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New Formulation for Flexible Beams Undergoing
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A new flexible body dynamic formulation, called the augmented imbedded geometric constraint approach, for
beam structures undergoing large overall motion is developed. It is restricted to small elastic deformations of the
beam about the large overall motion. The formulation outlined herein pertains to two-dimensional motion and
deformation of a single beam when the overall motion is prescribed as a function of time. The formulation can
be easily extended to beam assemblies undergoing arbitrary motion in three-dimensional space. Elastic deforma-
tion is characterized by the superposition of a number of assumed global shape functions. The motion of the
system is governed by a set of differential and algebraic equations. The algebraic constraints arise from enforce-
ment of the boundary conditions. The new approach improves upon two existing approaches by allowing the
solution of two disparate classes of elasto-dynamics problems with a single formulation, demonstrated by
simulations for several verification problems. The problems are ones in which the lateral deformation of the
beam is dominated by either bending or membrane behavior. Because the new formulation is problem indepen-
dent, it is applicable to beam problems where the dominant stiffness effects are not knewn beforehand.

Introduction

HE study of the coupling between overall dynamic mo-

tion and local deformation of structures has become im-
portant recently. The effects of such coupling are important in
the aeronautics industry and can be seen, for example, in
helicopter blade response. High-speed motion of robotic arms
and rapid ground transportation systems are other areas in
which the coupling effects are important.

One approach to studying flexible body dynamics is through
the use of finite element methods (see, for example, Simo,!
Simo and Vu Quoc,? and Christensen and Lee?). Another strat-
egy is to use rigid body dynamic approaches which have been
modified to include the flexibility effects. Kane et al.? used this
strategy to study beams undergoing large overall motion of a
prescribed nature. Banerjee and Kane® also used the same
strategy to develop a formulation and solutions for plates. In
related work, Banerjee and Dickens® used finite element meth-
ods to offer an alternative approach, involving arbitrary bod-
ies, to overcome the well-known premature linearization prob-
lem, described in Ref. 4. ] _ ‘

The technique introduced in Ref. 4 was restricted to systems
with known overall motion. Ryan’ extended that formulation
to allow solutions when forces/torques are applied. Subse-
quently, Yoo? has shown that the approach in Refs. 4 and 7,
which he refers to as the Imbedded Geometric Constraint
(IGC) approach, fails to produce the correct result for prob-
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lems where the lateral deformation of the beam is dominated
by membrane stiffness. Yoo demonstrated that his formalism,
which he refers to as the Nonlinear Strain Displacement (NSD)
approach, handles such problems quite successfully. However
the NSD method does not reliably solve problems in which
lateral deformations are dominated by bending stiffness,
which are handled very well by the IGC approach.

A new approach called the Augmented Imbedded Geometric
Constraint (AIGC) approach, is presented herein. It allows the
solution of problems where the lateral deflection of the beam
is dominated by either bending or membrane stiffness. This
formulation is a modification of the IGC approach. It is prob-
lem independent and, therefore, is applicable to structural
dynamics problems where the dominant effects are not known
beforehand.

Only small local deformations of the beam are considered.
An Euler-Bernoulli model of the beam transverse flexibility,
assuming linear elastic, isotropic behavior, is used. A set of
ordinary differential equations (ODEs) describing the flexible
body dynamic behavior of the beam is developed using the
method of Kane and Levinson.? That portion of the develop-
ment of the AIGC approach is identical to that for the IGC
approach. Differential algebraic equations (DAEs) of motion
for the AIGC approach are generated by developing a set of
algebraic constraints enforcing the physical boundary condi-
tions for the beam. The spatial representation of the deforma-
tion is achieved through the use of global shape functions that
are based on the substructuring techniques of Craig and Bamp-
ton.10

Development of System Differential Equations

The model for a two-dimensional beam undergoing large
overall motion and small local deformation is shown in Fig. 1.
This model consists of a rigid body A4 and a flexible beam B of
length L. A dextral set of mutually perpendicular unit vectors,
a,, a,, and as, are fixed in A and directed as shown in Fig. 1.
The centroidal axis of the beam is assumed to be coincident
with the elastic axis, and is parallel to the @, direction when the
beam is undeformed. Point P, located a distance x along the
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Fig. 1 Beam description and deformation measures.

undeformed centroidal axis represents a generic point on the
beam. After deformation, that point lies at a new position
which is labeled point P. The position vector from point O to
point P is given by

po = (x +u)a, + wa, (0))

where u; and u, are the @, and a, measures of the beam defor-
mation.

