solution set F c % be given, and suppose
^

1. All points x are contained in a compact set

2. there is a continuous function P on % such
that if x g T then P(y) < P(x) for all
y e A(x) , and if x e T then P(y) < P(x) for
all ye A(x) .

3. the mapping A is closed at points outside F .
Then the limit of any convergent subsequence of

{x } is a solution.
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Theorem 2: Use of the Absolute Value Penalty Func-
tion (Luenberger)

Let d, (0,, (with d *• 0) be a solution of the qua-
dratic program (Eq. 17). Then if c>max{|i,} the vec-
tor d is a descent direction for the penalty function.

P(x) = /00

where g = max{0, g } ,

(20)
i = 1

Theorem 3: Solutions to Subproblems are also
descent.

Let d,, ji, with d,* 0 be a solution of the qua-
dratic program used in the solution process of the sub-
problems (Eq. 19). As a convention, let

d = JO ... d ... o] . Then if c>max{jo..,}, the vector

d is a descent direction for the same absolute value pen-
alty function stated in Eq. 20.

Proof of Theorem 3

Let / jneq(*) denote the inequality constraints for
the jth subproblem whieh are violated at the point x .
The penalty function P is written as a function of the
scalar a.

P(x + ad) = /(* + ad) + c ]T g+(x + ad) (21)

Note that all of the constraints are used in Eq. 21
and that / = ^/,- . Note also that all functions (objec-
tive and constraint) which are not in the jth subproblem
will not change in value because they do not depend on

f(x + ad) = f(x) - fj(x) + fj(x + ad) (22)

if / * j then gji(x + ad) = 8ji(x) (23)

Two of the first order KKT conditions for the solu-
tion of the quadatic approximation for the subproblem
(Eq. 17) are

I = 1

allowing the relations shown in Eq. 27 and Eq. 28.

mj,ineq

Vfj(x)d<-dJ
TEjjjdj

(25)

(26)

(27)

(28)
i = 1

Substituting Eq. 27 and Eq. 28 into Eq. 24 gives
Eq. 29.

P(x + ad) < P(x) + (29)

-d

Because B;-y is constructed to be positive definite
and c > max{(o, } it follows that for a sufficiently small
a,

P(x + ad) < P(x) (30)
Thus each subproblem reduces the penalty func-

tion.

5 Comparison by Example
As a small example, both SQP and SDP-SQP are

applied to a scaled version of the NLP in Eq. 4. The
variable transformations are given in Eq. 31.

"j.ineq

1= 1

= f ( x ) - a V f j ( x ) d

} = 1 i = l
1*1

(24)

+ o(a)

(31)

The SQP algorithm used is the routine "constr" in
the MATLAB optimization toolbox21, and the SDP-
SQP routine was also written in MATLAB. The collec-
tion of objective functions and constraints for j = 0 is
given in Eq. 32.
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#00
Q1

413000
1.0

0.0417

(32)

<0

The two subproblems appear as Eq. 33 (subprob-
lem 1) and Eq. 34 (subproblem 2).

mm
/I =

(33)

s.t.

mm
*21>0.1

s.t.

= 0.0193*0i -f,*

/2 = 1.777x01 .*21xlO

g2]=0.131x01-*21<0
(34)

Both algorithms use the starting point
x = [60, 20,40, 15]. The iteration history is shown as
a function of the outer iteration in Figure 5.

FIGURE 5: Iteration history of the SDP-SQP and
plain SQP algorithm. The distance from the solution
is measured by the euclidian norm in the x-space.

SDP-SQP used decomposition for the first 2 itera-
tions, and converged upon the solution in a total of 8
iterations, compared to SQP which performed 11 itera-
tions. Additionally, SDP-SQP evaluated subproblem 0
eight times, subproblem 1 ten times and subproblem 2
twelve times, whereas SQP made 11 evaluations of all
three subproblems.

The example problem is not of the scale intended
for SDP-SQP. However, the results shown here are

promising, and larger applications may show significant
benefit.

6 Open Issues and Conclusions
This presentation has intentionally divided the

application of Sequentially Decomposed Programming
into two areas. First the general definition of SDP was
given in Section 3 as Model Algorithm 3. Second, the
principles of SDP were then applied to Sequential Qua-
dratic Programming in Section 3.1 as Model
Algorithm 4. As this investigation is ongoing, the open
issues concerning both SDP and SDP-SQP are
addressed separately.

6.1 SDP
Upon reviewing Section 2, it is pertinent to wonder

if decomposition is computationally useful. To this end,
a few comments should be made.

First, SDP is defined as a two phase process, and
the number of iterations in the initial phase (which uses
decomposition to independently solve the subproblems)
is not known a priori, so further computational experi-
ence with SDP is necessary. If measured in computation
time, the length of time spent in the first phase deter-
mines the benefit of SDP. However, the transition to the
second phase (where decomposition is not directly used)
can be based on any test that will eventually become
true during the course of the algorithm.

Second, even if the first phase does not last long
enough to warrant the effort of implementing SDP when
measured in terms of function evaluation and computa-
tional time, it is possible to tailor the algorithm such that
the coordination problem uses approximations compiled
during the solution process of the subproblems. In fact,
using such approximations may actually increase the
robustness because the approximations used during
coordination would be more accurate.

Third, optimization at the component level is
already widely used in industry. Through years of expe-
rience, these optimization routines have been finely
tuned and their performance is well understood. A hier-
archically decomposed method such as SDP can inte-
grate already-used optimization routines without
significantly reworking and receding the system model
or the optimization algorithm.

Fourth, the human aspect of engineering requires
understanding the solution of any engineering design
problem. If the problem has been decomposed, then the
interaction between subproblems may be understood
better by examining the behavior of the individual sub-
problems. Indeed this may be the only way for an indi-
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vidual to understand the behavior of a very large
engineering design problem.

6.2 SDP-SOP
As defined by Model Algorithm 4, SDP-SQP pro-

vides a new class of optimization algorithms, and there
are both theoretical and practical issues that still need to
be addressed.

Defining the approximation of the Hessian as a sum
of sparse matrices is not new. The original definition
used in EQ, stems from a combination of work by Broy-
den,22 Fletcher,23 Goldfarb,24 and Shanno,25 Powell (op
cit.), and Greiwank and Toint (op cit.). However, theo-
retical works by Greiwank and Toint establishing local
convergence rate for unconstrained optimization prob-
lems assume that the underlying functions are convex on

9t . Hopefully this can be relaxed so the point where

j need only be convex on 5K ' , and L = is

strictly locally convex near the solution on 91 . I t is
hoped that understanding the convexity requirements of
Li will lead to a local convergence analysis theorem.

Furthermore, there is very little experience with
applying Model Algorithm 4 to practical engineering
problems where issues such as parallelism, computation
time, and the ratio of functions call time to QP solution
time and problem size become more concrete issues.

6.3 Conclusion
The graph partitioning methods developed for

model-based decomposition8'9'11 of optimal designs
have removed much of the ad hoc process that charac-
terized earlier decomposition approaches. Many differ-
ent decomposition forms can be discovered formally
based on rigorous methodologies. However, the actual
solution of decomposed nonlinear programming prob-
lems has been shown to present important convergence
difficulties. This article attempted to place these diffi-
culties in a formal context and to define generic algo-
rithms that may posses desirable convergence
properties. In particular SDP is any hierarchical coordi-
nation algorithm with two defining properties: First,
coordination of subproblems is performed using all vari-
ables and all constraints. Second, at some time before
convergence, the subproblems are not solved indepently.

The SDP algorithm properties are currently under
further investigation
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