An additional variable of interest is s, the stretch of the
centroidal axis of the beam. After deformation, point P is
located at a distance x +s measured along the deformed cen-
troidal axis.

The equations of motion are derived using Kane’s dynami-
cal equations:

F,+F¥=0, r=1,2,...,p )

where p is the number of system degrees of freedom, and F,
and F* are the rth generalized active force and generalized
inertia force, respectively.

The generalized inertia force F;* is associated with the mass
distributed along the length of the beam and is given by

L
Ff:uijV;p'Nanxs r==12,...,p (€)

where p represents the beam mass per unit length and Ma?
represents the acceleration of point P in the Newtonian ref-
erence frame N. The Mv/ is the rth partial velocity of M?, the
velocity of point P in the Newtonian reference frame &N, and
is a fundamental element in the formulation of Kane’s dynam-
ical equations. The partial velocity is defined as

r=1,2,...,p 4)

where u* are the generalized speeds. In this development they
are chosen as
ur*‘_‘q” "=1,2,---,P (5)

where g, is the rth generalized coordinate (specified later), and
a dot denotes a time derivative.

The generalized active force, F,, derived from a potential
function describing the strain energy V is
Vv

Fo=-="
g 3q,

r=1,2,...,p ©)

Detailed expressions for the generalized inertia and generalized
active forces will now be developed.

Generalized Inertia Force

As seen in Eq. (3), the acceleration and velocity of point P
in a Newtonian reference frame are needed to form the gener-
alized inertia force. To facilitate their formulation, the planar
motion of the rigid base, relative to the Newtonian reference
frame, can be described by its angular velocity, “w*, and the
translational velocity of some point O, M9, fixed on the base.

Nt = wya; @)
MO = via, + voa; (8)

where ws is the a@; measure of the angular velocity of body 4,
and v, and v, are the @, and a, measures of the translational
velocity of point O.

The velocity of point P in the Newtonian reference frame
NyP
vPis

NP = [vi+in — oy @y + [+ in+ws(x+u)]ay  (9)
The Newtonian acceleration of point P, Ma?, is
NgP = [1’11 iy — G3Uy— 203y — 3 Vo — @i (X + ul)]al
+ [Va iy + @3 (x +up) + 203t + w3y — i) @, (10)

In the current (as well as the IGC) approach, the variables s
and u, are used to describe the deformation. They are repre-
sented as follows:

s = El é1;(x)g;(1) amn
=

= ¥ 63 ()g,(0) 12)
P!

where ¢; and ¢,; are shape functions, g; are the generalized
coordinates, and » is the total number of functions used to
describe the beam deformation. The specific choice of the
shape functions, ¢,; and ¢,; will be presented later.

Since s and not u; is chosen as a deformation measure, the
following geometric relationship, initially given in Ref. 8 (de-
velopment can be found in Haering!!), between the variables s,
u;, and u, will be used to develop expressions for u;, #,;, and
ti; which appear in Egs. (9) and (10)

x 3 2 F) 2]%
x+s=§ [<1+ﬂ>+<ﬁ>] do (3)
0 do do
where ¢ is a dummy variable of integration. After performing
a binomial expansion on the right-hand side of Eq. (13) and

neglecting terms higher than degree two, the following expres-
sion can be obtained

1{* 6u2>2
=s—=| (=) d 14
“es 250<30 ’ 1

Substituting the relationships for s and u, from Egs. (11) and
(12) into Eq. (14) yields

X

y ¥ ¢354 q;qk do (15)

0Jj=1 k=1

d 1
u1=}:¢1jqj—5§
Jj=1
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where a prime denotes a partial derivative with respect to x.
From Eqgs. (12) and (13), it follows that

i =/§ budy - L,E T 64,854 do (16)
iy = El bud - SO,EI T 64,04y do
LJZ Z_: b3 b3xq;dx do (17)
ity = ,‘i b2 18)
fiy = }: 62,6 (19)

Recalling Eq. (4), the partial velocities of point P in frame N,
NyF| are given by

Mpf = [d’u - _El <L b3:93; d0> Qj] a,+ ¢yia;
=

i=1,...,v 20)

The generalized inertia force is developed from Egs. (3), (10),
and (20).

L
Fpr = —j P{Qﬂi["’l+ii1—503142—26031'42—0)31’2—@%()(+“1)]
0

v x
. ’:EI <j\ ¢2,1¢2,j d0> qj} [V] +ﬁ1 —(b3u2—2w3i42
J= 0
~w3v2—w§(x +u1)] + (252,' [\‘12+122+C.03(X+U1)

+2w3u1+w3v1—w§u2]} dx, i=12,...,» P30}

Substitution of the expressions in Eqs. (12) and (15-19) into
Eq. (21) results in nonlinear terms in g; and §¢;. Because only
small elastic deformations are of interest, the resulting expres-
sion for the generalized inertia force is linearized in g; and ¢;.
(The validity of this linearization was investigated in Ref. 11
for one of the problems addressed in this paper. No observable
difference was found when the solution to differential equa-
tions, developed by retaining up to third degree nonlinearties
in g; and ¢g;, was compared with the one from the linearized
equations.) Also, integration by parts (see Ref. 11 for details)
is applied to eliminate the indefinite integrals arising from the
expressions for u, i, and #.

The final simplified form of the generalized inertia force is

—Ff = (1 —wsva) Wy + (1 + w3v) Wy — 03 Xy; + @3 X0
+ X (Wi + Wayld; + 23 '21 [Waij — Whaij14;
j=1 Jj=
— o} Y [Why+ Waylg + o ‘21 (W2 — Wiailg;
j=1 i=

— (P —w3vy) }:l IP1;;q; + o3 E IP2;; g
j=
i=12,...,» (22)
where

(L
Wi = S oo dx (23)

0

L
Wimij = j PDyi Oy dx 24
0

L
X = X pxdy; dx (25)
0

and terms resulting from the aforementioned integration by
parts are

L
IP1 ij —pj L~ x)¢2!¢21 (26)

e
IP2; = §P§ (L2 = x5 ¢3; dx 27
0

Generalized Active Force and System Differential Equations

Only axial and bending contributions to the strain energy
function introduced in Eq. (6) will be considered. Using Euler-
Bernoulli beam theory and assuming uniform axial stress the
total strain energy V can be expressed as

1 {* ds )2 1 9 u2>
==\ E4,| = EI dx 28
4 2 L b<6x> dx + Zj 3<ax 28)

where E is Young’s modulus, /3 is the area moment of inertia
of the beam about the a; axis, and 4, is the cross-sectional
area of the beam.

After appropriate substitution, partial- differentiation, and
rearranging, the final form of the generalized active force is

v L » L
-Fi=Y, [S EA, é1i 01 dx:l g + El [S EL¢5:¢3; dX]q,
i= 0

Jj=1 0
i=12,..., (29)

Using Kane’s dynamical equations [Eq. (2)], the resulting sys-
tem differential equations are

'21 Wi+ Wazii1d; + 203 El [Waii; — Wi2ii14;

i= i=
— w%
=

- (vl—w3v2) EIIPIUqJ + wg EIIPZ,,qj + ZlHijqj
i= j= J=

[Whij + Waijlg + o3 El [Waiy — Whaijlg;
j=

= — (N —wV) Wy — (2 + w3vi) Wa; + 03Xy — 3 Xy
i=12,...,»  (30)

where

L

L
H; = S EA,¢{;pf; dx + j El ¢35 ¢3; dx 31
0 0

In the AIGC approach a set of algebraic constraints is added
to the system differential equations to form the equations of
motion. The algebraic constraints are introduced to overcome
the failure of the IGC approach to insure satisfaction of the
boundary conditions for membrane-dominated problems. Ad-
ditional insight into the utility of the algebraic constraints can
be gained by investigating the failure of the NSD approach to
insure satisfaction of the boundary conditions for bending-
dominated problems.

Enforcement of Boundary Conditions
For the bending-stiffness-dominated beam problem de-
picted in Fig. 2, the shape functions are obtained from solving
axial and bending vibration problems with the respective
boundary conditions

b1jlx=0=0 (32)
9oy _
e =0 (33)
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®2jlx=0=0 (34)
9%,

=0 35
x|, (35)
icT) B (36)
ax x=0
3 y;
—_ =0 37
x|,y 37

Using these choices for the shape functions in Eqs. (11) and
(12) (IGC approach), it is seen that the boundary conditions
set forth in Fig. 2 are fully satisfied. On the other hand, in
the initial NSD approach, the deformation measures were
taken to be

= ¥ 65 (0a(0) (38)
Uy = El 025 (x)q;(¢) 39
P

with ¢;; and ¢,; as before. Hence, in this representation, in-
stead of enforcing ds/dx|,~; =0, the condition du,/dx|,., =0
is enforced. Yoo modified his initial NSD approach to improve
the poor modal convergence of the approach for bending-stiff-
ness-dominated problems. He did this through the use of so-
called interaction modes (between u; and u,;) generated by
enforcing an inextensibility condition. While some improve-
ment was found, the final approach still does not satisfy the
aforementioned boundary condition and does not yield an
accurate solution for some circumstances (as will be shown
shortly).

For the membrane-stiffness-dominated beam problem
shown in Fig. 3, the shape functions are obtained from vibra-
tion analyses in which the following boundary conditions are
enforced.

®1jlx=0=0 40)
@1jlx=L =0 (41)
$2jlx=0=0 42)
$2jlx=2 =0 (43)
Py | _

%2 |, oo =0 44)

3¢y

ax? |, 0 45)
Thus the NSD approach, using these shape functions in Eqgs.
(38) and (39), fully satisfies the boundary conditions shown in
Fig. 3. Note that in the IGC approach the condition s|,_; =0
is enforced instead of u|,-, =0.

By using the shape function summation approach, only
boundary conditions explicit in the chosen deformation mea-
sures can be enforced. Thus only boundary conditions ex-
pressed in s and u; can be enforced for the IGC approach and
only boundary conditions expressed in #; and u, can be en-
forced for the NSD approach. This prevents either approach
from accurately addressing both the bending and membrane
problems, without some modification.

Boundary conditions which are not explicit in the chosen
deformation measures can be enforced by adding constraints
derived from evaluation of Eq. (15), which represents the geo-
metric relationship between u,, s, and u,. Recall that in the
1GC approach, the condition that u; be zero at the right end of
the beam (membrane-dominated problem) could not be satis-
fied. Using Eq. (15) this boundary condition becomes the fol-
lowing constraint between the generalized coordinates:

v » v L

0=Y ¢,(L)g - ! Yy X liv‘ 3Dk dx] q;iqr  (46)
Jj=1 2 Jj=1 k=1 0

This is an example of the general approach for enforcing
boundary conditions. However, care must be taken in selecting
the shape functions so that undesirable conditions do not arise.
For example, using the shape functions just described in the
IGC approach, the constraint [Eq. (46)] could, possibly, be
satisfied. However, zero stretch at the right end of the beam
would also result, which is not physically correct. Clearly what
is needed is an approach that allows arbitrary boundary condi-
tions to be prescribed. This is achieved by using an approach
similar to one set forth by Craig and Bampton in work on
dynamic system substructuring.!® This will now be described.

Shape Functions, Constraints, and
Complete Equations of Motion
Craig and Bampton use dynamic modes in combination with
static displacement modes in a substructuring approach for
vibration problems. The dynamic modes, referred to as fixed-
interface modes, are developed from an eigenanalysis of the
lateral vibrations of a beam with boundary conditions of zero
slope and displacement at the ends of the beam. The static

L
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u - =0 N = — =0
U2l eo=0 uzl .. =0
gﬂL =0 Puy =0
X Lo pecy

Fig.2 Boundary conditions for a cantilever beam.
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Fig. 3 Boundary conditions for a pinned-pinned beam.
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modes, referred to as constraint modes, are obtained by apply-
ing unit displacements or rotations in the directions held fixed
in developing the dynamic modes. While enforcing each unit
displacement or rotation, the others are held fixed. For exam-
ple, one such shape function satisfies the conditions ¢(0)=1
and ¢’ (0)= ¢(L)=¢’(L)=0. The combined set of shape func-
tions, static and dynamic, is capable of representing any arbi-
trary boundary condition. The approaches for developing the
modes to describe the s and u, deformations are slightly differ-
ent and are outlined below.

The dynamic shape functions for the u, deformation are the
eigenfunctions obtained from a linear lateral vibration analysis
of a beam in a nonrotating frame with zero displacement and
slope at both ends. The static shape functions are polynomials
developed to satisfy the enforced unit displacement or slope
conditions. Third degree polynomials are used because four
boundary conditions need to be satisfied. The four static shape
functions for lateral deformation are given by

bsiatic1 = 2.0[0.5— 1.5(x/L)* + (x/L)*| @7
bgatics = 2.0[1.5(x/L)?—(x/L)?] 48)
beatic2 = X/L — 2.0(x/L)* + (x/L)? (49)
Gstatica = —(X/L)* + (x/L)? (50)

The development of the modal functions to describe the s
deformation is as follows. The dynamic shape functions are
derived from an eigenanalysis of the axial vibrations of a rod
with no displacement at both ends. Initially, two static modes
were developed from polynomials which satisfy unit displace-
ment at one end and zero displacement at the other end. How-
ever, numerical simulations indicated much better modal con-
vergence when the four lateral static modal functions are used
instead. Thus, the same static shape functions are used for the
s and u, direction deformation representations.

The constraint equations for the bending and membrane
problems are now set forth.

1) Bending constraints:

;%(O)q/ =0 (51a)
j);ldm 0)g;=0 ' (51b)
Lo 0a=0 (510
jZ:]1¢fj(L)qj= 0 (51d)
j);%’} (L)g;i=0 (51e)
Loi(L)g =0 an

2) Membrane constraints:

_El¢lj ©)g; =0 (52a)
=
. 1¢2j O®g =0 (52b)
j=
, 1¢2”/‘(0)Qj =0 (52¢)
=
v 1z v L
_El¢1j L)g - 3 _El kEI [So 3D dx] gqr =0  (52d)
i= i=1 k=

Zl¢2j (L)g; =0 (52e)
Js
ZIMJ' (L)g =0 (52f)
s

Thus the complete differential algebraic equations of motion
for the membrane problem using the AIGC approach are the
ODE:s in Eq. (30), along with the constraints in Eqgs. (51a-51f).
For the membrane problem, the ODEs in Eq. (30), in addition
to the constraints in Eqs. (52a-52f), describe the system.

Despite the fact that the AIGC approach provides different
constraints for the bending and membrane problems [Egs. (51)
and (52), respectively], the approach is problem independent.
This is true because the constraints are handled numerically in
a generic way, and therefore differences in the specific con-
straints do not affect the solution procedure. That different
boundary conditions must be specified for each given problem
is simply part of the problem description and is necessary in
any approach.

Here, numerical solutions to the differential algebraic equa-
tions of motion are obtained using the approach developed by
Baumgarte.!? Baumgarte’s approach involves two basic steps,
namely appending the constraint equations (®;=0, j=1,2,
...,r, where r is the number of constraints) to the differential
equations via Lagrange multipliers and differentiating the con-
straints. The process yields equations of the following form, if
index notation is dropped (temporarily)

T . . Ny
M @] {q _ EF Gq-Kq 3
&, 0]\ R
The symbols M, G, K, and F represent the mass, gyroscopic,
stiffness, and force matrices from the original differential
equations; ¢, ¢, and § are column matrices of the generalized

coordinates and their time derivatives; A is a column matrix of
the Lagrange multipliers; and the column matrix R is given by

R=—(®),q- ¥, —ad -2 (54)

which fully written out in index notation is

T S
<kg’l g 1 a:) %,

R, = — g, —
’ igl aq; 4 ar?
X 0%; ad;
- — g+ =) - p*;, i=1,...,
a<i§l aqill 3t> B%; J r (55

In arriving at representation in Eq. (54), the terms « and 8
are artificially added to improve accuracy and convergence. In
the present work, differentiation of the constraints is straight-
forward but the ensuing equations are quite lengthy and are

o (t)
[ o 19 )
Mass per Unit Length p =250 k8,4n
Young's Modulus E=689x10° N/p2
Length L=305 m
Cross Sectional Area Ap=9.30x10? m?
Area Moment of Inertia I3=7.20x 10* m*

Fig. 4 Bending validation problem.
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not reproduced here. Interested readers can obtain full de-
tails from the first author. For all results presented later, tak-
ing a=pB=0 was found to be satisfactory, unless specified
otherwise.

Verification Problems, Solutions, and Interpretation

The failure of the IGC and NSD approaches to solve both
bending and membrane dominated problems, and the ability
of the AIGC approach to solve both problems will be demon-
strated by investigating two verification problems.

A bending-stiffness-dominated problem, studied in Ref. 3,
is shown in Fig. 4. It involves a flexible beam cantilevered to
a rotating base. The angular velocity of the beam base, which
is a prescribed function of time, is given by

6{— ) —15| =) +10{ — , if 0=<t=<T,
w(ty=12"\T, T T, :

ws: if t > Ts
(56)
where
T
= —rad/ 5
Ws 10 rad/s (&)
T,=1s (58)

The lateral deflection response of the free end of the beam
given in Ref. 3 is shown in Fig. Sa. The responses for the IGC
and NSD approaches (Ref. 8) are given in Fig. 5b, and the
response for the AIGC approach is shown in Fig. 5c. Both the
IGC and AIGC solutions agree with the results in Ref. 3. How-
ever, it is seen that the NSD (even with the inclusion of Yoo’s
“‘interaction modes’’®) method fails to correctly solve this
problem.

A membrane-stiffness-dominated problem, studied in Ref. 8
is shown in Fig. 6. It is comprised of a flexible beam pinned at
the center and outer edge of a rigid rotating table. The pre-
scribed angular velocity of the table is given by

T 2t
&[t—<—s>sin<7r>}, if 0<s/<T,
w(t) = T, 27 T

Ws, if t>T;
59
where
w; = 6 rad/s (60)
T,=15s (61)

The solutions predicted by the AIGC, IGC, and NSD ap-
proaches, for the lateral deflection of a point at the beam
midspan, are shown in Fig. 7. The solutions predicted by the
NSD and AIGC approaches are nearly identical and are not
individually identifiable. Yoo verified that the solution pre-
dicted by the NSD approach, and hence also by the AIGC
approach, is correct through the use of an independent calcu-
lation of maximum deflection, based on a static structural
analogy and an ADAMS?!? transient solution. Thus, the solu-
tions shown in Fig. 7 demonstrate the ability of the NSD and
AIGC approaches, and the inability of the IGC approach, to
solve the membrane-stiffness-dominated problem.

An interesting feature of the results in Fig. 7 is that the
steady-state, nonzero lateral deformation predicted by the
NSD and AIGC approaches indicates that a buckling-type
behavior occurs. Note that this is not predicted by the IGC
formulation. The existence of such behavior was verified by a
NASTRAN! linear buckling analysis that predicted a first
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Fig. 5b IGC and NSD results for the bending problem.
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Fig. 5c AIGC results for the bending problem.
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Mass per Unit Length p =12 kg
Young's Modulus E=7.0x10"° N/
Length L=20 m

Cross Sectional Arca Ap=40x10* m?
Area Moment of Inertia 13=20x107 m*

Fig. 6 Membrane validation problem.
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Fig. 7 AIGC, IGC, and NSD results for the membrane problem.

critical angular velocity (ws) of 3.01 rad/s. As seen in Fig. 8

(ws = 1.0 rad/s), at values of w, below the critical speed, no
buckling-type behavior is exhibited.

Some other interesting features were also found concerning
the membrane-stiffness-dominated problem. Shown in Fig. 9
is the lateral midspan deflection as a function of time for a
spin-up time of 3 s, for both undamped (taking o =8 =0.2 was
found to be more satisfactory in the damped case) and damped
cases (damping was injected by means of a proportional damp-
ing assumption; it was added to accentuate the average overall
response). Note that the magnitude of the oscillations are
larger above the average steady-state value. This clearly shows
the nonlinear effect of the membrane stiffness which increases
with the absolute value of the lateral deflection.

Finally, it should be noted that more complex behavior can
occur. By comparing the AIGC solution shown in Fig. 7 with
that shown in Fig. 9, it is seen that the magnitude of the oscil-
lations about the steady-state lateral response increase as the
spin-up time decreases. As the spin-up time decreases (below
3s), the value of the midspan deflection (consider the un-
damped case in Fig. 9) could become positive. The oscillations
could then continue about the original buckled position, the
beam could perform a continuous snap-through type oscilla-
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Fig. 8 Membrane problem solution at a subcritical speed.
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Fig. 9 Membrane problem solution at a spin-up time of 3 s.
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tion, or an intermittent type of snap-through oscillation could
occur. In Fig. 10, the latter two types of behavior are shown
for values of the spin-up time, 7, corresponding to 2.45 s and
2.1s, respectively.

Extension to Other Physical Problems

While only problems with cantilevered or pinned-pinned
beam attachment have been addressed in this work, problems
with other physical attachment could be analyzed with the
AIGC approach. This would be done by using the boundary
conditions for the specific problem in question. After describ-
ing the boundary conditions mathematically in terms of s, u,
and u,, the appropriate algebraic constraints could be ob-
tained. As is done in this work, the complete equations of
motion would then be obtained by addition of the set of sec-
ond-order differential equations [Eq. (30)]. Although the de-
velopment of the AIGC approach is limited here to two-dimen-
sional prescribed motion of a single beam, the approach has
been extended to three-dimensional motion and deformation
as well as applied forces/torques.

Summary

A new flexible body dynamic beam formulation, the AIGC
approach, has been developed. The ability of this approach to
improve upon two existing approaches, the IGC and NSD
approaches, has been demonstrated through the use of two
specific problems. Application of this approach to problems
with other boundary conditions has been discussed.
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